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Summary: 

The Micronucleus (MN) Assay is a test mandated for use in genetic toxicology 

testing by regulatory bodies such as the Food and Drug administration (FDA). An 

increased quantity of MN is an indication of chromosomal damage which can be 

characterised into chromosomal breakage (caused by a clastogen) and chromosomal 

loss (caused by an aneugen). By comparing a dose response, estimates can be made 

into the potency of the chemical. Historically the cell scoring procedure takes place 

through the ‘gold standard’ of manual scoring by light microscopy following 

staining. However, despite being classed the gold standard, this method is laborious 

and subjective, with archiving of results not a possibility.  

This leads to the need to develop a new technique to streamline the process, whilst 

still maintaining accuracy. The result is the creation of a ground truth based deep 

learning algorithm. By using imaging flow cytometry to carry out the MN assay, a 

ground truth was created, consisting of different cellular types, including MN. By 

scoring these images manually by eye, a ground truth of images to teach the deep-

learning algorithm is created.  

By applying a deep neural network, the algorithm uses multiple layers to differentiate 

information, mimicking the way neurons work in the brain. This approach allows for 

differentiation between different cellular types based on the ground truth images 

scored.  By assessing more images, the accuracy is further increased. This is 

advantageous as a MN count is generated directly after processing the imaging flow 

cytometry file. This streamlines the process completely whilst maintaining accuracy. 

Also, by using three different laboratory datasets in the production of the ground 

truth, application was shown to be accurate for cross-laboratory use, a novelty in this 

research setting.  

This allows for the existing ground truth to be used for future MN scoring, allowing 

for the MN assay to be fully automated. 
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1. Literature Review 

 

 

 i) Cell cycle. 

 

The cell cycle is split into 4 main stages, G1, S, G2 and Mitosis (Copper, 2000). 

There is first an increase in cell size, characterised by the G1 stage (Copper, 2000). 

Following this, the cell synthesises new DNA resulting in the S stage. The cell is 

then required to prepare for division in the G2 phase and carry out the division in the 

Mitosis phase. G1, S and G2 are commonly grouped together under the interphase 

stage. Mitosis itself can be further distinguished into 5 main stages: Prophase, 

Prometaphase, Metaphase, Anaphase and Telophase. It is during this replication 

state, where the cell is vulnerable to errors taking place. Each time cellular division 

occurs, replication errors manifest. This can be highlighted via micronucleus (MN) 

formation, when damage to chromosomes causes a smaller MN to be formed during 

Anaphase, though this will be expanded on later (Fenech, 2011). 

 There are 3 mechanisms responsible for S phase replication occurring without fault 

(Kunkel, 2009, Ganai and Johansson, 2016). The first is the: nucleotide 

discrimination of the polymerase activity of the replicative DNA polymerases. The 

second is the: proofreading excision of mismatched primer nucleotides, and 

proofreading excision of mis-incorporated primer nucleotides by the 3’ to 5’ 

exonuclease activity of Pol ε and Pol δ. The third is: post replication mismatch repair 

(MMR) which works in combination with DNA replication in order to spot, excise 

and therefore replace any mismatched nucleotides or recently replicated daughter 

strands which remain (Bui D and Li J, 2019). 

 

 

ii) Cellular damage. 

 



Despite these mechanisms present for ensuring nucleotide integrity, the nucleotide 

error rate still lies at roughly 10-10Bui and Li, 2019). This leaves room for mutation 

and consequently damage to occur. Cells are constantly at threat from sources of 

damage, be it endogenous sources, such as with a DNA mismatch or reactive oxygen 

species (ROS) or exogenous such as: x-rays or cigarette smoke (Chatterjee and 

Walker, 2017). These sources of damage to the cell can cause a great deal of 

genomic instability, which is one of the hallmarks of cancer (Hanahan and Weinberg, 

2011). Moreover, this can cause certain key proteins to mutate, with proteins such as 

p53, known as the ‘guardian of the genome’ mutated and losing function in over 50% 

of human cancers (Lane, 1992 and Barker et al., 1989). Some sources, such as 

radiation can also lead to damage on a chromosomal level and was amongst the first 

discoveries to show that physical agents cause damage and therefore alterations to 

genetic matter (Evans et al., 1977). Moreover, it has been shown that these 

chromosomal abnormalities are of a direct consequence of damage occurring at the 

DNA level with breaks in chromosomes taking place due to double strand breaks in 

the DNA itself and an error in DNA mis-repair leading to chromosome 

rearrangement (Savage, 1993). This chromosomal damage has been shown to be of 

major importance in many diseases with cancers being a leading outcome (Roos et 

al., 2016).  

iii) Cancer 

 

The use of genotoxic compounds and their exposure to the population causes 

chromosomal, DNA and cellular damage to take place as mentioned. This damage 

can result in a somatic mutation when the damage has taken place in a somatic cell. 

This can then result in a transformation of the cell resulting in malignancy (Phillips 

and Arlt, 2009). This theory can be described as the ‘Somatic Mutation Theory’ and 

despite the theory being questionable for most cancers, it remains true that exposure 

to genotoxins is a cause of cancers (Brücher and Jamall, 2016).  

Cancer is an ever-growing problem, in 2018 it was thought that around 1.7 million 

new cases of cancer appeared in the United States, with just over 600,000 of these 

cases resulting in mortality (National Cancer Institute, 2018). By inducing key 

mutations, defence mechanisms are stifled and the cancer is allowed to keep on 



dividing and, in the later stages, metastasise to other areas of the body, causing 

complications and in 163.5 per 100,00 individuals on the whole mortality ( National 

Cancer Institute, 2018). The generic signs of cancers are highlighted in two key 

papers, the Hallmarks of Cancer, and the Hallmarks of Cancer: the next generation 

(Hanahan and Weinberg, 2000 and Hanahan and Weinberg, 2011). The disease has 

many diverse and fatal forms, ranging from liquid cancers targeting the blood such as 

Hodgkin’s lymphoma to brain cancers derived from cells producing the fatty 

covering of the nerves such as an oligodendroglioma.  

That so many distinct forms of cancers exist, merely highlights the significance of 

testing drugs, food, and drinks in order to ensure genotoxins and carcinogens are not 

present or present in such minute doses that the effect is negligible.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.1 Genetic toxicology. 



 

i) Genotoxicity overview 

 

Genetic toxicology is the study of chemicals ability to directly damage DNA. By 

directly damaging DNA and causing lesions, such genotoxins contribute to cell death 

and mutations which can have a direct link to diseases such as cancers. It is 

important to differentiate mutagenicity and genotoxicity. Mutagens have the ability 

to cause damage to DNA in both direct and indirect forms, whereas genotoxins only 

cause direct damage. All mutagens are therefore genotoxic, but not all genotoxins are 

mutagenic. 

Due to the deleterious effects, highlighted in disease such as cancer, there is the need 

to have precise and accurate tests, both sensitive and specific for assessing such 

genotoxicity. There is the requirement to distinguish the mechanisms by which 

genotoxins or carcinogens may present themselves. Therefore, it is vital to undergo a 

multitude of tests on a substance which is being tested. Therefore, there is a battery 

test system in place. This involves the Ames test and the MN assay as two main test 

systems (OECD, 2013). 

The Ames test is used to distinguish point mutations with the main mutation types 

detected being frame shifts and base substitutions (Mortelmans and Zeiger, 2000). 

The test focuses on using histidine dependent bacteria strains, where a mutation is 

required for viable bacteria to grow. This allows for mutant causing chemicals to be 

distinguished as when added these substances would cause an above normal 

proportion of viable bacteria to form on the plate. As these bacteria would have 

undergone mutations to his+ and thus will be able to grow the colonies (Mortelmans 

and Zeiger, 2000).  

There are other tests used in accordance with the Ames test, including the Comet 

assay which can be used to assess low levels of DNA damage (Olive and Banάth, 

2006). The test in focus, however, is the MN assay which is an OECD approved test 

used assess chromosomal damage (OECD, 2014). 

 

 



 

 

 

 

 

 

 

 

ii) MN assay. 

 

 

a) Background and Explanation. 

 

The MN test is a standard genotoxic test used to quantify chromosomal damage 

(OECD, 2014). Chromosome damage includes both chromosome breaks and 

chromosome loss. Chromosome loss is caused by aneugenic substances. Clastogenic 

substances cause chromosome breaks. The test is approved by regulatory authorities 

and is a standard test used in chromosomal damage tests (OECD, 2014 and 

ICHS2(R1), 2012). It is of vital importance to fully grasp the importance and 

mechanisms surrounding the MN assay to move onto the techniques used in its 

analysis. 

MN form when entire chromosomes or fragments of the chromosome cannot travel 

to the spindle during mitosis and lag. They are therefore not part of one of the main 

nuclei during division and their nuclear content is covered by their own separate 

nuclear envelope (Fenech, 2000). The phenotypic differences between a normal cell 

and one carrying a MN and the general ease in differentiating the two forms a large 

part of the reason for their use in genotoxic studies (Hintzsche et al., 2017). 

 



b) History. 

 

The MN was initially used as a marker of chromosomal damage over 40 years ago 

(Schmid, 1975 and Heddle, 1973). MN were known to haematologists in dividing 

cell populations such as those found in the bone marrow. Incidentally, the bone 

marrow is one of the OECD testing standards for the MN assay (OECD, 2014).  

The MN assay took over from the more complex and time-consuming approach of 

metaphase aberration counting (Natarajan and Obe, 1982). In this technique, 

chromosomes were studied by spotting and counting aberrations shown during 

metaphase. Despite the detail, the loss of chromosomes during metaphase due to 

preparation methods, compounded with the time-consuming nature and complexities 

led to a simpler method required for chromosomal damage analysis (Fenech, 2000). 

This method was the MN assay. 

 

c) MN mechanism 

 

As mentioned previously, MN are used to detect either clastogenic substances 

through chromosomal breaks or aneugenic substances through chromosomal loss 

(See Fig. 1). This is due to the chromosomal damage disrupting the journey of the 

entire chromosome to the spindle during mitosis. This allows for a nuclear envelope 

to form around some of the DNA in the form of chromosomes and fragments at this 

point. The DNA material unwinds and shares much of the same morphology as a 

normal nucleus during interphase, the main difference being the far smaller size. It is 

also possible for nuclear buds and nucleoplasmic bridges to form at a similar stage, 

however such events are much rarer than MN and can be noted when scoring MN.  

There are two ways of carrying out the assay. The test can be carried out both in vitro 

and in vivo (with the use of animal tissue, primarily liver cells when using chemicals 

requiring oxidation). The in vitro method is becoming a more popular approach in 

the scientific community overall, due to the issues raised ethically with the use of 

animals in scientific experiments. This is also compliant with the 3 R’s principle 

towards animal testing, Replacement, Reduction and Refinement (NC3Rs, 2020).  As 



it is becoming clearer that the use of animals when carrying out in vivo methods is 

slowly becoming outdated and the systems are not in fact as reliable as previously 

thought when compared to the working human environment. Therefore, the 3 R’s 

principle is becoming more prominent in research, with an increased emphasis on 

increasing mechanistic understanding of biological systems in order to replicate this 

in a more accurate in vitro test. It must be noted that 23% of oncology drugs in a late 

stage clinical development review failed due to cytotoxicity reasons (Jardim et al., 

2017).  More of this will be touched upon later, the MN work carried out during this 

project was undertaken in an in vitro setting. 

                                     

Figure. 1 Schematic showing MN formation by chromosomal breakage and chromosomal loss 

following endogenous and exogenous damage.  

 

d) Cytocholasin-B 

  

It is important to note there are two main forms of MN assay, whether it is carried 

out in an in vitro or in vivo setting. The assay can be carried out using mononucleated 

cells and thus analysing mononucleated cells containing a MN to determine the MN 

frequency. The other type is the binucleated MN assay, where Cytocholasin-B (cyto-



B) is added to form binucleated cells, which are then analysed and thus binucleated 

MN cells are analysed to obtain a MN frequency (See Fig. 2).  

Cyto-B is a mycotoxin permeable to the cellular membrane which inhibits 

cytokinesis without affecting nuclear division by preventing actin filament 

formation. This leads to cells forming a binucleated shape after undergoing cyto-B 

treatment. This is advantageous as the formation of a binucleated cell gives a 

confirmation that nuclear division has taken place, which cannot, as of yet, be 

identified when cyto-B is not used and mononucleated cells are analysed (Fenech, 

1997) (SeeFig. 2). The use of cyto-B results in the cytochalasin-b Micronucleus 

assay (CBMN). This is, given the confirmation of cellular division, the preferred 

method used in laboratories worldwide. For the MN percentages to be deemed 

accurate, 2000 cells as a minimum are required when analysing mononucleated cells 

after performing the MN assay or 1000 for binucleated cells when carrying out the 

CBMN assay (Fenech, 2000). By comparing the control percentage of MN to the 

dosed percentage of MN, it is therefore possible to calculate if chromosomal damage 

has taken place.  

 

 

 

 

 



 

 

Figure. 2. (a) A MN originating from a lagging whole chromosome and acentric chromosomes 

fragments at the anaphase stage. (b) Shows the formation of a nucleoplasmic bridge from a dicentric 

chromosomes, the centromeres are pulled to opposite poles of the cell. Can also see the formation of 

an MN from the acentric fragment of the chromosome.  The role of cyto-B in stopping cells from 

dividing at the binucleated stage can also be seen. This is for a cell with two pairs of chromosomes 

(Fenech, 2000). 

1.2 Types of genotoxin 

 

i) Clastogens and Aneugens  

 

As previously mentioned, genotoxins causing chromosomal damage are split into 

two main group. Clastogens causing chromosomal breaks and damage and aneugens 

causing chromosomal loss to take place, with both leading to DNA damage as a 

direct result and the capability to be tested using the MN assay. More well-known 

clastogenic examples include Methyl methane sulfonate (MMS) (See Fig. 1) 

(Chatterjee and Walker, 2017). There are believed to be three major types of 

endogenous classes of clastogens (Emerit, 2007). The first class contain lipid 

peroxidation projects synthesised from arachidonic acid of membrane with aldehyde 

4- hydroxynonenal being a leading example (Emerit e al., 1991). The second class 



are cytokines, including tumour necrosis factor alpha (Emerit et al., 1995). The last 

category are uncommon nucleotides, with an example being inosine tri and 

diphosphate (Auclair et al., 1990). Aneugens are responsible for chromosomal loss, 

with the initial hypothesis stating that the MN produced by aneugens would be larger 

due to whole chromosome loss (Yamamoto and Kikuchi, 1980). However, it is a 

very difficult process to accurately check this due to the differences in chromosome 

sizes being an issue between species (Rosefort et al., 2004).  

Aneugens form MN through chromosomal loss (See Fig. 1). Colcemid is an example 

of a well-known aneugen with work being carried out for decades on its mode of 

action (Rudd and Hoar, 1991). Carbendazim is another example of an aneugen which 

has been studied extensively and used in our laboratory previously (Verma et al., 

2017 and Verma et al., 2018). Aneugens are thought to induce different shaped MN 

with these MN not perfectly circular in shape and thus a cause for concern as many 

machines, including automated microscopy have had difficulties in scoring these. 

Both classes of chemical cause serious cellular damage and the OECD have 

guidelines on the use of such chemicals and the classifications it belongs to (OECD, 

2011 and OECD, 2013). 

A general rule is applied in the pharmacology industry where under 1.5μg/tablet is 

considered a safe level of genotoxic substance for the majority of these chemicals. 

NDMA is among a select group of chemicals under an exception due to these being 

considered extremely potent and the guidelines are extremely strict on this (EPA, 

2017).  

 

 

 

ii) DNA Damage and repair 

 

a) MGMT 

 



O6-methylguanine methyltransferase (MGMT) is a DNA repair protein responsible 

for the removal of alkyl adducts from the O6 position of guanine (Estellar et al., 

1999). The alkylation of DNA at the O6 position is formed as a response to either 

environmental pollutants, tobacco-based carcinogens and anticancer medication 

(Christmann et al., 2011). O6MG is however a secondary adduct, accounting for only 

around 7% of all adducts initially formed by alkylating agents, with N7-

methylguanine accounting for 65% of all adducts formed upon initial exposure 

(Liteplo et al., 2002). However, despite being a less common adduct, O6MG is 

highly mutagenic and has the greatest potential to lead to apoptosis (Kaina et al., 

2010). MGMT repairs O6MG by shifting the alkyl group to a cysteine residue in its 

active site (Christmann et al., 2011). Following this, the protein becomes inactivated, 

ubiquitinated and targeted for degradation by the proteasome (Xu-Welliver and Pegg, 

2002). Without MGMT present, O6MG forms point mutations, leads to double strand 

breaks which trigger apoptosis by due to cellular replication and DNA mismatch 

repair (MMR) (Ochs and Kaina, 2000). 

The most common environmental alkylating agents are the N-ntroso compounds with 

NDMA being the first N-nitro compound to be found as well as the most prevalent in 

the diet (Lijinsky, 1999). Thus, MGMT has the possibility to have great potential in 

the DNA damage/repair pathway in NDMA.  

The consequence of alkylation of O6 leads to cancer progression due to the similarity 

in conformation to adenine and thus pairing with thymine during replication (Estellar 

et al., 1999). This causes genomic instability (a hallmark of cancer (Hanahan and 

Weinberg, 2011)). Moreover, the change in base pairing caused from the alkylated 

O6 also leads to dysfunction and increases the chance of mutation, again leading to 

cancers. MGMT has been found to be manipulated by cancers in the response to 

anticancer drugs. A major mechanism of cancer resistance to drugs is by enhancing 

the activity of MGMT which thus counters the effect of DNA-alkylating 

chemotherapy drugs at the O6MG position (Fan et al., 2013). Therefore, MGMT can 

play both a positive role in repairing DNA damage at the O6 position and restoring 

the cell to a healthy status. But it can also play a negative role by reducing the 

effectiveness of anti-cancer DNA alkylating chemotherapeutic agents by countering 

the damage caused by repair (Christmann et al.,2011). 



b) O6BG 

 

O6-Benzylguanine was originally designed by focusing on the biomolecular 

displacement reaction between the leaving group at the O6 position of guanine and 

the MGMT protein (Dolan et al., 1985), (Dolan et al., 1990). Benzyl groups are used 

with more ease in biomolecular groups when compared to alkyl groups (Dolan and 

Pegg, 1997). When adding micromolar concentrations of O6BG, it was observed that 

MGMT levels were entirely depleted which led to increased sensitivity to O6guanine 

alkylating agents (Dolan et al., 1990). Because of these properties, O6BG is used 

greatly to sensitize tumours to lower doses of alkylating agents in a chemotherapy 

setting. However, due to its role in the depletion of the role of MGMT, it is possible 

to determine the levels of DNA repair ongoing whilst comparing samples when 

O6BG is added to samples when it is not. This leads to the determining the effect of 

DNA repair on nitrosamine compounds and specifically the nature of MGMT repair 

specificity in tandem with dose. By adding O6BG to control samples, it is possible to 

compare and gage levels of endogenous DNA damage taking place through the 

creation of O6MG and determine the effect of inhibiting MGMT DNA repair.  

c) Nuclear Stains 

 

In order to visualise cells appropriately, nuclear stains are used in the preparation of 

the cells for visualisation, be it manual microscopy, automated microscopy or flow 

and imaging flow cytometry. Different stains are used in tandem with different 

machinery accordingly to optimise the peak intensity levels of the specific stain. A 

nuclear stain is vital as it helps to differentiate an artefact of a similar size to true 

nuclear material, which is vital when carrying out genetic toxicology tests such as the 

MN assay. 

