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Abstract: Electric load forecasting is becoming increasingly challenging due to the growing pene-
tration of decentralised energy generation and power-electronics based loads such as heat pumps
and electric vehicles, which adds to a transition to more variable work patterns (accentuated by the
COVID-19 pandemic in 2020). In this paper, three different Machine Leaning models are analysed to
predict the energy load one week ahead for a period of time including the COVID-19 pandemic. It is
shown that, by using the recently proposed TabNet model architecture, it is possible to achieve an
accuracy comparable to more traditional approaches based on gradient boosting and artificial neural
networks without the need of performing complex feature engineering.
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1. Introduction

Electric power load forecasting is widely recognised as a key task for electrical utilities.
Accurate predictions in the short time horizon allow to minimise spinning reserve capacity,
plan the generation of electric power and configure cost-effective battery charging sched-
ules [1,2]. In the past few years several models based on artificial neural networks have
been proposed and shown to be successful for this task [3,4]. Despite this, model selection
is not trivial and heavily depends on several aspects of the specific case under study, such
as the time resolution of the available data, the type of climate of the location and the
required prediction horizon among others. Moreover, the adoption of distributed energy
generation, such as wind turbines and solar photovoltaics, the increasing popularity of
low carbon technologies (specially, electric vehicles) and even unusual events such as the
ongoing COVID-19 pandemic increment the uncertainty and demand levels experienced
by distribution networks.

In this context, the recently proposed TabNet model architecture is analysed and
compared with two state-of-the-art models such as gradient boosting based on decision
trees and deep neural networks (see [3–9]) in the task of predicting the energy load one week
ahead at Stentaway primary substation, UK (the choice of forecast horizon is motivated by
a Data Science Challenge recently hosted by Energy Systems Catapult). It was found that
the performance achieved by TabNet is comparable with the one exhibited by the more
established models, with the advantages of learning directly from the raw data (i.e., no
pre-processing is needed) and requiring minimal feature engineering. In addition, given
the different nature of TabNet’s inductive bias in comparison to more traditional regression
algorithms, a further improvement in accuracy was obtained by combining it with the
traditional models via ensemble methods.

The article is structured as follows. In Section 2, the description and pre-processing of
the employed datasets is given. In Section 3, the three models used for load forecasting are
presented. Section 4 is devoted to the analysis of the obtained results. Section 5 contains
the summary of the work and some future research lines.
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2. Data Description

The historical demand data were collected from the Stentaway Primary substation.
They contained average demand power values measured in Megawatts (MW) spanning
around 2 1/2 years (between November 2017 and July 2020) and totalling slightly more
than 47,000 samples.

Since it is well-known that the weather plays a major role in the energy load, this
dataset was complemented with what is known as reanalysis weather data from six sites
surrounding the substation extracted using MERRA-2 (the data extraction was based
on code available at https://github.com/emilylaiken/merradownload, last accessed on
23 June 2021). Reanalysis is a data processing technique that provides a consistent and
complete estimation of weather variables over a period of interest. The process consisted of
applying modern forecasting techniques to a blend of actual observations with past short-
range weather forecasts, thus imitating for historical data the way in which the day-to-day
forecasts are generated. In this way, estimations for the averaged hourly irradiance (W/m2)
and instantaneous surface temperature (oC) were obtained for six locations that could be
interpreted as weather forecasts. The sites corresponded to grid points on the numerical
weather prediction grid for dates between January 2015 and July 2020.

Both datasets are publicly available at the Western Power Distribution Open Data
Hub site upon login [10].

2.1. Data Pre-Processing

The datasets contained very few erroneous values and gaps (far less than 1% of the
samples) which were meaningfully filled. More concretely, the demand dataset presented
values that were obviously out of range (both too close to zero and too high) for two weeks
in May 2018 and a couple of days in November 2018. All these outliers were replaced by
the demand values of the corresponding days from the previous weeks. Regarding the
weather data, a few missing values were detected for the temperature at location 4 which
were simply filled using the temperature at location 3 since these variables were highly
correlated (the correlation coefficient was >0.98).

Finally, the cleaned datasets were merged after linearly interpolating the weather
variables to 30 min frequency.

2.2. Feature Extraction

An exploratory data analysis was conducted to unveil patterns and factors that could
enhance the predictive value of the original dataset, consisting only of historical demand
data and weather reanalysis data.

