
 

 

 

P
R

IF
Y

S
G

O
L

 B
A

N
G

O
R

 /
 B

A
N

G
O

R
 U

N
IV

E
R

S
IT

Y
 

 

Multivariate Approach for Studying the Degradation of Perovskite Solar
Cells.
Kettle, Jeffrey; Tyagi, Priyanka; David, Tudur; Stoichkov, Vasil

Solar Energy

DOI:
10.1016/j.solener.2019.09.054

Published: 15/11/2019

Peer reviewed version

Cyswllt i'r cyhoeddiad / Link to publication

Dyfyniad o'r fersiwn a gyhoeddwyd / Citation for published version (APA):
Kettle, J., Tyagi, P., David, T., & Stoichkov, V. (2019). Multivariate Approach for Studying the
Degradation of Perovskite Solar Cells. Solar Energy, 193, 12-19.
https://doi.org/10.1016/j.solener.2019.09.054

Hawliau Cyffredinol / General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or
other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal
requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private
study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to
the work immediately and investigate your claim.

 29. Sep. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bangor University Research Portal

https://core.ac.uk/display/478091405?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.solener.2019.09.054
https://research.bangor.ac.uk/portal/en/researchoutputs/multivariate-approach-for-studying-the-degradation-of-perovskite-solar-cells(d74098db-53b8-4a28-b004-7b9732872634).html
https://research.bangor.ac.uk/portal/en/researchoutputs/multivariate-approach-for-studying-the-degradation-of-perovskite-solar-cells(d74098db-53b8-4a28-b004-7b9732872634).html
https://research.bangor.ac.uk/portal/en/researchoutputs/multivariate-approach-for-studying-the-degradation-of-perovskite-solar-cells(d74098db-53b8-4a28-b004-7b9732872634).html
https://doi.org/10.1016/j.solener.2019.09.054


1 
 

Multivariate Approach for Studying the Degradation of Perovskite Solar Cells 1 

Priyanka Tyagi, Tudur W. David, Vasil D. Stoichkov, Jeff Kettle* 2 

School of Electronic Engineering, Bangor University, Dean St., Bangor, Gwynedd, Wales, UK,  3 

*email; j.kettle@bangor.ac.uk 4 

 5 

Abstract 6 

Despite the progress in the performance of perovskite solar cells (PSCs), the absorber layer 7 

degradation during prolonged exposure to multiple environmental conditions is still a major 8 

issue. As the degradation depends upon many intrinsic and extrinsic factors, the need to adopt a 9 

multivariate testing protocol, which provides rapid assessment of device stability, is required. To 10 

do this, a Plackett Burman (PB) screening design has been used to analyze 9 different factors that 11 

affect the PSC stability; including four extrinsic factors (oxygen, moisture, UV exposure and 12 

temperature) and five intrinsic factors (selection of hole transport layer and electron transport 13 

layer, absorber layer thickness, halide type and perovskite deposition process). This approach 14 

allows us to rank the relative severity of these factors and can be used to narrow the scope of 15 

materials and device architectures to be modified, by identifying materials and configurations, 16 

which are the most stable. The least and most stable device configurations have been identified 17 

and the success of the screening approach has been demonstrated by testing the optimized 18 

configurations under ISOS-D1 and –L2 protocols. Importantly, only 12 experiments are needed 19 

to establish the most stable combination from the 9 factors thus providing a rapid assessment. 20 

Scanning electron microscopy (SEM) and X-ray diffraction (XRD) measurements of perovskite 21 

absorber films have been performed in order to understand the degradation pathways and to 22 

support the conclusion of PB screening technique.   23 

Key words; perovskite solar cells, stability, multivariate analysis, degradation studies. 24 

 25 

 26 
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 Introduction 27 

Perovskite solar cells (PSCs) have attracted attention due to the rapid growth in power 28 

conversion efficiencies (PCEs) over the past decade (Saliba et al., 2016; Li at al., 2016) and the 29 

possibility to integrate them in tandem configuration with traditional silicon solar cells (Sahli et 30 

al., 2018; Kanda et al., 2018). However, the poor stability remains a challenge for their 31 

commercialization. The sources of instability in PSCs are numerous and include intrinsic 32 

properties (perovskite layer composition, hole and electron transporter, electrode etc.) (Boyd et 33 

al., 2019; Christians et al., 2018a; Cao et al., 2018) and external environmental conditions such 34 

as humidity, light, temperature and thermal changes etc. Most studies on PSC stability to date 35 

have been focused on considering one or a maximum of two stress factors e.g. oxygen (O2) 36 

(Bryant et al., 2016; Kong et al., 2016) humidity (Song et al., 2016a; Schlipf et al., 2019) or 37 

temperature (Misra et al., 2015). Although the stability study under one applied stress can 38 

provide meaningful information, it does not provide information about the likely outdoor 39 

stability during which multiple stresses are simultaneously applied. This is important for three 40 

reasons; firstly, the outdoor environment is the most likely location for deployment, so PSCs will 41 

experience multiple stresses, which will act simultaneously and vary with time (Christians et al., 42 

