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Abstract 9 

Parasites display a wide range of behaviours that are frequently overlooked in favour of host 10 

responses. Understanding these behaviours can improve parasite control through more precise 11 

application or development of new behaviour-based strategies. In aquaculture fish lice are an 12 

ongoing problem, infections reduce fishery production and control options are limited. Fish 13 

lice are distinct in their ability to survive and swim off hosts, allowing transmission to multiple 14 

fish hosts across their lifespan. Here we assessed off host behaviour of Argulus foliaceus (a 15 

freshwater fish louse) and observed a diurnal rhythmical pattern in behaviour. This pattern was 16 

lost when lice were exposed to constant darkness, indicating that the behaviour is not 17 

endogenously driven. Males were consistently active in light with reduced activity in darkness. 18 

In contrast, females were active during light and dark phases with peak activity at the start of 19 

dark periods. A. foliaceus was also strongly attracted to a light stimulus, preferring white and 20 

blue coloured light to green or red. Light is a strong driver of fish louse activity and could be 21 

used to trap parasites. Aquaculture light regimes could also be altered to reduce parasite 22 

attraction and activity.  23 

 24 
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Key Findings 27 

• Fish lice have daily rhythmical behaviour that differs between males and females. 28 

• This behaviour is triggered by light changes and is not endogenously driven. 29 

• Fish lice are strongly attracted to shorter wavelengths of light. 30 

 31 

Introduction 32 

Parasites are a fundamental component of ecosystems; practically all known species carry 33 

parasites and food webs can be dominated by their presence (Marcogliese and Cone 1997; 34 

Poulin and Morand 2000; Lafferty et al. 2006; Dobson et al. 2008). In addition to their 35 

ecological importance, parasitic infections play a critical role in the global health of humans 36 

and both domesticated and wild species. Conflict between humans and parasites drives 37 

development and use of control strategies to prevent and reduce the health and socio-economic 38 

impacts of infection. Understanding behaviour can aid development and employment of control 39 

strategies, but research tends to focus on host rather than parasite behaviours (Barnard and 40 

Behnke 1990; Sukhdeo and Chappell 1994; Lewis et al. 2002). This is despite that fact that 41 

parasites have developed a wide range of complex behaviours to facilitate transmission, 42 

infection, reproduction, and survival (Rea and Irwin 1994; Sukhdeo and Chappell 1994; Lewis 43 

et al. 2002). Behaviours involved in host finding are of particular interest regarding 44 

development of control strategies to interrupt and prevent infection. Many parasites have 45 

adopted ‘active’ host finding behaviours to locate suitable hosts, whereby a parasite responds 46 

to environmental and/or host signals (Rea and Irwin 1994). Parasites utilise a range of stimuli 47 

(such as chemical, thermal, mechanical and visual), often in combination to locate hosts and 48 

assess their suitability (Van Leerdam et al. 1985; Ashton et al. 1999; Bailey et al. 2006; Mordue 49 

(Luntz) and Birkett 2009).  50 

Organisms can temporally synchronise to their environment by detecting and responding 51 



 

to external cues, resulting in biological rhythms of physiology and behaviour (Vitaterna et al. 52 

2001; Bell-Pedersen et al. 2005). Light-dark cycles are the dominant cue for a majority of 53 

organisms, however for parasites both environmental and host cues influence rhythmicity 54 

(Bell-Pedersen et al. 2005; Reece et al. 2017). By synchronising with hosts, parasites can 55 

increase their survival. During dispersal and transmission, rhythms allow parasites to maximise 56 

infection success by optimizing presence of infective stages with host availability (Sukhdeo 57 

and Chappell 1994; Bogéa et al. 1996). In addition, infection success and parasite survival can 58 

be influenced by fluctuations (daily and/or seasonal) in host immune responses (Martinez-59 

Bakker and Helm 2015; Kiessling et al. 2017; Carvalho Cabral et al. 2019). Identification of 60 

cues used by parasites and the rhythms they exhibit could help reduce infection and 61 

transmission risks; for example, by avoiding/preventing access to locations during peak 62 

parasite presence or deploying control measures at such times to maximise capture.  63 

