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Generating collection transformations from proofs

MICHAEL BENEDIKT, Oxford University, United Kingdom
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Nested relations, built up from atomic types via product and set types, form a rich data model. Over the last

decades the nested relational calculus, NRC, has emerged as a standard language for defining transformations

on nested collections. NRC is a strongly-typed functional language which allows building up transformations

using tupling and projections, a singleton-former, and a map operation that lifts transformations on tuples to

transformations on sets.

In this work we describe an alternative declarative method of describing transformations in logic. A formula

with distinguished inputs and outputs gives an implicit definition if one can prove that for each input there is

only one output that satisfies it. Our main result shows that one can synthesize transformations from proofs

that a formula provides an implicit definition, where the proof is in an intuitionistic calculus that captures

a natural style of reasoning about nested collections. Our polynomial time synthesis procedure is based on

an analog of Craig’s interpolation lemma, starting with a provable containment between terms representing

nested collections and generating an NRC expression that interpolates between them.

We further show that NRC expressions that implement an implicit definition can be found when there is

a classical proof of functionality, not just when there is an intuitionistic one. That is, whenever a formula

implicitly defines a transformation, there is an NRC expression that implements it.
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1 INTRODUCTION
Nested relations are a natural data model for hierarchical data. Nested relations are objects within a

type system built up from basic types via tupling and a set-former. In the 1980’s and 90’s, a number

of algebraic languages were proposed for defining transformations on nested collections. Eventually

a standard language emerged, the nested relational calculus (NRC). The language is strongly-typed

and functional, with transformations built up via tuple manipulation operations as well as operators

for lifting transformations over a type 𝑇 to transformations taking as input a set of objects of type

𝑇 , such as singletons constructors and a mapping operator. One common formulation of these uses

variables and a “comprehension” operator for forming new objects from old ones [Buneman et al.

1995], while an alternative algebraic formalism presents the language as a set of operators that can

be freely composed. It was shown that each NRC expression can be evaluated in polynomial time

in the size of a finite data input, and that when the input and output is “flat” (i.e. only one level of

nesting), NRC expresses exactly the transformations in the standard relational database language
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relational algebra. Wong’s thesis [Wong 1994] summarizes the argument made by this line of work

“NRC can be profitably regarded as the ‘right’ core for nested relational languages”. NRC has been

the basis for most work on transforming nested relations. It is the basis for a number of commercial

tools [Melnik et al. 2010], including those embedding nested data transformations in programming

languages [Meijer et al. 2006], in addition to having influence in the effective implementation of

data transformations in functional programming languages [Gibbons 2016; Gibbons et al. 2018].

Although NRC can be applied to other collection types, such as bags and lists, we will focus here

on just nested sets. We will show a new connection between NRC and first-order logic. There is a

natural logic for describing properties of nested relations, the well-known Δ0 formulas, built up

from equalities using quantifications ∃𝑥 ∈ 𝜏 and ∀𝑦 ∈ 𝜏 where 𝜏 is a term. For example, formula

∀𝑥 ∈ 𝑐 𝜋1 (𝑥) ∈ 𝜋2 (𝑥) might describe a property of a nested relation 𝑐 that is a set of pairs, where the

first component of a pair is of some type 𝑇 and the second component is a set containing elements

of type𝑇 . A Δ0 formula Σ(o1𝑖𝑛 . . . o𝑘𝑖𝑛, o𝑜𝑢𝑡 ) over variables o1𝑖𝑛 . . . o𝑘𝑖𝑛 and variable o𝑜𝑢𝑡 thus defines a

relationship between o
1

𝑖𝑛 . . . o
𝑘
𝑖𝑛 and o𝑜𝑢𝑡 . For such a formula to define a transformation it must be

functional: it must enforce that o𝑜𝑢𝑡 is determined by the values of o
1

𝑖𝑛 . . . o
𝑘
𝑖𝑛 . More generally, if we

have a formula Σ(o1𝑖𝑛 . . . o𝑘𝑖𝑛, o𝑜𝑢𝑡 , ®𝑎), we say that Σ implicitly defines o𝑜𝑢𝑡 as a function of o
1

𝑖𝑛 . . . o
𝑘
𝑖𝑛

if:

(*) For each two bindings 𝜎1 and 𝜎2 of the variables o
1

𝑖𝑛 . . . o
𝑘
𝑖𝑛, ®𝑎, o𝑜𝑢𝑡 to nested relations satisfying

Σ, if 𝜎1 and 𝜎2 agree on each o
𝑖
𝑖𝑛 , then they agree on o𝑜𝑢𝑡 .

That is, Σ entails that the value of o𝑜𝑢𝑡 is a partial function of the value of o
1

𝑖𝑛 . . . o
𝑘
𝑖𝑛 .

Note that when we say “for each binding of variables to nested relations” in the definitions above,

we include infinite nested relations as well as finite ones. An alternative characterization of Σ being

an implicit definition, which will be more relevant to us in the sequel, is that there is a proof that Σ
defines a functional relationship. Note that (*) is a first-order entailment: Σ(o1𝑖𝑛 . . . o𝑘𝑖𝑛, o𝑜𝑢𝑡 , ®𝑎) ∧
Σ(o1𝑖𝑛 . . . o𝑘𝑖𝑛, o′𝑜𝑢𝑡 , ®𝑎′) |= o𝑜𝑢𝑡 = o

′
𝑜𝑢𝑡 where in the entailment we omit some first-order “sanity

axioms” about tuples and sets. We refer to a proof of (*) for a given Σ and subset of the input

variables o
1

𝑖𝑛 . . . o
𝑘
𝑖𝑛 , as a proof that Σ implicitly defines o𝑜𝑢𝑡 as a function of o

1

𝑖𝑛 . . . o
𝑘
𝑖𝑛 , or simply a

proof of functionality dropping Σ, o𝑜𝑢𝑡 , and o
1

𝑖𝑛 . . . o
𝑘
𝑖𝑛 when they are clear from context. By the

completeness theorem of first-order logic, whenever Σ defines o𝑜𝑢𝑡 as a function of o
1

𝑖𝑛 . . . o
𝑘
𝑖𝑛

according to the semantic definition above, this is witnessed by a proof, in any of the standard

complete proof calculi for classical first-order logic (e.g. tableaux, resolution). Such a proof will use

the sanity axioms referred to above, which capture extensionality of sets, the compatibility of the

membership relation with the type hierarchy, and properties of projections and tupling.

Example 1.1.We consider a specification in logic involving two nested collections, 𝐹 and 𝐺 . The

collection 𝐹 is of type Set(U ×U), where U refers to the basic set of elements, the “Ur-elements”

in the sequel. That is, 𝐹 is a set of pairs. The collection𝐺 is of of type Set(U ×Set(U)), a set whose
members are pairs, the first component an element and the second a set.

Our specification Σ will state that for each element 𝑔 in 𝐺 there is an element 𝑓1 appearing as

the first component of a pair in 𝐹 , such that 𝑔 represents 𝑓1, in the sense that its first component is

𝑓1 and its second component accumulates all elements paired with 𝑓1 in 𝐹 . This can be specified

easily by a Δ0 formula:

∀𝑔 ∈ 𝐺 ∃𝑓 ∈ 𝐹 𝜋1 (𝑔) = 𝜋1 (𝑓 ) ∧ ∀𝑥 ∈ 𝜋2 (𝑔) ⟨𝜋1 (𝑓 ), 𝑥⟩ ∈ 𝐹

∧ ∀𝑓 ′ ∈ 𝐹 [𝜋1 (𝑓 ′) = 𝜋1 (𝑓 ) → 𝜋2 (𝑓 ′) ∈ 𝜋2 (𝑔)]
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Σ also states that for each element 𝑓1 lying within a pair in 𝐹 there is a corresponding element 𝑔

of 𝐺 that pairs 𝑓1 with all of the elements linked with 𝑓 in 𝐹 .

∀𝑓 ∈ 𝐹 ∃𝑔 ∈ 𝐺 𝜋1 (𝑔) = 𝜋1 (𝑓 ) ∧ ∀𝑥 ∈ 𝜋2 (𝑔) ⟨𝜋1 (𝑓 ), 𝑥⟩ ∈ 𝐹

∧ ∀𝑓 ′ ∈ 𝐹 [𝜋1 (𝑓 ′) = 𝜋1 (𝑓 ) → 𝜋2 (𝑓 ′) ∈ 𝜋2 (𝑔)]

We can prove from Σ that 𝐺 is a function of 𝐹 , and thus Σ implicitly defines a transformation

from 𝐹 to 𝐺 . We give the argument informally here. Fixing 𝐹,𝐺 and 𝐹,𝐺 ′
satisfying Σ, we will

prove that if 𝑔 ∈ 𝐺 then 𝑔 ∈ 𝐺 ′
. The proof begins by using the conjunct in the first item to obtain

an 𝑓 ∈ 𝐹 . We can then use the second item on 𝐺 ′
to obtain a 𝑔′ ∈ 𝐺 ′

. We now need to prove that

𝑔′ = 𝑔. Since 𝑔 and 𝑔′ are pairs, it suffices to show that their two projections are the same. We can

easily see that 𝜋1 (𝑔) = 𝜋1 (𝑓 ) = 𝜋1 (𝑔′), so it suffices to prove 𝜋2 (𝑔′) = 𝜋2 (𝑔). Here we will make

use of extensionality, arguing for containments between 𝜋1 (𝑔′) and 𝜋2 (𝑔) in both directions. In one

direction we consider an 𝑥 ∈ 𝜋2 (𝑔′), and we need to show 𝑥 is in 𝜋2 (𝑔). By the second conjunct in

the second item we have ⟨𝜋1 (𝑓 ), 𝑥⟩ ∈ 𝐹 . Now using the first item we can argue that 𝑥 ∈ 𝜋2 (𝑔). In
the other direction we consider 𝑥 ∈ 𝜋2 (𝑔), we can apply the first item to claim ⟨𝜋1 (𝑓 ), 𝑥⟩ ∈ 𝐹 and

then employ the second item to derive 𝑥 ∈ 𝜋2 (𝑔′).
Now let us consider 𝐺 as the input and 𝐹 as the output. We cannot say that Σ describes 𝐹 as a

total function of 𝐺 , since Σ enforces constraints on 𝐺 : that the second component of a pair in 𝐺

cannot be empty, and that any two pairs in 𝐺 that agree on the first component must agree on the

second. But we can prove from Σ that 𝐹 is a partial function of𝐺 : fixing 𝐹,𝐺 and 𝐹 ′,𝐺 satisfying Σ,
we can prove that 𝐹 = 𝐹 ′

. ⊳

Our first main contribution is a polynomial time synthesis procedure that takes as input a proof

that Σ implicitly defines 𝑜 as a function of o
1

𝑖𝑛 . . . o
𝑘
𝑖𝑛 , generating an NRC expression with input

o
1

𝑖𝑛 . . . o
𝑘
𝑖𝑛 that implements the transformation that Σ defines. We require a proof of functionality in

a certain intuitionistic calculus. Although the calculus is not complete for classical entailment, we

argue that it is quite rich and show that it is equivalent to certain prior intuitionistic calculi.

Example 1.2. Let us return to Example 1.1. From a proof in our calculus that Σ defines 𝐺 as a

function of 𝐹 , our synthesis algorithm will produce an expression in NRC that generates𝐺 from 𝐹 .

This will be an expression that simply “groups on the first component”.

From a proof from Σ that 𝐹 is a function of 𝐺 , our algorithm will generate an NRC expression

that forms 𝐹 by flattening 𝐺 . ⊳

We also show that this phenomenon applies when there is a classical proof of functionality, not

just an intuitionistic one. That is, we show that whenever a formula Σ projectively implicitly defines

a transformation T , that transformation can be expressed in a slight variant of NRC. The result can

be seen as an analog of the well-known Beth definability theorem for first-order logic [Beth 1953],

stating that a property of a first-order structure is defined by a first-order open formula exactly

when it is implicitly defined by a first-order sentence. In the process we prove an interpolation

theorem, showing that whenever we have provable containments between nested relations, there is

an NRC expression that sits between them. Overall our results show a close connection between

logical specifications of transformations on nested collections and the functional transformation

language NRC, a result which is not anticipated by the prior theory.

Organization.We overview related work in Section 2 and provide preliminaries in Section 3.

Section 4 details our proof calculus and the algorithm that synthesizes definitions from proofs. We

include an example (Figure 4) of how one would use it to prove functionality of an expression, and

an illustration of how our synthesis algorithm would generate an NRC expression from the proof

(Example 4.8). Section 5 concerns another logic-based specification that can be transformed into
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NRC expressions, based on the notion of interpretations. Section 6 shows that even for classical

proofs there is a corresponding NRC expression. This conversion goes through the interpretation

representation introduced in Section 6. We show a general result that implicit definitions in multi-

sorted logic can be converted to interpretations, and then use the results of Section 6 to argue that

these interpretations can be converted to NRC expressions.

We close with conclusions in Section 7. In the body of the paper we focus on explaining the

results and some proof ideas, with most proof details deferred to the supplementary materials.

2 RELATEDWORK
In the context of transformations of ordinary “flat” relations, Segoufin and Vianu [Segoufin and

Vianu 2005] showed that transformations definable in relational algebra are the same as those that

satisfy a variant of implicit definability (“determinacy”). The result of [Segoufin and Vianu 2005]

makes use of a refinement of Craig’s interpolation theorem due to Otto [Otto 2000]. The use of

interpolation theorems in moving from implicit to explicit is well-established, dating back to Craig’s

proof of the Beth definability theorem [Craig 1957]. Segoufin and Vianu’s result is motivated by the

ability to evaluate transformations defined over one set of “base predicates” using another set of

“view predicates”, where the views are defined implicitly by a background theory relating them to

the base predicate. The idea that one can use interpolation algorithms to synthesize transformations

from implicit specifications first appears in the work of Toman and Weddell [Toman and Weddell

2011] and has been developed in a number of directions subsequently [Benedikt et al. 2016]. In

the absence of nesting of sets, the relationship between formulas and terms of an algebra is much

more straightforward; relational algebra defines exactly those transformations whose output is

a comprehension by a first-order formula over the elements that are in the projection of some

relation. In the presence of nesting the relationship of algebra and logic is more complex, and so

in this work we will need to develop some different techniques (e.g. a new kind of interpolation

result) to analyze the relationship between logical and algebraic definability.

The development of the nested relational model, culminating in the convergence on the language

NRC, has a long history. The thesis of Wong [Wong 1994] and the related paper of Buneman et

al. [Buneman et al. 1995] gave an elegant presentation of NRC, and summarize the equivalences

known between a number of variations on the syntax. Connections with logic are implicit in results

stating that NRC queries can be “simulated” by flat queries: see [Paredaens and Van Gucht 1992;

Van den Bussche 2001]. Further discussion on these simulations can be found in Section 5.

More powerful languages than NRC were also considered, including an extension with an

operator for forming the powerset of a set. This extension can be captured using the natural logic

with membership [Abiteboul and Beeri 1995]. The increased expressiveness implies correspondingly

higher complexity (e.g. non-elementary in combined complexity), and perhaps for this reason the

subsequent development has focused on NRC. Much of the development of NRC in the last decades

has focused primarily on integration with functional languages [Gibbons 2016; Gibbons et al. 2018;

Meijer et al. 2006], rather than synthesis or expressiveness.

Quite independently of work on logics for nested relations in computer science, researchers in

other areas have investigated the relationships between various restricted algebras for manipulating

sets. Gandy [Gandy 1974] defines a class of Basic functions, and compares them to functions definable

by Δ0 formulas. Later languages build on Gandy’s work, particularly for a finer-grained analysis of

the constructible sets [Jensen 1972]. An important distinction from the setting of NRC is that these

works do not restrict to sets built up from finitely many levels of nesting above the Ur-elements. For

instance, Gandy showed that there are Basic functions checking whether an input is an ordinal, or

is the ordinal 𝜔 ; in fact, he showed that there are Basic functions that are not primitive recursive. In

the setting of [Gandy 1974], the Δ0 functions are strictly more expressive than the Basic functions.
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Model theorists have looked at generalizing the Beth definability theorem that relates implicit

and explicit definability to the case where the “implicitly definable structure” has new elements,

not just new relations. Hodges and his collaborators [Hodges 1993; Hodges et al. 1990] explore this

in some restricted cases. Our approach in Section 6 to showing a relationship between implicitly

definable transformations and interpretations is inspired by the unpublished draft [Andréka et al.

2008], motivated from the perspective of algebraic logic, which provides model-theoretic tools for

connecting semantic and syntactic notions of definability in multi-sorted logic.

Our effective result yields an algorithm translating intuitionistic proofs of functionality into

NRC definitions. In contrast, extraction procedures related to the Curry-Howard correspondence

typically take as input constructive proofs, possibly with cuts, of statements of the type∀𝑥∃𝑦 𝜑 (𝑥,𝑦)
witnessing that 𝜑 (𝑥,𝑦) defines a total relation and turn those proofs into programs for functions 𝑓

such that∀𝑥 𝜑 (𝑥, 𝑓 (𝑥)) hold. Our procedure works on cut-free proofs that a formula defines a partial

function using techniques more closely related to interpolation. This leaves open the question

of extracting NRC terms from constructive totality proofs. Sazonov [Sazonov 1985] addressed

this question for an untyped analogue of NRC. He uses weak set theories based on intuitionistic

Kripke-Platek set theory. These theories are richer than the ones we use for functionality proofs.

3 PRELIMINARIES
Despite their long history of study in several communities, we know of no succinct presentation

of the basics of nested collection transformation languages. So we will give a quick introduction

here that assumes no background. Indeed, for the issues that we will be concerned with in this

work, the aspects of these transformation languages that have been the focus of most past work

(e.g. integration with functional languages [Cooper 2009; Meijer et al. 2006] and complexity of

evaluation [Koch 2006]) will not be critical.

Nested relations. We deal with schemas that describe objects of various types given by the

following grammar.

𝑇, 𝑈 ::= U | 𝑇 ×𝑈 | Unit | Set(𝑇 )
For simplicity throughout the remainder we will assume only two basic types: the one-element

type Unit and U, whose inhabitant are not specified further; according to the application we may

think of U as being infinite or empty. We call this set the Ur-elements. From the Ur-elements and a

unit type we can build up the set of types via product and the power set operation. We use standard

conventions for abbreviating types, with the 𝑛-ary product abbreviating an iteration of binary

products. A nested relational schema consists of declarations of variable names associated to objects

of given types.

Example 3.1. An example nested relational schema declares two objects 𝑅 : Set(U × U) and
𝑆 : Set(U × Set(U)). That is, 𝑅 is a set of pairs of Ur-elements: a standard “flat” binary relation. 𝑆

is a collection of pairs whose first elements are Ur-elements and whose second elements are sets of

Ur-elements. ⊳

The types have a natural interpretation, which we refer to as the universe over U. The unit type

has a unique member and the members of Set(𝑇 ) are the sets of members of𝑇 . An instance of such a

schema is defined in the obvious way, or aU-instance if wewant to emphasize the set of Ur-elements

on which it is based. Notice that nested relational schemas allow one to describe programming

language data structures that are built up inductively via the tupling and set constructors, rather

than just sets of tuples. Thus the literature often refers also to the types above as “object types” and

to the “complex object data model” [Abiteboul and Beeri 1995; Wong 1994]. In this work we will

sometimes refer to the interpretation of a variable in an instance of a nested relational schema as
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Γ, 𝑥 : 𝑇, Γ′ ⊢ 𝑥 : 𝑇

Γ ⊢ () : Unit
Γ ⊢ e1 : 𝑇1 Γ ⊢ e2 : 𝑇2

Γ ⊢ ⟨e1, e2⟩ : 𝑇1 ×𝑇2

Γ ⊢ e : 𝑇1 ×𝑇2 𝑖 ∈ {1, 2}
Γ ⊢ 𝜋𝑖 (𝑒) : 𝑇𝑖

Γ ⊢ e : 𝑇
Γ ⊢ {e} : Set(𝑇 )

Γ ⊢ e1 : Set(𝑇1) Γ, 𝑥 : 𝑇1 ⊢ e2 : Set(𝑇2)

Γ ⊢
⋃

{e2 | 𝑥 ∈ e1} : Set(𝑇2)

Γ ⊢ ∅𝑇 : Set(𝑇 )
Γ ⊢ e1 : Set(𝑇 ) Γ ⊢ e2 : Set(𝑇 )

Γ ⊢ e1 ∪ e2 : Set(𝑇 )
Γ ⊢ e1 : Set(𝑇 ) Γ ⊢ e2 : Set(𝑇 )

Γ ⊢ e1 \ e2 : Set(𝑇 )

Fig. 1. NRC syntax and typing rules

an object. The subobjects of an object are defined in the obvious way. For example, if 𝑜 is an object

of type Set(𝑇 ), then it is of the form {𝑡1, . . .}, where each 𝑡𝑖 is a subobject of 𝑜 of type 𝑇 .

For the schema in Example 3.1 above, assuming that U = N, one possible instance has 𝑅 =

{⟨4, 6⟩, ⟨7, 3⟩} and 𝑆 = {⟨4, {6, 9}⟩}.
Transformation languages for nested relations. A nested relational transformation (over

input schema S𝐶𝐻 𝑖𝑛 and output schema S𝐶𝐻𝑜𝑢𝑡 ) is a function that takes as input an instance of

S𝐶𝐻 𝑖𝑛 , and returns an instance of S𝐶𝐻𝑜𝑢𝑡 . For example, suppose our input schema consists of

a declaration 𝑅 : Set(U × U) and our output schema consists also of a declaration 𝑆 : Set(U ×
(Set(U)). Then one possible transformation would return the nested relation formed by grouping

on the first position: informally returning a set of pairs ⟨𝑎, 𝑠⟩ where 𝑎 is any Ur-element appearing

in the first component of a tuple in the input 𝑅, and 𝑠 nt is the set of 𝑏 such that ⟨𝑎, 𝑏⟩ is in 𝑅.

Transformation equivalence. We say that two transformations are equivalent if they agree

on all instances (finite and infinite) of a given input schema over any set of Ur-elements. It will turn

out that for the transformations we are interested in, “over any set of Ur-elements” can be freely

replaced by “over any infinite set of Ur-elements” or “over some fixed infinite set of Ur-elements”.

When we say that a transformation T is expressible in some class of transformations 𝐶 , we mean

that there is a transformation T ′
in 𝐶 that is equivalent to T in the sense above.

Nested Relational Calculus. We review the main language for declaratively transforming

nested relations, Nested Relational Calculus (NRC). Each expression is associated with an output

type, which are in the type system described above. We let Bool denote the type Set(Unit). Then
Bool has exactly two elements, and will be used to simulate Booleans.

The grammar and typing rules of NRC expressions are presented in Figure 1.

The definition of the free and bound variables of an expression is standard. For example, the

union operator

⋃{𝐸 | 𝑥 ∈ 𝑅} binds variable 𝑥 .
The semantics of these expressions should be fairly evident. If 𝐸 has type 𝑇 , and has input

variables 𝑥1 . . . 𝑥𝑛 of types 𝑇1 . . .𝑇𝑛 , respectively, then the semantics associates with 𝐸 a function

that given a binding associating each free variable a value of the appropriate type, returns an object

of type𝑇 . For example, the expression () always returns the empty tuple, while ∅ returns the empty

set of type 𝑇 . The expression {𝑒} evaluates to {𝑜}, where 𝑒 evaluates to 𝑜 .
In the sequel, we thus assume that every NRC expression is implicitly associated with an input

schema, which declares a list of free variables and their input types, 𝑋1 : 𝑇1 . . . 𝑋𝑛 : 𝑇𝑛 , along with

an output type 𝑆 . We may write 𝐸 : 𝑇1, . . . ,𝑇𝑛 → 𝑆 and refer to 𝑆 as the output type of 𝐸. We often

abuse notation by identifying an NRC expression with the associated transformation. For example,
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if 𝐸 is an NRC expression and o𝑖𝑛 is an object of the input type of 𝐸, we will write 𝐸 (o𝑖𝑛) for the
output of (the function defined by) 𝐸 on o𝑖𝑛 .

As explained in [Wong 1994], the following transformations are definable with their expected

semantics.

• For every type𝑇 there is anNRC expression =𝑇 of type Bool representing equality of elements

of type𝑇 . In particular, there is an expression =U representing equality between Ur-elements.

• For every type 𝑇 there is an NRC expression ∈𝑇 of type Bool representing membership

between an element of type 𝑇 in an element of type Set(𝑇 ).
Further, if 𝐸 is a NRC expression with free variable 𝑥 of type 𝑇 and 𝐹 is an expression of type 𝑇 ,

then the NRC expression ⋃
{{𝐸} | 𝑥 ∈ {𝐹 }}

represents the query obtained by running 𝐸 with 𝑥 set to the output of 𝐹 . Combining this with

the first observations above, we can see that for expressions 𝐸1 and 𝐸2 of type 𝑇 , we have an

expression representing 𝐸1 =𝑇 𝐸2 of type Bool. Using this, we will often treat =𝑇 and ∈𝑇 as

additional constructors of the language.

Boolean operations ∧,∨,¬ can also be represented as NRC expressions with output type Bool.

For example ¬ 𝑥 is just {()} \ 𝑥 . Applying the observation about composition as we did above, we

see that given 𝐸 of type Bool we can obtain an expression ¬ 𝐸 of type Bool, and thus as we did

with =𝑇 and ∈𝑇 we will treat the Boolean operations as primitives.

Arbitrary arity tupling and projection operations ⟨𝐸1, . . . 𝐸𝑛⟩, 𝜋 𝑗 (𝐸) for 𝑗 > 2 can be seen as

abbreviations for a composition of binary operations. Further

• If 𝐵 is an expression of type Bool and 𝐸1, 𝐸2 expressions of type Set(𝑇 ), then there is an

expression case(𝐵, 𝐸1, 𝐸2) of type Set(𝑇 ) that implements “if 𝐵 then 𝐸1 else 𝐸2”.

• If 𝐸1 and 𝐸2 are expressions of type Set(𝑇 ), then there is an expression 𝐸1 ∩𝐸2 of type Set(𝑇 ).
The derivations of these are not difficult. For example, the conditional required by the first item is

given by: ⋃
{𝐸1 | 𝑥 ∈ 𝐵} ∪

⋃
{𝐸2 | 𝑥 ∈ (¬ 𝐵)}

Example 3.2. Consider an input schema including a binary relation 𝐹 : Set(U × U). The trans-
formation TProj with input 𝐹 returning the projection of 𝐹 on the first component can be ex-

pressed in NRC as

⋃{{𝜋1 (𝑓 )} | 𝑓 ∈ 𝐹 }. The transformation TFilter with input 𝐹 and also 𝑣 of

type U that filters 𝐹 down to those pairs which agree with 𝑣 on the first component can be ex-

presses inNRC as

⋃ {case( [𝜋1 (𝑓 ) =U 𝑣], {𝑓 }, ∅) | 𝑓 ∈ 𝐹 }. Consider now the transformation TGroup
that groups 𝐹 on the first component, returning an object of type Set(U × Set(U)); this is the
first transformation mentioned in Example 1.2. The transformation can be expressed in NRC as⋃ {

{⟨𝑣,⋃{{𝜋2 (𝑓 )} | 𝑓 ∈ TFilter}⟩} | 𝑣 ∈ TProj
}
. Finally, consider the second transformation TFlatten

mentioned in Example 1.2, that flattens an input𝐺 of type Set(U ×Set(U)) . This can be expressed

in NRC as ⋃ {⋃
{{⟨𝜋1 (𝑔), 𝑥⟩} | 𝑥 ∈ 𝜋2 (𝑔)} | 𝑔 ∈ 𝐺

}
⊳

The language NRC cannot define certain natural transformations whose output type is U, such

as, for instance, case(𝐵, 𝐸1, 𝐸2) for 𝐸1 and 𝐸2 of sort U. To get a canonical language for such

transformations, we let NRC[Get] denote the extension of NRC with the family of operations

Get𝑇 : Set(𝑇 ) → 𝑇 that extracts the unique element from a singleton. Get was considered in

[Wong 1994], with connection to parallel evaluation explored in [Suciu 1995]. The semantics are: if

𝐸 returns a singleton set {𝑥}, then Get𝑇 (𝐸) returns 𝑥 ; otherwise it returns some default object of
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the appropriate type. The semantics of Get𝑇 (𝑥) on non-singleton 𝑥 is not particularly important;

to fix ideas, we can define for each type 𝑇 a default element 𝑑𝑇 that will be the output of Get𝑇 (𝑥)
when 𝑥 is not a singleton assuming that we have a constant 𝑐0 in U: take 𝑑U = 𝑐0, 𝑑Set(𝑇 ) = ∅,
𝑑Unit = () and 𝑑𝑇1×𝑇2 = (𝑑𝑇1 , 𝑑𝑇2 ). In [Suciu 1995], it is shown that Get is not expressible in NRC at

sort U. However, Get𝑇 for general 𝑇 is definable from GetU and the other NRC constructs.

