
This article has been accepted for publication and undergone full peer review but has 
not been through the copyediting, typesetting, pagination and proofreading process, 
which may lead to differences between this version and the Version of Record. Please 
cite this article as doi: 10.1002/solr.202100692 

This article is protected by copyright. All rights reserved 
 

Piezo-phototronic Effect Enhanced Perovskite Solar Cell 

Based on P(VDF-TrFE) 

Jiaheng Nie 1,2, Yaming Zhang 1, Minjiang Dan 1, Jizheng Wang 2,*, Lijie Li 3,*, and  

Yan Zhang 1,* 

1 School of Physics, University of Electronic Science and Technology of China, Chengdu 

610054, China 

2 Chinese Acad Sci, Inst Chem, Beijing Natl Lab Mol Sci, CAS Key Lab Organ Solids, Beijing 

100190, China. 

3 College of Engineering, Swansea University, Swansea, SA1 8EN, UK  

 

* To whom correspondence should be addressed, E-mail: zhangyan@uestc.edu.cn, 

L.Li@swansea.ac.uk and jizheng@iccas.ac.cn 

  

Abstract 

As a candidate for next-generation solar devices, perovskite solar cells are increasingly 

being studied for their rapid increased power conversion efficiency (PCE). One of possible 

routes to further increase PCE has been the introduction of polarization in the absorption layer, 

which functions as a method for increasing built-in potential and reducing interface barrier, 

leading to much improved carrier separation and extraction. This technique uses the principle 

of the piezo-phototronic effect utilized for obtaining enhanced optoelectronic performances. 

In order to introduce internal polarization while maintaining optical absorption performance 

of the perovskite, an organic-inorganic hybrid perovskite composite film solar cells have been 

fabricated by doping polarized Polyvinylidenefluoride-co-Trifluoroethylene (P(VDF-TrFE)) 

into the perovskite in this work. The composite film has been polarized with an external 

potential, subsequently inducing the piezo-phototronic effect to enhance the performances of 

perovskite solar cells. Experimental results show that this simple polarization method has 

effectively improved several key characteristics of the solar cell. The power conversion 
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efficiency has reached up to 22.1%, short circuit current (Jsc) increases to 24.2 mA/cm2, and 

open circuit voltage (Voc) increases to 1.18 V. 

Keywords: piezo-phototronics, perovskite, P(VDF-TrFE), polarization, power 

conversion efficiency (PCE)   
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1. Introduction 

The cutting-edge research of perovskite solar cell (PSC) showed that the power 

conversion efficiency of perovskite solar cell (PSC) has been achieved to around 25%, due to 

high carrier mobility and light response of these materials.[1] For example, solar cells based on 

organic-inorganic lead halide perovskite (ABX3, A=MA (CH3NH3) or FA (CH(NH2)2), B=Pb or 

Sn, X= Cl, Br, or I) have great advantages of high photoluminescence (PL) quantum efficiency, 

and superior photoelectric conversion property.[2] Although various approaches have been 

developed to improve cell efficiency, such as compositional engineering,[3] interface 

engineering,[4] and solvent engineering,[5] the purpose of these strategies is to reduce 

fundamental energy losses by improving the separation of carriers,[6] and enhancing carrier 

extraction at the interface. As for separation of carriers, the separation and drifting process of 

electrons and holes are strongly affected by built-in field (BIF). The polarization can increase 

BIF and improve carrier separation process.[7, 8] As for the carrier extraction at interface, the 

interface dipoles formed by polarization on the surface match the effective work function.[9] 

The permanent and strong dipoles of polymers can enhance the injection of electrons.[10] The 

injection efficiency of carriers were modulated by the interface effects including energy level 

alignment and Schottky barrier in the multi-layer structure.[11] Polyelectrolytes were fabricated 

as the hole transportation layer and were well matched to the energy bands of perovskite, 

leading to high level of promoting hole transport from the light absorbing layer to the ITO 

anode layer.[12] 

The polarization can modulate the separation, recombination, and transport process of 

carriers,[13] named as piezo-phototronics effect. This new principle has produced a unique 

mechanism used to enhance devices efficiency,[14] which has shown great potential in various 

devices and systems such as nanogenerators, energy harvesting systems, and a series of 

optoelectronic devices for photoelectric sensing, strain mapping, and optical-communication 

systems.[15] It has been reported that CsPbBr3@PVDF composite fibers using excellent 

piezoelectric properties of PVDF, realized the long-term stability of the inorganic lead halide 

perovskite, revealed a high open-circuit voltage (Voc) of 103 V and short-circuit current of 

