
1

Injecting FPGA Configuration Faults in Parallel
Shane T. Fleming, David B. Thomas

Dept. of Electrical and Electronic Engineering, Imperial College London, UK
{sf306, dt10}@ic.ac.uk

Abstract—When using SRAM-based FPGA devices in safety-
critical applications testing against bitflips in the device configu-
ration memory is essential. Often such tests are achieved by cor-
rupting configuration memory bits of a running device, but this
has many scalability, reliability, and flexibility challenges. In this
paper, we present a framework and a concrete implementation of
a parallel fault injection cluster that addresses these challenges.
Scalability is addressed by using multiple identical FPGA devices,
each testing a different region in parallel. Reliability is addressed
by using reconfigurable system-on-chip devices, that are isolated
from each other. Flexibility is addressed by using a pending-
commit structure, that continually checkpoints the overall ex-
periment and allows elastic scaling. We test and showcase our
approach by exhaustively flipping every bit in the configuration
memory of the CHStone benchmark suite and a VivadoHLS
generated k-means clustering image processing application. Our
results show that: linear scaling is possible as the number of
devices increases; the majority of error inducing bitflips in the
k-means application do not significantly impact the output; and
that the Xilinx Essential bits tool may miss some bits that can
induce errors.

I. INTRODUCTION

A high-energy particle striking the configuration memory of
an SRAM-based FPGA device can flip bits of the configured
circuit causing an unwanted localised reconfiguration. For this
reason when using FPGA devices in safety critical applications
designs must be robust to such errors and thoroughly tested
against them.

Exhaustive in-hardware fault testing, where bits of a live
configuration are flipped from their intended state, is a slow
process. For each bitflip the circuit needs to be re-executed,
the output stored, and the device returned to its original state.
Returning the device to it’s original state usually just requires
flipping the bit back and resetting the circuit. But there are
cases where a full reconfiguration is required and occasionally
the device will lock-up so hard a complete power cycle is
required incurring significant extra time [1]. These problems
all compound the fact that in-hardware testing is inherently
slow, so as the size of the circuit under test (CUT) increases,
these problems quickly result in exhaustive testing becoming
intractable.

The solution to this problem has generally been to only
flip randomly sampled configuration RAM (CRAM) bits[2];
however, as devices and applications become more complex
and their use becomes more widely adopted the importance
of exhaustive testing increases. We believe more extensive
fault testing is necessary for the following reasons:

1 More complex devices: It has become commonplace
for FPGA devices to contain hardened ARM cores, which
share memory, complex buses, and configuration bits with
applications in the FPGA fabric.

2 More complex applications: High-level synthesis (HLS)
is allowing for more complex applications to be developed

with more dynamic control-flow structures. This has lead to
the development of increasingly irregular applications with
more statically unpredictable behaviours.
3 Widespread adoption of devices: Machine learning has
driven the increasing adoption of FPGA devices in areas
such as information retrieval and self-driving cars. With more
devices in use the chance of an error being observed increases,
which is especially important in safety critical applications.

Rare catastrophic faults may be unlikely but they will
eventually occur, especially as the number of devices in use
increases 3 . Also as both the complexity of the applications 2
and the device 1 increases, interactions between components
become more intricate. This increases the potential chance of
a catastrophic fault as faults in one component can have non-
obvious effects on other components. It is for these reasons
that we believe that more emphasis should be placed on more
exhaustive testing instead of random sampling.

In this paper we present an approach for building a
scalable and reliable fault injection testing platform using
reconfigurable SoC devices. We also present an open-source
low-cost concrete implementation of our approach, called
ParFlip, that uses multiple Digilent Zedboards Xilinx Zynq
based devices in parallel. ParFlip fully automates fault
injection experiments – the user provides a bitstream and
a list of CRAM bits to be tested. A central management
system then performs the following: it breaks the problem
into smaller chunks; it allocates chunks to the multiple
currently available FPGA devices; it tracks the health of
each device as testing is performed; it recovers any devices
that becomes unstable; it takes unstable devices out of
service if they become persistently unstable; and it collects
results in a transactional fashion, where results are only
committed once they are stable. Our approach is able
to linearly reduce testing time with the number of FPGA
devices added to the system, this is demonstrated in Section V.
This paper makes the following contributions:
1) An approach for parallel and reliable in-hardware fault
injection using multiple reconfigurable SoC devices.
2) ParFlip, a concrete implementation of our approach using
multiple Digilent Zedboards (Xilinx Zynq based) boards.
3) Results for an exhaustive injection campaign on a k-means
image clustering application generated via VivadoHLS, where
every output image produced by an error inducing bitflip was
saved in a 2.2 GB data set, to enable others to study the
effects of CRAM faults.
4) Analysis of the k-means clustering dataset where the
resulting error output images were analysed using structural
similarity index, enabling us to identify faults related to
addressing, interface logic, and to categorise the most extreme
faults.

