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Executive Summary  

Point clouds are representations of three-dimensional (3D) objects in the form of a sample of points 

on their surface. Point clouds are receiving increased attention from academia and industry due to their 

potential for many important applications, such as real-time 3D immersive telepresence, automotive 

and robotic navigation, as well as medical imaging. Compared to traditional video technology, point 

cloud systems allow free viewpoint rendering, as well as mixing of natural and synthetic objects. 

However, this improved user experience comes at the cost of increased storage and bandwidth 

requirements as point clouds are typically represented by the geometry and colour (texture) of millions 

up to billions of 3D points. For this reason, major efforts are being made to develop efficient point 

cloud compression schemes. However, the task is very challenging, especially for dynamic point 

clouds (sequences of point clouds), due to the irregular structure of point clouds (the number of 3D 

points may change from frame to frame, and the points within each frame are not uniformly distributed 

in 3D space). To standardize point cloud compression (PCC) technologies, the Moving Picture Experts 

Group (MPEG) launched a call for proposals in 2017. As a result, three point cloud compression 

technologies were developed: surface point cloud compression (S-PCC) for static point cloud data, 

video-based point cloud compression (V-PCC) for dynamic content, and LIDAR point cloud 

compression (L-PCC) for dynamically acquired point clouds. Later, L-PCC and S-PCC were merged 

under the name geometry-based point cloud compression (G-PCC). The aim of the OPT-PCC project 

is to develop algorithms that optimise the rate-distortion performance [i.e., minimize the 

reconstruction error (distortion) for a given bit budget] of V-PCC. The objectives of the project are to:  

 

1. O1: build analytical models that accurately describe the effect of the geometry and colour 

quantization of a point cloud on the bit rate and distortion;  

2. O2: use O1 to develop fast search algorithms that optimise the allocation of the available bit 

budget between the geometry information and colour information;  

3. O3: implement a compression scheme for dynamic point clouds that exploits O2 to outperform 

the state-of-the-art in terms of rate-distortion performance. The target is to reduce the bit rate 

by at least 20% for the same reconstruction quality;   

4. O4: provide multi-disciplinary training to the researcher in algorithm design, metaheuristic 

optimisation, computer graphics, media production, and leadership and management skills.  

 

 

This deliverable reports on the work undertaken in this project to achieve objective O2. Section 1 

introduces the rate-distortion optimization problem for V-PCC. Section 2 reviews previous work. 

Section 3 presents our fast search algorithms. Section 4 gives experimental results. Section 5 gives 

our conclusions.   
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1 Introduction  

A static point cloud is a representation of a three-dimensional (3D) object, where in addition to the 

spatial coordinates of a sample of points on the surface of the object, attributes such as color, 

reflectance, transparency, and normal direction may be used (Fig. 1). A dynamic point cloud consists 

of several successive static point clouds. Each point cloud in the sequence is called a frame. Point 

clouds are receiving increased attention due to their potential for immersive video experience 

applications such as virtual reality, augmented reality, and immersive telepresence. 

 

 
                          Fig. 1. Point cloud representation with color used as an attribute. 

 

To get a high-quality representation of a 3D object as a point cloud, a huge amount of data is required. 

For example, in a point cloud consisting of 1 million points, each dimension of the geometry (resp. 

color) information is usually represented by 12 bits (resp. 8 bits), resulting in a total volume of 60 

Mbits. For a dynamic point cloud with a frame rate of 25 frames per second (fps), the required bit rate 

is therefore 1500 Mbps, which is beyond the bandwidth capacity of current networks.  

 

To compress point clouds efficiently, the Moving Picture Experts Group (MPEG) launched in January 

2017 a call for proposals for point cloud compression technology. As a result, two point cloud 

compression standards were developed: video-based point cloud compression (V-PCC) [1] for point 

sets with a relatively uniform distribution of points and geometry-based point cloud compression (G-

PCC) [2] for more sparse distributions.  

 

In this project, we focus on V-PCC for dynamic point clouds. In V-PCC, the input point cloud is first 

decomposed into a set of patches, which are independently mapped to a two-dimensional grid of 

uniform blocks. This mapping is then used to store the geometry and color information as one 

geometry video and one color video. Next, the generated geometry video and color video are 

compressed separately with a video coder, e.g., H.265/HEVC [3]. Finally, the geometry and color 

videos, together with metadata (occupancy map for the two-dimensional grid, auxiliary patch, and 

block information) are multiplexed to generate the bit stream (Fig. 2). In the video coding step, 

compression is achieved with quantization, which is determined by a quantization step or, 

equivalently, a quantization parameter (QP), see Appendix A. 
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Fig. 2. V-PCC encoder test model [1]. 