2018b) Secondly, it has been observed that the degradation is accelerated due to the ‘interaction' 43 

between stress factors. Thirdly, and surprisingly, it has been shown in PSCs that one stress factor 44 

can also act as the trigger to the degradation from other stresses; an example being that methyl 45 

ammonium lead iodide (MAPbI3) absorber layer does not degrade rapidly due to illumination 46 

unless the samples are heated at above 45⁰C (Misra et al., 2015).  47 

Some recent advancement has happened in the degradation studies of PSCs under the combined 48 

stress factors (2 or 3 at a time). Christians et al. have studied the degradation of triple cation 49 

based PSCs (> 1000h) under the effect of three stress factors; light (including UV-light, O2  and 50 

moisture) (Christians et al., 2018a). Domanski et al have made a very significant contribution in 51 

their study, where they have presented the impact of O2, humidity, and temperature on the 52 

operational stability of PSCs. The authors have presented a degradation study of PSCs under one 53 

stress and in the combination of multi-stress factors. They have observed that the PSCs degrade 54 

drastically in the presence of O2 and humidity (even 5%) and were very unstable at elevated 55 
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temperature (~ 650C). Based on their observations, they have also proposed the stable 56 

operational conditions for the PSCs (Domanski et al., 2018).  57 

Another very important study on the degradation of MAPbI3 absorber layer based PSCs has been 58 

performed by Islam and coworkers where they have performed maximum power point tracking 59 

(MPPT) under continuous light illumination for 4000 h. This study is very important as this is 60 

possibly the longest MPPT till date performed on MAPbI3 based PSCs without mixing of cations 61 

in the formulation of perovskite. The studies were performed on encapsulated devices at 300C 62 

without UV filters (Islam et al., 2019).  63 

 Given the numerous and unknown range of variables that affect PSC stability, a holistic 64 

approach to study stability in PSCs would be beneficial to the community. This would enable 65 

multiple extrinsic and intrinsic factors to be modified simultaneously and their stability assessed 66 

together rather than by ‘one factor at a time’. However, such a ‘multi-stress’ study in conjunction 67 

with device structure variation would be very time-consuming undertaking, particularly if only 68 

one factor was changed for every experiment. Therefore, we propose to use an experimental 69 

screening design from design of experiments (DOE) method, which allows us to undertake 70 

multivariate analysis of the PSC stability. Multivariate analysis techniques such as plackett 71 

burman (PB) have been widely used by the manufacturing and life science industry for process 72 

optimization, demonstrating the validity of this mathematical approach (Waśko et al., 2010; 73 

Alves et al., 2014, Briefs at al., 2013; Jain et al., 2010). Recently, our group has successfully 74 

demonstrated the applicability of PB screening in the performance optimization of field effect 75 

transistors (FETs) with 8 factors in 12 experimental runs (Gomes et al., 2019). 76 

 It can also be used in the context of PSC reliability by identifying the principle factors 77 

that impact upon stability and aid the design of the PSC to be more stable to extrinsic stress 78 

factors. The approach allows us to 1) rank which intrinsic or extrinsic degradation factor affects 79 

the stability the most and the least and 2) Identify which combination of device 80 

structure/materials yields the most stable device. To complement the statistical analysis, X-Ray 81 

diffraction (XRD) and scanning electron microscopy (SEM) measurements were performed to 82 

understand fully the degradation routes for each stress and change in device structure. 83 
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In this work, multiple factors were studied by using the PB screening technique, which 84 

can identify the most significant degradation factors using a low number of test runs. The 85 

screening technique is capable of testing factors by requiring only n+ 1 experiments (Waśko et 86 

al., 2010; Alves et al., 2014; Briefs at al., 2013; Jain et al., 2010). This means a rapid analysis 87 

can be achieved. PB analysis utilizes a predetermined test matrix based upon the number of 88 

factors selected and the matrix used for this test was taken from Esbensen et al (Esbensen et al., 89 

2018). Four extrinsic stress factors (O2, humidity, UV exposure and temperature) and five 90 

intrinsic factors related to device structure (HTL and ETL, absorber layer thickness, absorber 91 

layer composition (MAPbI3 or MAPbBr2I) and fabrication procedure) were studied for an 92 

‘inverted’ PSC structure. The PSC device structure is shown in Fig.1. For the study, two levels 93 

for each factor were considered. Based upon the number of factors selected, 12 experiments were 94 

found to be necessary, based upon the PB table.  95 

 96 

2.  Experimental details 97 

2.1. Design of experiments and choice of levels/factors 98 

Table 1 and 2 show the detailed range of stress conditions used in each experiment, where ‘L’ 99 

indicates the low level and ‘H’ indicates the high level, which can be quantitative or qualitative. 100 

The ‘L’ and the ‘H’ levels, corresponding to each factor, were chosen based upon their impact on 101 

the stability of the PSCs sited in the previous literature. We have selected poly(3,4-102 

ethylenedioxythiophene)-poly(styrenesulfonate)(PEDOT:PSS) as  ‘L’ level for the factor HTL as 103 

it is widely used HTL in inverted PSCs (Xiao et al., 2014; You et al., 2014)  and is found very 104 

unstable compared to inorganic HTL due to the hygroscopic nature of this layer (You et al., 105 