170 μA/cm2.[16] A flexible composite film based on P(VDF-TrFE)/CsPbBr3 quantum dots 
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illustrated much enhancement in output performance with Voc of 11.5 V under 0.6 MPa, and 

piezoelectric coefficient of 24.5 pC/N. [17] Based on prominent piezoelectric response and 

photoresponse, PVDF-doped perovskite film also can be a self-powered photoactive 

piezoelectric energy harvester.[18] Composed of lead halide perovskite and PVDF, a 

high-performance piezoelectric nanogenerators has been reported to drive the commercial 

light-emitting diode (LED).[19] A fundamental study has demonstrated the mechanism of 

piezo-phototronics affecting electrons or holes transport separately.[20] A group of high 

performance piezo-phototronic devices have been developed, such as nanowires (NWs) 

array,[21] two-dimensional nanomaterial devices,[22] solar cells,[23] photodetectors,[24] and 

light-emitting diodes (LED).[25] Perovskite and PVDF based composite films owning the 

mechanical energy-harvesting and light response properties, have been reported to be a 

self-powered flexible photoactive piezoelectric energy harvester in piezo-phototronic 

technology, exhibit fast response time of 44 ms (rising time) and 153 ms (decaying time) and 

the wavelength range of about 460 nm ~ 630 nm.[26] Cao et al. integrated 

P(VDF-TrFE)-perovskite bulk heterojunction film photodetector, displaying the ultrahigh 

performance with detectivity of 1.4 × 1013 Jones and response time (92/193 μs) in the 

wavelength of 650 nm.[27] Subsequently, they fabricated P (VDF‐TrFE)-assisted perovskite 

nanowire arrays, illustrated an ultrahigh detectivity of 7.3 × 1012 Jones and the response time 

of 88/154 μs with the detecting wavelength range of about 300-800 nm.[28] Due to introduction 

of these polymers, these fabricated photodetectors based on P(VDF-TrFE) and perovskite show 

excellent performance in self-powered and photoresponse properties. These demonstrate a 

huge potential for piezo-phototronic photodetector devices. Due to the high sensitivity upon 

environmental stimuli, flexible optoelectronic devices were also achieved to mimic human 

visual and tactile systems.[29] 

The carrier separation and extraction are two distinct processes. The enhancement of BIF 

and improvement of interface matching are generally accomplished by different and separated 

layers. Here, we introduce a simple polarization process that directly enhance the built-in 

electric field and the improved interface matching into one process. The polarization of 

P(VDF-TrFE) increases the built-in electronic field, which greatly promotes the carrier 

separation. The charges induced by P(VDF-TrFE) at the surface of perovskite# P(VDF-TrFE) 
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composite films can control the surface potential of films and the charges distribution of 

absorption layer and carrier transport layer for reducing the interface barrier. Therefore, the 

photovoltaic properties of doped P(VDF-TrFE) perovskite solar cell have been enhanced by the 

polarization process based on the piezo-phototronic effect. 

An organic-inorganic hybrid perovskite solar cell was fabricated based on the 

perovskite-P(VDF-TrFE) piezoelectric composite thin film. The schematic of spontaneous 

polarization, the perovskite solar cell device structure and device pre-polarization process are 

illustrated in Figure 1. The device is fabricated by an n-i-p sandwich structure of the 

electron-transporting layer (SnO2), the photoactive perovskite layer 

((FAPbI3)1−x(MAPbBr3−yCly)x), and the hole-transporting layer (2, 2′, 7, 7′ -Tetrakis -[N, N 

-di(4 -methoxyphenyl) amino] -9, 9’ -spiro -bifluorene, (Spiro-OMeTAD)). Figure 1a shows 

the spontaneous polarization state of device, directly after the preparation. By adjusting the 

polarization orientation through the external positive or negative bias voltage, the efficiency of 

solar cells demonstrates increasing or decreasing trends. Figure 1b shows the polarization 

process with the 2 V/m external bias voltage. Figure 1c shows that the polarized P(VDF-TrFE) 

induced electronic field affects transport behavior of electrons and holes. After the polarization, 

there is a strong local electric field effect near the dipole of P(VDF-TrFE) in perovskite 

composite film. Local carrier transport process affected by the local field is shown in Figure 1d. 

