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We present a major update on our investigations of SU(2) gauge theory with one Dirac flavor in the
adjoint representation on the lattice. In particular, we consider larger volumes as well as four different
values of the gauge coupling. We provide results for the spectrum including gluonic, fermionic, and hybrid
observables; Polyakov loops; and the anomalous dimension of the fermionic condensate from the Dirac
mode number. These data confirm that the theory is close to the lower boundary of the conformal window
for adjoint fermions. Our investigations provide important insights regarding the realization of different
infrared scenarios that have been conjectured for this theory.
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I. INTRODUCTION

The SU(2) gauge theory with Nf Dirac fermions in the
adjoint representation has seen many interesting recent
applications in theoretical studies ranging from composite
Higgs models to topological phases related to systems of
condensed matter physics. The most prominent examples of
these theories are the Nf ¼ 2 case, called Minimal Walking
Technicolor, and supersymmetric Yang-Mills theory, corre-
sponding to the case with one Majorana fermion. Recently,
also the case of the Nf ¼ 1 Dirac fermion gained much
interest. It has been considered in the context of semi-
classical analysis [1] and volume independence, leading to
the conjecture of emergent fermion symmetry event in the
nonsupersymmetric case [2]. Another line of interest has
been the relation of chiral symmetry breaking and confine-
ment. The most recent interest has come from the consid-
eration of ’t Hooft anomaly matching and topological phase
transitions [3,4]. Although all of these investigations reveal
interesting aspects and conjectures about the nonperturbative
regime, it is still unclear what kind of phase is realized at low

temperatures. It should be stressed that all conjectures and
studies depend on this basic knowledge of the theory.
The main motivation of our previous investigations of

the SU(2) gauge theory with one adjoint Dirac fermion has
been the question about signatures of a conformal window
related to composite Higgs scenarios. In these scenarios,
the Higgs sector emerges as a low-energy manifestation of
novel strong dynamics [5–9]. This new strong interaction is
able to explain the observed electroweak symmetry break-
ing phenomenology if the following three conditions
are met:
(1) The theory is near the onset of the conformal

window.
(2) The anomalous dimension of the chiral condensate

is of order 1.
(3) A parametrically light scalar (the would-be Higgs

boson) is in the spectrum. The first two conditions
[10,11] are needed for compatibility with electroweak
precision data [12], while the third condition is
determined by the direct observation of the Higgs
boson and no other previously unknown nearby state.
Numerical lattice simulations have provided impor-
tant information about the realization of these con-
ditions in different theories. Interesting candidates are
in particular gauge theories coupled to fermions in
higher representations since these require a smaller
number of fermion fields to reach the conformal
window [13–16]. One example of a gauge theory
which, according to numerical data, is inside the
conformal window is SU(2) gauge theory with two
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adjoint Dirac flavors [17–29]. However, the low mass
anomalous dimension,1 γ⋆ ¼ 0.38ð2Þ [31], at the
infrared fixed point disfavors this model for phenom-
enological applications. Meanwhile, also a first study
with three Majorana fermions in the adjoint repre-
sentation has appeared [32], showing an increasing
mass anomalous dimension toward a lower fermion
content of the theory.

The identification of a theory with an at least near-
conformal behavior and a large mass anomalous dimension
has been the main motivation for our previous studies of
SU(2) with a single adjoint Dirac flavor. In fact, given that
the theory with two adjoint flavors was observed to be well
within the conformal window, there is the possibility that
the theory with a single adjoint flavor sits at the onset of
conformality. Such behavior is required for phenomeno-
logically viable theories to explain electroweak symmetry
breaking at a fundamental level. In this context, a first
obvious but very relevant question is whether the theory is
just outside or inside the conformal window. The theory can
later be extended by additional fundamental fermions to
provide a viable extension of the Standard Model [33,34].
Close to the onset of the conformal window, it is hard to

distinguish a conformal from a chiral symmetry breaking
scenario.2 In such a (near-)conformal regime, large scaling
corrections are also expected. Therefore, a very detailed
study of the dependence on simulation parameters is
required. In this respect, our first investigations [36]
utilizing only a single lattice spacing have provided only
limited insight. A later study in Ref. [37] considered mainly
the same parameter range for a different analysis. For this
reason, we provide here a substantial extension of our
previous simulations considering a range of different gauge
couplings and a large number of additional ensembles in
order to improve on our first investigations of the theory.
Another line of motivation for an investigation of SU(2)

with one adjoint Dirac flavor is a general scan in the
parameter space of strongly interacting theories to identify
common patterns and relate them to analytical predictions,
for example based on gauge/gravity duality. In this context,
we have investigated the ratio of lightest spin-2 and spin-0
resonances [38]. We have shown that possible nontrivial
universal characteristic in the landscape of strongly inter-
acting gauge theories can be identified. These could later on
help searches for candidate theories describing realistic
Standard Model extensions.
An interesting further relation of the theory is with N ¼

2 super-Yang-Mills with gauge group SU(2), in the limit of
a large scalar mass which leads to complete supersymmetry
breaking. In N ¼ 2 super-Yang-Mills, confinement is

known to arise through the dual superconductor mechanism
resulting from magnetic monopole condensation [39]. The
breaking of supersymmetry by a finite scalar mass has been
considered in Ref. [40], in which the authors argue that in
the large mass limit chiral symmetry breaking is at play.
Our investigations are based on the first-principles

method of numerical Monte Carlo simulations on a
spacetime lattice. In Sec. II, we provide a summary of
the continuum properties, and lattice action, of the theory.
We also explain the main observables and parameters
considered in this study. Additional information about
the simulation setup and the lattice formulation can be
found in our previous publication [36].
The main results presented in Sec. III start with a

discussion on the general limitations of the parameter range
due to phase transitions and topological freezing. We show
that our simulations are not limited by these general
systematic effects. The obtained bound state particle spec-
trum at different fermion masses is presented in Sec. III C.
The main result of this paper regarding mass anomalous
dimension are presented in Sec. III D. Assuming conformal
scaling, we determine the mass anomalous dimension from
the particle spectrum and mode number. The results confirm
a significantly larger anomalous dimension than in the two
Dirac flavor case. However, they also reveal relevant scaling
corrections. We discuss as an alternative scenario also a fit
according to chiral perturbation theory in Sec. III E. As a
short update regarding our work in Ref. [38], we also discuss
the ratio between the spin-2 and spin-0 glueballs. At the end
of the paper, we discuss the implications for infrared
scenarios of the theory in Sec. IV.

II. SUMMARY OF THE THEORY AND
CONSIDERED OBSERVABLES

We investigate the SU(2) gauge theory with a single Dirac
fermion in the adjoint representation (SU2Nf1Adj).
Although our goal is to understand the theory in the massless
limit, numerical simulations require a finite fermion mass.
We, therefore, simulate at different fermion masses and
investigate how the massless limit is approached. Our
primary goal is to understand whether chiral symmetry is
spontaneously broken in the massless limit or the theory is IR
conformal. In case of spontaneous chiral symmetry breaking,
chiral perturbation theory would be sufficient to describe the
low-energy effective theory at small fermion masses. On the
contrary, if our theory is IR conformal, the data will be in
accordance with the scaling predictions of a mass-deformed
IR conformal gauge theory. It is possible that SU2Nf1Adj is
in the QCD-like phase with confinement and chiral sym-
metry breaking but close to the onset of the conformal
window. If such a scenario holds, the system might dem-
onstrate mass-deformed conformal behavior within an inter-
mediate-energy regime between the chiral symmetry
breaking scale ΛIR and the perturbative scale in ultraviolet
ΛUV, while for energies below ΛIR, the system will be

1The actual mass anomalous dimension might even be lower;
see Ref. [30] and references therein.

