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 
Abstract—This paper investigates multiplicative consistency 

ascertaining, inconsistency repairing and weights derivation for 
hesitant multiplicative preference relations (HMPRs). Firstly, the 
completely multiplicative consistency and weakly multiplicative 
consistency of HMPRs are defined. Based on them, 0-1 mixed 
programming models and simple algebraic operations are 
proposed to ascertain the multiplicative consistency of HMPRs. 
Then, some goal programming models are developed to generate 
the weights from consistent HMPRs and to revise inconsistent 
HMPRs. An integrated procedure to manage the multiplicative 
consistencies of HMPRs is designed. The proposed methods are 
also extended to accommodate incomplete HMPRs, and to 
estimate missing values. Finally, some numerical examples, a 
comparative analysis with existent approaches, and a simulation 
analysis are included to illustrate the practicality and effectiveness 
of the developed models. 
 

Index Terms—Consistency ascertaining, HMPRs, inconsistency 
repairing, missing values, weights derivation. 

I. INTRODUCTION 

N decision making, the following relations are widely used 
to represent the preference information of decision-makers: 

multiplicative preference relation (MPR) [1], fuzzy preference 
relation [2], interval preference relation [3-5], intuitionistic 
preference relation [6-9], and linguistic preference relation [10-
13]. However, these preference relations do not allow to handle 
situations where decision-makers ascertain the membership of 
elements with a set of values derived from their hesitancy 
among several different values. To handle these cases, Torra 
[14] introduced the concept of hesitant fuzzy set with elements 
in the unit interval [0,1] . Based on the concept of hesitant fuzzy 

set, Xia and Xu [15] used Saaty’s Analytic Hierarchy Process 
(AHP) 1/9–9 scale [1] to further define the concept of hesitant 
multiplicative preference relation (HMPR), which can vividly 
simulate both the decision-makers’ uncertainty and hesitation 
by allowing preferences to be expressed with hesitant 
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multiplicative elements (HMEs) using the AHP scale. 
In recent years, HMPR research has become a hot topic [16]. 

In particular, it is worth mentioning the HMPR research on 
priority weights derivation [17-20], consistency analysis [21-25] 
and group consensus [21, 26-29].  

Consistency is one of the key and challenging issues that 
need to be resolved in decision-making processes. Inconsistent 
preferences can lead to bad decisions. Thus, methods have been 
developed to deal with the consistencies of the various 
preference relations [10, 11, 30-39]. Consistency of HMPRs, 
which can help decision-makers to derive reasonable weighting 
values and decision results, has also received great attention 
recently with regard to the following two aspects: 1) 
consistency ascertaining: how to measure the consistency level 
of an HMPR, and 2) inconsistency repairing: how to derive an 
HMPR with acceptable consistency from an inconsistent 
HMPR.  

So far, research scholars have made some suggestions 
regarding consistency and the priority derivation of HMPRs. 
Indeed, Zhang and Wu [21] defined the multiplicatively 
consistent HMPR and developed a decision support model for 
group decision making as per the group consensus level. 
However, their -normalization and β-normalization processes 
reduce or add some additional values to an HME, respectively, 
which destructs and distorts the decision-maker’s original 
judgments. Furthermore, Zhang and Wu [17] introduced the 
definitions of consistent HMPR and acceptably consistent 
HMPR, and derived the interval weights from HMPRs based on 
the β-normalization process but no inconsistency rectification 
process was proposed. Meng et al. also defined the consistency 
of HMPRs in [25], which is based on the assumption of any 
element in the HMEs forming a consistent MPR. In real 
applications, it is difficult to provide fully consistent MPRs, 
which is even more difficult in the case of HMPRs. If the 
uncertain information provided by a decision-maker is 
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consistent, then this indicates that such decision-maker 
possesses a strong logic and is sure of his/her information [40]. 
In other words, he/she knows his/her preferences perfectly well, 
and therefore he/she is not hesitant about his/her judgements in 
the HMPR. Mou et al. [23] defined the multiplicative 
consistency level of HMPRs and developed a method to repair 
inconsistency, which included a normalized process, and an 
artificial threshold of acceptable consistency level. Similarly, 
Nie's  approach is based on a randomly given threshold of the 
consistency index, which lacks theoretical basis. Zhang and 
Guo [41] gave some formulae for calculating the weights of 
incomplete HMPRs, but they only considered the acceptable 
consistent incomplete HMPRs and ignored the inconsistent 
cases that occur in practical problems. Lin et al. [42] 
constructed a linear programming model to obtain priorities 
from HMPRs. Additionally, HMPRs have been widely utilized 
to handle various practical issues, such as the allocation of  
water conservancy investment of river basins [18, 25], logistics 
service provider selection [42] and city sustainable 
development evaluation [43]. 

The above analysis highlights some research achievements 
with regard to the consistency of HMPRs. However, there are 
still some issues that remain to be solved. The research 
motivations of this paper can be summarized as follows:  

(1) Existing multiplicative consistency research approaches 
are often hindered with drawbacks related to the changing of 
the decision-makers’ original judgments and the optional 
setting of consistency thresholds. Therefore, it is necessary to 
answer the following question: what is the multiplicative 
consistency of HMPRs and how can it be verified? 

(2) When decision-makers hesitate to express their 
opinions in decision-making problems, a precise priority vector 
cannot represent the decision-makers’ hesitation judgments 
accurately and naturally [17]. Consequently, the following 
question needs answering: how to generate suitable and realistic 
weights from an HMPR with multiplicative consistency? 

(3) Decision-makers with allodoxaphobia may hesitate to 
deal with decision-making problems. Thus, the development of 
models to help decision-makers eliminate their illogical, 
inconsistent or unreasonable information could be really useful 
to decision-makers in general, and to allodoxaphobia decision-
makers in particular. Hence, a question to address is: if an 
HMPR is inconsistent, how can inconsistency be repaired? 

(4) There are few papers in the literature reporting on 
multiplicative consistency measurement, inconsistency level 
improvement, and weights derivation for incomplete HMPRs, 
which is addressed in this article.  

To answer the above questions, two new multiplicative 
consistencies of HMPRs, completely multiplicative consistency 
and weakly multiplicative consistency, respectively, are 
introduced. Moreover, 0-1 mixed programming models and 
some algebraic approaches are developed to determine the 
consistency type for HMPRs. Goal programming methods are 
proposed to (i) derive priority weighs from an HMPR and (ii) 
find the inconsistent elements in an HMPR. This new approach 
allows decision-makers to assign suitable weights to different 
stages to reflect their preferences in HMPR problems. 

Subsequently, an efficient and flexible integrated algorithm is 
designed to test consistency, obtain logical weights and repair 
inconsistency of HMPRs, while a novel method to judge the 
consistency type, estimate missing values and derive priority 
vectors from incomplete HMPRs is developed.  

The rest of this paper is arranged as follows. Section II 
introduces the required basic concepts of MPR, hesitant 
multiplicative sets (HMS) and HMPR. Two new definitions of 
consistency of HMPRs are introduced in Section III. Section IV 
develops methods to ascertain the consistency of HMPRs. In 
Section V, a priority weight derivation model and an 
inconsistency repairing method based on multiplicative 
consistency are proposed. These are used to obtain consistent 
HMPRs and the reasonable alternatives ranking results. Section 
VI is devoted to incomplete HMPRs, and two multiplicative 
consistency-based goal programming models are proposed to 
assess their unknown values and to ascertain their consistency. 
Section VII provides three examples, a discussion and a 
simulation analysis to show the effectiveness of the developed 
approaches. Finally, some conclusions are offered in Section 
VIII. 

II. PRELIMINARIES 

In order to make the paper self-contained, some concepts 
associated with MPRs, HMSs and HMPRs, which are used 
throughout the whole paper, are reviewed. 

For simplicity, let X={x1,…, xn} be a finite set of alternatives, 
and N={1,…, n}.  

Definition 1 [1]. An MPR R=(rij)nnXX is reciprocal if 

 1,  1,  [1 / 9,9]ij ji ii ijr r r r    , i, jN. (1) 

Definition 2 [1]. An MPR R=(rij)nn is perfect consistent if 

 ,  , ,ij ik kjr r r i j k N    . (2) 

Let w=(w1,…, wn)T be the weight vector of the set of 

alternatives X, such that wi>0, and 
1

1
n

ii
w


 . If MPR R on X 

is perfect consistent, then 

 i
ij

j

w
r

w
 , i, jN. (3) 

An MPR is incomplete when some of its elements are 
missing. 