The environmental and/or host cues utilised by parasites can differ between life stage or 64 

sexes. While this can reduce the efficacy of broad control applications and induce bias, it can 65 

also be used for highly targeted control. Sex specific control schemes have been employed to 66 

successfully reduce parasite populations or their vectors. Females can be targeted to reduce the 67 

next generation by directing removing reproducers, while male targeting uses sterilisation and 68 

release techniques to lower population fecundity (Alphey et al. 2010; Epsky et al. 1999). 69 

Discrete sexes can be caught using sex-specific behaviours such as pheromone or food-based 70 

attraction (Epsky et al. 1999). These sex-specific behaviours likely lead to sex specific 71 

rhythms, which could also be exploited to further promote control success. Sexual differences 72 

in parasite rhythms have yet to be explored (Sikkel et al. 2009).  73 

Fish lice are ectoparasitic crustaceans, problematic worldwide in fisheries. Control options 74 

are limited, with reduction in chemical applications due to environmental concerns and rising 75 

drug resistance (Taylor et al. 2005a; Costello 2009). Recent developments in control of marine 76 



 

sea lice capitalises on louse behaviour: lice frequent the top of the water column, consequently 77 

fish are held at >10 m below sea surface to reduce infection. For freshwater lice (genus Argulus) 78 

however, control options remain insufficient with some farmers turning to illegal options 79 

(Taylor et al. 2005b). Thus, there is a need to explore alternative, behaviour-based control 80 

methods. Argulus spp. are unusual in that they retain the ability to free swim throughout their 81 

life cycle with host switching frequent, especially among male parasites as they seek female 82 

partners (Bandilla et al. 2008). No studies have tested for the presence of endogenous rhythms 83 

in Argulus spp. (or any other aquatic ectoparasitic crustacean), although a diurnal pattern is 84 

present in the strength of their positive phototaxis response (Yoshizawa and Nogami 2008). 85 

Argulus spp. also react to light/dark changes with differing activity, however this has not been 86 

observed over a circadian period or between sexes (Mikheev et al. 1999).  87 

Here we examine host seeking behaviour of a globally problematic fish ectoparasite over 88 

a diurnal period, testing for the presence of endogenous cues. Strength of light attraction and 89 

wavelength specific preferences are also assessed to aid control development. 90 

 91 

Materials and methods 92 

Parasite and host maintenance 93 

Argulus spp. used in this study were collected from Risca Canal (Newport, UK; grid reference: 94 

ST 24344 90686) on 06/06/18 and 07/08/19 by hand netting naturally infected three-spined 95 

stickleback Gasterosteus aculeatus. Parasites were removed from fish in the field by lifting the 96 

host fish out of water using a net for a 10 s period; upon re-submersion into a container of 97 

freshwater the parasite detached and was collected using a wide-bore pipette. Argulus spp. were 98 

transported to the lab off host in sealed containers of dechlorinated water. Once in the Cardiff 99 

aquarium, parasites were morphologically identified as A. foliaceus (according to Fryer 1982) 100 

and maintained in male: female pairs on three-spined sticklebacks collected from Roath Brook, 101 



 

Cardiff (ST 18897 78541; an Argulus spp. naïve population). Fish were infected by placing the 102 

parasites into fish holding tanks (9 L) containing an individual stickleback to allow natural 103 

parasite attachment. All fish and parasites were maintained under a 12 h light:12 h dark cycle, 104 

with fish fed daily with Tubifex bloodworm. A. foliaceus were acclimated to laboratory 105 

conditions on their hosts for 1 week prior to experimentation. Parasites were not re-used within 106 

or across experiments. For the circadian rhythm experiment, both male and non-gravid female 107 

parasites were used. For the light attraction/colour preference experiments only male A. 108 

foliaceus were used due to higher availability of male parasites versus non-gravid females (as 109 

female parasites continuously produce eggs after mating and egg baring females exhibit egg 110 

laying behaviour when off host). 111 

A. foliaceus were removed from sticklebacks for use in experiments using the same 112 

collection method as described above. All A. foliaceus were checked visually for damage 113 

before use and measured from the rostral edge of the carapace to the anterior end of the 114 

abdominal lobes using a dissecting microscope at 10x magnification with a Lumenera Infinity 115 