2We observe that for fermions in the adjoint representation the
chiral symmetry breaking scale can be separated from the
confinement scale; see Ref. [35] for a recent discussion.
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correctly described by chiral perturbation theory. The latter
possibility refers to the so-called near-conformal or walking
scenario. We focus mainly on the distinction of chiral
symmetry breaking and IR conformal scenario, but we also
discuss other possible IR scenarios in the final conclusions.
The Lagrangian of SU2Nf1Adj in Minkowski space is

defined as

L ¼ ψ̄ðxÞði=D −mÞψðxÞ − 1

2
TrðGμνðxÞGμνðxÞÞ; ð1Þ

with =D ¼ ð∂μ þ igAμðxÞÞγμ, γμ being the Dirac matrices,
AμðxÞ ¼

P
a T

aAa
μðxÞ with a ¼ 1, 2, 3, and the Ta being

the Lie algebra generators of SU(2) in the adjoint repre-
sentation. The field strength tensor is defined as
Gμν ¼ ∂μAνðxÞ − ∂νAμðxÞ þ ig½AμðxÞ; AνðxÞ�, with g being
the gauge coupling of the theory, and the trace is taken over
the gauge group. Notation and conventions are explained
in Ref. [36].
The adjoint representation is real and, as a consequence,

does not mix real and imaginary parts of the Dirac spinor.
This enables us to decompose the Dirac spinor in Majorana
components as follows,

ξþ ¼ ψ þ Cψ̄Tffiffiffi
2

p ; ξ− ¼ ψ − Cψ̄Tffiffiffi
2

p
i

; ð2Þ

such that

ψ ¼ 1ffiffiffi
2

p ðξþ þ iξ−Þ: ð3Þ

In the above expressions, C is the charge conjugation
matrix; both ξþ and ξ− are invariant under charge con-
jugation symmetry by construction. Equation (1) can, thus,
be reformulated as

L ¼ 1

2

X
k

ξ̄kðxÞði=D −mÞξkðxÞ −
1

2
TrðGμνðxÞGμνðxÞÞ; ð4Þ

where k ¼ þ;−. This flavor structure (in terms of the
Majorana components) gives rise to a nontrivial chiral
symmetry breaking pattern.
The general chiral symmetry breaking pattern that can be

identified from this formulation is

SUð2NfÞ ↦ SOð2NfÞ: ð5Þ

In the present case of Nf ¼ 1, there are hence two
Goldstone bosons in this model if chiral symmetry is
spontaneously broken. The unbroken SO(2) is equivalent to
U(1) baryon number in Dirac fermion formulation.
The identification of quantum numbers for two-fermion

operators has been presented in our earlier paper [36]. These
are in principle generalization of the meson operators in

QCD, but the labeling is done according the unbroken U(1).
Hence, there are mesons transforming trivially under this
symmetry and baryons (or diquark) operators that carry
baryon number �2. The operators for the Goldstone bosons
correspond to scalar baryons for which the fermion con-
tractions are similar to the pions in QCD. In these extended
measurements, we do not consider operators with discon-
nected contributions. Besides the scalar baryons (ψTCγ5ψ),
we consider also the pseudoscalar baryon (ψTCψ), the
vector baryon (ψTCγkγ5ψ), and the vector meson (ψ̄γkψ).

A. Lattice action and observables

Our simulations are based on a lattice action consisting
of a Wilson gauge and fermion action given by

S ¼ SG þ SF; ð6Þ

where

SG ¼ β
X
p

Tr

�
1 −

1

2
UðpÞ

�
ð7Þ

and

SF ¼
X
x;y

ψ̄ðxÞDðx; yÞψðyÞ: ð8Þ

Here, UðpÞ is the lattice plaquette, and SG and SF are,
respectively, the pure gauge part and the fermionic contri-
bution in the action. The massive Dirac operator is defined as

Dðx; yÞ ¼ δx;y − κ½ð1 − γμÞUμðxÞδy;xþμ

þ ð1þ γμÞU†
μðx − μÞδy;x−μ�; ð9Þ

where UðpÞ is the lattice plaquette, κ ¼ 1=ð8þ 2amÞ is the
hopping parameter, a is the lattice spacing, andm is the bare
fermion mass. Further details of the lattice representation and
algorithms can be found in our earlier work [36]. As detailed
in this reference, particle masses are obtained from corre-
lators of operators projecting onto the selected quantum
numbers. Note that the Wilson fermions break chiral
symmetry and require the inclusion of an additive and
multiplicative renormalizaton of the fermion mass. The
partially conserved axial current (PCAC) defines a mass
mPCAC which requires only multiplicative renormalization,
which is used as a proxy of the renormalized fermion mass.
The lattice technology used to define correlators and the
mPCAC mass and to compute them on the lattice is by now
standard (see, e.g., Ref. [41] for a more extended treatment).
For the mesonic observables and the generation of the

configurations, we have used HIREP
3 [17,27]. The results

3See https://github.com/claudiopica/HiRep for the HiRep
source code.
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were also cross-checked with a code developed for sim-
ulations of super-Yang-Mills theories [42]. The latter code
has also been used to measure a spin-1

2
hybrid fermion state

which is constructed in the continuum from the operator

Ospin−1
2
¼

X
μ;ν

σμνtr½Fμνξ�; ð10Þ

where σμν ¼ 1
2
½γμ; γν�. This state, which can be seen as a

bound state of a fermion and a gluon, was computed using
the tools described in Ref. [42]. Gluonic observables (and
in particular glueball and torelon states) have been studied
using the techniques exposed in Ref. [43]. Further details
are explained in sections presenting the numerical results,
and raw data are available in Ref. [44].
In addition, we also determine the scale setting quantities

t0 and w0 from the gradient flow. These are introduced in
Sec. III B. We also consider the string tension with the
methods already explained in Ref. [36].
The theory requires a careful consideration of the

simulation parameter range. A detailed investigation over
the parameter space in Ref. [36] shows a strong signal for a
bulk phase transition at around β ≈ 1.9, am ≈ −1.65. The
requirement to connect with continuum limit, therefore,
imposes to simulate at β > 1.95. In order to avoid the bulk
phase and retrieve the desired continuum physics, in our
previous study, we have chosen the value β ¼ 2.05.
According to this analysis, this value of the gauge coupling
is in the region connected to continuum physics. However,
it is still quite close to the bulk phase and, assuming a
positive β-function, corresponds to a rather coarse lattice.
The choice was dictated by the necessity to study large
volumes in order to explore the infrared behavior of the
theory while keeping under control the computational cost.
However, a thorough assessment of discretization effects
requires studies over a range of increasing βs, in order to
extrapolate to the continuum limit. For these simulations, a
higher computational effort is needed. Another reason to
simulate at weaker couplings is related to the generic
continuum structure of an IR conformal gauge theory,
which, in addition to the asymptotically free phase con-
nected with the ultraviolet Gaussian fixed point, is expected
to have a strong coupling phase in which the coupling
decreases at large distances [45]. Therefore, if the lattice
model is investigated at strong coupling, there is the
potential danger that in the continuum it will describe
the latter phase of the model, which is not the one we are
interested in.
Simulations of a range of larger gauge couplings require

a consideration of additional relevant effects that can affect
the results. Due to the decreased lattice spacing, the
physical lattice volume could become small enough to
induce a transition to a phase with broken center symmetry
in some direction indicated by a nonzero expectation value
of spatial or temporal Polyakov loops. Another important

effect is topological freezing. At larger values of β, the
topological charge fluctuations are strongly suppressed,
and hence the simulation becomes nonergodic. We have
performed a detailed consideration of these effects in
Secs. III A and III B.
Our investigation spans over four values of β, namely,

β ¼ 2.05, 2.10, 2.15, and 2.20, as well as over a broad
range of bare masses am. The details of all the ensembles
produced for the purposes of this work are presented in the
Appendix A, and are available in machine-readable form in
Ref. [44]. For simplicity, we denote our ensembles as
DBiMj, where the first index i ¼ 1;…; 4 refers to the four
values of β, while the second index j ¼ 1;… refers to the
choice of mass. Furthermore, we use asterisks as subscripts
on this notation to denote smaller volumes produced for
investigating finite-volume effects and possible phase
transitions.

III. RESULTS

A. Expectation value of Polyakov loops—Center
symmetry

The introduction of adjoint fermions in SUðNÞ gauge
theories, at zero temperature and infinite spatial volume
preserves the ðZðNÞÞ4 symmetry related to center trans-
formations in the four Euclidean directions. When decreas-
ing the volume or increasing the temperature, the system
can go through various phase regimes with different center
symmetry patterns. Phase transitions could also occur as we
move along the parameter space of our theory, that is to say
when altering β and am.
Center symmetry breaking can be investigated by study-

ing the corresponding order parameter. The order parameter
for the center symmetry behavior along the direction μ̂ is
the vacuum expectation value of the traced Polyakov loop
in that direction,

Pμ ¼
1

N

X
x⊥

Tr

�YLμ−1

i¼0

Uμðx⊥; xiÞ
�
; ð11Þ

where xi is the coordinate along the μth direction, x⊥ is the
set of coordinates in the perpendicular directions to μ̂, and
Lμ is the number of lattice points in the μ̂ direction. The
temporal direction is denoted by μ ¼ 0, while the three
spatial directions are denoted by μ ¼ 1, 2, 3.
For large enough physical lattice volume, the center

symmetry should be unbroken, and the distribution of Pμ

along all directions should show a single peak at zero. This
pattern will change as we reduce the lattice size. In a center
symmetry broken phase, at smaller lattices, N peaks will
start to appear in one of the Polyakov loop distributions.
However, more complicated breaking patterns are possible
for fermions in the adjoint representation depending on
lattice volume and boundary conditions. A single phase
transition to a deconfined phase with broken center
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symmetry4 is expected only in the case of thermal boundary
conditions, different intermediate phases can occur, and a
reconfined phase with unbroken center symmetry is
observed if the lattice size in one direction becomes very
small [46]. The intermediate phases might even be absent at
small fermion masses as observed in super-Yang-Mills
theory [47,48].
We consider periodic boundary conditions in all

spacial directions, and the significantly larger temporal
direction can be neglected in this consideration. None of
the ensembles shows any indications for center symmetry
breaking. To demonstrate this, in Fig. 1, we present
histograms of the vacuum expectation value of Polyakov
loops along all four directions for the ensembles
DB1M10, DB2M7, DB3M8, and DB4M11. These are
the configurations which correspond to the four values of
β and the smallest mass for each.
In order to exclude any possibility that this signal might

accidentally be due to a reconfined phase not connected to
confinement at large volume, we have done some addi-
tional investigations. In such a phase, center symmetry
breaking is expected when the periodic boundary con-
ditions are changed to thermal ones. We have confirmed,
in additional simulations using thermal boundary con-
ditions, that these small-volume effects are absent in our
calculations.