Incorporated P(VDF-TrFE) polymer produces a local electric field, widens the depletion, and 

results in a strong local built-in field. Figures 1e and 1f illustrate the molecule structure of 

perovskite and P(VDF-TrFE).  

The PCE of fabricated solar cell devices increases from 18.3% to 22.1%. Recordable Jsc 

has increased to 24.2 mA/cm2 at the 2.50 mg/mL concentration of P(VDF-TrFE) compared to 

21.9 mA/cm2 for the perovskites without P(VDF-TrFE), indicating that doped P(VDF-TrFE) 

polymer can enhance photovoltaic properties. Fill Factor and Voc have been achieved to 78% 

and 1.18 V respectively. The surface polarization state of doped composite film was studied by 

Kelvin probe force microscopy (KPFM). The spontaneous polarization of the polymer 

promotes the charge polarization of the perovskite film. Bases on piezo-phototronic effects, this 

work provides an effective and novel approach to improve the performances of optoelectronic 

devices and perovskite solar cells, and these results exhibit a great prospect of piezoelectric 
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polymer enhancing photovoltaic characteristics of organic-inorganic lead halide perovskite 

materials in future high-performance piezo-phototronic and piezotronic multifunctional 

devices. 

 

2. Carrier collection improvement in a simple polarization process 

P(VDF-TrFE) doped perovskite solar cell devices have been fabricated by the sequential 

deposition method. A mixed solution of perovskite and P(VDF-TrFE) was stirred at a 

temperature of 60 °C for eight hours on a stirring table for thorough mixing. The SnO2 solution, 

precursor fluid, and Spiro-OMeTAD are sequentially deposited onto the ITO-coated glass 

substrate by spin coating and annealing process. The uniform composite films based on 

perovskite and P(VDF-TrFE) form a black light-absorbing layer.  

The doping effect of P(VDF-TrFE) polymers on the organic-inorganic hybrid perovskite 

solar cell was investigated by scanning electron microscopy (SEM). Figures 2a and 2b show the 

top-view morphology images of P(VDF-TrFE)-modified (2 mg/mL) perovskite films and 

untreated perovskite films, respectively. The surface morphology of P(VDF-TrFE)/perovskite 

composite films with bigger grain sizes than the untreated film. Figure 2c shows the statistics of 

size scale with perovskite and P(VDF-TrFE)/perovskite films. Through doping improved 

morphology, these composite films based on the piezoelectric material enhance the organic 

photovoltaic properties. Figure S1 shows the cross-section morphology of fabricated solar cells 

based on doped P(VDF-TrFE) polymer with the sandwich structure of treated perovskite 

composite films. Figure S2 illustrates the absorption spectrum of P(VDF-TrFE) polymer doped 

perovskite composite films which demonstrates increased light absorption in the range of the 

visible spectrum. P(VDF-TrFE) films are very poor light absorbent material. However, the light 

absorption of the perovskite after the addition of P(VDF-TrFE) has been improved. The 

increase of absorption characteristics were considered from the dielectric constant optimization 

due to the P(VDF-TrFE) doping perovskite colloidal compounds.[30] The steady-state 

Photoluminescence (PL) spectrum of the perovskite films based on various concentrations of 

P(VDF-TrFE) polymers are shown in Figure 2d. For perovskite composite films, a PL peak was 

around 770-780 nm and appear slight red shift with the increase of P(VDF-TrFE) doped content. 

The doped 2 mg/mL P(VDF-TrFE)/perovskite composite films illustrate a strong PL intensity, 
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indicating this concentration composite film has the lowest carriers’ recombination. The doped 

P(VDF-TrFE) polymer of excessive concentration destroys the structure of perovskite, 

resulting in a decrease in light absorption efficiency.  

XRD profiles demonstrate the effect of various concentrations of P(VDF-TrFE) on the 

film development process, as shown in Figure 2e. Perovskites with different P(VDF-TrFE) 

have similar diffraction peaks at the same positions (14.16°, 24.56°, 28.40° marked by an 

asterisk.). The current view indicates that excess PbI2 at grain boundary can effectively 

passivate surface defects of perovskite and increase the Voc of perovskites.[30] P(VDF-TrFE) 

was reported that β-phase has a peak near 19° .[31] The changes of doping different 