2

dfmul dfadd mips sha aes blowfish dfdiv adpcmmotion gsm dfsin

da
ys

20

16

12

8

4

0

Fig. 1. Testing times for the CHStone benchmark suite on a single Zedboard
device

5) The identification of statically predictable bits in the
configuration bitstream of Zynq devices that when flipped
cause entire system lockup, enabling them to be filtered.

In our concrete implementation we also use ParFlip to
perform verification experiments on the Xilinx Essential Bits
tool, a tool that can be used to reduce the total number of bits
required for testing. Our results hint that there may be CRAM
bits that cause observable errors that are not included in the
essential bits report, i.e. there are non-essential bits that when
flipped induce an observable unintended outcome (wrong result
or wrong execution time).

II. MOTIVATION

To test circuits against single static CRAM faults exhaus-
tively on a Zynq (ZC7020) requires the injection of up to
25,697,632 bits. We define a single static CRAM error as
an unwanted bitflip of one CRAM bit that is present before
the circuit has started it’s execution, i.e. it is present at t = 0.

In general not all 25 million bits will not need be flipped,
as only a subset are used to configure the circuit under test
(CUT) – these bits are referred to as the essential bits of the
CUT, where we have NE total essential bits for our design.
The time per bitflip is the sum of: TI , the time to flip a CRAM
bit; TE , the time required to execute the circuit; TC , the time
to compare the output; and TR, the time to recover the device
back to its original state. The total time to test every essential
bit, T , for a CUT is given by:

T =

NE∑
j

T j
I + T j

E + T j
C + T j

R (1)

If the circuit has a large number of essential bits, or requires
considerable time to execute, then exhaustively injecting errors
into the CRAM (i.e. flipping every essential bit) can take a
long time. For example, we estimate the dfsin circuit of the
CHStone HLS benchmark suite [3] would take over 16 days
for complete testing on a single device with fully automated
testing.

Unfortunately, the time for each bitflip is not the only
scalability issue. Sometimes flipped bits cannot be flipped back
easily, which means they take much more time to recover
from; we refer to such bits as stuck bits and danger bits.
Recovering from a non-stuck or non-danger bit is fast, as
it is just the time taken to flip the bit back to its original
configuration, TI . However, recovery from a stuck bit takes
longer as a reconfiguration of the entire CRAM with the CUT
is required, which requires much more additional time (750ms
for a Xilinx ZC7020 device from within the embedded Linux).
Danger bits are somewhat worse again as they cause the entire
system to lock up when flipped, freezing the processing system

completely. The only way to recover from a danger bitflip is to
perform a full power cycle and reconfiguration, which can take
in the order of minutes, particularly when there is a software
component running on the device.

If we take the probability of a stuck bit occurring as PS ,
the probability of a danger bit occurring as PD, the time to
recover from a stuck bit as TRS , and the time to recover from
a danger bit as TRD we get the following equation for TR:

TR = (1− (PS + PD))TI + PSTRS + PDTRD (2)

Many danger bits may be encountered over the course of a
fault-injection campaign – on average we found that ≈ 5% of
critical bits are danger bits for a ZC7020 device – dramatically
increasing testing time. Luckily most danger bits can be filtered
statically from the circuit, however, they cannot be perfectly
filtered as some critical bits may be removed that are non-
danger bits. This means that filtering danger bits comes at
the sacrifice of exhaustive testing coverage and we found on
average ≈ 0.3% of non-danger critical bits will be filtered out
along with the danger bits (ZC7020 device).

Figure 1 shows estimated testing time for the CHStone
benchmark suite in days on a single Zedboard device tested in a
non-naive fashion with automated experiment management and
recovery. These results were obtained by bit-flipping a small
fraction (≈ 0.1%) of each circuit’s essential bits, selecting bits
in a uniformly random fashion, and extrapolating to the total
number of essential bits for each circuit. Summing the testing
times in Figure 1 we estimate that it would take a total of
11 weeks to exhaustively test every essential bit (single static
error) of the CHStone benchmark suite.

The results in Figure 1 are for CUTs with no protection,
but fault injection is often used to test a fault protection
strategy, which generally have considerable overheads. Such
techniques usually double or triple the logic of the circuit
and thus increase the size of the circuit and testing time, they
also often increase the critical path of CUT increasing it’s
execution time further increasing testing time.

We identify four major challenges to performing in-hardware
FPGA fault injection:
[Scalability]: Complete coverage of the CRAM bits is
unfeasible for large circuits.
[Reliability]: Injecting faults into a system can often result in
the system becoming unstable and unpredictable.
[Checkpointing]: Experiments that run for long periods of
time need to be interruptible and should be able to be paused
and resumed at will.
[Flexibility]: As experiments often require a long time they
should dynamically scale as hardware resources become
available or unavailable. 1

Simulation-based approaches [4][5] are able to address all
the challenges outlined above: scalability, is addressed by
instantiating multiple parallel instances of the problem; reli-
ability is not a concern, as all unstable behaviour is contained
within the simulation environment; checkpointing is easy, as
the complete state of the system can be known at all times;
and flexibility can be addressed by executing it in an elastic
fashion. However, such simulation-based approaches rely on
injecting errors by corrupting signals in the register transfer

1The devices used in this work were shared with an undergraduate lab

3

level (RTL) description of the circuit, and then performing an
RTL simulation on the faulty description. Operating at the RTL
means that they fail to capture any device-level information
and since ≈ 90% of the configuration bits in modern FPGA
devices are used for routing, a CRAM fault is far more likely
to occur in a regions not tested by such approaches.