Definition 3 [44]. An MPR R=(rij)nn is incomplete when 
some of its elements cannot be given by the decision-maker, 
while the rest of provided preference values, Ω, satisfy the 
conditions: 

 1,  1,  0ij ji ii ijr r r r    , for all rij. (4) 

Definition 4 [45]. An incomplete MPR R=(rij)nn is consistent 
if 

 ij ik kjr r r  , for all rij, rik, rkj . (5) 

Motivated by the concepts of hesitant fuzzy set and MPR, 
Xia and Xu [15] defined the concept of HMS: 

Definition 5 [15]. An HMS M on X is mathematically 
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 3 

expressed as: 

 { , ( ) | }MM x b x x X    , (6) 

where bM(x) is a subset of finite cardinality of set [1/ 9,9] , 

which denotes all the possible membership degrees of the 
element xX to the set M. 

For convenience, b=bM(x) is often called an HME. Motivated 
by Torra [14], Zhang and Wu [17] defined the upper and lower 
bounds of an HME. 

Definition 6 [17]. The upper and lower bounds of an HME 
are max{ | 1,..., }

ij

t
ij ij hh h t l    and min{ | 1,..., }

ij

t
ij ij hh h t l   , 

respectively.  
Combining HMSs and MPRs, the concept of HMPR is 

defined: 
Definition 7 [15]. An HMPR H=(hij)nnXX, is a preference 

relation with HMEs, { | 1, 2,..., }
ij

t
ij ij hh h t l  , indicating all the 

possible degrees to which alternative xi is preferred to 
alternative xj subject to the constraints: 

 
( 1)( ) 1,  {1},  hij

ij ji

l tt
ij ji ii h hh h h l l

  
   , i, jN, (7) 

where ( )t
ijh  denotes the tth smallest element in hij. 

Similar to the definition of hesitant fuzzy preference relations 
discussed by Xu et al. [46], the values in each HME are ordered 
from smallest to largest as per Definition 7, which may result in 
property (7) not to be verified. At the same time, because of the 
disorder of sets, there is no need to arrange hij in ascending or 
descending order. Thus, a revised definition of HMPRs is 
introduced here. 

Definition 8. An HMPR H=(hij)nnXX, is a preference 
relation with HMEs, { | 1, 2,..., }

ij

t
ij ij hh h t l  , indicating the 

possible degrees to which alternative xi is preferred to 
alternative xj, subject to the following constraints: 

 
1

1,  {1},  hij

ij ji

l tt
ij ji ii h hh h h l l

 
   , i, jN (8) 

If some elements of an HMPR cannot be given by a decision-
maker, then an incomplete HMPR results. Zhang and Guo [41] 
introduced the concept of acceptable incomplete HMPRs. 

Definition 9 [41]. An HMPR H=(hij)nnXX is incomplete 
when some of its HMEs are unknown while its known HMEs 

hij={ |t
ijh 1,2,..., }

ijht l  satisfy the constraints 

 
1

1,  {1},  hij

ij ji

l tt
ij ji ii h hh h h l l

 
   , i, jN (9) 

TABLE I. NOMENCLATURE 
Abbreviations Illustration 

AHP Analytic Hierarchy Process 
MPRs Multiplicative preference relations 

HMPRs Hesitant multiplicative preference relations 
HMSs Hesitant multiplicative sets 
HMEs Hesitant multiplicative elements 
CMC Completely multiplicative consistent 
WMC Weakly multiplicative consistent 
LCR Length change ratio 
NAR Numerical adjustment ratio 
AD Absolute deviation 

LAD Logarithm absolute deviation 
DR Difference ratio 

To improve readability, Table I lists the abbreviations used 
in this paper. 

III. MULTIPLICATIVE CONSISTENCIES OF HMPRS 

This section introduces two multiplicative consistency 
concepts for HMPRs: completely multiplicative consistency 
and weakly multiplicative consistency. 

Definition 10. Let H=(hij)nn be an HMPR. If there is a 
complete consistent MPR R=(rij)nn, such that 

,  ,  , ,ij ik kj ij ijr r r r h i j k N     ,                     (10) 

then H is called a completely multiplicative consistent (CMC) 
HMPR and R is a complete consistent MPR in H. 

   The CMC HMPR concept extracts existing elements from the 
HMPR to form an MPR that satisfies the multiplicative 
transitivity property (2). As the information provided by a 
decision-maker is uncertain, our goal is “to find the reasonable 
information in an HMPR”. Definition 10 does not rely on 
Zhang’s β-normalization [26]. Therefore, no elements are 
added to HMEs. In any case, completely multiplicative 
consistency is difficult to be verified by a an HMPR. Let us 
consider the following example: when evaluating a set of three 
alternatives X={x1, x2, x3}, a decision-maker expresses that 
alternative x1 is weakly less important than alternative x2, and 
gives the preference value h12=1/2; while x2 is strongly more 
important than alternative x3, and gives the preference value 
h23=5. In the AHP context, if his/her information is consistent, 
then it should be h13=h12h23=5/2. However, the value 5/2 is 
not one of the original scale values in the AHP scale set {1/9,…, 
1/2, 1, 2,…, 9}. In addition to the above, if the decision-maker 
is unsure about the preference of alternative x1 over alternative 
x3 but considers x1 more important than x3, and gives the 
following HME {2, 3}, then it is obviously that his/her 
preferences are not CMC (5/2 is between 2 and 3). In this case, 
we could regard the decision-maker’s information to be close 
to complete consistent. In our view, because the upper and 
lower bounds of HMEs produce a range containing all possible 
decision-maker’s preference information, the extraction of a 
consistent MPR from the upper and lower bounds of HMEs is 
a viable approach. In order to accommodate this scenario, 
another consistency property of HMPRs is introduced here. 

Definition 11. Let H=(hij)nn be an HMPR. If there is a 
complete consistent MPR R=(rij)nn satisfying 

 ,  , , ,ij ik kj ij ij ijr r r h r h i j k N       , (11) 

then H is called a weakly multiplicative consistent (WMC) 
HMPR and R is a complete consistent MPR in H.  

Considering the aforementioned relationship between rij and 
w as per (3), an equivalent definition of WMC HMPR is given 
below: 

Definition 12. An HMPR H=(hij)nn is called a WMC HMPR, 
if there exists a weight vector w=(w1,…, wn)T, such that  

 , ,i
ij ij

j

w
h h i j N

w
     . (12) 

Reciprocity property of HMPRs allows the above definition 
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 4 

to be rewritten equivalently as follows: 
Definition 13. An HMPR H=(hij)nn is called a WMC HMPR 

if there is a weighting vector w=(w1,…, wn)T, such that  

 , 1, 2,..., , 1,...,i
ij ij

j

w
h h i n j i n

w
      . (13) 

It is obvious that a CMC HMPR is a special case of WMC 
HMPR, while a WMC HMPR might not necessarily be a CMC 
HMPR (see Fig.1).  

 
 
 
 
 
 
 
Fig. 1.  The relationship of the two multiplicative consistencies for HMPRs. 

IV. CONSISTENCY ASCERTAINING 

An important question to answer is whether an HMPR is 
CMC or WMC.  

The direct verification of the CMC property as per Definition 
11 is not an easy task. In order to facilitate calculation, the 
following 0-1 indicator variables of HMEs hij are introduced: 

1, if  is chosen

0, otherwise

t
t ij ij
ij

h h


 
 


. Each element in hij can be 

expressed as follows: 
1
( )

t
ijhij

l t
ijt

h


  with 
1

1hij
l t

ijt



 . 

According to Definition 10, if H is a CMC HMPR, then 

 
1 1 1

( ) ( ) ( )
h hhij kjikt tt

ij kjik

l ll
t t t
ij ik kj

t t t

h h h 

  

    . (14) 

This is equivalent to: 

 
1 1 1

log( ) log( ) log( ) 0
h hhij kjik

l ll
t t t t t t
ij ij ik ik kj kj

t t t

h h h  
  

     . (15) 

As aforementioned, (15) does not always hold. We relax (15) 
appropriately with the introduction of nonnegative deviation 

numbers ijkd   and ijkd  , i, j, kN: 

 
1 1 1

log( ) log( ) log( ) 0
h hhij kjik

l ll

t t t t t t

ij ij ik ik kj kj ijk ijk
t t t

h h h d d    

  

       . (16) 

Equation (16) becomes (15) iff ijkd  = ijkd  =0. Thus, the 

following 0-1 mixed programming model is established to 
ascertain the completely multiplicative consistency property of 
HMPRs. 