B. Topological aspects

The second important aspect that needs to be considered
in order to check the validity of the considered parameter
range is topological charge fluctuations of the ensembles.
Our simulations should be ergodic and hence effectively
explore all topological sectors. In Monte Carlo simulations
based onHybrid Monte Carlo (HMC) algorithms, strong
autocorrelations of the topological charge appear as one
approaches the continuum limit. This well-known phe-
nomenon of topological freezing has to be excluded for the
extended β − am parameter space that we are considering
in our current simulations.
In the continuum, the topological charge Q is defined as

the integral over the four-dimensional volume of the
topological charge density

Q ¼ 1

32π2

Z
d4xϵμνρσTr½GμνðxÞGρσðxÞ�: ð12Þ

The discretized lattice counterpart of the above quantity
can be obtained by replacing the gluonic field strength
with a lattice operator that reproduces the correct con-
tinuum limit. The choice is not unique, and operators with

better finite-size effects can be obtained by using OðaÞ-
improved discretizations of the field strength. For the
purposes of this work, we incorporated the so-called
“clover” definition,

QL ¼ 1

32π2
X
x

ϵμνρσTr½CμνðxÞCρσðxÞ�; ð13Þ

where the “clover leaf” Cμν corresponds to the sum of the
plaquettes PμνðxÞ centered in x and with all the possible
orientations in the μν-plane. This operator is even under

FIG. 1. The histograms of the average Polyakov loop for the
ensembles DB1M10, DB2M7, DB3M8, and DB4M11 belonging
to the set shown in the label of each subfigure, for the four space-
time directions. Single peaks indicate an unbroken center
symmetry.

4Thermal boundary conditions refers to periodic boundary
conditions for all fields, except for the fermions. These have
antiperiodic boundary conditions in one direction with the
smallest extend corresponding to the inverse temperature.
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parity transformations and exhibits Oða2Þ discretization
effects. After a certain smoothing of the gauge configu-
rations, Q tends to integer values labeling the topological
sector for each gauge configuration.
Smoothing is required to suppress ultraviolet fluctua-

tions of the gauge fields that would contaminate measure-
ments ofQ. We use the gradient flow [49] with the standard
Wilson action to implement it.5

To monitor possible effects of topological freezing and,
thus, a loss of ergodicity, we investigate the Monte Carlo
history and the histogram of the topological charge for
several different parameters. In Fig. 2, we present the
Monte Carlo history of the topological charge Q for the
ensembles DB1M10, DB2M7, DB3M8, and DB4M11
with the corresponding histogram. These ensembles
correspond to the smallest fermion masses at the four
different values of β. One can observe that for none of the
ensembles is an extreme autocorrelation time of Q
observed, and topological freezing is hence not a problem
in the considered parameter range. A large number of
topological sectors are explored, and the resulting histo-
gram is compatible with a Gaussian distribution with
average at zero. This is a strong indication for a adequate
sampling of topological observables. Full results for the
autocorrelation time, and for the fitted shape of the
histogram of Q, are shown in Appendix B.
Besides the check for the reliability of the simulations,

this study provides also further insights into the physical
properties of the theory. The topological susceptibility χ,

χ ¼ hQ2i − hQi2
V

; ð14Þ

provides information about the possible IR conformal
scenario for the theory.
An IR conformal theory becomes confining when

deformed by a fermion mass. If this occurs, the theory
should be indistinguishable from the equivalent quenched
theory. A good quantity to test this scenario is the
topological susceptibility, since it should match the pure
SU(2) Yang-Mills theory [50] results.
In Fig. 3, we present the topological susceptibility in

units of the string tension χ
1
4=

ffiffiffi
σ

p
as a function of the string

tension in lattice units a2σ. This is compared to the same
quantity in pure SU(2) Yang-Mills theory corresponding to
the quenched Nf ¼ 0 case. Furthermore, the result for the
Nf ¼ 2 case is shown, which is expected to be IR
conformal. The topological susceptibility is in good agree-
ment between these three theories; any discrepancies are

understood as higher-order scaling corrections of a2σ. This
provides a first indication that SU2Nf1Adj is IR conformal.
The gradient flow also enables the definition of scale

parameters t0 and w0, which can be determined quite
accurately to high precision. These flow observables were
introduced in Refs. [51,52]. t0 is defined according to the
following prescription. First, we set

FðtÞ ¼ t2hEðtÞi where EðtÞ ¼ 1

4
B2
μνðtÞ; ð15Þ

FIG. 2. Monte Carlo history of Q (left panel) and resulting
histogram (right panel) computed on 4000 configurations ex-
tracted using gradient flow at gradient flow time τ corresponding
to a

ffiffiffiffiffiffiffiffiffiffiffi
8τflow

p ¼ L=2 for the ensembles DB1M10, DB2M7,
DB3M8, and DB4M11.

5The elementary integration step is (ϵ ¼ 0.01). The flow time t
is chosen large enough to cancel discretization effects while still
keeping the topological content of the gauge fields unchanged.
For this reason, we extracted the topological charge for flow times
(τflow ¼ tflow=a) corresponding to

ffiffiffiffiffiffiffiffiffiffiffi
8tflow

p ¼ L=2.
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where Bμν is field strength obtained by flowing Gμν along
the flow time direction. We identify the scale t0 as the value
of t for which

FðtÞjt¼t0ðcÞ ¼ c: ð16Þ

Similarly, w0 is defined by

t
d
dt
FðtÞjt¼w2

0
ðcÞ ¼ c: ð17Þ

In these definitions, c is chosen such that the relevant
condition a ≪

ffiffiffiffiffiffi
8t0

p
≪ L or a ≪

ffiffiffi
8

p
w0 ≪ L is satisfied.

Small c lead to larger lattice artifacts, and larger c usually
lead to larger autocorrelations [53]. In our case, we take
c ¼ 0.2 consistent with the common value of c ¼ 0.3 for
QCD assuming a scaling with N as in Ref. [54]. Gμν is
represented by the clover plaquette.

C. Particle spectrum

The first important observables which we consider to
determine conformal or confining infrared behavior are the
masses of the particles. We considered masses of mesonic
and baryonic two-fermion states, glueballs, and a spin-1

2

hybrid fermion state. In addition, we have determined
string tension and scale setting quantities (w0 and t0). In this
section we first discuss basic features of these data, which
are later on considered in more detailed fits according to a
conformal or confining scenario. In the current work, we
focused on the most precise data and excluded two-fermion
states with disconnected contributions. Our methodology
for determining the masses follows very closely our
previous work [36].

The data are summarized in Appendix B and represented
in units of w0 in Figs. 4 and 5. In order to control finite-
volume effects, we have included different volumes for
some parameters.
Several important observations can already be made

from this representation of the data. As observed in our
previous study, there is only a small dependence of the
masses in physical units on the PCACmass which becomes
more profound as β and PCAC mass increase. This is
consistent with the expectation for a conformal theory. In
such a case, masses of states and quantities used for scale
setting tend to zero in the chiral limit, i.e., as mPCAC → 0,
with the same exponent, leading to constant mass ratios and
constant masses in units of w0.
At small PCAC masses, there is still a considerable

deviation from the expected constant behavior. In particu-
lar, the scalar baryon (γ5 channel), which should become
Goldstone boson in case of chiral symmetry breaking, tends
toward smaller masses. However, this trend is reduced at
larger values of β and might hence be related to lattice

FIG. 4. The mass spectrum observed at the largest volume for
each combination of (β, m), showing baryons, glueballs, the
hybrid fermion ğ, and the string tension

ffiffiffi
σ

p
, as a function of the

PCAC fermion mass, in units of the gradient flow scale w0.

FIG. 3. The topological susceptibility measured for the largest
combination of each (β, m), in units of the string tension

ffiffiffi
σ

p
.

