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Abstract

Network Access Control (NAC) systems are technologies and defined policies typically
established to control the access of devices attempting to connect to enterprise networks.
However, NAC limitations have led to security threats that can lead to illegal and
unauthorised access to networks as well as insider misuse. Current NAC configuration
settings rely on point of entry authentication systems including passwords, biometrics,
two-factor, and multi-factor authentication to protect employees, but this reliance
can lead to security susceptibilities that can significantly damage enterprise network
systems. In addition, incorporating NAC into the growing Bring Your Own Device
(BYOD) paradigm further increases the security threats, vulnerabilities and risks
potentials in enterprise network environments. Regardless of any existing security
solutions, such as anti-malware, anti-virus and intrusion detection and prevention
systems, security issues continue to rise within BYOD, with a proportionate increase
in consequences and impacts.

This thesis explores novel solution paths to the above challenges by investigating
device-type fingerprinting and behaviour profiling to improve the security of NAC. This
is achieved by proposing a novel Intelligent Filtering Technique (IFT) that uses packet
Inter-Arrival Time (IAT) data for smartphones, tablets and laptops to profile and
identify abnormal patterns based on device-types. The IFT is composed of three data
mining algorithms, namely K-means clustering, clustering-based multivariate gaussian
outlier score, and long short-term memory networks algorithms. These algorithms
are capable of identifying abnormal inter-arrival time patterns based on device-types.
Despite the complexity of these algorithms and the huge volume of datasets involved,
the IFT produces good results with high identification accuracy and a low number of
false positives.

The effectiveness of the proposed technique is evaluated using a combination of
datasets from different network traffic protocols, such as Transmission Control Protocol
(TCP), User Datagram Protocol (UDP) and Internet Control Message Protocol (ICMP),
as well as synthetic datasets. The results of the evaluation indicate good performance,
with accuracies above 99%, and show that the IFT can be generalised. To the best of



x

the author’s knowledge, this is the only technique to date that can identify abnormal
inter-arrival time patterns based on the device-type. The new technique can improve
intrusion detection system capabilities and outcomes by using device-type profiling to
reduce the false positive rates of detected abnormal patterns.

Keywords:
Bring Your Own Device, Network Access Control, Device-Type Fingerprinting, Be-
haviour Profiling, Intelligent Filtering Technique, Outlier Detection, Long Short-Term
Memory Networks
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Chapter 1

Introduction and Overview

The incorporation of network access control into Enterprise Mobility Management
(EMM) solutions still does not leave BYOD enterprise network without security limita-
tions. This thesis attempts to address some of the network access control limitations
in relations to the BYOD-type EMM solutions and their enabling technologies. Specif-
ically, section 1.1 describes various enterprise mobility management solutions and
network access control systems. A detailed background of the study is then presented
in section 1.2 to provide understanding on NAC systems and their associated limita-
tions. The research aim, objectives, and research questions are presented in sections
1.3 and 1.4. Section 1.5 details the main contributions made by this research, and
section 1.6 summarise the chapter and present the overall thesis structure.

1.1 Introduction
BYOD is a policy that allows employees to bring the devices of their choice to access
the enterprise resources that allow them to perform their daily work-related tasks.
The widespread adoption of BYOD lead to a technological innovation in an enterprise
network with policies that deliver new and significant business capabilities. The most
commonly used personal devices for BYOD are smartphones, tablets and laptops [5],
[6], [7], with the enabling technologies for BYOD being EMM solutions and Network
Access Control systems [8], [9]. EMM is a set of solutions, processes and technologies
designed to manage, monitor and control mobile devices in the workplace [10]. The
basic function of EMM is to work in conjunction with NAC to prevent unauthorised
and illegal access to enterprise networks [11], [12].

EMM involves a combination of three technologies, namely Mobile Device Man-
agement (MDM), Mobile Application Management (MAM) and Mobile Information