(M-1) 1
1 1, 1, ,

min ( )
n n n

ijk ijk
k i i k j i j j k

J d d 

     

     

1 1 1

1 1

1 1

1 1

log( ) log( ) log( ) 0,

, , , , ,

log( ) log( ) 0, , ,
s.t.

1,

h hhij kjik

h hij ij
h hij ij

h hij ji

l ll
t t t t t t
ij ij ik ik kj kj ijk ijk

t t t

l
l t l tt t

ij ij ji ji
t t

l l

t t
ij ji

t t

h h h d d

i j k N i k i j j k

h h i j N i j

i

  

 

 

 

  

   

 

 

    

   

   

 

  

 

  , ,

0 or 1, , , , 1,2,...,

, 0, , , , , ,
ij

t
ij h

ijk ijk

j N i j

i j N i j t l

d d i j k N i k i j j k


 










  



   
     

 

By solving (M-1), if J1=0 for all i, j with ij and each t=1, 
2…, 

ijhl , then H is CMC; otherwise, H is not CMC. 

Reciprocity of H means that (M-1) can be equivalently 
rewritten as: 

(M-2) 
11

2
1 1 1

min ( )
jn n

ijk ijk
i k i j k

J d d


 

    

     

1 1 1

1 1

1 1

1 1

log( ) log( ) log( ) 0,

, , ,

log( ) log( ) 0, , ,
s.t.

1, , ,

h hhij kjik

h hij ij
h hij ij

h hij ji

l ll
t t t t t t
ij ij ik ik kj kj ijk ijk

t t t

l
l t l tt t

ij ij ji ji
t t

l l

t t
ij ji

t t

h h h d d

i j k N i k j

h h i j N i j

i j N i

  

 

 

 

  

   

 

 

    

  

   

  

  

 

 
0 or 1, , , , 1,2,...,

, 0, , , ,
ij

t
ij h

ijk ijk

j

i j N i j t l

d d i j k N i k j


 










 



   
    

 

The following result proves the validity of model (M-2) to 
ascertain the completely multiplicative consistency property of 
HMPRs. 

Theorem 1. An HMPR H is a CMC HMPR iff J2=0. 

Proof. Sufficiency. If J2=0, then ijkd  = ijkd  =0, i, j, kN and 

(16) reduces to (15). Thus, H is CMC. 

Necessary. If H is CMC, (15) holds and ijkd  = ijkd  =0 in (16), 

which implies that J2=0.                                                          □ 

When H is a CMC HMPR, a complete consistent MPR can 
be derived by solving (M-2). On the contrary, if H is not a CMC 
HMPR, in the following, some algebraic methods are proposed 
to detect whether it is a WMC HMPR. 

Theorem 2. An HMPR H=(hij)nn is a WMC HMPR iff 

 max{ , } min{ , }, , ,ij ik kj ij ik kj
kk

h h h h h h i j k N        . (17) 

Proof. If H is a WMC HMPR, then there is a complete 
consistent MPR R=(rij)nn such that 

 , ,ij ij ijh r h i j N     , (18) 

 , ,ik ik ikh r h i k N     , (19) 

 , ,kj kj kjh r h k j N     . (20) 

Weakly multiplicative consistency 

Completely multiplicative 
consistency 
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 5 

Multiplying (19) by (20), we have: 

 , , ,ik kj ij ik kjh h r h h i j k N       . (21) 

Since (21) holds for any kN, it is max { , }k ij ik kjh h h   

min { , }k ij ik kjh h h    for all i, j, kN. 

Conversely, if (17) holds for all i, j, kN, there exists a 

complete consistent MPR R=(rij)nn satisfying rij=rikrkj, ijh 

ij ijr h , i, j, kN. By Definition 11, H is a WMC HMPR.   □ 

As per (17), we have the following equivalence theorem to 
ascertain the weakly multiplicative consistency property of 
HMPRs. 

Theorem 3. An HMPR H=(hij)nn is a WMC HMPR iff  

 
1
[ , ] ,  , ,

n

ik kj ik kj
k

h h h h i j k N   


    . (22) 

Proof. We only need to prove that (17) and (22) are 
equivalent. Suppose that H is a WMC HMPR, then there is a 
complete consistent MPR R=(rij)nn such that 

 , ,ij ij ijh r h i j N     , (23) 

 , ,ik ik ikh r h i k N     , (24) 

 , ,kj kj kjh r h k j N     . (25) 

Therefore, it is 

 , , ,ik kj ij ik kjh h r h h i j k N       . (26) 

Since (26) holds for any kN, it is 
1
[ , ]

n

ij ik kj ik kj
k

r h h h h   


   , 

which is equivalent to max { , } min { , }k ij ik kj k ij ik kjh h h h h h      . By 

Theorem 2, H is a WMC HMPR, which completes the proof of 
Theorem 3.                                                                               □ 

The below interval MPR definition is needed for Theorem 4, 
which is an equivalent result to Theorem 2 and Theorem 3, to 
ascertain the weakly multiplicative consistency property of 
HMPRs. Recall that given two interval numbers [ , ]x x x   

and [ , ]y y y   with x , 0y  , their product is: 

[ , ]x y x y x y     . 

Definition 14 [47]. An interval MPR ( )ij n nH h   is a 

preference relation with elements [ , ]ij ij ijh h h   verifying: 

0 ij ijh h   , 1ij jih h   , 1ij jih h   . The element ijh  is called the 

interval preference ratio and denotes that alternative xi is 

between ijh  and ijh  times as important as alternative xj. 

Notice that given an HMPR H=(hij)nn, the interval MPR 

( )ij n nH h   with elements [ , ]ij ij ijh h h   can be constructed.   

Theorem 4. An HMPR H=(hij)nn is a WMC HMPR iff

( )ij n nH h  , [ , ]ij ij ijh h h  , satisfies 

                     
1

, , ,
n

ik kj
k

h h i j k N


     .                            (27) 

Proof. Sufficiency. If  
1

n

ik kj
k

h h


   for all i, j, kN, then it 

is  
1

[ , ]
n

ik kj ij ij
k

h h p p 


 . Thus, it is max { , }k ij ik kj ij ijh h h p p     

min { , }k ij ik kjh h h   , i.e., Theorem 2 is true and H is WMC. 

Necessary. If H is a WMC HMPR, then there is a complete 

consistent MPR R=(rij)nn satisfying ij ij ijh r h   and 

ij ik kj ik kjr r r h h   , i, j, kN. Therefore,  
1

n

ik kj
k

h h


  .      □ 

Reciprocity of HMPRs means that when ascertaining the 
validity of the above results only the elements of the upper or 
lower part of an HMPR are to be considered. 

V. GOAL PROGRAMMING APPROACH TO PRIORITY WEIGHT 

DERIVATION AND INCONSISTENCY REPAIRING OF AN HMPR 

Consistency is a key property of preference relations, so it is 
natural to generate priority weights of alternatives from 
consistent HMPRs. In this section, the following two research 
questions will be answered: (1) How to generate a priority 
weight vector from a consistent HMPR? (2) How to rectify the 
inconsistency of an HMPR? 

To answer these questions, effective optimization models 
based on multiplicative consistency are established (i) to test 
the weakly multiplicative consistency property, (ii) to derive 
priority weights of alternatives, and (iii) to repair the 
inconsistency of a given HMPR.  

To find out whether a given HMPR H=(hij)nn is WMC, non-

negative deviation values ijd  and ijd  are introduced in (13): 

 , 1, 2,..., , 1,...,i
ij ij ij ij

j

w
h d h d i n j i n

w
          . (28) 

Clearly, H is WMC iff ijd  and ijd  are 0 in (28), for i=1,…,n, 

j=i+1,…,n. Therefore, the sum of these deviations is used as the 
objective function of the following optimization model: 

(M-3) 
1

3
1 1

min ( )
n n

ij ij
i j i

J d d


 

  

    

1

, 1, 2,..., 1, 1,...,

, 1, 2,..., 1, 1,...,
s.t. 

1

0, 1, 2,...,

, 0, 1, 2,..., 1, 1,...,

i
ij ij

j

i
ij ij

j

n

ii

i

ij ij

w
d h i n j i n

w

w
d h i n j i n

w

w

w i n

d d i n j i n

 

 



 

      



     

 
  


    


 

The following result proves the validity of model (M-3) to 
ascertain the weakly multiplicative consistency property of 
HMPRs: 

Theorem 5. An HMPR H=(hij)nn is a WMC HMPR iff J3=0. 
Proof. Necessary. If H is a WMC HMPR, then (13) holds and 

it is ijd = ijd =0 in (28), which implies that J3=0. 