P(VDF-TrFE) in the crystallization process are obtained by the relative peak intensity change 

of PbI2 (at 12.8°, marked as #) and perovskite. The intensity of perovskite peaks achieves the 

maximum value at P(VDF-TrFE) concentration of 2 mg/mL. Aggregated polymer particles will 

hinder perovskite crystallization, resulting in a peak value of PbI2 higher than adjacent 

perovskite. The perovskites have randomly orientated characteristic due to its spontaneous 

polarization. The disorder of spontaneous polarization may lead to higher carrier recombination 

and affect the drift speed of carriers. It is revealed that local electric potential caused by dipoles 

provide a local microscopic separating field for electron-hole pairs, and accelerate the exciting 

dissociate.[32] The orientation consistency of the dipole and strong local electric field may be the 

effective methods to promote carrier’s production efficiency. Simultaneously, doped 

fluorination promotes lower exciton binding energy, which affects the important carriers 

generation and recombination.[33] Figure 2f shows I-V curves of perovskite solar cell devices 

with various concentration of P(VDF-TrFE). As shown in Table 1, the Voc of 0 mg, 1 mg, 2 mg, 

and 4 mg are 1.14 V, 1.16 V, 1.16 V, and 1.18 V. The Jsc of 0 mg, 1 mg, 2 mg, and 4 mg are 21.9 

mA/cm2, 22.9 mA/cm2, 23.6 mA/cm2, and 22.9 mA/cm2. The FF of 0 mg, 1 mg, 2 mg, and 4 mg 

are 72.8%, 72.9%, 72.1%, and 69.0%. The corresponding PCE are 18.3%, 19.2%, 20.3%, and 

18.8%. Jm or Vm is the value of the current density and voltage at the maximum power point of 

curve. The slope of J-V curve is determined by the 1 =shR dJ dV , at the V < Vm, and Rsh is the 

shunt resistance. According to the model of organic solar cells, this part of J-V curve should be 

horizontal, that is, the slope is zero, Rsh = ∞, at the V < Vm. When V > Vm,[34] the scope of J-V 

A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved 

curve is determined by the 1 =sR dJ dV , where Rs is series resistance. This part of J-V curve 

should be vertical, that is Rs = 0 in the ideal condition. Compared to the curve of the 2 mg 

P(VDF-TrFE) doped concentration, the Rsh has no significant change and Rs increases, at the 

curve of the 2 mg P(VDF-TrFE) doped concentration. Rs is mainly caused by the resistivity of 

the perovskite layer, indicating that excessive PVDF concentration leads to higher resistance. 

Chiang et al. thought that Jsc is affected by conductivity, carrier mobility and diffusion length of 

the active layer.[35] The rising resistance reduces FF, and does not affect Voc.[36] Kim et al. 

improved the fill factors of lead-halide perovskite solar cells, by decreasing the series 

resistance.[37] The lower Rs (higher conductivity) the better carrier transportation efficiency, 

which mainly leads to the better Jsc and FF. In our experiments, the excessive PVDF 

concentration greatly impedes the carriers transport process, by increasing the resistance of 

perovskite and interface barrier at the junction. Hence, Jsc of device decreases. The trends of Jsc, 

FF and PCE show that doped P(VDF-TrFE) polymers enhance the device performances by 

reducing the surface defects. In the solar cell with micro-nano structures, the interfacial 

properties dominate the transport characteristics and improve interface binding.[38] Figure S3 

illustrates the x-ray photoelectron spectra (XPS) data of perovskite films treated with 0 mg, 1 

mg, 2 mg, 4 mg P(VDF-TrFE). The surface compositions are determined by these spectra, and 

the concentration of elemental species is quantitatively estimated by the spectroscopic 

intensities. As shown in Figure S3a, the elements of C, N, Pb, I, F, belonging to the perovskite 

and P(VDF-TrFE) polymer were found in the P(VDE-TrFE)/perovskite films. For C, N, Pb, I, F 

elements, The XPS spectra of the F-1s (Figure S3b), Pb-4f (Figure S3c), C-1s (Figure S3d), 

I-3d (Figure S3e), N-1s (Figure S3f) illustrate the peak shifting to higher binding energy. This 

may indicate polarization induced electron transfer of elements. 