Given a dynamic point cloud consisting of 𝑁  frames, an optimal encoding can be obtained by 

determining for each frame 𝑖 (𝑖 = 1, … , 𝑁) the geometry quantization step 𝑄𝑔,𝑖 ∈ {𝑞0, … , 𝑞𝑀−1} and 

colour quantization step 𝑄𝑐,𝑖 ∈ {𝑞0, … , 𝑞𝑀−1} that minimize the distortion subject to a constraint 𝑅𝑇 

on the bit budget. This can be formulated as the multi-objective optimization problem  

 

                                                min
𝑸𝑔,𝑸𝑐

 [𝐷𝑔(𝑸𝑔, 𝑸𝑐), 𝐷𝑐(𝑸𝑔, 𝑸𝑐)]                                                  (1) 

 𝑠. 𝑡.       𝑅(𝑸𝑔, 𝑸𝑐) ≤ 𝑅𝑇 ,                                                              

 

where 𝑸𝑔 = (𝑄𝑔,1,𝑄𝑔,2,…,𝑄𝑔,𝑁 ),  𝑸𝑐 = (𝑄𝑐,1,𝑄𝑐,2,…,𝑄𝑐,𝑁 ), 𝐷𝑔(𝑸𝑔, 𝑸𝑐) is the geometry distortion, 

𝐷𝑐(𝑸𝑔, 𝑸𝑐) is the color distortion, and 𝑅(𝑸𝑔, 𝑸𝑐) is the total number of bits. Here 𝐷𝑔(𝑸𝑔, 𝑸𝑐) =
1

𝑁
∑ 𝐷𝑔,𝑖

𝑁
𝑖=1 (𝑸𝑔, 𝑸𝑐)  and 𝐷𝑐(𝑸𝑔, 𝑸𝑐) =

1

𝑁
∑ 𝐷𝑐,𝑖

𝑁
𝑖=1 (𝑸𝑔, 𝑸𝑐),where 𝐷𝑔,𝑖(𝑸𝑔, 𝑸𝑐)  and 𝐷𝑐,𝑖(𝑸𝑔, 𝑸𝑐) 

are the geometry and color distortions of the 𝑖 th frame, respectively. Similarly, 

𝑅(𝑸𝑔, 𝑸𝑐)=𝑅𝑔(𝑸𝑔, 𝑸𝑐) + 𝑅𝑐(𝑸𝑔, 𝑸𝑐), where  𝑅𝑔(𝑸𝑔, 𝑸𝑐) = ∑ 𝑅𝑔,𝑖
𝑁
𝑖=1 (𝑸𝑔, 𝑸𝑐) is the number of 

bits for the geometry information, 𝑅𝑔,𝑖(𝑸𝑔, 𝑸𝑐) is the number of bits for the geometry information in 

the 𝑖th frame, 𝑅𝑐(𝑸𝑔, 𝑸𝑐) = ∑ 𝑅𝑐,𝑖
𝑁
𝑖=1 (𝑸𝑔, 𝑸𝑐) is the number of bits for the color information, and 

𝑅𝑐,𝑖(𝑸𝑔, 𝑸𝑐) is the number of bits for the color information in the 𝑖th frame. In practice, problem (1) 

is scalarized as  

 

                              min
𝑸𝑔,𝑸𝑐

 [𝐷(𝑸𝑔, 𝑸𝑐) = 𝜔𝐷𝑐(𝑸𝑔, 𝑸𝑐) + (1 − 𝜔)𝐷𝑔(𝑸𝑔, 𝑸𝑐)]                               (2) 

𝑠. 𝑡.     𝑅(𝑸𝑔, 𝑸𝑐) ≤ 𝑅𝑇 ,                                                                  

 

where 𝜔 ∈ [0,1] is a weighting factor that sets the relative importance of the geometry and color 

distortions. As the number of possible solutions is 𝑀2𝑁, solving the problem with exhaustive search 

is not feasible when 𝑀 or 𝑁 is large as the computation of the distortion and the number of bits requires 

encoding and decoding the point cloud, which is very time consuming.  

 

In the latest MPEG V-PCC test model [4], the QPs for geometry and color are selected manually: one 

chooses the QPs of the first frame, and the QPs of the following frames in the same group of frames 

are set according to a fixed offset. In this deliverable, we propose two methods to solve problem (2). 