The most important group of extracted features was derived by studying the auto-
correlation of the demand (see Figure 1). As the plot reveals, there were strong daily and
weekly patterns in the demand. To account for them, the following features were added to
the dataset:

• Hour of the day, day of the week, day of the month, month and year.
• Demand values at the same hour for the whole past week.
• Cyclic versions of hour of the day, day of the month and month, which made explicit

the similarity between the end of a period and the beginning of the following one (for
instance, the demand around 12:00 PM of a given day tended to be strongly related to
the demand around 1:00 AM of the next day) by encoding these features as points in a
2D circle (see [5]).

It was also found that the weather variables produced lagged effects on the demand.
After experimenting with different time scales, it was decided to enrich the dataset with
the averages of temperature and solar irradiance over periods of 2, 12 and 24 h to capture
short-term fluctuations, cyclic day and night patterns and daily trends respectively.

Finally, an ad-hoc strategy was adopted to treat bank holidays and the lockdown
period. Specifically, the bank holidays were labelled as a Sunday due to the resemblance
of demand patterns between both kind of days, and the lagged demand values were

https://github.com/emilylaiken/merradownload
https://www.westernpower.co.uk/innovation/pod
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correspondingly shifted to coincide with that of previous Sunday. Since the behaviour
of the demand during lockdown was clearly different from that of regular periods (see
Figure 2), it was decided to distinguish lockdown days with a flag.

The resulting dataset contained approximately 100 features.

Figure 1. Autocorrelation plot for the demand (the lags are measured at half-hour intervals). There
are peaks every 24 h and a slightly higher peak for the same day of the past week.

Figure 2. Comparison of demand values between the first two weeks of June 2019 and June 2020
(aligned so that the days of the week coincide).

3. Methodology

The main goal was to forecast one week ahead values of demand (load forecast in
MW) using, as model input, its past values in combination with historical and current
weather forecast data. As previously stated, the prediction of energy load during the
outbreak of the COVID-19 pandemic was one of the main challenges in this study. As it
could be expected, the significant change in the energy consumption pattern caused by the
various restrictions imposed by the government made it harder to forecast the load for this
period. In addition, there is no technique for the short-time load forecasting problem that
is known to be superior to all others (see [11]); rather, the best techniques depend heavily
on the particular characteristic of the dataset (including factors such as the type of climate
and the economic activities at the analysed location, the forecast horizon, etc). For these
reasons, three different approaches were contrasted in the present study: gradient boosting
tree ensemble model, artificial neural networks and TabNet. The first two techniques are
known to achieve state-of-the-art results in several practical tasks and were shown to be
successful at short-time load forecasting (see for instance [3–9]). On the other hand, TabNet
is a novel deep neural network architecture specially designed to handle tabular data that
reportedly outperforms or is on pair with standard neural networks and decision trees
based variants [12].

All models were trained to minimise the mean squared difference between the pre-
dicted and the actual values of demand one week ahead. Roughly 1 year of data was used
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(corresponding to the period November 2017–December 2018) as training set, while the
remaining weeks (up to July 2020) were used to validate and asses the models’ perfor-
mance using the walk-forward method [2]. Below follows a brief description of each model,
together with the specific features and hyperparameters used in each one of them.

CatBoost: CatBoost [13] is an implementation of gradient boosting on decision trees
developed by Yandex, which quickly positioned itself as one of the standard methods
for learning problems with tabular data, heterogeneous features and complex, non-linear
interactions. Gradient boosting is an ensemble method that iteratively improves weak
predictors (in the case of CatBoost, decision trees) by performing gradient descent greedily
in a certain functional space [14].

All features, both original and extracted, were employed for the CatBoost model.
Except for a few relevant hyperparameters that controlled the complexity and regularised
the model, the default values were used. These hyperparameters were n_estimators
(maximum number of trees), depth (maximum depth of each decision tree), max_bin
(number of splits for numerical features) and rsm (the proportion of the features considered
for each split). Their values were determined by a grid search around initial good values
obtained by heuristics and manual experimentation.

Artificial neural network: Artificial neural networks are inspired by a simplified
model of how biological neural networks work, and are known to have the capability of
learning hidden non-linear and complex pattern in the data. An artificial neural network
consists of a directed graph, organised in layers whose nodes are known as neurons. Each
neuron applies a non-linear transformation to its input based on learnable parameters
and passes the resulting value to neurons in the next layer. These parameters are trained
iteratively using stochastic gradient descent with the aim of generating the desired output.