1 camera and Infinity Capture software version 6.5.4.  116 

The experimental procedures in this study conform to the accepted principles of animal 117 

welfare in experimental science and used the minimum number of animals required to produce 118 

statistically reproducible results. All animal work was approved by the Cardiff University’s 119 

Animal Ethics Committee, followed ARRIVE guidelines and was conducted under Home 120 

Office License PPL 303424. 121 

 122 

Circadian Rhythm of parasite swimming activity off host 123 

To understand how A. foliaceus behave off host/during transmission over a circadian period, 124 

individual adult male and non-gravid female A. foliaceus (males: N = 22, average size = 3.93 125 

mm ± 0.23 SD, females: N = 18, average size = 4.43 mm ± 0.44 SD,) were placed into glass 126 



 

petri dishes (10 cm diameter) filled with 50 ml dechlorinated water. The water level in the petri 127 

dishes was sufficient to allow full horizontal movement, while minimizing vertical motion for 128 

behavioural tracking. Additionally, the sides of each dish were covered with white fabric to 129 

reduce reflections and prevent visual disturbance (Mikheev et al. 1998). Parasites were then 130 

subject to 12 h light:12 h dark (LD; average 1000 lux) for 48h, after which they were removed 131 

from the setup, given one day of recovery on stickleback hosts (to allow feeding/prevent 132 

starvation) before returning to the setup for another 48h under total darkness (DD). The order 133 

of light condition (12:12 LD vs DD) could not be randomised as the total darkness regime 134 

would disrupt any entrained circadian rhythm, altering any tests post exposure. The setup was 135 

completely reset between trials and light condition tests. Parasite behaviour was recorded 136 

during the 48 h exposures via 24 h infrared CCTV cameras (Sentient Pro HDA DVR 8 Channel 137 

CCTV, Maplin). Every 4 h (zeitgeber time = ZT, ZT0 = 7 am, ZT4 = 11 am, ZT8 = 3 pm, ZT12 138 

= 7 pm, ZT16 = 11 pm, ZT20 = 3 am; lights on at ZT0 and off at ZT12) the total distance 139 

covered by the parasite and subsequent average swimming speed was calculated over a 2 min 140 

period using  ImageJ version 1.51j8 (Schneider et al. 2012) to prepare video files for analysis 141 

and Kinovea version 0.8.27 (Ganni et al. 2018) to track parasite movement. Proportion of time 142 

spent swimming was obtained from Kinovea by calculating the time spent swimming at >1 143 

mm/s (approximately ¼ body length). Patterns of parasite activity were then assessed for a 24 144 

h period and between 12:12 LD/DD trials to determine activity and entrainment of rhythm. 145 

 146 

Argulus light attraction in the presence of fish hosts 147 

The attraction of A. foliaceus to a light source versus a live fish host was assessed using two 148 

different behavioural assays: fish vs light trials in which adult male A. foliaceus were given the 149 

choice of either a white light or a stickleback in darkness over a 24 h period (N = 20 parasites, 150 

average size = 4.12 mm ± 0.31 SD; Fig. 1A), and lit fish vs dark fish trials offering the choice 151 



 

of a stickleback with a white light or a stickleback in darkness (N = 18 parasites, average size 152 

= 4.14 mm ± 0.35 SD; Fig. 1B) over a 2 h period. Arenas comprised of glass tank filled to 10 153 

cm water depth, split into three identical sized sections (left, middle and right) using a 1 cm 154 

aperture mesh to allow free movement of parasites while restricting fish movement (Fig. 1A 155 

and B). Stimuli were placed into the left and right thirds, with two A. foliaceus restrained under 156 

a glass dish in the middle third for 30 min to allow acclimation. After acclimation, the lice were 157 

released and monitored via infrared CCTV cameras. All light stimuli used a waterproof LED 158 