The first one uses the rate and distortion models proposed in Deliverable D2 [5]. The second one uses 

the actual rate and distortion. The two methods apply a variant of differential evolution (DE) [6] to 

solve the problem.   
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2 Related Work 

Only a small number of works [7,8,9] have proposed rate and distortion models for point cloud 

compression. In [7], the focus is on the point cloud library (PCL) platform [10] for the compression of 

static point clouds. This platform uses an octree decomposition for geometry compression and JPEG 

for color compression. Analytical models that describe the relationship between the encoding 

parameters (the maximum octree level and the JPEG quality factor) and the color distortion 𝐷𝑐 and 

bitrate 𝑅 are derived with statistical analysis. Let 𝐿 be the maximum octree level and let 𝐽 be the JPEG 

quality factor. The color distortion is modeled as 𝐷𝑐 = 𝑠𝐽𝑝𝐿𝑞 , where 𝑠, 𝑝, 𝑞 are model parameters. On 

the other hand, the bitrate is modeled as ln 𝑅 = 𝑎𝐿𝐽 + 𝑏𝐿 + 𝑐, where 𝑎, 𝑏, 𝑐 are model parameters. 

Then, the models are used to formulate the rate-distortion optimization problem as a constrained 

convex optimization problem, and an interior point method is applied to solve it. In [8], a similar 

approach is applied to V-PCC for dynamic point clouds. First, distortion and rate models for the 

geometry information and color information are derived as follows: 𝐷𝑔 = 𝛼𝑔𝑄𝑔,1 + 𝛿𝑔 , 𝐷𝑐 =

𝛼𝑐𝑄𝑐,1 + 𝛽𝑐𝑄𝑔,1 + 𝛿𝑐 , 𝑅𝑔 = 𝛾𝑔𝑄𝑔,1

𝜃𝑔
, 𝑅𝑐 = 𝛾𝑐𝑄𝑐,1

𝜃𝑐 , where 𝛼𝑔 , 𝛿𝑔, 𝛼𝑐 , 𝛽𝑐 , 𝛿𝑐 , 𝛾𝑔, 𝜃𝑔, 𝛾𝑐 , 𝜃𝑐  are model 

parameters. Then, an interior point method is used to minimize the weighted sum of the distortions 

subject to a constraint on the bitrate. One limitation of this work is that the distortion and rate models 

are functions of the quantization steps of the geometry and color information of the first frame only. 

Thus, the models are only suitable when the quantization steps of the following frames are set 

according to the default settings of the V-PCC test model and are not appropriate for the general rate-

distortion optimization problem (2). In [9], a static point cloud is partitioned into seven regions such 

that the first six regions correspond to the six patches with the largest area in the six projection planes, 

and the seventh region consists of all other patches. Then, the geometry and color quantization steps 

of the video sequences corresponding to each region are optimized separately using the analytical 

models in [8] for the distortion and bitrate. Here too, only the quantization steps of the first frame are 

considered. 
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3  Bit Allocation Solution  

3.1 Distortion and Rate models 

According to deliverable D2 [5], the distortion model of frame 𝑖 can be written as 

{
𝐷𝑔,𝑖 = 𝛼𝑔,𝑖𝑄𝑔,𝑖 + 𝛿𝑔,𝑖          

𝐷𝑐,𝑖 = 𝛼𝑐,𝑖𝑄𝑐,𝑖 + 𝛽𝑐,𝑖𝑄𝑔,𝑖 + 𝛿𝑐,𝑖 ,
                                                (3) 

where  𝛼𝑔,𝑖 , 𝛿𝑔,𝑖 , 𝛼𝑐,𝑖 , 𝛽𝑐,𝑖 , and 𝛿𝑐,𝑖  are model parameters. The overall distortion of a GOP is then 

modeled as 

𝐷=
1

4
(∑ 𝜔𝐷𝑔,𝑖 + (1 − 𝜔)𝐷𝑐,𝑖)4

𝑖=1                                               (4) 

The rate models of the first frame can be modeled as  

{
𝑅𝑔,1 = 𝛾𝑔,1𝑄𝑔,1

𝜃𝑔,1

𝑅𝑐,1 = 𝛾𝑐,1𝑄𝑐,1

𝜃𝑐,1
                                                             (5) 

where 𝛾𝑔,1 , 𝛾𝑐,1 , 𝜃𝑔,1 , and 𝜃𝑐,1  are model parameters. By taking the inter-frame dependency into 

account, the rate model of the second, third, and the fourth frames can be written as  

{
𝑅𝑔,2 = (𝜑𝑔,(1,2) ∙ 𝑄𝑔,1 + 1)𝛾𝑔,2𝑄𝑔,2

𝜃𝑔,2

𝑅𝑐,2 = (𝜑𝑐,(1,2) ∙ 𝑄𝑐,1 + 1)𝛾𝑐,2𝑄𝑐,2

𝜃𝑐,2
                                           (6) 