Figure 3 shows the I-V curves of 2 mg P(VDF-TrFE) doped perovskite solar cell after 

positive or negative polarization. The excessive bias voltage may damage the solar cell devices, 

experimentally. These devices were fabricated using two-step methods, which have high power 

conversion efficiencies.[39] Figure 3a displays the energy conversion performance after positive 

polarization of 0 min, 10 min, 20 min, and 40 min. Jsc increases from 23.6 mA/cm2 to 24.2 

mA/cm2, and FF increases from 72.1% to 78.0%. The PCE finally achieves 22.1% that is higher 

A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved 

than 20.3% of the unpolarized device (full parameters after positive polarization are shown 

Table 2). It is clear that the efficiency improvement in the polymers doped perovskite solar cell 

is mainly derived from the significant increase of Voc and FF. Figure 3b displays the energy 

conversion performance after negative polarization of 0 min, 10 min, 20 min, and 40 min. Jsc, 

Voc and FF are 23.5 mA/cm2, 21.7 mA/cm2, 20.3 mA/cm2, 20.2 mA/cm2, 1.13 V, 1.12 V, 1.14 V, 

1.09 V, 77%, 75%, 72.7%, 64% respectively. After 40 min polarization, the PCE decreases 

from 20.5% to 14.3%. The device characteristics after negative poling are shown in Table 3. 

These experiments conclude that the unique coupling effect between piezoelectric and 

semiconductor properties further improves the performances of solar cell devices. 

 

3. Piezo-phototronic effect on perovskite solar cell 

Perovskite crystalline has a tetragonal perovskite crystal structure, and the polarizable 

organic cation MA+ is in 12-fold cuboctahedral coordination.[40] The low bulk-charge 

separation efficiency hinders the high performance of photovoltaic devices, and an internal 

electric field is demonstrated to be an effective solution to this limitation.[41] P(VDF-TrFE) can 

further enhance the lattice polarization of perovskite due to its excellent polarization 

characteristics. For photovoltaic devices based on piezoelectric materials, its photovoltage is 

observed higher than the electric bandgap of material, by controlling the carriers near 

piezoelectric domain walls in nanoscale methods.[42] It is reported that tailoring the structure 

and lattice strain of crystal induces the enhanced electric field, promotes an over 7.5 times 

larger photocurrent.[43] A mixed-ligand-induced quantum-dot electric field also promotes the 

generation efficiency, improves the overall cell power conversion efficiency.[44] In inorganic 

piezoelectric photovoltaic devices, the large internal electric field induced by permanent 

electric polarization of piezoelectric polymer gives rise to an enhanced conversion efficiency.[7] 

The built-in electric field of perovskite film doped by P(VDF-TrFE) is given by [7] 

 

0

P

FE

d
E

L



 
  (1) 

where P  is the polarization charge density, d is the thickness of the P(VDF-TrFE) layer, L is 

the thickness of the polymer semiconductor layer and FE  is the relative dielectric constant of 
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the P(VDF-TrFE)/perovskite composite film. Equation (1) shows that there is a direct 

proportional relationship between the built-in electric field and the polarization of the polymer. 

For the carrier management, in addition to enhancing the separation of the carrier, the built-in 

electric field induced by P(VDF-TrFE) polymer can be expected to improve the drift speed and 

drift length of carriers. Applying a reliable strong electric field becomes a mechanism for 

preventing the recombination of free carriers. Certainly, minimizing carrier recombination 

probability is related to the local electric field strength. Typically, a work function difference 

across the p-layer and n-layer produces a weak electric field. The polarized charges from 

polymer after pre-polarization provides over ten times higher intrinsic electric field intensity.[45] 

Galipeau et al. determined the 5.7 MV/m value of internal electric field of perovskite, using the 

combination of theory and experiment.[46] Taguchi et al. reported the built-in electric field 

intensity of about 1.2 MV/m in the organic solar cell, due to the photovoltaic effect.[47] Lee et 

al. reported that the value range of internal electric fields of p-i-n solar cell is about 3.8 ~ 4.4 

MV/m.[48] Fu et al. reported an about 200 MV/m of average electric field in the 

PVDF/perovskite-based composites under the condition of spontaneous polarization.[49] 

Figure 4 shows the schematic and band diagram for p-i-n solar cell under the positive or 

negative polarization effect. Figure 4a shows the energy band state in the condition of 

spontaneous polarization. P(VDF-TrFE) dipoles are scattered inside the perovskite film. Figure 

4b illustrates the change of energy band under positive poling. Due the positive poling, the 

built-in electronic field is enhanced, energy band decreases, the Voc increases. The dissociation 

efficiency of carriers depends on the magnitude of the local electronic field. The polarization 

electric field is much larger than the built-in electric field, leading to a higher separation 

efficiency of electron-hole pairs and a higher transportation efficiency of carriers. The carriers 

can enter the corresponding transport layer much more smoothly by decreasing interface 

barriers. Figure 4c shows the effect of negative polarization on energy bands. The negative 

polarization decreases the built-in electric field, enhancing the composite of electronic cavity 

pairs. It has been reported the doped P(VDF-TrFE) composite films have longer 

photoluminescence (PL) lifetime under positive polarization.[31] For positive polarization case, 

the curved band is offset upward, and polarized electric field enhances built-in electric field, 

promotes more carriers drift from active layers to p-layer or n-layer. The negative polarization 
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shows the opposite trend. 