white light (average 50 lux at a distance of 7 cm), while all stimuli in darkness contained the 159 

same type of LED white light but turned off to ensure each section had the same structure. The 160 

positions of the stimuli were swapped in between trials to avoid any potential side bias. For the 161 

lit fish vs dark fish trials, all host pairs were sized matched. 162 

 163 

Argulus light colour preference 164 

To investigate whether certain wavelengths of light are more attractive to A. foliaceus, adult 165 

males (N = 20, average size = 4.08 mm ± 0.33 SD) were placed individually into the centre of 166 

a 2.5 L opaque white square arena (14 x 14 cm) filled with 1 L water (5 cm water depth). The 167 

arena was split into four equal quarters, with four waterproof lights (3 x 3 x 2 cm, LED with 168 

RGB colour) placed into the arena and positioned flush inside each corner (Fig. 1C). Lights 169 

were randomly assigned to emit either red (635–700 nm), green (520–560 nm), blue (450–490 170 

nm), or white (emits all wavelengths, 450-700 nm) light, with brightness controlled so each 171 

light individually generated an average 50 lux (lux meter positioned 7 cm away from light). 172 

There was no visual overlap in the colours emitted from each light, and initial testing found 173 

that parasites did not swim erratically or behave in any other abnormal manner in the 174 

experimental arena (following previous observations in the lab and by Mikheev et al. 1998). 175 

The inclusion of an acclimation period in initial testing also had no impact on parasite 176 



 

behaviour, thus parasites were observed immediately after introduction to the arena. After 177 

being introduced to the centre of the arena, parasites were monitored for 2 min with their time 178 

at each colour recorded. Location at a colour was classified as the parasite being present 179 

anywhere in the quarter containing the light (with more than half of the parasites body present 180 

in the quarter for when the parasite crossed between sections). Parasites were observed live, 181 

with the observer stationed next to the arena looking down into the tank. Room lights were 182 

turned off so the only light source during experimentation came from the lights in the arena - 183 

this provided enough light to observe parasite movement while preventing casting of shadows 184 

into the arena from the observer. Individual parasites were tested 3 times consecutively with 185 

average time spent in each light corner calculated. Parasites experienced a rest period of a few 186 

seconds between replicates as the arena was reset and light position randomised for each 187 

replicate. Parasites did not linger or remain stationary on boundary lines between quarters 188 

during observations. 189 

 190 

Statistical Analysis 191 

All statistical analyses were conducted using R statistical software (v3.6.2; R Core Team 2017) 192 

with the level of significance in all tests taken as p < 0.05. Models were refined through 193 

stepwise deletion of insignificant terms and AIC comparisons, with visual examination of 194 

model plots to check standardised residuals for normal distribution and homogeneity of 195 

variance (Crawley 2007). The following packages were used for analyses: “ggplot2” to 196 

visualise data (Wickham 2009), “lme4” to run general linear mixed models (Bates et al. 2014), 197 

“emmeans” for post-hoc analyses (Searle et al. 1980), “RAIN” and “MetaCycle” to determine 198 

circadian rhythmicity (Thaben and Westermark 2014; Wu et al. 2016) and “circacompare” to 199 

compare rhythms (Parsons et al. 2020). For all rhythm analysis the time period being examined 200 

was set to 24 h. 201 



 

 To detect rhythmicity, RAIN was used due to its capability in detecting and accounting for 202 

asymmetrical patterns (Thaben and Westermark 2014) alongside MetaCycle due to its 203 

inclusion of multiple methods for rhythm evaluation (Wu et al. 2016). The test “rainresult” was 204 

used to examine patterns across parasite sex and light condition by examining phase and peak 205 

shape. The phase of a rhythm refers to the time point at which a peak occurs, with peak shape 206 

the time (in this case hours) between a peak and the next trough. Comparison of rhythms 207 

between different conditions were then investigated using circacompare to assess MESOR 208 