Δ0 formulas. We need a logic appropriate for talking about nested relations. A natural and

well-known subset of first-order logic formulas with a set membership relation are the Δ0 formulas.

They are built up from equality of Ur-elements via the Boolean operators ∨,¬ as well as relativized

existential and universal quantification. All terms involving tupling and projections are allowed.

Formally, we deal with multi-sorted first-order logic, with sorts corresponding to each of our

types. We use the following syntax for Δ0 formulas and terms. Terms are built using tupling and

projections. All formulas and terms are assumed to be well-typed in the obvious way, with the

expected sort of 𝑡 and 𝑢 being U in expressions 𝑡 =U 𝑢 and 𝑡 ≠U 𝑢, while in 𝑡 ∈𝑇 𝑢 the sort of 𝑡 is

𝑇 and the sort of 𝑢 is Set(𝑇 ).

𝑡,𝑢 ::= 𝑥 | () | ⟨𝑡,𝑢⟩ | 𝜋1 (𝑡) | 𝜋2 (𝑡)
𝜑,𝜓 ::= 𝑡 =U 𝑡 ′ | 𝑡 ≠U 𝑡 ′ | ⊤ | ⊥ | 𝜑 ∨𝜓 | 𝜑 ∧𝜓 | ∀𝑥 ∈𝑇 𝑡 𝜑 (𝑥) | ∃𝑥 ∈𝑇 𝑡 𝜑 (𝑥)

Note that there is no primitive negation or equalities for sorts other thanU. This does not limit

expressiveness of formulas with respect to classical semantics. Negation ¬𝜑 may be defined by

induction on 𝜑 by dualizing every connective; we write 𝜑 ⇒ 𝜓 for ¬𝜑 ∨𝜓 in the sequel. Equality,

inclusion and membership predicates may be defined as notations by induction on the involved

types.

𝑡 ∈𝑇 𝑢 := ∃𝑧 ′ ∈ 𝑢 𝑡 =𝑇 𝑧 ′ 𝑡 ⊆𝑇 𝑢 := ∀𝑧 ∈𝑇 𝑡 𝑧 ∈𝑇 𝑢

𝑡 =Set(𝑇 ) 𝑢 := 𝑡 ⊆𝑇 𝑢 ∧ 𝑢 ⊆𝑇 𝑡 𝑡 =Unit 𝑢 := ⊤ (since all elements of this type are equal)

𝑡 =𝑇1×𝑇2 𝑢 := 𝜋1 (𝑡) =𝑇1 𝜋1 (𝑢) ∧ 𝜋2 (𝑡) =𝑇2 𝜋2 (𝑢)
Here we have not defined ∈ at higher types as an atomic predicate, but rather as a derived predicate.

We can think of the kind of entailments we want to prove in terms of these derived predicates,

without use of a set-extensionality axiom:

(∀𝑧 ∈𝑇 𝑥 𝑧 ∈𝑇 𝑦) ∧ (∀𝑧 ∈𝑇 𝑦 𝑧 ∈𝑇 𝑥) ⇒ 𝑥 =Set(𝑇 ) 𝑦

Alternatively, we can think of them as new primitives with extensionality as an axiom relating

them to the other primitives we have given above.

The notion of a formula 𝜑 entailing another formula 𝜓 , writing 𝜑 |= 𝜓 , is the standard one in

first-order logic, meaning that every model of 𝜑 is a model of𝜓 .

NRC and Δ0 formulas. Since we have a Boolean type in NRC, one may ask about the expres-

siveness of NRC for defining transformations of shape 𝑇1, . . . ,𝑇𝑛 → Bool. It turns out that they are

equivalent to Δ0 formulas. This gives one justification for focusing on Δ0 formulas.

Proposition 3.3. There is a polynomial time algorithm taking a Δ0 formula 𝜑 ( ®𝑥) as input and
producing an NRC expression Verify𝜑 ( ®𝑥) of type Bool such that Verify𝜑 ( ®𝑥) returns true if and only if

𝜑 ( ®𝑥) holds.

This useful result is proved by an easy induction over 𝜑 .

4 SYNTHESIZING TRANSFORMATIONS FROM INTUITIONISTIC PROOFS
We will now present our first main result, concerning synthesis of nested relational transformations

from proofs.
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Contraction

Θ; Γ, 𝜑, 𝜑 ⊢ 𝑡 ∈𝑇 𝑢

Θ; Γ, 𝜑 ⊢ 𝑡 ∈𝑇 𝑢
∈U -R

Θ, 𝑡 ∈U 𝑢; Γ ⊢ 𝑡 ∈U 𝑢

=Set-R
Θ; Γ ⊢ 𝑡 ⊆𝑇 𝑢 Θ; Γ ⊢ 𝑢 ⊆𝑇 𝑡

Θ; Γ ⊢ 𝑡 =
Set(𝑇 ) 𝑢

=×-R
Θ; Γ ⊢ 𝜋1 (𝑡) =𝑇1 𝜋1 (𝑢) Θ; Γ ⊢ 𝜋2 (𝑡) =𝑇2 𝜋2 (𝑢)

Θ; Γ ⊢ 𝑡 =𝑇1×𝑇2 𝑢

=Unit-R
Θ; Γ ⊢ 𝑡 =Unit 𝑢

=U -R

Θ, 𝑡 ∈U 𝑧; Γ ⊢ 𝑢 ∈U 𝑧 𝑧 ∉ FV(Θ, Γ, 𝑡, 𝑢)
Θ; Γ ⊢ 𝑡 =U 𝑢

⊆-R
Θ, 𝑧 ∈𝑇 𝑡 ; Γ ⊢ 𝑧 ∈𝑇 𝑢 𝑧 ∉ FV(Θ; Γ, 𝑡, 𝑢)

Θ; Γ ⊢ 𝑡 ⊆𝑇 𝑢
∈Set-R

Θ, 𝑡 ∈
Set(𝑇 ) 𝑣 ; Γ ⊢ 𝑡 =

Set(𝑇 ) 𝑢

Θ, 𝑡 ∈
Set(𝑇 ) 𝑣 ; Γ ⊢ 𝑢 ∈

Set(𝑇 ) 𝑣

⊥-L
Θ; Γ, ⊥ ⊢ 𝑡 ∈𝑇 𝑢

∧-L
Θ; Γ, 𝜑, 𝜓 ⊢ 𝑡 ∈𝑇 𝑢

Θ; Γ, 𝜑 ∧𝜓 ⊢ 𝑡 ∈𝑇 𝑢
∨-L

Θ; Γ, 𝜑 ⊢ 𝑡 ∈𝑇 𝑢 Θ; Γ, 𝜓 ⊢ 𝑡 ∈𝑇 𝑢

Θ; Γ, 𝜑 ∨𝜓 ⊢ 𝑡 ∈𝑇 𝑢

∀-L
Θ, 𝑡 ∈𝑇 𝑧; Γ, 𝜑 [𝑡/𝑦] ⊢ 𝑣 ∈𝑇 ′ 𝑤

Θ, 𝑡 ∈𝑇 𝑧; Γ, ∀𝑦 ∈𝑇 𝑧 𝜑 ⊢ 𝑣 ∈𝑇 ′ 𝑤
∃-L

Θ, 𝑥 ∈𝑇 𝑦; Γ, 𝜑 ⊢ 𝑡 ∈𝑇 ′ 𝑣 𝑥 ∉ FV(Θ, Γ, 𝑦, 𝑡, 𝑣)
Θ; Γ, ∃𝑥 ∈𝑇 𝑦 𝜑 ⊢ 𝑡 ∈𝑇 ′ 𝑣

=-subst
Θ[𝑦/𝑥]; Γ [𝑦/𝑥] ⊢ (𝑣 ∈𝑇 𝑤) [𝑦/𝑥]

Θ; Γ, 𝑥 =U 𝑦 ⊢ 𝑣 ∈𝑇 𝑤
≠-L

Θ; Γ, 𝑡 ≠U 𝑡 ⊢ 𝑢 ∈𝑇 𝑣

×𝛽

Θ[𝑡𝑖/𝑦]; Γ [𝑡𝑖/𝑦] ⊢ (𝑡 ∈𝑇 𝑢) [𝑡𝑖/𝑦] 𝑖 ∈ {1, 2}
Θ[𝜋𝑖 (⟨𝑡1, 𝑡2⟩)/𝑦]; Γ [𝜋𝑖 (⟨𝑡1, 𝑡2⟩)/𝑦] ⊢ (𝑡 ∈𝑇 𝑢) [𝜋𝑖 (⟨𝑡1, 𝑡2⟩)/𝑦]

×[
Θ[⟨𝑥1, 𝑥2⟩/𝑥]; Γ [⟨𝑥1, 𝑥2⟩/𝑥] ⊢ (𝑡 ∈𝑇 𝑢) [⟨𝑥1, 𝑥2⟩/𝑥] 𝑥1, 𝑥2 ∉ FV(Θ; Γ, 𝑡, 𝑢)

Θ; Γ ⊢ 𝑡 ∈𝑇 𝑢

Fig. 2. Our intuitionistic sequent calculus for proofs of implicit definability

We consider an input schema S𝐶𝐻 𝑖𝑛 with one input object o𝑖𝑛 and an output schema with one

output object o𝑜𝑢𝑡 . Using product objects, we can easily model any nested relational transformation

in this way. We deal with a Δ0 formula 𝜑 (o𝑖𝑛, o𝑜𝑢𝑡 , ®𝑎) with distinguished variables o𝑖𝑛, o𝑜𝑢𝑡 . Recall

from the introduction that such a formula implicitly defines o𝑜𝑢𝑡 as a function of o𝑖𝑛 if for each

nested relation o𝑖𝑛 there is at most one o𝑜𝑢𝑡 such that 𝜑 (o𝑖𝑛, o𝑜𝑢𝑡 , ®𝑎) holds for some ®𝑎. A formula

𝜑 (o𝑖𝑛, o𝑜𝑢𝑡 , ®𝑎) projectively implicitly defines a transformation T from o𝑖𝑛 to o𝑜𝑢𝑡 if for each o𝑖𝑛 ,

𝜑 (o𝑖𝑛, o𝑜𝑢𝑡 , ®𝑎) holds for some ®𝑎 if and only if T (o𝑖𝑛) = o𝑜𝑢𝑡 . We drop “projectively” if ®𝑎 is empty.

Example 4.1. Consider the transformation TGroup from Example 3.2. It has a simple implicit Δ0

definition as given in Example 1.1, which we can restate as follows. First, define the auxiliary

formula 𝜒 (𝑥, 𝑝, 𝑅) stating that 𝜋1 (𝑝) is 𝑥 and 𝜋2 (𝑝) is the set of 𝑦 such that ⟨𝑥,𝑦⟩ is in 𝑅 (the ”fiber

of 𝑅 above 𝑥”):

𝜒 (𝑥, 𝑝, 𝑅) := 𝜋1 (𝑝) = 𝑥 ∧ (∀𝑡 ′ ∈ 𝑅 [𝜋1 (𝑡 ′) = 𝑥 ⇒ 𝜋2 (𝑡 ′) ∈ 𝜋2 (𝑝)]) ∧ ∀𝑧 ∈ 𝜋2 (𝑝) ⟨𝑥, 𝑧⟩ ∈ 𝑅

Then 𝑇Group is implicitly defined by ∀𝑡 ∈ 𝑅 ∃𝑝 ∈ 𝑞 𝜒 (𝜋1 (𝑡), 𝑝, 𝑅)) ∧ ∀𝑝 ∈ 𝑞 𝜒 (𝜋1 (𝑝), 𝑝, 𝑅). ⊳

Restricted proof system. Our synthesis result requires a proof of functionality within a re-

stricted proof system. We present a special-purpose sequent calculus in Figure 2 deriving judgments
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wk

Θ; Γ ⊢ 𝜓
Θ; Γ, 𝜑 ⊢ 𝜓

ax

Θ; 𝜓 ⊢ 𝜓
∈-l

Θ, 𝑡 ∈𝑇 𝑢; Γ ⊢ 𝜓
Θ; Γ, 𝑡 ∈𝑇 𝑢 ⊢ 𝜓

⊆-l
Θ, 𝑡 ∈𝑇 𝑣 ; Γ ⊢ 𝜓

Θ, 𝑡 ∈𝑇 𝑢; Γ, 𝑢 ⊆𝑇 𝑣 ⊢ 𝜓

⇒-l

Θ; Γ, \ ⊢ 𝜓
Θ; Γ, 𝜑 ⇒ \, 𝜑 ⊢ 𝜓

=-r
Θ; Γ ⊢ 𝑡 =𝑇 𝑡

Fig. 3. Some typical admissible rules.

Θ; Γ ⊢ 𝜑 where Γ is a multi-set of Δ0 formulas, Θ a multi-set of membership formulas 𝑡 ∈ 𝑢, and 𝜑

is a Δ0 formula with one of the following shapes: 𝑡 ∈𝑇 𝑢, 𝑡 =𝑇 𝑢 or 𝑡 ⊆𝑇 𝑢. A multi-set of formulas

will also be called a context, and above we write 𝐶, 𝐶 ′
for the concatenation of contexts 𝐶 and 𝐶 ′

.

Informally, a judgment Θ; Γ ⊢ 𝜑 is meant to be read as “If all the containments in Θ and formulas

in Γ hold, then 𝜑 does”. In the figure, we use FV to denote the free variables of a context, and we

use 𝜑 [𝑡/𝑥] to denote the result of substituting 𝑡 for 𝑥 in 𝜑 .

The main essential restriction on the proof system is that it is intuitionistic. There is no way to

deduce Θ; Γ ⊢ 𝜑 from Θ; Γ, ¬𝜑 ⊢ ⊥ in general. Informally, this means that we forbid reasoning by

contradiction. In particular, this means that some sequents are classically valid but not derivable in

our calculus. For instance, consider 𝑤 ∈ 𝑟 ; ∀𝑥 ∈ 𝑙 𝑙 ∈ 𝑟, ∀𝑦 ∈ 𝑤 𝑙 ∈ 𝑟 ⊢ 𝑙 ∈ 𝑟 . This is seen to be

classically valid by considering separately the following three cases: 𝑙 non-empty,𝑤 non-empty

and 𝑙 = 𝑤 = ∅. However, it is also easy to check that this cannot be derived intuitionistically. The

other restrictions, such as the specific shape of formulas on the right-hand side for many rules, do

not limit the power of the system when it comes to functionality proofs, but allow us to prove our

main extraction result more easily.

It is straightforward to capture the informal reasoning used to argue for functionality in Example

1.1 within our proof system. We also note that many natural proof rules are admissible in our

system; they are conservative in terms of the set of proofs that they enable. We collect the most

useful cases in Figure 3. Showing that they are admissible is done by rather elementary inductions,

and it can be noted that eliminating those additional proof rules can be done in polynomial time in

the size of proof trees and the types of the involved formulas. This list is not meant to be exhaustive,

as it can be shown that the derivable sequents in our system are exactly those derivable in more

standard sequent calculus for multi-sorted intuitionistic logic that appear in the prior literature (see

e.g. [Jacobs 2001, Section 4.1]). We offer a detailed discussion of the correspondence between our

proof system and several previously known intuitionistic calculi in the supplementary materials.

A technicality is that in our presentation of the proof system there is a slight asymmetry between

how the set predicates =𝑇 , ⊆𝑇 and ∈𝑇 are treated on the left and on the right. The proof rules

decomposing formulas on the right, such as ⊆-R, are specialized to deal with the semantics of these

predicates. They are justified either based on extensionality – if one thinks of these predicates as

primitive – or by definition, if one thinks of these predicates as derived. On the other hand, on the left

side we require that all of our formulas in Γ are described in the basic grammar of Δ0 formulas, which

does not have these predicates as atomic.We do this only for convenience, to avoid having additional

proof rules capturing extensionality in decomposing formulas on the left. Provably implicit

definitions. By an intuitionistic proof that Σ(o𝑖𝑛, o𝑜𝑢𝑡 , ®𝑎) implicitly defines o𝑜𝑢𝑡 as a function of

o𝑖𝑛 we mean a formal derivation of a sequent Σ(o𝑖𝑛, o𝑜𝑢𝑡 , ®𝑎), Σ(o𝑖𝑛, o′𝑜𝑢𝑡 , ®𝑎′) ⊢ o𝑜𝑢𝑡 =𝑇 o
′
𝑜𝑢𝑡 in our

proof system.

We can now state our main result on effectively generating NRC expressions from proofs:
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ax (7)

𝑧 ∈ 𝑜, 𝑥 ∈ 𝑋, 𝑧 ∈ 𝑥 ; 𝑧 ∈ 𝑜 ′ ⊢ 𝑧 ∈ 𝑜 ′
⇒-L (6)

𝑧 ∈ 𝑜, 𝑥 ∈ 𝑋, 𝑧 ∈ 𝑥 ; 𝜒 (𝑋, 𝑥, 𝑧), 𝜒 (𝑋, 𝑥, 𝑧) ⇒ 𝑧 ∈ 𝑜 ′ ⊢ 𝑧 ∈ 𝑜 ′
∀-L (5)

𝑧 ∈ 𝑜, 𝑥 ∈ 𝑋, 𝑧 ∈ 𝑥 ; 𝜒 (𝑋, 𝑥, 𝑧), ∀𝑎 ∈ 𝑥 (𝜒 (𝑋, 𝑥, 𝑎) ⇒ 𝑎 ∈ 𝑜 ′) ⊢ 𝑧 ∈ 𝑜 ′
=-subst

𝑧 ∈ 𝑜, 𝑥 ∈ 𝑋, 𝑧 ′ ∈ 𝑥 ; 𝑧 =U 𝑧 ′, 𝜒 (𝑋, 𝑥, 𝑧), ∀𝑎 ∈ 𝑥 (𝜒 (𝑋, 𝑥, 𝑎) ⇒ 𝑎 ∈ 𝑜 ′) ⊢ 𝑧 ∈ 𝑜 ′
∃-L

𝑧 ∈ 𝑜, 𝑥 ∈ 𝑋 ; 𝑧 ∈ 𝑥, 𝜒 (𝑋, 𝑥, 𝑧), ∀𝑎 ∈ 𝑥 (𝜒 (𝑋, 𝑥, 𝑎) ⇒ 𝑎 ∈ 𝑜 ′) ⊢ 𝑧 ∈ 𝑜 ′
∧-L

𝑧 ∈ 𝑜, 𝑥 ∈ 𝑋 ; 𝜓 (𝑋, 𝑥, 𝑧), ∀𝑎 ∈ 𝑥 (𝜒 (𝑋, 𝑥, 𝑎) ⇒ 𝑎 ∈ 𝑜 ′) ⊢ 𝑧 ∈ 𝑜 ′
∀-L (4)

𝑧 ∈ 𝑜, 𝑥 ∈ 𝑋 ; 𝜓 (𝑋, 𝑥, 𝑧), ∀𝑦 ∈ 𝑋 ∀𝑎 ∈ 𝑦 (𝜒 (𝑋,𝑦, 𝑎) ⇒ 𝑎 ∈ 𝑜 ′) ⊢ 𝑧 ∈ 𝑜 ′
∧-L

𝑧 ∈ 𝑜, 𝑥 ∈ 𝑋 ; 𝜓 (𝑋, 𝑥, 𝑧), Σ(𝑋, 𝑜 ′) ⊢ 𝑧 ∈ 𝑜 ′
∃-L (3)

𝑧 ∈ 𝑜 ; ∃𝑥 ∈ 𝑋 𝜓 (𝑋, 𝑥, 𝑧), Σ(𝑋, 𝑜 ′) ⊢ 𝑧 ∈ 𝑜 ′
∀-L

𝑧 ∈ 𝑜 ; ∀𝑎 ∈ 𝑜 ∃𝑥 ∈ 𝑋 𝜓 (𝑋, 𝑥, 𝑎), Σ(𝑋, 𝑜 ′) ⊢ 𝑧 ∈ 𝑜 ′
∧-L

𝑧 ∈ 𝑜 ; Σ(𝑋, 𝑜), Σ(𝑋, 𝑜 ′) ⊢ 𝑧 ∈ 𝑜 ′
⊆-R (2)

· ; Σ(𝑋, 𝑜), Σ(𝑋, 𝑜 ′) ⊢ 𝑜 ⊆ 𝑜 ′
=Set-R (1)

· ; Σ(𝑋, 𝑜), Σ(𝑋, 𝑜 ′) ⊢ 𝑜 = 𝑜 ′

Fig. 4. Formal proof tree of functionality for Example 4.3. Admissible rules are denoted with dashed lines

and some instances of the admissible weakening rule (wk) are omitted for legibility. Formulas and variables

specific to the left and right-hand side are respectively colored in red and blue.

Theorem 4.2. There is a PTIME procedure which takes as input an intuitionistic proof that

Σ(o𝑖𝑛, o𝑜𝑢𝑡 , ®𝑎) defines o𝑜𝑢𝑡 as a function of o𝑖𝑛 , and returns an NRC expression 𝐸 such that whenever

Σ(o𝑖𝑛, o𝑜𝑢𝑡 , ®𝑎) holds, then 𝐸 (o𝑖𝑛) = o𝑜𝑢𝑡 .

Let us provide a detailed example to illustrate Theorem 4.2.

Example 4.3. Given a set of sets of Ur-elements 𝑋 ∈ Set(Set(U)), say that an Ur-element 𝑎

distinguishes a set 𝑥 ∈ 𝑋 if 𝑥 is the unique element of 𝑋 containing 𝑎. Consider the transformation

taking as input such an 𝑋 and returning the set of Ur-elements that distinguish some element

of 𝑋 . This is implicitly definable by a Δ0 formula Σ(𝑋, 𝑜) stating that every 𝑎 in 𝑜 distinguishes

some element of 𝑋 and conversely. Writing this in our restricted syntax for Δ0 formulas, in which

membership of higher-order objects must be expressed using bounded quantification and equality,

we obtain an implicit definition

Σ(𝑋, 𝑜) := (∀𝑎 ∈ 𝑜 ∃𝑥 ∈ 𝑋 𝜓 (𝑋, 𝑥, 𝑎)) ∧ (∀𝑥 ∈ 𝑋 ∀𝑎 ∈ 𝑥 [𝜒 (𝑋, 𝑥, 𝑎) ⇒ 𝑎 ∈U 𝑜]) where

𝜒 (𝑋, 𝑥, 𝑎) := ∀𝑦 ∈ 𝑋
(
𝑎 ∈U 𝑦 ⇒ 𝑥 =Set(U) 𝑦

)
and 𝜓 (𝑋, 𝑥, 𝑎) := 𝑎 ∈U 𝑥 ∧ 𝜒 (𝑋, 𝑥, 𝑎)

Note that when 𝑎 ∈U 𝑥 , 𝑥 =Set(U) 𝑦, and 𝑎 ∈U 𝑜 occur on the left side of a sequent, they should be

thought of as abbreviations for more complex formulas built up through bounded quantification.

Similarly ⇒ is a derived connective, built up from the Boolean operations allowed in Δ0 formulas

in the obvious way. ⊳

Figure 4 contains a formal derivation of functionality for Σ(𝑋, 𝑜). We may render this proof

informally as follows (putting references to proof steps in Figure 4 in parentheses).

Proof of functionality of Example 4.3. Assume Σ(𝑋, 𝑜) and Σ(𝑋, 𝑜 ′). To show 𝑜 = 𝑜 ′, we
need to show that 𝑜 ⊆ 𝑜 ′ and 𝑜 ′ ⊆ 𝑜 . Since the roles of 𝑜 and 𝑜 ′ are symmetric, without loss of

generality, it suffices to give the proof that 𝑜 ⊆ 𝑜 ′ (1). So fix 𝑧 ∈ 𝑜 (2). Since Σ(𝑋, 𝑜) holds, according
to its first conjunct, we have in particular that there exists some 𝑥 ∈ 𝑋 such that𝜓 (𝑋, 𝑥, 𝑧) holds
(3). Because Σ(𝑋, 𝑜 ′) holds and 𝑥 ∈ 𝑋 , the second conjunct tells us that for every 𝑎 ∈ 𝑥 , we have
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𝜒 (𝑋, 𝑥, 𝑎) ⇒ 𝑎 ∈ 𝑜 ′ (4). Recall that𝜓 (𝑋, 𝑥, 𝑧) is the conjunction of 𝑧 ∈ 𝑥 and 𝜒 (𝑋, 𝑥, 𝑧), so that we

may deduce that 𝜒 (𝑋, 𝑥, 𝑧) ⇒ 𝑧 ∈ 𝑜 ′ (6) and thus 𝑧 ∈ 𝑜 ′ (7). □

As per Theorem 4.2, the transformation defined in Example 4.3 is NRC-definable as⋃ {
case(Verify\ (𝑋, 𝑎), {𝑎}, ∅) | 𝑎 ∈

⋃
𝑋

}
with \ (𝑋, 𝑎) = ∃𝑥 ∈ 𝑋 𝜓 (𝑋, 𝑥, 𝑎)

where Verify is the filtering function given by Proposition 3.3.

We emphasize that our results apply to proofs of functionality over any subsignature of the

input. In particular they apply to synthesize inverses of transformations, a problem of considerable

interest in several communities [Hu and D’Antoni 2017; Srivastava et al. 2011]:

Example 4.4. Return to the setting of Example 1.1, and suppose that we are interested in the

transformation over an input object 𝐺 of type Set(U × Set(U)) which simply “flattens” 𝐺 . We

write this explicitly in NRC, as we did in Example 3.2:

𝐸 =
⋃ {⋃

{{⟨𝜋1 (𝑔), 𝑡⟩} | 𝑡 ∈ 𝜋2 (𝑔)} | 𝑔 ∈ 𝐺

}
From 𝐸 we can automatically generate a Δ0 formula such as Σ from Example 1.1, stating that 𝐹

is the output of 𝐺 under 𝐸. Indeed, this is true for any NRC transformation: one just encodes the

semantics of NRC in logic.

This transformation is invertible, as mentioned in Example 1.1, and we can prove its invertibility

in our calculus. Our synthesis algorithm will generate from this proof an expression in NRC that

represents the inverse, namely an expression that groups 𝐹 to form 𝐺 . ⊳

Example 4.5. Another application are for the synthesis result of Theorem 4.2 is to rewrite trans-

formations using cached results, a variation on the idea of “rewriting with views” in relational

databases [Afrati and Chirkova 2019; Halevy 2001; Lenzerini 2002; Nash et al. 2010; Toman and

Weddell 2011].

Consider a sequence where assigns to variable 𝐽 of type Set(U ×U) the intersection of 𝐴 and

𝐵, and later assigns to variable 𝑆 of type Set(U) the set of elements that have a self-loop in both 𝐴

and 𝐵.

𝐽 := 𝐴∩𝐵; . . . ; 𝑆 :=
⋃ {⋃

{case(𝜋1 (𝑎) = 𝜋2 (𝑎) = 𝜋1 (𝑏) = 𝜋2 (𝑏), {𝜋1 (𝑎)}, ∅) | 𝑎 ∈ 𝐴} | 𝑏 ∈ 𝐵

}
; . . .

One can easily see that 𝑆 is a function of 𝐽 . And from a proof of functionality, our method produces

a rewriting of the assignment producing 𝑆 , using an NRC expression that makes use of 𝐽 . An

example of such a rewriting is

𝑆 :=
⋃

{case(𝜋1 ( 𝑗) = 𝜋2 ( 𝑗), {𝜋1 ( 𝑗)}, ∅) | 𝑗 ∈ 𝐽 }

Such a rewriting of 𝑆 using the cached value of 𝐽 may be much more efficient than recomputing 𝑆

from scratch. ⊳

We now turn to explaining the ingredients that underlie the procedure of Theorem 4.2.