1.2.2C        i) Draq 5 

 

Deep Red Anthraquinone 5 (DRAQ5™) is a far-red DNA fluorescent dye used to 

stain nucleic acids and differentiate from debris in live or fixed cells (the latter being 

of more interest to this project).  (BD Pharmingen, 2017). DRAQ™ has a maximum 

excitation of 598/646nm but can also be used sub optimally with the 488nm laser 



(BD Pharmingen, 2017). By staining with Draq5™, it is possible to compare the 

brightfield and fluorescent images on the IDEAS® program during analysis and 

differentiate debris by its appearance in the brightfield image but lack of appearance 

in the fluorescent (DRAQ™ in this case) channel.  

 

Figure. 3 Emission and excitation spectrum of DRAQ5™ (Biostatus, 2017). 

 

 

 

 

 

1.2.2C      ii) Hoescht 

 

 

Hoescht 33342 Solution is a fluorescent reagent used in the staining of DNA and 

nuclei in live or fixed cells (just as DRAQ5™). Hoescht 33342 is advantageous due 



to its high specificity for double stranded DNA binding, with a preference for A-T 

binding (BD Biosciences, 2020). Thus, the dye is extremely useful in labelling 

double-stranded DNA and in turn the nucleus where the DNA resides. A blue 

fluorescence is emitted with a maximum emission at 461nm when binding to DNA 

(BD Biosciences, 2020). The specificity for DNA double-stranded binding allows for 

ribonuclease treatment to be skipped and non-specific RNA staining is avoided (BD 

Biosciences, 2020). 

d) Cell lines 

 

Human lymphoblastoid cells provide a comparable testing sample to use due to 

similarities in morphology to primary lymphocytes, therefore they have been used 

historically to model genotoxic systems (Verma et al., 2017). These cell lines can be 

differentiated into different subgroups, based on levels of cytochrome activity 

incorporated into the cell line.  

1.2.2d    i) TK6 cells: 

 

Human lymphoblast, thymidine kinase heterozygote form the more commonly 

known TK-6 cell line. These are frequently used in genetic toxicology in both 

industry and academia due to their suitability in the OECD test guidelines for the in 

vitro MN assay (OECD, 2014). TK6 cells are normally employed for chemicals 

without a need for metabolic activation due to the lack of cytochrome activity 

present. Cell lines derived from human lymphoblastoid cells are also larger in size 

than primary lymphocytes, this allows the cell lines to be used on a wider range of 

machines with reduced magnification capacity which is in turn cheaper for the 

laboratory and more accessible, allowing for a wider range of research to be carried 

out.  

 

1.2.2d    ii) Metabolically active cells 

 

 



1.2.2.d.2   a) AHH-1 

 

AHH-1 cell lines are, just as TK-6 cells, derived from human lymphoblastoid cells. 

Differentiating AHH-1 cells from TK-6 cells is the addition of the cytochrome 

CYP1A1 expression to a high level (Crofton-Sleigh et al, 1993). This allows this cell 

line to be used in the assessment of metabolically requiring test chemicals, whereas 

TK-6 cells cannot. The AHH-1 cell line is a ‘parent cell’ to the more metabolically 

competent MCL-5 cell line, which contains a plasmid containing an additional 4 

cytochromes. Thus, these two cell lines have great use in tandem with one another 

due to this similarity. The preparation methods are extremely similar, with the same 

media, horse serum and glutamine used for both. 

1.2.2.d.2        b) MCL-5  

 

Metabolically competent MCL-5 cells are also derived from human lymphoblastoid 

cells. These cells provide continuous expression of active cytochrome p450 

metabolic enzymes which explains why they are frequently employed in the 

assessment of test chemicals requiring metabolic activation (OECD, 2014). The cell 

line is a TK derived cell line with the AHH-1 cell line being the parent cell line, 

expressing only CYP1A1 (Crofton-Sleigh et al., 1993). The MCL-5 cell line also 

contains the cytochromes: CYP1A2, CYP2A6, CYP3A4, CYP2E1 in a plasmid, thus 

enabling greater metabolic output. This renders the MCL-5s more sensitive to potent 

metabolising carcinogenic compounds and provides a comparison with AHH-1 cell 

lines on which cytochromes are used in the metabolic processing of such test 

chemicals. Therefore, these two cell lines are ideal candidates to use in the 

assessment of test chemicals, such as NDMA. As mentioned previously, the 

preparation methods of MCL-5 cells is very similar to AHH-1 cells, with the 

exception that hygromycin is required to be added to the MCL-5 media in order to 

maintain the plasmid integrity, the plasmid contains a hygromycin resistance gene, 

therefore the addition of hygromycin allows for the selection of hydromycin resistant 

cells . (Aranda et al., 2014). 

 

 



 

1.3 Micronucleus scoring methods 

 

i) Traditional scoring 

 

Currently, the MN assay is carried out by a variety of different methods and using 

different equipment, ranging from microscopy to the use of imaging flow cytometers 

and the scope for robotics. Traditional scoring methods for measuring MN have been 

based on light microscopy.  

In this manual approach, cells are stained with giemsa and manually counted to 

quantify MN. Giemsa staining is used as the dye attaches well to DNA rich regions 

and more specifically to the adenine-thymine rich regions. However, different stains 

can and are used, such as ‘Diff Quik’ (Lab- Aids, Australia) which is the 

recommended stain by Michael Fenech in his revolutionary paper on the MN assay 

(Fenech, 2000). The Diff Quik stain is a version of the Giemsa stain with a major 

advantage of streamlining the procedure from about 4 minutes to around 15 seconds.  

When undergoing fluorescent microscopy, acridine orange is the recommended stain 

to be used (Fenech, 2000).  

After the cells have been stained, the slides are examined by use of a light or 

fluorescent microscope. It is recommended that a magnification of 1000x is used 

when analysing peripheral human blood cells due to the smaller size of such cells 

compared to the commonly used immortalised cells (Fenech, 2000). To analyse the 

cells, both accurately and fairly, various measures are put into place to ensure this. 

The figure of cells required to be scored increases to 2000 when scoring 

mononucleated cells. Next, the MN analysed must be between 1/3rd and 1/16th the 

diameter of the main nucleus and have the same circular/oval shape. Moreover, a 

code is aligned to each slide so that the dosing applied to each slide is kept hidden to 

eliminate user bias. These steps maintain the integrity of the results produced and 

enable the MN assay to be used and approved by many regulatory bodies (OECD, 

2014 and ICHS2(R1), 2012). 



These are the reasons why manual scoring the cells via manual microscopy is still 

deemed to be the ‘gold standard’ (Vermat et al., 2017). 

There are therefore key advantages into the manual scoring of MN using light 

microscopy as with the gold standard. However, despite this method being the ‘gold 

standard’, there are evident issues present.  

The process is laborious, despite the use of dyes such as the Diff Quik to shorten the 

process, the procedure still takes much time and is tedious. The scoring can be 

subjective, despite the coding of the slides, a degree off opinions still exists and this 

can be vital when dealing with rare events. The subjective scoring can therefore lead 

to interscorer variability (Doherty et al., 2011). This, coupled with the lack of being 

able to truly archive results, somewhat limits the manual scoring approach and, 

though still considered the ‘gold standard’, makes true scoring difficult to achieve.  

 

  

ii) Semi-automated microscopy (Metafer). 

 

A new method developed to increase throughput compared to manual microscopy 

was automated microscopy. In this method, the slides prepared by microscopy can be 

automatically checked, resulting in a less laborious process of manual scoring, 

without sacrificing the integrity of true results. The Metafer™ system was a system 

produced and characterised in regard to MN work, it has been used, reviewed in 

papers such as Verma et al and compared to manual microscopy as well as flow 

cytometry approaches (Verma et al., 2017). This semi-automated system, where cells 

are stained with a fluorescent dye before being scored both in an automated and 

manual manner, allows for MN to be scored with greater ease and speed (Doherty et 

al., 2011). The stained slides are loaded onto the scanning platform, images of MN 

are taken using a 10x lens. These are then checked using a 100x lens in line with the 

coordinates shown in the display view (Verma et al., 2017).  This method, as well as 

being quicker, was shown to be reliable and produce results in line with traditional 

MN scoring (Chapman et al., 2014). There is also the tool of storing results for re-

evaluation and a dose-based system. This enables a level of inter scorer comparison 



to be made which cannot take place by manual scoring and increases confidence in 

the results seen. 

However, as seen in Table.1 there are flaws to the Metafer™ system. There is a lack 

of cytoplasmic staining, difficulty in differentiating MN overlapping the parent 

nuclei and the necessity to update the classifier setting conducting MN when scoring 

different cell lines (See Table.1). Moreover, there is a need to manually validate the 

images when scoring, which slows down the process and reduces the automation. 

Changing the classifier setting leads to the system producing an under estimation of 

MN frequency which is a limiting factor of its use (Verma et al., 2017). However, 

there is the potential to overcome this with the addition of a visual detection step 

(Decordier et al., 2009). Moreover, it can take further time to optimise setting for 

different cell lines and morphologies, which reduces the advantage of the systems 

speed. The cause of the underestimation is due to cells with novel nuclear 

morphology’s not being identified or large MN being misclassified as nuclei (Verma 

et al., 2017). Lastly, there is concern about the lack of visualising the cell membrane, 

this limits the use of this technology and is a major reservation of industry into the 

use of automated microscopy to determine MN frequency.  

 

 

 

 

 

 

 

 

 

 

 

 



 

MN scoring 
approaches 

Scoring Platforms Advantages Disadvantages 

Image analysis Manual microscopy 
(light microscopy) 

❖ Suitable for 
dose response 
and mode of 
action analysis 

❖ Simple, 
economical and 
adaptable 

❖ Suitable for MN 
scoring in the 
presence or the 
absence of 
cyto-B 

❖ Stained slides 
can be stored 
for a long time 
and can be re-
analysed 

❖ Suitable for 
assessing bi-, 
tri- and poly-
nucleated cells 

❖ Interoperation 
variation can 
result in 
subjective MN 
scoring 

❖ Slow, tedious 
and time-
consuming 

❖ Lack multiplexing 
abilities 

❖ Total number of 
cells scored 
manually is 
limited which 
reduces the 
overall statistical 
power 

 Metafer™ (fluorescent 
microscopy) 

❖ Semi-
automated 
platform 

❖ High content 
for higher 
statistical 
precision 

❖ Suitable for 
dose response 
and mode of 
action analysis 
for most 
substances 

❖ Images of 
nuclei and MN 
can be stored 
for re-validation 

❖ Classifier settings 
have to be 
optimised for 
different cell 
lines and 
chemicals that 
induce MN via 
varied 
mechanisms 

❖ Lack of 
cytoplasmic 
staining, 
detection of 
small MN and 
manual 
validation of the 
images 

Flow cytometry MicroFlow® ❖ Fully 
automated 
platform to 
score MN 
objectively 

❖ Suitable for 
dose response 

❖ High content 
and high 
throughput 

❖ Permits cell 
cycle analysis 
10,000 events 
scored in 1–
2 min 

❖ Cell lysis is 
required prior to 
MN scoring 

❖ Misleading MN 
cannot be re-
validated from 
same sample 

❖ Overestimation 
and 
underestimation 
of MN are both 
possible and 
require expert 
analysis 

❖ Lack of MOA 
analysis with TK6 
cells 



Table. 1 An overview of the advantages and disadvantages of MN analysis using the 

manual scoring, Metafer™ semi-automated fluorescent microscopy and the 

MicroFlow® flow cytometry approaches to the MN assay (Verma et al., 2017). 

 

 

iii) Automated scoring (Microflow). 

 Due to the need to still manually ‘check’ the cells being scored using semi-

automated microscopy, and the laborious time associated with this resulting in this 

being a limiting factor, new systems were developed to increase the throughput of 

the assay. This led to the use of systemssuch as the MicroFlow® flow cytometric 

approach. This approach eliminates the laborious and time consuming approaches 

previously used and provides a high throughput, which is vital. Moreover, the use of 

nuclear stains like ethidium monoazide (EMA) allows for apoptotic bodies and 

necrotic cells to be differentiated from MN, this is often a challenge when manually 

scoring. Due to the lack of visibility of the cells, as there is no camera attached to the 

flow cytometry, as is the case with imaging flow cytometry which will be discussed 

shortly, it is ever important to use nuclear stains to ensure that MN scored are true 

MN as much as possible. The ability to score 10,000 cells in a minute is a true 

advantage and streamlines the scoring process, this is 15x quicker than manual 

scoring methods at least (Verma et al., 2018). This improves the laborious and 

tedious methods of manual and automated microscopy with visual scoring no longer 

an issue. 

However, the lack of visualisation is a major disadvantage of this system. ‘Double 

checking’ cannot take place and thus some confidence in results decrease. Also, not 

being able to store samples for a long period of time, in comparison to manual 

scoring and automated microscopy techniques where the slides can be stored for 

months, hinders this method considerably (Fenech, 2013). The lack of considerable 

storage of slides reduces the confidence in the results also by the lack of a ‘double 

check’ mechanism being in place by not having an archive of results. Another major 

disadvantage is the lack of differentiation between bi, tri and multinucleated cells 

with MN and cells with multiple nuclei (Verma et al., 2017). Furthermore, lysis of 

the cells occurs, leading to an overestimation of the MN count (Fenech et al., 2013). 



Due to the lysis breaking up more parts of the cell, more artifacts are produced, 

which are of a similar size and shape as MN and are thus sometimes miscounted as 

MN. Lysis of the cells is not recommended by Michael Fenech, as this can lead to an 

excess of debris which is difficult to differentiate from MN (Fenech, 2000).  

Moreover, there is also room for underestimations to take place on MN count, this 

combination of both MN overestimation and underestimation limits the use of the 

MicroFlow® and coupled with being unable to visualise the cells limit the use of 

flow cytometry in carrying out the MN assay significantly. 

 

iv) Imaging flow cytometry (Image stream and Flow Sight). 

 

Following the MicroFlow™, there was a need for an automated system for the 

assessment of MN to truly bring the approach into the 21st century. However, the 

major issue with the MicroFlow™ was the need to lyse the cell as well as the lack of 

visualising the cell. The result was the imaging flow cytometer: FlowSight® (Amnis, 

part of EMD Millipore). The imaging flow cytometer combines both the automated 

aspect of flow cytometry with the imaging of manual microscopy. The machine 

functions as a normal flow cytometer does, forward scatter with side scatter is 

available. With the base flow cytometric foundations, there is an additional bonus 

whereby each cell is captured as an image, this allows for each individual cell to be 

clicked on and analysed, adding an extra degree of confirmation. The tool is 

extremely powerful, magnifications range from 20x-60x depending on which model 

is used. The FlowSight® has a magnification of 20x, this is useful and allows for the 

comparison to microscopy to be made. However, this is not always a strong enough 

magnification when focusing on smaller events, such as primary lymphocytes. There 

is however, the Image Stream x Mark II® (Amnis, part of EMD Millipore) which is 

the more powerful version of the FlowSight®, this allows for magnifications of 40x 

to be achieved and ‘add ons’ can be applied to achieve a magnification of 60x which 

increases the capability of the machine and allows for crisper, cleaner images of 

events in focus. The greater magnification proves useful in the assessment of smaller 

cells such as primary lymphocytes, which cannot be visualised correctly on the 

FlowSight® due to being too small. 



Amnis boasts that the Image Stream x Mark II® has a high throughput with the 

ability to process thousands of cells per second. It is ‘intuitive’, ‘adaptive’ and 

‘boundless’ (Amnis imaging flow cytometer brochure, 2016). The camera in the 

Image Stream x Mark II® comes in varying pixel sizes, coming in at 0.1, 0.25 and 

1μm². The cells are lit up by means of a brightfield (BF) light-emitting diode (LED) 

side scatter laser and fluorescence is provided by one or more lasers. The emitted 

photons are collected by a ‘high numerical aperture objective lens’ (Rodrigues, 

2018). The photons pass through a spectral decomposition element which allows for 

a specific range of wavelength, 400-800nm in this case, to be separated (Rodrigues, 

2018). As they are separated, the charge-coupled camera (CCD) takes up to 10 

fluorescent images simultaneously at different parts of the camera for each cell. In 

combination with the two brightfield images produced, 12 images are taken per cell 

which therefore allows for high detail images of the cell to be obtained (Rodrigues, 

2018).   

Moreover, the machine arrives with 12 lasers, equipped for a variety of dyes and this 

fluorescent data is gathered alongside both brightfield and darkfield images, allowing 

for a high content, high integrity analysis to be carried out. The experiment is carried 

out without the need to lyse the cells, this being a key advantage over conventional 

flow cytometric approaches (Verma et al., 2018). The lack of cell lysis also is 

coherent with OECD guidelines where it is recommended that for MN scoring, the 

cells should have an intact cytoplasmic membrane (Fenech et al., 2013). The scoring 

metrics remain the same as per manual microscopy techniques. 1000 cells are scored 

for binucleated cells and 2000 cells for mononucleated cells.  

The initial applications to the MN assay were to manually analyse the images taken 

using the imaging flow cytometer manually. This can be carried out in a similar 

manner to manual microscopy scoring; however, the scoring does not need to take 

place on a microscope but on the IDEAS® program on a computer.  

The technique had been compared to manual microscopy in radiation dosimetry with 

the results found comparable (Rodrigues et al., 2014). This led to the approach being 

used when comparing chemical dosage with the results again found to be comparable 

(Haxhiraj et al., 2018 and Verma et al., 2018). This is vital due to manual 

microscopy still being considered the ‘gold standard’ (Verma et al., 2017).  



Experiments were carried out on primary lymphocytes extracted from the blood 

using the FlowSight® at a magnification of 20x. However, this proved not to be a 

strong enough magnification (Haxhiraj et al., 2018).  

The advantages of this technique are being able to access 20,000 cells within 

minutes, archiving the images produced and being able to further analyse these using 

the IDEAS® program to play a large factor in the current use of imaging flow 

cytometry in MN analysis. Moreover, the manual scoring on a laptop can be carried 

out in a less strenuous manner which can maintain that scorer subjectivity as scoring 

levels do not waiver and therefore consistent scoring is more likely to be achieved. 