(Midline Estimating Statistic of Rhythm), amplitude and phase across rhythms. MESOR is a 209 

mean value adjusted for circadian rhythms, amplitude refers to “a measure of half the extent of 210 

predictable variation within a cycle” (Cornelissen 2014; Otsuka et al. 2016). A general linear 211 

mixed model (GLMM) using only the 12:12 LD data was then conducted to compare activity 212 

at each ZT time point by examining A. foliaceus activity against ZT time, parasite sex and 213 

length with an interaction between ZT time/parasite sex. This GLMM was then repeated using 214 

the DD trials only. All GLMMs used parasite ID as a random factor to account for 215 

pseudoreplication. To determine A. foliaceus colour preference, a general linear model was 216 

used to compare swimming activity (average over 3 trials) against light colour and parasite 217 

length. Across all tests and trials, parasite length had no significant impact and is thus not 218 

reported further. 219 

  220 

Results 221 

Circadian Rhythm of parasite swimming activity off host 222 

A strong diurnal pattern in off host swimming activity was observed for both male and female 223 

Argulus foliaceus when maintained under 12:12 LD conditions (RAIN P = <0.001 for both 224 

males and females, MetaCycle P = <0.001/0.004 for males/females respectively; Fig. 2); 225 

however under total darkness (DD) this diurnal rhythm was lost (RAIN P = 0.529/0.202, 226 



 

MetaCycle P = 0.894/0.999 for males/females respectively), suggesting this pattern is 227 

stimulated by light and not endogenously driven. Under 12:12 LD, male parasites had different 228 

phase to females (circacompare P = 0.018, male phase = 5.69 h post ZT0, female = 8.56 h), but 229 

there was no difference in MESOR or amplitude (circacompare P = 0.290/0.716 respectively; 230 

Fig. 3). 231 

Under 12:12 LD, overall average swimming speed of A. foliaceus did not differ among 232 

sexes (0.77 and 0.83 cm/s for males and females respectively, GLMM P = 0.591), however 233 

when directly comparing ZT timepoints females had a significantly higher swim speed at ZT12 234 

(7pm when the lights turn off; GLMM P = 0.008; Fig. 2). Under DD, females had marginally 235 

significant higher overall activity than males (0.86 cm/s for females, 0.62 cm/s for males; 236 

GLMM P = 0.049). When examining the proportion of time spent swimming, no patterns were 237 

observed except for females under DD which showed a peak at ZT0/20 and drop at ZT8/12 238 

(females under DD: Rain P = 0.005, MetaCycle P = 0.037, all other treatments: RAIN P = 239 

>0.456, MetaCycle P = >0.956; Supplementary Fig. 1). 240 

 241 

Argulus light attraction in the presence of fish hosts 242 

When assessing preference between a light stimulus or a fish host, the average time taken for 243 

lice to first enter the light section was 59 s. After 24 h, 85% of parasites were located at the 244 

light stimulus and the remaining 15% had been consumed by the fish host (time to consumption 245 

ranged from 11 s - 378 s). No fish became infected during these trials. 246 

For trials assessing preference between a fish host with or without a light source turned on, 247 

100% of parasites moved to the section containing a fish host with a light on. After 2 h, 17% 248 

of these parasites had been eaten by the fish, 22% infected the fish and 61% remained 249 

swimming around this section. 250 

 251 



 

Argulus light colour preference 252 

A. foliaceus significantly preferred white and blue coloured light over green or red (all 253 

comparisons P = <0.001, except white vs green in which P = 0.025), with preference for blue 254 

light over white close to significance (P = 0.052; Fig.4). 255 

 256 

Discussion 257 

During dispersal, hosts provide a spatially patchy environment in which parasites need to 258 

anticipate host availability (Skelton et al. 2015). As such, parasites must develop strategies to 259 

increase host-parasite contact and facilitate infection and transmission. In many parasites this 260 

involves host-seeking behaviours and synchronisation with their hosts. For fish lice, hosts are 261 

located by free-swimming parasites responding to host and environmental cues, with light their 262 

dominant stimulus (Bandilla et al. 2007). While previous studies have recorded variations in 263 

fish lice behaviour over diurnal periods (Yoshizawa and Nogami 2008; Heuch et al. 2011), 264 

none have determined if these rhythms are endogenously driven. Here Argulus foliaceus off 265 

host activity followed a diurnal, not endogenous, circadian pattern as the distinct behavioural 266 

rhythm under light/dark conditions was lost under total darkness. There was also a sexual 267 

difference in off host behaviour with male and female rhythms offset by approximately 4 h. 268 