Interpolation for Δ0 formulas. Often a key ingredient in moving from implicit to explicit

definition is an interpolation theorem, stating that for each entailment between formulas 𝜑𝐿 and 𝜑𝑅
there is an intermediate formula (an interpolant for the entailment), which is entailed by 𝜑𝐿 and

entails 𝜑𝑅 while using only symbols common to 𝜑𝐿 and 𝜑𝑅 . We can show using a standard inductive

approach to interpolation (e.g. [Fitting 1996]) that our calculus admits efficient interpolation.
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Proposition 4.6. Let Θ𝐿 , Θ𝑅 , Γ𝐿 and Γ𝑅 be contexts and𝜓 a formula and call 𝐶 = FV(Θ𝐿, Γ𝐿) ∩
FV(\𝑅, Γ𝑅) the set of common free variables. For every derivation Θ𝐿, Θ𝑅 ; Γ𝐿, Γ𝑅 ⊢ 𝜓 there exists a

Δ0 formula \ with FV(\ ) ⊆ 𝐶 such that the following holds

Θ𝐿 ; Γ𝐿 |= \ and Θ𝑅 ; Γ𝑅, \ |= 𝜓

Further the interpolant \ can be found in polynomial time from the derivation.

The interpolation result above should be thought of as giving us the result we want for trans-

formations of Boolean type. From it we can derive that a formula whose truth value is implicitly

defined by a set of input variables must be given as a Δ0 formula over those inputs. By Proposition

3.3, these formulas can be converted to NRC.

The higher-type interpolation lemma. Our main result is deduced from a more general

interpolation result, which says that whenever a binary relationship between variables, such as

the containment relationship 𝑡 ⊆𝑇 𝑢, is provable from a theory that is partitioned into left and

right formulas, and the variables 𝑡 and 𝑢 appear exclusively in distinct sides of the partition, then

there is an interpolating expression in NRC[Get], taking as input the variables common to the left

and right partitions. For an equality relationship between variables, the synthesized expression

will take as input the common variables on the left and right and select an object that is equal

to the variables participating in the equality. For membership relationships 𝑡 ∈ 𝑢, our algorithm

derives a bounding expression 𝐸 taking inputs in the common signature such that 𝑡 ∈ 𝐸; this could

be strengthened to 𝑡 ∈ 𝐸 ⊆ 𝑢. The result bears some similarity with other extraction procedures

that produce a program from a proof, such as those based on the Curry-Howard correspondence.

However, it is formally much closer to the kind of interpolation theorem from logic mentioned

earlier in connection to Proposition 4.6. In the past, interpolation results have been applied to

extract program invariants [Hoder et al. 2010; McMillan 2003]; here we are proving and applying

interpolation results to produce a different kind of program artifact.

Lemma 4.7. [Higher-type Interpolation Lemma] Let Θ = Θ𝐿,Θ𝑅 be a ∈-context and Γ = Γ𝐿, Γ𝑅
a context. Suppose that 𝑡 and 𝑢 are terms of suitable types such that FV(𝑡) ⊆ FV(Θ𝐿, Γ𝐿) and
FV(𝑢) ⊆ FV(Θ𝑅, Γ𝑅) and call 𝐶 = FV(Θ𝐿, Γ𝐿) ∩ FV(Θ𝑅, Γ𝑅) the set of common free variables. Then

we have:

• If Θ; Γ ⊢ 𝑡 =𝑇 𝑢 is derivable, there is an NRC[Get] expression 𝐸 of type 𝑇 such that

Θ; Γ |= 𝑡 = 𝐸 = 𝑢 and FV(𝐸) ⊆ 𝐶

• If Θ; Γ ⊢ 𝑡 ⊆𝑇 𝑢 is derivable, there is an NRC[Get] expression 𝐸 of type Set(𝑇 ) such that

Θ; Γ |= 𝑡 ⊆ 𝐸 ⊆ 𝑢 and FV(𝐸) ⊆ 𝐶

• If Θ; Γ ⊢ 𝑡 ∈𝑇 𝑢 is derivable, then there is an NRC[Get] expression 𝐸 of type Set(𝑇 ) such that

Θ; Γ |= 𝑡 ∈ 𝐸 and FV(𝐸) ⊆ 𝐶

Further the desired expressions can be constructed in time polynomial in the proof.

Proof of Theorem 4.2. A proof that Σ(o𝑖𝑛, o𝑜𝑢𝑡 , ®𝑎) defines o𝑜𝑢𝑡 as a function of o𝑖𝑛 is exactly

a proof that Σ(o𝑖𝑛, o𝑜𝑢𝑡 , ®𝑎) , Σ(o𝑖𝑛, o′𝑜𝑢𝑡 , ®𝑎′) ⊢ o𝑜𝑢𝑡 =𝑇 o
′
𝑜𝑢𝑡 where o

′
𝑜𝑢𝑡 and ®𝑎′ are new variables.

Applying Lemma 4.7withΘ empty, Γ𝐿 = Σ(o𝑖𝑛, o𝑜𝑢𝑡 , ®𝑎), and Γ𝑅 = Σ(o𝑖𝑛, o′𝑜𝑢𝑡 , ®𝑎′) yields anNRC[Get]
expression 𝐸 (o𝑖𝑛) such that Σ(o𝑖𝑛, o𝑜𝑢𝑡 , ®𝑎), Σ(o𝑖𝑛, o′𝑜𝑢𝑡 , ®𝑎′) |= o𝑜𝑢𝑡 = 𝐸 (o𝑖𝑛) = o

′
𝑜𝑢𝑡 . Hence we have

Σ(o𝑖𝑛, o𝑜𝑢𝑡 , ®𝑎) |= o𝑜𝑢𝑡 = 𝐸 (o𝑖𝑛) and the proof of Theorem 4.2 is complete. □

Lemma 4.7 is proven by induction on the derivation, which requires examining every proof rule

in Figure 2. The more interesting cases are the left-hand side rules for first-order connectives (∧-L,
∨-L, ∀-L and ∃-L) and the rules for the right-hand side formulas ∈Set-R and =U-R. Regarding the
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left-hand side rules, since the right-hand side formula of both the premise and conclusion is of

the shape 𝑡 ∈𝑇 𝑢, the inductive invariant requires us to output an NRC expression bounding the

term 𝑡 . To prove the inductive step, we use the binary union operator 𝐸1 ∪ 𝐸2 of NRC for the rule

∨-L and the big union operator

⋃{𝐸 | 𝑥 ∈ 𝑦} for the rule ∃-L. On the other hand, the inductive

steps for the rules ∧-L and ∀-L do not require modifying the expression obtained as part of the

induction hypothesis. To treat the inductive steps corresponding to the rules ⊆-R and =U-R, we

use a combination of the usual “Boolean” interpolation (Proposition 4.6) and the conversion of Δ0

formulas to expressions of Boolean type in NRC (Proposition 3.3).

Example 4.8. Let us illustrate the algorithm provided by Lemma 4.7 on the proof tree in Figure 4 by

providing the corresponding intermediate NRC expressions that are synthesized, starting from top

to bottom: from step (7) to (5), the NRC expression is the singleton {𝑧 ′}. After the conclusion of

the subsequent ∃-L rule, the expression becomes⋃
{{𝑧 ′} | 𝑧 ′ ∈ 𝑥}

which is semantically equivalent to 𝑥 . After the next ∃-L rule at step (3), we obtain⋃ {⋃
{{𝑧 ′} | 𝑧 ′ ∈ 𝑥} | 𝑥 ∈ 𝑋

}
which is equivalent to the union

⋃
𝑋 . The final expression is then obtained right after step (2), by

first computing an interpolant \ (𝑋, 𝑧) such that 𝑧 ∈ 𝑜 ∧𝜑 (𝑋, 𝑜) |= \ (𝑋, 𝑧) and \ (𝑋, 𝑧) ∧𝜑 (𝑋, 𝑜 ′) |=
𝑧 ∈ 𝑜 ′. Computing according to the procedure underlying Proposition 4.6 yields \ (𝑋, 𝑎) = ∃𝑥 ∈
𝑋 𝜓 (𝑋, 𝑥, 𝑎) and the final NRC expression⋃ {

case(Verify\ (𝑋, 𝑎), {𝑎}, ∅) | 𝑎 ∈
⋃ {⋃

{{𝑧 ′} | 𝑧 ′ ∈ 𝑥} | 𝑥 ∈ 𝑋

}}
⊳

We now detail two cases of the inductive argument required to prove Lemma 4.7, the other cases

being relegated to the supplementary materials. We also omit the routine complexity analysis of

the underlying algorithm.

Rule ∀-L: Assume that the last proof rule used introduces a universal quantifier on the left.

∀-L
Θ, 𝑤 ∈𝑇 𝑦; Γ, 𝜑 [𝑤/𝑥] ⊢ 𝑡 ∈𝑇 ′

Θ, 𝑤 ∈𝑇 𝑦; Γ, ∀𝑥 ∈𝑇 𝑦 𝜑 ⊢ 𝑡 ∈𝑇 ′ 𝑣

To simplify matters, assume that 𝑤 is a variable. We apply the induction hypothesis to obtain a

NRC expression, say 𝐸 ′
with FV(𝐸 ′) ⊆ {𝑤} ∪ 𝐶 , by splitting the Θ, 𝑤 ∈𝑇 𝑦; Γ, 𝜑 [𝑤/𝑥] in the

obvious way (e.g., if ∀𝑥 ∈𝑇 𝑦 𝜑 was on the left context in the conclusion, we make 𝜑 [𝑤/𝑥] part of
the left context in the premise). If𝑤 ∉ FV(𝐸 ′), then it also satisfies the invariant in the conclusion.

Otherwise, it must be the case that 𝑦 ∈ 𝐶 . Hence, we may show that the invariant is satisfied by

𝐸 =
⋃

{𝐸 ′ | 𝑤 ∈ 𝑦}
Rule ⊆-R: If the last proof rule used introduces an inclusion on the right

⊆-R
Θ, 𝑧 ∈𝑇 𝑡 ; Γ ⊢ 𝑧 ∈𝑇 𝑢 𝑧 ∉ FV(Θ, Γ, 𝑡, 𝑢)

Θ; Γ ⊢ 𝑡 ⊆𝑇 𝑢

then the inductive hypothesis gives us an expression 𝐸 ′
such that Θ, 𝑧 ∈𝑇 𝑡 ; Γ |= 𝑧 ∈𝑇 𝐸 ′

and

FV(𝐸 ′) ⊆ 𝐶 . Apply interpolation to the premise so as to obtain a Δ0 formula \ with FV(\ ) ⊆ {𝑧}∪𝐶
such that Θ𝐿 ; Γ𝐿, 𝑧 ∈𝑇 𝑡 |= \ and Θ𝑅 ; Γ𝑅, \ |= 𝑧 ∈𝑇 𝑢. In this case, we take 𝐸 = {𝑧 ∈ 𝐸 ′ | \ }, which
is NRC[Get]-definable as ⋃

{case(Verify\ , {𝑧}, ∅) | 𝑧 ∈ 𝐸 ′}
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Now, let us assume that Γ holds and show that 𝑡 ⊆ 𝐸 and 𝐸 ⊆ 𝑢.

• Suppose that 𝑧 ∈ 𝑡 . By the induction hypothesis, we know that 𝑧 ∈ 𝐸 ′
. But we also know that

Γ𝐿 is satisfied, so that \ holds. By definition, we thus have 𝑧 ∈ 𝐸.

• Now suppose that 𝑧 ∈ 𝐸, that is, that 𝑧 ∈ 𝐸 ′
and \ holds. The latter directly implies that 𝑧 ∈ 𝑢

since Γ𝑅 holds.

5 INTERPRETATIONS AND NESTED RELATIONS
We will be interested in extending our synthesis result to classical proofs. But first we give another

characterization of NRC, an equivalence with transformations defined by interpretations.

We first review the notion of an interpretation, which has become a common way of defining

transformations using logical expressions [Bojanczyk et al. 2018; Colcombet and Löding 2007]. Let

S𝐶𝐻 𝑖𝑛 and S𝐶𝐻𝑜𝑢𝑡 be multi-sorted vocabularies. A first-order interpretation with input signature

S𝐶𝐻 𝑖𝑛 and output signature S𝐶𝐻𝑜𝑢𝑡 consists of:

• for each output sort S
′
, a sequence of input sorts 𝜏 (S′) = ®S,

• a formula 𝜑S
′

≡ ( ®𝑥1, ®𝑥2) for each output sort S
′
in S𝐶𝐻𝑜𝑢𝑡 (where both tuples of variables ®𝑥1

and ®𝑥2 have types 𝜏 (S′)),
• a formula 𝜑S

′

Domain
( ®𝑥1) for each output sort S

′
in S𝐶𝐻𝑜𝑢𝑡 (the variables ®𝑥1 have types 𝜏 (S′)),

• a formula 𝜑𝑅 ( ®𝑥1, . . . ®𝑥𝑛) for every relation 𝑅 of arity 𝑛 in S𝐶𝐻𝑜𝑢𝑡 (where the variables ®𝑥𝑖 have
types 𝜏 (S′𝑖 ), provided the 𝑖-th argument of 𝑅 has sort S

′
𝑖 ),

• for every function symbol 𝑓 (𝑥1, . . . , 𝑥𝑘 ) of S𝐶𝐻𝑜𝑢𝑡 with output sort S
′
and input 𝑥𝑖 of sort

S𝑖 , a sequence of terms 𝑓
1
( ®𝑥1, . . . , ®𝑥𝑘 ), . . . , 𝑓𝑚 ( ®𝑥1, . . . , ®𝑥𝑘 ) with sorts 𝜏 (S𝑜𝑢𝑡 ) and ®𝑥𝑖 of sorts

𝜏 (S𝑖 ).
subject to the following constraints:

• 𝜑S

≡ ( ®𝑥, ®𝑦) should define a partial equivalence relation, i.e. be symmetric and transitive,

• 𝜑S

Domain
( ®𝑥) should be equivalent to 𝜑S

≡ ( ®𝑥, ®𝑥),
• 𝜑𝑅 ( ®𝑥1, . . . , ®𝑥𝑛) and 𝜑

S𝑖
≡ ( ®𝑥𝑖 , ®𝑦𝑖 ) for 1 ≤ 𝑖 ≤ 𝑛, where S𝑖 is the output sort associated with

position 𝑖 of the relation 𝑅, should jointly imply 𝜑𝑅 ( ®𝑦1, . . . , ®𝑦𝑛).
• the formulas 𝜑S

≡ should be congruent with the interpretation of terms: for every output

function symbol 𝑓 (𝑥1, . . . , 𝑥𝑘 ) represented by terms 𝑓
1
( ®𝑥1, . . . , ®𝑥𝑘 ), . . . , 𝑓𝑚 ( ®𝑥1, . . . , ®𝑥𝑘 ), writing

®𝑥 for the concatenation of ®𝑥1, . . . , ®𝑥𝑘 , and ®𝑦 for the concatenation of ®𝑦1, . . . , ®𝑦𝑘 , we enforce

∀ ®𝑥 ®𝑦
(

𝑘∧
𝑖=1

𝜑
S𝑖
≡ ( ®𝑥𝑖 , ®𝑦𝑖 ) =⇒ 𝜑S

′
≡

(
𝑓
1
( ®𝑥), . . . , 𝑓𝑚 ( ®𝑥), 𝑓

1
( ®𝑦), . . . , 𝑓𝑚 ( ®𝑦)

))
where S

′
is the sort of the output of 𝑓 and the S𝑖 correspond to the arities.

In 𝜑S

≡ and 𝜑S

Domain
, each ®𝑥1, ®𝑥2 is a tuple containing variables of sorts agreeing with the prescribed

sequence of input sorts for S
′
. Given a structure𝑀 for the input sorts and a sort S we call a binding

of these variables to input elements of the appropriate input sorts an𝑀, S input match. If in output

relation 𝑅 position 𝑖 is of sort S𝑖 , then in 𝜑𝑅 (®𝑡1, . . . ®𝑡𝑛) we require ®𝑡𝑖 to be a tuple of variables of sorts
agreeing with the prescribed sequence of input sorts for S𝑖 . Each of the above formulas is over

the vocabulary of S𝐶𝐻 𝑖𝑛 . An interpretation I defines a function from structures over vocabulary

S𝐶𝐻 𝑖𝑛 to structures over vocabulary S𝐶𝐻𝑜𝑢𝑡 as follows:

• The domain of sort S
′
is the set of equivalence classes of the partial equivalence relation

defined by 𝜑S
′

≡ over the𝑀, S′ input matches.

• A relation 𝑅 in the output schema is interpreted by the set of those tuples ®𝑎 such that

𝜑𝑅 (®𝑡1, . . . ®𝑡𝑛) holds for some ®𝑡1 . . . ®𝑡𝑛 with each ®𝑡𝑖 a representative of 𝑎𝑖 .
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An interpretation I also defines a map 𝜑 ↦→ 𝜑∗
from formulas over S𝐶𝐻𝑜𝑢𝑡 to formulas over

S𝐶𝐻 𝑖𝑛 in the obvious way. This map commutes with all logical connectives and thus preserves

logical consequence.

In the sequel, we are concerned with interpretations preserving certain theories consisting of

sentences in first-order logic. Recall that a theory in first-order logic is just a set of sentences. Given

a theory Σ over S𝐶𝐻 𝑖𝑛 and a theory Σ′
over S𝐶𝐻𝑜𝑢𝑡 , we say that I is an interpretation of Σ′

within Σ if I is an interpretation such that for every theorem 𝜑 of Σ′
, 𝜑∗

is a theorem of Σ. Since
𝜑 ↦→ 𝜑∗

preserves logical consequence, if Σ′
is generated by a set of axioms 𝐴, it suffices to check

that Σ proves 𝜑∗
for 𝜑 ∈ 𝐴.

Finally, we are also interested in interpretations restricting to the identity on part of the input.

Suppose that S𝐶𝐻𝑜𝑢𝑡 and S𝐶𝐻 𝑖𝑛 share a sort S. An interpretation I of S𝐶𝐻𝑜𝑢𝑡 within S𝐶𝐻 𝑖𝑛 is

said to preserve S if the output sort associated to S is S itself and the induced map of structures is

the identity over S. Up to equivalence, that means we fix 𝜑𝑇
Domain

(𝑥) to be, up to equivalence, ⊤,
𝜑S

≡ (𝑥,𝑦) to be the equality 𝑥 = 𝑦 and map constants of type S to themselves.

Interpretations defining nested relational transformations.We now consider how to de-

fine nested relational transformations via interpretations. The main idea will be to restrict all the

constituent formulas to be Δ0 and to relativize the notion of interpretation to a background theory

that corresponds to our sanity axioms about tupling and sets.

We define the notion of component types of a type 𝑇 inductively as follows.

• 𝑇 is a component type of Set(𝑇 ′) if 𝑇 = Set(𝑇 ′) or if it is a component type of 𝑇 ′
.

• 𝑇 is a component type of 𝑇1 ×𝑇2 if 𝑇 = 𝑇1 ×𝑇2 or if it is a component type of either 𝑇1 or 𝑇2.

• The only component types ofU and Unit are themselves.

Note in particular that if we have a complex object of sort 𝑇 , the possible sorts over its subobjects

are exactly the component types of 𝑇 .

For every type 𝑇 , we build a multi-sorted vocabulary S𝐶𝐻𝑇 as follows.

• The sorts are all component types of 𝑇 , Unit and Bool = Set(Unit).
• The function symbols are the projections, tupling, the unique element of type Unit, the

constants ff,tt of sort Bool representing ∅, {()} and a special constant o of sort 𝑇 .

• The relation symbols are the equalities at every sort and the membership predicates ∈𝑇 .
Let 𝑇obj be a type which will represent the type of a complex object obj. We build a theory Σ(𝑇obj)
on top of S𝐶𝐻𝑇obj from the following axioms:

• Equality should satisfy the congruence axioms for every formula 𝜑

∀𝑥𝑦 (𝑥 = 𝑦 ∧ 𝜑 ⇒ 𝜑 [𝑦/𝑥])
Note that it is sufficient to require this for atomic formulas to infer it for all formulas.

• We require that projection and tupling obey the usual laws for every type of S𝐶𝐻𝑇obj .

∀𝑥𝑇1 𝑦𝑇2 𝜋1 (⟨𝑥,𝑦⟩) = 𝑥 ∀𝑥𝑇1 𝑦𝑇2 𝜋2 (⟨𝑥,𝑦⟩) = 𝑦 ∀𝑥𝑇1×𝑇2 ⟨𝜋1 (𝑥), 𝜋2 (𝑥)⟩ = 𝑥

• We require that Unit be a singleton and every Set(𝑇 ) in S𝐶𝐻𝑇obj

∀𝑥Unit () = 𝑥

• Lastly our theory imposes set extensionality

∀𝑥Set(𝑇 ) 𝑦Set(𝑇 )
(
[∀𝑧𝑇 (𝑧 ∈𝑇 𝑥 ⇔ 𝑧 ∈𝑇 𝑦)] ⇒ 𝑥 =𝑇 𝑦

)
Note that in interpretations we associate the input to a structure that includes a distinguished

constant. For example, an input of type Set(U) will be coded by a structure with an element relation,

an Ur-element sort, and a constant whose sort is the type Set(U). In other contexts, like NRC

expressions and implicit definitions of transformations, we considered inputs to be free variables.
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This is only a change in terminology, but it reflects the fact that in evaluating the interpretation on

any input 𝑖0 we will keep the interpretation of the associated constant fixed, while we need to look

at multiple bindings of the variables in each formula in order to form the output structure.

We will show that NRC[Get] expressions defining transformations from a nested relation of

type 𝑇1 to a nested relation of type 𝑇2 correspond to a subset of interpretations of Σ(𝑇2) within
Σ(𝑇1) that preserveU. The only additional restriction we impose is that all formulas 𝜑𝑇

Domain
and

𝜑𝑇≡ in the definition of such an interpretation must be Δ0. This forbids, for instance, universal

quantification over the whole set of Ur-elements. We thus call a first-order interpretation of Σ(𝑇2)
within Σ(𝑇1) consisting of Δ0 formulas a Δ0 interpretation of Σ(𝑇2) within Σ(𝑇1).

We now describe what it means for such an interpretation to define a transformation from an

instance of one nested relational schema to another; that is, to map one object to another. We will

denote the distinguished constant lying in the input sort by o𝑖𝑛 and the distinguished constant in

the output sort by o𝑜𝑢𝑡 . Given any object 𝑜 of type 𝑇 , define𝑀𝑜 as the least structure such that

• every subobjects of 𝑜 is part of𝑀𝑜

• when 𝑇1 ×𝑇2 is a component type of 𝑇 and 𝑎1, 𝑎2 are objects of sort 𝑇1,𝑇2 of𝑀𝑜 , then ⟨𝑎1, 𝑎2⟩
is an object of𝑀𝑜

• a copy of ∅ is part of𝑀𝑜 for every sort Set(𝑇 ) in S𝐶𝐻𝑇

• () and {()} are in𝑀𝑜 at sorts Unit and Bool.

The map 𝑜 ↦→ 𝑀𝑜 shows how to translate an object to a logical structure that is appropriate as

the input of an interpretation. Note that 𝑀𝑜 satisfies Σ(𝑇 ) and that every sort has at least one

element in𝑀𝑜 and that there is one sort, Bool, which contains two elements; these technicality are

important to ensure that interpretation be expressive enough.

We now discuss how the output of an interpretation is mapped back to an object. The output

of an interpretation is a multi-sorted structure with a distinguished constant o𝑜𝑢𝑡 encoding the

output nested relational schema, but it is not technically a nested relational instance as required by

our semantics for nested relational transformations. For example, an element of𝑀Set(U) is not a
set of Ur-elements, but simply a value connected to Ur-elements by a membership relation. We

can convert the output to a semantically appropriate entity via a modification of the well-known

Mostowski collapse [Mostowski 1949]. We define Collapse(𝑒,𝑀) on elements 𝑒 of the domain of a

structure𝑀 for the multi-sorted encoding of a schema, by structural induction on the type of 𝑒:

• If 𝑒 has sort 𝑇1 ×𝑇2 then we set Collapse(𝑒,𝑀) = ⟨Collapse(𝜋1 (𝑒), 𝑀),Collapse(𝜋2 (𝑒), 𝑀)⟩
• If 𝑒 has sort Set(𝑇 ), then we set Collapse(𝑒,𝑀) = {Collapse(𝑡, 𝑀) | 𝑡 ∈ 𝑒}
• Otherwise, if 𝑒 has sort Unit or U, we set Collapse(𝑒,𝑀) = 𝑒

We now formally describe how Δ0 interpretations define functions between objects in the nested

relational data model.

Definition 5.1. We say that a nested relational transformation T from 𝑇1 to 𝑇2 is defined by a Δ0

interpretation I if, for every object o𝑖𝑛 of type𝑇1, the structure𝑀 associated with o𝑖𝑛 is mapped to

𝑀 ′
where T (o𝑖𝑛) is equal to Collapse(o𝑜𝑢𝑡 , 𝑀 ′).

We will often identify a Δ0 interpretation with the corresponding transformation, speaking of

its input and output as a nested relation (rather than the corresponding structure). For such an

interpretation I and an input object o𝑖𝑛 we write I(o𝑖𝑛) for the output of the transformation

defined by I on o𝑖𝑛 .

Example 5.2. Consider an input schema consisting of a single binary relation 𝑅 : Set(U × Set(U)),
so an input object is a set of pairs, with each pair consisting of an Ur-element and a set of Ur-

elements. The corresponding theory is Σ(Set(U × Set(U))), which has sorts Set(U × Set(U)),
U × Set(U), Set(U) and U and relation symbols ∈U and ∈U×Set(U) and one equality symbol for
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each above sort. If we consider the following instance of the nested relational schema

𝑅0 = {⟨𝑎, {𝑎, 𝑏}⟩, ⟨𝑎, {𝑎, 𝑐}⟩, ⟨𝑏, {𝑎, 𝑐}⟩}
Then the corresponding encoded structure𝑀 consists of:

• 𝑀Set(U×Set(U))
containing only the constant 𝑅0

• 𝑀U×Set(U)
consisting of the elements of 𝑅0,

• 𝑀U
consisting of {𝑎, 𝑏, 𝑐}

• 𝑀Set(U)
consisting of the sets {𝑎, 𝑏}, {𝑎, 𝑐},

• 𝑀Unit = {()} and𝑀Bool = {∅, {()}}
• the element relations interpreted in the natural way

Consider the transformation that groups on the first component, returning an output object of

type Set(U × Set(Set(U))). This is a variation of the grouping transformation from Example 1.2

and Example 3.2. On the example input 𝑅0 the transformation would return

{⟨𝑎, {{𝑎, 𝑏}, {𝑎, 𝑐}}⟩, ⟨𝑏, {{𝑎, 𝑐}}⟩}
The output would be represented by a structure having sorts

Set(U×Set(Set(U))),U×Set(Set(U)),U, Set(Set(U)) and Set(U) in addition toUnit and Bool.

It is easy to capture this transformation with a Δ0 interpretation. For example, the interpretation

could code the output sort Set(U × Set(Set(U))) as Set(U × Set(U)), representing each group

by the corresponding Ur-element. ⊳

We will often make use of the following observation about interpretations:

Proposition 5.3. Δ0 interpretations can be composed, and their composition corresponds to the

underlying composition of transformations.

The composition of nested relational interpretations amounts to the usual composition of FO-

interpretations (see e.g. [Benedikt and Koch 2009]) and an easy check that the additional require-

ments we impose on nested relational interpretations are preserved.

We can now state the equivalence of NRC and interpretations formally:

Theorem 5.4. Every transformation in NRC[Get] can be translated effectively to a Δ0 interpre-

tation. Conversely, for every Δ0 interpretation, one can effectively form an equivalent NRC[Get]
expression. The translation from NRC[Get] to interpretations can be done in EXPTIME while the

converse translation can be performed in PTIME.

This characterization holds when equivalence is over finite nested relational inputs and also

when arbitrary nested relations are allowed as inputs to the transformations.

From this theorem one can easily derive many of the “conservativity results”; e.g. [Paredaens and

Van Gucht 1992], which states that every nested relational algebra query from flat type (Set(U𝑛)
to flat types can be expressed in relational algebra: we simply convert to an interpretation and then

note that in going backward from an interpretation to an NRC expression we will not introduce

additional levels of nesting on top of those present in the input and output.