Sufficiency. If J3=0, then ijd = ijd =0, i, jN, and (28) 

becomes (13). Hence, H is a WMC HMPR.                           □ 
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 6 

Model (M-3) provides an alternative way, but equivalent to 
(13), to ascertain the weakly multiplicative consistency 
property of HMPRs. Unlike the algebraic operations in Section 
IV, model (M-3) generates the priority weights of alternatives 
directly from the HMPR. In any case, when J3=0, H is WMC 
but not necessarily CMC, which can be ascertained with model 
(M-2).  

Since a non-linear programming model may have multiple 
solutions, there may be more than one set of weights wi with 
J3=0 in (M-3)  As a result, (M-3)  main aims are to ascertain 
whether an HMPR has the weakly multiplicative consistency 
property and to repair inconsistency, but not to derive the 
priority weight vector. Hence, it is only necessary to observe 
the value of J3 to test if the consistency type is WMC. Thus, a 
more reasonable and reliable method to derive the weights of 
alternatives is needed.  

When an HMPR is consistent, model (M-3) results in priority 
weights of alternatives as single values in the unit interval. 
However, following the argument provided in [17], interval 
priority weights are more natural and reasonable than precise 
weights for hesitant judgments provided by decision-makers. 
Therefore, to generate interval priority weights of alternatives 
from consistent HMPRs, the below lower and upper 
approximation models are proposed: 

(M-4) mini iw w   

1

, 1, 2,..., 1, 1,...,

, 1, 2,..., 1, 1,...,s.t. 

1

0, 1, 2,...,

i
ij

j

i
ij

j

n

ii

i

w
h i n j i n

w

w
h i n j i n

w

w

w i n







     

     

 
  



 

(M-5) maxi iw w   

1

, 1, 2,..., 1, 1,...,

, 1, 2,..., 1, 1,...,s.t. 

1

0, 1, 2,...,

i
ij

j

i
ij

j

n

ii

i

w
h i n j i n

w

w
h i n j i n

w

w

w i n







     

     

 
  



 

Given a WMC HMPR , solving models (M-4) and (M-5) will 
result in unique optimal interval priority weights of alternatives 

[ , ]i i iw w w  , iN. Thus, if an HMPR is not consistent, it is 
necessary first to repair its inconsistency. In the following, an 
inconsistency repairing method is proposed. The principles of 
the modification are two: (i) to reduce the total adjustments of 
an HMPR, and (ii) not to increase the number of the values in 
the adjusted HMPR with respect to the original HMPR.  

Given an inconsistency HMPR, model (M-3) allows to 
identify the inconsistent elements. Therefore, it can, guide the 
inconsistency repairing process as described below: 

1. If J3 0, then there are optimal nonzero deviations ijd  and 

ijd  when solving (M-3), which corresponds to HMPR 

inconsistent elements. Indeed, if 
0 0

( ) 0i jd   , then 
0 0i jh  is 

an inconsistent element. With regard to the inconsistent 

element, its range changes from [ , ]ij ijh h   to [ ,ij ijh d 

]ij ijh d  . In other words, the upper and lower bounds of 

HME are replaced by the new values ij ijh d   and ij ijh d  , 

while the other values remain unchanged, that is: 

 
 ( 1)(2)

 or , 1

, ,..., , , 1

ij

hij

ij

ij ij ij ij h

ij l

ij ij ij ij ij ij h

h d h d l
h

h d h h h d l


   

   

    
  

. (29) 

Thus, a new modified HMPR H is obtained: 

 
( ,1 / ), if  is the inconsistent element

( , )
( , ), otherwise

ij ij ij

ij ji

ij ji

h h h
h h

h h





. (30) 

2. In (29), there are two cases for adjusting the inconsistent 
elements. Notice that when there is only one element in 
the HME, the original value is replaced by the modified 
value. When there are two or more elements in the HME, 
the lower and upper bound values are replaced and the rest 
of values are unchanged. This approach maintains the 
original number of values in each HME, and preserves 
most of the decision-maker’s original preferences because 
only the inconsistent elements are adjusted. 

3. After improving the consistency of the HMPR, the priority 
weight vector derived from the newly adjusted HMPR 
satisfies (13), and it is J3=0. Consequently, (29) and (30) 
convert an inconsistent HMPR into a consistent HMPR. 

 

 
Fig.  2. The process of consistency ascertaining, inconsistency repairing and 
weights derivation for HMPRs. 

Input H=(hij)nn  

Consistency ascertaining: 
Model (M-2) 

Is H completely 
multiplicative 

consistent? 

Weakly consistency ascertaining:  
Theorems 2-4 or Model (M-3) 

Is H weakly 
multiplicative 

consistent? 

Inconsistency repairing: 
Equations 

错误 未找到引用源
Weights derivation: 

Equation 

Weights derivation: 
Models (M-4) and (M-5) 

Yes 

Yes 

No 

No 
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 7 

In what follows, an integrated algorithm to ascertain 
consistency, inconsistency repairing and priority weights 
derivation for HMPRs is proposed, with corresponding 
flowchart depicted in Fig. 2. 

Algorithm 1. 
Step 1. Given an HMPR H, check completely multiplicative 

consistency property with model (M-2). If H is CMC, go to Step 3A; 
otherwise, go to next step. 

Step 2. Check weakly multiplicative consistency property by (17), 
(22), (27) or model (M-3). If H is WMC, go to Step 3B; otherwise, go 
to Step 4. 

Step 3. Priority weights derivation and ranking of alternatives. 
Step 3A. (Following Step 1). 
Derive the priority weights with the Logarithmic Least Squares 

Method [48, 49]: 

 
1 1

11 1

, 1,2,...,

n n
n nn

i ij ij
ij j

w r r i n
 

   
       
   

   (31) 

and go to Step 5. 
Step 3B. (Following Step 2). 
Generate the interval weights with models (M-4) and (M-5). 

Alternatives are ranked according to their priority weights ranking, via 
the degree of possibility of i jw w  [5, 50]: 

 
max{0, } max{0, }

( ) i j i j
i j

i i j j

w w w w
p w w

w w w w

   

   

  
 

  
 (32) 

 
1

,  
n

i ij
j

p p i N


   (33) 

and pij=p(wiwj). 

Interval weights are ranked using pi values, i.e. 
( )i jp w w

i jw w


 iff 

pi>pj. Go to Step 5. 
Step 4. Solve model (M-3), and repair inconsistency with (29); 

construct the newly adjusted HMPR with (30). Go to Step 1. 
Step 5. End. 

VI. INCOMPLETE HMPRS 

In a decision-making problem, decision-makers may omit 
some judgements, i.e. some information may be unknown. 
Hence, a key problem to address is the estimation of missing 
information. With respect to incomplete HMPRs, this section 
extends two multiplicative consistency concepts of complete 
HMPRs to the case of incomplete HMPRs and utilizes two 
multiplicative consistency-based goal programming models: (i) 
to estimate their missing HME preference values, and (ii) to 
ascertain the type of multiplicative consistency property that is 
verified. 

Let H=(hij)nn be an incomplete HMPR. The notation hij=x is 
used to represent that hij is not given by the decision-maker. To 
incorporate (16) into incomplete HMPRs, the following 
indicator functions for an incomplete HMPR H are introduced: 

1,

0,
ij

ij
ij

h x

h x


  
, 

1, 1

0, otherwise
ij ik kj

ijk

  



 


. 