When examining light attraction A. foliaceus consistently displayed a strong attraction to light 269 

over combined host cues (in the form of a live host) and preferred shorter wavelengths of light. 270 

Argulus display sexually dimorphic host switching behaviour with males frequently 271 

leaving their hosts to find mates while non-gravid females remain on host (Bandilla et al. 2008). 272 

This dimorphism continues in off host behaviour. As shown previously by (Mikheev et al. 273 

1999), female A. foliaceus had highest activity when the lights turned off and low activity when 274 

lights turned on. Examining activity over a circadian period however indicates that this is not 275 

sustained, 4+ hours after lights turn off female parasite activity drops, and inversely 4+ hours 276 



 

after lights turn on female activity increases. Males do not follow the same pattern with activity 277 

consistently higher during light periods and lower during dark periods. The continued high 278 

average speed of females when lights turn off (versus a drop in activity for males) could be 279 

related to their host switching behaviours: females are not predisposed to spending time off 280 

host, and thus may not react as quickly as males to light changes. Alternatively, the lights used 281 

in this study (and Mikheev et al. 1999) turned on/off immediately and could be simulating a 282 

passing shadow (a trigger of fish lice activity, Bohn 1910; Poulin et al. 1990). Females could 283 

react stronger than males to potential host cues (due to a higher tendency for females to remain 284 

on the host) resulting in high activity when lights turn off. The distinct and strong diurnal 285 

rhythm observed when using average swimming speed measurements was not observed when 286 

using measurements that only record time spent active. Average swim speed is more 287 

comprehensive accounting for variation in activity, while time spent active (i.e. a simple 288 

proportion of time moving or not) cannot discern these nuances and would lead to assumption 289 

of arrhythmic behaviour. This highlights the importance of selecting the correct activity 290 

measure when assessing rhythmical patterns in behaviour. 291 

Light is an integral component of aquaculture systems, with differing light wavelengths, 292 

intensity and photo periods used to manipulate fish growth and maturation (Boeuf and Le Bail 293 

1999; Oppedal et al. 1999; Villamizar et al. 2011). The subsequent impact of these altered light 294 

regimes on both fish behaviour and health is now being considered. Recent studies have also 295 

found parasitic infection can alter host circadian gene expression, further complicating the 296 

relationship between parasites, hosts and the rhythms they both follow (Ellison et al. 2018, 297 

2020). Considering the positive phototactic response of fish lice, aquaculture lights could 298 

attract lice to cages and facilitate infection (Trippel 2010, Stewart et al. 2013). In this study 299 

male A. foliaceus were more active under light versus dark, suggesting lit cages would not only 300 

attract lice but also increase their activity which could lead to higher infection success. Shifting 301 



 

the wavelength of light used in aquaculture systems could potentially allow retention of fish 302 

manipulation, while limiting the impact on pathogenic organisms. For example when inhibiting 303 

Salmo salar sexual maturation to increase production, green and red light treatments used less 304 

energy versus white light treatments (Leclercq et al. 2011). Additionally, Oncorhynchus mykiss 305 

raised under red light showed improved growth compared to fish raised under blue or white 306 

light (Karakatsouli et al. 2008). Red light was the least attractive light colour to A. foliaceus 307 

(and A. japonicus: Yoshizawa and Nogami 2008), therefore cages lit with red light could attract 308 

less parasites to those lit with shorter wavelengths. This may only be beneficial in outdoor 309 

systems where wild parasites enter containers/cages to infect fish, versus enclosed systems 310 

where parasites may be trapped in with the fish. 311 

In addition to altering the light regimes in aquaculture to reduce parasite attraction and 312 

infection, light could be used to purposefully attract parasites into traps. Light traps have 313 

successfully captured sea lice in both the lab and field (where, in comparison, plankton tows 314 

captured none) and were suggested as a monitoring tool (Novales Flamarique et al. 2009). 315 