2016). In contrast to PEDOT:PSS, nickel oxide (NiOx) is reported as a very stable HTL in 106 

inverted PSCs (You et al., 2016;  Kim et al., 2015; Zhou et al. 2018) which justified the choice of 107 

this material as the ‘H’ level for HTL. For Perovskite absorber layer, MAPbI3 and MAPbBr2I 108 

have been chosen as the ‘L’ and ‘H’ levels respectively. MAPbI3 is very well studied and widely 109 

used absorber layer due to their near complete visible light absorption in the films and efficient 110 

charge extraction due to a high diffusion length for the carriers (Strabks et al., 2013; Lopez et al., 111 

2017). This absorber layer showed high sensitivity and instability towards moisture and O2
 112 

(Bryant et al., 2016). MAPbBr3 shows better resistance towards moisture and O2 due to its 113 
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crystallographic structure but at a cost of large exciton binding energy and reduced light 114 

absorption, resulting in low PCE in PSCs (Lopez et al., 2017; Edri et al.; 2013). Therefore, we 115 

have selected MAPbBr2I as ‘H’ level to compensate for the efficiency and stability (Zhao et al., 116 

2014). For ETL, with and without lithium fluoride (LiF)/ [6,6]-Phenyl-C71-butyric acid methyl 117 

ester (PC70BM) interface were chosen as the ‘H’ and ‘L’ levels because the presence of electron 118 

injection layer improves the stability and reduces hysteresis in PSCs (Wang et al., 2017). LiF 119 

was chosen because it is found to improve the efficiency of the PSCs by the doping of PCBM 120 

(Turak et al., 2017). For the fabrication steps, two-step procedure was considered as ‘H’ level 121 

because it provides a better reproducibility as compare to the one-step procedure (‘L’ level) (Li 122 

et al., 2016; Xiao et al., 2014). Thick films were considered as the ‘L’ level because the devices 123 

consisting thick films were found least efficient due to the increase in recombination resistance 124 

of the absorber layer as compared to the devices with thin absorber layer (~300nm) (‘H’ level) 125 

(Liu et al., 2014).  126 

The selection of the extrinsic factors is quantitative. UV exposure degrades the devices faster, 127 

especially in the presence of O2 (Christians et al., 2018a) so ‘with UV filter’ and ‘without UV 128 

filter’ have been taken as ‘L’ and ‘H’ levels. The ‘L’ (0%) and ‘H’ (20%) levels for O2 129 

correspond to the measurements performed in Nitrogen (N2) and air. For humidity ‘L’ (< 5%) 130 

and ‘H’ (80%) corresponds to the inert-dry conditions and ambient humidity. The ‘H’ level of 131 

temperature is related to previous literature and the ‘ISOS’ standards which controls temperature 132 

at 65oC during accelerated testing. The ‘L’ level was kept as 45oC, as this is the lower 133 

temperature limit for a solar cell under 1 sun illumination (Koehl et al., 2011; Misra et al., 2015). 134 

It is worth noting that the choice of these levels could be different for other set of 135 

experiments, which could lead different resulting conclusions. For the 2-fold PB screening 136 

technique, we are restricted to a choice of only two levels related to each factor. These levels are 137 

summarized in the table below.  138 

 139 

 140 

 141 

 142 
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Table 1: Plackett-Burman (PB) table used which requires 12 experiments to study the main 143 

effects of degradation to the perovskite absorber layer.  144 

Extrinsic Factors Intrinsic Factors 

Run O2 Humidity 

 

UV 

 

T Halide HTL  ETL Fabrication 

Step 

Thickness 

1. L L L L L H L H L 

2. H H H L H H L H L 

3. H H L L H L H L L 

4. H L H L L L H H H 

5. L H H L L H H L H 

6. L L H L H L L L H 

7. H L L H L L L L L 

8. L H L H H L L H H 

9. H L L H H H H H H 

10. L H H H L L H H L 

11. H H H H L H L L H 

12. L L H H H H H L L 

 145 

Table 2: Definition of each low (‘L’) and high (‘H’) factor defined in table 1.  146 

 

 

O2 

 

Humidity UV T Halide HTL ETL Fabrication 

Step 

Thickness 

L 0% < 5% With UV 

filter 

45oC MAPbI3 PEDOT:PSS Without LiF one-step 500nm 

H 20%   80% Without 

UV filter 

650C MAPbBr2I NiOx With LiF two-step 280nm 

 147 

 148 

 149 

 150 

 151 

 152 

 153 

   Fig. 1: Schematic of Device configuration used for stability studies. 154 
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A ‘run’ in table 1 is defined as the individual experiment where the device configuration and 155 

stress factors are altered. For clarity, a table has been added to the SI (Table S1) explicitly stating 156 

the configuration and conditions used in 12 experimental runs.  157 

2.2. Perovskite absorber layers and Device Fabrication 158 

Samples for each run were fabricated on glass substrates, which were cleaned by ultra sonicating 159 

in deionized water, acetone and isopropanol for 20 min each, followed by O2 plasma treatment 160 

for 5 min. The variation in sample configuration was considered by using two HTLs; 161 