Included for comparison are data for pure SU(2) gauge theory
and the SU(2) theory with two adjoint Dirac flavors, using data
from Ref. [50].
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artifacts. More detailed considerations are therefore
required to resolve the continuum behavior of the theory.
The ordering of the states in the particle spectrum

provides further insight into possible infrared scenarios
for the theory. Different from a chiral symmetry breaking
scenario, the scalar glueball is the lightest state of the
theory, lighter than the 2þ scalar baryon at all points
observed, as shown in Fig. 6. A light glueball is also
observed in several near-conformal theories, and might
even be related to a dilaton state in the conformal limit. The
spin-1

2
hybrid fermion state is rather light compared to other

baryonic and mesonic states. However, it is still heavier
than the scalar glueball and scalar baryon. Therefore, our
results rather indicate that the discussed exotic infrared
scenario conjectured in Refs. [3,4] with light baryon states
is not realized for this theory.

D. Determination of the mass anomalous dimension
for the different gauge couplings

We continue the analysis considering an IR conformal
scenario of SU2Nf1Adj. In such a scenario, the scaling of
relevant observables is governed by the mass anomalous
dimension at the IR fixed point γ�. In the following, we
consider two methods for the determination of the scaling.
The first one is a hyperscaling analysis of the particle
spectrum. The second one considers the scaling of the mode
number, the integrated eigenvalue density of the Dirac
operator. Consistent fits are a good indication for the
realization of a conformal scenario. In this section, we first
analyze separately the different values of the gauge coupling.
A final result of this quantity at the fixed point would be
independent of the gauge coupling. In the last part, we
consider possible ways to determine the universal scaling
based on the data of the complete parameter range.
In our previous investigation, we have determined the

value at a single β ¼ 2.05 [36]. This value is updated with
additional ensembles at the same gauge coupling.

1. Particle spectrum

Near-conformal behavior would indicate a particular
scaling of the particle masses. Including the approximate
finite-size effects, a spectral quantityM as a function of the
mPCAC mass follows the scaling relation [21,22,55–59]

LaM ¼ fðLðamPCACÞ
1

1þγ� Þ; ð18Þ

for some function f, where L → ∞ is the finite spatial
extent of the lattice. This implies that the points in a plot of
LaM against LðamPCACÞ1=ð1þγ�Þ collapse to one universal
curve for the correct value of γ�.
These plots, based on the data for the scalar baryon, are

shown in Fig. 7. In a certain range of γ�, the values for all
gauge couplings become nearly consistent with a universal
function. In order to perform a more precise determination,
we have applied the methodology proposed by DeGrand
[56] based on work by Bhattacharjee and Seno [60]. The
principle of this method is to allow the data to shape the fit
function, rather than imposing a fitting form. This is done
by minimization of the function

Pðγ�Þ¼
1

No

X
l∈fLg

X
i∈Sl

ðLiaMi−flðL1þγ�
i amPCACiÞÞ2; ð19Þ

where Sl is the set of data such that for i ∈ Sl, Li ≠ l, and
L1þγ�
i amPCACi is in the range spanned by the data for which

L ¼ l, and No is the number of points i considered in total,
i.e., No ¼

P
l∈fLg

P
i∈Sl 1. fl is a function interpolating

the values of LaM for data for which L ¼ l; we choose this
interpolation to be piecewise linear. This minimization

FIG. 5. The decay constant of the 2þ baryon observed at the
largest volume for each combination of (β,m), as a function of the
PCAC fermion mass, in units of the gradient flow scale w0.

FIG. 6. The ratio of the mass of the 0þþ glueball to that of the
2þ scalar baryon as a function of the PCAC fermion mass scaled
by the gradient flow scale w0.
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pulls the data for each value of L to the others, collapsing
the data to a single global function without needing to
specify its functional form.

This detailed analysis reveals more significant deviations
between γ� obtained at different values of the gauge
coupling β. As shown in Table I, smaller values of γ�
are preferred at larger β.

2. Mode number

The eigenvalue spectrum of the Dirac operator allows a
more precise determination of γ� compared to the scaling of
the particle spectrum. We have already described the
method in Ref. [36]. The integrated eigenvalue density
ν̄ðΩÞ or mode number as a function of upper integration
limit Ω follows in an intermediate regime the scaling

a−4ν̄ðΩÞ ≈ a−4ν̄0ðm̃Þ þ A½ðaΩÞ2 − ðam̃Þ2� 2
1þγ� ; ð20Þ

where m̃ is some renormalized fermion mass [61,62].
To find the region of validity, we have used several

different windows ½ΩLE;ΩUE� for the fit according to the
scaling formula (20). The numerical fit and the specific
functional form leads to an additional dependence of the
results on the initial parameters. In order to obtain an
estimate of this uncertainty, many repeated fits are per-
formed with small variations in the initial parameters
around a central value. This central value is chosen by a
constrained fit in which ν̄0 ¼ 0, which is significantly more
stable than the full four-parameter fit. Examples of the
scattering of γ� obtained in these fits are shown in Fig. 8.
We have determined optimal values for γ� by searching

for a plateau in the distribution, constraining both ΩLE and
ΔΩ ¼ ΩUE − ΩLE, and for the most reliable fits. The
plateau is then fitted, weighting the result for each window
both by the statistical uncertainty and also by the number of
fits of that window which converged. The determination is
done separately at each β, focusing in particular at the large
volumes and small fermion masses. The final results are
shown in Table II.

3. Universal behavior or dependency
on the gauge coupling?

The obtained values of the anomalous dimension using
the expected scaling of the particle spectrum or the mode
number are quite consistent. The deviations of the two

TABLE I. Results of fitting the anomalous dimension γ� from
finite-size hyperscaling using the methodology described in
Refs. [56,60]. Npoints is the total number of points contributing
to the residual at the given value for γ�.

β γ� Npoints

2.05 0.933(71) 14
2.1 0.89(12) 4
2.15 0.773(47) 7
2.2 0.713(43) 20

FIG. 7. Finite-size hyperscaling plots showing the mass of the

2þ baryon as a function of the product Lm1=ð1þγ�Þ
PCAC for the stated

values of γ�. Data for different values of β align at different values
of γ�, with the extrema being β ¼ 2.05 data aligning at γ� ¼
0.943ð71Þ and β ¼ 2.2 data aligning at γ� ¼ 0.717ð43Þ.
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methods are between 0.2 and 3 sigma with the smallest
deviation at β ¼ 2.1 and the largest at β ¼ 2.2. The large
deviation at β ¼ 2.2 might be seen as an indication that our
determination of the scaling is not completely under control
in this case. However, deviations at the order of 3 sigma
between these two methods have also been observed in
studies with two Dirac flavors.
An even more striking result is the dependency of γ� on

the value of β: for nearly conformal gauge theories, the
fixed point value of the anomalous dimension is a universal
quantity, and the gauge coupling is at most marginal. In our
calculation, instead we observe that the larger β indicate a
smaller value of γ�. This may indicate that the theory is not
IR conformal, despite the observed IR scaling seeming
compatible at first sight with that hypothesis. However,
large scaling corrections or strong lattice artifacts due to the
nearby bulk transition might provide an alternative explan-
ation. We now discuss these two possibilities.
Assuming the deviation can be explained by scaling

corrections, a fit approach of Ref. [63] can be applied to
quantify leading and subleading contributions. We have
tried to fit our data according to this approach. However, we
did not obtain consistent result since the sign of the leading
exponent did not agree with the assumptions for an IR
fixed point.
This leaves us with one basic interpretation of the data,

which is a rather drastic correction due to the lattice
artifacts. Since we have chosen our values of the gauge
coupling as close to the bulk transition as possible, such
effects are not unexpected. The conclusion of this line of
argument is that the largest β provides the most reliable
result of the conformal scaling and γ� is smaller than
estimated in our earlier work.

E. Chiral perturbation theory

In order to check the infrared scenario for the theory, the
assumptions of a near-conformal scaling must be compared
with the chiral symmetry breaking case. Assuming chiral
symmetry breaking, the functional dependence is provided
by chiral perturbation theory. We have performed a basic fit
of the scalar baryon state according to this scenario. This

FIG. 8. Results of the bootstrapped fits of the mode number
for the ensembles DB1M8, DB1M10, DB2M7, DB3M8, and
DB4M11 as a function of the lower end of the fit window.
Colors represent the length of the window ΔΩ ¼ ΩUE − ΩLE,
and opacity represents the proportion of fits for that window
that converged.

TABLE II. The values of the mass anomalous dimension γ�
obtained from a fit of the mode number data according to (20).