Unlike sea lice which show differing reaction strength to light across their life stages, Argulus 316 

spp. appear to be consistent in their light attraction from hatching to adulthood (Bai 1981; 317 

Novales Flamarique et al. 2000, 2009; Bandilla et al. 2007). Additionally, freshwater habitats 318 

used for aquaculture are often smaller, enclosed areas (e.g. rearing ponds and raceways, 319 

recreational fishing lakes and reservoirs) compared to the ocean, potentially increasing the 320 

chance of Argulus spp. to encounter traps. Therefore, light traps could be more effective and a 321 

feasible management tool for freshwater fisheries and aquaculture. Our findings suggest that 322 

over relatively short distances lice are strongly attracted to light, therefore future studies should 323 

examine the attraction distance of light coupled with trials in freshwater aquaculture systems 324 

to determine the efficacy of light traps in controlling lice infections. 325 



 

Parasite behaviour can be complex and diverse with host cues, external stimulus and 326 

diurnal rhythms all affecting parasite activity. When developing control strategies, 327 

understanding behaviour allows more effective application (i.e. during parasite emergence) and 328 

offers the potential for identifying new targets for control. Sexual differences are also critical 329 

to consider, as differing behaviour could lead to one sex avoiding control application. By 330 

understanding and manipulating parasites the impact of infection on global health and 331 

economics can be reduced. Parasite behaviour is therefore an important component of 332 

management and should be considered for all problematic infections. 333 

 334 

Supplementary material 335 

 336 

Supplementary figure 1. Proportion of time Argulus foliaceus spent swimming off host over 337 

a 48h period under differing light conditions. (A) Male A. foliaceus under 12h light:12h dark. 338 

(B) Male A. foliaceus under total darkness. (C) Female A. foliaceus under 12h light:12h dark. 339 

(D) Female A. foliaceus under total darkness. White backgrounds indicate periods of light, dark 340 

grey backgrounds indicate periods of darkness. ZT0 = 7am, ZT12 = 7pm. 341 



 

 342 

Data 343 

Data will be made available upon request. 344 
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Figures 543 

 544 

Figure 1. Plan view of experimental areas for Argulus foliaceus (A/B) light vs fish host 545 

preference and (C) light colour preference trials. In each arena circles represent LED light 546 

sources. (A) gives a choice of white light vs a three-spined stickleback (Gasterosteus 547 

aculeatus) host with a turned off light, (B) gives a choice of a white light + stickleback vs a 548 

turned off light + stickleback. In (A/B) dashed lines represent 1cm aperture mesh which allows 549 

the parasites to swim through while blocking fish movement. In (C) dotted lines indicate the 550 

total area of each coloured corner for behavioural recording, R = red light, G = green, W = 551 

white and B = blue (coloured light placement was changed/randomised for each trial). 552 

 553 

 554 



 

Figure 2. Average swimming speed of Argulus foliaceus off host over a 48 h period under two 555 

different light conditions: alternating light and dark (A and C) and total darkness (B and D). 556 

(A) Male A. foliaceus under 12h light:12h dark. (B) Male A. foliaceus under total darkness. (C) 557 

Female A. foliaceus under 12h light:12h dark. (D) Female A. foliaceus under total darkness. 558 

White backgrounds indicate periods of light, dark grey backgrounds indicate periods of 559 

darkness. ZT0 = 7am, ZT12 = 7pm. 560 

 561 

 562 

Figure 3. Circacompare output plot of male and female Argulus foliaceus swimming speed 563 

over a 12:12 light:dark 48h period. Lights turn on/off at 0/12 and 24/36. 564 

 565 



 

 566 

Figure 4. Light preference of male Argulus foliaceus (n = 20) off the host. Average time spent 567 

by free-swimming A. foliaceus in the vicinity of different coloured lights over a 2-minute 568 

period. White light wavelength = 450-700 nm, blue = 450-490 nm, green = 520-560 nm, red = 569 

635-700 nm.  570 