To investigate the impact of spontaneous polarization on work functions, and energy band 

of perovskite, ultraviolet photoelectron spectroscopy (UPS) measurements have been 

performed. As shown in Figure S4 (the Ecutoff values of perovskite are 16.93 eV, 16.92 eV, 16.75 

eV, and 16.79 eV, respectively in spontaneous polarization of different concentration of 

P(VDF-TrFE). According to Wf = hν - Ecutoff, where hν=21.22 eV. The work functions of 

perovskite are 4.29 eV, 4.30 eV, 4.47 eV, 4.43 eV respectively, where the doped P(VDF-TrFE) 

concentrations are 0 mg, 1 mg, 2 mg, and 4 mg. Figure S 4c-4f show the valence band 

maximum (VBM) spectra, The VBM of perovskites in the doped P(VDF-TrFE) concentration 

of 0 mg, 1 mg, 2 mg, 4 mg are 1.85 eV, 1.82 eV, 1.76 eV, 1.80 eV respectively. Therefore, the 

valence bands of 0 mg, 1 mg, 2 mg, 4 mg P(VDF-TrFE) doped perovskite are 6.14 eV, 6.12 

eV, 6.23 eV, and 6.23 eV respectively, according to the equation 
v f VBME W E  . Thus, the 

spontaneous polarization of P(VDF-TrFE) changes the energy level of perovskite surface. 

The change of surface potential induced by polarization of the P(VDF-TrFE)/perovskite 

piezoelectric composite thin films were measured by KPFM. Figure 5 shows the KPFM images 

of perovskite films of positive polarization. KPFM image of pristine perovskite film is shown 

in Figure 5a. Figures 5b, 5c and 5d show the surface potential based on perovskite doped by 1 

mg, 2 mg, 4 mg P(VDF-TrFE). The darkening of the image indicates spontaneous polarization 

of doping P(VDF-TrFE) affects the polarization of perovskite films, which leads to decreased 

surface potential of films. The local surface potential difference of doped 0 mg, and 2 mg 

P(VDF-TrFE), as shown in Figure 5e. The overall potential distribution difference is shown in 

Figure 5f. The surface potential of perovskite film doped by P(VDF-TrFE) was 50 mV lower 

than the pristine film. Polarization of P(VDF-TrFE) affects the work function of surface.[50] The 

surface roughness and surface potential of KPFM is shown in Figure S5. The surface potential 

differences caused by different concentrations of P(VDF-TrFE) is shown in Figure S6. Figure 

S7 shows surface potential differences induced by the negative polarization. The doping 

concentration of P(VDF-TrFE) induced the surface potential difference, and the difference has 

reached up to 0.1 V, as shown in Figure S7 and S8. The surface topographies have no obvious 

change in perovskite film with different doped P(VDF-TrFE) polymer. The surface potential is 
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related to the work function. KPFM measurements have shown that surface potential further 

decreases after the positive poling process, which reveals that the polarized polymer does 

promote the polarization of the perovskite lattice. It is also reported that the contact potential 

difference across the interface measured by KPFM shows that Vbi in P(VDF-TrFE)/perovskite 

composite films is higher than perovskite films.[8] Figure S9 and S10 show the effect of 

irregular polarizations.  

Piezo-phototronic is a concept that polarization charges can modulate the generation, 

separation, and transportation. P(VDF-TrFE) polymer is doped into a perovskite layer of solar 

cell devices, to generate polarization electric field and to improve optical parameters, leading to 

enhanced efficiency. The polarization of P(VDF-TrFE) polymer not only improve carrier 

separation, but also reduce the barrier and work function of the interface.[51] The ionic transport 

properties of polymers can be affected by external bias voltage, due to ion conductivity of 

polymers modulated by electronic field.[52] The energy level alignment and Schottky barrier 

bending in the interface region affects the generation and separation efficiency of 

photogenerated carriers.[53] Thus, the enhancement of photovoltaic properties stems from the 

modulation of the piezoelectric polarization charges induced by P(VDF-TrFE) inside the 

perovskite. Therefore, the open circuit voltage Voc, the fill factor and short-circuit current 

improve by one polarization process. 