Note that a number of very similar results occur in the literature. The underlying idea in one

direction is that one can “shred” a transformation of collections to work on a flat representation. This

has been investigated in several communities for NRC and related languages [Benedikt and Koch

2009; Cheney et al. 2014], in databases going at least as far back as [Abiteboul and Bidoit 1986]. The

connection extends to richer collection types such as multi-sets, which have been the focus in using

the shredding technique in systems [Cheney et al. 2014; Grust et al. 2010; Ulrich 2019]. Algorithms

for shredding can also be useful as a technique for lifting optimizations, such as incremental query

processing, from relational languages to nested languages [Koch et al. 2016]. And even in the
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collection of richer collection types, many of the conservativity properties of NRC are maintained

[Wong 1996]. But with these additional type-formers, one needs to move beyond first-order logic

in the simulating language. Thus although they are still extremely relevant to implementation,

reasoning with the resulting representations becomes problematic. The thesis [Ulrich 2019] provides

a detailed look at shredding techniques, and also additional historical background.

Results of [Koch 2006] show that a PTIME translation of NRC expressions to interpretations

would imply a collapse of the complexity class 𝑇𝐴[2𝑂 (𝑛) , 𝑛] to PSPACE, even at Boolean type. The

early paper [Van den Bussche 2001] proves a translation of NRC similar to the one in the first half

of Theorem 5.4 for flat-to-nested queries, and the nested-to-nested case can be easily obtained

from this. However [Van den Bussche 2001] does not formalize the output of the interpretation as

an interpretation, and we will need this connection to obtain our other characterizations. In the

context of the XML query language XQuery, [Benedikt and Koch 2009] proves a transformation to

first-order interpretations over trees. As noted in [Koch 2006], there is a very close relationship

between XQuery and NRC, and the translation to interpretations in [Benedikt and Koch 2009] can

be easily lifted to NRC.

There is also similarity to results from the 1960’s of Gandy [Gandy 1974]. Gandy defines a class

of set functions that are similar to NRC, and shows that they are “substitutable”. This is the core of

the argument for translating NRC to interpretations.

6 SYNTHESIZING INTERPRETATIONS FROM CLASSICAL PROOFS
In Section 4 we showed that from an intuitionistic proof that Σ(o𝑖𝑛, . . . , o𝑜𝑢𝑡 ) defines o𝑜𝑢𝑡 as a func-
tion of o𝑖𝑛 , we could synthesize an NRC expression that produces o𝑜𝑢𝑡 from o𝑖𝑛 . One might believe

such a “witnessing theorem” to be specific to intuitionistic calculi. But we will now demonstrate

that this result extends to classical proofs, and that it is actually a general phenomenon connecting

implicit definitions to interpretations. We will show that whenever we have a Δ0 specification

where there is a classical proof that the specification is functional, we can generate an interpretation

that realizes the function. We can then rely on Theorem 5.4 from the previous section to infer that

an NRC[Get] expression realizes the function as well. That is, we will prove:

Theorem 6.1. For any Δ0 formula Σ(o𝑖𝑛, o𝑜𝑢𝑡 , ®𝑎) which implicitly defines o𝑜𝑢𝑡 as a function of o𝑖𝑛 ,

there is a Δ0 interpretation I such that whenever Σ(o𝑖𝑛, o𝑜𝑢𝑡 , ®𝑎) holds, then I(o𝑖𝑛) = o𝑜𝑢𝑡 .

In particular, if in addition for each o𝑖𝑛 there is some o𝑜𝑢𝑡 and ®𝑎 such that Σ(o𝑖𝑛, o𝑜𝑢𝑡 , ®𝑎) holds,
then the interpretation and the formula define the same transformation.

Recall from Section 4 that projective implicit definitions allow extra parameters ®𝑎 while implicit

definitions allow only the input and output variables o𝑖𝑛 and o𝑜𝑢𝑡 . From Theorem 6.1 we easily get

the following characterization:

Corollary 6.2. The following are equivalent for a transformation T :

• T is projectively implicitly definable by a Δ0 formula

• T is implicitly definable by a Δ0 formula

• T is definable via a Δ0 interpretation

• T is NRC[Get] definable
Finite instances versus all instances. In Theorem 6.1 and Corollary 6.2 we emphasize that our

results concern the class FunAll of transformations T such that there is a Δ0 formula Σwhich defines

a functional relationship between o𝑖𝑛 and o𝑜𝑢𝑡 on all instances, finite and infinite, and where the

function agrees with T . We can consider FunAll as a class of transformations on all instances or of

finite instances, but the class is defined by reference to all instances for o𝑖𝑛 . Expressed semantically

Σ(o𝑖𝑛, o𝑜𝑢𝑡 , ®𝑎) ∧ Σ(o𝑖𝑛, o′𝑜𝑢𝑡 , ®𝑎′) |= o
′
𝑜𝑢𝑡 = o𝑜𝑢𝑡
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An equivalent characterization of FunAll is proof-theoretic: these are the transformations such that

there is a classical proof of functionality in a complete first-order proof system using some basic

axioms about Ur-elements, products and projection functions, and the extensionality axiom for

the membership relation. For example, it is easy to extend the intuitionistic proof system given in

Section 4 to be complete for classical entailment.

Whether one thinks of FunAll semantically or proof-theoretically, our results say that FunAll

is identical with the set of transformations given by NRC expressions. But the proof-theoretic

perspective is crucial for the synthesis procedure.

It is natural to ask about the analogous class FunFin of transformations T over finite inputs for

which there is a Δ0 ΣT which is functional, when only finite inputs are considered, and where the

corresponding function agrees with T . It is well-known that FunFin is not identical to NRC and

is not so well-behaved. The transformation returning the powerset of a given input relation o𝑖𝑛

is in FunFin: the powerset of a finite input o𝑖𝑛 is the unique collection o𝑜𝑢𝑡 of subsets of o𝑖𝑛 that

contains the empty set and such that for each element 𝑒 of o𝑖𝑛 , if a set 𝑠 is in o𝑜𝑢𝑡 then 𝑠 − {𝑒} and
𝑠 ∪ {𝑒} are in o𝑜𝑢𝑡 . From this we can see that FunFin contains transformations of high complexity.

Indeed, even when considering transformations from flat relations to flat relations, FunFin contains

transformations whose membership in polynomial time would imply that UP ∩ coUP, the class

of problems such that both the problem and its complement can be solved by an unambiguous

non-deterministic polynomial time machine, is identical to PTIME [Kolaitis 1990]. Most importantly

for our goals, membership in FunFin is not witnessed by proofs in any effective proof system, since

this set is not computably enumerable.

Total versus partial functions. When we have a proof that Σ(o𝑖𝑛, o𝑜𝑢𝑡 , ®𝑎) defines o𝑜𝑢𝑡 as a
function of o𝑖𝑛 , the corresponding function may still be partial. Our procedure will synthesize an

expression 𝐸 defining a total function that agrees with the partial function defined by Σ. If ®𝑎 is

empty, we can also synthesize a Boolean NRC expression Verify
InDomain

that verifies whether a

given o𝑖𝑛 is in the domain of the function: that is whether there is o𝑜𝑢𝑡 such that Σ(o𝑖𝑛, o𝑜𝑢𝑡 ) holds.
Verify

InDomain
can be taken as:

⋃
{VerifyΣ (o𝑖𝑛, 𝑒) | 𝑒 ∈ {𝐸 (o𝑖𝑛)}}

where VerifyΣ is from Proposition 3.3.

Recall the second transformation from Example 1.2, where the domain of the function is the

set of 𝐺 such that the second component of each pair is never empty and the value of the second

component is determined by the value of the first component. This property can clearly be described

by a Δ0 formula, and thus by Proposition 3.3 it can be verified in NRC.

When ®𝑎 is not empty we cannot generate a domain check, since the auxiliary parameters might

enforce some second-order property of o𝑖𝑛 : for example Σ(o𝑖𝑛, 𝑎, 𝑜) might state that 𝑎 is a bijection

from 𝜋1 (o𝑖𝑛) to 𝜋2 (o𝑖𝑛) and 𝑜 = o𝑖𝑛 . This clearly defines a functional relationship between 𝑖0, 𝑖1 and

𝑜 , but the domain consists of 𝑖0, 𝑖1 that have the same cardinality, which cannot be expressed in

first-order logic.

Organization of the proof of the theorem. Our proof of Theorem 6.1 will proceed first by

some reductions (Subsection 6.1), showing that it suffices to prove a general result about implicit

definability and definability by interpretations in multi-sorted first-order logic, rather than dealing

with higher-order logic and Δ0 formulas. In Subsection 6.2 we sketch the argument for this multi-

sorted logic theorem.
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6.1 Reduction to a characterization theorem in multi-sorted logic
The first step in the proof of Theorem 6.1 is to reduce to a more general statement relating implicit

definitions in multi-sorted logic to interpretations. The first part of this reduction is to argue that

we can suppress auxiliary parameters ®𝑎 in implicit definitions:

Lemma 6.3. For any Δ0 formula Σ(o𝑖𝑛, o𝑜𝑢𝑡 , ®𝑎) that implicitly defines o𝑜𝑢𝑡 as a function of o𝑖𝑛 ,

there is another Δ0 formula Σ′(o𝑖𝑛, o𝑜𝑢𝑡 ) which implicitly defines o𝑜𝑢𝑡 as a function of o𝑖𝑛 , such that

Σ(o𝑖𝑛, o𝑜𝑢𝑡 , ®𝑎) ⇒ Σ′(o𝑖𝑛, o𝑜𝑢𝑡 ).

The lemma is proven using two applications of classical Δ0 interpolation.

Proposition 6.4. For any Δ0 formulas 𝜑 and𝜓 such that 𝜑 |= 𝜓 , there exists another Δ0 formula \

such that 𝜑 |= \ and \ |= 𝜓 .

This proposition generalizes Proposition 4.6 since we allow classical validity for 𝜑 |= 𝜓 . That

being said, we may prove Proposition 6.4 using similar tools, i.e., a complete cut-free sequent

calculus for Δ0 formulas and a standard proof as in [Fitting 1996]. With Lemma 6.3 in hand, from

this point on we assume that we do not have auxiliary parameters ®𝑎 in our implicit definitions.

Reduction to Monadic schemas. A monadic type is a type built only using the atomic typeU
and the type constructor Set. To simplify notation we define U0 := U, U1 := Set(U0), . . .U𝑛+1 :=
Set(U𝑛). A monadic type is thus a U𝑛 for some 𝑛 ∈ N. A nested relational schema is monadic if it

contains only monadic types, and a Δ0 formula is monadic if all of its variables have monadic types.

Restricting to monadic formulas simplifies the type system significantly and thus, certain ar-

guments by induction. It turns out that by the usual “Kuratowski encoding” of pairs by sets, we

can reduce all of our questions about implicit versus explicit definability to the case of monadic

schemas. The following proposition implies that we can derive all of our main results for arbitrary

schemas from their restriction to monadic formulas. We will thus restrict to monadic formulas for

the remainder of the argument.

Proposition 6.5. For any nested relational schema S𝐶𝐻 , there is a monadic nested relational

schema S𝐶𝐻 ′
, an injection Convert from instances of S𝐶𝐻 to instances of S𝐶𝐻 ′

that is definable

in NRC, and an NRC[Get] expression Convert
−1

such that Convert
−1 ◦ Convert is the identity

transformation from S𝐶𝐻 → S𝐶𝐻 .

Furthermore, there is a Δ0 formula ImConvert from S𝐶𝐻 ′
to Bool such that ImConvert (𝑖 ′) holds if

and only if 𝑖 ′ = Convert(𝑖) for some instance 𝑖 of S𝐶𝐻 .

These translations can also be given in terms of Δ0 interpretations rather than NRC expressions.

Given Proposition 6.5 it suffices to consider only monadic nested relational schemas. Given a

Δ0 implicit definition Σ(o𝑖𝑛, o𝑜𝑢𝑡 ) we can form a new definition that computes the composition

of the following transformations: Convert
−1
S𝐶𝐻 𝑖𝑛

, a projection onto the first component, the trans-

formation defined by Σ, and ConvertS𝐶𝐻𝑜𝑢𝑡
. Our new definition captures this composition by a

formula Σ′(o′𝑖𝑛, o′𝑜𝑢𝑡 ) that defines o′𝑜𝑢𝑡 as a function of o
′
𝑖𝑛 , where the formula is over a monadic

schema. Assuming that we have proven the theorem in the monadic case, we would get an NRC

expression 𝐸 ′
from S𝐶𝐻 ′

𝑖𝑛 to S𝐶𝐻 ′
𝑜𝑢𝑡 agreeing with this formula on its domain. Now we can

compose ConvertS𝐶𝐻 𝑖𝑛
, 𝐸 ′

, Convert
−1
S𝐶𝐻𝑜𝑢𝑡

, and the projection to get an NRC expression agreeing

with the partial function defined by Σ(o𝑖𝑛, o𝑜𝑢𝑡 ) on its domain, as required.

Reduction to a result in multi-sorted logic. Now we are ready to give our last reduction,

relating Theorem 6.1 to a general result concerning multi-sorted logic.

Let S𝐼𝐺 be any multi-sorted signature, Sorts1 be its sorts and Sorts0 be a subset of Sorts1. We

say that a relation 𝑅 is over Sorts0 if all of its arguments are in Sorts0. Let Σ be a set of sentences in

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 14. Publication date: January 2021.



14:22 Michael Benedikt and Pierre Pradic

S𝐼𝐺 . Given a model𝑀 for S𝐼𝐺 , let Sorts0 (𝑀) be the union of the domains of relations over Sorts0,

and let Sorts1 (𝑀) be defined similarly.

We say that Sorts1 is implicitly interpretable over Sorts0 relative to Σ if:

For any models𝑀1 and𝑀2 of Σ, if there is a mapping𝑚 from Sorts0 (𝑀1) to Sorts0 (𝑀2) that pre-
serves all relations over Sorts0, then𝑚 extends to a unique mapping from Sorts1 (𝑀1) to Sorts1 (𝑀2)
which preserves all relations over Sorts1.

Informally, implicit interpretability states that the sorts in Sorts1 are semantically determined by

the sorts in Sorts0. The property implies in particular that if𝑀1 and𝑀2 agree on the interpretation

of sorts in Sorts0, then the identity mapping on sorts in Sorts0 extends to a mapping that preserves

sorts in Sorts1.

We relate this semantic property to a syntactic one. We say that Sorts1 is explicitly interpretable

over Sorts0 relative to Σ if for all S in Sorts1 there is a formula𝜓S ( ®𝑥,𝑦) where ®𝑥 are variables with

sorts in Sorts0, 𝑦 a variable of sort Sorts1, such that:

• In any model𝑀 of Σ,𝜓S defines a partial function 𝐹S mapping Sorts0 tuples on to S.

• For every relation 𝑅 of arity𝑛 over Sorts1, there is a formula𝜓𝑅 ( ®𝑥1, . . . ®𝑥𝑛) using only relations
over Sorts0 and only quantification over Sorts0 such that in any model𝑀 of Σ, the pre-image

of 𝑅 under the mappings 𝐹S for the different arguments of 𝑅 is defined by𝜓𝑅 ( ®𝑥1, . . . ®𝑥𝑛).
Explicit interpretability states that there is an interpretation in the sense of the previous section

that produces the structure in Sorts1 from the structure in Sorts0, and in addition there is a definable

relationship between an element 𝑒 of a sort in Sorts1 and the tuple that codes 𝑒 in the interpretation.

Note that𝜓S, the mapping between the elements 𝑦 in S and the tuples in Sorts0 that interpret them,

can use arbitrary relations. The key property is that when we pull a relation 𝑅 over Sorts1 back

using the mappings𝜓S, then we obtain something definable using Sorts0.

With these definitions in hand, we are ready to state a result in multi-sorted logic which allows

us to generate interpretations from classical proofs of functionality:

Theorem 6.6. For any Σ, Sorts0, Sorts1 such that Σ entails that a sort of Sorts0 has at least two

elements, Sorts1 is explicitly interpretable over Sorts0 if and only if it is implicitly interpretable over

Sorts0.

This can be thought of as an analog of Beth’s theorem [Beth 1953; Craig 1957] for multi-sorted

logic. The proof is sketched in the next subsection. For now we explain how it implies Theorem 6.1.

In this explanation we assume a monadic schema for both input and output. Thus every element 𝑒

in an instance has sort U𝑛 for some 𝑛 ∈ N.
Consider a Δ0 formula Σ(o𝑖𝑛, o𝑜𝑢𝑡 ) over a monadic schema that implicitly defines o𝑜𝑢𝑡 as a

function of o𝑖𝑛 . Σ can be considered as a multi-sorted first-order formula with sorts for every

subtype occurrence of the input as well as distinct sorts for every subtype occurrence of the output

other than U. Because we are dealing with monadic input and output schema, every sort other

than U will be of the form Set(𝑇 ), and these sorts have only the element relations ∈𝑇 connecting

them. We refer to these as input sorts and output sorts. We modify Σ by asserting that all elements

of the input sorts lie underneath o𝑖𝑛 , and all elements of the output sorts lie underneath o𝑜𝑢𝑡 , where

an element 𝑒 is said to lies underneath an element 𝑒 ′ if there is a chain 𝑒 = 𝑒1 ∈ . . . ∈ 𝑒𝑛 = 𝑒 ′.
Since Σ was Δ0, this does not change the semantics. We also conjoin to Σ the sanity axioms for the

schema, including the extensionality axiom at the sorts corresponding to each object type. Let Σ∗

be the resulting formula. In this transformation, as was the case with interpretations, we change

our perspective on inputs and outputs, considering them as constants rather than as free variables.

We do this only to match our result in multi-sorted logic, which deals with a set of sentences in

multi-sorted first-order logic, rather than formulas with free variables.
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Given models𝑀 and𝑀 ′
of Σ∗

, we define relations ≡𝑖 connecting elements of𝑀 of depth 𝑖 with

elements of𝑀 ′
of depth 𝑖 . For 𝑖 = 0, ≡𝑖 is the identity: that is, it connects elements ofU if and only

if they are identical. For 𝑖 = 𝑗 + 1, ≡𝑖 (𝑥, 𝑥 ′) holds exactly when for every 𝑦 ∈ 𝑥 there is 𝑦 ′ ∈ 𝑥 ′

such that 𝑦 ≡𝑗 𝑦
′
, and vice versa.

The fact that Σ implicitly defines o𝑜𝑢𝑡 as a function of o𝑖𝑛 tells us that:

Suppose𝑀 |= Σ∗
,𝑀 ′ |= Σ∗

and𝑀 and𝑀 ′
are identical on the input sorts. Then the mapping𝑚

taking a 𝑦 ∈ 𝑀 of depth 𝑖 to a 𝑦 ′ ∈ 𝑀 ′
such that 𝑦 ′ ≡𝑖 𝑦 is an isomorphism of the output sorts that

is the identity onU. Further, any isomorphism of Sorts1 (𝑀) on to Sorts1 (𝑀 ′) that is the identity
on U must be equal to𝑚: one can show this by induction on the depth 𝑖 using the fact that Σ∗

includes the extensionality axiom.

From this, we see that the output sorts are implicitly interpretable over the input sorts relative

to Σ∗
. Using Theorem 6.6, we conclude that the output sorts are explicitly interpretable in the input

sorts relative to Σ∗
. Applying the conclusion to the formula 𝑥 = 𝑥 , where 𝑥 is a variable of a sort

corresponding to object type 𝑇 of the output, we obtain a first-order formula 𝜑𝑇
Domain

( ®𝑥) over the
input sorts. Applying the conclusion to the formula 𝑥 = 𝑦 for 𝑥,𝑦 variables corresponding to the

object type 𝑇 we get a formula 𝜑≡𝑇 ( ®𝑥, ®𝑥 ′) over the input sorts. Finally applying the conclusion to

the element relation 𝜖𝑇 at every level of the output, we get a first-order formula 𝜑𝜖𝑇 ( ®𝑥, ®𝑥 ′) over the
input sorts. Because Σ∗

asserts that each element of the input sorts lies beneath a constant for o𝑖𝑛 ,

we can convert all quantifiers to bind only beneath o𝑖𝑛 , giving us Δ0 formulas. It is easy to verify

that these formulas give us the desired interpretation. This completes the proof of Theorem 6.1,

assuming Theorem 6.6.

6.2 Proof of the multi-sorted logic result
In the previous subsection we reduced our goal result about generating interpretations from proofs

to a result in multi-sorted first-order logic, Theorem 6.6. We will sketch the proof of Theorem 6.6.

The direction from explicit interpretability to implicit interpretability is straightforward, so we will

be interested only in the direction from implicit to explicit. Although the theorem appears to be

new, each of the components is a variant of arguments that already appear in the model theory

literature.

In the body of the paper we make use of only quite basic results from model theory:

• the compactness theorem for first-order logic, which states that for any theory Γ, if every
finite subcollection of Γ is satisfiable, then Γ is satisfiable;

• the downward Lowenheim-Skolem theorem, which states that if Γ is countable and has a model,

then it has a countable model;

• the omitting types theorem for first-order logic. A first-order theory Σ is said to be complete if

for every other first-order sentence 𝜑 in the vocabulary of Σ, either 𝜑 or ¬𝜑 is entailed by

Σ. Given a set of constants 𝐵, a type over 𝐵 is an infinite collection 𝜏 ( ®𝑥) of formulas using

variables ®𝑥 and constants 𝐵. A type is complete with respect to a theory Σ if every first-order

formula with variables in ®𝑥 and constants from 𝐵 is either entailed or contradicted by 𝜏 ( ®𝑥)
and Σ. A type 𝜏 is said to be realized in a model𝑀 if there is a ®𝑥0 in𝑀 satisfying all formulas

in 𝜏 . 𝜏 is non-principal (with respect to a first-order theory Σ) if there is no formula 𝛾0 ( ®𝑥)
such that Σ ∧ 𝛾0 ( ®𝑥) entails all of 𝜏 ( ®𝑥). The version of the omitting types theorem that we

will use states that:

if we have a countable set Γ of complete types that are all non-principal relative to a complete

theory Σ, there is some model𝑀 of Σ in which none of the types in Γ are realized.

Each of these results follows from a standard model construction technique [Hodges 1993].
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We can easily show that to prove the multi-sorted result, it suffices to consider Σ that is a complete

theory.

Proposition 6.7. Theorem 6.6 follows from its restriction to Σ a complete theory.

Recall that our assumption is that Σ yields a function from o𝑖𝑛 to o𝑜𝑢𝑡 . Our next step will be

to show that the output of this function is always “sub-definable”: each element in the output is

definable from the input if we allow ourselves to guess some parameters. For example, consider the

grouping transformation mentioned in Example 1.2 and Example 3.2. Each output is obtained from

grouping input relation 𝐹 over some Ur-element 𝑎. So each member of the output is definable from

the input constant 𝐹 and a “guessed” input element 𝑎. We will show that this is true in general.

Given a model 𝑀 of Σ and ®𝑥0 ∈ Sorts1 within 𝑀 , the type of ®𝑥0 with parameters from Sorts0 is

the set of all formulas satisfied by ®𝑥0, using any sorts and relations but only constants from Sorts0.

A type 𝑝 is isolated over Sorts0 if there is a formula 𝜑 ( ®𝑥, ®𝑎) with parameters ®𝑎 from Sorts0 such

that𝑀 |= 𝜑 ( ®𝑥, ®𝑎) → 𝛾 ( ®𝑥) for each 𝛾 ∈ 𝑝 . The following is a step towards showing that elements in

the output are well-behaved:

Lemma 6.8. Suppose Sorts1 is implicitly interpretable over S0 with respect to Σ. Then in any model

𝑀 of Σ the type of any
®𝑏 over Sorts1 with parameters from Sorts0 is isolated over Sorts0.

Proof. Fix a counterexample
®𝑏, and let Γ be the set of formulas in Sorts1 with constants from

Sorts0 satisfied by
®𝑏 in𝑀 . We claim that there is a model𝑀 ′

with Sorts0 (𝑀 ′) identical to Sorts0 (𝑀)
where there is no tuple satisfying Γ. This follows from the failure of isolation and the omitting

types theorem.

Now we have a contradiction of implicit interpretability, since the identity mapping on Sorts0

cannot extend to an isomorphism of relations over Sorts1 from𝑀 to𝑀 ′
. □

The next step is to argue that every element of Sorts1 is definable by a formula using parameters

from Sorts0.

Lemma 6.9. Assume implicit interpretability of Sorts1 over Sorts0 relative to Σ. In any model𝑀 of

Σ, for every element 𝑒 of a sort S1 in Sorts1, there is a first-order formula 𝜓𝑒 ( ®𝑦, 𝑥) with variables ®𝑦
having sort in Sorts0 and 𝑥 a variable of sort S1, along with a tuple ®𝑎 in Sorts0 (𝑀) such that𝜓𝑒 ( ®𝑎, 𝑥)
is satisfied only by 𝑒 in𝑀 .

Proof. Since a counterexample involves only formulas in a countable language, by the Lowenheim-

Skolem theorem mentioned above, it is enough to consider the case where 𝑀 is countable. By

Lemma 6.8, the type of every 𝑒 is isolated by a formula 𝜑 ( ®𝑥, ®𝑎) with parameters from Sorts0 and

relations from Sorts1. We claim that 𝜑 defines 𝑒: that is, 𝑒 is the only satisfier. If not, then there is

𝑒 ′ ≠ 𝑒 that satisfies 𝜑 . Consider the relation ®𝑒 ≡ ®𝑒 ′ holding if ®𝑒 and ®𝑒 ′ satisfy all the same formulas

using relations and variables from Sorts1 and parameters from Sorts0. Isolation implies that 𝑒 ≡ 𝑒 ′.

Further, isolation of types shows that ≡ has the “back-and-forth property” given
®𝑑 ≡ ®𝑑 ′

, and ®𝑒 we
can obtain ®𝑒 ′ with ®𝑑®𝑒 ≡ ®𝑑 ′®𝑒 ′. To see this, fix

®𝑑 ≡ ®𝑑 ′
and consider ®𝑒 . We have 𝛾 ( ®𝑥, ®𝑦, ®𝑎) isolating the

type of
®𝑑, ®𝑒 , and further

®𝑑 satisfies ∃®𝑦 𝛾 ( ®𝑥, ®𝑦, ®𝑎) and thus so does
®𝑑 ′
with witness ®𝑒 ′. But then using

®𝑑 ≡ ®𝑑 ′
again we see that

®𝑑, ®𝑒 ≡ ®𝑑 ′, ®𝑒 ′. Using countability of𝑀 and this property we can inductively

create a mapping on𝑀 fixing Sorts0 pointwise, preserving all relations in Sorts1, and taking
®𝑏 to

®𝑏 ′. But this contradicts implicit interpretability. □

Lemma 6.10. The formula in Lemma 6.9 can be taken to depend only on the sort S.
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Proof. Consider the type over the single variable 𝑥 in S consisting of the formulas ¬𝛿𝜑 (𝑥),
taking 𝛿𝜑 (𝑥) to be defined as

∃®𝑏 [ 𝜑 ( ®𝑏, 𝑥) ∧ ∀𝑥 ′ (𝜑 ( ®𝑏, 𝑥 ′) ⇒ 𝑥 ′ = 𝑥)]

where the tuple
®𝑏 ranges over Sorts0. By Lemma 6.9, this type cannot be satisfied in a model of Σ.

Since it is unsatisfiable, by compactness, there are finitely many formulas 𝜑1 ( ®𝑏, 𝑥), . . . , 𝜑𝑛 ( ®𝑏, 𝑥) such
that ∀𝑥 ∨𝑛

𝑖=1 𝛿𝜑𝑖
(𝑥) is satisfied. Therefore, each 𝜑𝑖 ( ®𝑏, 𝑥) defines a partial function from tuples of S0

to S and every element of S is covered by one of the 𝜑𝑖 . Recall that we assumed that Σ enforces that

Sorts0 has a sort with at least two elements. Thus we can combine the 𝜑𝑖 ( ®𝑏, 𝑥) into a single formula

𝜓 ( ®𝑏, ®𝑐, 𝑥) defining a surjective partial function from S0 to S where ®𝑐 is an additional parameter in

Sorts0 selecting some 𝑖 ≤ 𝑛. □

We now need to go from the “sub-definability” or “element-wise definability” result above to an

interpretation. Consider the formulas𝜓S produced by Lemma 6.10. For a relation 𝑅 of arity 𝑛 over

Sorts1, where the 𝑖
𝑡ℎ

argument has sort S𝑖 , consider the formula

𝜓𝑅 ( ®𝑥1 . . . ®𝑥𝑛) = ∃𝑦1 . . . 𝑦𝑛 𝑅(𝑦1 . . . 𝑦𝑛) ∧
∧
𝑖

𝜓S𝑖
( ®𝑥𝑖 , 𝑦𝑖 )

where ®𝑥𝑖 is a tuple of variables of sorts in Sorts0. The formulas𝜓S for each sort S and the formulas

𝜓𝑅 for each relation 𝑅 are as required by the definition of explicitly interpretable, except that they

may use quantified variables and relations of Sorts1, while we only want to use variables and

relations from Sorts0. We take care of this in the following lemma, which says that formulas over

Sorts1 do not allow us to define any more subsets of Sorts0 than we can with formulas over Sorts0.