Ensemble Ωmin
LE Ωmax

LE ΔΩmin ΔΩmax γ�

DB1M8 0.03 0.07 0.05 0.1 0.8720(52)
DB1M9 0.03 0.065 0.05 0.1 0.8743(56)
DB2M7 0.03 0.05 0.02 0.08 0.8609(83)
DB3M8 0.04 0.08 0.05 0.08 0.687(14)
DB4M11 0.05 0.09 0.05 0.09 0.575(11)
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state corresponds to the pseudo-Nambu-Goldstone boson
of broken chiral symmetry.
The fit has been done according to the functional form

M̂ ¼ 2Bm̂PCACð1þ Lm̂PCAC þD1m̂PCAC logðD2m̂PCACÞÞ

þW1amPCAC þW2

a2

w2
0

; ð21Þ

where m̂PCAC ¼ w0mPCAC, fitting the coefficients B, L, D1,
D2, W1, and W2. The result is presented in Fig. 9. It
indicates rather large lattice artifacts, and the strongest
deviation from the fit is seen at the largest β. Assuming the
standard confinement and chiral symmetry breaking sce-
nario, the largest β corresponds to the smallest lattice
spacing.
To exclude the possibility that this fit has been anchored

by the coarsest lattice spacing, where the scalar baryon
mass does not exhibit the near-flat behavior observed at
larger values of β, we have performed additional fits of only
the finer values of the lattice spacing. This fit similarly
shows very similar lattice artifacts to the fit including data
at all values of β, suggesting that the inconsistency with
chiral perturbation theory is a genuine effect and not an
artifact of the choice of fit region.
Further simulations with larger volumes and smaller

masses at this β might help to reduce the uncertainty.
Overall, chiral symmetry breaking cannot be excluded from
these fits. However, the complete functional dependence of
the data is not well described by chiral perturbation theory.
In addition, the fact that the scalar glueball is lighter than
the scalar baryon is also in contradiction with chiral
symmetry breaking.

F. R ratio

In this section, we consider our new data for SU2Nf1Adj
to investigate universal properties that can be used to
characterize the general parameter space of strongly inter-
acting gauge theories. In an earlier work [38], we have
shown that the observable

R ¼ M2þþ

M0þþ
; ð22Þ

whereM2þþ is the mass of the lightest spin-2 composite state
andM0þþ is the mass of the lightest spin-0 state, is related to
the anomalous dimension γ�. It can be used to characterize
general properties of a IR conformal gauge theory. Some
interesting properties make R a particularly relevant observ-
able. More in detail, R is defined universally, can be
computed explicitly for a wide range of models, is scheme
independent, and it is not directly controlled by internal
global symmetries of the theory. Therefore, it is legitimate to
compare the value of R computed in theories with com-
pletely different internal symmetries and symmetry-breaking
patterns. This is a particularly welcome feature in the context
of gauge theories with fermionic field content, where the
physics of chiral symmetry and its breaking introduces
nontrivial model-dependent features.
Before presenting numerical results for R, we briefly

review the expected behavior for a conformal theory as it is
deformed by some fermion mass m. For a region of small,
finite deforming mass, spectral masses will scale as
M ∝ m1=Δ, where Δ ¼ 1þ γ⋆ is the scaling dimension.
A finite lattice volume introduces an absolute IR cutoff;
thus, an appropriate scaling variable to consider is
x ¼ Lm1=Δ, and so the ith mass scale would become a
function of x, i.e., LMi ¼ fiðxÞ as we demonstrated in
Eq. (18). To first order for a state of mass M0, this gives
LM0 ∝ x, and by backsubstitution, we obtain
LMi ¼ fiðLM0Þ. Thus, if we take mass ratios, then the
dependence on the lattice extent drops out, allowing us to
compare data at different volumes,

Mi

Mj
¼ fiðLM0Þ

fjðLM0Þ
: ð23Þ

We expect that the behavior of R will be characterized by
four distinct regimes. At large values of m, R becomes
effectively consistent with the value seen in the pure SU(2)
Yang-Mills theory; this value has been found in lattice
studies to be R ¼ 1.44ð4Þ [64,65]. At small m, the regime
will depend on the lattice extent L. At large enough
volumes, the observed physics shows confining properties
due to the mass deformation. At very small volumes, the
theory observed is that of the so-called femto-universe [38];
previous studies indicate that R ≃ 1 in this region [66–68].
However, there is an intermediary region of L where it is
sufficiently large to observe the conformal behavior,

FIG. 9. The results of fitting the 2þ baryon mass (scaled by the
gradient flow scale w0) for the largest-volume ensemble for each
combination of (β, m) with chiral perturbation theory.
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without being so large as to be distorted by confining
effects. This is the region of interest, which can be
extrapolated to a chiral limit value, allowing R to be
determined for the conformal case. Since R enables
comparison between disparate theories, we choose to
perform a comparison with a toy model constructed making
use of the principles of gauge-gravity duality [38]. This
model is constructed within the bottom-up approach to
holography, in such a way that the only operator deforming
the theory and driving it away from conformality has
scaling dimension Δ. Given our results for the anomalous
dimension, we can compare the measured ratio to expect-
ations coming from the toy model with the corresponding
value of Δ. More details behind this idea can be found in
our previous work [38].
In Fig. 10, we present our results on R for the four

different values of the coupling β. Our data are compared
with the ratio R for the SU(2) pure Yang-Mills theory (blue
dashed line) as well as with the prediction from the
conformal string-inspired toy model (upper band). We
remark that for each different value of β the conformal
prediction changes due to different measured values of γ�.
For large LM0, the data for the four different βs moves
toward the pure gauge prediction, in agreement with the
discussion above. For the case of our smallest value of β,
going to smaller LM0, the calculations are becoming
consistent with the conformal plateau with large R. For
β ¼ 2.1 and (to a more limited extent) for β ¼ 2.15, there is
some evidence of behavior that is different from the
confining behavior, although the ratio does not rise enough
to meet the value predicted by themodel. At our largest value
of β ¼ 2.2, results do not move significantly above the
Yang-Mills value. Further simulations are needed to confirm
whether this tendency toward the confining behavior is a
reflection of the physical properties of the system or the data
are not in the regime that can capture IR conformality.
Turning now to the regime of very small volumes, and thus
smaller values of LM0, we observe that there are no signals
of “femto-universe.” The above behavior is in agreement
with our previous findings in Ref. [38].
Once again,we see hints of different infrared behavior at the

lower and at the higher ends of the β rangewe have studied. In
order to resolve the discrepancy, further simulations would be
needed. In particular, forR, onewould need to carefully design
calculations that interpolate between the Yang-Mills behavior
at large LM0 and the femto-universe at lower values of this
quantity, with the goal of identifying an intermediate region
where infrared conformality could be visible.

IV. CONCLUSIONS

The SU(2) gauge theory with one Dirac flavor in the
adjoint representation is a very interesting theory due to its
relation to supersymmetric counterparts and composite
Higgs models. More interestingly, there are several com-
plementary possibilities for the corresponding effective

theory in the infrared limit. It could be similar to the case
with two adjoint Dirac flavors, which shows significant
indications for a conformal fixed point in the infrared. It

FIG. 10. The ratio R ¼ M2þþ
M0þþ measured at all volumes studied

for each combination of (β, m). The shaded region indicates the
range suggested by the model presented in Ref. [38], when the
values for γ� in Table I are used. In the case of β ¼ 2.05 and 2.1,
the upper bound on R is infinite, as γ� is compatible with 1, at
which point the model is singular.
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could also follow a QCD-like scenario with chiral sym-
metry breaking in the infrared similar to supersymmetric
Yang-Mills theory. As a third possibility, a different infra-
red limit has been recently suggested based on ’t Hooft
anomaly matching. In general, a small or even vanishing
beta function is expected, which makes it rather difficult to
disentangle the scenarios. From the theoretical point of
view, the fact that the theory is borderline between a
conformal or nonconformal case makes it an even more
interesting subject. On the other hand, it provides severe
challenges for the investigation on the lattice.
We have studied the theory at different lattice sizes and

differentvaluesof thegaugecoupling.Wehaveinvestigateda
large number of observables in order to characterize the
infrared properties of the theory. These include the particle
spectrum, topology, the Polyakov loops, and the mode
number of theDirac operator.Wehave confirmed thegeneral
reliability of the simulations since the gauge coupling g is
chosenbelow thebulk transitionand there is no indication for
deconfinement or topological freezing. For several observ-
ables, we observe a significant dependence on the gauge
coupling, which is unexpected for an infrared conformal
scenario. There are basically three possible explanations:
(1) The theory is not conformal but rather QCD-like, in

the infrared. Chiral symmetry is broken by a non-
vanishing adjoint fermion condensate. For this con-
clusion, the larger deviations in the chiral fits need to
be explained by lattice artifacts. It is in contradiction
with the observed ordering of the particle spectrum
since one would expect the Goldstone modes to be
the lightest states. This could, however, be explained
with too heavy fermion masses in the current
simulations.