Moreover, 12 channels provide a multitude of biomarkers and dyes to be used, which 

can help to further differentiate MN. The masks and templates present in IDEAS® 

also allow for a greater use of tools to query subjective MN. Lastly, the presence of a 

Brightfield image allows for the cytoplasmic membrane to remain intact and can 

allow for a composite image, containing the cytoplasmic integrity of a brightfield 

image, with the fluorescent identification ease of a DNA label to increase confidence 

in the users scoring. Specific images can be marked and rescored by other scorers 

and thus achieve a moderated standard.  

There are major disadvantages with the method currently, however. The images 

produced of the cells still must be manually scored, a laborious and tedious process. 

The imaging flow cytometers are also expensive, especially the ImageStreamX, 

which is required when analysing primary lymphocytes. This limits the quantity of 

laboratories with this equipment and with the service charge also being expensive, 

the method is limited to few laboratories. It is far more economically viable to buy  a 

microscope and the giemsa stain required to carry out the gold standard which allows 

for a more widespread use. Moreover, as manual scoring is still being carried out 

with the imaging flow cytometer, expertise is still required in the scoring stage. In 

order to make the expenditure of an imaging flow cytometer even more worthwhile, 

full automation is required for the MN assay. 

The manual scoring using the IDEAS® program allows for the next step in the 

process of complete automation to take place and is a key contributor to the next 

stage in the process: producing a deep learning algorithm to automate the MN assay 

fully. 



 

1.4 Analytical tools 

 

i) Use of IDEAS® program 

 

a) Background and explanation 

 

 

IDEAS® is the program which comes linked with the imaging flow cytometry 

platforms provided by Amnis. When the cells are processed by the imaging flow 

cytometer, the Inspire software (the computer program which comes as standard with 

the imaging flow cytometer) is automatically loaded up. A general gating system can 

be produced here and then the viable cellular data can be transferred to a memory 

stick and loaded onto the IDEAS® program. The program comes with unique 

features, enabling for the manual gating of the desired region and allows for each 

‘dot’ on the scatter plot to be clicked upon and visualised. Each image obtained also 

has an individual number attached to it, this image can be double clicked and copied 

to another region. This allows for cells containing MN to be visualised separately 

and the number attached allows for each image to be archived and checked again at a 

later date by a more experienced scorer if needed in order to ensure that the scoring 

integrity is kept. By being able to save different populations, it is possible to group 

and save rare phenotypes (MN, nuclear buds (N-buds) and nucleoplasmic bridges 

etc).  

b)  Template and Tools. 

 

The IDEAS® program has specific features and tools which allows for analysis to be 

undertaken more quickly. By applying specific features, the user can manipulate 

pixels which can allow for the differentiation of cells to be carried out with more 

ease. These features and mask can vary from simple metrics, such as ‘Spot intensity’ 

which allows for circular groups of pixels to be identified with more ease, to a 



combination of a variety of masks and features which in turn eliminate much of the 

cells and allow for much more specific phenotypes to be identified. This is the basis 

of some of the work which has been undertaken by Rodrigues (Rodrigues, 2018). By 

creating highly specific templates using complex masks and features in IDEAS®, it 

is possible to obtain specific phenotypes, be it MN, N-buds, Nucleoplasmic bridges 

or just binucleated cells. By combining features and masks together, it is possible to 

narrow down the quantity of cells deemed a specific phenotype. This allows for a 

pool of cells to be formed, with these cells being checked to confirm that the 

phenotype is what was thought. This speeds up the time taken to make up the 1000 

binucleated cells which are needed, but the manner is not perfected and this is why 

much work is being undertaken on producing an algorithm which is both quick and is 

comparable to the ‘gold standard’ of manual microscopy (Verma et al., 2017).  

c)  previous use and comparison (Rodrigues paper). 

 

The combination of masks and features in tandem was used by Rodrigues to create 

an algorithm which aligned with criteria set out by Fenech previously (Rodrigues, 

2018, Fenech et al., 2003, Fenech, 2007). This algorithm, set out for scoring the 

CBMN assay, reduces the scoring time required in manual scoring, this increase in 

scoring rate allows the assay to not only be performed quicker, but with more 

statistical integrity also (Rodrigues, 2018). In 2018,  Rodrigues, showed that the 

calibration curve produced using his algorithm had similarities to others produced in 

literature and therefore showed some promise (Rodrigues et al, 2016, Rodrigues, 

2018). The conclusion generated by this was that this method could produce 

radiation dose estimates to within +/- 0.5Gy of the actual dose, this is appropriate for 

triage radiation biodosimetry (Rodrigues et al., 2016).  Moreover, the four chemicals 

used in this study, two aneugens and two clastogens showed a significant increase in 

MN at all but the lowest two doses of Colchicine (0.005 and 0.01μg/ml and the 

lowest dose of VS (0.005μg/ml) (Rodrigues, 2018).  

However, it must be noted that the base MN level in the Rodrigues study was found 

to be 0.19% (Rodrigues, 2018). This figure is considerably lower than the historical 

MN levels in literature of between 0.32%-1.38% when using more traditional 

methods, such as microscopy and standardised flow cytometry (Lovell et al., 2018). 



The lower background MN rate is an area of concern and despite the advantages seen 

and produced by the algorithmic method applied here, ‘caution must be taken when 

attempting to draw conclusions based on comparisons between the experimental 

results presented here and published literature’ (Rodrigues, 2018).  

 

d) Next steps 

 

This latest attempt at increasing the throughput of the MN assay whilst retaining the 

integrity and accuracy of the results led us to the algorithmic approach we have 

undertaken. The next challenge was to keep the throughput high, but to produce a 

comparable result to the ‘gold standard’ of manual microscopy scoring (Verma et al., 

2017).  

1.5 Algorithm theory. 

 

i) Background and Origins 

 

In order to automate the assay, an algorithm would have to be created to allow for 

artificial intelligence (AI) to be used to significantly reduce the laborious nature of 

the test, whilst keeping throughput and accuracy at a level comparable to the ‘gold 

standard’. Two main methods branch out from this, machine learning and deep 

learning. 

ii)  Machine learning  

 

Machine learning, in regard to MN assay developmental, use revolves around writing 

a script which incorporates ‘structural rules’ into the script. These set of rules can 

then be used in the application of the MN assay. For the assay, a rule would be to 

search for a region with a diameter between 1/16th and 1/3rd of the main nucleus in 

the cell as per Fenech’s guidelines (Fenech, 2000). Moreover, an aspect ratio closer 

to 1 would signify a circular shaped MN. By combining these factors and more, as 



was carried out by Rodrigues, the resulting MN can be analysed, and a dose response 

carried out.  

Rodrigues carried this process out in the IDEAS® software, by manually inserting 

these guidelines of a MN by use of masks and features as specified earlier. Writing a 

machine learning algorithm is a way to streamline this process without the time-

consuming approach of having to create and modify many different masks and 

features. However, due to the ability to save templates on the IDEAS® program, the 

process is relatively streamlined for further use. 

The issue with the Rodrigues approach to automating the MN assay, and the Achilles 

heel of machine learning in this scenario, is that it is still very difficult to classify 

MN without manually analysing the MN individually. Due to certain MN not be 

perfectly circular, with a perfect circle being difficult to be capture when viewing a 

3D object in 2D, accuracy levels are not always as high as needed. 

The result is that images are captured of near perfect MN in phenotype,  The resulting 

cohort of MN produced are specific to the point of being over specific. This is 

advantageous in that no false positives are included; however, this is not a true 

reflection of the total MN in a sample and therefore cannot be reflective of the DNA 

damage taking place in the cell. This reduces the applicability of a dose response and 

does not forward the use of the MN test. This could be a reason as to why the 

background level shown by Rodrigues in his automation attempts were so low, as not 

all MN adhere perfectly to the guidelines instated. 

 

 

 

 

 

iii) Deep learning 

 

 



a) Background 

 

Deep learning is seen by many as the evolution of machine learning, the next step in 

artificial intelligence. Despite seeming similar however, deep learning focuses on a 

different approach to solving problems and issues.  

With deep learning, fewer initial rules or structures are required. This makes the 

approach favourable when dealing with more complex issues, whereby one common 

theme does not necessarily apply to all the subjects. By attempting to mimic how 

neurones act in the brain, the deep learning algorithm comprises of a neural network. 

Where neurones in the brain link to one another and form connections, the neural 

network is split into different layers. Each layer communicates to another layer and 

passes its verdict to the next layer and so on. Thus, the more layers, the greater the 

computational demands of the network but also the added integrity of the results 

produced.  

In order to know what to look out for, the neural network is trained by a ‘ground 

truth’ of images. In much the same way that we learn to classify a ping pong ball and 

an American football as both being variations of a ball. We can distinguish the 

difference between these two variations, not only having experience with viewing 

both a ping-pong ball and American football, but by viewing the different types of 

balls in between, a tennis ball, golf ball etc. By having this bank of mental  images, 

we are able to identify the differences in identifying the different types of ball, much 

like the more ‘correct’ images the network can train with, the greater the accuracy. 

 Much in the same way, by producing images by which the network can learn from, 

the more images the better, the network can run these images through, layer by layer, 

to come to a verdict on the identity of each specific image. The network therefore 

improves, through the more images it scores and can also provide an accuracy level 

which is likened to how one would manually score the same image. 

b) Ground truth 

 

The ground truth is what provides the neural network with the initial data by which it 

can make decisions on unseen data. As such, it is important that the training data and 



validating data not be mixed, as this leads to an unrealistic and unreliable accuracy 

rating being shown and the network has not been tested with new data.  

In order to apply deep learning to the MN assay, images are needed of the varying 

cellular phenotypes. As such, mononucleates with and without MN, binucleates with 

and without MN, trinucleates with and without MN, quadranucleates with and 

without MN are all needed to be identified and incorporated into the teaching ground 

truth in order to differentiate between these different phenotypes and therefore 

identify MN and the resulting mononucleate or binucleate which is needed in tandem 

with the MN count in order to produce a %of Mn and thus a dose response.  

 

With a system needed to transcend the manual scoring of images which takes place 

during imaging flow cytometry scoring, an algorithm was still deemed the correct 

approach to the problem. The solution was different to the approach taken by 

Rodrigues. Whilst automating the manual scoring of images on the IDEAS® 

software seemed to be the answer in theory, the reality was that there were still many 

MN not scored in the data.  

The ‘ground truth’ of images which could be fed to the algorithm was the next step, 

with previous proof of concept experiments showing the use of imaging flow 

cytometry for manual scoring of cells, which could be applied in this case leading to 

a ‘ground truth’ (Verma et al., 2018).  

A ‘ground truth’ of images are a set of images of a specific phenotype. These images 

are checked in order to ensure the integrity of the image and this is a crucial step. By 

forming a ‘ground truth’ of images you know to be of a phenotype, the goal is to 

teach an algorithm this and let it adapt and develop the more data sets it can be 

process. Much like how we learn new information, by identifying the correct features 

when taught by a more experienced scorer and discarding other images, so the more 

you do it, the better you get. Thus, the more data the algorithm has at its disposal to 

analyse, the better it will be. 

 

iv)  Analysis and tools  

a) Transfer Learning 



i) ResNet Neural Network Use 

 

Therefore, by ensuing that the images scored in the ground truth were accurate, we 

hypothesised that a smaller set of ground truth images could be used successfully to 

repurpose the ResNet50 neural network successfully.  

By using an already established network, one could hypothesise that there was the 

potential to more accurately assess cellular images and place them into the correct 

corresponding category if the network had been trained on other images previously. 

As a result, this would lead to network familiarity with distinguishing images into 

differing categories (Warden, 2017).. As this principle is transfer learning, teaching 

the network 9 new classes would be achievable using a reduced bank of ground truth 

images was my hypothesis.  

 

 

ii) 3 channel approach 

 

The resulting approach was the use of 3 channels in the ResNet 50 model. 

Brightfield, Darkfield and Fluorescent channels were chosen. The Brightfield and 

Fluorescent channels are used in literature in IDEAS® imaging analysis to allow to 

distinguish artefacts from nuclear material for fluorescent stains and for the 

cytoplasmic integrity which can be shown in the brightfield channel, a significant 

limitation of the Metafer® semi-automated microscopy method (Verma et al., 2017, 

Verma et al, 2018). The Resnet model had limitations in repurposing the images used 

to initially define this network, which limited its use and led to the DeepFlow 

Network being developed and used going forward. 

 

 

 

 



iii) Limitations 

 

This 3-channel approach was taken forward, using ResNet50 as the network of 

choice and repurposing this network to score for cellular categories instead. 

However, the accuracy produced was not high enough to maintain the integrity the 

MN assay requires. Repurposing the network and adopting a transfer learning 

approach did not come to fruition, quite possibly due to the cellular categories being 

vastly different images to the images the network was originally trained on. This 

would lead to the network considering the cellular images to be more likened to one 

another and therefore not fully recognising each individual class. This possibly led to 

two sub groups of ground truth images being used by the network in assessing 

cellular images, one being the original images used to train the ResNEt50 network 

and the second being the cellular images used to create the cellular based ground 

truth in the IDEAS® program. This thus reduced the specificity of the network and 

therefore the integrity of the results. A scoring system which is not specific enough 

leads to false positives, which undermines the accuracy of the test.  

Therefore, after the master template created in IDEAS® proved to be too specific, 

the ResNet neural network proved to be not specific enough. Just as the nursery 

rhyme goes, one automation attempt had been too ‘hot’, one had been too ‘cold’, the 

case was on to find the one which was ‘just right’.  

 

iv) DeepFlow 

 

To increase the network accuracy, the ResNet50 neural network repurposed approach 

was abandoned in favour of a newer, MN automation specific, neural network, 

DeepFlow. This network was created specifically to be trained on the ground truth 

generated. This was then tested with and without augmentation also. Augmenting the 

data can help to produce greater volumes of the rarer image categories by applying 

different measures (rotations, filters etc) to the images and thus creating multiple 

images from one. This can be extremely useful when only a small quantity of 

training images exists. However, did not prove useful in this scenario, and did not 

increase the accuracy. 



b) Adobe Bridge®  

 

Adobe Bridge® is a software tool commonly used by photographers to organise files 

and allows for renaming, assigning colour labels and star labels which allow for the 

files to be grouped together and analysed with like images. However, it was also 

found to be a very useful tool for grouping different cellular phenotypes in an 

efficient and accurate manner.  

The starring and colour coding system for grouping images allows for the different 

cellular morphologies to be separated with great ease. The starring system can be 

used to designate how many nuclei are present in the image. Be it 1 for a 

mononucleate, 2 for a binucleate, 3 for a trinucleate and 4 for a quadranucleates. 

When the cellular morphology is ambiguous or looks to be dead, the image can be 

labelled with a 5. Moreover, the colouring labels allows to further differentiate these 

images of cells in these categories into if a MN is present or not. If a MN is present, 

then the image can also be colour labelled with one of 5 colours. When analysing the 

images post scoring, the images can be differentiated by colour and/or by star rating, 

allowing for an easy export f the data. Moreover, there is the opportunity to zoom in 

and out of the images, which allows for further inspection of a cell when scoring is 

taking place.  

c)  MATLAB® 

 

To compensate for the differences in intensities and settings between imaging flow 

cytometers in different laboratories, whereby slight fluctuations in intensities and 

frequencies from various factors can make a difference,  MATLAB® was used to 

normalise the images produced by the imaging flow cytometers. The output of the 

normalisation is 8bit images which can then be analysed in order to form the ground 

truth. Moreover, for the images to be shown in Adobe Bridge®, the images have to 

be a one channel image. This is different to the images input into MATLAB® 

whereby the images are 2 channels with the images being in 2 different layers, 

brightfield and nuclear. Therefore, before the cells can be analysed to form a ground 

truth population on Adobe Bridge®, the file containing the images needs to be 

converted to a single channel image using a code in MATLAB®. 



 

 

 

 

i)   General 

 

MATLAB® is a coding computing tool, whereby users can run their code and form 

algorithms for use in both machine learning and deep learning. The simplicity of 

MATLAB ® compared to other coding programs provides a great advantage. 

MATLAB ® does not require a computational language for the processing, such as 

python or java, and therefore makes the use of it easier for the user. By learning the 

rules and abbreviations required for the process of MATLAB ®, an understanding of 

the tasks can be undertaken.  

Moreover, MATLAB ® has many different toolboxes, including both machine and 

deep learning toolboxes, targeted to help individuals in the analysis and automation 

of data. 

The ‘Statistics and Machine Learning Toolbox’ helps users apply functions and apps 

in the analysis and automation of data (MATLAB ST, 2020). Moreover, statistics 

and plots are available for exploring the data and analysis. Visualisation and 

regression add-ons included allow the user to perform tasks more seamlessly with 

confidence in both 2D and 3D colourful graphs including scatter plots. This helps 

greatly in the ease of analysis whilst maintaining accuracy. 

The ‘Deep Learning Toolbox’ helps users to apply and analyse different levels of 

neural networks. It can allow more basic users to use shallow neural networks, with 

not much depth, but can provide proof of concept data for the application of neural 

networks into new areas of research (MATLAB DL, 2020). The application of deep 

learning neural networks is a more complex and computational heavy approach, 

which MATLAB helps to simplify when compared to other programs, without 

sacrificing the capability of the program to produce quick and accurate results. This 

toolbox provides pretrained models and applications as well as providing 



convolutional neural networks, the type of network used in this analysis to automate 

the MN assay. This toolbox includes applications including the vital ‘Train Deep 

Learning Network to Classify New Images’. This is a vital tool in the deep learning 

field, allowing for a convolutional neural network to be taught for the specific choice 

of the user, in this case the identification of MN and cellular morphologies required 

to achieve an accurate dose response. 

A convolutional Neural Newtwork (CNN) is made up of a series of layers, where 

each layer has a specific function. Once the image has gone through one layer, it 

connects to the next layer. The idea is to replicate how neurones work in the brain, 

however in the brain the neurones are attached to one another and to multiple other 

neurones. In this system, the layers proceed only to the next layer and the one 

previous. It is normally in the first layer, which is normally an image-Input-Layer 

which denotes the properties of the image which can be processed.  

The next layers in the network are normally pooling, rectified linear units and 

repeating blocks of convolutional layers. These are the core layers of building a 

convolutional neural network which can help to confirm filter weights, although 

these may be changed during the training of the network. This can be used during the 

training of this network to give the rarer MN phenotypes greater weight as there are 

less images to train with (MATLAB DL, 2020) 

The repeated blocks of convolutional layer acts to achieve a non-linear aspect to the 

network, allowing for an approximation to be made of non-linear functions which 

help to trace image pixels to the pattern of the image. Pooling layers allow for a 

downsample of the data as the network is flowing. However, caution must be taken 

with downsampling when using a more complex network with more layers as 

downsampling may take place too early and this can lead to the loss of important 

information from the image. 

 Moreover, this tool provides the user with the ability to adopt ‘transfer learning’. 