In contrast to the CatBoost model, it was decided to remove several features to reduce
multicollinearity issues. Among the time-related features, only the cyclic versions were
included and all weather variables were discarded but for the ones corresponding to the
two most uncorrelated locations. The total number of neurons was estimated heuristically
(proportional to the degrees of freedom of the problem) and it was decided to reduce by a
factor of 2 the number of neurons in each hidden layer with the aim of forcing the network
to progressively learn more relevant features. The number of neurons in the first hidden
layer and the number of layers were determined by a grid search. This resulted in an
architecture consisting of four hidden fully connected layers with 64 neurons in the first
layer. The non-linear activation ReLU was applied for all layers, while the Adam optimiser
was used with the default learning rate 0.001.

TabNet: The new architecture proposed by TabNet learns directly from the raw nu-
merical (not normalised) features of tabular data. The normalisation and feature extraction
is somehow embedded in the architecture, since the raw data is filtered by a Batch Normal-
isation layer and several transformers blocks designed to learn relevant features. One of
the salient characteristics of TabNet is the use of a single deep learning block to perform
instance-wise feature selection, consisting of a sequential attention mechanism and learn-
able masks. As a consequence, the accumulated learned weights in this block can be used
to interpret the outputs of the model.

For the TabNet model only the cyclic time-related features, the lagged information
of the demand and the weather variables of the two most uncorrelated location were
employed. The total size of the model was decided by a grid search, following ([12],
Guidelines for hyperparameters), to set the values of the hyperparameters width and steps,
which are respectively, the number of hidden neurons in each block and the number of
hidden blocks.

4. Discussion and Results

The three models considerably beat naive baselines and achieve a steady accuracy
across very dissimilar weeks (see Table 1 below). This is consistent with the existing
literature and the common consensus that models based in ensemble of regression trees
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and neural networks are the strongest predictors for generic regression tasks. Although in
our tests TabNet did not in general outperform the best traditional model, its accuracy was
usually close to it. In addition, since TabNet had an inductive bias of different nature to the
traditional regression algorithms it allowed us to obtain a further improvement in accuracy
by combining it with the traditional models via ensemble methods. Indeed, it was verified
that the simple average of the three models achieved an appreciable higher performance
than any single model (see Table 2).

Table 1. R2 scores and root squared errors for the proposed methods. Here the naive baseline consists of predicting the
same as the previous week.

Method R2 Score RMSE R2 Score (Lockdown) RMSE (Lockdown)

CatBoost 0.9369 0.2156 0.8562 0.2332
Neural Network 0.9311 0.2254 0.8396 0.2463

TabNet 0.9286 0.2295 0.8424 0.2442
Naive Baseline 0.8740 0.3048 0.7198 0.3256

Table 2. R2 scores and root mean squared errors for the different averages of the proposed models.

Average R2 Score RMSE

CatBoost+TabNet 0.9477 0.1964
CatBoost+Neural Network 0.9492 0.1936
TabNet+Neural Network 0.9423 0.2062

CatBoost+TabNet+Neural Network 0.9511 0.1898

Regarding the prediction for the lockdown weeks, it was found that reducing the
amount of regular samples in the training sets was beneficial for the performance of
the predictive models. Concretely, to generate the predictions on lockdown weeks, only
samples starting from 2019 were considered for the training set. The rationale behind this
decision is that the reduction allows to give more weight to samples corresponding to the
lockdown period. The accuracy attained in this way is comparable to the one obtained for
normal times (see Figure 3 and Table 1).

Figure 3. Predictions for the first week of lockdown (from 22 March to 28 March). The consumption
pattern is quite different to the one from the previous week.

5. Conclusions

In this study, the performance of the novel TabNet network is compared with two
well-established regression models on a short term load forecasting task. It is shown that it
is possible to obtain comparable performance to these traditional methods but with little to
none feature engineering and data preparation. Moreover, the use of TabNet provides a
further boost in the overall accuracy on this task via ensemble methods.

As a future step, it would be interesting to refine the strategy to predict the energy load
during the lockdown. As some preliminary evidence suggests, training a strong model on
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a regular period and then fine-tuning it using data collected during the lockdown (which
can be seen as an application of the transfer learning technique) could lead to further
improvements in accuracy.
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