Lemma 6.11. Under the assumption of implicit interpretability, for every formula 𝜑 ( ®𝑥) over Sorts1
with ®𝑥 variables of sort in Sorts0 there is a formula 𝜑◦ ( ®𝑥) over Sorts0 – that is, containing only

variables, constants, and relations from Sorts0 – such that for every model𝑀 of Σ,

𝑀 |= ∀®𝑥 𝜑 ( ®𝑥) ↔ 𝜑◦ ( ®𝑥)

Proof. Assume not, with 𝜑 as a counterexample. By the compactness and Lowenheim-Skolem

theorems, we know that there is a countable model 𝑀 of Σ containing ®𝑐 , ®𝑐 ′ that agree on all

formulas in Sorts0 but that disagree on 𝜑 . As in Lemma 6.9, we can obtain a mapping on 𝑀

preserving Sorts0 but sending ®𝑐 to ®𝑐 ′. This contradicts implicit interpretability, since the mapping

cannot be extended. □

Above we obtained the formulas𝜓𝑅 for each relation symbol 𝑅 needed for an explicit interpreta-

tion. We can obtain formulas defining the necessary equivalence relations𝜓≡ and𝜓Domain easily

from these. Thus, putting Lemmas 6.9, 6.10, and 6.11 together yields a proof of Theorem 6.6.

6.3 Putting it all together
We summarize our results on extractingNRC[Get] expressions from classical proofs of functionality.

We have shown in Subsection 6.1 how to convert the problem to one with no extra variables other

than input and output and with only monadic schemas – and thus no use of products or tupling.

We also showed how to convert the resulting formula into a theory in multi-sorted first-order logic.

That is, we no longer need to talk about Δ0 formulas.

In Subsection 6.2 we showed that from a theory in multi-sorted first-order logic we can obtain an

interpretation. This first-order interpretation in a multi-sorted logic can then be converted back to

a Δ0 interpretation, since the background theory forces each of the input sorts in the multi-sorted

structure to correspond to a level of nesting below one of the constants corresponding to an input
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object. Finally, the results of Section 5 allow us to convert this interpretation to an NRC[Get]
expression.With the exception of the result inmulti-sorted logic, all of the constructions are effective.

Further, these effective conversions are all in polynomial time except for the transformation from

an interpretation to an NRC[Get] expression, which is exponential time in the worst case. Outside

of the multi-sorted result, which makes use of infinitary methods, the conversions are each sound

when equivalence over finite input structures is considered as well as the default case when

arbitrary inputs are considered. As explained in Subsection 6.1, when equivalence over finite inputs

is considered, we cannot hope to get a synthesis result of this kind.

7 CONCLUSION
We have provided a method taking a proof that a logical formula defines a functional transformation

and generating an expression in a functional transformation language that implements it. In the

process we provide a more general synthesis procedure (Lemma 4.7) that can generate expressions

interpolating between variables whenever there is a provable containment. This connection between

provably functional formulas and the functional transformation language NRC studied in data

management and programming languages is, to our knowledge, new and non-trivial.

We are currently working on an implementation of our effective synthesis result in the COQ

proof assistant [Coq 2020]. This involves formalizing the proof calculus, the semantics of Δ0

formulas, the syntax and semantics of NRC, in COQ , as well as the synthesis algorithm. In addition

to giving us a verified proof, we will gain the ability to create proofs of functionality within a COQ

session, allowing us to build up tactics and definitions on top of the basic rules of the proof calculus.

An open issue is to make the classical interpolation result effective. There is an obvious extension

of our proof system that gains completeness for classical logic: we allow multiple disjuncts in the

consequence, and revise the rules in the obvious way. For instance, the rule ∈Set(𝑇 ) -R would become

∈Set-R
Θ, 𝑡 ∈

Set(𝑇 ) 𝑣 ; Γ ⊢ 𝑡 =
Set(𝑇 ) 𝑢, 𝑡1 ∈𝑇1 𝑢1, . . . , 𝑡𝑘 ∈𝑇𝑘 𝑢𝑘

Θ, 𝑡 ∈
Set(𝑇 ) 𝑣 ; Γ ⊢ 𝑢 ∈

Set(𝑇 ) 𝑣, 𝑡1 ∈𝑇1 𝑢1, . . . , 𝑡𝑘 ∈𝑇𝑘 𝑢𝑘

Theorem 6.1 shows that whenwe have a proof in such a systemwe can create anNRC definition, and

we conjecture that it is possible to do this efficiently. In fact, we can also show that the higher-type

interpolation lemma, Lemma 4.7, holds for classical entailment. Although our proof of Lemma 4.7

is via induction on proofs, the extension for classical entailment can be done using model-theoretic

techniques, in particular a dichotomy theorem for automorphisms stemming from work of Makkai

[Makkai 1964]. We are investigating an extension of our proof system that will allow us to lift our

current inductive argument for Lemma 4.7 to the classical setting. We conjecture that it will lead

us to an efficient procedure for extracting NRC terms from classical functionality proofs, thereby

simultaneously generalizing Theorem 4.2 and Theorem 6.1.

In addition to the application areas exhibited in Examples 4.4 and 4.5, we think that procedures

for generating implementations in functional languages from implicit definitions should have

other applications in programming languages and verification. For example they could be relevant

for generating programs transforming structured data in the context of more specialized input

structures, such as strings and trees [Bojanczyk et al. 2018].

We focused here on a stripped-down setting where at the base level we have no additional

structure, but many of our results (e.g. Theorem 6.1) generalize in the presence of additional

axiomatizable structure on the base set. Another important direction is to generalize the algorithmic

development (e.g. Theorem 4.2) to incorporate specialized decision procedures available on this

additional structure.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 14. Publication date: January 2021.



Generating collection transformations 14:27

ACKNOWLEDGMENTS
We are very grateful to Szymon Toruńczyk, who outlined a route to show that implicitly definable

transformations over nested relations can be defined via interpretations, in the process conjec-

turing a more general result concerning definability in multi-sorted logic. Szymon also helped in

simplifying the mapping of NRC expressions to interpretations, a basic component in one of our

characterizations. We also thank Ehud Hrushovski, who sketched a proof of the Beth-style result

for multi-sorted logic that serves as another component. His proof proceeds along very similar

lines to the one we present in this paper, but makes use of a prior Beth-style result in classical

model theory [Makkai 1964]. This work was funded by EPSRC grant EP/M005852/1.

REFERENCES
Serge Abiteboul and Catriel Beeri. 1995. The Power of Languages for the Manipulation of Complex Values. VLDB J. 4, 4

(1995), 727–794.

Serge Abiteboul and Nicole Bidoit. 1986. Non First Normal Form Relations: An Algebra Allowing Data Restructuring. J.

Comput. Syst. Sci. 33, 3 (1986), 361–393.

Foto Afrati and Rada Chirkova. 2019. Answering Queries Using Views. Morgan & Claypool Publishers.

H. Andréka, J. X. Madarász, and I. Németi. 2008. Definability of New Universes in Many-sorted logic. manuscript available

at old.renyi.hu/pub/algebraic-logic/kurzus10/amn-defi.pdf.

Michael Benedikt, Balden Ten Cate, Julien Leblay, and Efthymia Tsamoura. 2016. Generating plans from proofs: the

interpolation-based approach to query reformulation. Morgan Claypool.

Michael Benedikt and Christoph Koch. 2009. From XQuery to Relational Logics. ACM TODS 34, 4 (2009), 25:1–25:48.

E. W. Beth. 1953. On Padoa’s Method in the Theory of Definitions. Indagationes Mathematicae 15 (1953), 330 – 339.

Mikolaj Bojanczyk, Laure Daviaud, and Shankara Narayanan Krishna. 2018. Regular and First-Order List Functions. In LICS.

Peter Buneman, Shamim A. Naqvi, Val Tannen, and Limsoon Wong. 1995. Principles of Programming with Complex Objects

and Collection Types. Theor. Comput. Sci. 149, 1 (1995), 3–48.

James Cheney, Sam Lindley, and Philip Wadler. 2014. Query shredding: efficient relational evaluation of queries over nested

multisets. In SIGMOD.

Thomas Colcombet and Christof Löding. 2007. Transforming structures by set interpretations. Logical Methods in Computer

Science 3, 2 (2007).

Ezra Cooper. 2009. The Script-Writer’s Dream: How to Write Great SQL in Your Own Language, and Be Sure It Will Succeed.

In DBPL.

Coq. 2020. The Coq Proof Assistant. coq.inria.fr.

William Craig. 1957. Three Uses of the Herbrand-Gentzen Theorem in Relating Model Theory and Proof Theory. Journal of

Symbolic Logic 22, 3 (1957), 269–285.

Melvin Fitting. 1996. First-order Logic and Automated Theorem Proving. Springer.

R. O. Gandy. 1974. Set-theoretic functions for elementary syntax. In Proceedings of Symposia in Pure Mathematics, 13, Part II,

Thomas Jech (Ed.). American Mathematical Society, 103–126.

Gerhard Gentzen. 1935. Untersuchungen über das logische Schließen. Mathematische zeitschrift 39, 1 (1935), 176–210,

405–431.

Jeremy Gibbons. 2016. Comprehending Ringads - For Phil Wadler, on the Occasion of his 60th Birthday. In A List of Successes

That Can Change the World - Essays Dedicated to Philip Wadler on the Occasion of His 60th Birthday.

Jeremy Gibbons, Fritz Henglein, Ralf Hinze, and Nicolas Wu. 2018. Relational algebra by way of adjunctions. PACMPL 2,

ICFP (2018).

Torsten Grust, Jan Rittinger, and Tom Schreiber. 2010. Avalanche-Safe LINQ Compilation. PVLDB 3, 1–2 (2010), 162––172.

Alon Y. Halevy. 2001. Answering queries using views: A survey. VLDB Journal 10, 4 (2001), 270–294.

Kryštof Hoder, Laura Kovács, and Andrei Voronkov. 2010. Interpolation and Symbol Elimination in Vampire.

Wilfrid Hodges. 1993. Model Theory. Cambridge University Press.

Wilfrid Hodges, I.M. Hodkinson, and Dugald Macpherson. 1990. Omega-categoricity, relative categoricity and coordinatisa-

tion. Annals of Pure and Applied Logic 46, 2 (1990), 169 – 199.

Qinheping Hu and Loris D’Antoni. 2017. Automatic Program Inversion Using Symbolic Transducers. In PLDI.

Bart Jacobs. 2001. Categorical Logic and Type Theory. Elsevier.

R. B. Jensen. 1972. The fine structure of the constructible hierarchy, with a section by Jack Silver. Annals of Mathematical

Logic 4 (1972), 229–308.

Christoph Koch. 2006. On the Complexity of Non-recursive XQuery and Functional Query Languages on Complex Values.

ACM TODS 31, 4 (2006), 1215–1256.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 14. Publication date: January 2021.

old.renyi.hu/pub/algebraic-logic/kurzus10/amn-defi.pdf
coq.inria.fr


14:28 Michael Benedikt and Pierre Pradic

Christoph Koch, Daniel Lupei, and Val Tannen. 2016. Incremental View Maintenance For Collection Programming. In PODS.

Phokion G. Kolaitis. 1990. Implicit Definability on Finite Structures and Unambiguous Computations. In LICS.

Maurizio Lenzerini. 2002. Data Integration: A Theoretical Perspective. In PODS.

M. Makkai. 1964. On a generalization of a theorem of E. W. Beth. Acta Mathematica Academiae Scientiarum Hungaricae 15

(1964), 227–235.

K.L. McMillan. 2003. Interpolation and SAT-Based Model Checking. In CAV.

Erik Meijer, Brian Beckman, and Gavin Bierman. 2006. LINQ: Reconciling Object, Relations and XML in the .NET Framework.

In SIGMOD.

Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shivakumar, Matt Tolton, and Theo Vassilakis. 2010.

Dremel: Interactive Analysis of Web-Scale Datasets. PVLDB 3, 1-2 (2010), 330–339.

Andrzej Mostowski. 1949. An undecidable arithmetical statement. Fundamenta Mathematicae 36, 1 (1949), 143–164.

Alan Nash, Luc Segoufin, and Victor Vianu. 2010. Views and queries: Determinacy and rewriting. ACM TODS 35, 3 (2010).

Martin Otto. 2000. An interpolation theorem. Bulletin of Symbolic Logic 6, 4 (2000), 447–462.

Jan Paredaens and Dirk Van Gucht. 1992. Converting Nested Algebra Expressions into Flat Algebra Expressions. ACM

TODS 17, 1 (1992), 65–93.

Vladimir Yu. Sazonov. 1985. Collection principle and existential quantifier. Vychislitel’nye sistemy 107 (1985), 30–39.

Luc Segoufin and Victor Vianu. 2005. Views and queries: determinacy and rewriting. In PODS.

M. H. Sørensen and P. Urzyczyn. 2006. Lectures on the Curry-Howard Isomorphism. Elsevier.

Saurabh Srivastava, Sumit Gulwani, Swarat Chaudhuri, and Jeffrey S. Foster. 2011. Path-Based Inductive Synthesis for

Program Inversion. In PLDI.

Dan Suciu. 1995. Parallel Programming Languages for Collections. Ph.D. Dissertation. Univ. Pennsylvania.

David Toman and Grant Weddell. 2011. Fundamentals of Physical Design and Query Compilation. Morgan Claypool.

A. S. Troelstra and H. Schwichtenberg. 2000. Basic Proof Theory. Cambridge University Press.

Alexander Ulrich. 2019. Query Flattening and the Nested Data Parallelism Paradigm. Ph.D. Dissertation. University of

Tübingen, Germany. https://publikationen.uni-tuebingen.de/xmlui/handle/10900/87698/

Jan Van den Bussche. 2001. Simulation of the Nested Relational Algebra by the Flat Relational Algebra, with an Application

to the Complexity of Evaluating Powerset Algebra Expressions. Theoretical Computer Science 254, 1–2 (2001), 363–377.

Christoph Wernhard. 2018. Craig Interpolation and Access Interpolation with Clausal First-Order Tableaux. CoRR

abs/1802.04982 (2018).

Limsoon Wong. 1994. Querying Nested Collections. Ph.D. Dissertation. Univ. Pennsylvania.

Limsoon Wong. 1996. Normal Forms and Conservative Extension Properties for Query Languages over Collection Types. J.

Comput. Syst. Sci. 52, 3 (1996), 495–505.

SUPPLEMENTARY MATERIALS
A PROOFS FOR SECTION 3
A.1 Proof that we can obtain NRC expressions that verify Δ0 formulas
Recall that in the body of the paper, we claimed the following statement, concerning the equivalence

of NRC expressions of Boolean type and Δ0 formulas:

There is a polynomial time function taking a Δ0 formula 𝜑 ( ®𝑥) and producing an NRC expression

Verify𝜑 ( ®𝑥), where the expression takes as input ®𝑥 and returns true if and only if 𝜑 holds.

We refer to this as the “Verification Proposition” later on in these supplementary materials.

Proof. First, one should note that every term in the logic can be translated to a suitable NRC

expression of the same sort. For example, a variable in the logic corresponds to a variable in NRC.

We prove the proposition by induction over the formula 𝜑 ( ®𝑥).
• If 𝜑 ( ®𝑥) is an equality 𝑡 = 𝑡 ′ or a membership 𝑡 ∈ 𝑡 ′, it is straightforward to write out

NRC expressions that verify them by simultaneous induction on the type. For equality, the

expression verifies two containments, with a containment 𝑡 ⊆ 𝑡 ′ verified as
⋃{𝑥 ∈ 𝑡 |𝐸 ′(𝑥, 𝑡 ′)},

where 𝐸 ′(𝑥, 𝑡 ′) is the expression obtained for membership inductively.

• If 𝜑 ( ®𝑥) is a disjunction 𝜑1 ( ®𝑥) ∨ 𝜑2 ( ®𝑥), we take Verify𝜑 ( ®𝑥) = Verify𝜑1

∪ Verify𝜑2

. We proceed

similarly for disjunction thanks to ∩.
• If 𝜑 ( ®𝑥) is a negation, we use the definability of negation in NRC.
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• If 𝜑 ( ®𝑥) begins with a bounded existential quantification ∃𝑧 ∈ 𝑦 𝜓 ( ®𝑥,𝑦, 𝑧), we simply set

Verify𝜑 ( ®𝑥,𝑦) =
⋃{Verify𝜓 ( ®𝑥,𝑦,𝑧) | 𝑧 ∈ 𝑦}. Universal quantification is then treated similarly

by using negation in NRC.

□

Note that the converse (without the polynomial time bound) also holds; this will follow from the

more general result onmoving fromNRC to interpretations that is proven later in the supplementary

materials.

B PROOFS FOR SECTION 4: PROPERTIES OF THE PROOF SYSTEM, DETAILS OF
THE SYNTHESIS RESULTS

B.1 Strength of the proof system
In the body of the paper we claimed that although our proof system does not derive every classically

valid Δ0 sequent, we can show that it derives all sequents of the shape we consider that are

constructively derivable in the sense of intuitionistic logic. In this subsection we present variants of

prior intuitionistic calculi formally, and detail the argument for their equivalence with our system.

Let us first recall the syntax of multi-sorted first-order logic, with equality at every sort and a

predicate − ∈𝑇 − for every sort 𝑇 representing membership.

𝜑, 𝜓 ::= 𝑡 ∈𝑇 𝑢 | 𝑡 =𝑇 𝑢 | ⊤ | ⊥ | 𝜑 ∧𝜓 | 𝜑 ∨𝜓 | 𝜑 ⇒ 𝜓 | ∀𝑥𝑇 𝜑 | ∃𝑥𝑇 𝜑

We will deal with the case where the terms are built up using Ur-element constants, the unit

constant, the pairing function and the projection functions. The intuitionistic sequent calculus

we adopt for first-order logic with equality, projection, and pairing is shown in Figure 5, with

the structural rules (weakening and contraction) omitted. It is a straightforward extension of the

textbook definition of the sequent calculus LJ for intuitionistic first-order logic (see e.g. [Sørensen

and Urzyczyn 2006, Sections 7.2 and 9.3] and [Troelstra and Schwichtenberg 2000, Chapter 3]) due

to Gentzen [Gentzen 1935] to accommodate our typing discipline and additional rules concerning

equalities, projection and pairing. The main technical distinction between LJ and the sequent

calculus for classical logic LK is that there is a single conclusion formula on the right, rather than a

list of formulas. This prevents one from deriving the law of excluded middle ⊢ 𝜑∨¬𝜑 for arbitrary 𝜑

in LJ. Note that this does not imply that the calculus is incomplete for (translations of) the restricted

sequents that we deal with in our calculus.

The extensions of LJ to accommodate typed terms, equality, and the projection and pairing

functions are straightforward. Although we are not aware of a source describing exactly the proof

system above, [Jacobs 2001, Chapter 4] describes an equivalent system based on natural deduction

and [Troelstra and Schwichtenberg 2000, Section 4.7] extends LJ with rules for equality without

types.

In this section, we define a translation of the sequents Θ; Γ ⊢ 𝜑 of our restricted proof system

into sequents Θ̃, Γ̃ ⊢ 𝜑 of the calculus displayed in Figure 5, which we refer to as LJ from now on.

As is customary for two-sided sequent calculi, rules introducing logical connectives can be split

into left(-hand side) and right(-hand side) rules. Wemake this distinction in our naming conventions,

using L and R in rule names to indicate left and right rules. Informally speaking, a rule is left if the

right-hand side formula stays the same in the premises and the conclusion and the corresponding

connective occurs in the left-hand side of the conclusion. Right rules can be similarly characterized.

Some rules are neither right nor left. For LJ, these would be the axiom rule AX and the rules ×[ , ×𝛽

and Unit[ .

Translation to LJ sequents. We will need to perform some translations from the membership

contexts and Δ0 formulas used in our context to the multi-sorted first-order formulas used in LJ. Δ0
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AX

Γ, 𝜑 ⊢ 𝜑

∧-L
Γ, 𝜑1, 𝜑2 ⊢ 𝜓
Γ, 𝜑1 ∧ 𝜑2 ⊢ 𝜓

∧-R
Γ ⊢ 𝜑 Γ ⊢ 𝜓

Γ ⊢ 𝜑 ∧𝜓
⊤-R

Γ ⊢ ⊤

⊥-L
Γ,⊥ ⊢ 𝜑

∨-L
Γ, 𝜑1 ⊢ 𝜓 𝜑2, Γ ⊢ 𝜓

Γ, 𝜑1 ∨ 𝜑2 ⊢ 𝜓
∨-R

Γ ⊢ 𝜑𝑖 𝑖 ∈ {1, 2}
Γ ⊢ 𝜑1 ∨ 𝜑2

⇒-L

Γ ⊢ 𝜑 Γ, 𝜓 ⊢ \
Γ, 𝜑 ⇒ 𝜓 ⊢ \

⇒-R

Γ, 𝜑 ⊢ 𝜓
Γ ⊢ 𝜑 ⇒ 𝜓

∀-L
Γ, 𝜑 [𝑡/𝑦] ⊢ 𝜓
Γ, ∀𝑦 𝜑 ⊢ 𝜓

∀-R
Γ ⊢ 𝜑 𝑧 ∉ FV(Γ))

Γ ⊢ ∀𝑧 𝜑

∃-L
Γ, 𝜑 ⊢ 𝜓 𝑥 ∉ FV(Γ,𝜓 )

Γ, ∃𝑥 𝜑 ⊢ 𝜓
∃-R

Γ ⊢ 𝜑 [𝑡/𝑥]
Γ ⊢ ∃𝑥 𝜑

=-L
Γ [𝑠/𝑥, 𝑡/𝑦] ⊢ 𝜑 [𝑠/𝑥, 𝑡/𝑦]

Γ [𝑡/𝑥, 𝑠/𝑦], 𝑡 = 𝑠 ⊢ 𝜑 [𝑡/𝑥, 𝑠/𝑦]
=-R

Γ ⊢ 𝑡 = 𝑡

×[
Γ [⟨𝑥1, 𝑥2⟩/𝑥] ⊢ 𝜑 [⟨𝑥1, 𝑥2⟩/𝑥] 𝑥1, 𝑥2 ∉ FV(Γ, 𝜑)

Γ ⊢ 𝜑

×𝛽

Γ [𝑡𝑖/𝑥] ⊢ 𝜑 [𝑡𝑖/𝑥] 𝑖 ∈ {1, 2}
Γ [𝜋𝑖 (⟨𝑡1, 𝑡2⟩)/𝑥] ⊢ 𝜑 [𝜋𝑖 (⟨𝑡1, 𝑡2⟩)/𝑥]

Unit[

Γ [()/𝑥] ⊢ 𝜑 [()/𝑥]
Γ ⊢ 𝜑

Fig. 5. The intuitionistic sequent calculus (LJ) for multi-sorted first-order logic with equality and pairs

formulas 𝜑 as defined in the paper can be regarded as a particular case of general formulas with an

abbreviated syntax. Formally, for each Δ0 formula 𝜑 we have a corresponding first-order formula

𝜑∗
defined in the usual way

(𝑡 =U 𝑢)∗ := 𝑡 =U 𝑢 (𝑡 ≠U 𝑢)∗ := 𝑡 =U 𝑢 ⇒ ⊥
⊤∗

:= ⊤ ⊥∗
:= ⊥

(𝜑 ∧𝜓 )∗ := 𝜑∗ ∧𝜓 ∗ (𝜑 ∨𝜓 )∗ := 𝜑∗ ∨𝜓 ∗

(∀𝑥 ∈𝑇 𝑡 𝜑)∗ := ∀𝑥𝑇 (𝑥 ∈𝑇 𝑡 ⇒ 𝜑∗) (∃𝑥 ∈𝑇 𝑡 𝜑)∗ := ∃𝑥𝑇 (𝑥 ∈𝑇 𝑡 ∧ 𝜑∗)

Recall that sequents in our restricted system are of the shape Θ; Γ ⊢ 𝜓 where Θ is a multiset of pairs

of formulas 𝑡 ∈𝑇 𝑢, Γ a list of Δ0 formulas and𝜓 a special right-hand side formula of shape either

𝑡 ∈𝑇 𝑢, 𝑡 ⊆𝑇 𝑢 or 𝑡 =𝑇 𝑢. Given such contexts, we write Γ̃ for the multiset of formulas {𝜑∗ | 𝜑 ∈ Γ}
and Θ̃ for the multiset {𝑡 ∈𝑇 𝑢 | (𝑡 ∈𝑇 𝑢) ∈ Θ}. As for right-hand side formulas 𝜓 , we define the
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notation𝜓 by recursion on the type of the main connective of𝜓 as follows:

𝑡 ∈̃𝑇 𝑢 := ∃𝑧 ′ (𝑧 ′ ∈ 𝑢 ∧ 𝑡 =̃𝑇 𝑧 ′) 𝑡 ⊆̃𝑇 𝑢 := ∀𝑧 (𝑧 ∈𝑇 𝑡 ⇒ 𝑡 ∈̃𝑇 𝑢)
𝑡 =̃Set(𝑇 ) 𝑢 := 𝑡 ⊆̃𝑇 𝑢 ∧ 𝑢 ⊆̃𝑇 𝑡 𝑡 =̃Unit 𝑢 := ⊤

𝑡 =̃𝑇1×𝑇2 𝑢 := 𝜋1 (𝑡) =̃𝑇1 𝜋1 (𝑢) ∧ 𝜋2 (𝑡) =̃𝑇2 𝜋2 (𝑢) 𝑡 =̃U 𝑢 := 𝑡 =U 𝑢

Translating proofs to LJ. We are now ready to state the first direction concerning the equiva-

lence between LJ and our proof system.

Lemma B.1. If Θ; Γ ⊢ 𝜑 is derivable in our restricted system, then LJ derives Θ̃, Γ̃ ⊢ 𝜑 .

Towards a proof of Lemma B.1, first notice that for every rule

Θ; Γ ⊢ 𝜓 . . .

Θ′
; Γ′ ⊢ 𝜓 ′

of our restricted system, the rule

Θ̃, Γ̃ ⊢ 𝜓 . . .

Θ̃′, Γ̃′ ⊢ 𝜓 ′

is easily seen to be admissible in LJ, save for one:

Θ, 𝑡 ∈U 𝑧; Γ ⊢ 𝑢 ∈U 𝑧 𝑧 ∉ FV(Θ, Γ, 𝑡, 𝑢)
Γ ⊢ 𝑡 =U 𝑢

It is helpful to treat the sequents of the type Θ, 𝑡 ∈U 𝑧; Γ ⊢ 𝑢 ∈U 𝑧 with 𝑧 ∉ FV(Θ, Γ, 𝑡, 𝑢) as a
special case.

Proposition B.2. For every contexts Θ, Γ and terms 𝑡 and 𝑢 of type U whose free variables do not

include 𝑧, if the sequent Θ, 𝑡 ∈U 𝑧; Γ ⊢ 𝑢 ∈U 𝑧 is derivable in the restricted system, then LJ derives

Θ̃, Γ̃ ⊢ 𝑡 =U 𝑢.

Proof. The proof goes by induction on the proof in the restricted system. For most cases, the

induction hypothesis is used in a very simple way. We focus on one representative subcase.

• If the last rule applied is a ∀ rule, with Γ = Γ′, ∀𝑥 ∈𝑇 𝑦 𝜑

Θ, 𝑡 ∈U 𝑧; Γ′, 𝜑 [𝑣/𝑥] ⊢ 𝑢 ∈U 𝑧

Θ, 𝑡 ∈U 𝑧; Γ′, ∀𝑥 ∈𝑇 𝑦 𝜑 ⊢ 𝑢 ∈U 𝑧

then we must have 𝑣 ∈𝑇 𝑦 occurring in Θ, 𝑡 ∈U 𝑧. By assumption, 𝑧 does not occur freely in

Θ, so we have necessarily that 𝑣 does not have 𝑧 as a free variable. Therefore 𝑧 does not occur
free in either Θ, Γ′ or 𝜑 [𝑣/𝑥], so we can conclude by applying the inductive hypothesis and

using the rule ∀-L of LJ.