This can help by taking a pretrained network for use as an opening step for a new 

assignment, by updating a pre-existing network as opposed to creating a ne wone 

from scratch, the user saves time and convenience. The smaller quantity of training 

figure produced can then be transferred using their acquired features.  



A conventional way to avoid learning and validating the same piece of data is to split 

the original data, it is commonly carried out at around a 3:1 ration of training images 

to validating images. This ensures that enough images are used to accurately train a 

network but allows for enough images for the validation to be accurate also and 

provides a wide enough range of images (depending on the overall quantity of 

images used). 

Before the images can be trained, the code specifying the images has to include the 

properties of the images in order for these images to be correctly identified by the 

network. An image in the incorrect setting will not appear on the network.  

 

 

ii) Validation and error rate 

 

As the network is running to create a network, several features can be shown on the 

graph that is being produced. An accuracy and error rate are two of the main features 

that can be identified. By allowing the network more time to run at the beginning, the 

neural network has more opportunities to assess the images and form an assessment 

on what the likely category the image will belong in. At the beginning this error rate 

will be greater and the accuracy rate lower due to the network only having one 

opportunity to analyse the images and to learn from these. However, the accuracy 

rate should then increase and in tandem the error rate should decrease.  

A low accuracy rate can lead to two main conclusions. The first is that the training 

data is not of a high enough quality and the network is becoming confused as it is not 

being taught with a great enough detail. In this scenario, the network itself is not the 

issue but the training images. The issue can be seen more specifically if the issue is 

specified to only one or a couple of subgroups or if it the entire data set. This can be 

determined by analysing the confusion matrix (more detail will be provided of this 

shortly). It can be shown on the confusion matrix the accuracy of each individual 

subgroup and where the accuracy may be lacking. By analysing the images prdocued 

by certain sub-groups of the confusion matrix, the user is able to identify if the 

training data is up to a sufficient quality as these images will be manually assessed 



by eye and are open to counter-checking by other users, ensuring the integrity of the 

training data. 

The second issue may be that the training data itself is of a good standard but the 

issue stems from the network itself. This could be caused by too many pooling layers 

which may have taken vital information from the images and caused confusion. If 

there is an issue with the network, it would most likely be expected that each 

subgroup would show a lower accuracy rate and this thus resulting in a decreased 

overall accuracy rate.  

Lastly, the issue could an error with the network in combination with a lower quality 

or quantity of training images. In this case, each subsection would have to be 

identified and rectified MATLAB DL, 2020). 

 

iii) Epochs and Batch/Mini batch 

 

When training the network, it is important to consider the few factors based on the 

length of training. To maximise accuracy, it is not always beneficial to allow for the 

network to train for the greatest possible time-period to achieve the maximum 

accuracy. This may seem counter intuitive initially, however, after training for too 

long a period and more specifically too many epochs, the error rate can increase. 

This increase takes place as when training for an extended period of epochs, it is 

possible for the network to focus on specific features which are not true markers of 

the particular subgroup due to overtraining, akin for looking for patterns when they 

are not there in more popular culture. An epoch is defined as a complete training 

cycle on an entire data size.  

The batch size refers to the quantity of samples which will be put through the system 

at a time. The network runs through the number of images designated in the batch 

size and trains the network. It then goes through the second batch of images until it 

has gone through all the images in a sample, which is designated as an epoch. As an 

example, a batch size of 100 with an image bank of 1000 would go through 10 

iterations of images, each hundred, before training the network. Were the batch size 

50, this would increase to 20 iterations.  



There are both pros and cons to using greater or smaller batch sizes, with a balance 

needed. A smaller batch size requires less memory and thus less computational 

power is needed and a greater spectrum of computers can undertake the analysis. 

Moreover, when using mini-batch sizes, the network tends to train at a quicker rate 

due to the weights being updated after each iteration.  

The disadvantage is that the smaller the batch, the lower the accuracy shown of the 

gradient accuracy, with many more peaks and troughs shown due to each training 

step taking place after a smaller quantity of samples and therefore more fluctuation 

caused.  

 

Figure. 4 Schematic showing the difference between, stochastic, batch and mini-batch. 4 Far greater 

fluctuation seen in the mini-batch graph as opposed to the batch (Cross Validated, 2020).  

So, a balance must be struck when using batches and mini batches. Ideally, a greater 

batch size would be used, if computational power and time were not limiting factors 

in the analysis, as this leads to more images being sampled at a time and thus greater 

accuracy for each iteration. However, this is not always possible and thus the balance 

needs to be struck between computational power, time and accuracy. 

The validation is then plotted once per epoch and the change in accuracy as the 

epoch quantity increases. The quantity of epochs to let the network run for can be 

pre-set before once the optimal number is known. In order to recognise the optimal 



number of epochs needed to run the network, a free run must be carried out and the 

number of epochs denoted before the error rate begins to increase. 

 

 

v) Confusion matrix 

 

A confusion matrix is a table produced which summarises the performance of a 

classification algorithm. By producing a table detailing the accuracies of each sub 

class, the user can identify which classes are performing well and which class 

requires improvement.  

By producing an overall accuracy and error rate, it is possible to compare each class 

to the average accuracy and thus determine which class is performing better/worse 

than the average. It is important to take into account the quantity of images in each 

class, if one class makes up the majority of the images and accuracy, it could be 

possible that the overall accuracy is not as good as suggested as only one sub class 

may be performing and thus inflating accuracy levels. 

By showing the user the accuracy and error rates of each sub class, as well as a total 

accuracy and error rate, it is possible to distinguish where each sub class may be 

scoring incorrectly and this can help the user to identify issues and to implement 

ideas to improve the total accuracy.  

Thus, by displaying the data in a table displaying the accuracy rates of each class, the 

user can easily identify areas of strength and weakness and look to rectify these for 

greater future accuracy (MATLAB DL, 2020). 

 

 

1.6 Aims and Objectives 

i) Different Laboratories 
 



The combination of the different laboratories helped to contribute to the ground truth 

and carrying out the dose response analysis. The Cardiff and Cambridge formed the 

ground bank of cellular images which formed the ground truth. Moreover, a Cardiff 

dataset was also used in forming a dose response. A separate dataset was used from 

the Imaging flow cytometer at the Newcastle Laboratory, and this was used in a 

dataset and compared with the Cardiff dataset to carry out a dose response analysis 

of the non cyto-B MN assay. Lastly, the GSK dataset was used in calculating a cyto-

B MN dose response comparison between manual scoring and the deep learning 

automated method developed and analysed in this project. Moreover, this GSK 

manually scored dataset has the potential to be used in future to create a larger bank 

of ground truth images. The use of these different laboratories allows for 

reproducibility to be demonstrated across data formed across different laboratories.  

ii) Aims 
 

Therefore, the aim of the project was to develop a method to automate the laborious 

and time-consuming nature of the traditional MN assay (manual scoring), without 

compromising the accuracy shown traditionally in what is the gold standard.  

By using and applying a deep learning neural network approach to this issue, images 

can be manually scored by a user and divided into groups to form a ‘ground truth’ of 

images. This ground truth, is then used to teach the neural network the parameters of 

the cellular images to assess in order to carry out the scoring of the assay. Having 

this form of ground truth removes any user subjectivity to the results. Moreover, 

using different laboratories in the creation of this ground truth, allows for the method 

to be an inter-laboratory application, capable of making the assay high throughput 

and accurate. 

Developing a system whereby a high throughput is developed, whilst maintaining the 

gold standard accuracy, would streamline the assay and allow for greater use yet of 

this and transform its use into a truly 21st century approach. 

2.0 Materials and Methods 

 



i) Chemicals 

Carbendazim (Cas no. 10605-21-7), purchased from Sigma-Aldrich. The working 

concentrations, 0.00, 0.40, 0.60, 0.80, 1.00, 1.20 and 1.60 (µg/ml) were selected 

based on the data produced by Verma et al., 2017. Not all concentrations were in 

specific laboratories, where only three doses were used in addition to a control. 

 

ii) DNA staining  

DRAQ5™ DNA (Cat. No. 564902 supplied from BD Biosciences) was used to label 

nuclei and MN for the Cardiff and GSK laboratories . Samples incubation time for 

DRAQ5 was a minimum of 20 minutes.  

Hoeschst 33342 (Cas No. 87576-97-1, supplied from Sigma-Aldrich) was used to 

label nuclei and MN for the Cambridge laboratory.  

These datasets were used in the creation of the ground truth. 

These staining events were previously carried out and the images of the cells 

used and re-purposed in order to create the ground truth of the different 

cellular morphologies.  

 

iii) Cell lines and treatment  

 

Human lymphoblastoid TK-6, AHH-1 and MCL-5 cells were obtained from 

American Type Culture Collection (ATCC), Manassas, VA, USA. AHH-1 and 

MCL-5 cells have a doubling time of 22-24 hours. The cells were cultured in RPMI 

1640 media (Gibco, Paisley, UK), supplemented with 1% Glutamine (for MCL-5 

cells specifically 40 μg/mL Hydromycin) and 10% heat inactivated horse serum 

(Gibco, Paisley, UK). Cells were seeded at 1x105 cells/ml in 25cm2 flask (Fisher 

brand), incubated at 37°C in a humidified atmosphere of 5% (v/v) C02 and 

established into subcultures once confluence was reached. When carrying out the 

experiment, cells were seeded at 2x105 cells/ml in 25cm2  for 1.5-2 cell- cycles in the 

presence of genotoxic agent with no recovery. 



Tk6 cells have a doubling time of 13-15 hours (Lorge et al., 2016). The cells were 

cultured in RPMI 1640 media (Gibco, Paisley, UK), supplemented with 1% 

Pen/Strep (100 U/mL Penicillin and 100 μg/mL Streptomycin) and 10% heat 

inactivated horse serum (Gibco, Paisley, UK). Cells were seeded at 2x105 cells in 

25cm2 flask (Fisher brand), incubated at 37°C for 1.5-2 cell- cycles. 

 

The in vitro MN assay was used to assess MN formation in the TK6, AHH-1 And 

MCL-5 cells with following treatment with Carbendazim, or in the case of the MCL-

5 and AHH-1 cells; a water and methanol control. Cells were treated, and then 

incubated for 1.5-2 cell cycles. After incubation, the cells were centrifuged at 200xg 

for 10 minutes in preparation for harvesting. The supernatant was then removed, and 

the pellet re-suspended in 10mL of phosphate-buffered saline (PBS) (Gibco®).  

iv) Data acquisition on the imaging flow cytometers and IDEAS analysis® 

 

After the removal of the test chemical, cells were washed with PBS and fixed with BD 

FACS™ lysis solution (CAS- 349202) ratio FACS lys:dH2O 1:10 to allow for 

membrane permeabilization and cell fixation. Two ml of the fixative was added to 

each pellet and incubated at room temperature for precisely 12 minutes. The cells were 

then spun at 200xg for 10 minutes and the staining process was carried out. During 

this staining process, the nuclei and MN are stained with 0.05mM DRAQ5™ (CAS-

564902, BD Biosciences) and incubated at room temperature prior to acquiring the 

images with the FlowSight® and ImageStreamX-MkII®. 

The 488nm laser, found as part of FlowSight®, and the 405nm, used in the 

ImageStreamX-MkII®, are both equipped with at least three lasers and were used to 

excite DRAQ5/Hoescht 33342 stained cells. Hoescht 33342 was used for the 

Cambridge laboratory, Draq5 was used for the: Cardiff, Newcastle and GSK 

laboratories. This led to images being captured automatically with the use of 

INSPIRE® 3.0 software. In order to acquire these images, 80µl of the stained cell 

suspension was inserted into the FlowSight® or ImageStreamX-MkII® and the 

resulting DRAQ5/Hoeschst 33342 cellular images were processed, along with 

brightfield images to enable later analysis. 



Aspect ratio and area features were used from the brightfield images to gate out any 

debris or cells which had died from the population as they would be irrelevant in this 

analysis. Altogether, 20,000 single cells were captured per dose per replicate.  

MN frequency was obtained by scoring 2000 Mononucleated cells per dose for the 

non-cytochalasin-B MN assay and 1000 Binucleated cells for the cytochalasin-B MN 

assay where possible using FlowSight imaging flow cytometer. The data was then 

saved as a raw image file and analysed in IDEAS® version 6.2 using either manual 

scoring of images or the creation of templates. For analysis to take place on 

IDEAS®, the raw image files (rif) are converted to compensated image files (cif) and 

then to data analysis files (daf).  

 

Once on IDEAS®, manual scoring of previously scored data was checked and 

‘pulled out’ to form a population of a specific phenotype. The ‘master template’ was 

formed using masks and features on IDEAS® and was updated as required for each 

different data set. This template was used to help to ‘pull out’ different populations 

with more ease and increase the ‘ground truth’ pool.  

 

By brainstorming the specific morphologies of different cell types, it was possible to 

use masks and features on the IDEAS® software to differentiate between these cell 

types and therefore form multiple templates within the master template for ‘pulling 

out’ the different cellular populations.  
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Figure. 5 An overview of some of the masks and template used in the IDEAS® software for the 

master template creation in an attempt to automate the MN assay through this method. 

A) Shows a portion of the variety of masks used within the analysis of the master template. 

B) Shows a portion of the variety of features used within the analysis of the master template. 

C) An example of how specific populations of cells can be differentiated from one another using the 

characteristics of a particular phenotype, in this case how binucleated with MN cells would be 

differentiated from binucleated cells. 

 

 

 

v) IDEAS® based Ground truth 

 

This ground truth was generated in two different ways. One way was to score images 

of the cells manually as has previously been undertaken (Verma et al., 2018). The 

other method was to manually score a selection of cells via IDEAS® and to confirm 

the cellular phenotypes. This was undertaken until a master template was formed on 

the IDEAS® software. A master template was formed by a variety of masks and 

features which are found in IDEAS®. These masks and templates helped to 

differentiate cellular phenotypes and allow for different populations to be ‘pulled 

out’. Like much in the same way that Rodrigues attempted to automate the MN 

assay, we used an approach which is likened to an extent (Rodrigues, 2018). 

However, each data set of the ‘pulled out’ populations was analysed manually to 

ensure that they belong in the phenotype assigned. These formed part of the ‘ground 

truth’. The advantage of forming a ground truth via this method as opposed to 



carrying out the entire experiment as such is that an underestimation of MN which 

may occur is not problematic as there are more data sets from which to analyse more 

MN. 

This master template was tweaked to work from different data sets due to different 

laboratories providing data and using different lasers, thus subtle changes will be 

needed to the masks and features to normalise the different datasets. This is as 

different laboratories have different channels opened and corresponding to the 

frequencies; thus the ‘nuclear channel’ may not be in the same channel across the 

different laboratories and the subsequent mask would have to be edited to ensure that 

a nuclear mask would be encompassing the nuclear channel for the specific dataset. 

This includes adapting the channels set out in the masks based on the laboratory due 

to different channels used (The fluorescence channel may be channel 5 in some 

laboratories and then channel 11 in others etc).  Different nuclear dyes used appear in 

different channels during imaging flow cytometry analysis and thus the same master 

template cannot be used for these differing data sets. 

 The aim was that the deep-learning algorithm will replicate the results produced in 

historical data. If this occurs, then this project could help to lead a significant 

advance in increasing the throughput of the MN assay and revolutionise the assay 

truly. 

vi) IDEAS® analysis 

In an effort to reduce the laborious and time-consuming approach of manually 

scoring MN on the IDEAS® software, a master template was created to produce a 

level of automation in MN analysis. This approach was coined using the masks and 

features tools available in IDEAS®. By producing a template which could identify 

the features of a MN, the other cells would be gated out and a MN % obtained, 

allowing for MN analysis and thus insights into chromosomal damage. This 

approach was based on the Rodrigues approach (Rodrigues, 2019).  

vii) Training the network 

To train the network, two sets of ground truth images were first analysed using the 

Adobe® Bridge platform. For the images to be in the correct format in 

Adobe®Bridge, they must be in an 8-bit tiff format. To generate this tif, the 

IDEAS® program is opened and a raw image file (.rif) generated by the inspire 



software is opened. This automatically produces a compressed image file (.cif) and a 

data analysis file (.daf). The .CIF file directory was copied and applied to a MatLab® 

code. This MatLab® file is used to convert a cif file to the individual tif file 

containing the cellular images: 

Final_script_3_channel_from_cif_to_tif.m 

This script is opened on MatLab® and the cif directory is pasted onto the relevant 

line for validations. The result of this is the creation of tifs. These tifs then need to be 

converted to a 1 channel tiff in order to be visualised using the Adobe®Bridge 

platform, as they are in 2 or 3 channels at the minute.  

 

The: 

‘bridge_script_1_channel_for_bridge_just_one_input_file.m’ 

 script allows for tif 1 channel conversion. The images are saved in an updated one 

channel folder and ready to be analysed.  

 

viii) Bridge analysis 

 

The images in a single channel tiff format, obtained from the cif file conversion were 

opened on Adobe®Bridge which is a file manager where images can be marked with 

5 different colours and 5 different stars. The images were scored according to the 

following criteria:  

A single * denotes a mononucleated cell. 

Two stars ** denote a binucleated cell.  

Three stars *** denotes a trinucleated cell. 

Four stars **** denotes a quadranucleated cell. 

5 stars, denotes a cell which is either dead (apoptotic or necrotic) or unscorable, this 

category is known as ‘others’.  



Colours are also used to annotate these images. By pressing a number 6, a yellow 

colour is denoted. This is used to signify a MN, so that cells with MN are split by 

how many main nuclei are present in the cell also. A mononucleated cell with a MN 

would be signified by a single star * and the colour yellow. When analysing the cells, 

the user can distinguish between all cell classes and those in the class with and 

without a MN, as well as being able to view the total MN number, regardless of the 

number of main nuclei in the cell. 

 

 

2.1 Running the network 

 

i) Creation of .cif files in IDEAS 

 

In order to run the network, the raw image file (.rif), generated using the INSPIRE 

software from the imaging flow cytometer, is opened in IDEAS®. When the user 

opens the .rif file in IDEAS®, a compressed image file (.cif) and a data analysis file 

(.daf) are automatically generated. The .daf file is the file which allows the user to 

view the data on IDEAS®. It is using this .daf file, where the user makes a note of 

which channels are used for: brightfield, darkfield and DNA fluorescence. It is 

important to make a note of this as the channel order differs based on the imaging 

flow cytometer machine and the DNA stain used. It is this .cif file which is needed 

when running the script to determine a dose response. 