PEDOT:PSS and NiOx, two compositions of perovskite (MAPbI3, MAPbBr2I; each with two 162 

thicknesses), perovskite layer deposition by either one-step or two-step process and including or 163 

excluding the ETL (LiF).  164 

 Shown in table 2 are the ‘L’ and ‘H’ levels used for this study. PEDOT:PSS (Ossila 165 

Al4083) was spin coated at 4000 rpm for 40 s in ambient conditions and annealed at 150oC for 166 

15 min. NiOx solution was prepared by dissolving nickel nitrate hexahydrate (Ni(NO3)2.6H2O) 167 

and ethylenediamine in 1:1 molar ratio in ethylene glycol (all from Sigma Aldrich). The solution 168 

was then left for stirring at 70oC for 3 h. NiOx films were deposited at 2000rpm for 90 s followed 169 

by annealing at 300oC for 1 h in ambient conditions. 170 

For the perovskite layer, three factors were varied; (i) the perovskite composition -171 

MAPbI3 or MAPbBr2I, (ii) perovskite absorber layer thickness and (iii) the deposition process 172 

(one-step or two-step). The perovskite absorber layers were deposited in a N2 filled glove box. 173 

For one-step Process, The MAPbI3 solution was prepared by mixing lead iodide (PbI2) and 174 

methylammonium iodide (MAI) in 1:1 M ratio in dimethylformamide (DMF). The solution was 175 

left on stirring for 24 h at room temperature and heated at 70oC for 10 min and during the 176 

deposition. The solution was filtered by using a 0.45 µm PTFE filter. The films were deposited at 177 

2000 rpm and 6000 rpm for 40 sec with an anti-solvent (toluene) treatment in last 10 sec of spin 178 

coating. Samples were annealed at 90oC for 1 h after the deposition. The measured thicknesses of 179 

perovskite layer were approximately 500 nm and 280 nm for 2000 rpm and 6000 rpm films. 180 

MAPbBr2I solution was prepared by mixing 433 mg lead bromide (PbBr2) and 187.6 mg MAI in 181 

1 ml DMF. The remainder of the solution preparation and film fabrication was kept the same as 182 

for MAPbI3. To deposit MAPbI3 by two-step process, separate solutions of MAI (30 mg/ml) in 183 

isopropanol and PbI2 (461 mg/ml) in DMF were prepared. PbI2 solution was spin coated at 2000 184 



8 
 

rpm and 6000 rpm for 40 sec on substrates from a solution heated at 700C for 10 min. Substrates 185 

were then annealed at 90oC for 20 min. Subsequently, MAI was deposited at 6000 rpm for 40 sec 186 

and films were annealed at 90oC for 20 min. Similarly, for MAPbBr2I, the concentration of 187 

solution was 30 mg/ml in isopropanol for MAI and 367 mg/ml in DMF for PbBr2. The spin 188 

coating procedure was similar to that of the MAPbI3. Both the PbI2 and PbBr2 solutions were 189 

filtered using a 0.45 µm PTFE filter. 190 

 After perovskite layer deposition PC70BM was deposited at 4000 rpm for 40 sec from a 191 

solution of 30 mg/ml PC70BM in Chlorobenzene (CB). Finally, a layer of LiF was thermally 192 

evaporated at a pressure of 1x10-6 torr if required. To fabricate the inverted PSCs, Indium Tin 193 

Oxide (ITO) coated glass substrate was used. The rest of the fabrication procedure was the same 194 

as mentioned above and at the top silver (Ag) electrode was deposited at a pressure of 1x10-6 195 

torr. The active area of the devices was 1cm2. 196 

 197 

2.3. Absorption Measurements and Device Characterization 198 

After fabrication, all samples were transferred to a UHV environmental chamber with controlled 199 

temperature and environment and optical feedthroughs. Depending on the test run, the samples 200 

were exposed to either a N2 atmosphere (99.9%) or dry air (80% N2, 20% O2) and relative 201 

humidity was adjusted by injecting water vapor via a feed through and controlled in-situ with a 202 

calibrated sensor (lower limit is 5%) used to maintain the relative humidity. Samples were placed 203 

onto a heated stage with sample temperature measured using a thermocouple. In all experimental 204 

runs two samples were tested under sulphur plasma class AAA lamp (Plasma-I systems GmbH) 205 

at AM 1.5. For absorption studies, transmission mode measurements were conducted by using an 206 

optical fiber of 400 µm core integrated with ocean optics spectrometer model HR4000. For 207 

device studies, BNC feed through allowed the samples to be connected to an external Keithley 208 

SMU. In this work, the time taken to reach 80% (T80%) of the original value  (absorption of 209 

perovskite absorber layer ) or 50% of the final value (T50%) were calculated and were used as 210 

the ‘output responses’ for each test run. To aid the analysis, a software package (Reliasoft) was 211 

used for multivariate analysis. XRD measurements were performed using a Philips X-PERT 212 