{
𝑅𝑔,3 = ∏ (𝜑𝑔,(𝑖,𝑖+1) ∙ 𝑄𝑔,𝑖 + 1)2

𝑖=1 𝛾𝑔,3𝑄𝑔,3

𝜃𝑔,3

𝑅𝑐,3 = ∏ (𝜑𝑐,(𝑖,𝑖+1) ∙ 𝑄𝑐,𝑖 + 1)2
𝑖=1 𝛾𝑐,3𝑄𝑐,3

𝜃𝑐,3
                                (7) 

{
𝑅𝑔,4 = ∏ (𝜑𝑔,(𝑖,𝑖+1) ∙ 𝑄𝑔,𝑖 + 1)3

𝑖=1 𝛾𝑔,4𝑄𝑔,4

𝜃𝑔,4

𝑅𝑐,4 = ∏ (𝜑𝑐,(𝑖,𝑖+1) ∙ 𝑄𝑐,𝑖 + 1)3
𝑖=1 𝛾𝑐,4𝑄𝑐,4

𝜃𝑐,4
                               (8) 

where 𝜑𝑔,(1,2) and 𝜑𝑐,(1,2) are the impact factors of the first frame on the second frame,  𝜑𝑔,(𝑖,𝑖+1) and 

𝜑𝑐,(𝑖,𝑖+1) (𝑖 = 2,3) are the impact factors of the 𝑖-th frame on the (𝑖 + 1)-th one, 𝛾𝑔,2, 𝛾𝑐,2, 𝜃𝑔,2, 𝜃𝑐,2, 

𝛾𝑔,3, 𝛾𝑐,3, 𝜃𝑔,3, 𝜃𝑐,3, 𝛾𝑔,4, 𝛾𝑐,4, 𝜃𝑔,4, and 𝜃𝑐,4 are model parameters. Finally, we use (5), (6), (7) and (8) 

to build the rate model as 𝑅=∑ 𝑅𝑔,𝑖
4
𝑖=1 + 𝑅𝑐,𝑖. 

 

3.2 Model Parameters 

To determine the parameters of the distortion models, we first encode the point cloud for three 

different sets of quantization steps (𝑸𝑔, 𝑸𝑐) and compute the corresponding actual distortions and 

number of bits. Next, we solve the resulting system of equations to find 𝛼𝑔,𝑖, 𝛿𝑔,𝑖, 𝛼𝑐,𝑖, 𝛽𝑐,𝑖, 𝛿𝑐,𝑖 (𝑖 =

1, … ,4). To determine the parameters of the rate models, we encode the point cloud for eight more sets 

of quantization steps and use linear regression in (5), (6), (7), and (8) to estimate the parameters 

𝛾𝑔,𝑖, 𝜃𝑔,𝑖, 𝛾𝑐,𝑖, 𝜃𝑐,𝑖 (𝑖 = 1, … ,4). Finally, the impact factors 𝜑𝑔,(1,2), 𝜑𝑔,(2,3), 𝜑𝑔,(3,4), 𝜑𝑐,(1,2) 𝜑𝑐,(2,3), 

and 𝜑𝑐,(3,4), are empirically set to   

 

{

𝜑𝑔,(1,2) = 𝜑𝑐,(1,2) = 0.004

𝜑𝑔,(2,3) = 𝜑𝑐,(2,3) = 0.0015

𝜑𝑔,(3,4) = 𝜑𝑐,(3,4) = 0.0010.
                                                (9) 

 

The QP settings to determine the model parameters are shown in Table 1. 
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Table 1. QP settings for pre-coding. 

Model parameters 𝑄𝑃𝑔,1 𝑄𝑃𝑔,2 𝑄𝑃𝑔,3 𝑄𝑃𝑔,4 𝑄𝑃𝑐,1 𝑄𝑃𝑐,2 𝑄𝑃𝑐,3 𝑄𝑃𝑐,4 

𝛼𝑔,1, 𝛿𝑔,1; 𝛼𝑔,2, 𝛿𝑔,2; 𝛼𝑔,3, 𝛿𝑔,3; 𝛼𝑔,4, 𝛿𝑔,4; 𝛼𝑐,1, 𝛽𝑐,1, 𝛿𝑐,1; 𝛼𝑐,2, 𝛽𝑐,2, 𝛿𝑐,2; 

𝛼𝑐,3, 𝛽𝑐,3, 𝛿𝑐,3; 𝛼𝑐,4, 𝛽𝑐,4, 𝛿𝑐,4 

30 30 30 30 40 40 40 40 

36 36 36 36 30 30 30 30 

38 38 38 38 28 28 28 28 

𝛾𝑔,1, 𝜃𝑔,1; 𝛾𝑐,1, 𝜃𝑐,1; 

𝛾𝑔,2, 𝜃𝑔,2; 𝛾𝑐,2, 𝜃𝑐,2; 