To accurately simulate configuration bits at the device-
level requires in-hardware fault injection, where addressing
the challenges outlined above is considerably harder. Existing
work addresses the scalability issue by either using random
sampling of the configuration bits, sacrificing fault coverage
for reduced testing time [2][6], or by trying to increase the rate
at which errors can be injected into the system [7][8]. There
are two main methods for injecting errors directly into the
CRAM of an FPGA device: internally or externally. External
injection, typically via a JTAG connection [7][8], is desirable
as the device is decoupled from the fault injection mechanism,
making it easier to deal with reliability challenges. However,
external injection is considerably slower than internal injection
methods. For internal injection methods, the fault injection
mechanism is located on the device and can be: a custom
circuit running in the FPGA logic [6]; code running on a
soft-core processor in the FPGA logic [9]; running on the in-
package ARM cores of a reconfigurable SoC device. While
internal injection methods are faster they come at the cost of
being more difficult to manage, as injections that cause the
CUT to become unstable may also directly or indirectly affect
the fault injection mechanism.

A. Our Approach

Our approach uses an internal injection method per node. We
address the [Scalability] challenge by using multiple parallel
identical FPGA devices, each testing a different portion of the
circuit at the same time. The other challenges are addressed
by the use of reconfigurable SoC devices that contain an
FPGA, where the CUT resides, and a small ARM core, that
can be used as an in-built local host processor for managing
the local experiment. This local host enables each device to
run in isolation from each other and supports networking
infrastructure enabling it to connect to a cluster-management
machine, called the SoC-controller, via a local area network
(Section IV).

Using networking in this way allows nodes to be seamlessly
added and registered as available with the SoC-controller, ad-
dressing the [Flexibility] challenge. When the SoC-controller
allocates a chunk of the overall problem to each node in the
system, that chunk is moved into a pending state until the node
has indicated that it has completed where it is then committed.
If the node has become unresponsive the chunk is split in two
and returned to the work-pool (Section III-A). The isolation
between nodes and the pending-commit structure addresses the
[Reliability] challenge. If a single node becomes unstable it
will not affect the overall state of the experiment; the SoC-
controller can detect that the node has become unstable and
attempt to recover it, or if it can’t recover it, it takes it out
of service. The pending-commit structure also addresses the
[Checkpointing] challenge as the entire system can be stopped
at any point and resumed from the last committed results.

power
control
data

A

B

C

D

E

Fig. 2. The physical architecture of ParFlip showing how the cluster of
reconfigurable SoC devices is connected to a central desktop.

III. DETAILS OF OUR APPROACH

Historically, before reconfigurable SoC devices, building
such a cluster would have been much more challenging, as
each FPGA device in the cluster would need to be connected
to a host (dekstop/server) machine. These host machines were
limited to the number of FPGA devices that they could host,
meaning that as the size of the cluster increased there would
be a linear increase in the number of hosts, resulting in extra
complexity in their management. Having a lightweight host
built into each of the reconfigurable SoC device enables the
cluster to be scaled in a easy and cheap manner.

Figure 2 depicts an example implementation of our ap-
proach, called ParFlip, which consists of:
A A number of reconfigurable SoC based nodes, in this

case Digilent Zedboards (XC7Z020-CLG484) and an SD
card.

B A cluster management desktop machine, called the SoC-
controller.

C Power supplies for the nodes, in this case a single ATX.
D An Arduino (microcontroller development board) for

controlling the resettable segments, i.e. C .
E A network switch.
Experiments are managed and coordinated by the SoC-

controller B , which is a central server such as a desktop
machine. A network switch E connects a rack of reconfig-
urable SoC devices (nodes) A to the SoC-controller. Each
node contains an identical FPGA device and they all run
Ubuntu (version 12.4) Linux operating system on an ARM-
based processing system from an SD card. For all nodes, ssh
is enabled and is used to transfer data and run experiment
scripts.