3040/60 instrument at 40kV voltage and 30mA current with CuKα radiation. SEM measurements 213 

have been performed using Hitachi TM3000-table top SEM. 214 
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3. Results and Discussion 215 

To analyze how changing the factors affect stability, the time taken for the samples to reach two 216 

particular lifetime points has been measured; T80% (defined as the time to reach 80% of the 217 

initial value) and T50% (for 50% of initial value). A life test model was developed that uses a 218 

least square polynomial model to express the effects in terms of the stress factors or 219 

environmental conditions. Least square mean values were calculated by assuming this model of 220 

the characteristic life time as shown in eq. 1.  221 

 𝑦𝑖 = 𝑓0 +  ∑ 𝑓𝑘𝑥𝑛𝑘
𝑧
𝑘=1 + 𝜀𝑛                              (1) 222 

Where yi represents the response, f0 is a constant fitted parameter, f1 to fk are the fitting 223 

parameters for the individual coefficients, xnk  represents the nth level of the kth predictor variable 224 

and 𝜀𝑛 represents the standard variance error. Multiple ‘y’ observations (representing the T80% 225 

or T50% time) can be expressed with the matrix in eq. 2. 226 

𝑦 = [

𝑦1

𝑦2..
𝑦𝑛

] 𝑋 = [

1 𝑥11 𝑥12 . 𝑥1𝑛

1 𝑥21 𝑥22 . 𝑥2𝑛
..
1

..
𝑥𝑛1

. . .
.

𝑥𝑛2
.

.
𝑥𝑛𝑛

]     (2) 227 

The matrix X is denoted as design matrix containing information about the level of the predictor 228 

variable. The main effect of the experimental factors can be solved using eq. 3 (Esbensen et al., 229 

2018) 230 

𝐸𝑋 = 2[∑(𝑦 +) − ∑(𝑦−)]/𝑁                             (3) 231 

where y+ represents the high-level term, y- represents the low-level terms and N represents the 232 

total number of experiments. The main effects are assumed to have the same variance, defined as 233 

σ2, given in eq. 4. Here EX  represents the factors and μ is the calculated mean. 234 

𝜎2 =
∑(𝐸𝑋−𝜇)2

𝑁−1
                                  (4) 235 

In order to identify a regression line, the standard error must be accounted. The standard error of 236 

the estimate is a measure of the accuracy of predictions and given in eq. 5.  237 
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𝜎𝑒𝑠𝑡 = √
∑(𝑌𝑟𝑒𝑎𝑙−𝑌𝑒𝑠𝑡)2

𝑁
                                  (5) 238 

Where σest is the standard error of the estimate, Yreal is an actual value and Yest is an estimated 239 

value. The numerator is the sum of squared differences between the actual scores and the 240 

predicted scores. The mean squared error is FMS dependent on the mean squared factor, which is 241 

related to the variance of single quantity as shown in eq. 6.  242 

 243 

                          𝐹𝑚𝑠 =
(𝐸𝑋)2

𝑁
                          (6) 244 

Fitted mean values are obtained from the multivariate analysis for ‘H’ and ‘L’ values of 245 

each factor. Figure 2 illustrates the variation of the fitted means for ‘L’ and ‘H’ levels of each 246 

factor (predictors) calculated from multivariate analysis. To calculate the fitted means, least 247 

square regression analysis has been applied to calculate the mean response values within a 248 

factorial design (2-fold PB design in our case). Fitted means can be used to identify the variation 249 

in the responses (T80% and T50% in this case) due to the change in the level of a particular 250 

factor (i.e. ‘L’ to ‘H’ and vice versa). A systematic procedure to obtain Fig. 2 is given in SI 251 

(section S2). A higher value of fitted means for a particular level/factor is desirable as this will 252 

lead to a higher T80% or T50% time. However, the difference between the fitted means of the 253 

‘L’ and ‘H’ level in a particular factor shows how influential this factor is in affecting the overall 254 

stability; a larger difference shows this factor has a greater impact on stability. The multivariate 255 

analysis has enabled us to determine the significance of all the stress factors. The difference 256 

between the larger and smaller value of fitted mean (FM) was calculated and plotted as a 257 

function of stress factor in the order of significance in Fig. 3(a) for T80% and 3(b) for T50%. 258 

From the data in Fig. 2, it is clear that for T80% and T50% responses, the presence of O2 has the 259 

most significant impact on the stability of the PSC, which is evidenced by the greatest difference 260 

between the fitted means of the ‘L’ and ‘H’ level. The exposure of the absorber layer to O2 and 261 

light leads to the formation of superoxide (O2
-) species, which react with the organic cation 262 

(CH3NH3+) of the photoexcited absorber layer. This mechanism is one of the root causes of 263 

degradation in the presence of O2 (Boyd et al., 2019 ; Bryant et al., 2016).  264 

4𝐶𝐻3𝑁𝐻3𝑃𝑏𝐼3 + 𝑂2
− → 4𝑃𝑏𝐼2 + 2𝐼2 + 2𝐻2𝑂 + 4𝐶𝐻3𝑁𝐻2                                 (7)      265 
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It has also been observed that the oxygen can diffuse into the solar cell structure and can 266 

become a more severe factor in the device instability.  267 

 268 

 

Fig. 2: Term effect plots of two-level Placket-Burman design completed using perovskite 

absorber layers. The results show perovskite’s susceptibility to all explored main factors up 

to (a) T80% and (b) T50%. 