𝛾𝑔,3, 𝜃𝑔,3; 𝛾𝑐,3, 𝜃𝑐,3; 

𝛾𝑔,4, 𝜃𝑔,4; 𝛾𝑐,4, 𝜃𝑐,4 

30 30 30 30 40 40 40 40 

36 36 36 36 30 30 30 30 

38 38 38 38 28 28 28 28 

17 25 33 41 17 25 33 41 

33 25 33 41 33 25 33 41 

17 41 33 41 17 41 33 41 

17 25 49 41 17 25 49 41 

19 24 29 34 19 24 29 34 

34 24 40 37 34 24 40 37 

27 41 37 45 27 41 37 45 

27 17 37 45 27 17 37 45 

 

3.3 Solution 

Model-based DE solution 

To solve the rate-distortion optimization problem (2), we apply a DE variant to the analytical models 

presented in Section 3.1. Starting from a population of randomly selected solutions, DE generates for 

each solution an offspring by perturbing another solution from the population with a scaled difference 

of two randomly selected solutions from the population. If the offspring is a better solution than the 

parent, the parent is replaced by the offspring. This procedure is repeated for a given number of 

iterations. One of the advantages of DE is that it has only three control parameters: the population size 

𝑁𝑃, a scaling factor 𝜇 that scales the difference of the two randomly selected solutions, and a crossover 

rate 𝐶𝑅 that controls the number of parents that may be replaced.  

 

 The details of the implemented algorithm are as follows. A candidate solution (agent) for problem (2) 

is denoted by 𝒙 = (𝑸𝑔, 𝑸𝑐) = (𝑥1, 𝑥2, … , 𝑥2𝑁).  

 

• Choose a population size 𝑁𝑃, an interval 𝐼 for the scaling factor, and a number of iterations 

𝑛.  

• Build a population of 𝑁𝑃  agents 𝒙(1) ,…,  𝒙(𝑁𝑃) such that each component 𝑥𝑖
(𝑗) , 𝑖 =

1, … ,2𝑁; 𝑗 = 1, … , 𝑁𝑃, is randomly chosen in the set of quantization steps 

{𝑞0, … , 𝑞𝑀−1} and 𝑅(𝒙(𝑗)) ≤ 𝑅𝑇 for 𝑗 = 1, … , 𝑁𝑃.  

• FOR  𝑘 = 1 to 𝑛 

o If 𝑘 <
2

3
𝑛, set the crossover rate to 𝐶𝑅 = 0.9; otherwise, set 𝐶𝑅 = 0.1; 

▪ FOR 𝑗 = 1 to 𝑁𝑃 

Step 1: Select randomly from the population three different agents 𝒂, 𝒃, 𝒄 that are 

also different from 𝒙(𝑗) 

Step 2:  Select randomly an index  𝑟 such that 1 ≤ 𝑟 ≤ 2𝑁 

Step 3:  Compute a candidate new agent 𝒚(𝑗) as follows:    

▪ For each   𝑖 ∈  {1, … ,2𝑁} , choose a random number 𝑟𝑖 according to 

a uniform distribution in (0,1). Choose a scaling factor 𝑤 randomly 

in 𝐼.  

▪ If 𝑟𝑖 ≤ 𝐶𝑅  or 𝑖 = 𝑟, then set 𝑦𝑖
(𝑗) = 𝑎𝑖 + 𝑤 × (𝑏𝑖 − 𝑐𝑖); otherwise, 

set 𝑦𝑖
(𝑗) = 𝑥𝑖

(𝑗)  
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▪ If 𝑦𝑖
(𝑗) < 𝑞0, set 𝑦𝑖

(𝑗) =  𝑞0.  If 𝑦𝑖
(𝑗) >  𝑞𝑀−1, set 𝑦𝑖

(𝑗) =  𝑞𝑀−1.  

Step 4: If 𝐷(𝒚(𝑗)) < 𝐷(𝒙(𝑗)) and 𝑅(𝒚(𝒋)) ≤ 𝑅𝑇 , note 𝑗.  

END FOR 

                          FOR 𝑗 = 1 to 𝑁𝑃, replace 𝒙(𝑗) by 𝒚(𝑗)  if 𝑗 was noted in Step 4.  

                           END FOR 

          END FOR  

• Select the agent from the population that gives the lowest distortion 𝐷  and round the 

components of this agent to the nearest values in the set {𝑞0, … , 𝑞𝑀−1}. 