2 Introduction and Overview

Management (MIM), to monitor and control devices in an enterprise network environ-
ment. MDM is security software that is implemented using an Application Program
Interface (API) to manage, monitor and control the data on mobile devices [13]. It can
be deployed on multiple platforms and supports multiple Operating Systems (OSs) to
provide additional security measures [8]. MDM enforces security policies on a device
to allow for the possibility of encrypting and wiping data both locally and remotely.
The security policies are enforced to authenticate and install digital certificates as
well as create individual profiles for each device connecting to the BYOD platform.
Also, it has Over-the-Air (OTA) mechanism that helps to deliver the initial MDM
configurations to install and remove applications, lock/wipe a device, remote back-ups
of data and restoration of files [13]. MDM is intended to optimise the security and
functionality of mobile communication networks while minimising costs and downtime.
Traditionally, MDM supports the installation of an enterprise application on a device
called an ‘agent’. An agent is used to communicate with the enterprise management
servers to transfer users’ data and apply the relevant security policies on the device in
question [14]. MAM and MIM are added to enterprise mobility management solutions
due to MDM limitations and inability to separate between the personal and corporate
data spaces. MAM is software responsible for provisioning and controlling access to
mobile applications. MIM emerges as an add-on to maintain the integrity of enterprise
information by encrypting data in a secure container in a remote location and share
them between different endpoints and platforms [14], [15].

NAC systems are technologies and defined policies aimed at controlling network
access to devices attempting to gain access to enterprise networks. An enterprise
network is a complex and dynamic environment that includes the communication
backbone for computers and other devices across different departments in organisations
and workgroup networks accessing and sharing data [16]. The purpose of NAC is to
control access to the enterprise network in order to prevent unauthorised users and
workgroups from gaining such access. The enterprise network integrates all operating
systems including Windows, macOS, Unix, and related devices such as smartphones,
tablets and laptops to access data through client-server applications that allow for user
authentication. NAC systems unify endpoint security solutions to manage and prevent
unauthorised or illegal devices from accessing enterprise networks. The endpoint
security solutions use a set of protocols to define the policies that secure devices in
the initial network access stage [17]. These policies are defined to ensure that devices
are correctly configured and operating efficiently. NAC has functions that work with
EMM to verify protection against viruses, botnets, malware, spyware and other security
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threats that can be transmitted across networks [18]. Another function of NAC is to
ensure that devices are compliant with enterprise policy requirements. These policies
ensure that before the devices are allowed access to the associated enterprise network,
they are checked against security patches and updates, among others [19]. NAC has
gained increasing popularity due to the tremendous growth in BYOD and the fact that
enterprise networks no longer defend on the traditional security measures [20]. NAC
security standards operate in IEEE 802.1x protocols to define and encapsulate network
traffic based on the Extensible Authentication Protocol (EAP) over IEEE 802 [21].
These are established standards based on traffic encryption and integrity that protects
enterprise networks from unauthorised and illegal access.

Incorporating NAC functions and capabilities into EMM solutions still does not leave
BYOD enterprise networks completely immune and without problems. In particular,
NAC in BYOD-type enterprise networks still have security vulnerabilities that can
be identified and exploited by attackers. Ideally, BYOD enterprise networks would
have no or significantly reduced problems with the application of NAC technologies.
However, as information technologies advance to resolve certain problems, new ones
inadvertently emerge, including the security context. It is only rational to engage in
continuous efforts to address problems as they emerge and are recognised. Hence, this
study considers some of the problems in improving NAC in BYOD enterprise networks.

1.2 Background of the Problem
As smartphones are becoming more powerful in workplaces, many organisations are
enjoying the convenience of BYOD as it reduces the cost of buying and maintaining
their own devices [22]. As well as improving the productivity of those employees using
such devices, they are more comfortable using them anytime and anywhere [23]. Many
organisations consider BYOD to represent an opportunity rather than a challenge
[24], [25], [26]. Although employees can have access to enterprise networks with their
devices at any time and anywhere, this can give rise to many significant challenges [27].
Most of these are related to access control, in which an attacker uses tricks to bypass
an organisation’s security to access their network and steal valuable data (illegally). In
order to protect organisations against security attacks and network access challenges,
the organisations themselves should be the key enablers for all the services they provide
to their employees. These services can include network access, infrastructure upgrades,
phone bills, training and support, among others, else the security issues remain the
same. However, the proliferation of BYOD has resulted in increased complexity of
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enterprise network security as a result of inconsistent policies and management controls
across both their wired and wireless segments [12], [28]. Other concerns may arise due
to lack of sufficiently innovative solutions to control the employee devices accessing
the enterprise networks [29]. Such insecurity renders mobile devices open to malicious
attackers. Once an attacker possesses a lost or stolen device, they can become, in
effect, an internal user and use the sensitive information contained on the device to
cause considerable damage to the organisation’s network [30]. Once this situation
occurs, all the network access control systems employed by the organisation would be
rendered ineffective [15], [31]. As security is a key concern for BYOD platforms [32]
due to the susceptibility of mobile devices to malicious attacks [14], current security
measures need to be strengthened to overcome the security challenges posed by BYOD
and to sustain its benefits to organisations. For example, where a device and/or access
credential that belongs to valid user is used by an unauthorised user to access the
enterprise network/platform, traditional access control systems are not able to detect
such impersonation and unauthorised access given their reliance on correct devices
usage and/or user credentials. Enterprise networks should not depend or rely on
traditional security measures such as; antivirus and anti-malware solutions, intrusion
detection and prevention systems, among others, to overcome the above challenges [33].
Although these security measures help to mitigate unauthorised security intrusion,
however, scanning mobile devices can quickly drain their batteries. Mobile devices
bear limited power that typically lasts less than eighteen hours. Thus, controlling
access from the network would be a better solution approach by which to deal with
the above BYOD security challenges [34]. For example, having a post-authorisation
system that would consider the behaviour of logged-in devices from the traffic packets
they generate to help differentiate between normal and abnormal device-types, and
control access to network resources. This can help to resolve the issue of recognising
abnormal devices to control access while not wearing out device power.