 

ii) Generating tif files for Deep Learning 

 

1. Open MATLAB and open the script ‘final_script_3_channel_from_cif_to_tif.m’ 

2. Make all the bioformat files are in that directory together with the image padding 

script 

3. In the script make sure to change the channel numbers to get the right images in  



4. Change the cif file name/location in the script and choose a directory to store the 

images 

 

NOTE: – in all the work carried out so far, the tiff was ordered BF, DNA, DF  

 

 

 

 

iii) Test images on a previously trained network 

  

1. Open MATLAB and open the script ‘explore_output_v2.m’  

2. Alter the network model parameter file in the script, it is a .mat file which 

currently looks like this ‘DeepFlow25-Feb-2020-17-47-23-Epoch-100.mat’ 

3.  Change the directory for the files to test i.e. imageFolder_Validate ='…….’ 

 

a) Stats 

 

When carrying out a dose response, it was integral to carry out analysis to check if 

the data was normally distributed or not in accordance with the methods highlighted 

in Johnson et al., 2014. The initial test used to assess the normality of the data is a 

Shapiro-Wilk test, where a P value of >0.05 equated to the data being normalised. If 

this was <0.05, then a Bartlett’s test can be carried out to assess normality in the data, 

with a P value of >0.05 showing the data being normalised. The log of the data and 

square root can also be obtained for use in assessing normality of the data if required.  

To carry out a one-sided Anova, a Dunnett’s test in this case, the data must be 

normally distributed. This is as the one-sided Anova calculates variation between 

dosed samples and the control and thus relies on data to be normally distributed in 

order to calculate this. If the P value is <0.05, then the dose is of significance 



compared to the control, if the P value is >0.05, then the dose is not significant 

compared to the control.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

3.0 Results 

The original methodology for the creation of the ground truth was to use the 

IDEAS® program, which allows for the differentiation of cellular categories by the 

use of masks and features as displayed in Figure. 5, Figure. 6 and Figure. 7.  

Limitations with proceeding in this method led to the ground truth creation taking 

place by using the Adobe®Bridge approach for manually placing different images of 

cells into different categories, Table. 2 formed the basis of the categories to use and 

images to be analysed manually. The result of this manual scoring of the different 

categories of cells and their quantities is displayed in Figure. 9, Figure. 10 and 

Figure. 11. A further dataset which could be used in future work shown in Figure. 12.  

The Cambridge ground truth was the first ground truth to be generated using this 

approach. Fig. 9 shows the distribution of the Cambridge network with 9178 cells 

scored in total. This is a far smaller figure than is used in literature for neural 

network training, where millions of images are routinely used to accurately train 

networks. The golden rule has historically been, to use 1000 images per categories, 

and in many cases, 1000 categories are used, yielding the million images used which 

was eluded to earlier (Warden, 2017). 

 

As shown in Table. 3, where over 99% of cellular images are being assessed into the 

others category, the 3-channel: brightfield, fluorescent, darkfield approach could not 

be used going forward as the network was being confused and not allowing for 



useful information to be obtained as a result. This led to the 3-channel approach to be 

used, consisting of, a singular brightfield channel with two fluorescent channels. This 

was then further reformed to a two-channel approach, consisting of a single 

brightfield and fluorescent channel in use, with the increase in accuracy displayed 

form Table. 4 to Table. 5. This 2-channel approach was carried forward, following 

determination of the most accurate networks derived from Table. 5. 

Network 3 therefore proved to be the more accurate network across all these 

categories, which on first glance makes it seem like the Cardiff dataset is the more 

accurate of the two (since both were validated on the Cambridge ground truth). 

However, on reflection, the two networks were trained using differing levels of 

epochs, with Network 3 using the optimal 20 epochs and Network 8 using the sub-

optimal 30 epochs (Table.4). Given the presence of over-training, it would be 

expected that a larger disparity would have been shown between the two networks 

than a 0.4% difference in overall accuracy (Table.4). The MN accuracy differences 

are both under 10%, with an 8.4% difference in binucleated MN cell accuracy and a 

1.9% difference in mononucleated MN accuracy (Table.4).  

 

 Network A displaying the highest accuracy for Mononucleated MN and thus what 

would be used for carrying out the non cyto-B MN assay. Network D displayed the 

highest accuracy levels for Binucleated cells with MN and thus this network would 

be used for the determination of a cyto-b MN assay.  

A dose response was therefore carried out, using both the cyto-b MN assay and the 

assessment of Binucleated cells and the non cyto-b MN assay and the assessment of 

Mononucleated cells and this is shown in Figure. 14, Figure. 15 and Figure. 16. A 

manual assessment was carried out using the cyto-b MN assay and this was 

compared to chosen networks deemed to have the highest accuracy as a comparison, 

including Network D and compared in Figure. 14. The manual scoring of 

mononucleated cells was not carried out, instead a dose response was generated 

using the more accurate neural networks as was carried out for the Binucleated cells 

(See Figure. 15). Moreover, a comparison of the Cardiff and Newcastle Carbendazim 

data-sets was carried out and compared to the historical background rate of MN in 

non cyto-B MN assays in literature (See Figure. 16). Figure. 17 Shows a proof-of-



concept analysis, using a Tk-6 cell derived neural network to assess MCL-5 and 

AHH-1 cells. 

 

 

 

 

 

 

Fig. 6 An example of the components of a mask used in the IDEAS® attempted automation 

of the ground truth. The channels set for the mask must be manually adjusted for each 

differing laboratory. Example of a mask used in the master template development. 

 

 

 

 

 

 



 

 

Fig. 7 Progression of part of the master template, detailing the Binucleate MN 

template. The specificity becomes greater with each graph, as each graph gates off 

more and more MN based on Fenech’s description of MN’s characteristics (Fenech, 

2000). 

 

 

 

Fig. 8 Example of the flow found differentiating cellular groups in IDEAS®. This 

allows the user to identify which population they wish to view. A feature useful 

when calculating the MN% using IDEAS® and helpful in initial ground truth 

formation 



i) Ground truth grouping 

Cellular Phenotype Set 1 Set 2 Set 3 Set 4 

 Set 

5 Set 6 

 Set 

7 Set 8  

Sum 

Total 

Apoptotsis 289 477 
 

495 
    

1261 

Binucleates 909 1381 
 

53 
    

2343 

Binucleates with MN 5 11 8 1 7 10 4 9 55 

Binucleate-Overlapping 651 558 
 

846 
    

2055 

Mitotic 139 41 
 

22 
    

202 

Mononucleates 1222 1689 
 

2025 
    

4936 

Mononucleates with MN 5 19 5 6 8 4 3 6 56 

Necrotic 8 20 
 

13 
    

41 

Nuclear buds 3 1 1 2 4 1 0 0 12 

Nucleoplasmic Bridge 

Binucleate 11 0 6 3 11 5 4 0 40 

Nucleoplasmic Bridge 

Trinucleate 2 1 2 2 4 5 1 2 19 

Nucleoplasmic Bridge 

Quadranucleate 0 0 0 0 0 0 0 0 0 

Quadranucleate 30 25 15 18 17 9 16 24 154 

Quadranucleate with MN 2 0 0 0 0 1 0 0 3 

Quadranucleate Overlapping 22 12 7 18 11 3 12 17 102 

Trinucleate 147 142 
 

207 
    

496 

Trinucleate wih MN 6 5 2 3 3 1 6 3 29 

Trinucleate Overlapping 56 71 32 69 12 19 59 69 387 

         
12191 

 

 

Table. 2 The phenotypic breakdown of the initial ground truth created using the IDEAS® 

program in the original automation attempt, using the Cambridge data set with Hoescht 

33342 as the DNA stain. This formed the basis of the ground truth image bank before 

analysis using Adobe®Bridge. 

 

 



 

 

 

 

1231

54

2343

2055

202

4419

57
17

13
40

19 102
3

154 28 387 496

Apoptotic Binucleated MN cells

Binucleated cells Overlapping Binucleated cells

Mitotic cells Mononucleated cells

Mononucleated MN cells Necrotic Cells

Nuclear bud cells Binucleated Nucleoplasmic Bridged cells

Trinucleated Nucleoplasmic Bridged cells Overlapping Quadranucleate cells

Quadranucleated MN cells Quadranucleated cells

Trinucleated MN cells Overlapping Trinucleated cells

Trinucleated cells

1932

150

3872

154

1287

156
326

44

1257

Mononucleated cells Mononucleated MN cells Binucleated cells

Binucleated MN cells Trinucleated cells Trinucleated MN cells

Quadranucleated cells Quadranucleated with MN Other Cells

A 
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Figure. 9 Distribution of manually scored cellular images from the Cambridge data set. 

Cellular images manually analysed using AdobeBridge® software based on cellular 

phenotype. Data represented as %’s in the Pie Chart, however, depicting quantities of cellular 

images. 9178 cells scored in total in B+C. These cellular splits were used in the creation of 

the neural networks, which were used to asses dose responses in the MN assay. 

A) The original distribution of the Cambridge data set, after initial IDEAS® grouping, featuring 

a wider range of phenotypes to which the cells were attributed to. 

B) Distribution of the cells following initial analysis on AdobeBridge® and regrouping. ‘Others’ 

category added and increased accuracy. 

C)  Distribution of the cells following re-analysis of all MN validated from the network using 

MatLab® and the confusion matrices to pinpoint potential mis-classifications. Most accurate 

and latest ground truth. 
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Figure. 10 Distribution of manually scored cellular images from the Cardiff data set. Cellular images 

manually analysed using AdobeBridge® software based on cellular phenotype. Data represented as 

%’s in the Pie Chart, however, depicting quantities of cellular images 10,343 scored in total. These 
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4208
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463
56

350
33

2732

Mononucleated cells Mononucleated MN cells Binucleated cells

Binucleated MN cells Trinucleated cells Trinucleated MN cells

Quadranucleated cells Quadranucleated with MN Other Cells
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356
18

2806

Mononucleated cells Mononucleated MN cells Binucleated cells

Binucleated MN cells Trinucleated cells Trinucleated MN cells

Quadranucleated cells Quadranucleated with MN Other Cells

C 



cellular splits were used in the creation of the neural networks, which were used to asses dose 

responses in the MN assay. 

A) The original distribution of the Cardiff data set 

B) Distribution of the cells following analysis on AdobeBridge® and regrouping.  

C) Distribution of the cells following analysis of all MN produced from the network using 

MatLab®. Most accurate ground truth 

 

 

Figure. 11 Combination of the distribution of manually scored cellular images from the Cambridge 

and Cardiff data sets combined. These data-sets combined are used as another dataset in the training 

and validation of the networks. Cellular images manually analysed using AdobeBridge® software 

based on cellular phenotype. Data represented as %’s in in Pie Chart, however, depicting quantities of 

cellular images. 19,521 cells analysed in total. These cellular splits were used in the creation of the 

neural networks, which were used to asses dose responses in the MN assay. 
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Figure. 12 Distribution of manually scored cellular images from GSK data set. Cellular 

images manually analysed using AdobeBridge® software based on cellular phenotype. Data 

represented as %’s in the Pie Chart, however, depicting quantities of cellular images. 25,805 cells 

analysed in total. This data set was not used in the creation of a neural network and could be 

helpful in future work as provides scope for a 3rd laboratory data-set to be used in tandem 

with the Cambridge and Cardiff ground truths.  

 

 

 

 

 

 

 

 

 

Table. 3 Table showing a great proportion of cells were analysed as others when using the 3-

channel neural network approach: Brightfield, Darkfield, DNA. N=3. 

4690

191

12,372

389

1289

51

414
18

6391

Mononucleated cells Mononucleated MN cells Binucleated cells

Binucleated MN cells Trinucleated cells Trinucleated MN cells

Quadranucleated cells Quadranucleated with MN Other Cells

Dose (µg/ml) Scored as Others Others (%) 

0 29,900 99.67 

0.8 29,817 99.39 

1.2 29,801 99.34 

1.6 29,814 99.08 



ii) Neural Network Tables 

 

 

Network 

Short- 

hand 

Network full 

name 

Dataset 

Trained on 

Dataset 

validated on 

Binucleated 

Cell 

Accuracy 

Binucleated  

Cell MN 

Accuracy 

Mononuclea

ted 

Cell 

accuracy 

Mononucleated 

Cell MN 

Accuracy 

Network 

9 

TCambVCa

mb 

Cambridge Cambridge 94.1 59.5 92.3 72.4 

Network 

2 

TCardiffVCa

rdiff 

Cardiff Cardiff 97.7 86.5 95.5 71.4 

Network 

5 

TCardVCam

b 

Cardiff Cambridge 99 81.9 95.9 67.9 

Network 

6 

TCambVCar

d 

Cambridge Cardiff 77.5 15.3 95.4 63.2 

Network 

1 

TCardVCard Cardiff Cardiff 98.4 71.8 96.9 59.8 

Network 

3 

TCardVCam

b 

Cardiff Cambridge 82.9 52.6 96.6 53.3 

Network 

8 

TCambVCa

mb 

Cambridge Cambridge 70.4 44.2 77.8 51.4 

Network 

7 

TCambVCar

d 

Cambridge Cardiff 93.8 69.4 93.5 51.2 

Network 

10 

TCambridge

VCambridge 

Cambridge Cambridge 93.9 63.6 94.6 45.7 

Network 

4 

TCardVCam

b 

Cardiff Cambridge 75.3 34.7 86.6 38.6 

 

                     

Figure Legend: Dark grey fill = Networ ks post Cardiff ground truth update 

Light grey fill = Following initial 2 channel network accuracy 

No Fill = original ground truth datasets used 

Table.4 Table showing neural network accuracies at different stages of the ground truth 

update. Binucleated Cell MN Accuracy’ and ‘Mononucleated Cell MN Accuracy’ columns are in 

bold due to being the most important factors when deciding the ‘best’ network to use for a dose 

response. ‘Binucleated Cell MN Accuracy’ determines the network for use in a cyto-B dose dependent 

MN assay. ‘Mononucleated Cell MN Accuracy’ determines the network for use in the non cyto-B 

dose dependent MN assay. The table is sorted by Mononucleated MN cell accuracy, from most 

accurate to least. 

 



 

 

Figure Legend: Gold = Best accuracy, Silver = 2nd best accuracy, Bronze = 3rd best accuracy. 

 

Table. 5 Table showing accuracy levels of the neural networks following training and validation on 

the latest updated Cardiff and Cambridge ground truths. ‘Binucleated Cell MN Accuracy’ and 

‘Mononucleated Cell MN Accuracy’ columns are in bold due to being the most important factors 

when deciding the ‘best’ network to use for a dose response. ‘Binucleated Cell MN Accuracy’ 

determines the network for use in a cyto-B dose dependent MN assay. ‘Mononucleated Cell MN 

Accuracy’ determines the network for use in the non cyto-B dose dependent MN assay. The table is 

sorted by Mononucleated MN cell accuracy, from most accurate to least. 

 

 

 

 

 

 

 

 

 

 

Network 

Short-

hand 

Network full 

name 

Dataset 

Trained on 

Dataset 

validated 

on 

Binucleated 

Cell 

Accuracy 

Binucleated  

Cell MN 

Accuracy 

Mononucleated 

Cell accuracy 

Mononucleated 

Cell MN 

Accuracy 

Network 

A 

TCamb&Car

dVCamb 

Cambridge

&Cardiff 

Cambridge 95.9 75.3 96.8 77.3 

Network 

F 

TCambVCa

mb 

Cambridge Cambridge 95.7 59.5 95.2 75.6 

Network 

D 

TCardVCam

b 

Cardiff Cambridge 98.4 89 97.4 72.6 

Network 

G 

TCambVCa

mbCard 

Cambridge Cambridge

&Cardiff 

95.3 62.8 98 72.4 

Network 

I 

TCardVCam

bCard 

Cardiff Cambridge

&Cardiff 

96.3 72.8 91.4 68.7 

Network 

B 

TCambCard

VCard 

Cambridge

&Cardiff 

Cardiff 96.4 63.8 96.3 67.3 

Network 

E 

TCamb_VCa

rd 

Cambridge Cardiff 94.6 56.2 91.1 62.2 

Network 

H 

TCambCard

VCambCard 

Cambridge

&Cardiff 

Cambridge

&Cardiff 

96.9 84.5 95.4 53.6 

Network 

C 

TCard_VCar

d 

Cardiff Cardiff 98.6 76.8 97.7 45.2 



 

 

 

 

 

iii) Confusion matrices and Network training 
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Figure. 13 Confusion matrices produced post neural network creation using MatLab®. Training on the 

‘Cardiff’ dataset and validation also on the ‘Cardiff’ data set. Overall accuracies shown as well as 

accuracies per individual subgroups.  

A) Neural network formed after using the first updated ground truth and using a 3-channel approach 

of Brightfield, Fluorescence, Fluorescence, Network 1 produced this confusion matrix.  

B) Neural network formed after using the first updated ground truth and the 2-channel approach of: 

Brightfield and Fluorescence. Network 2 produced this confusion matrix.  

C) i) Neural network formed post Cardiff and Cambridge ground truth updates and the 2-channel 

approach of: Brightfield and fluorescence (1, 11). Network C produced this network                                                                                                 

ii) Figure showing the training development of Network C up to 20 epochs. Accuracy and error rate 

are both shown. 

iii) The results section after completing a network run, showing the accuracy rate of the network 

produced after completing 20 epoch cycles, other key statistics are also shown, such as iterations 

taken and time elapsed.  

 

 

iv) Dose Responses 

 

 

Figure. 14 Comparison of cyto-B MN dose response assay treating with Carbendazim and 

assessing using 4 triplicates from the neural network complex and one manually scored 

triplicate collected by the ImageStreamX-MkII®. Network 8, 3, 5 and D were used. N=3, 

mean =+/-StDev *Denotes a significant dose dependent increase (P<0.05) 

 

 



 

 

 

 

 

 

 

 

  

 

 

Figure. 15. Development of non cyto-b MN dose response assay treating with Carbendazim. The 

Newcastle data set was assessed for neural network accuracy development. Networks 2, 3 and A 

were used in analysis for comparison of the different ground truth stages. N=3, Mean = +/-- 

STDev. *Denotes a significant dose dependent increase (P<0.05) 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

Figure. 16 Comparison of Cardiff and Newcastle non cyto-B Carbendazim dose responses 

using the automated neural network A. N=3ˠ, Mean = =+/- StError Increase seen from 

control in both laboratories at the top dose and similarity shown between datasets. *Denotes 

a significant dose dependent increase (P<0.05) 

ˠN=3 for every dose excluding the Cardiff control and 1.0µg/ml doses.  

 

 

 

 

 



 

 

 

 

 

Fig. 17 Comparison of background MN rates in two different cell lines, MCL-5 and AHH-1 cells, 

using a TK6 derived ground truth neural network, to compare the ability of the ground truth to assess 

other similar cell lines. Neural Network A. N=3. Mean = +/- StDev 
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Figure. 18. Comparison of background MN levels in MCL-5 cells with and without O6BG in a 

solvent control sample. Assessment using the neural Network automation method to determine 

capability of using a TK-6 cell trained neural network on other cell types with and without O6
-

BG. Analysed using Neural Network A. N=2 (Outliers omitted). Mean = +/- StError. 
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v) Flow of Work Undertaken 
 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure Legend: Blue arrow denotes continuation onto the next step in development. Green arrow denotes a new step in 

the process added in. Red arrow denotes a step abandoned in order to improve accuracy levels. 