Faults injected into the CRAM can sometimes result in
failure in the processing system, causing complete system lock-
up. The only way to recover from such errors is to power cycle
the board, restarting the OS and reconfiguring the FPGA fabric.
Power cycling is achieved by assigning nodes to resettable
segments, a set of nodes that must be power cycled together.
Each of these resettable segments can be reset independently

4

available_nodes = {node0, ... , nodeN}
pending = {}
committed = {}
reset = { }

while(not empty("./chunks")){
 for node in available_nodes {
 c = getChunk();
 node.allocate(c);
 pending.append(c, node);
 node.start();
 available_nodes.remove(node);
 }

 for node in pending {
 for c in "./completed" {
 if (c == node.getChunk()) {
 committed.add(c);
 pending.remove(node, c);
 available_nodes.add(node);
 }
 }
 }

 for node in pending {
 if(not node.ping()) {
 node.getChunk().split();
 pending.remove(node,c);
 reset.append(node);
 }
 }

 for node in reset {
 segment = node.getResettableSegment();
 if (not segment.has(pending)) {
 segment.reset();
 reset.remove(segment);
 available_nodes.add(segment);
 }
 }
}

SoC-controller Reconfigurable SoC nodes

1

2

node0

node1

nodeN

reconfigure();
for addr in "chunk.la" {
 flipbit(addr);
 timeout runHostCod() >> res.csv
 if not flipbit(addr)
 reconfigure();
 scp res.csv soc-controller:"./completed"
}

3

4

5

Fig. 3. Rough overview for the ParFlip management software of the soc-
controller and nodes

and is controlled via an Arduino micro-controller connected to
the SoC-controller via a serial connection. The SoC-controller
continually monitors the health of the nodes and if required
will issue a reset command to a resettable segment, power
cycling all the nodes in a segment.

The granularity of the resettable segments impacts the
overall scalability of the system. If there is only one large
resettable segment for all nodes, then if any node encounters
a danger bit a synchronisation of the entire cluster must occur
before the reset can occur. This synchronisation is a problem
– even if all chunks allocated to each node are the same size
they will complete at very different rates, resulting in many
nodes being idle. Two factors contribute/explain why nodes
complete at different rates:

1) for each chunk the probability of finding a stuck bit, PS ,
can vary, which has a large influence on chunk testing
time (Equation 2).

2) depending on the region of the circuit there may be a
lot of errors that cause the circuit to timeout, e.g. the
error causes the circuit to no longer terminate.

If the resettable segments are very fine-grained, say one
resettable segment per node, then each node can run asyn-
chronously, greatly improving scalability.

A. Management Software
Experiment management for each campaign can be split

into two main parts: the SoC-controller management software
running on the desktop machine, and the node management
software running on the ARM of each node. Figure 3 shows
how the soc-controller and each node interact with each other
and the tasks performed by each portion:

1 Chunking the problem: This stage splits the overall
problem into smaller chunks of addresses, each of which

will be allocated to a node and tested. All chunks are
stored in a (./chunks) directory where they await
allocation to a node.

2 Allocating chunks to nodes: A chunk is selected from
the ./chunks directory allocated to a node and moved
to a ./pending directory. Local experiment scripts are
then rendered and, along with a copy of the chunk, are
sent to the appropriate node over ssh. A command is
sent to each allocated node indicating that it should start
evaluating it’s chunk. A list of currently running nodes
is maintained.

3 Evaluating the chunks: On each node the experiment
script assigned to that node starts by reconfiguring the
FPGA logic to load the CUT. The script then iterates
through each CRAM address (addr) in the allocated
chunk file, sending the commands to flip the relevant bit.
It then executes the software host code, defined by the
user, with a user configurable timeout in case the hard-
ware gets stuck (recorded as a TIMEOUT fault). Once
the host code returns the result of the test, the experiment
script attempts to repair the flipped bit by flipping it back
to its original state and resetting the FPGA circuit. If the
bit repair fails, we have encountered a stuck bit and a
full device reconfiguration is attempted to fix the bit.
If the reconfiguration fails, then the entire SoC device
is restarted, resuming from where it left off. After all
addresses in the chunk have been processed the results
file is transferred back to the controller over ssh, which
is also used to indicate it has completed processing that
chunk and that they should be committed.

4 Health monitoring: While the nodes are processing
chunks, the SoC-controller checks to see if any of the
nodes have completed their experiments or if they have
become unresponsive. Determining if any nodes have
become unresponsive is achieved by issuing a ping
request. If no response to the ping is received, then the
node is assumed to have crashed and is added to a list
of dead nodes.

5 Power cycling: If the health monitoring indicates to
the SoC-controller that a node has become unresponsive
then it will try to power cycle it. To do this the SoC-
controller examines the resettable segment that the un-
responsive node belongs to. Once all the other nodes in
that segment have either become available for allocation
or unresponsive it issues the command to reset that
segment. It then keeps checking to ensure that all the
nodes have rebooted successfully, if that is not the case,
it keeps rebooting the cluster until all nodes are stable.
If it appears that one node is repeatedly not able to boot
(generally due to SDCard corruption) then it is taken
out of the list of available nodes and logically removed
from its resettable segment.

IV. CONCRETE IMPLEMENTATION

We have constructed a concrete implementation of our
approach, called ParFlip, which is the example shown in
Figure 2. In this implementation there are seven Digilent Zed-
board nodes each containing a Xilinx Zynq device (XC7Z020-
CLG484) that is running the Ubuntu (version 12.4) Linux-
based operating system on its ARM core.