When hij, hik, hkj are all known it is ijk=1. Then, (16) for an 
incomplete HMPR can be rewritten as: 

 
1 1 1

log( ) log( ) log( ) 0
h hhij kjik

l ll

t t t t t t

ijk ij ij ik ik kj kj ijk ijk
t t t

h h h      

  

    
 
  
 
     (34)                   

Consequently, to ascertain the completely multiplicative 
consistency property of incomplete HMPRs, the following 0-1 
mixed programming model is constructed: 

(M-6) 6
1 1, 1, ,

min ( )
n n n

ijk ijk
k i i k j i j j k

J   

     

     

1 1 1

1 1

1 1

log( ) log( ) log( )

0, , , , , ,

log( ) log( ) 0, , ,

s.t.

h hhij kjik

h hij ij
h hij ij

l ll
t t t t t t

ijk ij ij ik ik kj kj ijk
t t t

ijk

l
l t l tt t

ij ij ij ji ji
t t

t
ij

t

h h h

i j k N i j i k j k

h h i j N i j

    



  





  



   

 



 
    

 
     

 
     

 

  

 

1 1

1, , ,

0 or 1, , ,

, 0, , , , , ,

1,
, ,

0,

1, 1
, , ,

0, otherwise

h hij ji
l l

t
ji

t

t
ij

ijk ijk

ij

ij
ij

ij ik kj

ijk

i j N i j

i j N i j

i j k N i j i k j k

h x
i j N

h x

i j k N





 



  




 











    


  


    
     
     

 

   

This model can be equivalently simplified as follows: 

(M-7) 
1

7
1 1 1

min ( )
n n n

ijk ijk
k i j i

J  


 

   

    

1 1 1

1 1

1 1

log( ) log( ) log( )

0, , , , , ,

log( ) log( ) 0, , ,

s.t. 

h hhij kjik

h hij ij
h hij ij

l ll
t t t t t t

ijk ij ij ik ik kj kj ijk
t t t

ijk

l
l t l tt t

ij ij ij ji ji
t t

t
ij

t

h h h

i j k N i j k i k j

h h i j N i j

    



  





  



   

 

 
    

 
     

 
     

 

  

 

1 1

1, , ,

0 or 1, , , , 1, 2,...,

, 0, , , , , ,

1,
, ,

0,

1, 1
, , ,

0, otherwise

h hij ji

ij

l l

t
ji

t

t
ij h

ijk ijk

ij

ij
ij

ij ik kj

ijk

i j N i j

i j N i j t l

i j k N i j k i k j

h x
i j N

h x

i j k N





 



  


 

 











    



   


    
     
     



 



 

The following result proves the validity of model (M-7) to 
ascertain the completely multiplicative consistency property of 
incomplete HMPRs. 
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Theorem 6. An incomplete HMPR H is CMC iff J7=0. 
Proof. Necessary. If an incomplete HMPR H is CMC, then 

(15) holds for all known elements, that is, 0ijk ijk     in (34). 

Therefore, J7=0. 
Sufficiency. If an incomplete HMPR H has J7=0, then 

0ijk ijk     for all known elements, and (34) becomes (15). 

Thus, the incomplete HMPR H is CMC.                                            □ 
The following example illustrates the process of estimating 

missing values and determining the consistency of incomplete 
HMPRs with model (M-7). 

Example 1. Consider the incomplete HMPR H1 (adapted from 
[41]): 

1 1 1
2 3 2

1 1 1
3 2

1
2

{1} { ,1} { , } {1}

{1,2} {1} {1,2,3} {2}

{2,3} { , ,1} {1}

{1} { } {1}

H
x

x

 
 
   
  
 

. 

Solving model (M-7) gives J7=0. Thus, the incomplete 
HMPR H1 is CMC. At the same time, the missing HMEs 
obtained are h34={2} and h43={1/2}, and there exists a complete 
consistent MPR R1 

1 1
2 2

1

1 1
2 2

1 1

2 1 1 2

2 1 1 2

1 1

R

 
 
   
  
 

. 

Thus, H1 is transformed into the below complete HMPR: 
1 1 1
2 3 2

1 1 1
3 2

1 1
2 2

{1} { ,1} { , } {1}

{1,2} {1} {1,2,3} {2}

{2,3} { , ,1} {1} {2}

{1} { } { } {1}

H

 
 
    
  
 

. 

The proposed model is more reasonable and effective than 
Sahu and Gupta's model [22], since their β-normalization 
method is superfluous, and no additional elements are added to 
HMEs. In addition, the proposed model can determine the 
consistency type of incomplete HMPRs, while Sahu and 
Gupta’s model fails to do so. 

When the incomplete HMPR H is not CMC, its weakly 
multiplicative consistency property is considered. Similar to 
Theorems 2-4 of Section IV, the following results for 
incomplete HMPRs are provided. 

Theorem 7. An incomplete HMPR H=(hij)nn is WMC iff for 
all known elements: 

 max{ , } min{ , }ij ik kj ij ik kjkk
h h h h h h       (35) 

or, equivalently 

 
1
[ , ]

n

ik kj ik kj
k

h h h h   


   (36) 

is verified. 
Given an incomplete HMPR, H=(hij)nn, its associated 

incomplete interval MPR ( )ij n nH h   has elements: 

[ , ]ij ij ijh h h   if ijh  is known, otherwise ijh x  is unknown. 

Let Ω be the set of all the known elements in H. 
Theorem 8. An incomplete HMPR H=(hij)nn is WMC iff  

  
1

, for all 
n

ik kj ij
k

h h h


    (37) 

The following optimization model for incomplete HMPRs 
can be established, based on the weakly multiplicative 
consistency property, to estimate the missing information and 
to test consistency: 

(M-8) 
1

8
1 1

min ( )
n n

ij ij
i j i

J  


 

  

    

1

0, 1,2,..., 1, 1,...,

0, 1,2,..., 1, 1,...,

s.t. 1

0,

1,
, ,

0,

, 0, 1,2,..., 1, 1,...,

i
ij ij ij

j

i
ij ij ij

j

n

ii

i

ij

ij
ij

ij ij

w
h i n j i n

w

w
h i n j i n

w

w

w i N

h x
i j N

h x

i n j i n

 

 



 

 

 



 

  
           


 

        
 

 

 

   
    
















 

Solving model (M-8), the incomplete HMPR is WMC when 
J8=0, in which case, via (3), its missing elements can be 
estimated. As before, an example is provided below to illustrate 
the weakly multiplicative consistency-based HMPR 
completion process. 

Example 2. Consider the incomplete HMPR H2: 
3 3 3
7 7 2

7 3 3
3 7 2

2 7 7 72 2 2
3 3 3 3 3 3

3 3
7 2

{1} { } { , } {1}

{ } {1} { , }

{ , } { , } {1} { , }

{1} { , } {1}

x
H

x

 
 
   
  
 

. 

Solving model (M-7) gives J7=2.46920. Thus, H2 is not 
CMC, and Theorem 7 is used to check whether H2 is WMC. For 
all known elements, (36) yields: 

4
3 3 9 9 3 3 3 3 9 9

1 3 1 3 7 2 49 14 7 2 7 2 49 14
1

[ , ] [ , ] [ , ] [ , ] [ , ] [ , ]k k k k
k

h h h h   



      . 

Thus, the incomplete HMPR H2 is WMC. Notice that this can 
also be verified using (35) as shown in Table II. 

Solving model (M-8) gives J8=0, and the missing HMEs are 
estimated as h24={7/3} and h42={3/7}. The following complete 
HMPR 2H   and complete consistent MPR R2 are obtained 

3 3 3
7 7 2

7 3 3 7
3 7 2 3

2 7 7 72 2 2
3 3 3 3 3 3

3 3 3
7 7 2

{1} { } { , } {1}

{ } {1} { , } { }

{ , } { , } {1} { , }

{1} { } { , } {1}

H

 
 
    
  
 
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TABLE II 
CONSISTENCY ASCERTAINING FOR EXAMPLE 2 

preferences i j k hikhkj hikhkj Consistency test 

 h12 1 2 1 
3

7
 

3

7
 max{hij ,hikhkj

3

7
 

 1 2 3 
2

7
 

7

2
 min{hij ,hikhkj}=

3

7
 

      passed 

h13  1 3 1 
3

7
 

3

2
 max{hij ,hikhkj

3

7
 

 1 3 2 
9

49
 

9

14
 min{hij ,hikhkj}=

9

14
 

 1 3 4 
3

7
 

3

2
 passed 

h14  1 4 1 1 1 max{hij ,hikhkj 1 

 1 4 3 
2

7
 

7

2
 min{hij ,hikhkj}=1 

      passed 

h23  2 3 1 1 
7

2
 max{hij ,hikhkj 1 

 2 3 2 
3

7
 

3

2
 min{hij ,hikhkj}=

3

2
 

      passed 

h34  3 4 1 
2

3
 

7

3
 max{hij ,hikhkj

2

3
 

 3 4 3 
2

3
 

7

3
 min{hij ,hikhkj}=

7

3
 

      passed 

 
and 

3 3
7 7

7 7
3 3

2 7 7
3 3

3 3
7 7

1 1

1 1

1 1

1 1

R

 
 
   
  
 

. 