The next (second) most significant factor affecting the stability depends on whether one is 269 

studying the degradation to T80% or T50%. In the case of T80%, the second most significant 270 
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factor was found to be the ETL. In this study, an inverted structure has been used, where the ETL 271 

is the topmost layer. The ETL can restrict the ingress of O2 and moisture depending upon its 272 

morphology (Lin et al., 2018). However, PCBM is a hydrophobic layer its alone use cannot 273 

restrict the ingress of O2 and moisture through the PSC structure. It can act as a barrier for these 274 

extrinsic factors by reducing gas permeation through it by the n-type doping (Wang et al., 2017). 275 

As it is the topmost layer, it is likely to be affected by degradation first, then after the ‘barrier’ 276 

layer is degraded; it has a lesser and lesser impact as time progresses (which is why it does not 277 

feature so prominently in the T50% data in Fig. 3). 278 

 The third most important factor to impact upon T80% degradation time was found to be 279 

the presence of humidity. It is known that perovskite absorber layer reacts with water and forms 280 

CH3NH3PbI3-H2O compound, which then dissociates into CH3NH3I and (Song et al., 2016a; 281 

Schlipf et al., 2019). This consequently leads to the degradation of perovskite absorber layer.  282 

The next most significant factor appeared to be whether a two-step process was adopted 283 

for absorber fabrication over a one-step process. This can be explained by considering the two- 284 

step process of perovskite formation, which relies on the inter-diffusion of MAI into PbI2. 285 

However, this process is reported as a reproducible procedure, still this leaves the possibility of 286 

unreacted PbI2 in the perovskite, which was found to be the case in the present study by XRD 287 

measurements (see SI Fig. S5).  288 

The difference in fitted means becomes smaller for the remaining factors, so it becomes 289 

more challenging to ‘rank’ relative severity of subsequent factors. However, it can be deduced 290 

that reducing the temperature and filtering the UV light can improve the stability. This is to be 291 

expected, as at elevated temperatures, MAPbI3 dissociates into PbI2, which is the main cause of 292 

degradation. In addition, UV radiation leads to the excitation of electrons in the absorber layer. 293 

These photo-excited electrons react with O2 to form O2
- and leads to the degradation of 294 

perovskite absorber layer. Finally, the data shows that to achieve higher stability, replacing 295 

iodide ions with bromide ions in the absorber layer and by adopting NiOx as the HTL leads to 296 

greater stability, when considering the time taken to reach T80%. 297 

In case of T50%, the general trend for enhancing the stability has changed as compared to 298 

T80% degradation. Now the order of significance of the factors affecting stability is O2, HTL, 299 
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UV, halide type. O2 is still the most significant factor that affects degradation to T50%. 300 

However, the selection of HTL and the filtering of UV light are now the second and third most 301 

significant factors. The impact of HTL on T50% is significantly larger in comparison to that on 302 

T80%.  303 

This is because the HTL can only interact with O2 and moisture after their diffusion 304 

through the PSC structure (ETL, thick absorber layer). The HTL contributes less in initial 305 

degradation as a thick absorber layer protects it against these extrinsic factors (Boyd et al., 2019). 306 

However, the lateral diffusion of these species also takes place and does still have a minor role in 307 

the initial degradation of HTL. Among the HTLs used in this study, PEDOT: PSS has a high 308 

absorptivity of moisture, as it is water-soluble. However, under continuous illumination, its 309 

reactivity with moisture decreases due to the increase in temperature. Furthermore, PEDOT: PSS 310 

degrades itself with time and undergoes a phase separation (PEDOT rich and PSS rich phases), 311 

consequently the PEDOT rich phase becomes more susceptible towards O2-induced degradation 312 

(Norman et al., 2010). This might be contributing in still making O2 a prominent factor in T50% 313 

degradation. The next significant factors in the order of decreasing significance were halide 314 

variation, humidity and temperature. Perovskite absorber layer in itself undergoes several 315 

changes under continuous illumination including halide segregation, ion migration, and the 316 

compositional degradation. These chemical changes become rapid in the presence of other 317 

external factors like O2 and moisture (Boyd et al., 2019; Song et al., 2016b) and become more 318 

severe with prolonged exposure. This indicates that the composition of perovskite absorber layer 319 

plays a more significant role in further 30% degradation than the initial degradation. 320 

It has been observed from Fig. 3 that the order of significance of factors affecting the 321 

degradation to T80% and to T50% was different. It has been explained in the previous section 322 

how some factors such as O2, the morphology of ETL and humidity can affect the initial 323 

degradation and at a later stage, the decomposition of the absorber layer and internal degradation 324 

of HTL can dominate the process. In the case of PSCs, there are some reports where different 325 

states of degradation have been observed; initial fast degradation (‘burn-in’) and later slow or an 326 

almost linear regime of degradation (Domanski et al., 2018; Domanski et al., 2017; Abate et al., 327 