 

5. Summary 

To conclude, novel device prototypes making use of the principle of piezo-phototronics 

enhancing the performance of perovskite solar cells have been presented. The polarization has 

been introduced to enhance the performance of perovskite solar cells, by doping P(VDF-TrFE) 

into the perovskite layers. The simple poling process promotes the efficient separation and 

extraction for internal and interface carriers. The strong local electric field caused by 

polarization and the change of the interface barrier caused by the interface dipoles jointly 

regulate the transport behavior of internal carriers. The polarized dipoles of the film prevent the 

recombination of a considerable number of electrons and holes, driving carriers to drift to 

transport layers, increasing charge-collection efficiencies. The Jsc, Voc and PCE have been 

achieved to 24.2 mA/cm2 1.18 V, and 22.1% after polarization. Comprehensive theoretical and 
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experimental investigations manifest the convenience and efficiency of doping P(VDF-TrFE) 

polymers. Our work provides a novel and feasible method for further enhancing the efficiency 

of perovskite solar cells, and further expand the application of the piezotronics and 

piezo-phototronics in the perovskite solar cells and related energy conversion devices.  

 

EXPERIMENTAL SECTION 

Solution process: Electric transport layer (ETL) uses the diluted solution of the SnO2 colloid 

precursor and ultrapure water with a ratio of 1.2:6.5. Firstly, PbI2 solution was prepared by 

dissolving PbI2 of 760 mg in 1.16 mL mixed solvent of (N, N-Dimethylformamide) DMF and 

DMSO with a ratio of 1:0.16. Then P(VDF-TrFE) powders are fully dissolved in PbI2 precursor 

solution to form mixed solution with the concentrations of 0 mg/mL, 1 mg/mL, 2 mg/mL,5 

mg/mL, respectively. Subsequently, All the solutions are placed on the stirring table at 60 °C 

for 8 hours to ensure complete reaction. The mixed ammonium salt isopropanol solution is 

prepared by dissolving the 110 mg FAI, 11.5 mg MACl and 11 mg MABr in 1.5 mL isopropanol 

solvent. The spiro-OMeTAD precursor was dissolved spiro-OMeTAD of 72.3 mg in 1 mL 

chlorobenzene with 35 μL LiTFSI/acetonitrile mixed solution (520 mg LiTFSI in 1 mL 

acetonitrile) and 28.8 μl 4-tBP. After filtering, all solutions are prepared for fabricating 

perovskite solar cells. 

Device Fabrication: After cleaned with ultrapure water, acetone, and isopropanol for 20 

minutes respectively, these ITO-coated glass substrates (20 ± 5 ohms/sq) are treated by plasma 

cleaning devices. For the fabrication of the electric transport layer (ETL), SnO2 solution is spun 

coated onto ITO-glass substrate at 3500 rpm for 35 s. After the annealing process at 150 °C 

for 30 min, the sample was taken to the glove box for (P(VDF-TrFE))-perovskite films. 

Perovskite layer is fabricated by two-steps methods. Firstly, PbI2 solutions with various 

concentrations of P(VDF-TrFE) are spin-coated onto the SnO2 layer at 1600 rpm for 23 s and 

4000 rpm for 27 s, then annealing at 70 °C for 2 min. Secondly, the mixed ammonium salt 

isopropanol solution is deposited onto the PbI2 layer by spin coating method at 2000 rpm for 23 

s, then perovskite layer is annealed at 140 °C for 20 min out of the glove box (40% relative 

humidity). Hole transport layer (HTL) was deposited onto perovskite layer by spin-coating 

method at 4000 rpm for 30 s. After 20 hours, ~70 nm Au electrode was deposited by vacuum 
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evaporation under the pressure of 2  10-4 Pa. 