5

There is only one resettable segment that contains all nodes,
future work aims to improve this by having a resettable
segment per node. A single desktop ATX power supply unit
powers all nodes C ; it was modified so that its PS_ON pin,
which when pulse power cycled all nodes, is connected to the
Arduino D controlled by the SoC-controller.

In this implementation, as we are using Xilinx devices,
there are some Xilinx specific details that will be outlined.
In particular: how the FPGA design needs to be modified
(Section IV-A); and the use of the Xilinx Essential Bits report
(Section IV-B).

A. Modifying the FPGA design

For Xilinx devices hardware fault injection is achieved by
using an IP-core provided by Xilinx called the Soft Error
Mitigation (SEM) core [1], which connects to the internal
configuration port of the CRAM (ICAP) allowing addressable
CRAM bits to be flipped from their original state. Injections
can also be performed by software running on the ARM based
processing system through the processor configuration port
(PCAP), however, this is not explored in this work, but will
be explored in future as we believe it can be used to increase
the fault injection rate of the system [10].

To perform error injection experiments we built an AXI
based interface for the SEM core, where memory mapped AXI
slave registers are used to accept a CRAM address for the
target CRAM bit to flip and to control the core. This enables
software to pass input arguments, get status notifications, and
start the execution of the CUT through AXI memory mapped
registers.

CRAM bits related to the SEM are highly sensitive to bit
flips, with a high proportion of them being danger or stuck
bits, delaying testing time[6]. To avoid injecting errors into the
SEM and other infrastructure logic we contained our design in
a pblock which is a facility provided by Xilinx that we could
use to focus our fault injection experiments only on the CUT.

B. Essential bits

In an effort to address the scalability challenge Xilinx
provides a tool to extract the essential bits of a design. This
tool returns a subset of the CRAM bits that may influence the
device configuration or pblock, eliminating only bits which
will have no impact on the output.

More formally, let B be the set of all bits in the CRAM. For
a given design, the set of essential bits, E, reported by the tool
must satisfy E ⊆ B. However, not all bits in E will induce an
observable error when flipped. We define an observable error
as one where either the output of the circuit is different than the
expected output (assuming deterministic output) or the number
of execution cycles required for the circuit was different to
what was expected (assuming a deterministic execution time).
The set of bits that when flipped induce an observable error
are known as the set of critical bits, C, which must satisfy
C ⊆ E [11]. The set C is generally much smaller than E
and varies for each application: from our experiments between
0.5% – 39.25% of essential bits are critical.

The set of non-essential bits, N = B −E, is the set of bits
that when flipped should not produce any observable error.

0
10
20
30
40
50
60
70

1 2 3 4 5 6 7

bi
tfl

ip
s/

se
c

#nodes

filtered
danger bits filtered

non-
FLIPPER

Lindoso, et al.

SPFFI

Fig. 4. Results to show how exhaustive CRAM injection for the dfmul
benchmark scales as the number of SoCs increases and how filtering out the
problem bits improves performance.

From this we can state the following constraint must not be
true: CN =.

However, results from Section VIII suggest that this may
not hold for the current essential bits provided by Xilinx, as
we have found a number of bits in N that are also in C.

V. SCALABILITY RESULTS

Figure 4 shows the average bitflips/sec for the exhaustive
static single bit testing of the dfmul CHStone benchmark.
There are two lines, “non-filtered”, where the danger bits
of the circuit were not filtered, and “danger bits filtered”
where a static prediction of danger bits was used to attempt to
filter. Without filtering the fault rate quickly saturates, with
little improvement in performance as the number of nodes
is increased. However, applying filtering results in a linear
increase in the fault injection rate as the number of nodes
is increased.

There are two reasons that explain this. Firstly, in this ver-
sion there is only one resettable segment causing all nodes to
synchronise and power-cycle whenever a single one becomes
unstable due to a danger bit. Secondly, we’ve found that
booting Linux on the Zedboard occasionally causes a kernel
panic, which forces the SoC-controller to issue multiple reset
requests until all nodes boot. This means that as we increase
the number of nodes we also increase the chances that at least
one node will encounter a danger bit and we also decrease
the probability that all nodes will boot. We can model this
effect on average danger bit recovery time, TRD, using with
the following:

TRD =
1

(PB)N
(TBOOT) + TSU (3)

Where: PB , is the probability of a node booting success-
fully; N , is the number of nodes in the resettable segment;
TBOOT , is the time it takes for the node to boot; and TSU ,
is the time it takes to setup the experiment scripts on each
nodes. There are two main ways that we can improve the
scalability of the system: reduce the number of danger bits
encountered so that there is less need to power cycle the
devices, or decrease the number of nodes in each resettable
segment. Another potential area of improvement is to use a
simpler more-lightweight operating system on each node, such
as FreeRTOS, that can reduce TBOOT .