(2) The theory is conformal with scaling deviations. We
are, however, currently unable to determine these
violations in a reliable fit. It is in this case not
completely clear which value of the gauge coupling
is most reliable and brings us closest to a conformal
fixed point.

(3) The theory is conformal, but the influence of the bulk
phase is stronger than expected. In this case, one
wouldprefer the largestβ, andconsequently, a smaller
mass anomalous dimension would be obtained.

While not fully conclusive, our calculations based primarily
on the ordering of the scalar baryon vs the scalar glueball
(Fig. 6) seem to disfavor scenario 1, therefore hinting toward
the IR (near-)conformality of the theory. However, given the
dependence of the mass anomalous dimension on the
coupling, further investigations at large β and at smaller
fermion masses are needed in order to fully answer the
question of the phase realized by the theory.
Concerning the suggested alternative scenario based on

’t Hooft anomaly matching, we can provide some indications
that it might not be realized in the infrared. In this case, one
would expect that the spin-1

2
hybrid fermions become the

lightest states at small fermion masses. Instead, we observe
that these states are of the same order as thevectormesonmass
and heavier than the scalar bayon and the scalar glueball.
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APPENDIX A: LATTICE PARAMETERS

In Table III, we provide the simulation parameters used
for the production of configurations on the lattices con-
sidered in this study. Here, Nconf indicates the number of
thermalized configurations used in the averages, am is the
bare fermion mass in units of the lattice spacing a, and the
first column is a reference name for the set. Also indicated
for each set is the lattice volume. These data are available in
machine-readable format in Ref. [44].

APPENDIX B: RESULTS

In this Appendix, we collect relevant numerical results
obtained in the context of this study. Namely, in Table IV,
we provide results for baryonic observables; in Table V, we
present results for mesonic and hybrid (spin-1

2
) observables;

in Table VI, we report glueball masses and the string
tension; and finally, in Table VII, we present the topological
properties of each ensemble; and finally, in Table VIII, we
present the gradient flow scales t0 and w0. These data, and
the raw data used to generate them, are also available in
machine-readable format in Ref. [44].

INVESTIGATING THE CONFORMAL BEHAVIOR OF SU(2) … PHYS. REV. D 104, 074519 (2021)

074519-13



TABLE III. The lattices considered in this study. Here, Nconf indicates the number of thermalized configurations
used in the averages, am is the bare fermion mass in units of the lattice spacing a, and the first column is a reference
name for the set. Also indicated for each set is the lattice volume.

β am L0 × L3
i Nconf .

DB1M1 2.05 −1.475 32 × 163 4000
DB1M1� 2.05 −1.475 24 × 123 4000
DB1M2 2.05 −1.49 32 × 163 4000
DB1M3 2.05 −1.5 24 × 123 4000
DB1M4 2.05 −1.51 48 × 243 4000
DB1M4� 2.05 −1.51 32 × 163 4163
DB1M4 � � 2.05 −1.51 24 × 123 4013
DB1M5 2.05 −1.514 32 × 163 4000
DB1M6 2.05 −1.519 32 × 163 4000
DB1M7 2.05 −1.523 48 × 243 4000
DB1M7� 2.05 −1.523 32 × 163 4000
DB1M8 2.05 −1.524 48 × 243 4000
DB1M8� 2.05 −1.524 32 × 163 4006
DB1M9 2.05 −1.5246 48 × 243 4000
DB2M1 2.1 −1.42 24 × 123 4000
DB2M2 2.1 −1.43 24 × 123 4000
DB2M3 2.1 −1.44 24 × 123 4000
DB2M4 2.1 −1.45 32 × 163 4000
DB2M5 2.1 −1.46 32 × 163 4000
DB2M6 2.1 −1.47 48 × 243 4000
DB2M6� 2.1 −1.47 40 × 203 4000
DB2M7 2.1 −1.474 64 × 323 4000
DB3M1 2.15 −1.35 24 × 123 4000
DB3M2 2.15 −1.36 24 × 123 4000
DB3M3 2.15 −1.37 24 × 123 4000
DB3M4 2.15 −1.38 32 × 163 4100
DB3M5 2.15 −1.39 32 × 163 4077
DB3M6 2.15 −1.4 32 × 163 4014
DB3M7 2.15 −1.41 48 × 243 4000
DB3M8 2.15 −1.422 48 × 243 4000
DB4M1 2.2 −1.28 24 × 123 8000
DB4M2 2.2 −1.29 24 × 123 4320
DB4M3 2.2 −1.3 32 × 163 4000
DB4M3� 2.2 −1.3 24 × 123 4000
DB4M4 2.2 −1.31 32 × 163 4000
DB4M4� 2.2 −1.31 24 × 123 4000
DB4M5 2.2 −1.32 32 × 163 4000
DB4M5� 2.2 −1.32 24 × 123 4000
DB4M6 2.2 −1.33 24 × 123 4092
DB4M7 2.2 −1.34 32 × 163 4000
DB4M7� 2.2 −1.34 24 × 123 4000
DB4M8 2.2 −1.35 32 × 163 4000
DB4M9 2.2 −1.36 48 × 243 4000
DB4M9� 2.2 −1.36 32 × 163 4000
DB4M10 2.2 −1.37 48 × 243 4000
DB4M11 2.2 −1.378 48 × 243 4000
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TABLE IV. Baryonic observables.

mPCAC am2þs af2þs am2−v
af2−v am2−ps

af2−ps

DB1M1 0.14859(18) 0.97087(27) 0.43423(54) � � � � � � � � � � � �
DB1M1� 0.14879(14) 0.97141(32) 0.43443(60) � � � � � � 2.251(12) 0.5919(54)
DB1M2 0.12838(40) 0.90542(58) 0.4113(14) � � � � � � � � � � � �
DB1M3 0.11135(20) 0.84527(49) 0.38375(92) � � � � � � � � � � � �
DB1M4 0.091449(85) 0.76665(15) 0.34838(27) 1.680(46) 0.319(32) 1.7763(85) 0.5197(52)
DB1M4� 0.09041(18) 0.76144(59) 0.3450(12) � � � � � � � � � � � �
DB1M4 � � 0.09099(33) 0.7644(12) 0.3453(17) � � � � � � � � � � � �
DB1M5 0.08223(16) 0.72561(60) 0.3278(11) 1.709(22) 0.391(15) 1.635(36) 0.461(27)
DB1M6 0.06684(21) 0.65234(80) 0.2929(13) 1.538(17) 0.3496(97) � � � � � �
DB1M7 0.04770(12) 0.54480(42) 0.23919(86) � � � � � � 1.281(10) 0.4119(63)
DB1M7� 0.04947(36) 0.56168(91) 0.24947(92) 1.335(47) 0.302(29) 1.292(23) 0.409(14)
DB1M8 0.03938(19) 0.49236(62) 0.21206(86) 1.177(17) 0.2606(89) 1.144(18) 0.355(12)
DB1M8� 0.04171(28) 0.5058(16) 0.2190(20) 1.302(13) 0.3247(63) � � � � � �
DB1M9 0.03425(19) 0.45471(77) 0.1950(12) 1.113(19) 0.2487(96) 1.025(36) 0.309(26)
DB2M1 0.15326(21) 0.97363(51) 0.38982(94) 2.108(12) 0.4685(66) � � � � � �
DB2M2 0.13820(17) 0.92461(45) 0.37075(71) 1.901(28) 0.377(18) 1.909(20) 0.497(12)
DB2M3 0.12200(23) 0.86745(64) 0.34875(92) 1.811(23) 0.378(15) � � � � � �
DB2M4 0.10251(16) 0.79101(51) 0.31313(97) 1.663(15) 0.3554(87) 1.597(23) 0.421(15)
DB2M5 0.08011(19) 0.69504(63) 0.27437(70) � � � � � � 1.332(31) 0.340(22)
DB2M6 0.04969(12) 0.53319(48) 0.20450(67) � � � � � � 1.0863(95) 0.3399(62)
DB2M6� 0.05085(15) 0.54108(62) 0.20872(82) 1.119(21) 0.230(12) 1.083(21) 0.329(16)
DB2M7 0.03246(14) 0.42018(32) 0.15925(36) 0.9406(72) 0.2114(35) 0.833(14) 0.264(12)
DB3M1 0.17742(19) 1.03008(52) 0.36800(86) 1.961(18) 0.369(12) 1.884(26) 0.412(18)
DB3M2 0.16369(21) 0.98778(60) 0.35295(94) 1.810(94) 0.296(84) � � � � � �
DB3M3 0.14918(21) 0.94070(72) 0.3360(11) � � � � � � � � � � � �
DB3M4 0.13407(19) 0.88883(38) 0.31740(51) 1.708(26) 0.342(19) 1.628(12) 0.3969(77)
DB3M5 0.11737(15) 0.82617(44) 0.29167(75) 1.551(21) 0.293(13) � � � � � �
DB3M6 0.09851(17) 0.74910(52) 0.26186(81) 1.401(15) 0.2683(86) 1.329(15) 0.334(10)
DB3M7 0.07808(11) 0.65881(28) 0.22821(33) 1.214(12) 0.2238(68) 1.164(11) 0.3069(78)
DB3M8 0.04877(11) 0.49990(66) 0.1679(11) 0.971(13) 0.1936(71) 0.8940(97) 0.2643(72)
DB4M1 0.20148(14) 1.07955(38) 0.34586(59) 1.9112(94) 0.3355(54) � � � � � �
DB4M2 0.18925(23) 1.04361(60) 0.33566(85) 1.792(21) 0.292(13) � � � � � �
DB4M3 0.17617(14) 1.00319(33) 0.32081(53) 1.754(17) 0.303(11) 1.663(17) 0.338(12)
DB4M3� 0.17601(20) 1.00339(69) 0.3208(11) 1.779(18) 0.316(12) 1.710(30) 0.371(24)
DB4M4 0.16323(19) 0.96267(35) 0.30796(56) 1.672(30) 0.290(23) 1.577(25) 0.314(20)
DB4M4� 0.16340(20) 0.96441(68) 0.31073(96) 1.599(32) 0.229(19) 1.576(54) 0.314(46)
DB4M5 0.14881(18) 0.91337(40) 0.29073(65) 1.569(19) 0.262(13) 1.466(24) 0.291(19)
DB4M5� 0.14894(22) 0.91395(78) 0.2915(11) � � � � � � 1.559(11) 0.3622(67)
DB4M6 0.13422(24) 0.86212(93) 0.2737(12) 1.528(12) 0.2811(71) 1.457(20) 0.344(14)
DB4M7 0.11902(16) 0.80495(53) 0.25400(76) 1.364(32) 0.216(21) 1.3536(96) 0.3235(66)
DB4M7� 0.11846(26) 0.8032(11) 0.2556(13) 1.306(55) 0.185(37) 1.340(16) 0.325(10)
DB4M8 0.10217(19) 0.73539(65) 0.22852(96) 1.235(19) 0.197(11) 1.200(14) 0.2820(95)
DB4M9 0.08438(11) 0.65792(29) 0.20327(36) 1.1663(64) 0.2201(34) 1.0782(82) 0.2740(64)
DB4M9� 0.08437(18) 0.65718(85) 0.2040(11) 1.1573(91) 0.2140(47) � � � � � �
DB4M10 0.06517(10) 0.56358(39) 0.17199(40) 0.959(13) 0.1609(77) 0.9175(58) 0.2493(39)
DB4M11 0.04813(13) 0.46875(57) 0.14232(45) 0.790(21) 0.128(13) 0.7555(74) 0.2214(57)
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TABLE V. Mesonic and hybrid (spin-1
2
) observables.