 

Our implementation differs from standard DE in three ways. First, we decrease the crossover rate 𝐶𝑅 

at runtime to increase the exploitation pressure. As shown in [11], DE frameworks are prone to 

stagnate. That is, the population of the algorithm is diverse and yet searches in the decision space 

without succeeding at generating a solution outperforming the best individual of the population. This 

stagnation can be mitigated by exploiting the search directions available in the DE population [12]. A 

reduction in the crossover rate 𝐶𝑅  makes the offspring similar to the generating parent and thus 

exploits the available genotypes. Second, in accordance with [13], we select the scaling factor 𝜇 

randomly to retain population diversity as the search progresses. Our experiments show that this 

randomization is beneficial. 

 

 Another way of solving problem (2) is to use conventional non-evolutionary constrained nonlinear 

optimization algorithms. However, when the problem is not convex, such algorithms are only 

guaranteed to find local minima and are very sensitive to the starting point of the algorithm. 

 

Encoding-based DE solution 

An alternative to the model-based optimization described in the previous section is to apply our DE 

variant to the actual rate and distortion functions. This approach is computationally intensive since we 

must encode the point cloud each time the distortion and rate are evaluated. First, we rewrite problem 

(2) as 

                              min
𝒙

 [𝐷(𝒙) = 𝜔𝐷𝑔(𝒙) + (1 − 𝜔)𝐷𝑐(𝒙)]                                            (10) 

𝑠. 𝑡.     𝑅(𝒙) ≤ 𝑅𝑇 ,                                                                  

where 𝒙 = (𝑥1, 𝑥2, … , 𝑥2𝑁) = (𝑄𝑔,1, 𝑄𝑔,2, … , 𝑄𝑔,𝑁 , 𝑄𝑐,1, 𝑄𝑐,2, … , 𝑄𝑐,𝑁) . Let 𝑓  be the one-to-one 

correspondence that maps a quantization step 𝑥 ∈ (𝑞0, … , 𝑞𝑀−1) to a QP, i.e., 𝑓(𝑥) ∈ {0, … , 𝑀 − 1}. 

Each solution 𝒙  of problem (10) can be mapped in a unique way to a vector 𝑿 = 𝐹(𝒙) =

(𝑓(𝑥1), 𝑓(𝑥2), … 𝑓(𝑥2𝑁)). The algorithm proceeds as follows. 

 

Parameter setting: Choose a population size 𝑁𝑃, an interval 𝐼 for the scaling factor 𝜇, and a 

number of iterations 𝑛. 

Initialization: Build a population of NP vectors 𝑿(1), … , 𝑿(𝑁𝑃) by randomly choosing each 

component X𝑖
𝑗
, 𝑖 = 1, … , 2𝑁; 𝑗 = 1, … , 𝑁𝑃, in the set {0,1, … 𝑀 − 1}. 

for 𝑘 =  1 to 𝑛 do 

if 𝑘 <  2𝑛 3⁄  then 

Set the crossover rate CR to 0.9 

else 

𝑪𝑹 = 0.1 

end if 

for 𝑗 =  1 to NP do 
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Step 1: Select randomly from the population three different vectors 𝑨, 𝑩, 𝑪 that are 

also different from 𝑿(𝑗) 

Step 2: Select randomly an integer r such that 1 ≤ 𝑟 ≤  2𝑁. 

Step 3: Build a candidate vector 𝒀(𝑗) as follows. For each 𝑖 ∈ {1, … ,2𝑁}, choose a 

random number 𝑟𝑖  according to a uniform distribution in (0.1, 0.9). Choose a scaling factor 𝜇 

randomly in I. If 𝑟𝑖 ≤ 𝐶𝑅 or 𝑖 =  𝑟, then set 𝒀𝑖
(𝑗)

=  𝑟𝑜𝑢𝑛𝑑(𝐴𝑖 + 𝜇(𝐵𝑖 − 𝐶𝑖)); otherwise, set 

𝒀𝑖
(𝑗)

= 𝑿𝑖
(𝑗)

. Here, round means rounding to the nearest integer in the set {0, … , 𝑀 − 1}. 

Step 4: If 𝐷 (𝐹−1(𝒀(𝑗)))  <  𝐷 (𝐹−1(𝑿(𝑗))) and 𝑅 (𝐹−1(𝒀(𝑗))) ≤ 𝑅𝑇 , mark 𝑗. 

end for 

for 𝑗 =  1 to 𝑁𝑃 do 

replace 𝑿(𝑗) by 𝒀(𝑗) if j was marked in Step 4. 

end for 

end for 

Output: Select the vector from the population that gives the lowest distortion 𝐷. 

 

Note that we use rounding inside the iterations so that the actual distortion and rate can be computed. 
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4 Experimental Results  

In this section, we use our two DE-based optimization algorithms to solve the rate-distortion 

optimization problem for the encoding of a group of frames consisting of four frames with the low-

delay configuration of V-PCC test model V12 [4]. Tables 2 and 3 show the geometry and color QPs 

of each frame for various point clouds and target bitrates. The bitrates are expressed in kilobits per 

million points (kbpmp). The tables show that the QPs computed by the proposed algorithms can be 

significantly different from the ones computed with the method in [8].  