Induction hypothesis

Θ̃, 𝑡 ∈U 𝑧, Γ̃′, 𝜑∗ [𝑣/𝑥] ⊢ 𝑡 =U 𝑢 Θ̃, 𝑡 ∈U 𝑧, Γ̃′ ⊢ 𝑣 ∈ 𝑦

Θ̃, 𝑡 ∈U 𝑧, Γ̃′, 𝑣 ∈ 𝑦 ⇒ 𝜑∗ [𝑣/𝑥] ⊢ 𝑡 =U 𝑢

Θ̃, 𝑡 ∈U 𝑧, Γ̃′, (∀𝑥 ∈ 𝑦 𝜑)∗ ⊢ 𝑡 =U 𝑢

□

Proof of Lemma B.1. The proof goes by induction over the proof of Θ; Γ ⊢ 𝜓 in the restricted

system. Now that we have proven Proposition B.2, all the cases are straightforward. We only outline

a few.
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• If the last rule applied is =U-R

Θ, 𝑡 ∈U 𝑧; Γ ⊢ 𝑢 ∈U 𝑧 𝑧 ∉ FV(Θ, Γ, 𝑡, 𝑢)
Γ ⊢ 𝑡 =U 𝑢

then we may use the induction hypothesis together with Proposition B.2.

• If the last rule applied is ∈Set-R
Θ, 𝑡 ∈𝑇 𝑢; Γ ⊢ 𝑡 =𝑇 𝑡 ′

Θ, 𝑡 ∈𝑇 𝑢; Γ ⊢ 𝑡 ′ ∈𝑇 𝑢

recalling that 𝑡 ′ ∈̃𝑇 𝑢 is defined as ∃𝑥 (𝑥 ∈𝑇 𝑢 ∧ 𝑥 =̃𝑇 𝑡 ′), we give the following derivation in

LJ

Θ̃, 𝑡 ∈̃𝑇 𝑢, Γ̃ ⊢ 𝑡 ∈̃𝑇 𝑢

Induction hypothesis

Θ̃, 𝑡 ∈̃𝑇 𝑢, Γ̃ ⊢ 𝑡 =̃𝑇 𝑡 ′

Θ̃, 𝑡 ∈̃𝑇 𝑢, Γ̃ ⊢ 𝑡 ∈̃𝑇 𝑢 ∧ 𝑡 =̃𝑇 𝑡 ′

Θ̃, 𝑡 ∈̃𝑇 𝑢, Γ̃ ⊢ 𝑡 ′ ∈̃𝑇 𝑢
□

From LJ to our restricted calculus. Now, we prove the converse of Lemma B.1.

Lemma B.3. If the sequent Θ̃, Γ̃ ⊢ 𝜓 is derivable in LJ, then Θ; Γ ⊢ 𝜓 is derivable in the restricted

system.

This direction is harder to prove than Lemma B.1, so we will decompose this result in multiple

steps:

(1) First, we note that we have the subformula property for LJ: any formula 𝜑 occurring in

a LJ-proof tree is necessarily a subformula of some formula occurring at the root, up to

substitution of terms. This allows us to distinguish a special class of formulas which we call

subΔ0 formulas and consider LJ sequents containing only such formulas.

(2) For sequents containing only subΔ0 formulas, we note that if we replace the rules ∃-L, ∀-L,
∃-R and ∀-R by the bounded variants

∀-LBV
Γ, 𝑡 ∈ 𝑦, 𝜑 [𝑡/𝑥] ⊢ 𝜓

Γ, 𝑡 ∈ 𝑢, ∀𝑥 (𝑥 ∈ 𝑦 ⇒ 𝜑) ⊢ 𝜓
∀-RBV

Γ, 𝑧 ∈ 𝑦 ⊢ 𝜑 𝑧 ∉ FV(Γ))
Γ ⊢ ∀𝑧 (𝑧 ∈ 𝑦 ⇒ 𝜑)

∃-LBV
Γ, 𝑥 ∈ 𝑦, 𝜑 ⊢ 𝜓 𝑥 ∉ FV(Γ,𝜓,𝑦)

Γ, ∃𝑥 (𝑥 ∈ 𝑦 ∧ 𝜑) ⊢ 𝜓
∃-RBV

Γ, 𝑡 ∈ 𝑦 ⊢ 𝜑 [𝑡/𝑥]
Γ, 𝑡 ∈ 𝑦 ⊢ ∃𝑥 (𝑥 ∈ 𝑦 ∧ 𝜑)

while deriving the same sequents as LJ, while retaining the constraint that the right-hand

side formula be neither a conjunct, universal quantification or implication when left-hand

side rules are applied. We will call the corresponding system LJBoundVarQ .

(3) Then, we note that LJBoundVarQ is equivalent to its restriction where left rules cannot be

applied if the right-hand side formula under consideration is a conjunction, an implication or

a universal quantification.

(4) Finally, the translation can go by induction on such restricted proofs.

We now go through these steps in more detail.

Step 1. That LJ has the subformula property is obvious from inspection of the proof rules. We

identify the set of subformulas of (translation of) Δ0 formulas, that we call subΔ0 formulas.

Definition B.4. A subΔ0 formula is a formula of LJ which is either of the shape 𝑡 ∈𝑇 𝑢, 𝑡 ∈𝑇 𝑢 ∧𝜑∗
,

𝑡 ∈𝑇 𝑢 ⇒ 𝜑∗
or 𝜑∗

, where 𝜑 is a Δ0 formula.
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From now on, we will suppose that all sequents under consideration exclusively contain subΔ0

formulas. We call 𝐿𝐽Δ0 the subsystem of LJ where all sequents contain exclusively subΔ0 formulas.

Step 2. Now we need to show that replacing the rules 𝑄-D by their counterpart 𝑄-DBV, with

𝑄 ∈ {∀, ∃} and 𝐷 ∈ {𝐿, 𝑅} does not limit LJ’s power, as far as subΔ0 formulas are concerned. It is

actually more convenient to do this in multiple steps, which are all proven by straightforward (if

lengthy) induction on the proofs. To this end, we consider the following three set of rules

⇒-LB

Γ, 𝑡 ∈ 𝑢, 𝜑 ⊢ 𝜓
Γ, 𝑡 ∈ 𝑢, 𝑡 ∈ 𝑢 ⇒ 𝜑 ⊢ 𝜓

∧-RB
Γ, 𝑡 ∈ 𝑢 ⊢ 𝜑

Γ, 𝑡 ∈ 𝑢 ⊢ 𝑡 ∈ 𝑢 ∧ 𝜑

∀-LB
Γ, 𝑡 ∈ 𝑢, 𝜑 [𝑡/𝑥] ⊢ 𝜓

Γ, 𝑡 ∈ 𝑢, ∀𝑥 (𝑥 ∈ 𝑢 ⇒ 𝜑) ⊢ 𝜓
∀-RB

Γ, 𝑧 ∈ 𝑢 ⊢ 𝜑 𝑧 ∉ FV(Γ, 𝑢)
Γ ⊢ ∀𝑧 (𝑧 ∈ 𝑢 ⇒ 𝜑)

∃-LB
Γ, 𝑥 ∈ 𝑢, 𝜑 ⊢ 𝜓 𝑥 ∉ FV(Γ,𝜓,𝑢)

Γ, ∃𝑥 (𝑥 ∈ 𝑢 ∧ 𝜑) ⊢ 𝜓
∃-RB

Γ, 𝑡 ∈ 𝑢 ⊢ 𝜑 [𝑡/𝑥]
Γ, 𝑡 ∈ 𝑦 ⊢ ∃𝑥 (𝑥 ∈ 𝑢 ∧ 𝜑)

∀-LBV
Γ, 𝑡 ∈ 𝑦, 𝜑 [𝑡/𝑥] ⊢ 𝜓

Γ, 𝑡 ∈ 𝑢, ∀𝑥 (𝑥 ∈ 𝑦 ⇒ 𝜑) ⊢ 𝜓
∀-RBV

Γ, 𝑧 ∈ 𝑦 ⊢ 𝜑 𝑧 ∉ FV(Γ))
Γ ⊢ ∀𝑧 (𝑧 ∈ 𝑦 ⇒ 𝜑)

∃-LBV
Γ, 𝑥 ∈ 𝑦, 𝜑 ⊢ 𝜓 𝑥 ∉ FV(Γ,𝜓,𝑦)

Γ, ∃𝑥 (𝑥 ∈ 𝑦 ∧ 𝜑) ⊢ 𝜓
∃-RBV

Γ, 𝑡 ∈ 𝑦 ⊢ 𝜑 [𝑡/𝑥]
Γ, 𝑡 ∈ 𝑦 ⊢ ∃𝑥 (𝑥 ∈ 𝑦 ∧ 𝜑)

and the corresponding proof systems:

• We call LJBoundedConn the system 𝐿𝐽Δ0 with the addition of the rules⇒-LB and ∧-RB but

omitting the rules⇒-L and the following instances of ∧-R
Γ ⊢ 𝑡 ∈ 𝑢 Γ ⊢ 𝜑

Γ ⊢ 𝑡 ∈ 𝑢 ∧ 𝜑

• We call LJBoundedQ the system LJBoundedConn with the addition of the rules ∀-LB, ∀-RB,
∃-LB and ∃-RB, but omitting the rules ∀-L, ∀-R, ∃-L and ∃-R.

• We call LJBoundVarQ the system LJB2 with the addition of the rules ∀-LBV, ∀-RBV, ∃-
LBV and ∃-RBV, but omitting the rules ∀-LB, ∀-RB, ∃-LB and ∃-RB.

We can now show that all those systems derive the same sequents thanks to a series of lemmas

stating that when moving from 𝐿𝐽Δ0 to LJBoundedConn to LJBoundedQ to LJBoundVarQ , in each

step the rules we have removed remain admissible using the rules we have added. The admissibility

of each individual rule mentioned in the lemmas can be shown by a lengthy induction.

Lemma B.5. The rules⇒-L and ∧-R are admissible in LJBoundedConn.

Proof. Let us first focus on the admissibility of∧-R. By induction on the depth of a LJBoundedConn
proof of

Γ ⊢ 𝑡 ∈𝑇 𝑢 and Γ ⊢ 𝜓
we want to show that Γ ⊢ 𝑡 ∈𝑇 𝑢 ∧𝜓 is derivable in LJBoundedConn. Note that if the first conjunct

is not a formula of the shape 𝑡 ∈𝑇 𝑢, we may conclude using an instance of ∧-R of LJBoundedConn,

To this end, we make a case analysis according to the last LJBoundedConn rule applied to derive

Γ ⊢ 𝑡 ∈𝑇 𝑢. As they are many cases, we only outline a few representative ones. Most cases are easy
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because it cannot be the case that a right-hand side rule of LJBoundedConn may be applied, since

𝑡 ∈𝑇 𝑢 is an atomic formula.

• If the last rule applied was an axiom, this means that 𝑡 ∈𝑇 𝑢 was part of Γ. In this case

Γ ⊢ 𝜓
Γ ⊢ 𝑡 ∈𝑇 𝑢 ∧𝜓

is an instance of ∧-RB, the designated replacement of ∧-R.
• If the last rule applied was ∧-L, assuming that Γ = Γ′, 𝜑1 ∧ 𝜑2

Γ′, 𝜑1, 𝜑2 ⊢ 𝑡 ∈𝑇 𝑢

Γ′, 𝜑1 ∧ 𝜑2 ⊢ 𝑡 ∈𝑇 𝑢

then the induction hypothesis gives us a proof of Γ′, 𝜑1, 𝜑2 ⊢ 𝑡 ∈𝑇 𝑢 ∧𝜓 , so we may build

the tree

Induction hypothesis

Γ′, 𝜑1, 𝜑2 ⊢ 𝑡 ∈𝑇 𝑢 ∧𝜓

Γ ⊢ 𝜓
by applying the rule ∧-L.

The admissibility of ⇒-L is handled similarly, noticing that, since we are dealing with subΔ0

formulas, the antecedent of an implication in such a rule is also an atomic formula 𝑡 ∈𝑇 𝑢. □

Corollary B.6. 𝐿𝐽Δ0 and LJBoundedConn derive the same sequents.

Proof. Thanks to Lemma B.5, it is then obvious that all the rules of 𝐿𝐽Δ0 are admissible in

LJBoundedConn, so every sequent derivable in 𝐿𝐽Δ0 is derivable in LJBoundedConn. The converse

is obvious. □

Lemma B.7. The rules ∀-L, ∀-R, ∃-L and ∃-R are admissible in LJBoundedQ .

Proof. Let us focus on ∀-L. We assume that we have a LJBoundedQ derivation of

Γ, 𝑡 ∈𝑇 𝑢 ⇒ 𝜑 [𝑡/𝑥] ⊢ 𝜓
andwe show, by induction on its depth, that weway obtain a LJBoundedQ derivation of Γ, ∀𝑥 (𝑥 ∈𝑇
𝑢 ⇒ 𝜓 ). As usual, one should proceed by case analysis on the last rule applied to get Γ, 𝑡 ∈𝑇 𝑢 ⇒
𝜑 [𝑡/𝑥] ⊢ 𝜓 . In all but one case, the main formula under consideration is not 𝑡 ∈𝑇 𝑢 ⇒ 𝜑 [𝑡/𝑥] and
it is easy to use the induction hypothesis. The only interesting case thus occurs when the last rule

applied was the ⇒-LB rule

Γ, 𝜑 ⊢ 𝜓
Γ, 𝑡 ∈𝑇 𝑢 ⇒ 𝜑 [𝑡/𝑥] ⊢ 𝜓

In such a case, we know that 𝑡 ∈𝑇 𝑢 is a formula occurring in Γ, so we replace the application of

this rule with the new rule ∀-LB of LJBoundedQ to conclude.

Γ, 𝜑 ⊢ 𝜓
Γ, ∀𝑥 (𝑥 ∈𝑇 𝑢 ⇒ 𝜑) ⊢ 𝜓

The reasoning for the other rule ∃-R is extremely similar, where the only interesting case occurs

upon applying a rule ∧-RB. The last two rules are also handled similarly, the interesting case for

the admissibility of ∀-R (respectively ∃-L) being ⇒-R (respectively ∧-L). □

Corollary B.8. LJBoundedConn and LJBoundedQ derive the same sequents.

Lemma B.9. The rules ∀-LB, ∀-RB, ∃-LB and ∃-RB are admissible in LJBoundVarQ .
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Proof. All four cases are proven in a similar manner. Exceptionally, the induction this time is not

over the size of the proofs, but rather on a quantity computed from the bounding term occurring in

the main quantifier of the rule. For instance, this would be 𝑡 in the following instance of ∃-LB:

∃-LB
Γ, 𝑥 ∈ 𝑡, 𝜑 ⊢ 𝜓

Γ, ∃𝑥 (𝑥 ∈ 𝑡 ∧ 𝜑) ⊢ 𝜓
The “size” of such a term 𝑡 is the pair ⟨𝑣𝑡 , 𝑟𝑡 ⟩ computed as follows:

• There is an intuitive notion of size for types defined by induction:

𝑠 (U) = 1

𝑠 (Unit) = 1

𝑠 (𝑇1 ×𝑇2) = 1 + 𝑠 (𝑇1) + 𝑠 (𝑇2)
𝑠 (Set(𝑇 )) = 1 + 𝑠 (𝑇 )
𝑠 (𝑇1 ×𝑇2) = 1 + 𝑠 (𝑇1) + 𝑠 (𝑇2)

From this we can define the “variable size” of a term 𝑡 , denoted 𝑣𝑡 , to be the sum of the size

of the free variables of t.

𝑣𝑡 =
∑︁

𝑥 ∈FV(𝑡 )
𝑥 of type𝑇

𝑠 (𝑇 )

• 𝑟𝑡 is the intuitive notion of size for terms, computed by induction over 𝑡 :

𝑟𝑐𝑖 = 1

𝑟 (𝑡,𝑢) = 1 + 𝑟𝑡 + 𝑟𝑢
𝑟 () = 1

𝑟𝜋𝑖 (𝑡 ) = 1 + 𝑟𝑡
Then we can use the fact that the lexicographic product of N with itself is well-founded to run

induction over the pair (𝑣𝑡 , 𝑟𝑡 ). Let us do so for the rule ∃-LB. To this end, suppose that 𝑡 is a term

such that the rule

Γ, 𝑥 ∈ 𝑢, 𝜑 ⊢ 𝜓
Γ, ∃𝑥 (𝑥 ∈ 𝑢 ∧ 𝜑) ⊢ 𝜓

is admissible in LJBoundVarQ for every 𝑢 such that either 𝑣𝑢 < 𝑣𝑡 or 𝑣𝑢 = 𝑣𝑡 and 𝑟𝑢 < 𝑟𝑡 . We

proceed with a case analysis to show that the same rule with 𝑡 instead of 𝑢 is admissible.

• If 𝑡 is a variable, then this is an instance of the rule ∃-LBV of LJBoundVarQ .

• Otherwise, if 𝑡 has a free variable 𝑧 of type 𝑇1 ×𝑇2, one may apply the rule ×[

Γ [⟨𝑧1, 𝑧2⟩/𝑧], ∃𝑥 ∈ 𝑡 [⟨𝑧1, 𝑧2⟩/𝑧] 𝜑 [⟨𝑧1, 𝑧2⟩/𝑧] ⊢ 𝜓 [⟨𝑧1, 𝑧2⟩/𝑧]
Γ, ∃𝑥 ∈ 𝑡 𝜑 ⊢ 𝜓

and conclude using our induction hypothesis since 𝑣𝑡 [ ⟨𝑧1,𝑧2 ⟩/𝑧 ] < 𝑣𝑡 .

• Otherwise, if 𝑡 has no such free variable, but is itself not a free variable, then it is necessarily

of the shape 𝜋𝑖 (⟨𝑡1, 𝑡2⟩) for some 𝑖 ∈ {1, 2}, so we may apply the rule ×𝛽

Γ, ∃𝑥 ∈ 𝑡𝑖 𝜑 ⊢ 𝜓
Γ, ∃𝑥 ∈ 𝑡 𝜑 ⊢ 𝜓

and conclude using our induction hypothesis as we have 𝑣𝑡𝑖 ≤ 𝑣𝑡 and 𝑟𝑡𝑖 < 𝑟𝑡 .

□

Corollary B.10. LJBoundedQ and LJBoundVarQ derive the same sequents.

Lemma B.11. 𝐿𝐽Δ0 and LJBoundVarQ derive the same sequents.
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Proof. Combine Corollaries B.6, B.8 and B.10. □

Step 3. Recall that a right-hand side rule is one that changes the right-hand side formula. Among

the rules of LJBoundVarQ , these are the rules =-R, ∧-R, ∧-RB, ⇒-R, ∀-RBV and ∃-RBV. We call

a proof tree right-focused if every occurrence of sequent Γ ⊢ 𝜓 in the tree such that the top-level

connective of𝜓 is either ∀, ⇒ or ∧ is necessarily the conclusion of a right-hand side rule.

The rationale behind this choice is that the rules ∧-R, ∧-RB,⇒-R and ∀-RBV are invertible (if

their conclusion is true, so are all the premises), so they may be safely applied eagerly.

Lemma B.12. If Γ ⊢ 𝜑 is derivable in LJBoundVarQ , then there is a right-focused LJBoundVarQ

proof tree of deriving Γ ⊢ 𝜑 .
Proof. The result is proven by induction over the depth of the proof-tree, and is straightforward.

We sketch one of the case: if the last rule applied is ∨-L and the right-hand side formula is an

implication

Γ, 𝜑1 ⊢ 𝜓 ⇒ \ Γ, 𝜑2 ⊢ 𝜓 ⇒ \

Γ, 𝜑1 ∨ 𝜑2 ⊢ 𝜓 ⇒ \

by the induction hypotheses, we have right-focused proofs 𝜋𝑖 with conclusion Γ, 𝜑𝑖 ,𝜓 ⊢ \ for

𝑖 ∈ {1, 2}. We may then build the tree

𝜋1

Γ, 𝜑1,𝜓 ⊢ \
𝜋2

Γ, 𝜑2,𝜓 ⊢ \
Γ, 𝜑1 ∨ 𝜑2,𝜓 ⊢ \

Γ, 𝜑1 ∨ 𝜑2 ⊢ 𝜓 ⇒ \

which is right-focused. □

Step 4. First, we observe that LJBoundVarQ has a stronger variant of the subformula property: if

all formulas in the conclusion sequent Γ ⊢ 𝜓 is the translation of some Δ0 formula, then all formulas

occurring in a proof tree are actually Δ0 formulas.

Lemma B.13. If Θ̃, Γ̃ ⊢ ˜𝜓 has a right-focused proof tree in LJBoundVarQ , then there is a proof of

Θ; Γ ⊢ 𝜓 in our restricted system.

The proof goes by induction over the right-focused LJBoundVarQ proof tree. All cases are

immediate, except for the case of the congruence rule

Γ [𝑠/𝑥, 𝑡/𝑦] ⊢ 𝜓 [𝑠/𝑥, 𝑡/𝑦]
Γ [𝑡/𝑥, 𝑠/𝑦], 𝑡 =U 𝑠 ⊢ 𝜓 [𝑡/𝑥, 𝑠/𝑦]

This particular case can be treated by showing that the obvious counterpart to this rule is admissible

in the restricted system before embarking on the proof of Lemma B.13.

Proposition B.14. The following rule is admissible in our restricted proof system

Θ[𝑠/𝑥, 𝑡/𝑦]; Γ [𝑠/𝑥, 𝑡/𝑦] ⊢ 𝜓 [𝑠/𝑥, 𝑡/𝑦]
Θ[𝑡/𝑥, 𝑠/𝑦]; Γ [𝑡/𝑥, 𝑠/𝑦], 𝑡 =U 𝑠 ⊢ 𝜓 [𝑡/𝑥, 𝑠/𝑦]

Proposition B.14 can be proven in a similar way as Lemma B.9, by reducing to the case where 𝑠

and 𝑡 are variables using the rules ×𝛽 and ×[ . Then, similarly to Lemma B.1, Lemma B.13 is proven

by a routine induction on the proof of the desired sequent in LJBoundVarQ , which allows us to

complete the proof of Lemma B.3.

Proof of Lemma B.3. Assume Θ̃, Γ̃ ⊢ ˜𝜓 is derivable in LJ. Because of the subformula property,

it is also derivable in 𝐿𝐽Δ0 and thus, by Lemma B.11, it is also derivable in LJBoundVarQ . Then,

Lemma B.12 shows that it can be done using a right-focused proof, and then Lemma B.13 allows us

to conclude that Θ; Γ ⊢ 𝜓 is derivable in the restricted system. □
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B.2 Proof of interpolation for Δ0 formulas in the intuitionistic proof system
Recall that in the body of the paper we made use of a Craig interpolation result for Δ0 formulas,

both for classical validity and intuitionistic provability. Both may be proven in similar way, but

we only give the proof for the intuitionistic case here. The classical result is obtained by taking a

system with multiple conclusions. With this caveat, the inductive proof is essentially the same. The

precise rule can be found in the conclusion of the body of the paper.

We restate the result, abusing notation by eliding the difference between membership contexts

and Δ0 formulas:

Let Λ𝐿 and Λ𝑅 be multi-sets each consisting possibly of formulas and membership contexts and

𝜓 a formula. Let ®𝑖 be the collection of variables that occur in Λ𝐿 and which also occur in Λ𝑅,𝜓 .

Then for every derivation

Λ𝐿, Λ𝑅 ⊢ 𝜓
there exists a Δ0 formula \ with free variables ®𝑖 such that the following holds

Λ𝐿 |= \ and Λ𝑅, \ |= 𝜓

Further, there is a polynomial-time algorithm which outputs Θ when given as input a formal

derivation of Λ𝐿, Λ𝑅 ⊢ 𝜓 .
We use induction on the complexity of the proofs, following the template presented in Fitting’s

textbook [Fitting 1996], see also the expositions of this method in [Toman and Weddell 2011;

Wernhard 2018]. We present here further representative cases of the rules, omitting many cases

that are either trivial or similar to rules that are already covered below.

In order for the inductive argument to go through, we assume that if we have 𝑡 ∈ 𝑢 in a ∈-context,
then 𝑡 does not contain a projection 𝜋𝑖 as a subterm. This can be guaranteed by transforming the

proof so that the initial steps consist of application of the rules ×𝛽 and ×[ , which are invertible.

The base case consists of rules with no hypotheses.

Consider first the case of a proof consisting only of an application of the rule:

Λ, 𝑡 ≠U 𝑡 ⊢ 𝑢 ∈𝑇 𝑣

Note that 𝑡 ≠U 𝑡 is a Δ0 formula representing False, just as 𝑡 =U 𝑡 represents True.

If 𝑡 ≠U 𝑡 is in Λ𝐿 we generate 𝑡 ≠U 𝑡 , while if it is in Λ𝑅 we generate 𝑡 =U 𝑡 .

For the hypothesis-free rule:

Θ, 𝑡0 ∈U 𝑢, Γ, 𝑡0 =U 𝑡1, . . . , 𝑡𝑘−1 =U 𝑡𝑘 ⊢ 𝑡𝑘 ∈U 𝑢

we will generate 𝑡 ∈U 𝑢 if 𝑡 ∈U 𝑢 is in Λ𝐿 , and otherwise ¬(𝑡 ∈U 𝑢).
We now consider the case where the final rule applied is:

Λ, 𝑡 ∈Set(𝑇 ) 𝑣 ⊢ 𝑡 =Set(𝑇 ) 𝑢

Λ, 𝑡 ∈Set(𝑇 ) 𝑣 ⊢ 𝑢 ∈Set(𝑇 ) 𝑣
First consider the subcase where 𝑡 ∈Set(𝑇 ) 𝑣 is inΛ𝐿 within the bottom sequent. Thus our goal is to

find an interpolant \ ′ which contains only variables common to Λ𝐿, 𝑡 ∈Set(𝑇 ) 𝑣 and Λ𝑅, 𝑢 ∈Set(𝑇 ) 𝑣 .
We apply the induction hypothesis with the same decomposition of the left side into 𝐿 and 𝑅.

It gives us a \ such that Λ𝐿, 𝑡 ∈Set(𝑇 ) 𝑣 ⊢ \ and Λ𝑅, \ ⊢ 𝑥 =Set(𝑇 ) 𝑢, and \ includes only variables

that are common to Λ𝐿, 𝑡 ∈Set(𝑇 ) 𝑣 and Λ𝑅, 𝑥 =Set(𝑇 ) 𝑢. Thus all the variables in \ meet the criteria

for \ ′ except possibly for 𝑡 .

We set \ ′ = ∃𝑡 ∈ 𝑣 \ . The free variables in \ ′ are those of \ other than 𝑡 , and also 𝑣 , and thus

they meet the desired criteria.
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It is easy to see using the properties of \ ′ that Λ𝐿, 𝑡 ∈Set(𝑇 ) 𝑣 |= \ ′ and Λ𝑅, \
′ |= 𝑢 ∈Set(𝑇 ) 𝑣 as

required.

In the other subcase, where 𝑡 ∈Set(𝑇 ) 𝑣 is in Λ𝑅 , we can apply the induction hypothesis as above

and set \ ′ = \ .

We now turn to the case where the last proof rule is:

Λ, 𝑧 ∈𝑇 , 𝑡 ⊢ 𝑧 ∈𝑇 𝑢 𝑧 ∉ FV(Λ, 𝑡, 𝑢)
Λ ⊢ 𝑡 ⊆𝑇 𝑢

We call the induction hypothesis on the top sequent, splitting the formulas the same way but

putting 𝑧 ∈𝑇 𝑡 in Λ𝑅 . We can use the inductively formed interpolant directly.