After estimating the missing values, an incomplete HMPR is 
converted into a complete HMPR, and Algorithm 1 can be used 
to generate the priority weights of alternatives. The consistency 
improving method proposed in Section V can be applied to 
incomplete HMPRs found to be inconsistent with both models 
(M-7) and (M-8). 

VII. ILLUSTRATIVE EXAMPLES AND COMPARATIVE ANALYSIS 

A. Illustrative Examples 

This section offers three examples that complement the 
theoretical effectiveness of the approaches presented in 
previous sections: Example 3 and Example 4 concern with 
CMC and WMC HMPRs, respectively, while Example 5 
verifies the practical value of our proposal. 

Example 3. Consider the following HMPR on X={x1, x2, x3} 
(adapted from Zhang [26]): 

1 1 1 1 1 1
7 5 4 3 6 3

3

1 1 1
5 3 2

{1} { , , , } { , ,1}

{3,4,5,7} {1} {2,3,5}

{1,3,6} { , , } {1}

H

 
   
 
 

. 

Step 1. Solving model (M-2) gives J2=0. Thus, H3 is CMC. 
Meanwhile, the following complete consistent MPR is derived 

1
3

1
3

1 1

3 1 3

1 1

R

 
   
 
 

. 

Step 2. From (31), the following priority weight vector of 
alternatives is obtained: w=(0.2, 0.6, 0.2)T, and the alternatives 
ranking would be: 2 1 3x x x  .  

Example 4. Consider the following HMPR (adapted from Lin 
and Wang [19]): 

5 3 5 7 32 1
3 2 4 2 2 3 2

3 52 1 1
5 2 2 2 2

4 2 2 4 1 1 1 1
7 5 3 3 2 3 2

2 2 1
3 5 2

{1} { ,2, } { , , } { , }

{ , , } {1} { ,2,3} {1,2, }

{ , , } { , , 2} {1} { , ,1}

{ ,3} { , ,1} {1,2,3} {1}

H

 
 
   
  
 

. 

Step 1. Solving model (M-2), we have J2=0.5754, which 
means that HMPR H4 is not CMC. 

Step 2. Expression (17) is used to check the weakly 
multiplicative consistency property for H4, with the 
corresponding processes shown in Table III. It is concluded that 
HMPR H4 is WMC. Notice that this could have been done using 
(22). Indeed, HMPR H4 is WMC because 

TABLE III  
CONSISTENCY ASCERTAINING FOR EXAMPLE 4 

preferences i j k hikhkj hikhkj Consistency test 

 h12  1 2 1 
2

3
 

5

2
 max{hij ,hikhkj

2

3
 

 1 2 3 
1

4
 7 min{hij ,hikhkj}=

3

2
 

 1 2 4 
2

15
 

3

2
 passed 

h13  1 3 1 
3

4
 

7

2
 max{hij ,hikhkj

3

4
 

 1 3 2 
1

3
 

15

2
 min{hij ,hikhkj}=

7

2
 

 1 3 4 
1

3
 

9

2
 passed 

h14   1 4 1 
1

3
 

3

2
 max{hij ,hikhkj

2

3
 

 1 4 2 
2

3
 

25

4
 min{hij ,hikhkj}=

3

2
 

 1 4 3 
1

4
 

7

2
 passed 

h23   2 3 1 
3

10
 

21

4
 max{hij ,hikhkj 1 

 2 3 2 
1

2
 3 min{hij ,hikhkj}=3 

 2 3 4 1 
15

2
 passed 

h24   2 4 1 
2

15
 

9

4
 max{hij ,hikhkj 1 

 2 4 2 1 
5

2
 min{hij ,hikhkj}=

9

4
 

 2 4 3 
1

6
 3 passed 

h34   3 4 1 
2

21
 2 max{hij ,hikhkj

1

3
 

 3 4 2 
1

3
 5 min{hij ,hikhkj}=1 

 3 4 3 
1

3
 1 passed 

4
5 5 32 2 1 2

1 2 1 2 3 2 3 2 4 15 2
1
[ , ] [ , ] [ , ] [ ,7] [ , ]k k k k

k
h h h h   


      , 

4
3 7 15 3 7 91 1

1 3 1 3 4 2 3 2 4 2 3 2
1
[ , ] [ , ] [ , ] [ , ] [ , ]k k k k

k
h h h h   


      , 

4
3 25 7 31 2 1 1

1 4 1 4 3 2 3 4 4 2 3 2
1
[ , ] [ , ] [ , ] [ , ] [ , ]k k k k

k
h h h h   


      , 

4
3 1521 1 1

2 3 2 3 10 4 2 2 2
1
[ , ] [ , ] [ ,3] [ ,3] [1, ]k k k k

k
h h h h   


      , 
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4
9 5 52 1

2 4 2 4 15 4 2 2 6
1
[ , ] [ , ] [1, ] [1, ] [ ,3]k k k k

k
h h h h   


      , 

4
2 1 1 1

3 4 3 4 21 3 3 3
1
[ , ] [ , 2] [ ,5] [ ,1] [ ,1]k k k k

k
h h h h   


      . 

Since HMPR H4 is WMC, the priority weights of alternatives 
are derived by solving models (M-3)-(M-5). 

Step 3. Solving model (M-3) gives J3=0, and w=(0.25, 0.25, 
0.25, 0.25)T. From (3), we obtain the following complete 
consistent MPR 

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

R

 
 
 
 
 
 

. 

Solving models (M-4) and (M-5), the following interval 
priority vector of alternatives are obtained from H4: 
w(H4)=([0.1875,0.3818], [0.2222,0.4091], [0.0952,0.2667], 
[0.1739,0.3333]). Using expression (32), the ranking of the 

alternatives would be: 
0.5813 0.5878 0.7196

2 1 4 3x x x x   .Thus, alternative 

x2 is superior to alternative x1 with 58.13% possibility degree, 
alternative x1 is superior to alternative x4 with 58.78% 
possibility degree, while alternative x4 is superior alternative x3 
with 71.96% possibility degree. 

Example 5. A practical problem is considered where an 
investment company is looking to invest a sum of money in the 
best of the following four possible investment options. 

(1) x1 is an energy company; 
(2) x2 is a medical corporation; 
(3) x3 is a high-tech company; 
(4) x4 is a food company. 
The investment company evaluates the four alternative 

companies with the help of a third-party evaluation agency, 
which provides the following HMPR information: 

1 1 1
3 9 7

5 1 1 1 1
7 5 7 5

1 1
3 5

{1} {3} {5,7} {3}

{ } {1} { , } {5}

{ , } {7,9} {1} { , }

{ } { } {5,7} {1}

H

 
 
   
  
 

. 

Step 1. Solving model (M-2) gives J2=10.3296.Thus,  H5 is 
not CMC. 

Step 2. Solving model (M-3) gives J3=5.9238. Thus, H5 is not 
WMC. This means that we are in the presence of an inconsistent 
HMPR.  

Step 3. The optimal deviation values are +
23 1.5238d  , 

+
34 0.4d  , 24 4d   ; so, h23, h24 and h34 are the inconsistent 

elements of HMPR H5. From (29), the adjusted elements are: 
1

23 9{ ,1.667}h  , 24 {1}h  , 31
34 7 5{ , }h  . From (30), the 

improved HMPR H5 is 

 

1 1
3 9

5 31 1 1
7 5 7 5

51
3 3

{1} {3} {5,7} {3}

{ } {1} { ,1.667} {1}

{ , } {0.6,9} {1} { , }

{ } 1 { ,7} {1}

H

 
 
   
  
 

. 

Step 4. Solving model (M-2) implies that 5H  is not CMC.  

Step 5. Solving model (M-3) gives J3=0. Thus, 5H  is WMC. 

Step 6. Solving models (M-4) and (M-5), the interval priority 
weight vector of the alternatives for 5H  is: 

w( 5H )=([0.5357,0.5382], [0.1786,0.1794], [0.1029,0.1071], 

[0.1786,0.1794]). Applying (32) results in the following 

ranking of the four alternatives: 
1

1 2x x 
1

4 3x x . This means 

that investment options x1 is superior to investment options x2 
with 100% possibility degree, investment options x2 is equally 
preferred to investment options x4, and investment options x4 is 
superior to investment options x3 with 100% possibility degree. 
Therefore, the optimal investment would be x1. 