NAC systems use a set of protocols to define and implement security policies that
provide secure network access to authorised devices during the initial network access
stage. These policies are used to authenticate and authorise devices that comply
with the enterprise’s predefined policies. NAC has many advantages such as visibility
control to notify network administrators about policy violations, manage and inspect
configured network devices, and enforce access control policies to the devices connecting
to enterprise networks, among others [35]. NAC has various limitations, however, such
as the inability to detect advanced persistent threats, and weaknesses in identifying
devices since defined policies might only allow users to pass their credentials to the
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Remote Authentication Dial-In User Service (RADIUS) server but are not applied to
devices [36], [37]. These limitations could lead to security attacks where an attacker
can steal users’ credentials and access an enterprise network with a different device to
flood the network with packets. The attacker can also use their personal devices to
spread ransomware infections to all the devices across the network. All these potential
issues create unique challenges that can seriously affect enterprise networks because
mobile devices are increasingly being targeted by criminals [31]. An intelligent filtering
technique (IFT) can address these concerns by looking into the variation of packet
inter-arrival time patterns of the devices and device-types connected to enterprise
networks to identify and filter abnormal network traffic patterns or abnormal devices.

1.3 Aim and Objectives
The main aim of this research is to develop an intelligent filtering technique with the
capability to fulfil the requirements for more effective network access control security
for BYOD systems. The technique will be implemented according to three steps. The
first of these focusses on the identification and analysis of a dataset suitable for the
research. The second step focusses on developing a device-type profiling approach
using the unlabelled dataset analysed. The final step focusses on the use of the labelled
dataset from the device-type profile to develop and implement the IFT. In order to
achieve the above research aim, the following research objectives will be followed:

1. To investigate the current cybersecurity threats, vulnerabilities, attacks, and
security requirements for BYOD-based Network Access Control systems, and
to understand the feasibility of detecting and filtering abnormal network traffic
patterns.

2. To investigate the application of Artificial Intelligence (AI) techniques and
appropriate datasets for achieving device-type post-authorisations network access
control security in BYOD enterprise network.

3. To explore and analyse the datasets identified in (2) using an applicable AI
technique to gain appropriate insights and support the validity of the device-type
profiling approach.

4. To develop a behavioural profiling approach for classifying and labelling the
network packet inter-arrival times to help with the identification of abnormal
device(s) or device-types that suggest security threats.
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5. To develop an intelligent filtering technique for a BYOD enterprise network based
on device-type profiles, and validate its effectiveness in different experimental
scenarios using appropriate performance metrics.

1.4 Research Questions
This research formed certain criteria based on the research aim and objectives to judge
whether and to ensure that the research has answered the following questions:

1. What are the security risks (threats, vulnerabilities, attacks), security require-
ments associated with BYOD-enabling technologies, and the available security
measures in the domain for addressing the risks and requirements?

2. What are the applicable outlier detection techniques used for addressing network
access control problems and requirements, their strengths and limitations, and
available datasets that fulfil BYOD requirements?

3. Can device-type profiling using packet inter-arrival time be useful for identifying
abnormal devices in BYOD networks/platforms?

4. Can intelligent filtering technique that is based on device-type profiling support
better identification of abnormal device-types in BYOD enterprise networks?

The above research questions will be revisited in the conclusions to ensure that
they have been successfully answered and proven (or otherwise) experimentally.