am0−v
af0−v amğ

DB1M1 1.15483(45) 0.8696(14) � � �
DB1M1� 1.15624(59) 0.8728(16) � � �
DB1M2 1.1005(11) 0.8467(33) � � �
DB1M3 1.0494(12) 0.8107(33) � � �
DB1M4 0.98420(38) 0.77328(72) � � �
DB1M4� � � � � � � � � �
DB1M4 � � 0.9770(15) 0.7500(38) � � �
DB1M5 0.9353(15) 0.7030(50) � � �
DB1M6 0.8651(15) 0.6395(41) � � �
DB1M7 0.7491(16) 0.5253(35) 0.911(38)
DB1M7� 0.7707(21) 0.5625(36) � � �
DB1M8 0.7043(15) 0.4937(25) 0.869(19)
DB1M8� 0.7056(41) 0.478(10) � � �
DB1M9 0.6502(36) 0.4288(79) 0.810(17)
DB2M1 1.13767(50) 0.7691(13) � � �
DB2M2 1.09193(60) 0.7397(15) � � �
DB2M3 1.03989(71) 0.7076(16) � � �
DB2M4 0.96485(81) 0.6415(22) � � �
DB2M5 0.86843(78) 0.5705(17) � � �
DB2M6 0.6933(14) 0.4201(37) � � �
DB2M6� 0.7038(22) 0.4316(53) 0.794(27)
DB2M7 0.5694(11) 0.3328(18) 0.632(16)
DB3M1 1.16543(45) 0.6888(11) 1.448(17)
DB3M2 1.12623(60) 0.6684(15) 1.334(33)
DB3M3 1.08047(72) 0.6396(17) 1.280(36)
DB3M4 1.02976(62) 0.6069(16) 1.179(35)
DB3M5 0.96770(86) 0.5620(22) 1.093(29)
DB3M6 0.89324(95) 0.5180(20) 0.985(24)
DB3M7 0.80116(48) 0.46144(81) 0.865(26)
DB3M8 0.6244(30) 0.3274(86) 0.669(12)
DB4M1 1.18981(50) 0.6140(13) 1.311(48)
DB4M2 1.15655(56) 0.6007(14) 1.217(54)
DB4M3 1.11683(48) 0.5775(11) 1.256(49)
DB4M3� 1.11830(62) 0.5813(14) � � �
DB4M4 1.07888(48) 0.5613(11) 1.194(21)
DB4M4� 1.08156(62) 0.5680(13) � � �
DB4M5 1.02962(46) 0.5317(11) 1.108(44)
DB4M5� 1.03255(77) 0.5378(17) 1.122(42)
DB4M6 � � � � � � 1.071(35)
DB4M7 0.92276(75) 0.4728(16) 0.904(60)
DB4M7� 0.9179(12) 0.4695(20) � � �
DB4M8 0.85055(80) 0.4269(17) 0.847(37)
DB4M9 0.76705(56) 0.3750(11) 0.796(16)
DB4M9� 0.76951(93) 0.3824(16) � � �
DB4M10 0.66803(51) 0.32129(82) 0.666(13)
DB4M11 0.56604(97) 0.2681(14) 0.556(12)

TABLE VI. Glueball masses and string tension.

a
ffiffiffi
σ

p
am0þþ am2þþ

DB1M1 � � � 0.929(58) � � �
DB1M1� 0.378(19) 0.96(12) � � �
DB1M2 0.361(21) 0.834(41) � � �
DB1M3 0.342(13) 0.730(74) � � �
DB1M4 � � � 0.461(55) � � �
DB1M4� 0.3092(79) 0.577(46) 1.62(13)
DB1M4 � � 0.3219(74) 0.589(77) � � �
DB1M5 0.3075(80) 0.554(39) 1.60(15)
DB1M6 0.2829(49) 0.369(42) 1.78(15)
DB1M7 0.2391(58) 0.352(24) � � �
DB1M7� 0.2369(83) 0.332(32) � � �
DB1M8 0.2209(50) 0.253(34) 1.324(93)
DB1M8� 0.2174(53) 0.338(35) 1.25(10)
DB1M9 0.2072(53) 0.197(17) 1.211(38)
DB2M1 0.3331(50) 0.847(34) 1.73(23)
DB2M2 0.2987(91) 0.716(57) 1.89(21)
DB2M3 0.299(11) 0.690(38) 1.55(10)
DB2M4 0.2719(52) 0.565(36) � � �
DB2M5 0.2404(69) 0.469(33) � � �
DB2M6 0.1918(43) 0.373(29) 0.999(83)
DB2M6� 0.1930(31) 0.386(26) 0.902(64)
DB2M7 0.1536(30) 0.295(13) 0.833(34)
DB3M1 0.3042(35) 0.793(44) 1.62(12)
DB3M2 0.2939(69) 0.848(43) � � �
DB3M3 0.2715(40) 0.729(48) � � �
DB3M4 0.2548(93) 0.722(48) 1.543(91)
DB3M5 0.2296(67) 0.641(33) 0.94(11)
DB3M6 0.2145(64) 0.584(18) 1.157(51)
DB3M7 0.1877(36) 0.541(36) 1.089(43)
DB3M8 0.1486(24) 0.359(37) 0.818(46)
DB4M1 0.2705(50) 0.761(54) 1.453(85)
DB4M2 0.2582(32) 0.768(39) 1.364(61)
DB4M3 0.2479(64) 0.659(78) 1.251(62)
DB4M3� 0.2444(63) 0.800(38) 1.294(74)
DB4M4 0.2428(67) 0.754(80) 1.235(71)
DB4M4� 0.2346(77) 0.760(42) 1.235(71)
DB4M5 0.2247(30) 0.700(33) 1.169(50)
DB4M5� 0.2282(39) 0.734(41) 1.28(10)
DB4M6 0.2091(65) 0.660(30) � � �
DB4M7 0.1950(68) 0.680(31) 1.134(81)
DB4M7� 0.1919(53) 0.585(31) 1.053(80)
DB4M8 0.1736(53) 0.563(43) 0.986(45)
DB4M9 0.168(30) 0.488(70) 0.880(57)
DB4M9� 0.1598(39) 0.485(29) 0.774(70)
DB4M10 0.1389(32) 0.476(25) 0.761(59)
DB4M11 0.1202(34) 0.337(31) 0.665(45)
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TABLE VII. Properties of the topological charge distribution
of each ensemble. Q0 denotes the average value of
the topological charge Q, and σQ denotes the width of the
distribution of Q.