In decision-making problems, the consistency problem is 
closely related to the reliability of preferences provided by 
decision-makers. The rationality of the judgments determines 
the reliability of the final decision result. It is worth noting that 
the consistency improvement of HMPRs in this process plays a 
role in regulating the logic and rationality of the given 
preference information. Therefore, in practice, our proposal 
contributes to achieving reliable decision-making results. 

In what follows, a discussion and a simulation analysis are 
reported to illustrate availability and advantages of the 
proposed method. 

B. Discussion, Simulation and Comparative Analysis 

In this section, we compare the peculiarities of existing 
methods and discuss the advantages of our proposed methods. 
A summary of the improvements of the proposed method based 
on the previous illustrative examples is provided. In addition, a 
systematic analysis with the help of simulation experiments is 
carried out, which clearly and intuitively highlights the superior 
performance of the proposed method. 
1) Discussion  

In view of the evident differences with the existing 
consistency studies, the proposed approach improvements can 
be summarized as follows: 

(a) As far as we are aware, the proposed approach is the first 
attempt to study simultaneously both completely multiplicative 
consistency and weakly multiplicative consistency properties 
for HMPRs, which represents a more effective and precise way 
to describe and detect consistency. Meng et al. [25] studied the 
multiplicative consistency property of HMPRs. They proposed 
a strict consistency concept for HMPRs that requires the 
existence of multiplicative consistent MPRs for every value in 
every HMEs. This means that in practice most HMPRs will fail 
to verify Meng et al.'s [25] definition of consistency property. 
For example, H3 (Example 3), which was judged to be CMC, 
does not satisfy Meng et al.’s consistency definition. Although 
theoretically there exist HMPRs that verify Meng et al.’s 
consistency definition, this is not reasonable in practice. 
Hesitancy means that a decision-maker is unsure about the 

Page 10 of 19

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 11

preference values when comparing two alternatives, though 
he/she can give some possible preference values (hence the 
hesitation). If for every value in every HME, a consistent MPR 
exists, then this would imply a level of consistency knowledge 
by the decision-maker that would make hesitancy improbable 
and therefore impractical in a hesitancy environment. As the 
decision-maker is hesitant, we should aim to find the reasonable 
information (i.e., consistent information) from his/her hesitant 
information, which is exactly the aim of the proposed method. 

(b) Zhang and Wu proposed two consistency improvement 
methods in [17, 21]. These methods rely on a β-normalization 
process, which convert the HMEs so that they all have the same 
number of values, and then the HMPR is managed as several 
MPRs. The normalization process obviously distorts the DM’s 
original information and the results obtained could be unrelated 
to the original information, which makes them unreliable. In 
this paper, the proposed method does not rely on any 
normalization process, which translates into minimal changes 
of the original information of DMs and lower computational 
cost. Moreover, Xu et al. [46] pointed out that Zhang and Wu's  
[21] consistency process is artificial, the consistent HMPR may 
not be an HMPR because the improved MPRs will not be 
arranged in ascending order. Additionally, the smaller the 
improvement process consistency threshold in [21] is, the larger 
the number of iterations and the computational cost are.  

(c) The priority weights of alternatives derived from the 
proposed method are of interval nature. As the DM’s 
information is hesitant, it is more logical and natural to derive 
interval weights from consistent HMPRs than exact priority 
weights as proposed by Zhu and Xu [18]. Although Zhang and 
Wu's  [17] weight-derivation algorithm for HMPRs results in 
an interval priority weight vector for H5, w=([0.3938,0.4581], 
[0.1715,0.1729], [0.1882,0.2108], [0.1823,0.2225]), which 
leads to the optimal choice x1, which is consistent with the 
proposed approach, although it is based on an additional 
normalization process, which implies higher computational 
cost.  

(d) The proposed approach can be utilized to solve decision-
making problems with incomplete HMPRs via the two 
multiplicative consistency goal programming models 
developed to ascertain the consistency property and to estimate 
the missing values. The existent literature method by Sahu and 
Gupta [22] requires a normalization process to improve the 
consistency, and therefore is subjected to the previously 
mentioned drawbacks. Thus, the proposed approach can deal 
with incomplete information in HMPR, which allows DMs or 
decision organizations to express their preferences more 
flexibly, and therefore more effectively.  

In summary, the above analysis shows that the performance 
of the proposal approach can compete with other approaches. 
The comparative analysis, based on eight performance criteria, 
of these methods is summarized in Table IV. The label “” 
means that the method is very suitable, “-” means that the 
method is acceptable, while “” means that the method 
performs poorly on the given criterion. 

 
 
 
 

TABLE IV 
COMPARISON BETWEEN THE EXISTING STUDIES AND OUR PROPOSAL 

 
The 

proposed 
method 

Zhang 
and Wu 

[21] 

Meng 
et al. 
[25] 

Zhang 
and Wu 

[17] 

Sahu and 
Gupta 
[22] 

Ascertain 
consistency 

     

Consistency 
thresholds  

     

 or  
normalization 

     

Repair 
inconsistency 

     

Minimal 
deviation from 

decision-
maker’s original 

judgments 

     

Ability to 
maintain 
decision-
makers’ 

hesitation in 
weights 

derivation 

     

Ability to 
address 

incomplete 
HMPRs 

     

Acceptable 
computational 

complexity 
 - - - - 

From Table IV, it can see that the functionality of the 
proposed approach is powerful, and that it can help to (i) 
determine the consistency type without the help of consistency 
threshold setting and normalization process, (ii) repair 
inconsistency with lower information distortion and 
computation, (iii) derive interval weights based on the decision-
maker’s hesitation, and (iv) solve decision-making problems 
with incomplete HMPRs. Consequently, the proposed approach 
can deal with decision-making problems with HMPRs more 
flexibly, reasonably, and effectively. 
2) Simulation and Comparative Analysis 

In order to further show the effectiveness and advantages of 
the proposed method, Monte Carlo simulation experiments are 
carried out and analyzed. Further, the proposed method is 
compared with the methods by Zhang and Wu [17] and  Zhang 
and Wu [21], since their methods also proposed different 
consistency concepts and consistency improving processes. 
The β-normalization method is used in  [17, 21] with 

(1 )( ) ( )ij ij ijh h h      used to add some values to the HMEs of 

shorter length to make all the HMEs have the same length. In 
this paper, we assume 0.5  . Both Zhang and Wu [17] and  

Zhang and Wu [21] split the HMPR into several MPRs. Zhang 
and Wu [17] used Saaty’s consistency ratio (CR<0.1) to check 
whether these MPRs are of acceptable consistency. If any of the 
MPR is not acceptable consistent, Xu and Wei [51]’s Algorithm 
I (with λ=0.5) is used to improving its consistency. Notice that 
Zhang and Wu [21] proposed another algorithm (referred to as 
Algorithm 2 in  [21]) to improve consistency. In the method, a 

consistency threshold CI  is set in advance ( CI 1.01 ). Meng 
et al.'s [25] method only find the consistent MPRs in an HMPR, 
with no method to repair the inconsistency proposed when there 
is no such consistent MPR in an HMPR. Sahu and Gupta [22] 
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proposed a method to estimate the missing values in an 
incomplete HMPR, and Zhang and Wu's [17] is adopted to 
check whether the complete HMPR is of acceptable consistency. 
If the complete HMPR is not consistent, no consistency 
improving method is provided. Therefore, in the following, we 
only do simulations and compare the proposed method with 
Zhang and Wu [17] and  Zhang and Wu [21]’s methods.    

A total of 1000 HMPRs with different dimension, ranging 
from 3 to 9, are randomly generated. In order to be close to the 
actual decision-making scenario, we assume that the number of 
elements in each HME is less than 3. Furthermore, all the 
randomly generated values are in the Saaty’s scale {1/9, 1/8, …, 
1/2, 1, …, 9}. In order to compare the performances of the 
different methods, we propose the following criteria. 

(1) Length change ratio (LCR)  
1

1 1

2

( 1)

n n

ij
i j i

f

LCR
n n



  


 
 

where 
(0) *0,  

1,  otherwise
ijij hh

ij

l l
f

 


denotes whether the length of an 

HME is changed;  (0) (0)( )ijH h  and * *( )ijH h  are the original 

and the final adjusted HMPRs, respectively. 
(2) Numerical adjustment ratio (NAR) 

1

1 1

2

( 1)

n n

ij
i j i

f

NAR
n n



  


 
 

where 
(0) *0,  

1,  otherwise

ij ij
ij

h h
f

  


 denotes whether the values in an 

HME (0)
ijh  is adjusted. 