1.5 Contribution
This research contributes to the field of NAC by developing a device-type IFT intended
for the automatic identification of abnormal device-types that suggest threats using
packet inter-arrival time patterns. The security technique is novel as it uses a post-
authorisation approach with machine learning clustering and classification techniques
to differentiate abnormal network traffic packets from normal ones and thereby control
network access. Furthermore, a unique inter-arrival time data analysis and classification
technique have been developed to explore datasets and validate the device-type profiling
assumptions.

The proposed research experimental settings are unique and present an improvement
of known concepts available in this area as current works use clustering techniques to
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assume normal and abnormal patterns (chapter 3). In addition, other researchers draw
on classification techniques, e.g. neural networks, to classify normal and abnormal
patterns (chapter 3). As an improvement, the technique uses K-means clustering to
understand the inter-arrival time patterns of the data from the devices (chapter 4), and
then uses clustering-based multivariate gaussian outlier score (CMGOS) to distinguish
and label normal and abnormal inter-arrival time patterns (chapter 5) and the long
short-term memory (LSTM) to train the IFT to identify abnormal inter-arrival time
patterns (chapter 6). The novelty of this approach also involves a series of experimental
demonstrations using inter-arrival time datasets and synthetic data to evaluate the
effectiveness of the technique (chapter 7).

1.6 Chapter Summary
In the above chapter (1) the need for an improved security technique for detecting
abnormal patterns in BYOD enterprise networks was introduced. BYOD and its
enabling technologies were also introduced in addition to discussing the current problems
around the inherent security issues and risks in the enabling technologies of BYOD
enterprise networks. Then, the main aim of the research was set out, which is the
development of device-type intelligent filtering technique. The aim was explored
following the set of objectives and research questions are described in sections 1.3 and
1.4, respectively. The main aim and objectives and research questions are addressed in
all the chapters presented in the thesis. Then, the main contribution of this research is
presented. The remaining chapters can be outlined as follows:

Chapter 2 presents a literature review of the network access control domain. The
chapter starts by introducing NAC systems, and their background, history and features.
It also reviews enterprise network security with a view to determining and identifying
the security requirements for BYOD. It then investigates the most prevalent security
attacks instigated against NACs and the available security solutions with a view to
identifying their limitations and ways to improve them.

Chapter 3 describes and justifies all the AI techniques and algorithms used in this
research. The chapter starts with a background study of machine learning and data
mining, and then discusses all the algorithms used in this research along with the
justifications for doing so.

Chapter 4 describes the datasets available, the justifications for their uses and gives
detailed descriptions of them. The datasets described contain the packet IAT traffic of
three different networks measured via active, isolated and passive network monitors.
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Chapter 5 conducts an experimental investigation in order to label and classify
the datasets into normal and abnormal profiles. The chapter describes a device-type
profiling, appropriate experimental settings, and analyses the experiment results gained
from active, isolated and passive network traffic datasets. The last section of the
chapter labels the data for each device-type into normal and abnormal based on
patterns identified by the outlier detection algorithm, specifically clustering-based
multivariate gaussian outlier score.

Chapter 6 develops an IFT based on device-type; it starts by describing the IFT
implementation using the Long Short Term Memory (LSTM) algorithm, and then
conducts experiments using the classified and labelled active, isolated and passive
network traffic datasets based on device-type, analyses the results, and evaluates the
performance of the IFT.

Chapter 7 evaluates the performance of device-type IFT based on the original
and synthetic datasets. It describes and demonstrates synthetic data generation from
active, isolated and passive network traffic datasets, and then evaluates the results in
two distinctive scenarios (such as network traffic rate comparison and synthetic data
generated from the original datasets) to demonstrate the effectiveness of IFT for each
device-type from active, isolated and passive and network traffic datasets.

Chapter 8 gives a series of concluding remarks to the thesis, highlighting the
achievements, and possible future research in this area.



Chapter 2

Network Access Control Systems

Based on the findings from the literature review, a more specific introduction to NAC
systems is given. Briefly, section 2.1 details their associated background and features
and presents the prevalent security challenges and ways to address these, including
currently available security solutions. A background study is then provided in section
2.2 for enterprise security solutions to NAC systems by focusing on research that
has the potential to provide adequate security for enterprise networks. Subsequently,
section 2.3 presents the previous works that use packet inter-arrival times to enhance
NAC security based on profiling and fingerprinting approaches. Finally, the chapter is
summarised in section 2.4.