Characterization: The effective area for absorbing light of perovskite solar cell device is 0.04 

mm2. J–V curves were measured by using a computerized Keithley 2420 source meter and a 

Xenon-lamp-based solar simulator (Enli Tech, AM 1.5G, 100 mW/cm2). The illumination 

intensity of the solar simulator was determined by using a monocrystalline silicon solar cell 

(Newport, Oriel Sol3A Class AAA, 94043A). We perform I-V tests of photodetector using the 

setup composed of Keithley 4200 and Micromanipulator 6150 probe station at room 

temperature and the ambient air pressure. The optical source is the white light from the 

Z-105WA Halogen lamp. Absorption spectra were quantified using the JASCO V-570 

spectrophotometer. UPS and XPS data were measured by ESCALAB250XI, Thermo Fisher 

Scientific. The XRD patterns is studied by Rigaku-2500 X-ray diffractometer (CuKα 

radiation, λ =1.5406 Å). The SEM images were taken by the S-4800, Japan. 
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Figure caption 

 

 

Figure 1 │ (a) The spontaneous P(VDF-TrFE) doped n-i-p structured perovskite solar 

cell. (b) The polarization process via an external electric field. (c) The polarized P(VDF-TrFE) 

induced electronic field affects transport behavior of electrons and holes. (d) A schematic 

diagram of electric field induced by the P(VDF-TrFE) driving separation and transportation of 

the electrons and holes. (e) The molecule structures of perovskite films. (f) The molecule 

structures of P(VDF-TrFE) polymers. 

 

Figure 2 │ (a) SEM image of untreated perovskites film. (b) SEM image of P(VDF-TrFE) 

doped perovskites film. (c) Size scale of untreated perovskites film and P(VDF-TrFE) doped 

perovskites film. (d) PL spectra of P(VDF-TrFE) doped perovskites film in different 

concentrations. (e) XRD of the perovskite film doped with various concentrations of 

P(VDF-TrFE) polymer. (f) power conversion efficiency of perovskite solar cells with different 

concentrations of P(VDF-TrFE) polymer. 

 

Figure 3 │ power conversion efficiency of perovskite solar cells with different poling 

time in the condition of positive polarization (a) and negative polarization (b). 

 

Figure 4 │  The schematic diagram of energy bands for p-i-n 

(SnO2-(FAPbI3)1−x(MAPbBr3−yCly)x -SpiroMeOTAD) solar cells under the conditions of 

spontaneous polarization (a), positive poling (b) and negative poling (c). 

 

Figure 5 │The surface potential patterns at the interface of P(VDF-TrFE)/perovskite with 

the P(VDF-TrFE) concentration of 0 mg (a), 1 mg (b), 2 mg (c), 4 mg (d). (e) The surface 

potential distribution along the white lines in (a) and (c). (f) The surface potential statistical 

distribution in (a) and (c). 
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Table caption 

 

 

Table 1 │Photovoltaic performance of the solar cells based on doping P(VDF-TrFE) materials 

 

Table 2 │Photovoltaic performance of the solar cells based on positive pre-poling. 

 

Table 3 │ Photovoltaic performance of the solar cells based on negative pre-poling. 
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Figure 3 
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Figure 4 
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Figure 5 
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Table 1. Photovoltaic performance of the solar cells based on doping P(VDF-TrFE) 

materials. 

PVDF-TrFE [mg] PCE [%] Jsc [mA/cm2] FF [%] Voc [V] 

0 18.3 21.9 72.8 1.14 

1 19.2 22.9 72.9 1.16 

2 20.3 23.6 72.1 1.16 

4 18.8 22.9 69.0 1.18 

 

 

 

  

A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved 

 

 

Table 2. Photovoltaic performance of the solar cells based on positive pre-poling. 

Poling time [min] PCE [%] Jsc [mA/cm2] FF [%] Voc [V] 

0 20.3 23.6 72.1 1.17 

10 20.8 23.4 76.0 1.17 

20 21.6 24.0 76.1 1.18 

40 22.1 24.2 78.0 1.18 
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Table 3. Photovoltaic performance of the solar cells based on negative pre-poling. 

Poling time [min] PCE [%] Jsc [mA/cm2] FF [%] Voc [V] 

0 20.5 23.5 77.0 1.13 

10 18.1 21.7 75.0 1.12 

20 16.9 20.3 72.7 1.14 

40 14.3 20.2 64.0 1.09 
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A simple poling process that simultaneously modulates the built-in field and 

interface barriers of the perovskite solar cell devices has been conducted for the 

perovskite material doped by P(VDF-TrFE).  It has been unveiled that the newly 

developed solar cell devices have achieved a high power conversion effectivity of 

22.1%, which is attributed to the piezophototronic effect that can effectively 

enhance the performance of perovskite solar cell. 
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