Let us turn to the case where the last rule applied is:

Λ, 𝑡 ∈𝑇 𝑧, 𝜑 [𝑡/𝑦] ⊢ 𝑣 ∈𝑇 ′ 𝑤

Λ, 𝑡 ∈𝑇 𝑧, ∀𝑦 ∈𝑇 𝑧 𝜑 ⊢ 𝑣 ∈𝑇 ′ 𝑤

To simplify matters, let us assume that 𝑡 is a single variable. We first consider the subcase where

∀𝑦 ∈𝑇 𝑧 𝜑 is in Λ𝑅 in the bottom. We can apply the induction hypothesis to the top sequent with

the partition of formulas being the one induced from the partition on the bottom. The induction

gives us a \ that may use the variable 𝑡 , which may not occur in any formula within Λ𝑅 in the

bottom sequent, and hence is not allowed in our interpolant for the bottom. If this happens, then

this implies that 𝑡 ∈𝑇 𝑧 is in Λ𝐿 on the bottom. In this case we set \ ′ = ∃𝑦 ∈𝑇 𝑧 \ . It is clear that

Λ𝐿, 𝑡 ∈𝑇 𝑧 |= \ ′. Since 𝑡 does not occur in Λ𝐿 and Λ𝐿 , 𝜑 [𝑡/𝑦], \ |= 𝑣 ∈𝑇 ′ 𝑤 by induction, we

conclude that Λ𝐿, 𝜑, \
′ |= 𝑣 ∈𝑇 ′ 𝑤 as required.

Now consider the subcase where ∀𝑦 ∈ 𝑧 𝜑 is in Λ𝐿 in the bottom sequent. We apply induction

in the same way, to obtain \ as above. The only difficult case is when 𝑡 only occurs in formulas

within Λ𝑅 on the bottom. In this case we can check that \ ′ = ∀𝑦 ∈ 𝑧 𝜑 can be used as the desired

interpolant.

B.3 Proof of the higher-type interpolation lemma
Recall the higher-type interpolation lemma from the body of the paper, which gives the inductive

invariant used in the synthesis of NRC[Get] expressions from proof:

Let Θ = Θ𝐿,Θ𝑅 be a ∈-context and Γ = Γ𝐿, Γ𝑅 a context. Call 𝐿 = FV(Θ𝐿, Γ𝐿) the set of left-hand
side variables, 𝑅 = FV(Θ𝑅, Γ𝑅) the set of right-hand side variables, and𝐶 = FV(Θ𝐿, Γ𝐿) ∩FV(Θ𝑅, Γ𝑅)
the set of common free variables. Suppose that 𝑡 and 𝑢 are terms of suitable types such that

FV(𝑡) ⊆ 𝐿 and FV(𝑢) ⊆ 𝑅 and Then we have:

• If Θ; Γ ⊢; 𝑡 =𝑇 𝑢 is derivable, there is an NRC expression 𝐸 of type 𝑇 such that Θ; Γ |= 𝑡 =

𝐸 = 𝑢 and FV(𝐸) ⊆ 𝐶 .

• If Θ; Γ ⊢ 𝑡 ⊆𝑇 𝑢 is derivable, there is an NRC expression 𝐸 of type Set(𝑇 ) such that

Θ; Γ |= 𝑡 ⊆ 𝐸 ⊆ 𝑢 and FV(𝐸) ⊆ 𝐶 .

• If Θ; Γ ⊢ 𝑡 ∈𝑇 𝑢 is derivable, then there is an NRC expression 𝐸 of type Set(𝑇 ) such that

Θ; Γ |= 𝑡 ∈ 𝐸 and FV(𝐸) ⊆ 𝐶 .

Further the desired expressions can be constructed in time polynomial in the size of the proof

(e.g. measured in terms of the number of steps and the maximal size of a sequent in each step).

Proof. First, we assume that if we have 𝑡 ∈ 𝑢 in Θ𝐿, Θ𝑅 , then 𝑡 does not contain a projection 𝜋𝑖
as a subterm. This can be guaranteed by transforming the proof so that the initial steps consist of

application of the rules ×𝛽 and ×[ , which are invertible.
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We proceed by induction over the proof tree, calling 𝐸 the desired expression that we want to

create in the inductive step. In each case we will prove the result for the bottom sequent of a proof

rule by making a single call to the induction hypothesis for each sequent on top of the proof rule.

We will require a partition of the symbols in the top sequent, but it will always be clear from the

bottom sequent.

• If the last proof rule used is contraction, we directly use the induction hypothesis.

• If the last proof rule used is =Set-R then we directly use the induction hypothesis as well.

Θ; Γ ⊢ 𝑡 ⊆ 𝑢 Θ; Γ ⊢ 𝑢 ⊆ 𝑡

Θ; Γ ⊢ 𝑡 = 𝑢

then one has a transformation 𝐸 ′
such that Γ |= 𝑡 ⊆ 𝐸 ′ ⊆ 𝑢 by applying the induction

hypothesis on the first subproof. Since the system is sound, we do have Γ |= 𝑡 = 𝑢, so

Γ |= 𝑡 = 𝐸 ′ = 𝑢. We can thus take 𝐸 = 𝐸 ′
.

• If the last proof rule used is =×-R

Θ; Γ ⊢ 𝜋1 (𝑡) =𝑇1 𝜋1 (𝑢) Θ; Γ ⊢ 𝜋2 (𝑡) =𝑇2 𝜋2 (𝑡)
Θ; Γ ⊢ 𝑡 =𝑇1×𝑇2 𝑢

The induction hypothesis yields NRC expressions 𝐸1 and 𝐸2 such that

Θ; Γ |= 𝜋1 (𝑡) = 𝐸1 = 𝜋1 (𝑢) and Θ; Γ |= 𝜋2 (𝑡) = 𝐸2 = 𝜋2 (𝑢)

It suffices to take 𝐸 = (𝐸1, 𝐸2).
• If the last proof rule used is =Unit-R

Θ; Γ ⊢ 𝑡 =Unit 𝑢

Then the expression returning the unique element of Unit works.

• If the last proof used is =U-R

Θ, 𝑡 ∈U 𝑧; Γ ⊢ 𝑢 ∈U 𝑧 𝑧 ∉ FV(Θ, Γ, 𝑡, 𝑢)
Θ; Γ ⊢ 𝑡 =U 𝑢

The induction hypothesis gives us an expression 𝐸 ′
of type Set(U) such that

Θ; Γ, 𝑡 ∈U 𝑧 |= 𝑢 ∈ 𝐸 ′

Note that since 𝑧 is fresh, we must actually have

Θ; Γ |= 𝑢 ∈ 𝐸 ′

Applying interpolation, there is a Δ0 formula \ (®𝑖, 𝑧) such that

Θ𝐼 , Θ𝐿 ; Γ𝐿, 𝑡 ∈U 𝑧 |= \ (®𝑖, 𝑧) and Θ𝑅 ; Γ𝑅, \ (®𝑖, 𝑧) |= 𝑢 ∈U 𝑧

This means that we have

Θ; Γ, |= \ (®𝑖, 𝑧) ↔ 𝑡 ∈ 𝑧

In particular Θ; Γ entails that {𝑡} is the unique singleton set 𝑧 satisfying \ (𝑣𝑒𝑐𝑖, 𝑧).
So we may take 𝐸 to be the unique element of {𝑥 ∈ 𝐸 ′ | \ (®𝑖, {𝑥})}, which can be formally

defined in NRC as

𝐸 = Get

(⋃
{case(Verify\ (®𝑖, {𝑥}), {𝑥}, ∅) | 𝑥 ∈ 𝐸 ′}

)
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• If the last proof rule used is ⊆-R
Θ, 𝑧 ∈𝑇 𝑡 ; Γ ⊢ 𝑧 ∈𝑇 𝑢 𝑧 ∉ FV(Θ; Γ, 𝑡, 𝑢)

Θ; Γ ⊢ 𝑡 ⊆𝑇 𝑢

then the inductive hypothesis gives us an expression 𝐸 ′(®𝑖) such that

Θ; Γ |= 𝑧 ∈ 𝐸 ′

Apply interpolation to the premise so as to obtain a Δ0 formula \ (®𝑖, 𝑧) with

Θ𝐼 , Θ𝐿 ; Γ𝐿, 𝑧 ∈ 𝑡 |= \ (®𝑖, 𝑧) and Θ𝑅 ; Γ𝑅, \ (®𝑖, 𝑧) |= 𝑧 ∈ 𝑢

In this case, we take

𝐸 (®𝑖) = {𝑧 ∈ 𝐸 ′(®𝑖) | \ (®𝑖, 𝑧)}
which is NRC-definable as⋃

{case(Verify\ (®𝑖, 𝑧), {𝑧}, ∅) | 𝑧 ∈ 𝐸 ′(®𝑖)}

Now, let us assume that Γ is valid and show that 𝑡 ⊆ 𝐸 and 𝐸 ⊆ 𝑢.

– Suppose that 𝑧 ∈ 𝑡 . By the induction hypothesis, we know that 𝑧 ∈ 𝐸 ′
. But we also know

that Γ𝐿 is valid, so that \ (®𝑖, 𝑧) holds. By definition, we thus have 𝑧 ∈ 𝐸.

– Now suppose that 𝑧 ∈ 𝐸, that is, that 𝑧 ∈ 𝐸 ′
and \ (®𝑖, 𝑧) holds. The latter directly implies

that 𝑧 ∈ 𝑢 since Γ𝑅 is valid.

• If the last proof rule used is ∈Set-R
Θ, 𝑡 ∈Set(𝑇 ) 𝑣 ; Γ ⊢ 𝑡 =Set(𝑇 ) 𝑢

Θ, 𝑡 ∈Set(𝑇 ) 𝑣 ; Γ ⊢ 𝑢 ∈Set(𝑇 ) 𝑣

then, by using the induction hypothesis on the premise, we get an expression 𝐸 ′
which is

equal to 𝑢 assuming Θ, 𝑡 ∈Set(𝑇 ) 𝑣 ; Γ. So we may take 𝐸 = {𝐸 ′}.
• If the last proof rule used is ∈U-R

Θ, 𝑡 ∈U 𝑢; Γ ⊢ 𝑡 ∈U 𝑢

then it means that FV(𝑡) ⊆ 𝐶 , so we may take the expression {𝑡}.
• If the last rule used is ×𝛽 or =-subst

Θ[𝑡𝑖/𝑦]; Γ [𝑡𝑖/𝑦] ⊢ (𝑡 ∈𝑇 𝑢) [𝑡𝑖/𝑦] 𝑖 ∈ {1, 2}
Θ; Γ [𝜋𝑖 (⟨𝑡1, 𝑡2⟩)/𝑦] ⊢ (𝑡 ∈𝑇 𝑢) [𝜋𝑖 (⟨𝑡1, 𝑡2⟩)/𝑦]

Θ[𝑦/𝑥]; Γ [𝑦/𝑥] ⊢ 𝑣 [𝑦/𝑥] ∈𝑇 𝑤 [𝑦/𝑥]
Θ; Γ, 𝑥 =U 𝑦 ⊢ 𝑤 ∈𝑇 𝑣

the expression obtained using the induction hypothesis allows to reach our conclusion.

• If the last rule used is ×[

Θ[⟨𝑥1, 𝑥2⟩/𝑥]; Γ [⟨𝑥1, 𝑥2⟩/𝑥] ⊢ (𝑡 ∈𝑇 𝑢) [⟨𝑥1, 𝑥2⟩/𝑥] 𝑥1, 𝑥2 ∉ FV(Θ; Γ, 𝑡, 𝑢)
Θ; Γ ⊢ 𝑡 ∈𝑇 𝑢

then the induction hypothesis yields an expression 𝐸 ′
. If 𝑥 ∉ 𝐿 ∩ 𝑅, then we also have that

𝑥1, 𝑥2 ∉ 𝐿 ∩ 𝑅, so 𝐸 ′
has the expected free variables and we may set 𝐸 = 𝐸 ′

. Otherwise, 𝑥1
and 𝑥2 are among the free variables of 𝐸 ′

and 𝑥 ∈ 𝐿 ∩ 𝑅. Writing 𝐸 ′(®𝑧, 𝑥1, 𝑥2) to clarify the

free variables, it suffices to set

𝐸 (®𝑧, 𝑥) = 𝐸 ′(®𝑧, 𝜋1 (𝑥), 𝜋2 (𝑥))
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• If the last proof rule is ⊥-L

Θ; Γ, ⊥ ⊢ 𝑡 ∈𝑇 𝑢

then, any expression can be used since the premise is contradictory. This is also the case for

the rule ≠ −L.
• If the last proof rule is ∧-L

Θ; Γ, 𝜑, 𝜓 ⊢ 𝑡 ∈𝑇 𝑢

Θ; Γ, 𝜑 ∧𝜓 ⊢ 𝑡 ∈𝑇 𝑢

one may directly take the expression given by the induction hypothesis.

• If the last proof rule used is ∨-L

Θ; Γ, 𝜑 ⊢ 𝑡 ∈𝑇 𝑢 Θ; Γ, 𝜓 ⊢ 𝑡 ∈𝑇 𝑢

Θ; Γ, 𝜑 ∨𝜓 ⊢ 𝑡 ∈𝑇 𝑢

the induction hypothesis yields expressions 𝐸1 and 𝐸2 of sort Set(𝑇 ) such that

Θ; Γ, 𝜑 |= 𝑡 ∈ 𝐸1 and Θ; Γ, 𝜓 |= 𝑡 ∈ 𝐸2

So we may take 𝐸 = 𝐸1 ∪ 𝐸2.

• Suppose the last proof rule used is ∀-L

Θ, 𝑡 ∈𝑇 𝑧; Γ, 𝜑 [𝑡/𝑦] ⊢ 𝑣 ∈𝑇 ′ 𝑤

Θ, 𝑡 ∈𝑇 𝑧; Γ, ∀𝑦 ∈𝑇 𝑧 𝜑 ⊢ 𝑣 ∈𝑇 ′ 𝑤

If 𝑡 ∈𝑇 𝑧 and ∀𝑦 ∈𝑇 𝑧 𝜑 are both part of the left-hand side or right-hand side, then we may

directly use the inductive hypothesis to obtain an expression 𝐸 ′
, and we may check that

𝐸 = 𝐸 ′
satisfies the inductive invariant. Otherwise, it might be the case that 𝐸 ′

contains some

additional variables 𝑥1, . . . , 𝑥𝑘 from the term 𝑡 and that 𝑧 ∈ 𝐿 ∩ 𝑅. Recall that our preliminary

assumption means that 𝑡 does not contain any projection, so that we have terms 𝑝1, . . . , 𝑝𝑘
with a single variable 𝑢 such that 𝑝𝑖 [𝑡/𝑢] is semantically equivalent to 𝑥𝑖 . Then, we may

show that

𝐸 =
⋃

{𝐸 ′ [𝑝1/𝑥1, . . . , 𝑝𝑘/𝑥𝑘 ] | 𝑢 ∈ 𝑦}

satisfies the invariant.

• If the last proof rule used is ∃-L

Θ, 𝑥 ∈𝑇 𝑦; Γ, 𝜑 ⊢ 𝑡 ∈𝑇 ′ 𝑣 𝑥 ∉ FV(Θ, Γ, 𝑦, 𝑡, 𝑣)
Θ; Γ, ∃𝑥 ∈𝑇 𝑦 𝜑 ⊢ 𝑡 ∈𝑇 ′ 𝑣

we may apply the induction hypothesis to obtain 𝐸 ′
that also satisfy the invariant in the

conclusion (note that FV(𝐸 ′) ⊆ 𝐿 ∩ 𝑅 since 𝑥 is fresh), so we can conclude by taking 𝐸 = 𝐸 ′
.

□

C REDUCTION TO MONADIC SCHEMAS
In the body of the paper we mentioned a reduction of problems about NRC and interpretations to

the case of Monadic schemas. This was explicitly stated in Section 6, but we make use of it also in

the arguments for converting between interpretations and NRC[Get] in Section 5.
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Reduction to monadic schemas for NRC
In the body of the paper we mentioned that it is possible to reduce questions about definability

within NRC to the case of monadic schemas. We now give the details of this reduction.

Recall that monadic type is a type built only using the atomic typeU and the type constructor

Set. Monadic types are in one-to-one correspondence with natural numbers by settingU0 := U
and U𝑛+1 := Set(U𝑛). A monadic type is thus a U𝑛 for some 𝑛 ∈ N. A nested relational schema is

monadic if it contains only monadic types, and a Δ0 formula is said to be monadic if it all of its

variables have monadic types.

We start with a version of the reduction only for NRC expressions:

Proposition C.1. For any nested relational schema S𝐶𝐻 , there is a monadic nested relational

schema S𝐶𝐻 ′
, an injection Convert from instances of S𝐶𝐻 to instances of S𝐶𝐻 ′

that is definable

in NRC, and an NRC[Get] expression Convert
−1

such that Convert
−1 ◦ Convert is the identity

transformation from S𝐶𝐻 → S𝐶𝐻 .

Furthermore, there is a Δ0 formula ImConvert from S𝐶𝐻 ′
to Bool such that ImConvert (𝑖 ′) holds if

and only if 𝑖 ′ = Convert(𝑖) for some instance 𝑖 of S𝐶𝐻 .

To prove this we give an encoding of general nested relational schemas into monadic nested

relational schemas that will allow us to reduce the equivalence between NRC expression, interpre-

tations, and implicit definitions to the case where input and outputs are monadic.

Note that it will turn out to be crucial to check that this encoding may be defined either through

NRC expressions or interpretations, but in this subsection we will give the definitions in terms of

NRC expressions.

The first step toward defining these encodings is actually to emulate in a sound way the cartesian

product structure for types U𝑛 . Here “sound” means that we should give terms for pairing and

projections that satisfy the usual equations associated with cartesian product structure.

Proposition C.2. For every 𝑛1, 𝑛2 ∈ N, there are NRC expressions P̂air(𝑥,𝑦) : U𝑛1
,U𝑛2

→
Umax(𝑛1,𝑛2)+2 and NRC[Get] expressions 𝜋𝑖 (𝑥) : Umax(𝑛1,𝑛2)+2 → U𝑛𝑖 for 𝑖 ∈ {1, 2} such that the

following equations hold

𝜋1

(
P̂air(𝑎1, 𝑎2)

)
= 𝑎1 𝜋2

(
P̂air(𝑎1, 𝑎2)

)
= 𝑎2

Furthermore, there is a Δ0 formula Im
P̂air

(𝑥) such that Im
P̂air

(𝑎) holds if and only if there exists 𝑎1, 𝑎2

such that P̂air(𝑎1, 𝑎2) = 𝑎. In such a case, the following also holds

P̂air(𝜋1 (𝑎), 𝜋2 (𝑎)) = 𝑎

Proof. We adapt the Kuratowski encoding of pairs (𝑎, 𝑏) ↦→ {{𝑎}, {𝑎, 𝑏}}. The notable thing
here is that, for this encoding to make sense in the typed monadic setting, the types of 𝑎 and 𝑏 need

to be the same. This will not be an issue because we have NRC-definable embeddings

↑𝑚𝑛 : U𝑛 → U𝑚

for 𝑛 ≤ 𝑚 defined as the𝑚 − 𝑛-fold composition of the singleton transformation 𝑥 ↦→ {𝑥}. This
will be sufficient to define the analogues of pairing for monadic types and thus to define Convert𝑇

by induction over 𝑇 . On the other hand, Convert
−1
𝑇

will require a suitable encoding of projections.

This means that to decode an encoding of a pair, we need to make use of a transformation inverse

to the singleton construct ↑. But we have this thanks to the Get construct. We let

↓𝑚𝑛 : U𝑚 → U𝑛

the transformation inverse to ↑𝑚𝑛 , defined as the𝑚 − 𝑛-fold composition of Get.
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Firstly, we define the family of transformations P̂air𝑛,𝑚 (𝑥1, 𝑥2), where 𝑥𝑖 is an input of type U𝑛𝑖

for 𝑖 ∈ {1, 2} and the output is of type Umax(𝑛1,𝑚2)+2, as follows

P̂air𝑛1,𝑛2
(𝑥1, 𝑥2) := {{↑ 𝑥1}, {↑ 𝑥1, ↑ 𝑥2}}

The associated projections 𝜋
𝑛1,𝑛2

𝑖
(𝑥) where 𝑥 has typeUmax(𝑛1,𝑛2)+2 and the output is of typeU𝑛𝑖

are a bit more challenging to construct. The basic idea is that there is first a case distinction to be

made for encodings P̂air𝑛,𝑚 (𝑥1, 𝑥2): depending on whether ↑ 𝑥1 =↑ 𝑥2 or not. This can be actually

tested by a NRC expression. Once this case distinction is made, one may informally compute the

projections as follows:

• if ↑ 𝑥1 =↑ 𝑥2, both projections can be computed as a suitable downcasting ↓ (the depth of the

downcasting is determined by the output type, which is not necessarily the same for both

projections).

• otherwise, one needs to single out the singleton {↑ 𝑥1} and the two-element set {↑ 𝑥1, ↑ 𝑥2}
in NRC. Then, one may compute the first projection by downcasting the singleton, and the

second projection by first computing {↑ 𝑥2} as a set difference and then downcasting with ↓.
We now give the formal encoding for projections, making a similar case distinction. To this end,

we first define a generic NRC expression

AllPairs𝑇 (𝑥) : Set(𝑇 ) → Set(𝑇 ×𝑇 )
computing all the pairs of distinct elements of its input 𝑥

AllPairs𝑇 (𝑥) =
⋃

{
⋃

{{(𝑦, 𝑧)} | 𝑦 ∈ 𝑥 \ {𝑧}} | 𝑧 ∈ 𝑥}
Note in particular that AllPairs(𝑖) = ∅ if and only if 𝑖 is a singleton or the empty set. The projections

can thus be defined as

𝜋1 (𝑥) := case (AllPairs(𝑥) = ∅, ↓ 𝑥, ↓ ⋃{𝜋1 (𝑧) ∩ 𝜋2 (𝑧) | 𝑧 ∈ AllPairs(𝑥)})
𝜋2 (𝑥) := case (AllPairs(𝑥) = ∅, ↓ 𝑥, ↓ (𝑥\ ↑ 𝜋1 (𝑥))))

These definitions crucially ensure that, for every object 𝑎𝑖 with 𝑖 ∈ {1, 2}, we have

𝜋𝑖

(
P̂air(𝑎1, 𝑎2)

)
= 𝑎𝑖

Now all remains to be done is to define Im
P̂air

. Before that, it is helpful to define a formula

Im↑𝑚𝑛 (𝑥) which holds if and only if 𝑥 is in the image of Im↑𝑚𝑛 .
As a preliminary step, define generic Δ0 formulas IsSing(𝑥) and IsTwo(𝑥) taking an object of

type Set(𝑇 ) and returning a Boolean indicating whether the object is a singleton or a two-element

set. Defining Im↑𝑚𝑛 is straightforward using IsSing and Boolean connectives. Then Im
P̂air𝑛,𝑛

(𝑥) can
be defined as follows for each 𝑛 ∈ N

Im
P̂air𝑛,𝑛

(𝑥) :=

(
IsSing(𝑥) ∧ Im

IsSing

P̂air𝑛,𝑛

(𝑥)
)
∨

(
IsTwo(𝑥) ∧ Im

IsSing

P̂air𝑛,𝑛

(𝑥)
)

Im
IsSing

P̂air𝑛,𝑛

(𝑥) := ∃𝑧 ∈ 𝑥 IsSing(𝑧)
Im

IsTwo

P̂air𝑛,𝑛

(𝑥) := ∃𝑧 𝑧 ′ ∈ 𝑥 (IsTwo(𝑧) ∧ IsSing(𝑧 ′) ∧ ∀𝑦 ∈ 𝑧 𝑦 ∈ 𝑧 ′)

Then, the more general Im
P̂air𝑛

1
,𝑛
2

can be defined using Im↑𝑚𝑛𝑖 where𝑚 = max(𝑛1, 𝑛2).

Im
P̂air𝑛

1
,𝑛
2

(𝑥) := Im
P̂air𝑚,𝑚

(𝑥) ∩ Im↑𝑚𝑛
1

(𝜋1 (𝑥)) ∩ Im↑𝑚𝑛
2

(𝜋2 (𝑥))

One can then easily check that Im
P̂air

does have the advertised property: if Im
P̂air

(𝑎) holds for
some object 𝑎, then there are 𝑎1 and 𝑎2 such that P̂air(𝑎1, 𝑎2) = 𝑎 and we have

P̂air(𝜋1 (𝑎), 𝜋2 (𝑎)) = 𝑎
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□

We are now ready to give the proof of the proposition given at the beginning of this subsection.

Proof. Convert𝑇 , Convert
−1
𝑇

and ImConvert𝑇
are defined by induction over 𝑇 . Beforehand, define

the map 𝑑 taking a type 𝑇 to a natural number 𝑑 (𝑇 ) so that Convert maps instances of type 𝑇 to

monadic types U𝑑 (𝑇 ) .

𝑑 (U) = 0 𝑑 (Set(𝑇 )) = 1 + 𝑑 (𝑇 )
𝑑 (𝑇1 ×𝑇2) = 2 +max(𝑑 (𝑇1), 𝑑 (𝑇2)) 𝑑 (Unit) = 0

Convert𝑇 , Convert
−1
𝑇

and ImConvert𝑇
are then defined by the following clauses, where we write

Map (𝑧 ↦→ 𝐸) (𝑥) for the NRC expression

⋃{{𝐸} | 𝑧 ∈ 𝑥}.

ConvertU (𝑥) := 𝑥

ConvertSet(𝑇 ) (𝑥) := Map (𝑧 ↦→ Convert𝑇 (𝑧)) (𝑥)
ConvertUnit (𝑥) := 𝑐0

Convert𝑇1×𝑇2 (𝑥) := P̂air(Convert𝑇1 (𝜋1 (𝑥)),Convert𝑇2 (𝜋2 (𝑥)))

Convert
−1
U (𝑥) := 𝑥

Convert
−1
Set(𝑇 ) (𝑥) := Map

(
𝑧 ↦→ Convert

−1
𝑇
(𝑧)

)
(𝑥)

ConvertUnit (𝑥) := ()
Convert

−1
𝑇1×𝑇2 (𝑥) :=

〈
Convert

−1
𝑇1
(𝜋1 (𝑥)),Convert−1𝑇2 (𝜋2 (𝑥))

〉
ImConvertU (𝑥) := True

ImConvert
Set(𝑇 ) (𝑥) := ∀𝑧 ∈ 𝑥 ImConvert𝑇

(𝑧)
ImConvert𝑇

1
×𝑇

2

(𝑥) := ImPair𝑑 (𝑇
1
),𝑑 (𝑇

2
) (𝑥) ∧ ImConvert𝑇

1

(𝜋1 (𝑥)) ∧ ImConvert𝑇
2

(𝜋2 (𝑥))
It is easy to check, by induction over 𝑇 , that for every object 𝑎 of type 𝑇

Convert
−1 (Convert(𝑎)) = 𝑎

and that for every object 𝑏 of type U𝑑 (𝑇 ) , if ImConvert𝑇
(𝑏) = True, then it lies in the image of

Convert𝑇 and Convert(Convert−1 (𝑏)) = 𝑏. □

C.1 Monadic reduction for interpretations
We have seen so far that it is possible to reduce questions about definability within NRC to the

case of monadic schema. Now we turn to the analogous statement for interpretations, given by the

following proposition:

Proposition C.3. For any object schema S𝐶𝐻 , there is a monadic nested relational schema S𝐶𝐻 ′
,

a Δ0 interpretation IConvert from instances of S𝐶𝐻 to instances of S𝐶𝐻 ′
, and another interpretation

I
Convert

−1 from instances of S𝐶𝐻 to instances of S𝐶𝐻 ′
compatible with Convert and Convert

−1
as

defined in Proposition C.3 in the following sense: for every instance 𝐼 of S𝐶𝐻 and for every instance 𝐽

of S𝐶𝐻 ′
in the codomain of Convert, we have

Convert
−1 (𝐽 ) = Collapse(I

Convert
−1 (𝐽 )) Convert(𝐼 ) = Collapse(IConvert (𝐼 ))

Before proving Proposition C.3, it is helpful to check that a number of basic NRC connectives

may be defined at the level of interpretations. To do so, we first present a technical result for more

general interpretations.
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Proposition C.4. For any sort𝑇 , there is an interpretation of S𝐶𝐻𝑇 into S𝐶𝐻𝑇 taking a models𝑀

whose every sort is non-empty and Bool has at least two elements to a model𝑀 of O(𝑇 ). Furthermore,

we have that𝑀 ′
is (up to isomorphism) the largest quotient of𝑀 ′

satisfying O(𝑇 ).

Proof. This interpretation corresponds to a quotient of the input, that is definable at every sort

𝜑
Set(𝑇 )
≡ (𝑥,𝑦) = ∀𝑧 (𝑧 ∈ 𝑥 ⇔ 𝑧 ∈ 𝑦) 𝜑

𝑇1×𝑇2
≡ (𝑥,𝑦) = 𝜋1 (𝑥) = 𝜋1 (𝑦) ∧ 𝜋2 (𝑥) = 𝜋2 (𝑦)

𝜑Unit

≡ (𝑥,𝑦) = ⊤ 𝜑U
≡ (𝑥,𝑦) = 𝑥 =U 𝑦

□

Proposition C.5. The following Δ0-interpretations are definable:

• ISing defining the transformation 𝑥 ↦→ {𝑥}.
• I∪ defining the transformation 𝑥,𝑦 ↦→ 𝑥 ∪ 𝑦.