Table 2. Comparison between the method in [8] and the model-based DE solution 

Point Cloud 

Target 

bitrate 

(kbpmp) 

(QP_g1,QP_g2,QP_g3,QP_g4,QP_c1,QP_c2,QP_c3,QP_c4) 

[8] Model-based 

soldier 

65 (36, 36, 36, 36, 38, 38, 38, 38) (38, 38, 37, 39, 40, 38, 38, 38) 

125 (30, 30, 30, 30, 34, 34, 34, 34) (32, 32, 31, 33, 36, 34, 33, 33) 

165 (28, 28, 28, 28, 32, 32, 32, 32) (30, 30, 29, 30, 33, 32, 31, 31) 

210 (26, 26, 26, 26, 30, 30, 30, 30) (28, 28, 27, 28, 32, 31, 29, 30) 

265 (24, 24, 24, 24, 28, 28, 28, 28) (26, 27, 25, 26, 30, 29, 28, 28) 

365 (22, 22, 22, 22, 26, 26, 26, 26) (24, 24, 22, 23, 28, 27, 26, 26) 

queen 

65 (30, 30, 30, 30, 40, 40, 40, 40) (33, 31, 27, 31, 40, 39, 38, 40) 

125 (24, 24, 24, 24, 34, 34, 34, 34) (27, 26, 20, 25, 35, 34, 34, 35) 

165 (22, 22, 22, 22, 32, 32, 32, 32) (25, 24, 18, 23, 33, 32, 31, 33) 

210 (22, 22, 22, 22, 30, 30, 30, 30) (22, 22, 16, 22, 31, 31, 30, 32) 

265 (22, 22,  22, 22, 28, 28, 28, 28) (21, 20, 13, 20, 30, 29, 28, 30) 

365 (22, 22, 22, 22, 24, 24, 24, 24) (18, 18, 11, 17, 28, 27, 26, 28)  

loot 

65 (36, 36, 36, 36, 36, 36, 36, 36) (37, 37, 38, 38, 37, 36, 35, 35)  

125 (30, 30, 30, 30, 30, 30, 30, 30) (32, 31, 31, 31, 32, 31, 30, 30)  

165 (26, 26, 26, 26, 28, 28, 28, 28) (29, 28, 28, 29, 31, 29, 27, 28)  

210 (24, 24, 24, 24, 28, 28, 28, 28) (27, 26, 26, 27, 29, 28, 26, 27)  

265 (22, 22, 22, 22, 26, 26, 26, 26) (25, 24, 24, 25, 27, 26, 24, 25)  

365 (22, 22, 22, 22, 22, 22, 22, 22) (22, 21, 21, 22, 25, 24, 21, 23)  

basketballplayer 

30 (40, 40, 40, 40, 40, 40, 40, 40) (38, 41, 43, 43, 40, 40, 41, 41)  

65 (32, 32, 32, 32, 34, 34, 34, 34) (31, 34, 36, 34, 34, 35, 34, 34)  

125 (26, 26, 26, 26, 28, 28, 28, 28) (25, 28, 29, 28, 30, 30, 29, 29)  

165 (24, 24, 24, 24, 26, 26, 26, 26) (23, 27, 27, 26, 28, 28, 27, 27)  

210 (22, 22, 22, 22, 24, 24, 24, 24) (21, 24, 25, 23, 27, 26, 25, 26)  

265 (22, 22, 22, 22, 22, 22, 22, 22) (20, 22, 22, 21, 25, 25, 24, 24)  

redandblack 

90 (40, 40, 40, 40, 40, 40, 40, 40) (37, 43, 41, 44, 40, 41, 40, 41)  

180 (32, 32, 32, 32, 34, 34, 34, 34) (31, 36, 33, 36, 34, 34, 33, 34)  

270 (28, 28, 28, 28, 30, 30, 30, 30) (28, 32, 28, 32, 31, 31, 29, 30)  

360 (26, 26, 26, 26, 28, 28, 28, 28) (25, 30, 25, 28, 29, 28, 27, 27)  

480 (24, 24, 24, 24, 24, 24, 24, 24) (23, 26, 22, 25, 26, 26, 24, 25)  

640 (22, 22, 22, 22, 22, 22, 22, 22) (19, 24, 19, 22, 24, 24, 22, 22)  

longdress 

180 (30, 30, 30, 30, 38, 38, 38, 38) (31, 31, 31, 34, 38, 38, 38, 39) 