Figure. 19. Flow-chart showcasing the development of the systems used to automate the MN assay, from the IDEAS 

automation attempts to the final 2-channel approach used in the dose response analysis.  

gh 



 

 

 

 

 

4.0 Discussion 

 

i) IDEAS® Template formation 

 

The IDEAS® program is the recommended program working in tandem with the 

imaging flow cytometry equipment and the INSPIRE software which, linked to the 

imaging flow cytometer, allows for the conversion of the raw data (RIF) into an 

electronic format and provides initial gating analysis.  

Due to the ease of access of the software, an initial attempt was carried out to fully 

automate the MN assay using a combination of masks and features within the 

IDEAS® program to allow the user to apply the template and determine the quantity 

of MN found. This hypothesis was further cemented by literature in the field, 

including Rodrigues’ attempts to automate the MN assay using the ImageStreamX-

MkII®flow cytometer (Rodrigues, 2018). However, Rodrigues made adjustments to 

the guideline outlined by Fenech in his guidelines for a MN with the MN size set to 

between 0.89-13.3μm² as opposed to the 0.40-11.1μm² range which would adhere to 

the guidelines of MN having areas between 1/256th- 1/9th of the main nuclei (Fenech, 

2000 and Rodrigues, 2018). This is acknowledged by Rodrigues, who cites artifact 

prevention as the reason for the alteration. By adding extensive templates and masks 

to determine healthy from alive cells (as shown in Fig. 3), it was our aim to eliminate 

extensive changes to the MN guidelines. Moreover, when comparing to Rodrigues’ 

method, a background MN rate of 0.19% was observed by Rodrigues, which he once 

again acknowledges to be slightly lower than the historical range of 0.32%-1.38% 

(Lovell et al., 2018 and Rodrigues, 2018). In previous research in our laboratory, a 

background MN range of around 1% was consistently found (Verma et al., 2018). 

Moreover, in my own analysis (in Fig. 20, a background MN% of no less than 0.53% 



was determined. This is a threefold increase on the finding from Rodrigues and 

therefore reduces confidence in the significance of the dose response due to this far 

lower background MN figure).  

By brainstorming the features which specify cellular phenotypes, it was possible to 

form the masks and features necessary to separate these into different classes (as 

shown in Fig. 3). (Fig. 4 shows the pathway which is used to determine a cells 

phenotype) and by using the graphs in IDEAS® to determine the cut off points, it is 

possible to view a select population and the cells considered to be in that specific 

population. In IDEAS® the user is able to then view each individual cells plot on a 

graph and therefore, the minima and maxima regions of a specific are can be 

extended or shortened if it can be visually analysed that a number of ‘correct’ cells 

are falling outside of the region (an advantage of imaging flow cytometry over 

conventional cytometry). This was used constantly to ensure that the correct features 

and thresholds were incorporated into the analysis. The brightfield and fluorescence 

channels were used in tandem as has been traditional in imaging flow cytometry MN 

analysis (Verma et al, 2018). The fluorescent channel allows artefacts to be 

distinguished so a false positive is obtained and the brightfield channel allows for the 

integrity of the cytoplasm to be checked so as to confirm if the cell is in a healthy 

state Verma et al, 2018). 

The resulting ‘master template’ produced did accurately gate MN as was the aim; 

however, the gating was found to be too specific. Only ‘perfect’ MN were picked up 

by the strict guidelines the masks and features created in the template. The result was 

that a low level of non-MN were found to be produced as a result of the mask, as was 

the initial aim. However, by enforcing strict guidelines into the gating of the MN, not 

enough MN were gated due to not all MN having a ‘normal’ MN morphology. Some 

MN do not adhere to these specific guidelines and therefore are not gated and not 

deemed MN. This was reported by Verma et al, whereby aneugens and clastogens 

can have a different effect on the resulting MN formed (Verma et al., 2018). 

Moreover, there was a need to update the masks based on which channels the 

different labs were using (this differs based on which nuclear stain was used due to 

different frequencies exciting different stains). This proved to be time-consuming 

and reduced the effectiveness of automating the system. However, it would be 



possible to create variations of the master template for differing nuclear stains for 

long term efficiency.  

This led to an under-estimation of the MN count which in turn affects the use of such 

a system in a dose response system. One would expect a dose response to be shown, 

but the levels would not adhere to historical data and therefore the comparison 

potential is limited. This limits the use in applying the technique to unknown doses 

and severely impacts the use of this approach going forward. Therefore, these 

limitations added more difficulty to the automation attempt on the IDEAS program 

and can be attributed to part of the reason the automation attempt on IDEAS® did 

not work in the manner required to automate this assay truly whilst maintaining 

accuracy levels consistent with the gold standard of manual microscopy (Fenech, 

2000). 

 

 

ii) Ground truth creation 

 

Due to these limitations, the new approach was taken outside of IDEAS® and the 

idea of deep learning came to the fore, whereby the data collected in the IDEAS® 

approach could be adapted to form a ‘ground truth’ which would teach the network 

what a MN should look like by, as opposed to the ‘machine learning based’ approach 

carried out in the IDEAS® program which carried too much specificity.  

By forming the ground truth by manual scoring on IDEAS®, it was possible to 

generate a ground truth to teach the neural network which was as accurate as 

possible. The accuracy was vital, as any incorrect images distorted the accuracy of 

the neural network. Adobe®Bridge, a tool commonly used in photography analysis, 

proved to be a useful tool in the creation of the ground truth for the neural network. It 

allowed for ease in scoring and allowed to differentiate MN scored cells from non-

MN containing cells of the same nucleic quantity. However, despite the network 

scoring images in an initial 3 channel manner, the images were manually assessed 

using a singular channel, whereby the fluorescent image was found to be the most 

accurate channel for the individual scoring of cellular images. By only being able to 



look at the fluorescent images in the ground truth creation process, it was possible for 

cellular categories to be more difficult to be differentiate, especially with the large 

quantity of cellular types originally used in Table.1 and Fig. 5.  

It is clear, by looking at Fig. 5 that 1000 images are not reached for categories other 

than: Apoptotic (1231), Binucleated (2343), Overlapping binucleated (2055) and 

Mononucleated (4419). This shows that out of the 17 total categories used in Fig. 5a, 

only 4 contained images over the historical threshold, less than 25% of the total 

categories. This can be attributed to the great difficulty in generating 1000 images of 

the rarer phenotypes such as MN or Nucleoplasmic bridges to an even greater extent. 

The background levels of MN in literature are 0.32-1.38% (Lovell et al., 2018). This 

would require 100,000 control dosed cells to be manually scored to give around 1000 

MN which is a laborious and time-consuming approach to solve an already laborious 

and time-consuming method. The highest dosed cells could also be analysed; 

however, this would require carrying out RPD studies and carrying out dilutions in 

order to dose the cells and increases the labour-intensive nature of the automation 

process. This would increase the experiment time and would be further increased due 

to the vast amounts of categories used and number of categories containing sub 

optimal levels of images. 

 

iii) Alteration of categories, ‘Others’ added 

 

It was decided to introduce a category called ‘others’ which would replace the dead 

and unscorable events. By adding this category, it was possible to condense the 

images into more specific categories, by removing areas of ambiguity, thereby 

allowing for less confusion to take place between categories due to a variety of 

reasons. In the first instance, as there are less categories, there are less opportunities 

for the cellular images to be placed into the incorrect category, as we reduced the 

categories from 17 to 9 as seen in Fig. 5. Moreover, the categories which were 

merged in Fig. 5b and onwards, were similar morphologically in Fig. 5a. This can be 

shown by the bi/tri/quadranucleated overlapping cells were grouped together with 

their nucleic counterparts of the same quantity. This allowed for less confusion by 

placing these in the same category. It must be noted, that due to the images being 



manually assessed in the fluorescent channel, the cytoplasm could not be visualised 

in the same way and therefore more difficulty was seen in differentiating apoptotic 

cells from necrotic in Fig. 5a. Adding the ‘others’ category also ensured that 4/9 

categories now contained more than 1000 cells in Fig. 5b. This is an improvement 

from 23.53% to 44.44% in categories containing more than 1000 cells, almost 

doubling. Lastly, categories such as nuclear buds and MN are very similar 

morphologically, that having these in two different categories provides the neural 

network with an impossible task in differentiating the two, which would then result 

in the confusion of the network when attempting to distinguish between the two 

categories. The new grouping of categories therefore allowed  the network to better 

predict the category a cell should fall in to and this categorical approach was chosen 

going forward due to the increased confidence in the number of images in each 

category and the stark differences between the different categories, which was not 

the case previously. 

 

iv) Optimal epoch count  

 

 

The epoch count is one of the most important variables to consider when dealing 

with neural network analysis. By increasing or decreasing the epoch number, the 

network can be allowed longer to train and learn from the images. However, a 

balance must be met, as the error rate can also increase if left to run for an extended 

period, which can harm accuracy levels.  

This was shown in Fig. 12a) which was run for 30 epochs and produced only a 

74.1% overall accuracy. More importantly than the overall accuracy, are the 

accuracy levels for the mono and binucleated cells with MN categories. A 44.4% 

accuracy is shown for binucleated cells with MN and a 51.4% accuracy for 

mononucleated cells with MN. When this is compared to Fig. 5b), a lower overall 

accuracy is seen, 74.1%<83.5%, lower binucleated cell accuracy, 70.4%<94.1% and 

lower binucleated MN cell accuracy, 44.2%<59.5%. The binucleated and binucleated 

MN percentage accuracy is important in assessing neural network accuracy due to 

the analysis of this phenotype when undertaking the cytochalasin-B MN assay. 



Given the rarity of MN cells when carrying out a dose response, it is vital that the 

binucleated MN cell accuracy is as high as possible, a more important factor than 

overall accuracy and binucleated cell accuracy.  Given the importance of this 

category, a 15.3% increase in accuracy in the 20-epoch sample is a significant value 

but could be improved further. When assessing mononucleated cell accuracy, there is 

an increase from 77.8% to 92.3% and an increase from 51.4% to 72.4%. An increase 

of 21% is shown when comparing the 30-epoch network 8 to the 20-epoch network 

9, whereby the two networks have both been trained and validated on the same 

Cambridge dataset, using identical ground truth populations. Identical channels have 

been used in both cases: brightfield, fluorescence, fluorescence. Therefore, the 

increase in accuracy between network 8 and network 9 can be solely attributed to the 

reduction in epoch frequency from 30 to 20. Given this increase in accuracy shown 

from Fig. 5a to Fig. 5b, 20 epochs were chosen going forward to be the optimal 

epoch frequency. Fig. 5dii) shows the accuracy and loss rates per epoch/iteration 

level. A reduction is not shown in the accuracy level up to the 20-epoch level or an 

increase in loss ratio. When the accuracy level starts to decrease and the loss rate 

increase, it is indicative of over training the network, whereby the network over 

focuses on a specific, non-important, area than what it was intended for. Therefore, 

future networks were trained to 20 epochs for optimal accuracy and loss levels. 

 

 

 

 

 

 

 

v) Cardiff ground truth generation 

 

The Cardiff ground truth was generated in much the same way as the Cambridge 

ground truth. However, since the others category was already found to be 



advantageous previously, the cellular category was adopted immediately when 

creating the ground truth for this dataset. When viewing the cellular splits of the 

Cardiff ground truth in Fig. 19a, 3/9 categories, 33.33%, contained more than 1000 

cellular images. All 3 of these categories totalled over 2000 cellular images in fact. 

Interestingly, less trinucleated cells were generated in the Cardiff ground truth when 

compared to the Cambridge ground truth, 1287 compared to 463 when comparing 

Fig. 5b to Fig. 19a. The Cardiff ground truth was once again drawn from the 

Adobe®Bridge software package, with the star rating system once again being used 

successfully. An important note is that the Cardiff laboratory uses Draq5 in the 

nuclear staining of cells, whereas Cambridge use Hoescht 33342. Indeed, it is 

impressive that these two nuclear stains can both be used in tandem on two different 

datasets and generate high levels of accuracy.  

As there were now two ground truth data sets in the shape of Cardiff and Cambridge, 

it was now possible to analyse combinations via training on one set and validating on 

the next, this will be explained in greater detail. But one hypothesised that the 

difference in nuclear stains used may be a leading factor in some of the variation 

shown depending on which dataset combination is used for training and for 

validation.  

 

 

 

vi) Darkfield channel abandoned 

 

Following the creation of ground truth from two different laboratories, the network 

was created in order to determine the most accurate combination between training 

and validations sets. However, before this could be undertaken, the 3-channel 

approach of: brightfield, darkfield and fluorescence was revised. 

Each individual image the neural network uses, is split into 3 images, containing a: 

brightfield, fluorescent and darkfield image. It is by using the training data, 

consisting off all 3 images in 1 (although only the fluorescent channel was assessed 

in manually scoring the ground truth into categories, the extra layers were used to 



add information and therefore increase accuracy). The others rate was greatly 

reduced when the darkfield channel was abandoned in favour of another fluorescent 

layer. This can be shown when comparing the others percentage in the final GSK 

dose responses (35.49% of cells as others), a great reduction from the over 99% 

shown in Table. 2.  

`The decision to add an extra fluorescence layer instead of an extra brightfield layer 

was made after assessing the accuracy levels produced by the network using the: 

brightfield, brightfield, fluorescence combination.  

The added fluorescence accuracy is not surprising for a few different reasons. The 

images which were assessed for the ground truth creation were fluorescent images 

and thus adding more weight to these would be thought likely to result in an 

increased level of accuracy. Moreover, adding an extra fluorescent channel makes 

the 3 layered image, 2/3rd /66.67% fluorescent (Verma et al., 2018, Haxhiraj et al., 

2018). This is similar to the weighting of the fluorescent channel in IDEAS® when 

creating a composite image, created using the brightfield channel and fluorescent 

channel, whereby the fluorescent channel is set to around 70% intensity in order to 

be able to distinguish nuclear material from artefact but still maintain the 

cytoplasmic integrity that the brightfield channel offers (Verma et al., 2018). 

Therefore, similarities can be made in the creation of a doubly weighted fluorescent 

channel using the 3-layered neural network image approach. By abandoning the 

darkfield approach and forming tiff images in the new brightfield, fluorescent, 

fluorescent manner, the neural network was used to train and validate on the ground 

truth images, in preparation for dose response prediction.  

 

 

 

 

 

vii) Network Training and Validation Analysis 

 



The original Cardiff and Cambridge ground truth datasets were used to originally 

create neural networks. The two most accurate networks produced using the initial 

ground truth classifications were: 

-Network 3 (See Fig. 20), training using the Cardiff data set and validating using the 

Cambridge dataset. 

-Network 8 (See Fig. 22), training and validating using the Cambridge dataset. 

Network 3 produced the highest overall accuracy: 74.5% compared to 74.1%, the 

higher binucleated cell accuracy: 82.9% compared to 70.4%, the higher binucleated 

MN cell accuracy: 52.6% compared to 44.2%, the higher mononucleated cell 

accuracy: 96.6% compared to 77.8% and the higher mononucleated MN cell 

accuracy: 53.3% compared to 51.4% (Table.4, Fig. 20, Fig. 22).  

Given the unusually small difference, especially in the mononucleated MN cell 

accuracy, it was determined that the Cardiff ground truth may have some outliers 

present in the ground truth creation, which were distorting the network accuracy. 

This was decided as the probable cause of the lower than expected accuracy shown, 

over issues such as epoch number and differences in nuclear intensities. For epoch 

length, there was a clear reduction in epoch count at 30 epochs was shown in 

comparison to 20 epochs, as can be shown by the in Table.4, when viewing the 

comparisons between Network 8 and 9. For differences in nuclear intensities, by 

comparing Network 3 and Network 9 (both validated on the Cambridge but trained 

on different data sets), a higher differential was shown in the more generic 

categories, such as binucleated cell accuracy (12.5% (Table. 4)) and mononucleated 

cell accuracy (18.8% (Fig. 20, Fig. 22)) when compared to the MN containing 

images (8.4% and 1.9% (Table.4) most likely caused due to the misplacing of MN 

cellular images having a greater effect on the MN category due to the rarity of this 

phenotype and thus each individual image carrying greater weight in relation to the 

category.  Thus, to ensure the ground truth integrity was as high as possible, analysis 

was undertaken of all possible MN cellular images and ensuring their presence in the 

correct category. 

 

 



 

 

 

a) Cardiff Validated MN analysis 

 

To further improve the accuracy of the neural networks, the ground truth population 

from the Cardiff dataset was analysed and any outlier images were identified and 

moved into the correct category. This was carried out in MatLab® by using the 

following script in Matlab®: 

 

‘deploy_DeepFlow_3_channel_new_pheno_v1.m’  

 

 This is the script used in producing a neural network, such as those shown in Table.4 

and Table.5. The script contained the specific line of code:  

 

Idx=find(imdsValidation.Labels==’Mononucleates with MN’ & 

YPred==’Mononucleates with MN’) 

 

This line of code showed images which had been, in this particular case, placed into 

the ‘Mononucleates with MN’ class for training, but had also been validated by the 

network as ‘Mononucleates with MN’.  

This line of code can therefore be used to check the cellular images have been placed 

into the correct categories. The images were produced in windows containing 36 

images each, with a number assigned to each individual cellular image from 1-x (the 

last cellular image applying to that category). The numbers relating to the individual 

cellular images were then shown in the command window of MatLab®, where the 

numbers 1-x corresponded to the full-length tiff number for that specific image. 

When analysing this data, cellular images which were not deemed to be of the 



cellular phenotype to which they were originally assigned, were updated and placed 

into the correct category. By then applying the results obtained, the cellular images in 

the incorrect file could be dragged and dropped’ into the correct folder. The example 

shown here was ‘Mononucleates with MN’, but all the cellular categories were 

applied, and the images manually assessed for any discrepancies.  

By applying this method of quality control on the ever important ground truth class, 

the ground truth was refined and the updated ground truth used to train and validate 

the Cardiff and Cambridge ground truths once again, resulting in more accurate 

networks being produced. The updated ground truth can be shown in Fig. 9. 

 

 

 

 

 

 

 

b) Re-analysis of Network combinations 

 

By having a Cardiff and Cambridge data set ground truth available, it was possible to 

assess network accuracy in 4 iterations: 1) Training with Cardiff, validating with 

Cardiff, Network 1 (Fig. 13), 2) training with Cardiff, validating with Cambridge, 

Network 4 (Fig. 20), training with Cambridge, validating with Cardiff, Network 6 

(Fig. 21) and training with Cambridge, validating with Cambridge, Network 9 (Fig. 

22). 

Each network combination was assessed, and accuracies compared to find the 

network most suitable for use in the automated MN dose response. Network 1 (Fig. 