2015). The degradation states were found dependent on different factors (intrinsic and extrinsic). 328 

However, it has been observed that prolonged exposure of PSCs can cause severe degradation 329 
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mainly due to the degradation of organic materials, perovskite absorber layer/transport layer 330 

interfaces and contact degradation. 331 

Similar observations have been made in silicon PVs, where the dominant failure modes in 332 

PV changes depending on the time it has been outdoors (or more specifically the current state of 333 

degradation) i.e. solder contacts tend to fail early in the life cycle, ethylene-vinyl acetate (EVA) 334 

discolouring occurs later. The discolouring is due to the bleaching oxygen and is a consequence 335 

of prolonged exposure of EVA to UV radiation and temperature. This can also occur due to the 336 

poor crosslinking and additives in the EVA formulation (Kuitche et al., 2014). We think this 337 

work shows that PSCs have similar characteristics because we see that different factors have 338 

greater or lesser affect depending on if the time is T80% or T50%. 339 

 340 

 

Fig. 3: The absolute difference between the highest and lowest fitted means (|ΔFM|) 

showing the significance of factors for (a) T80% and (b) T50% values. A positive effect 

indicates that the ‘L’ level is preferred for higher stability. 

To verify the studies, the most and least stable combinations were identified from PB screening 341 

and compared for stability. The most stable structure was NiOx/MAPbBr2I/PC70BM/LiF/Ag 342 

(Device ‘A’) and the least was PEDOT:PSS/MAPbI3/PC70BM/Ag (Device ‘B’). PSCs with these 343 

structures were fabricated. The PCE for Device ‘A’ was 5.0% and for Device ‘B’ was 8.2% with 344 

an active area of 1cm2. The efficiency for Device ‘A’ is comparable to that reported with 345 

MAPbBr2I as an absorber layer (Zhao et al., 2014). The variation of photovoltaic parameters for 346 

these devices has been shown in SI (Fig. S4) averaged from 5 devices. The variation of PCE as a 347 
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function of time is shown in Fig. 4(a) (in accordance with ISOS-D-1) and light soaking Fig. 4(b) 348 

(in accordance with ISOS-L-2). Device ‘A’ shows a T80% of 255 hours during ISOS-D-1 testing 349 

and 32 hours during ISOS-L-2 testing, whereas Device ‘B’ shows T80% of 35 hours and 3 hours 350 

for the same respective tests. It is clear from both sets of experiments that Device ‘A’ shows 351 

greater stability, confirming that this multivariate analysis approach can be used to identify the 352 

best combination of materials to enhance device stability. 353 

 

 

Fig. 4: Normalized power conversion efficiency as a function of time for Device ‘A’ (black 

symbol and line) and Device ‘B’ (red symbol and line) solar cell measured by (a) ISOS D-

1 (stored in the dark and ambient temperature) (b) ISOS-L2 (under continuous light 

exposure with controlled 65oC temperature). 

Additional material analysis was conducted in order to investigate the degradation mechanisms. 354 

XRD and SEM measurements can be effectively used to analyze the samples upon degradation 355 

and identify the mechanism of this degradation. Here, SEM and XRD measurements were 356 

performed on the fresh and degraded films for all test runs. First, the analysis for fresh samples 357 

was performed to investigate the effect of device structure. One-step with anti-solvent treatment 358 

processed films showed no pin-holes while the two-step processed film showed small size pin-359 

holes with low density (SI Fig. S5). MAPbI3 fabricated by two-step process showed an unreacted 360 

PbI2 peak in the XRD measurements. Further, the NiOx supported better formation of perovskite 361 

film in comparison to PEDOT:PSS, which was observed by SEM and XRD measurements (SI 362 

Fig. S6). The effect of perovskite layer thickness was found more prominent on MAPbBr2I films 363 

(SI Fig. S7).  364 
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The PB approach can also be used to deduce some of these effects of degrading the 365 

samples by material analysis studies. This is somewhat difficult to do as the approach is 366 

primarily for studying multivariable using minimal test runs to acquire data quickly and not for 367 

detailed material studies. However, some trends can be observed to aid the understanding of 368 

degradation pathways.  369 

Figure 5 shows the SEM images of fresh and degraded samples from Run 1 (as defined in 370 

Table 1). The fresh sample (Fig. 5(a)) did not show any film deformation or pinholes. The 371 

degradation of the film under continuous light illumination without any additional stress factors 372 

is shown in Fig. 5(b), where pin-holes of about 1um size can be observed in the samples. Fig. 373 