  (3) Absolute deviation (AD) 

         
1

(0) *

1 1

2
| |

( 1)

n n

ij ij
i j i

AD h h
n n



  

 
     

AD measures the average numerical difference between the 
original HMPR (0)H  and the final improved HMPR *H . Since 
the lengths in each ijh  between (0)H and *H  are different in 

Zhang and Wu [17] and Zhang and Wu [21], the β-
normalization HMPR is used on the original HMPR to compute 
AD for the proposed approach. 
  (4) Logarithm absolute deviation (LAD) 

       
1 2(0) *

1 1

2
ln( ) ln( )

( 1)

n n

ij ij
i j i

LAD h h
n n



  

 
     

  (5) Difference ratio (DR).   Li et al. [52] introduced a ratio-
based concept to gauge the difference between two interval 
multiplicative comparison matrices. Based on this idea, the 
below DR is proposed to measure the difference between the 
original HMPR and the improved HMPR. 

1
(0) * (0) * ( 1)

(0) *
(0) * (0) *

max{ , } max{ , }
( , )

min{ , } min{ , }

n n
ij ij ij ij

i j ij ij ij ij

h h h h
DR H H

h h h h

    

   


   
          
  

Obviously, (0) *( , ) 1DR H H  . The smaller the ratio 
(0) *( , )DR H H , the closer (0)H  is to *H . In particular, if 
(0) *( , ) 1DR H H  , (0) *H H . 

 
Table V lists the average values of LCR, NAR, AD, LAD and 
DR for each of the three considered methods, which are 
represented in Fig. 3  to help visualize the different methods’ 
performance.  
 

 TABLE V  
THE AVERAGE LCR, NAR, AD, LAD, DR AND ITERATION VALUES OF 

DIFFERENT METHODS 
n methods LCR NAR AD LAD DR Iterations 
3 This paper 0 0.149 0.122 0.440 1.227 1 

Zhang and Wu [21] 0.4863 1 3.867 1.908 2.076 2.973 
Zhang and Wu [17] 0.4863 1 2.703 1.319 1.726 3.078 

4 
 

This paper 0 0.301 0.283 0.986 1.4223 1 
Zhang and Wu [21] 0.6213 1 4.685 2.967 2.3226 3.033 
Zhang and Wu [17] 0.6213 1 3.965 1.992 2.0718 4.557 

5 
 

This paper 0 0.436 0.407 1.46 1.603 1 
Zhang and Wu [21] 0.6565 1 5.013 3.599 2.5201 3.051 
Zhang and Wu [17] 0.6565 1 4.477 2.504 2.2276 5.257 

6 
 

This paper 0 0.518 0.524 1.848 1.743 1 
Zhang and Wu [21] 0.6684 1 5.370 4.098 2.7102 3.078 
Zhang and Wu [17] 0.6684 1 4.928 2.913 2.4092 5.652 

7 
 

This paper 0 0.636 0.603 1.963 1.7717 1 
Zhang and Wu [21] 0.6606 1 5.552 4.369 2.8243 3.123 
Zhang and Wu [17] 0.6606 1 5.114 3.120 2.5068 5.848 

8 
 

This paper 0 0.836 0.699 2.464 1.9121 1 
Zhang and Wu [21] 0.6669 1 5.654 4.611 2.9306 3.153 
Zhang and Wu [17] 0.6669 1 5.212 3.294 2.5901 5.939 

9 
 

This paper 0 0.991 0.775 2.888 2.0213 1 
Zhang and Wu [21] 0.6661 1 5.740 4.779 3.0114 3.2580 
Zhang and Wu [17] 0.6661 1 5.265 3.377 2.6375 5.972 

 

 
(a) 

 
(b) 
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(c) 

 

 
(d) 

 
(e) 

Fig 3. (a) LCR of  Zhang and Wu [17] (b) NAR of this paper (c) AD (d) LAD 
(e) DR 

 
In Fig. 3(a), since the length of HMEs is not changed by the 

proposed method, the corresponding LCR value is always equal 
to 0 at every one of the considered dimensions. Zhang and Wu 
[21] and Zhang and Wu [17] used the same normalization 
methods, thus their LCR values coincide and therefore there is 
only need to draw the LCR values for one of them. The LCR 
values increase drastically from 3 to 5, while they change little 
when n is from 5 to 9. In Fig. 3(b), the NAR values in Zhang 
and Wu [17] and Zhang and Wu [21] are always equal to 1, 
which means that all the values are revised in their consistency 
improving processes. However, the NAR values increases from 
0.149 (n =3) to 0.991 (n= 9) for the proposed method. These 
two indexes show that the proposed method perform best in 

retain the decision-makers’ original information as much as 
possible. 

In Fig 3. (c)-(e), the AD, LAD, and DR values all increase 
with the value of n. However, in all cases, the proposed method 
results in the smallest values, with Zhang and Wu [21] resulting 
in the largest. Therefore, the proposed method produces 
improved consistent HMPRs closest to the original HMPRs. 
These results reinforce the achievement of the aim of the 
proposed method to retain the decision-makers’ original 
information as much as possible.  
3)  Computational complexity 

Regarding computational complexity as measured by the 
average number of iterations required to complete the overall 
process, again the proposed method is superior to the method 
by Zhang and Wu. This information is provided in the last 
column of Table V and depicted in Fig. 4. From  The proposed 
method requires in all cases 1 iteration to improve consistency, 
Zhang and Wu's [21] method is stable at 3 iterations on average, 
while Zhang and Wu's [17] method need 3 to 6 iterations on 
average increasing with the dimension value.  

As mentioned earlier, Zhang and Wu [21] require that all 
HMEs have the same length before the process of consistency 
ascertaining. This normalization method, and therefore its 
associated complicated calculation process, is superfluous for 
the proposed method. Since the length of HMEs increases with 
the normalization process, the HMPR will be converted into a 
high number of MPRs to judge its consistency, which will 
increase the computation cost when compared to the proposed 
method. On the other hand, Zhang and Wu [21] preset a 
consistency threshold in the process of consistency checking 
and improvement. Decreasing the threshold value implies an 
increase of the number of iterations and, as a consequence, the 
computational cost will increase. In contrast, the consistency 
properties of HMPRs proposed in this paper can directly be 
ascertain without the need of a normalization process or a 
consistency threshold, while the inconsistency repairing 
method only revises the inconsistent elements, and therefore 
most of the decision-maker’s judgments are unchanged. Most 
importantly, the proposed approach can achieve multiplicative 
consistency ascertaining, inconsistency repairing, and weights 
derivation for HMPRs in one iteration.  

 
 

Fig. 4. The average iterations of different methods 
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Meng et al. [25] also implement the consistency test based on 

the decision-maker’s original HMPR without the normalization 
process. Their consistency determination and improvement 
process can also be completed within one iteration. However, 
Meng et al.’s approach requires to detect that for each value in 
each HME a multiplicatively consistent MPR needs to be 
detected. As the length of the HMEs increases, the number of 
multiplicatively consistent MPRs to be found increases. 

Namely, there are a total of 
ijhi j

l
  MPRs that need to be 

judged, and at least the minimum of 
ijhl  models to operate. 

Hence, this method may not be suitable to be applied in 
practical decision-making problems due to its high 
computational cost  

Summarizing, when compared with the existing methods, the 
proposed method has lowest computational complexity and cost. 
Therefore, the proposed method is a highly functional and 
computationally convenient method. 

VIII. CONCLUSIONS 

In this paper, two types of multiplicative consistency of 
HMPRs, completely multiplicative consistency and weakly 
multiplicative consistency, are investigated simultaneously. A 
number of 0-1 mixed programming models are established to 
ascertain these consistency properties. The following cases are 
addressed: 

(1) If an HMPR is CMC, then the corresponding 
multiplicative consistent MPR can be found.  

(2) If an HMPR is not CMC but WMC, then interval priority 
weights of alternatives are derived, which allows to rank them  

(3) If an HMPR is not consistent, only the inconsistent 
elements are revised to repair the inconsistency, which means 
that most of the decision-maker’s judgements are unchanged.  

(4) These models have also been extended to the case of 
incomplete HMPRs by estimating the missing values. 

In future, the research areas to focus on include:  
1) How to apply the proposed method to other types of 

preference relations [53, 54]. 
2) In addition to the consistency analysis of individual 

decision-makers, consensus analysis with HMPRs is also an 
important research topic in group decision making [55-59].  

3) Investigate new algorithms for group decision making 
problems to tackle practical problems [60-62]. 
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