13) showed the greatest overall accuracy at 93.8%, in contrary to Network 4 (Fig. 20) 

which only showed a 73.7% accuracy, a great 20.1% difference. Network 1 (Fig. 13) 

also showed the highest binucleated cell accuracy, with a respectable 98.4%, on the 



contrary to Network 4 (Fig. 20) which showed only 75.3%, a large 23.1% difference. 

It was also shown that Network 1 (Fig. 13) had the highest binucleated MN cell 

accuracy at 71.8%, which was 56.5% greater than Network 6 (Fig. 21) which only 

had a 15.6% accuracy level. Thus, if one were to carry out the cytochalasin-B MN 

assay, Network 1 is clearly the network of choice. However, despite Network 1 being 

the most accurate and showing great specificity in identifying binucleated cells, 

however, with only an accuracy of 71.8% (Table. 4) for binucleated MN cells, the 

levels were not quite high enough to maintain the integrity of the MN assay and as 

such improvements to the network were made, which will be expanded on shortly. 

When assessing the mononucleated cell accuracy for potential non-cytochalasin-B 

use, Network 1 (Fig. 13) was again found to have the highest accuracy level for 

mononucleated cells at 96.9%. However, unlike with the binucleated cells, even the 

worst network for predicting mononucleated cells Network 4 (Fig. 20), still 

maintained an accuracy of 86.6%, a difference of just 10.3%, far smaller than the 

23.1% difference observed in binucleated cell accuracies (Fig. 9, Fig. 20). When 

comparing mononucleated MN accuracies, Network 9 (Fig. 22) shows the highest 

accuracy with 72.4%, whilst Network 4 (Fig. 20) shows the worst at 38.6%, a 

difference of 33.8%. Moreover, just as with the binucleated and binucleated MN 

cells, a large difference is seen between the differences in accuracies with and 

without MN present. The ‘Mononucleated MN’ highest accuracy level of 72.4% 

(Fig. 22) is still not optimal accuracy levels for use in the MN assay.  

It is also somewhat unsurprising that the best accuracy levels for MN at this initial 

stage, were both obtained via training and validating on the same datasets, due to the 

same nuclear stains being used in both. It was interesting to note how the Cambridge 

network gave the highest accuracy levels for mononucleated MN cells (Fig. 22), 

whereas the Cardiff dataset provided a greater accuracy level to binucleated MN 

cells (Fig. 13). After this analysis, I was interested on ways to improve the network 

accuracy, focusing predominately on improving MN accuracy levels, due to the 

cellular accuracies levels being far greater and at above 90% for mononucleated and 

binucleated cells (Fig. 13).  

The difference to the original dataset can be viewed by the differences in accuracies 

shown when compared to the updated ground truth dataset. The highest overall 



accuracy in the updated network is 93.8%, an increase of 19.3% when comparing the 

updated Network 1 to the older Network 3 (Table.4). Indeed, a 15.5% increase is 

viewed in the binucleated cell category, a 19.2% increase in binucleated MN cell 

accuracy. Moreover, this trend is reduced in the mononucleated cell accuracy using 

the same networks, where only a 0.3% increase is shown and only a 0.5% accuracy 

in mononucleated MN cell accuracy. Therefore, an improvement was made by 

updating the ground truth, especially in the binucleated cell category. This 

improvement suggests that the original ground truth did contain some outlier images 

in the incorrect category which reduced the accuracy levels.  

However, a cause for concern in the analysis of the neural network accuracies was 

the sub-par performance shown when cross-network validation was carried out. The 

different intensities of the lasers and slightly different conditions across different 

laboratories can provide an explanation for lower accuracies, despite such attempts to 

reduce this factor by normalisation. Network 4 which is trained on Cardiff and 

validated on Cambridge and Network 6 which is vice versa, showed worryingly low 

levels of accuracy in the binucleated cell MN category (Table.4). Accuracy levels of 

34.7% were shown by Network 4, with Network 6 showing 15.3% (Table.4). This 

accuracy level is a further reduction of 17.9% lower than the best network using the 

original ground truth populations (Table.4). This is problematic for the technique, 

since cross validation is a sign of reproducibility between laboratories and would 

need to be improved going forward if this technique is to be adapted on a larger 

scale.  

Cross laboratory validation allows for a single network to be applied to a host of 

laboratories, forgoing the need to create a ground truth for each new laboratory. As 

well as showing that cross laboratory reproducibility could be obtained using 

differing nuclear stains also. Since the Cardiff ground truth was updated, the fault 

must fall with the Cambridge ground truth or a fault associated with the images 

format, with the 3-channel approach being reviewed.  

 

 

 



 

 

 

 

 

 

 

 

 

 

viii) 2 channel approach  

 

Following the inconsistencies shown in the 3-channel approach, where the cross-

validation training networks were not shown to be as accurate as required, a 2-

channel approach was taken going forward. This two-channel approach consisted of 

a fluorescent and brightfield channel each being used in equal proportions, with the 

extra fluorescent channel being sacrificed.  

In order for this approach to be carried out, the ‘two_channel_tiff_reader’ was 

employed in order to create a new batch of tiff images in 2 layers, as opposed to the 3 

layers used previously. This was carried out in much the same manner as the initial 3 

channel tiffs, a somewhat laborious process. Care was taken to ensure that the correct 

channels are used, due to different channels corresponding to the brightfield and 

fluorescent channels used in the Cardiff and Cambridge networks.  

Once the tiffs had been created for the 2-channel approach, training and validation 

was undertaken using all permutations of training and validation, including cross-

laboratory valuation and the results evaluated. 

 



a) Re-analysis of all network combinations using 2 channels 

 

The ‘DeepFlow’ neural network was again used and the accuracies evaluated. 

Network 5 had the highest overall accuracy at 93.7%, highest Binucleated cell 

accuracy at 99% and highest Mononucleated cell accuracy at 95.9%(Fig. 20) (Table. 

4). Network 2 showed the highest accuracy level for binucleated MN cells at 86.5% 

and Mononucleated MN cell accuracy at 71.4% (Fig. 13).  

It is important to note, that Network 5 had the greatest accuracy shown in 3/5 of the 

main categories, despite being a cross-validation network, which shows the great 

increase the 2-channel approach had on accuracy levels. The success of the cross-

validation approach widens the scope for potential wider scale use of this approach. 

When compared to the previous 3-channel approach, using the same training and 

validations datasets (training on Cardiff and validating on Cambridge), a 20% 

increase was shown in overall accuracy, a 23.7% increase in binucleated cell 

accuracy, a 66.6% increase in Binucleated MN cell accuracy, a 9.3% increase in 

Mononucleated cell accuracy and a 29.3% increase in mononucleated MN cell 

accuracy (Fig. 10) (Table.4). Therefore, a substantial increase was shown in both 

mononucleated and binucleated cell accuracy, with a focus on the binucleated cell 

increase.  

Altogether, the 2-channel approach increased the accuracy of the rarer phenotypes, 

with a 14.7% increase shown on the previous best binucleated MN cell accuracy 

(Network 2 compared to Network 1, see Table.4). Some of the other major categories 

did take a slight decline (when comparing the most accurate network used in each 

system), overall accuracy decreasing by 0.1%, mononucleated cell accuracy 

decreasing by 1% (Network 5 compared to Network 1, see Table.4). However, these 

minute detractions are more than accounted for by the great increase in the 

binucleated MN cell category.  

However, the mononucleated MN cell accuracy was not shown to improve in the 2-

channel approach, a decrease of 1% shown when compared to the previous network 

creations (Network 2 compared to Network 9, see Table.4). Interestingly, the 

Network 2 accuracy of 72.4% was the highest mononucleated MN cell accuracy 

shown on datasets validated on the Cardiff network, a testament to the increasing 



accuracy of the 2-channel approach and the updated ground truth. However, 

throughout the previous networks, it had been the dataset validated on the Cambridge 

network which has shown the highest mononucleated accuracies. This brought up the 

idea of updating the Cambridge ground truth also in much the same way the Cardiff 

ground truth had been updated. This was supported again due to the ranking of 

accuracies in this 2-channel approach, whereby the networks were ranked by 

totalling the accuracies of mono/binucleated cells with and without MN and showed:  

 

Network 2>Network 5>Network 7>Network 10.  

 

It is unsurprising that Network 2 is trained and validated on the Cardiff dataset, 

Network 5 is trained using the Cardiff dataset and Network 7 is validated using the 

Cardiff dataset (Table.4). This leaves Network 10 at the bottom, the only network not 

containing any Cardiff influence (Table.4). Therefore, I concluded that there was a 

need to update the Cambridge data set. 

 

 

 

b) Cambridge validated MN evaluated 

 

 

The Cambridge ground truth was evaluated in the same way as the Cardiff data set, 

with the MN assessed using the following script in MatLab®: 

 

 Idx=find(imdsValidation.Labels==’Mononucleates with MN’ 

&YPred==’Mononucleates with MN’). 

 



By assessing the MN produced, it was possible to re-assign cells into the correct 

category if they were previously placed incorrectly. By re-assessing the Cambridge 

ground truth, both ground truths had been evaluated and updated, ensuring greater 

accuracy levels. This process was even more important due to the smaller total 

number of MN cells in the ground truth due to the rarity of the MN phenotype, 0.32-

1.38% (Lovell et al., 2018).  

When assessing the MN found in the original ‘others included’ ground truth, 150 

Mononucleated MN cells were included and 154 Binucleated MN cells (See Fig. 

9b)). Post-updated ground truth, these numbers were reduced to 127 Mononucleated 

MN cells and 121 Binucleated MN cells (See Fig. 9c)). The Others category was 

increased on the other hand, from 1257 originally to 1372, suggesting that some MN 

cells may have been too ambiguous in morphology and thus confused the network 

and thus produced a lower accuracy (See Fig. 9b) and Fig. 9c)). The ratio of 

mononucleated MN cells to Mononucleated cells pre-update showed a ratio of 

1:12.88. This was increased to 1:16.20, owing to the more specific regulations placed 

on MN scoring, resulting in a greater frequency of others and mononucleated cells. 

The binucleated MN cell to binucleated cell ratio pre-update was 1:25.14, which was 

increased once again to 1:30.47.  

Thus, a reduction in MN cells was shown in the final Cambridge ground truth, 

increasing the specificity of MN scored cellular category and ensuring that all the 

MN assessed to be MN are placed in the correct category, thus ensuring optimal 

accuracy levels. 

 

 

 

c) Re-analysis of network combinations following Cambridge evaluation.  

 

Following the analysis of the Cambridge ground truth and the introduction of the 

updated ground truth, network creation was carried out. Whereas previously, 4 

network combinations were carried out (2² due to 2 datasets being used), 9 network 

combinations were used for this network creation (3² due to 3 dataset being used 



(Cardiff + Cambridge combined equates to the 3rd dataset)). This was possible due to 

the Cardiff and Cambridge datasets being combined to form 1 larger dataset. This 

allowed for a greater quantity of ground truth images to be used in the training and 

validation of cellular images and thus led to greater accuracy levels.  

The ’DeepFlow’ neural network was used to generate the 9 network combinations. 

The most accurate overall network was Network D at 93.6% (Table. 5). Network C 

produced the greatest accuracy levels for both mononucleated cells (98.6%) and 

binucleated cells (97.7%) (Table. 5). Network D also produced the highest 

binucleated MN cell accuracy (89%) (Table. 5). Network A gave the greatest 

accuracy level to mononucleated MN cells (77.3%)(Table. 5).  

When evaluating overall accuracy, it could be shown that the overall accuracy of the 

networks peaked after the initial Cardiff dataset was amended with Network 1 

showing the highest accuracy levels out of all networks produced (93.8%) (Table. 4). 

However, this accuracy level only dropped by 0.2% in Network D to 93.6%, whereas 

binucleated MN accuracy increased from 71.8% to 89%, therefore justifying the 

minute decrease in overall accuracy (Table.4, Table. 5). There was also an increase 

in accuracy from the most accurate binucleated MN cell network pre-Cambridge 

dataset update, Network 2 with an 86.5% accuracy, to 89% accuracy in Network D 

(Table. 4, Table. 5).  

Network D, was a network trained using the Cardiff ground truth, validated using the 

Cambridge ground truth and accuracy levels were shown to be positively affected by 

updating the ground truth when compared to Network 5, which was trained and 

validated using the same datasets; but pre-Cambridge ground truth update. In 

Network D, there was a 0.1% decrease in overall cell accuracy and a 0.6% decrease 

in binucleated cell accuracy (Table. 5). However, there was also a 7.1% increase in 

binucleated MN cell accuracy, which is integral to the use of the network in MN 

analysis (Table. 5 When combining binucleated cells and binucleated MN cells 

together into an accuracy score out of 200 (Maximum 100% for Binucleated Cell 

accuracy and 100% for Binucleated MN accuracy), Network 5 scored 180.9, an 

average of 90.45% (Table. 4). This grouped percentage was 187.4%, an average of 

93.7% for Network D (Table. 5). There was also an increase in accuracy levels in 

mononucleated cells, up from 95.9% to 97.4%, and in mononucleated MN cell 



accuracy, up from 67.9% to 72.6% (Table. 4, Table. 5). Therefore, by using the 

training on Cardiff, validating on Cambridge networks, an increase was shown in the 

cellular accuracies of the cellular categories most important for MN analysis.  

When evaluating mononucleated and mononucleated MN cellular accuracies, 

increases were shown post-Cambridge update also. The previous highest 

mononucleated cell accuracy was shown in Network 1 at 96.9%, with Network 5 

showing the previous highest 2 channel mononucleated cell accuracy level at 95.9% 

(Table. 4). These levels were increased by 0.8% and 1.8% respectively to 97.7% in 

Network C (Table. 5). The previously highest rated mononucleated MN cell accuracy 

was Network 9 at 72.4%, produced in the 3-channel approach, and 71.4% shown in 

the 3-channel approach produced by Network 2 (Table. 4). An increase of 4.9% and 

5.9% was shown to generate the 77.3% accuracy level shown in Network A (Table. 

5). Interestingly, the most accurate network for mononucleated MN cells in all the 

network analysis was trained using a combination of the Cambridge and Cardiff 

ground truth, Network A (Table. 5). This allows for a greater quantity of images to 

be used to determine the cellular categories each cellular image should be placed in.  

It must be noted however, the most accurate network for binucleated MN cells, 

Network D was trained on just one dataset, the Cardiff ground truth and validated on 

only the Cambridge ground truth (Table. 5). A simple explanation could have been 

that the differences, however negligible they appear, between the nuclear stains used 

in the Cardiff and Cambridge ground truths (Draq5 vs Hoescht 33342) may have 

accounted for some confusion when training the network using the combined ground 

truth. However, the mononucleated MN cell category thrived on using the ground 

truth combination approach, therefore the difference in nuclear stains appears to have 

a negligible effect. Network H produced the highest accuracy levels for binucleated 

MN cell accuracy from the pool of combined ground truth networks, with an 84.5% 

accuracy shown (Table. 5). However, when viewing the mononucleated MN cell 

accuracy, it was only 53.6% accurate (Table. 5). An explanation for this may be the 

confusion of the network in confusing mononucleated MN cells as 

mononucleated/binucleated cells, given the slight drop shown in both mononucleated 

and binucleated cells when compared to the singularly trained Network D (1.5% in 

binucleated cells and 2% in mononucleated cells (Table. 5). This may seem an 

insignificant decrease, but Fig. 11 shows 211 mononucleated MN cells were scored 



initially, an accuracy level of 53.6% denoting 98 of the 211 mononucleated MN cells 

were mis-categorised. Thus showing how a potential difference in nuclear stains 

could have caused the neural network to mis-categorise a selection of mononucleated 

MN and possibly binucleated MN cells and therefore explaining why the combined 

ground truth did not necessarily produce the most accurate networks.  

In conclusion, owing to the nature of the MN assay, which can be carried out with 

and without cytochalasin-B and thus assessing binucleated or mononucleated MN 

cells, the most accurate network for each cellular category was researched, analysed 

and compared for use in dose response analysis. Thus, Network D was used going 

forward in the cytochalasin-B MN assay due to the highest binucleated MN cell 

accuracy level (89%) and highest combination of binucleated cell and binucleated 

MN cell accuracy (187.4) (Table. 5). Network A was thus chosen for the non-

cytochalasin-B MN assay due to the highest mononucleated MN cell accuracy 

(77.3%) and highest combination of mononucleated cell and mononucleated MN cell 

accuracy (174.1) (Table. 5).  

 

 

 

 

 

ix) Dose response analysis 

 

To fully evaluate the neural network approach and accuracy to analysis in the MN 

assay, a dose response was carried out using Carbendazim dosed on TK6 cells with 

cyto-B in a GSK laboratory and analysed using a variety of networks to showcase the 

accuracy of the neural network approach (Fig. 14). Manual scoring of the cellular 

images produced from the imaging flow cytometer were also analysed to form a 

comparison of neural network accuracy to a method comparable to the ‘gold 

standard’ of manual light microscopy (Verma et al., 2017). The background levels of 

MN testing are between 0.32%-1.38% (Lovell et al., 2018). Therefore, the 



background levels were evaluated using both the manual scoring of images approach 

and neural network also. It is of note that the Swansea historical lab background 

levels for MN rate in TK6 cells is 0.9%, which sits in between the historical 0.32%-

1.38%. The background manual scoring levels shown were 0.72% (Fig. 14), which 

sits in between the historical figures and slightly lower than the Swansea historical 

value. This can be explained, due to the dosing taking place in the GSK laboratory 

and thus more variables existing involved in determining the change in background 

MN levels. The most accurate Swansea Network (‘NETWORK D’ Table. 5), had 

background MN levels of 0.66% (Fig. 14), which is slightly lower than the manual 

scoring average but sits in between the historical MN rates of 0.32%-1.38% (Lovell 

et al., 2018). This shows the potential for neural network use in MN analysis and the 

ability of the network to accurately score background MN levels in different 

laboratories, showing the cross compatibility of the approach. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

a) i) Stats 

 

When assessing the normality of the GSK dataset and the MN distribution between 

replicates, the Shaprio-Wilks test showed that all the networks used in the GSK dose 

response testing (Fig. 14) had a P value of >0.05 and therefore the data was normally 

distributed.  

When carrying out the Dunnett’s test, each of the three doses used, 0.8μg/ml, 

1.2μg/ml and 1.6μg/ml, showed a significant increase when compared to the control. 

Therefore, the lowest observed effect level (LOEL) was the 0.8μg/ml dose of 

Carbendazim. Since only three doses were carried out in the dose response analysis 

for the GSK dataset, a determination could not be made on the 0.4μg/ml dose which 

was used in the Newcastle and Cardiff analysis (Fig. 15).  