6

bench #esn #crit #doe #ete
aes 1,764,569 203,009 (11.50%) 187,592 15,419
blowfish 1,720,603 587,266 (34.13%) 578,107 9,160
motion 2,024,568 10,074 (0.50%) 4,569 5,507
sha 1,603,211 403,217 (25.1%) 398,182 5,036
gsm 2,268,891 432,485 (19.06%) 111,728 320,759
mips 1,256,348 33,182 (2.64%) 9,794 23,389
dfsin 4,167,144 436,840 (10.48%) 119,552 317,289
dfdiv 1,653,102 31,374 (1.90%) 7,855 23,521
dfmul 399,528 10,926 (2.73%) 9,190 1,738
dfadd 993,256 40,299 (4.06%) 30,768 9,533
adpcm 2,002,204 62,928 (3.14%) 44,378 18,553

Fig. 5. Table showing the absolute error results for the CHStone benchmark
where #esn is the number of essential bits, #crit is the number of critical
bits, #doe is the number of critical bits that had observable errors on the final
result, and #ete is the number of errors where the execution took the incorrect
number of cycles.

The danger bit filter was constructed by analysing the results
from exhaustively injecting all essential bits of each benchmark
in the CHStone suite (Section VI). For each circuit the bits
that consistently caused the system to lock up across all
benchmarks were identified. On Zynq XC7020 devices the
configuration memory is made up of: 7950 frames, each 101
words in length, where each word is 32 bits. In the CHStone
results we found that the majority of danger bits occur in
word-50 at a regular intervals of frames. Our filter works
by simply stripping all word-50 CRAM addresses from the
problem before testing.

Recent work by Wolf et al [12] uses fuzz testing to reverse
engineer the bitstream of Artix-7 devices. Their results indicate
that word-50 is special as it is used to manage the clock-tree
of the device. Since the Artix-7 programmable logic is the
same technology used for the logic portion of the XC7Z020,
we believe that word-50 is likely disrupting the clock of the
ARM management host, causing the system to lock-up.

By applying our filter to the essential-bit file of the circuit
we were able to increase the fault injection rate as the number
of nodes increased, seen in Figure 4. However, our filter is
not perfect and will occasionally remove non-danger critical
bits from the input testing file – from the CHStone results on
average 0.3% of non-danger critical bits are filtered.

Figure 1 also shows a few comparison points for this
work, all injection rate comparisons are for a single FPGA
device, show their peak rate, and were collected from published
results. FLIPPER [13] is a framework that injects faults via a
JTAG interfaces that is able to achieve a high injection rate,
however, it does this through accumulating bitflips until an
erroneous effect is observed – meaning it cannot consider the
effect of bitflips in isolation. Work by Lindoso et al., [6]
is closest to our approach as they used the same FPGA
technology and the Xilinx SEM core for fault injection. They
achieve a comparable injection rate as us for a single device.
FT-UNSHADES [14] is another fault injection framework that
uses the Xilinx SelectMAP configuration interface, we believe
that this approach could be combined with our framework to
further increase injection rate.

VI. CHSTONE RESULTS

Exhaustive fault injection was performed on the CHStone
benchmark suite with circuits generated via the HLS tool

LegUp [15]. Each of the CHStone benchmarks are self-
stimulating and self checking, which means all the input
vectors are contained within the bitstream. Figure 5 shows
the results of an exhaustive static fault injection campaign on
these benchmarks. From the results we can see that there was a
large variance in the number of essential bits that were critical
to the design, which we believe is due to how coverage of
the circuit the input vectors had. There is also a good mix of
data-flow heavy applications, where errors were mainly only
effecting the output data but not the circuits execution time,
such as blowfish or sha, and applications that are control-
flow heavy where the majority of errors influence the execution
time of the circuit, such as mips or gsm.

VII. CASE STUDY: K-MEANS IMAGE CLUSTERING

In this section we will explore if it is possible to further
extract information from the results by considering how the
output is corrupted. We will examine an image processing case
study and explore how errors in the circuit alter the returned
images.

K-means clustering is often used as part of an image
processing pipeline in domains where bitflips might be a
concern, such as self-driving vehicles, or satellites [16]. In
this section we will take a HLS version of the k-means
clustering kernel, generate it with VivadoHLS, and perform an
exhaustive static fault injection campaign using ParFlip. The
generated hardware contains both an AXI slave, for command
and control, and an AXI master interface, for bulk data transfer.
Input and output data is stored in globally accessible shared
DDR, this means that execution time is non-deterministic as
there can be variations in access time. However, the numerical
output is deterministic, enabling us to check for faults by
comparing against a golden output.

For every critical bit encountered we will store the output
for offline analysis. We want to analyse these faulty images for
two reasons: to determine the qualitative severity of the error;
and to try and identify sensitive regions of the bitstream. We
anticipate that there might be errors that may for instance, shift
the image by one pixel position. In such cases we would not
want the analysis to return a poor score, so we decided to
use structural-similarity index (SSIM) [17] as our metric for
analysing the output images.

Figure 6 shows the frequency of errors within a given SSIM
score bin. Along the x-axis the average image for each SSIM
bin is also displayed. It can be seen that qualitatively, the
threshold where the images start to become unrecognisable
from the golden output is when the SSIM score is below 0.4.
However, most errors have a SSIM score much higher than
this, with 76.8% of all critical bits having a SSIM score >0.4
and 23.2% being below ≤ 0.4.