Q0 σQ τexp

DB1M1 −0.36ð10Þ 6.318(75) 2.03(19)
DB1M1� −0.124ð61Þ 3.766(44) 1.018(57)
DB1M2 0.01(10) 6.273(74) 2.18(14)
DB1M3 −0.014ð57Þ 3.549(41) 1.394(70)
DB1M4 0.04(18) 11.02(13) 1.397(88)
DB1M4� 0.034(88) 5.475(65) 3.06(28)
DB1M4 � � 0.108(51) 3.207(37) 2.98(23)
DB1M5 0.045(82) 5.065(59) 2.68(22)
DB1M6 0.139(78) 4.839(57) 3.69(28)
DB1M7 −0.02ð13Þ 8.22(10) 1.80(10)
DB1M7� 0.065(65) 4.037(47) 1.88(15)
DB1M8 −0.20ð12Þ 7.592(89) 1.84(14)
DB1M8� 0.076(60) 3.717(44) 4.39(42)
DB1M9 0.17(12) 7.258(87) 0.993(39)
DB2M1 0.027(52) 3.240(38) 1.554(74)
DB2M2 −0.192ð50Þ 3.078(35) 1.554(72)
DB2M3 0.001(47) 2.950(33) 1.91(12)
DB2M4 0.034(75) 4.617(55) 2.10(14)
DB2M5 0.021(65) 4.018(47) 2.09(16)
DB2M6 −0.43ð11Þ 6.501(81) 3.29(27)
DB2M6� −0.238ð74Þ 4.574(51) 2.84(21)
DB2M7 −0.22ð14Þ 8.338(97) 2.05(14)
DB3M1 0.139(46) 2.890(33) 2.04(15)
DB3M2 −0.033ð46Þ 2.827(32) 2.41(11)
DB3M3 0.031(42) 2.612(30) 2.52(16)
DB3M4 0.201(66) 4.099(48) 2.34(20)
DB3M5 0.196(63) 3.888(45) 2.36(15)
DB3M6 0.044(56) 3.470(41) 2.75(15)
DB3M7 −0.13ð10Þ 6.299(76) 3.53(22)
DB3M8 −0.048ð75Þ 4.609(54) 5.13(34)
DB4M1 −0.015ð28Þ 2.482(20) 2.71(18)
DB4M2 0.094(37) 2.315(25) 2.70(16)
DB4M3 0.124(64) 3.982(46) 3.13(23)
DB4M3� −0.113ð35Þ 2.187(25) 2.74(14)
DB4M4 −0.089ð58Þ 3.585(42) 3.30(27)
DB4M4� −0.008ð37Þ 2.281(26) 3.69(18)
DB4M5 0.077(55) 3.402(40) 3.65(28)
DB4M5� 0.105(34) 2.107(23) 4.63(33)
DB4M6 0.040(30) 1.870(20) 3.80(26)
DB4M7 0.048(46) 2.881(32) 3.98(24)
DB4M7� −0.147ð29Þ 1.801(20) 4.56(24)
DB4M8 −0.009ð43Þ 2.667(30) 4.93(30)
DB4M9 −0.145ð79Þ 4.888(57) 6.28(35)
DB4M9� −0.248ð36Þ 2.256(26) 5.70(35)
DB4M10 −0.124ð64Þ 3.908(44) 6.42(35)
DB4M11 −0.358ð48Þ 2.958(35) 7.97(49)

TABLE VIII. The t0 and w0 scales for each ensemble, in lattice
units. The superscript “plaq.” and “sym.” refer to the definitions
of the density E from the single plaquette and from the
symmetrised four-plaquette clover operator respectively. wsym

0

here is the scale used as w0 elsewhere in the text.
ffiffiffiffiffiffiffiffiffiffi
8tplaq0

q
=a

ffiffiffiffiffiffiffiffiffiffi
8tsym0

p
=a wplaq

0 =a wsym
0 =a

DB1M1 2.21398(51) 2.80942(51) 0.88342(34) 0.90605(28)
DB1M1� 2.21564(69) 2.81033(68) 0.88450(43) 0.90688(42)
DB1M2 2.34765(75) 2.92049(70) 0.93640(41) 0.95515(35)
DB1M3 2.5089(20) 3.0526(16) 0.99676(85) 1.01351(67)
DB1M4 2.73611(53) 3.23634(51) 1.07282(30) 1.09027(26)
DB1M4� 2.7457(18) 3.2445(16) 1.07669(84) 1.09406(79)
DB1M4 � � 2.7202(32) 3.2240(28) 1.0693(15) 1.0863(14)
DB1M5 2.8665(20) 3.3418(18) 1.11523(82) 1.13312(96)
DB1M6 3.1344(36) 3.5664(31) 1.2028(13) 1.2220(13)
DB1M7 3.6132(17) 3.9879(15) 1.36604(68) 1.38643(63)
DB1M7� 3.5669(42) 3.9462(34) 1.3514(16) 1.3712(16)
DB1M8 3.8718(23) 4.2228(21) 1.45400(86) 1.47563(83)
DB1M8� 3.8220(66) 4.1766(65) 1.4392(26) 1.4596(27)
DB1M9 4.0656(22) 4.3985(20) 1.51666(81) 1.53894(89)
DB2M1 2.5678(19) 3.0749(16) 1.03867(87) 1.05742(76)
DB2M2 2.7229(23) 3.1988(20) 1.0873(10) 1.10611(93)
DB2M3 2.9105(28) 3.3536(22) 1.1458(12) 1.1659(11)
DB2M4 3.2950(21) 3.6840(19) 1.23910(95) 1.25959(88)
DB2M5 3.7156(37) 4.0556(34) 1.3760(15) 1.3977(16)
DB2M6 4.6124(30) 4.8842(33) 1.6714(13) 1.6956(15)
DB2M6� 4.5505(39) 4.8252(41) 1.6496(17) 1.6732(16)
DB2M7 5.4980(31) 5.7318(31) 1.9644(12) 1.9917(12)
DB3M1 3.0042(26) 3.4138(27) 1.1608(13) 1.1820(13)
DB3M2 3.1483(34) 3.5364(31) 1.2058(14) 1.2273(15)
DB3M3 3.3224(43) 3.6910(40) 1.2657(19) 1.2871(19)
DB3M4 3.6002(29) 3.9360(27) 1.3225(12) 1.3451(10)
DB3M5 3.8580(31) 4.1673(31) 1.4070(14) 1.4291(13)
DB3M6 4.2426(43) 4.5212(43) 1.5320(18) 1.5549(17)
DB3M7 4.7560(34) 5.0023(28) 1.6987(13) 1.7227(12)
DB3M8 5.9555(75) 6.1593(81) 2.0940(32) 2.1213(29)
DB4M1 3.5912(30) 3.9135(30) 1.3071(14) 1.3295(14)
DB4M2 3.7187(50) 4.0295(51) 1.3511(22) 1.3737(23)
DB4M3 3.8608(32) 4.1583(29) 1.3951(14) 1.4183(14)
DB4M3� 3.8733(50) 4.1690(51) 1.4026(25) 1.4247(22)
DB4M4 4.0069(36) 4.2904(36) 1.4400(15) 1.4638(16)
DB4M4� 4.0230(66) 4.3061(65) 1.4512(31) 1.4743(32)
DB4M5 4.2441(44) 4.5096(39) 1.5203(19) 1.5432(17)
DB4M5� 4.2569(78) 4.5225(83) 1.5277(43) 1.5509(40)
DB4M6 4.507(11) 4.759(11) 1.6153(51) 1.6392(45)
DB4M7 4.7605(66) 4.9929(58) 1.6868(25) 1.7098(25)
DB4M7� 4.836(13) 5.070(13) 1.7279(56) 1.7517(66)
DB4M8 5.2149(89) 5.4324(85) 1.8448(37) 1.8692(35)
DB4M9 5.7286(60) 5.9249(56) 2.0061(25) 2.0319(28)
DB4M9� 5.819(14) 6.013(15) 2.0516(66) 2.0759(67)
DB4M10 6.5742(97) 6.7521(96) 2.2901(41) 2.3159(39)
DB4M11 7.728(18) 7.891(19) 2.6863(78) 2.7139(75)
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