To calculate the network with the greatest accuracy in respect to the manual scoring 

of cellular images, a variation distribution was taken. Comparing the spread of 

ranges and variation distribution between each network and the ‘control’ of manually 

scored cells. The spread of: range, standard deviation, standard error and coefficient 

of variation were all analysed and interpreted to understand which network provided 

the greatest results in practical terms when used in the dose response setting, for 

which they were created for. Therefore, it is important to note, that despite specific 

networks showing higher accuracy levels, these accuracy levels were not always 

translated into he dose response shown when compared to the manually scored 

images, which in this case is the ‘gold standard’ (Verma et al., 2017). The variations 

between network results and manually scored images was compared to the variation 

and range levels shown when just assessing the manually scored images, to gage 

values to form a comparison based on.  

The Newcastle dataset focused on assessing mononucleated cells with a MN to carry 

out a dose response, due to the lack of cytochalasin-B. Four doses were used in the 

dose response, a control, 0.4μg/ml, 0.8μg/ml, 1.2μg/ml and 1.6μg/ml (Fig. 20). Thus, 

similar doses were used in comparison to the GSK dose response, with the extra 



addition of the lower 0.4μg/ml dose. The same doses were used in Cardiff analysis of 

the dose response also and therefore allowed for a direct comparison to be made 

between the Cardiff and Newcastle datasets. In the Newcastle dose response, the data 

was once again found to be normalised and therefore a Dunnett’s test could once 

again be carried out. Interestingly, since a lower dose was added, the 0.4μg/ml, it was 

found that a significant increase in MN frequency was not found for this dose. 

Therefore, the no observed effect level (NOEL) for the Newcastle dataset was 

0.8μg/ml and the LOEL was 1.0μg/ml (Fig. 15, Fig. 16).  

 

ii) Further Dose response analysis 

 

A dose response was carried out on the Cardiff network to assess network 

reproducibility across different laboratories. By assessing the dose response of 

Carbendazim on mononucleated cells, a comparison was made between the 

Newcastle and Cardiff networks using the same chemical (Carbendazim), same cell 

type (mononucleated cells, no cytochalasin-B used) and using the same neural 

network (Table. 5, Network A).  

When assessing the range and coefficient of variations found when comparing the 

mean of the Cardiff and Newcastle non-cyto-B Carbendazim samples, a cumulative 

36.73% coefficient of variation was shown. This figure was lower than any 

previously carried out in the GSK data analysis, where the lowest coefficient of 

variation shown was 50.19%, which was used in comparing all the values of the most 

up to date network and the manual scoring approach. Considering the coefficient of 

variation was 52.92% when comparing the values of the manual scoring triplicates, 

great confidence can be taken from the 36.73% variation of coefficient value 

produced in the dose response comparison of the mean values shown following 

analysis of the Cardiff and Newcastle laboratories. Moreover, the figure can be 

further examined to show a 0.66% and 3.04% coefficient of variations produced for 

the middle two doses of 0.8μg/ml and 1.0μg/ml in the comparison of Cardiff and 

Newcastle networks, showing large degrees of similarity, gaining confidence in the 

application of the same neural network into multiple datasets.  



Therefore, the production of dose responses across three laboratories (GSK, Cardiff 

and Newcastle) provided the basis for the reproducibility of using a ground truth 

based neural network to assess dose responses across different laboratories and using 

the same neural network. All three networks focused on the use of TK6 cells treated 

with Carbendazim with/without the presence of Cytochalasin-B and all three 

networks showed a significant increase in MN frequency at higher doses, in line with 

expected results. This shows a proof of concept study into the use of deep learning, 

ground truth based neural networks in the dose response setting of the MN assay and 

the potential to revolutionise this assay by streamlining the procedure, whilst 

maintaining accuracy.  

 

 

 

 

 

 

 

 

 

 

b) Assessment of MCL-5 and AHH-1 populations 

 

The neural networks produced were used in the assessment of MCL-5 and AHH-1 

populations to identify the far-reaching uses of the network. Network ‘A’ was used 

to determine the background levels of MN due to the MCL-5 and AHH-1 cells being 

cultured without the use of cytochalasin-B and thus mononucleated cells and 

mononucleated MN cells were used in the determination of MN frequency. 

Therefore, Network ‘A’, with an accuracy of 77.3%, was used in the analysis. A 

background rate of 0.74% was observed in the AHH-1 cells and 0.66% in the MCL-5 



cells (Figure. 22). This is consistent with the background rate of MN in literature as it 

is between 0.32% and 1.38% (Lovell et al., 2018). However, this is lower than the 

historical background MN levels in our lab, which sit at 1.3% for AHH-1 cells and 

1.48% for MCL-5 cells. This is an almost exact doubling of the results shown by 

Network ‘A’. There are multiple reasons for this being the case. MCL-5 ad AHH-1 

cells are not the same size as TK6 cells, this is highlighted when using a coulter 

counter to measure the quantity of cells in a sample, 5-17μm is used as standard for 

MCL-5 cells, whereas TK-6 cells are 10-17μm. The difference in size may account 

for the lower rates shown compared to the norm. With the training and test data 

comprising of different sized cells and thus adding to the confusion. However, it 

must be noted, that despite the background levels being lower than the historical 

average for our Swansea lab, the results still sit within the norm of 0.32-1.38% 

(Lovell et al., 2018). 

When O6-BG was added to the MCL-5 cell line respectively, a major MN frequency 

increase was shown from 0.66% to 1.92% (Figure. 18). This is somewhat 

unsurprising, given the role of O6-BG in preventing DNA repair via MGMT (Estellar 

et al., 1999). Despite this being the control sample and exogenous damage not being 

present, endogenous damage does still take place in the cell lines and by adding O6-

BG and inhibiting DNA repair, some of this endogenous damage remains un-

repaired and gives rise to chromosomal damage in the form of breaks and addition 

which presents itself as MN (Ochs and Kaina, 2000). Therefore, there is an increase 

in MN frequency shown in Fig. 18. Moreover, the MCL-5 cell line contains 5 

cytochromes p450s, including CYP1A1, this allows for greater levels of metabolic 

activity, which can heighten DNA damage via metabolising endogenous sources at a 

far greater rate (Crofton-Sleigh et al., 1993). It is the metabolic products which tend 

to cause DNA damage rather than the original source itself. More work is needed on 

the application of neural networks to MCL-5 and AHH-1 dosing. This initial work 

shows the potential to use the neural network to test background levels in these cell 

lines, a full dose response using MCL-5 and AHH-1 cell lines would be the next step 

and a comparison to be made to the TK-6 dose response evaluated here, in both 

samples with and without cytochalasin-B. There would also be the potential to create 

a ground truth using the MCL-5 and AHH-1 networks and to assess how this affects 

network accuracy and compared to using the TK-6 based ground truth55. 



 

 

 

 

x) GSK ground truth population 

 

Following the manual scoring of the GSK dataset, in order to provide a comparison 

to the automated neural network approach, each individual cell was attributed a 

cellular phenotype in accordance with the categories used in the ground truth. 

Despite this being carried out as a comparison and to calculate the replicative index 

(RI), the result was the annotation of 25,805 cellular images (Fig. 12).  

This data has the potential to be used in future neural network analysis as a 3rd 

dataset, once the word document containing the phenotypes of the cellular categories 

has been applied to a set of code. This allows for MatLab® to differentiate the 

images into their separate categories and to use as a ground truth. This has the 

possibility to further increase the robustness of the neural network approach. By 

applying a third dataset, there can be a greater volume of cellular images of the rarer 

phenotypes, especially the ‘Mononucleated MN cells’ and ‘Binucleated MN’ cells, 

which are of great interest in dose response analysis. By adding a third dataset, a 

larger quantity of MN images will be obtained overall, allowing for a further increase 

in ‘Mononucleated’ and ‘Binucleated MN cell’ accuracy. This is of particular interest 

in the ‘Mononucleated MN’ cell category, where the greatest dose response produced 

by the network was 77.3% (Table. 5), showing room for an improvement in accuracy 

levels. 

 

 

 

 

 



5.0 Conclusion 

 

In conclusion, a clear comparison was shown between the deep learning approach to 

the automation of the in vitro MN assay and the manual assessment of cellular 

images for carrying out the in vitro MN assay with cyto-B, shown using the 

assessment of Carbendazim and compared to manual scoring approaches and the 

historical gold standard (Verma et al., 2017). 

The GSK cyto-B dose response showed a clear comparison between automated and 

manual scoring approaches, showing that the integrity of the assessment had not been 

compromised in the streamlining of the scoring approach. The results were 

comparable when using the deep learning neural network for assessment, despite the 

process being far less laborious and time consuming than the gold standard of 

manual scoring using light microscopy (Fenech, 2000).  

The neural network was clearly developed, resulting in a model with peak accuracy 

levels achieved and showing an 89% accuracy on Binucleated MN cells despite only 

training from a ground truth population of 155 Binucleated MN cells. It is no small 

feat to achieve accuracy levels this high using this little quantity of ground truth 

images. Moreover, the applicability of the network was shown using the Cardiff and 

Newcastle datasets, whereby dose response results were found to be comparable to 

one another. This streamlines the process even further, as it allows the user to use a 

pre-created ground truth and therefore network to analyse samples. The 

reproducibility of the dose responses across the three laboratories shown, shows 

great promise for this technique in the future. More chemicals are required to be 

testing, outside the scope of Carbendazim, to allow this method to be used on a wider 

scale. Moreover, a dataset comprising of manually scoring a non cyto-B MN assay 

could be carried out in the future to provide a direct comparison when carrying out 

the assessment of mononucleated and mononucleated with MN cells. 

It is thought that aneugens and clastogens produce slightly different shaped MN, this 

can therefore prove a potential stumbling block in the application of the ground truth 

to other datasets. However, the Cardiff network was trained using a mixture of 



aneugens and clastogens and therefore one would expect dose response accuracy 

levels to be maintained following the assessment of clastogens also.  

Initial studies were carried out on MCL-5 and AHH-1 cells and showed great 

similarity to one another and potential for this cell line to be assessed using a ground 

truth formed entirely of TK-6 cells. This would once again streamline the method 

further, as the creation of a separate ground truth to assess MCL-5 and AHH-1 cells 

may not be required. This could be a huge addition, as MCL-5 and AHH-1 cells are 

commonly used in the assessment of genotoxic and carcinogenic compounds 

requiring metabolic activation, such as NDMA. Therefore, an interesting future study 

can be centred around the assessment of NDMA and other nitrosamines using this 

deep learning neural network approach and to determine the use of this method in 

producing a dose response to MCL-5 and AHH-1 cell lines using different chemical 

compounds.  

 

More future work could be carried out in carrying out a manually scored dose 

response triplicate for the non cyto-B MN assay as mentioned previously, which 

would allow for a direct comparison between the automated deep earning assessment 

of mononucleated cells and mononucleated MN cells in determining a dose response. 

In this study, the non cyto-B results were compared to other laboratories results and 

then again to the historical background figures to determine correlation to the ‘gold 

standard’. However, carrying out a manually scored comparison of such 

mononucleated and mononucleated with MN cells would be something to consider 

yet.  

Moreover, forming greater ground truth populations, as this would lead to the 

increase in the rarer cellular types, such as MN, and allow for a further increase in 

neural network accuracy. The greatest Mononucleated MN cell accuracy was 77.3%, 

showing plenty of room for the improvement of the accuracy. This was highlighted 

in the Newcastle and Cardiff dose responses, whereby only the top Cardiff dose was 

found to have a statistically significant dose response to the control sample and only 

the top doses were found to have a statistically significant dose response in the 

Newcastle dataset. The dose responses recorded were slightly lower than the 

historical MN average for Carbendazim in the non-cytochalasin-B MN assay and 



were also shown too be far lower than the values found in the GSK cytochalasin-B 

dose response. Therefore, the Mononucleated MN cell accuracy can be attributed to 

part of the reason for the reduction in dose response, suggesting that in this case, the 

Mononucleated MN accuracy levels were not high enough and therefore too specific 

in this case in the analysis of cellular phenotypes. By adding more ground truth 

images, it would be possible to allow for a greater quantity of Mononucleated MN 

cells to be manually assessed and then used in the training for a neural network.  

The addition therefore of the GSK ground truth to future neural network assessments 

should allow for an increase to be shown in all cellular categories, but especially 

Mononucleated MN cell accuracy. This GSK ground truth, which I manually scored 

when forming a comparison to  the automated accuracy of Network A, has the 

potential to further increase the accuracy, specificity and sensitivity of this method in 

the in vitro  MN assay assessment.  

 

The deep learning neural network approach, a novel approach in this research setting, 

was therefore shown to produce a dose response following Carbendazim treatment. 

This dose response was shown to be comparable to the manual scoring of cellular 

images produced following imaging flow cytometry processing (a comparable 

method to the gold standard of manual light microscopy assessment).  

By definition therefore, this approach is comparable with the gold standard and 

maintains the integrity of the results, whilst streamlining the method and the time 

taken to historically complete the in vitro MN assay.  

 

 

 

 

 

 

 



Appendix 

Confusion matrices and neural network formation provided in addition to the training with 

Cardiff, validating with Cardiff (Fig. 13) which is provided in the main text under results. The 

following datasets are included here: 1) Training with Cardiff, validating with Cambridge 

(Fig. 20), 2) Training with Cambridge, validating with Cardiff (Fig. 21) and 3) Training with 

Cambridge, validating with Cambridge (Fig. 22). 
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Figure. 20 Confusion matrices produced post neural network creation using MatLab®. 

Training on the ‘Cardiff’ dataset and validation on the ‘Cambridge’ data set. Overall 

accuracies shown as well as accuracies per individual subgroups.  

III 



A) Neural network formed after using the initial ground truth population and a 3-channel approach 

of: Brightfield, Fluorescence, Fluorescence. Network 3 produced this confusion matrix. 

B) Neural network formed after using the first updated ground truth and using a 3-channel approach 

of Brightfield, Fluorescence, Fluorescence, Network 4 produced this confusion matrix.  

C) Neural network formed after using the first updated ground truth and the 2-channel approach of: 

Brightfield and Fluorescence. Network 5 produced this confusion matrix.  

D) i) Neural network formed post Cardiff and Cambridge ground truth updates and the 2-channel 

approach of: Brightfield and fluorescence (1, 11). Network D produced this network 

    ii) Figure showing the training development of Network D up to 20 epochs. Accuracy and error rate 

are both shown. 

                  iii) The results section after completing a network run, showing the accuracy rate of the         

network produced after completing 20 epoch cycles, other key statistics are also shown, such as 

iterations taken and time elapsed.  
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Figure. 21. Confusion matrices produced post neural network creation using MatLab®. 

Training on the ‘Cambridgef’ dataset and validation on the ‘Cardiff’ data set. Overall 

accuracies shown as well as accuracies per individual subgroups.  

III 



A) Neural network formed after using the first updated ground truth and using a 3-channel approach 

of Brightfield, Fluorescence, Fluorescence, Network 6 produced this confusion matrix.  

B) Neural network formed after using the first updated ground truth and the 2-channel approach of: 

Brightfield and Fluorescence. Network 7 produced this confusion matrix.  

C) i) Neural network formed post Cardiff and Cambridge ground truth updates and the 2-channel 

approach of: Brightfield and fluorescence (1, 11). Network E produced this network 

    ii) Figure showing the training development of Network E up to 20 epochs. Accuracy and error rate 

are both shown. 

iii) The results section after completing a network run, showing the accuracy rate of the         network 

produced after completing 20 epoch cycles, other key statistics are also shown, such as iterations 

taken and time elapsed. 
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Figure. 22 Confusion matrices produced post neural network creation using MatLab®. 

Training on the ‘Cambridge’ dataset and validation also on the ‘Cambridge’ data set. Overall 

accuracies shown as well as accuracies per individual subgroups.  

A) Neural network formed after using the initial ground truth population and a 3-channel approach 

of: Brightfield, Fluorescence, Fluorescence. Network 8 produced this confusion matrix. 

B) Neural network formed after using the first updated ground truth and using a 3-channel approach 

of Brightfield, Fluorescence, Fluorescence, Network 9 produced this confusion matrix.  

C) Neural network formed after using the first updated ground truth and the 2-channel approach of: 

Brightfield and Fluorescence. Network 10 produced this confusion matrix.  

D) i) Neural network formed post Cardiff and Cambridge ground truth updates and the 2-channel 

approach of: Brightfield and fluorescence (1, 11). Network F produced this network 

    ii) Figure showing the training development of Network E up to 20 epochs. Accuracy and error rate 

are both shown. 

The results section after completing a network run, showing the accuracy rate of the         network 

produced after completing 20 epoch cycles, other key statistics are also shown, such as iterations 

taken and time elapsed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Glossary 

Adobe Bridge®: Software commonly used by photographers which allows for the 

ground truth to be created in this case and cellular images analysed on an individual 

basis and grouped accordingly.  

Batch size: the quantity of samples which will be put through the system at a time 

Carbendazim: An aneugenic agent commonly used in dose response analysis due to 

its well-studied mode of action. 

Confusion Matrix: A figure produced after assessing a Neural Network on a dataset. 

Accuracy levels are shown so that the user can relay the information going forwards 

on what category/categories require improvement. Normally produced when 

attempting to increase the accuracy of the network or when carrying out a dose 

response.  

Cytochalasin-B: A spindle poison commonly used in the MN assay as it disrupts 

cytokinesis and therefore not allowing the cells to divide their cytoplasms, whilst 

nuclear division continues, giving the cells their binucleated cell appearance.  

Deep Learning: An artificial intelligence approach which mimics the workings of a 

human brain by using neural networks to recognise patterns from training data sets.  

Epoch: A complete training cycle on an entire data size. Shown during the neural 

network creation, optimal level required. Too high an epoch frequency can lead to 

the error rate increasing. Too low an epoch accuracy can cause the epoch count to 

not reach optimal accuracy levels. 

Ground truth: A set of images which have been manually assessed by the user and 

confirmed to be displaying a specific phenotype or shape required. The Network is 

trained using this dataset. 

 

 



 

Imaging Flow Cytometry: A machine used which carries out analysis on samples 

by suspending samples in fluid and analysed by the machine following excitation of 

fluorescent markers by light, causing the light to be scattered and high throughput 

analysis to be undertaken. The imaging flow cytometer allows the user to click on 

individual cellular images for analysis and provides extra confidence into the results 

and added sample integrity.  

 Micronucleus: A smaller than normal nuclei, 1/3rd to 1/16th the diameter of a 

regular nucleus. Occur at a resting level in healthy cells, but levels are elevated 

following exposure to agents causing chromosomal damage and this can be used to 

calculate a dose response using the MN assay. 

Neural Network: A series of algorithms linked to one another, much how neurones 

are in the brain, working in tandem to recognise patterns and efficiently analyse data.  

Training Set: The Ground Truth dataset used in order to teach the neural network 

how to identify a specific pattern. 

Validation Set: The images used to assess the Neural Network based on what the 

training set has taught it. This should not be the same as the training set as can result 

in false positives. If using the same dataset for training and validation, then split this 

dataset into two distinct groups, one to train the dataset, one to validate the dataset.  
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