From these results we can make a case for fault protection
strategies that only attempt to selectively protect the circuit
against the most extreme faults [18]. For instance, Xilinx
devices have built in ECC for checking if faults have occurred
in any given frame of the CRAM. The latency at which a fault
can be detected and for recovery to start is the time taken to
scan through all the ECC portions of each frame. The data
resulting from such an analysis could be used with the built in
ECC checking of Xilinx devices to only inspect/repair frames
that contain bits in the SSIM≤0.4 range. For the k-means

7

golden output image
Fr

eq
ue

nc
y

co
un

t

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

SSIM score

average
 image

Fig. 6. Average of all images within a given ssim range

Fig. 7. 2D Histogram for the execution time and SSIM score for every ”faulty” image returned

application an ECC based protection strategy would only need
to check for errors in 1004 frames instead of 6590 frames,
reducing the latency of such a fault detection approach.

As well as the SSIM score, deviations in the circuits
execution time can also be used to further analyse outcome
of critical bits. Figure 7 shows a 2D histogram with the
execution time along the y-axis and SSIM score along the
x-axis. The correct execution time can be seen as the most
common occurrence at 1.47 × 107 cycles (100MHz clock).
We have found that the clusters of faulty images in Figure 7
tend to have highly similar characteristics. For a selection of
these clusters, labelled A - E, we have attempted to speculate
their origin by taking into account the execution time, the
average image, and euclidean CRAM space (frame × word
× bit):

[Region A]: All output is black; there are plenty of causes
for such an error, for example an error in the routing logic
that transfers the end result to main memory. These errors are
widely distributed across the entire CRAM space and have a
large variation in execution time as they can occur in many
different places.

[Region B]: The execution time in this region corresponds

with the time expected if the kernel returned straight away
(i.e. the done signal instantly went high). This is likely an
error in the interface logic of the VivadoHLS generated
hardware, which explains why the total number of errors is
low and the average distance is low. The average image is
just random noise from shared memory.

[Region C]: We believe that this region is similar to region
B, however, in this case there was a partial returned image
left over in the shared memory from a previous run giving it
a slightly higher SSIM score. In future experiments we will
ensure that all shared memory is zeroed before each test.

[Region D]: One or two large clusters in the output image –
this error could occur in many different control-flow regions
of the application where there is a loop over the total number
of current clusters. Hence there is a high variation in execution
time, and reasonably large CRAM distance.

[Region E]: Error in addressing logic – parts of the image
are skipped and the amount skipped doubles with consecutive
errors. This is likely hitting an index in the read or write to
main memory, hence it has a low average distance.

8

benchmark Frame Word Bit Result Cycles
dotproduct 5851 85 12 182400 1208

5715 79 12 182401 604
5578 79 13 91100 304
5679 79 12 182600 604

dfmul 5850 75 13 40 217
5851 75 12 21 217
5715 18 12 12 217
5815 22 12 12 217
5714 18 13 12 217

Fig. 8. Non-essential bits that caused observable errors, in the dotproduct
benchmark (expected result:182400, expected cycles: 604), and dfmul (ex-
pected result:20 , expected cycles:217) benchmark. Essential bits generated
via Vivado 2017.4

VIII. TESTING ESSENTIAL BITS

The essential bits report generated by the Xilinx tools should
be the super-set of all critical bits in the design. To test this we
performed an injection campaign into all the bits that the Xilinx
tool claim are non-essential for two benchmarks: a floating
point dotproduct with deterministic cycles and output and the
dfmul CHStone benchmark, both generated via LegUp.

For each benchmark the set of non-essential bits was cal-
culated by calculating all bits not mentioned in the essential
bits file. ParFlip was then used to exhaustively check to see
if any of the non-essential bits produced an error. For each
benchmark a small number of bits ≈ 0.02% were found to
cause an observable error in the output of the circuit, all of
which seem to occur in either bit 12 or bit 13 of a CRAM
word. We performed these tests on Vivado versions 2015.3
and 2017.4. Figure 8 shows the locations and results for each
of the missed critical bits that we found for the dotproduct
and dfmul benchmarks.

IX. CONCLUSION

Performing in-hardware fault injection can take a long
time and is challenging to automate. This paper presents
a framework which reduces testing time by using multiple
identical reconfigurable SoCs in parallel. We demonstrated that
with our approach it is possible to scale up the injection rate
linearly with the number of nodes, in a flexible and reliable
fashion. Exhaustive fault campaigns were performed on both
the CHstone benchmark suite and a k-means image processing
application. For the k-means application we learnt that: the
majority of critical bits produce images that do not have a
noticeably different output; and that if we consider both the
SSIM score of the corrupted images and the execution time we
can identify faults related to the circuit interface and memory
addressing logic. By exhaustively exploring the CRAM of the
Zynq device we were also able to learn two things: injecting
errors into word-50 causes the complete system to lock-up, we
speculate that this is because word-50 is related to the clock
of the ARM processing system; and that the Xilinx Essential
Bits report may have missed some CRAM bits that do induce
errors in the output.