5(c) shows the film degraded under continuous light illumination with humidity and O2 (sample 374 

from run 11) and 5(d) with UV exposure (sample from run 12). The presence of UV light has 375 

caused the formation of small size pinholes with a larger density, but the humidity and O2 affects 376 

the films more drastically leading to very large size deformities.  377 

The results are consistent with other reports; the exposure to humidity and O2 leads to 378 

decomposition of perovskite into its constituent materials (Song et al., 2016b). MAPbI3 379 

decomposes into MAI and PbI2, which can further decompose into Pb and iodine (Juarez-Perez 380 

et al., 2018). This would account for the large sized pinholes observed in SEM images. The 381 

effect of light and UV can be explained by the reaction of photo excited electrons in perovskite 382 

with O2 which form O2
-. This O2

- reacts with the organic part of the perovskite layer, which leads 383 

to decomposition of perovskite absorber layer. However, the results highlight the relative 384 

severity and show how the presence of two or more stress factors can significantly accelerate the 385 

process of degradation of perovskite absorber layer. Although the optical and morphological 386 

analysis cannot guarantee a certain pattern in device degradation but it can assure valid stable 387 

operational conditions. 388 
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Fig. 5: SEM image of (a) fresh sample (run 1), (b) sample degraded under continuous light 

exposure without any extrinsic stress (sample from run 1) and (c) with humidity and O2 

(sample from run 11) (d) with UV (sample from run 12). 

 

XRD measurements were used to study the differences in degradation between MAPbBr2I and 389 

MAPbI3 samples tested during the PB screening tests. Figure 6 shows the XRD spectra of fresh 390 

and degraded (a) MAPbBr2I and (b) MAPbI3 samples. In case of MAPbBr2I, peaks 391 

corresponding to several crystalline structures were observed in the fresh sample and are 392 

highlighted in the Fig 6(a). All the crystalline peaks shifted to higher angles in the degraded 393 

samples. This may be attributed to the slight decrease in d-spacing or phase change in perovskite 394 

due to degradation. On the other hand, the effect of degradation on MAPbI3 is different. There is 395 

no major shift in the crystalline peaks; however, an additional peak of PbI2 appeared (Fig. 6(b)). 396 

 397 

 398 
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Fig. 6: XRD spectrum of fresh and degraded (under humidity and O2) (a) MAPbBr2I, 

sample from run 2 (b) MAPbI3, sample from run 11. Significant XRD peaks are marked in 

the figure (c) Crystallite size calculated from the XRD spectrum for fresh and degraded 

sample MAPbI3. D-A: degraded sample under humidity and O2 and D-B: degraded sample 

under heat and UV. 

Degradation can be quantified by crystallite size variation. The crystallite size was found to be 399 

60±3 nm in case of fresh MAPbBr2I sample. We have observed a shift in (110) crystalline peak 400 

of diffraction towards the higher angle. This may be attributed to loss of iodide or phase change 401 

in perovskite due to degradation (Cui et al., 2016). Indeed, perovskite swelling of more than 50 402 

times (in the thickness) by aqueous solutions have been observed by Song et al. (Song et al., 403 
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2015). The variation of crystallite is shown in Fig. 6(c) for MAPbI3. The crystallite size was 404 

found to be 34 nm in fresh MAPbI3 sample reduces to 29 nm in case sample exposed to O2 and 405 

humidity and 25nm in case sample exposed to UV and temperature. This reduction in crystallite 406 

size is attributed to the change in morphological changes in the perovskite films under different 407 

stresses. As we have discussed earlier, MAPbI3 decomposes into MAI and PbI2, which can also 408 

decompose into Pb and iodine under O2 and humidity. The perovskite layer also suffers from 409 

photo oxidation and phase change under UV and temperature. We have calculated the crystallite 410 

size of PbI2 formed under these stresses. The crystallite size of PbI2 was found to be 31 nm under 411 

humidity and O2 stress and 12 nm under UV and 65°C. This may be a result of the difference in 412 

the rate of decomposition of MAPbI3 into PbI2 under both the conditions. 413 

 These results support the PB screening conclusions where we have observed that the 414 

presence of O2 and humidity has severe impact on PSC stability, within this testing range. 415 

4. Conclusions 416 

A two-fold multifactorial analysis based on Plackett -Burman screening technique has been used 417 

to screen the most and least significant factors in the degradation of PSCs. In total 9 factors have 418 

been studied under 12 test runs; four extrinsic (O2, humidity, temperature and UV exposure) and 419 

five intrinsic (transport layers, halide type, absorber layer thickness and perovskite deposition 420 

process). To our knowledge, this is one of the most comprehensive stability studies undertaken 421 

on PSCs in terms of factors studied. The data obtained has been analyzed by multivariate 422 

analysis and the fitted means corresponding to the high and low values of each stress factor have 423 

been used to deduce the most and least significant factors. This analysis enables us to select the 424 

materials and device configuration  to get the most stable PSC structure. We have fabricated 425 

the most stable and least stable PSC devices based on the conclusion made by PB screening and 426 

tested their reliability under ISOS-D1 and ISOS-L2 protocols. The time related to T80% 427 

degradation of most stable device was measured to be 255 hours and 32 hours under ISOS-D1 428 

and ISOS-L2 protocols. SEM and XRD measurements have been performed to find the 429 

compressive details about the morphological and structural change in perovskite layer while 430 

subjected to different stress factors for all 12 runs.  431 

 432 
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