Furthermore, assuming that I is a Δ0-interpretation defining a transformation 𝐸 and I ′
is a Δ0-

interpretation defining a transformation 𝑅, the following Δ0-interpretations are also definable:

• Map(I) defining the transformation 𝑥 ↦→ {𝐸 (𝑦) | 𝑥 ∈ 𝑦}.
• ⟨I,I ′⟩ defining the transformation 𝑥,𝑦 ↦→ (𝐸 (𝑥), 𝐹 (𝑦)).

Proof. • For the singleton construction {𝑒} with 𝑒 of type 𝑇 , we take the interpretation I𝑒
for 𝑒 , where 𝑒 itself is interpreted by a constant 𝑐 and we add an extra level represented by

an input constant 𝑐 ′. Then 𝜑
Set(𝑇 )
Domain

(𝑥) is set to 𝑦 = 𝑐 ′ and 𝜑𝑇∈ (𝑥,𝑦) to 𝑥 = 𝑐 ∧ 𝑦 = 𝑐 ′.

• The empty set {} at type Set(𝑇 ) is given by the trivial interpretation where 𝜑
Set(𝑇 )
Domain

(𝑥) is set
to 𝑥 = 𝑐 for some constant 𝑐 and 𝜑𝑇

′

Domain
is set to false for 𝑇 ′

a component type of 𝑇 , as well

as all the 𝜑𝑇∈ .
• For the binary union ∪ : Set(𝑇 ), Set(𝑇 ) → Set(𝑇 ), the interpretation is easy:𝑇 is interpreted

as itself. The difference between input and output is that Set(𝑇 ) × Set(𝑇 ) is not an output

sort and that Set(𝑇 ) is interpreted as a single element, the constant () of Unit.

𝜑
Set(𝑇 )
Domain

(𝑥) := 𝑥 = ()
𝜑𝑇∈ (𝑧, 𝑥) := 𝑧 ∈ 𝜋1 (o𝑖𝑛) ∨ 𝑧 ∈ 𝜋2 (o𝑖𝑛)

• We now discuss the Map operator. Assume that we have an interpretation I defining a

transformation 𝑆 → 𝑇 that we want to lift to an interpretationMap(I) : Set(𝑆) → Set(𝑇 ).
Let us write𝜓𝑇 ′

Domain
,𝜓𝑇 ′

∈ and𝜓𝑇 ′
≡ for the formulas making up I and reserve the 𝜑 formulas

forMap(I). At the level of sort, let us write 𝜏I and 𝜏Map(I)
to distinguish the two.

For every 𝑇 ′ ≤ 𝑇 such that 𝑇 ′
is not a cartesian product or a component type of Bool, we

set 𝜏Map(I) (𝑇 ′) = 𝑆, 𝜏I . This means that objects of sort 𝑇 ′
are interpreted as in I with

an additional tag of sort 𝑆 . We interpret the output object Set(𝑇 ) as a singleton by setting

𝜏Map(I) (Set(𝑇 )) = Unit.

Assuming that 𝑇 ≠ U,Unit, Map(I) is determined by setting the following

𝜑U
Domain

(𝑎) := ∃𝑠 ∈ o𝑖𝑛 𝜓Domain (𝑎) [𝑠/o𝑖𝑛]
𝜑U
∈ (𝑎, 𝑠, ®𝑥) := 𝜓U

∈ (𝑎, ®𝑥) [𝑠/o𝑖𝑛]

𝜑𝑇
′

Domain
(𝑠, ®𝑥) := 𝜓𝑇 ′

Domain
(𝑥) [𝑠 ′/o𝑖𝑛]

𝜑𝑇
′

∈ (𝑠, ®𝑥, 𝑠 ′, ®𝑦) := ∃ ®𝑥 ′ 𝜓𝑇 ′
∈ ( ®𝑥 ′, ®𝑦) [𝑠 ′/o𝑖𝑛] ∧ 𝜑𝑇

′
≡ (𝑠, ®𝑥, 𝑠 ′, ®𝑥 ′)

𝜑𝑇
Domain

(𝑠, ®𝑥) := 𝑠 ∈ o𝑖𝑛

𝜑𝑇∈ (𝑠, ®𝑥) := 𝜑𝑇
Domain

(𝑠, ®𝑥)
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where [𝑥/o𝑖𝑛] means that we replace occurrences of the constant o𝑖𝑛 by the variable 𝑥 and

sorts 𝑇 ′
and 𝑇 ′ ×𝑇 ′′

are component types of 𝑇 . Note that this definition is technically by

induction over the type, as we use 𝜑𝑇
′

≡ to define 𝜑𝑇
′

∈ . In case 𝑇 is U or Unit, the last two

formulas 𝜑𝑇
Domain

and 𝜑𝑇∈ need to change. If 𝑇 = Unit, then we set

𝜑Unit

Domain
(𝑐0) := 𝜑Unit

∈ (𝑐0, 𝑐0) := ∃𝑠 ∈ o𝑖𝑛 ⊤

and if 𝑇 = U, we set

𝜑U
Domain

(𝑎) := 𝜑U
∈ (𝑎) := ∃𝑠 ∈ o𝑖𝑛 𝜓Domain (𝑎) [𝑠/o𝑖𝑛]

• Finally we need to discuss the pairing of two interpretation-definable transformations

⟨I1,I2⟩ : 𝑆 → 𝑇1 × 𝑇2. Similarly as for map we reserve 𝜑𝑇
Domain

, 𝜑𝑇∈ and 𝜑𝑇≡ formulas for

the interpretation ⟨I1,I2⟩. We write𝜓𝑇
Domain

,𝜓𝑇
∈ and𝜓𝑇

≡ for components of I and \𝑇
Domain

, \𝑇∈
and \𝑇≡ for components of I ′

.

Now, the basic idea is to interpret output sorts of ⟨I1,I2⟩ as tagged unions of elements that

either come from I1 or I2. Here, we exploit the assumption that S𝐶𝐻𝑇 contains the sort Bool.

and that every sort is non-empty to interpret the tag of the union. The union itself is then

encoded as a concatenation of a tuple representing a would-be element form I1 with another

tuple representing a would-be element from I2, the correct component being selected with

the tag. For that second trick to work, note that we exploit the fact that every sort has a

non-empty denotation in the input structure. Concretely, for every 𝑇 component type of

either 𝑇1 or 𝑇2, we thus set

𝜏 ⟨I1,I2 ⟩ (𝑇 ) := Bool, 𝜏I1 (𝑇 ), 𝜏I2 (𝑇 )
𝜑𝑇
Domain

(𝑢, ®𝑥, ®𝑦) := (𝑢 = tt ∧𝜓𝑇
Domain

( ®𝑥)) ∨ (𝑢 ≠ tt ∧ \𝑇
Domain

( ®𝑦))
𝜑𝑇∈ (𝑢, ®𝑥, ®𝑦,𝑢 ′, ®𝑥 ′, ®𝑦 ′) := (𝑢 = 𝑢 ′ = tt ∧𝜓𝑇

∈ ( ®𝑥, ®𝑥 ′)) ∨ (𝑢 = 𝑢 ′ = ff ∧ \𝑇∈ ( ®𝑦, ®𝑦 ′))
𝜑𝑇≡ (𝑢, ®𝑥, ®𝑦,𝑢 ′, ®𝑥 ′, ®𝑦 ′) := (𝑢 = 𝑢 ′ = tt ∧𝜓𝑇

≡ ( ®𝑥, ®𝑥 ′)) ∨ (𝑢 = 𝑢 ′ = ff ∧ \𝑇≡ ( ®𝑦, ®𝑦 ′))

Note that this interpretation does not quite correspond to a pairing because it is not a complex

object interpretation: the interpretation of common subobjects of𝑇1 and𝑇2 are not necessarily

identified, so the output is not necessarily a model of O. This is fixed by postcomposing with

the interpretation of Proposition C.4 to obtain ⟨𝐼1, 𝐼2⟩.
□

Proof of Proposition C.3. Similarly as with Proposition C.1, we define auxiliary interpreta-

tions I↑, I↓ Î
Pair

, I𝜋1
and I𝜋2

mimicking the relevant constructs of Proposition C.1. Then we will

dispense with giving the recursive definitions of IConvert𝑇 and I
Convert

−1
𝑇
, as they will be obvious

from inspecting the clauses given in the proof of Proposition C.1 and replicating them using

Proposition C.5 together with closure under composition of interpretations.

I↑, I↓ and IPair are easy to define through Proposition C.5, so we focus on the projections I𝜋𝑛
1
,𝑛
2

1

and I𝜋𝑛
1
,𝑛
2

2

, defining transformations fromU𝑚 toU𝑛𝑖 for 𝑖 ∈ {1, 2} where𝑚 := max(𝑛1, 𝑛2). Note
that in both cases, the output sort is part of the input sorts. Thus an output sort will be interpreted

by itself in the input, and the formulas will be trivial for every sort lying strictly below the output

sort: we take

𝜑∈U𝑘
(𝑥,𝑦) := 𝑥 ∈ 𝑦 ∧ 𝜑

U𝑘+1
Domain

(𝑦) 𝜑
U𝑘
≡ (𝑥,𝑦) := 𝑥 = 𝑦 𝜑

U𝑘

Domain
(𝑥) := ⊤

for every 𝑘 < 𝑛𝑖 (𝑖 according to which projection we are defining). The only remaining important

data that we need to provide are the formulas 𝜑
U𝑛𝑖

Domain
, which, of course, differ for both projections.

We provide those below, calling 𝑜𝑖𝑛 the designated input object. For both cases, we use an auxiliary
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predicate 𝑥 ∈𝑘 𝑦 standing for ∃𝑦1 ∈ 𝑦 . . . ∃𝑦𝑘−1 ∈ 𝑦𝑘−2 𝑥 ∈ 𝑦𝑘−1 for 𝑘 > 1; for 𝑘 = 0, 1, we take

𝑥 ∈1 𝑦 to be 𝑥 ∈ 𝑦 and 𝑥 ∈0 𝑦 for 𝑥 = 𝑦.

• For I𝜋𝑛
1
,𝑛
2

1

, we set

𝜑
U𝑛

1

Domain
(𝑥) := ∀𝑧 ∈ 𝑜𝑖𝑛 ∃𝑧 ′ ∈ 𝑧 𝑥 ∈𝑚−𝑛1 𝑧 ′

The basic idea is that the outermost ∀∃ ensures that we compute the intersection of the two

sets contained in the encoding of the pair.

• For I𝜋𝑛
1
,𝑛
2

2

, first note that there are obvious Δ0-predicates IsSing(𝑥) and IsTwo(𝑥) classifying
singletons and two element sets. This allows us to write the following Δ0 formula

𝜑
U𝑛

1

Domain
(𝑥) :=

∨ [
IsSing(𝑥) ∧ ∀𝑧 ∈ 𝑜𝑖𝑛 ∃𝑧′ ∈ 𝑧 𝑥 ∈𝑚−𝑛2 𝑧′

IsTwo(𝑥) ∧ ∃𝑧 𝑧′ ∈ 𝑜𝑖𝑛 ∃𝑦 ∈ 𝑧′ (𝑦 ∉ 𝑧 ∧ 𝑥 ∈𝑚−𝑛2 𝑧′)

It is then easy to check that, regarded as transformations, those interpretation also implement the

projections for Kuratowski pairs.

□

D PROOFS FOR SECTION 5: EQUIVALENCE OF NESTED RELATIONAL
TRANSFORMATIONS AND INTERPRETATIONS

From NRC[Get] expressions to interpretations. In the body of the paper we claimed that

NRC[Get] expressions have the same expressiveness as interpretations. One direction of this

expressive equivalence is given in the following lemma:

Lemma D.1. There is an EXPTIME computable function taking an NRC[Get] expression 𝐸 to an

equivalent FO interpretation I𝐸 .

As we mentioned in the body of the paper, very similar results occur in the prior literature, going

as far back as [Van den Bussche 2001].

Proof. We can assume that the input and output schemas are monadic, using the reductions to

monadic schemas given previously. Indeed, if we solve the problem for expressions where input

and output schemas are monadic, we can reduce the problem of finding an interpretation for an

arbitrary NRC[Get] expression 𝐸 (𝑥) as follows: construct a Δ0 interpretation I for the expression

Convert(𝐸 (Convert−1 (𝑥))) – where Convert and Convert
−1

are taken as in Proposition C.1 – and

then, using closure under composition of interpretations (see e.g. [Benedikt and Koch 2009]), one

can then leverage Proposition C.3 to produce the composition of I
Convert

−1 , I and IConvert which is

equivalent to the original expression 𝐸.

The argument proceeds by induction on the structure of 𝐸 : ®𝑇 → 𝑆 in NRC. Some atomic

operators were treated in the prior section, like singleton ∪, tupling, and projections. Using closure

of interpretations under composition, we are thus able to translate compositions of those operators.

We are only left with a few cases.

• For the set difference, since interpretations are closed under composition, it suffices to prove

that we can code the transformation

(𝑥,𝑦) ↦→ 𝑥 \ 𝑦
at every sort Set(U𝑛). Each sort gets interpreted by itself. We thus set

𝜑
U𝑛

Domain
(𝑧) := 𝑧 ∈ 𝜋1 (o𝑖𝑛) ∧ 𝑧 ∉ 𝜋1 (o𝑖𝑛)

𝜑
U𝑘

Domain
(𝑧) := ∃𝑧 ′ (𝜑U𝑛

Domain
∧ 𝑧 ∈𝑛−𝑘 𝑧 ′)

𝜑
U𝑘
∈ (𝑧, 𝑧 ′) := 𝑧 ∈ 𝑧 ′ ∧ 𝜑

U𝑘

Domain
(𝑧) ∧ 𝜑

U𝑘+1
Domain

(𝑧 ′)
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• To get NRC[Get] expressions, it suffices to create a Δ0 interpretation corresponding to Get

which follows

𝜑U
Domain

(𝑎) := (∃! 𝑧 ∈ o𝑖𝑛 𝑧 = 𝑎) ∨ (¬(∃! 𝑧 ∈ o𝑖𝑛) ∧ 𝑎 = 𝑐0)
• For the binding operator ⋃

{𝐸1 | 𝑥 ∈ 𝐸2}
we exploit the classical decomposition⋃

◦Map(𝐸1) ◦ 𝐸2

As interpretations are closed under composition and the mapping operations was handled in

Proposition C.5, it suffices to give an interpretation for the expression

⋃
: Set(Set(𝑇 )) →

Set(𝑇 ) for every sort 𝑇 . This is straightforward: each sort gets interpreted as itself, except

for Set(𝑇 ) itself which gets interpreted as the singleton {𝑐0}. The only non-trivial clause are

the following

𝜑𝑇∈ (𝑥,𝑦) := 𝜑𝑇
Domain

:= ∃𝑦 ′ ∈ o𝑖𝑛 𝑥 ∈ 𝑦 ′

□

From interpretations to NRC[Get] expressions. The other direction of the expressive equiv-

alence is provided by the following lemma:

Lemma D.2. There is a polynomial time function taking a Δ0 interpretation to an equivalent

NRC[Get] expression.

This direction is not used directly in the conversion from implicitly definable transformations

to NRC[Get], but it is of interest in showing that NRC[Get] and Δ0 interpretations are equally

expressive.

Proof. (of Lemma D.2) Using the reductions to monadic schemas, it suffices to show this for

transformations that have monadic input schemas as input and output.

Fix a Δ0 interpretation I with input U𝑛 and outputU𝑚 .

Before we proceed, first note that for every 𝑑 ≤ 𝑚, there is an NRC expression

𝐸𝑑 : U𝑛 → Set(U𝑑 )
collecting all of the subobjects of its input of sort U𝑑 . It is formally defined by the induction over

𝑛 − 𝑑 .

𝐸𝑚 (𝑥) := {𝑥} 𝐸𝑑 (𝑥) =
⋃

𝐸𝑑−1 (𝑥)
Write 𝐸𝑑1,...,𝑑𝑘 (𝑥) for ⟨𝐸𝑑1 , . . . , 𝐸𝑑𝑘 ⟩(𝑥) for every tuple of integers 𝑑1 . . . 𝑑𝑘 .

For 𝑑 ≤ 𝑚, let 𝑑1, . . . , 𝑑𝑘 be the tuple such that the output sort U𝑑 is interpreted by the list of

input sortsU𝑑1 , . . . ,U𝑑𝑘 . By induction over 𝑑 , we build NRC expressions

𝐸𝑑 : U𝑚,U𝑑1 , . . . ,U𝑑𝑘 → U𝑑

such that, provided that 𝜑
U𝑑

Domain
( ®𝑎) and 𝜑U𝑑+1

Domain
( ®𝑏) hold, we have

𝜑
U𝑑
∈ ( ®𝑎, ®𝑏) if and only if 𝐸𝑑 ( ®𝑎) ∈ 𝐸𝑑+1 ( ®𝑏)

For 𝐸0 : U𝑚,U → U, we simply take the second projection. Now assume that 𝐸𝑑 is defined and

that we are looking to define 𝐸𝑑+1. We want to set

𝐸𝑑+1 (𝑥𝑖𝑛, ®𝑦) := {𝐸𝑑 (𝑥𝑖𝑛, ®𝑥) | ®𝑥 ∈ 𝐸𝑑1,...,𝑑𝑘 (𝑥𝑖𝑛, ®𝑦) ∧ Verify𝜑𝑖
∈
(𝑥𝑖𝑛, ®𝑥,𝑦𝑖𝑛, ®𝑦)}
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which is NRC-definable as follows⋃ {
case

(
Verify𝜑𝑖

∈
(𝑥𝑖𝑛, ®𝑥,𝑦𝑖𝑛, ®𝑦), {𝐸𝑑 (𝑥𝑖𝑛)}, {}

)
| ®𝑥 ∈ 𝐸𝑑1,...,𝑑𝑘 (𝑥𝑖𝑛)

}
whereVerify is given as in the Verification Proposition proven earlier in the supplementarymaterials

and {𝐸 ( ®𝑥, ®𝑦) | ®𝑥 ∈ 𝐸 ′( ®𝑦)} is a notation for

⋃{. . .⋃{𝐸 ( ®𝑥, ®𝑦) | 𝑥1 ∈ 𝜋1 (𝐸 ′( ®𝑦))} . . . | 𝑥𝑘 ∈ 𝜋𝑘 (𝐸 ′( ®𝑦))}.
It is easy to check that the inductive invariant holds.

Now, consider the transformation 𝐸𝑚 : U𝑛,U𝑚1
, . . . ,U𝑚𝑘

→ U𝑚 . The transformation

𝑅 := {𝐸𝑚 (𝑥𝑖𝑛, ®𝑦) | ®𝑦 ∈ 𝐸𝑚1,...,𝑚𝑘
(𝑥𝑖𝑛) ∧ 𝜑

U𝑚

Domain
( ®𝑦)}

is also NRC-definable using Verify. Since the inductive invariant holds at level𝑚, 𝑅 returns the

singleton containing the output ofI. ThereforeNRC[Get] (𝑅) : U𝑛 → U𝑚 is the desiredNRC[Get]
expression equivalent to the interpretation I. □

Note that the argument can be easily modified to produce an NRC[Get] expression that is

composition-free: in union expressions

⋃{𝐸1 | 𝑥 ∈ 𝐸2}, the range 𝐸2 of the variable 𝑥 is always

another variable. In composition-free expressions, we allow as a native construct case(𝐵, 𝐸1, 𝐸2)
where 𝐵 is a Boolean combination of atomic transformations with Boolean output, since we cannot

use composition to derive the conditional from the other operations.

Thus every NRC[Get] expression can be converted to one that is composition-free, and similarly

for NRC[Get]. The analogous statements have been observed before for related languages like

XQuery [Benedikt and Koch 2009].

E PROOFS FOR SECTION 6: PROOF DETAILS CONCERNING GENERATING
INTERPRETATIONS FROM CLASSICAL PROOFS

E.1 Requirement that not all input sorts be singletons
Recall from Section 6 that in our main theorem relating implicit and explicit interpretability within

multi-sorted logic, we required that the theory Σ entails the existence of a sort in Sorts0 with more

than one element.

We now explain that this requirement is essential. Otherwise we might have Sorts0 entailed by

Σ to consist of a single element which is named by a constant, while Sorts1 has another sort with

two elements, each named by a constant. Since every element of the models of Σ is named by a

constant, all models are isomorphic, and hence we have implicit interpretability vacuously. But we

cannot explicitly interpret Sorts1 in Sorts0 simply for cardinality reasons.

E.2 Details of the reduction allowing us to drop additional parameters
Recall that in the body of the paper we claimed that to be able to generate NRC[Get] expressions
from projective implicit definitions, it suffices to deal with implicit definitions: formulas Σ′(o𝑖𝑛, o𝑜𝑢𝑡 )
with no auxiliary variables ®𝑎:

For any Δ0 formula Σ(o𝑖𝑛, o𝑜𝑢𝑡 , ®𝑎) that implicitly defines o𝑜𝑢𝑡 as a function of o𝑖𝑛 , there is another

Δ0 formula Σ′(o𝑖𝑛, o𝑜𝑢𝑡 ) which implicitly o𝑜𝑢𝑡 as a function of o𝑖𝑛 such that Σ(o𝑖𝑛, o𝑜𝑢𝑡 , ®𝑎) ⇒
Σ′(o𝑖𝑛, o𝑜𝑢𝑡 ).

We now give the proof:

Proof. The assumption that Σ implicitly defines o𝑜𝑢𝑡 as a function of o𝑖𝑛 means that we have an

entailment

Σ(o𝑖𝑛, o𝑜𝑢𝑡 , ®𝑎) |= Σ(o𝑖𝑛, o′𝑜𝑢𝑡 , ®𝑎′) ⇒ o𝑜𝑢𝑡 = o
′
𝑜𝑢𝑡
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Applying Δ0 interpolation we may obtain a formula \ (o𝑖𝑛, o𝑜𝑢𝑡 ) such that

Σ(o𝑖𝑛, o𝑜𝑢𝑡 , ®𝑎) |= \ (o𝑖𝑛, o𝑜𝑢𝑡 ) and \ (o𝑖𝑛, o𝑜𝑢𝑡 ) ∧ Σ(o𝑖𝑛, o′𝑜𝑢𝑡 , ®𝑎′) |= o𝑜𝑢𝑡 = o
′
𝑜𝑢𝑡

Now we can derive the following entailment

Σ(o𝑖𝑛, o𝑜𝑢𝑡 , ®𝑎) |= [\ (o𝑖𝑛, o′𝑜𝑢𝑡 ) ∧ \ (o𝑖𝑛, o′′𝑜𝑢𝑡 )] ⇒ o
′
𝑜𝑢𝑡 = o

′′
𝑜𝑢𝑡

This entailment is obtained from the second property of \ , since we can infer that o
′
𝑜𝑢𝑡 = o𝑜𝑢𝑡 and

o
′′
𝑜𝑢𝑡 = o𝑜𝑢𝑡 .

Now we can apply interpolation again to obtain a formula 𝐷 (o𝑖𝑛) such that

Σ(o𝑖𝑛, o𝑜𝑢𝑡 , ®𝑎) |= 𝐷 (o𝑖𝑛) and 𝐷 (o𝑖𝑛) ∧ \ (o𝑖𝑛, o′𝑜𝑢𝑡 ) ∧ \ (o𝑖𝑛, o′′𝑜𝑢𝑡 ) |= o
′
𝑜𝑢𝑡 = o

′′
𝑜𝑢𝑡

We now claim that Σ′(o𝑖𝑛, o𝑜𝑢𝑡 ) := 𝐷 (o𝑖𝑛) ∧ \ (o𝑖𝑛, o𝑜𝑢𝑡 ) is an implicit definition extending Σ.
Functionality of Σ′

is a consequence of the second entailment witnessing that 𝐷 is an interpolant.

Finally, the implication ∃®𝑎 Σ(o𝑖𝑛, o𝑜𝑢𝑡 , ®𝑎) |= Σ′(o𝑖𝑛, o𝑜𝑢𝑡 ) is given by the combination of the first

entailments witnessing that \ and 𝐷 are interpolants. □

Reduction to complete theories
Recall the result on multi-sorted first-order logic in the body of the paper:

For any Σ, Sorts0, Sorts1 such that Σ entails that a sort of Sorts0 has at least two elements, Sorts1

is explicitly interpretable over Sorts0 if and only if it is implicitly interpretable over Sorts0.

In the body of the paper, we argued that it suffices to prove this for the case when Σ is a complete

theory. We now prove this:

Proof. Fix a Σ satisfying the hypothesis, but not the conclusion, and let 𝜌 be a sentence in the

vocabulary of Σ. We claim that one of 𝜌,¬𝜌 can be added to Σ in such a way that the conclusion of

the theorem still fails. This would suffice, since then we can inductively complete Σ to a complete

theory in which every finite subset is satisfiable, and hence by compactness a satisfiable theory.

The hypothesis of the theorem, implicit interpretability of Sorts1 over Sorts0 relative to Σ, is
preserved under extending Σ, and thus both Σ ∪ {𝜌} and Σ ∪ {¬𝜌} implicitly define Sorts1 as well.

Suppose by way of contradiction that in both extensions Sorts1 is explicitly interpretable over

Sorts0. That is, suppose Sorts1 is explicitly interpretable over Sorts0 via Θ1 relative to Σ ∪ {𝜌}, and
also that Sorts1 is explicitly interpretable over Sorts0 via Θ2 relative to Σ ∪ {¬𝜌}. At this point we
would like to combine Θ1 and Θ2 to get an explicit interpretation relative to Σ, contradicting the
assumption. The obvious way to do this would be to apply Θ1 or Θ2 conditioning on 𝜌 . However, 𝜌

may make use of sorts outside of Sorts0.

Consider the sentence Σ1 stating that Σ holds and if 𝜌 holds then Sorts1 is interpreted via

Θ1 applied to Sorts0. Then Σ1 is implicitly definable over Sorts0, and thus by the standard Beth

Definability theorem [Beth 1953; Craig 1957], there is a sentence Σ′
1
over Sorts0 that holds of models

𝑀 that extend to a Σ1 structure. Similarly we get a sentence Σ′
2
over Sorts0 that holds of a Sorts0

structure𝑀 whenever𝑀 has an expansion that either satisfies 𝜌 or agrees with Θ2. We can form an

interpretation that acts asΘ1 when Σ′
1
holds and asΘ2 when Σ′

2
holds, and this gives a contradiction

of the assumption that the theorem failed for Σ. □

Proof of the final equivalence
Recall that in the body of the paper we stated the following result:

The following are equivalent for a transformation T :

• T is projectively implicitly definable by a Δ0 formula

• T is implicitly definable by a Δ0 formula
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• T is definable via a Δ0 interpretation

• T is NRC[Get] definable
The directions from the first bullet through to the fourth are proven in the paper. What remains

is to show the following “easy implication”.

For every NRC[Get] expression 𝐸 we can obtain a Δ0 formula that implicitly defines 𝐸.

This can be done by induction on the structure of 𝐸. For example, consider the case of the

singleton constructor 𝐸 = {𝐹 }. Inductively we have 𝜑𝐹 ( ®𝑥, 𝑞2) defining 𝐹 , and from there we can

define 𝐸 by:

(∃𝑞2 ∈ 𝑞1 ⊤) ∧ (∀𝑞2 ∈ 𝑞1 𝜑𝐹 ( ®𝑥, 𝑞2))
We discuss briefly the inductive case of the union operator. One approach, is to break this operator

down into a simpler union operator where the variable can only iterate over another variable. The

full union operator can be recovered if we also allow a composition operation. The simpler operator

is easy to handle inductively. Composition can be handled without a blow-up if we allow projective

implicit definitions, because projective implicit definitions are closed under composition. From our

prior results, we know that projective implicit definitions are no more expressive than implicit

ones.

An alternative is to rely on the NRC[Get] normalization result mentioned at the end of Lemma

D.2: we can pre-process NRC[Get] expressions to be composition-free: in unions we do not iterate

over complex expressions. For these normalized expressions, the creation of implicit definitions

can be done in PTIME.
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