In future work we plan to explore how fine-grain resettable
segments will allow for better coverage and scalability of the
system. We would also like to explore ways to correlate the
output errors of the k-means application to the lines of the
input code to investigate instruction-level protection strategies
of HLS generated circuits.

REFERENCES

[1] Soft Error Mitigation Controller, v4.1 ed., Product Guide (PG036),
Xilinx Corp, April 2018.

[2] A. J. Sánchez-Clemente, L. Entrena, and M. Garcı́a-Valderas, “Partial
TMR in FPGAs using approximate logic circuits,” IEEE Transactions
on Nuclear Science, vol. 63, no. 4, pp. 2233–2240, 2016.

[3] Y. Hara-Azumi, H. Tomiyama, S. Honda, and H. Takada, “Proposal
and quantitative analysis of the CHStone benchmark program suite
for practical c-based high-level synthesis,” Journal of Information
Processing, vol. 17, pp. 242–254, 2009.

[4] P. K. Samudrala, J. Ramos, and S. Katkoori, “Selective triple modular
redundancy (STMR) based single-event upset (SEU) tolerant synthesis
for fpgas,” IEEE Transactions on Nuclear Science, vol. 51, no. 5, pp.
2957–2969, 2004.

[5] Introduction to SEUs Simulation Tool SST, 2nd ed., Tutorial, ARIES
Research Center/ESA, April 2017.

[6] A. Lindoso, L. Entrena, M. Garcı́a-Valderas, and L. Parra, “A hybrid
fault-tolerant LEON3 soft core processor implemented in low-end
SRAM FPGA,” IEEE Transactions on Nuclear Science, vol. 64, no. 1,
pp. 374–381, 2017.

[7] A. Gruwell, P. Zabriskie, and M. Wirthlin, “High-speed programmable
FPGA configuration through JTAG,” in Field Programmable Logic and
Applications (FPL), 2016 26th International Conference on. IEEE,
2016, pp. 1–4.

[8] M. Ebrahimi, A. Mohammadi, A. Ejlali, and S. G. Miremadi, “A
fast, flexible, and easy-to-develop fpga-based fault injection technique,”
Microelectronics Reliability, vol. 54, no. 5, pp. 1000–1008, 2014.

[9] L. Gong, T. Wu, N. T. Nguyen, D. Agiakatsikas, Z. Zhao, E. Cetin,
and O. Diessel, “A programmable configuration controller for fault-
tolerant applications,” in Field-Programmable Technology (FPT), 2016
International Conference on. IEEE, 2016, pp. 117–124.

[10] A. Stoddard, A. Gruwell, P. Zabriskie, and M. Wirthlin, “High-speed
PCAP configuration scrubbing on Zynq-7000 all programmable socs,”
in Field Programmable Logic and Applications (FPL), 2016 26th
International Conference on. IEEE, 2016, pp. 1–8.

[11] R. Le, “Soft error mitigation using prioritized essential bits,” Xilinx
XAPP538 (v1. 0), 2012.

[12] “Project X-ray - Xilinx series 7 bitstream documentation,” Accessed
2018-03-28. URL: https://github.com/SymbiFlow/prjxray, Tech. Rep.,
2018.

[13] M. Alderighi, S. D’Angelo, F. Casini, G. Sorrenti, D. M. Codinachs,
and S. Davin, “The FLIPPER fault injection platform: Experiences and
knowledge from a ten-year project,” in ARCS 2017; 30th International
Conference on Architecture of Computing Systems; Proceedings of.
VDE, 2017, pp. 1–8.

[14] J. Mogollon, H. Guzman-Miranda, J. Napoles, J. Barrientos, and
M. Aguirre, “Ftunshades2: A novel platform for early evaluation of
robustness against see,” in Radiation and Its Effects on Components
and Systems (RADECS), 2011 12th European Conference on. IEEE,
2011, pp. 169–174.

[15] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H.
Anderson, S. Brown, and T. Czajkowski, “Legup: high-level synthesis
for fpga-based processor/accelerator systems,” in Proceedings of the
19th ACM/SIGDA international symposium on Field programmable gate
arrays. ACM, 2011, pp. 33–36.

[16] S. T. Fleming, D. B. Thomas, and F. Winterstein, “A power-aware
adaptive FDIR framework using heterogeneous system-on-chip mod-
ules,” in FPGAs and Parallel Architectures for Aerospace Applications.
Springer, 2016, pp. 75–90.

[17] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,” IEEE
transactions on image processing, vol. 13, no. 4, pp. 600–612, 2004.

[18] S. T. Fleming and D. B. Thomas, “StitchUp: Automatic control flow
protection for high level synthesis circuits,” in Design Automation
Conference (DAC), 2016 53nd ACM/EDAC/IEEE. IEEE, 2016, pp.
1–6.