270 (26, 26, 26, 26, 34, 34, 34, 34) (28, 27, 28, 30, 35, 35, 35, 36) 

360 (24, 24, 24, 24, 32, 32, 32, 32) (26, 24, 25, 27, 33, 33, 33, 34) 

480 (22, 22, 22, 22, 30, 30, 30, 30) (24, 22, 22, 24, 31, 31, 31, 32) 

640 (22, 22, 22, 22, 28, 28, 28, 28) (21, 20, 20, 23, 29, 29, 29, 30) 

840 (22, 22, 22, 22, 26, 26, 26, 26) (19, 17, 16, 20, 27, 27, 28, 28)  
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Table 3.  Comparison between the method in [8] and the encoding-based DE solution 

Point Cloud 

Target 

bitrate 

(kbpmp) 

(QP_g1,QP_g2,QP_g3,QP_g4,QP_c1,QP_c2,QP_c3,QP_c4) 

[8] Encoding-based 

soldier 

65 (36, 36, 36, 36, 38, 38, 38, 38) (34, 42, 40, 44, 35, 43, 42, 44) 

165 (28, 28, 28, 28, 32, 32, 32, 32) (24, 30, 31, 33, 29, 37, 33, 37) 

265 (24, 24, 24, 24, 28, 28, 28, 28) (19, 28, 24, 27, 26, 33, 30, 34) 

365 (22, 22, 22, 22, 26, 26, 26, 26) (18, 22, 20, 21, 25, 30, 27, 30) 

queen 

65 (30, 30, 30, 30, 40, 40, 40, 40) (25, 36, 27, 33, 36, 40, 40, 43) 

165 (22, 22, 22, 22, 32, 32, 32, 32) (18, 24, 21, 28, 29, 34, 34, 36) 

265 (22, 22,  22, 22, 28, 28, 28, 28) (17, 19, 18, 21, 26, 31, 30, 31) 

365 (22, 22, 22, 22, 24, 24, 24, 24) (14, 16, 17, 27, 22, 29, 29, 29)  

loot 

65 (36, 36, 36, 36, 36, 36, 36, 36) (34, 37, 37, 42, 33, 38, 37, 40)  

165 (26, 26, 26, 26, 28, 28, 28, 28) (23, 28, 25, 33, 27, 32, 29, 31)  

265 (22, 22, 22, 22, 26, 26, 26, 26) (17, 24, 22, 24, 24, 28, 28, 27)  

365 (22, 22, 22, 22, 22, 22, 22, 22) (19, 18, 18, 23, 22, 26, 24, 26)  

longdress 

180 (30, 30, 30, 30, 38, 38, 38, 38) (26, 32, 34, 32, 36, 37, 38, 39) 

360 (24, 24, 24, 24, 32, 32, 32, 32) (23, 22, 26, 24, 32, 33, 34, 34) 

640 (22, 22, 22, 22, 28, 28, 28, 28) (17, 17, 20, 19, 29, 29, 31, 31) 

840 (22, 22, 22, 22, 26, 26, 26, 26) (16, 16, 18, 14, 28, 29, 28, 28)  
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5 Conclusion  

In this deliverable, we proposed two DE-based solutions to optimize the QPs for the rate-distortion 

optimization problem for V-PCC. The first solution applies DE to the analytical rate and distortion 

models, while the second one applies it to the actual rate and distortion functions. In Deliverable D4, 

we will provide detailed experimental results for the proposed algorithms and compare them to the 

state of the art. 
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6 Appendix A: Quantization 

 

 Relationship between QP and quantization step (𝑄𝑠𝑡𝑒𝑝) 

QP 𝑄𝑠𝑡𝑒𝑝 QP 𝑄𝑠𝑡𝑒𝑝 QP 𝑄𝑠𝑡𝑒𝑝 QP 𝑄𝑠𝑡𝑒𝑝 QP 𝑄𝑠𝑡𝑒𝑝 QP 𝑄𝑠𝑡𝑒𝑝 QP 𝑄𝑠𝑡𝑒𝑝 

0 0.625 8 1.625 16 4 24 10 32 26 40 64 48 160 

1 0.6875 9 1.75 17 4.5 25 11 33 28 41 72 49 176 

2 0.8125 10 2 18 5 26 13 34 32 42 80 50 208 

3 0.875 11 2.25 19 5.5 27 14 35 36 43 88 51 224 

4 1 12 2.5 20 6.5 28 16 36 40 44 104 

NA 
5 1.125 13 2.75 21 7 29 18 37 44 45 112 

6 1.25 14 3.25 22 8 30 20 38 52 46 128 

7 1.375 15 3.5 23 9 31 22 39 56 47 144 
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