2.1 Network Access Control systems (NACs)
NAC unifies endpoint security solutions to enable access control and enforce security
policies on devices connected to an enterprise network. NAC policies offer the capability
to identify devices connected to enterprise networks and restrict those that do not
comply with the organisation’s policies [38]. Hence, devices must be policy-compliant
to be allowed access to the appropriate enterprise resources. These policies include
security patches, firewalls, and anti-virus and anti-malware updates. NAC consists of
pre-admission and post-admission phases based on whether the policies are enforced
before or after the devices gain access to the enterprise network. In the pre-admission
phase, the devices are inspected prior to being allowed to access the enterprise network,
whilst the post-admission makes enforcement decisions based on employee actions
after being granted access. NAC includes functions that block infected devices from
spreading malicious code across the enterprise network [39].
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NAC enables network administrators to configure devices to access the enterprise
network through wired and wireless access points. NAC has a powerful authentication
mechanism that verifies the connected devices through the wired and wireless access
points. Additionally, NAC depends on Local Area Network (LAN), Wide Area Network
(WAN) and Virtual Private Network (VPN) remote access to protect organisations
from security threats and attacks. It also enforces access control policies to ensure that
trusted devices can access the network. The increasing prevalence of BYOD is the key
reason why NAC is increasingly becoming an in-demand technology [29], [40].

2.1.1 Background of NAC

Network access control emerged in 2006 to block unauthorised devices from traditional
data centre networks. As the technology evolved, stronger NAC standards evolved
due to the attention from EMM vendors, such as Microsoft, Cisco, the Trusted
Computing Group, and Samsung Knox [41], [42], [43], to meet the challenge of applying
security policies that work across BYOD networks [10], [31]. Over the past decade,
NAC solutions have proved difficult to implement without cross-vendor integration.
Vendors integrate EMM solutions with traditional security measures, such as anti-
virus, anti-malware and intrusion detection systems, to protect enterprise networks.
This integration makes NAC more robust as it hinders network access and filters
devices that do not comply with enterprise policies. However, it has evolved to scan
and block PCs and endpoints that are not registered on the network, however, it
has evolved to authenticate and authorise those devices that comply with corporate
network policies. As organisations are rapidly adopting BYOD, they must ensure
that attackers have not compromised enterprise network access. Before the adoption
of NAC, enterprise networks were self-contained within a well-defined perimeter to
prevent attacks. Currently, this simple perimeter no longer exists due to the addition
of mobile and BYOD devices to enterprise networks. These enterprise networks are
accessed by a great range of endpoints from a large number of locations. Therefore,
enterprises must ensure that the devices connecting to their networks adhere to their
security policies and that the policies support multiple non-standard devices per user.

The IDC report [44], [45] predicted that the NAC market would grow by 31.17%
with a global revenue of $7.065 billion by 2020. Similarly, Grand View Research [46]
projected a 30.2% compound annual growth rate by 2022, with the industry reaching
$4.39 billion in annual revenue by then. The IDC report [44] also forecasted that BYOD
would continue to grow from 96.2 million mobile workers in 2015 to 105.4 million by
2020. The explosive growth of these endpoints creates an expanding perimeter that must
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be contained. This tremendous increase in the use of mobile devices has contributed to
our modern-day life [47], in which ubiquitous sensors are enabled by Wireless Sensor
Network technologies [48]. Therefore, current NAC solutions are capable of registering,
profiling and blacklisting devices that do not comply with organisations’ predefined
policies. NAC can be used with a variety of enabling wireless technologies, such as
radio-frequency identification tags, embedded sensors and actuators [49].

2.1.2 Related Works in NACs

Several studies have been conducted to improve NAC solutions, some of which are
based on open-source NAC solutions, mobile virtualisation and virtual private network
approaches. For example, open-source solutions are freely available for organisations
to modify according to the organisational requirements. A mobile virtual machine
uses virtual mobile infrastructures to run a mobile application and OS on a remote
server to effectively redefine EMM, thereby securing and supporting multiple devices
without wrapping or the modification of the underlying mobile device OS. It also
provides flexibility for users by separating their personal data from enterprise data
based on virtual machine configurations. The data are encrypted using different keys
to ensure that other users or network administrators cannot access the data stored
by the user. Mobile virtual private networks allow users to connect to the enterprise
network through an encrypted tunnel.

Open-Source NAC Solutions

Lin et al. [50] proposed a flexible NAC solution that uses a virtual desktop environment
to automatically enforce access control security policies for mobile devices. The solution
is flexible to the extent that an administrator can configure multiple devices for a single
user. The user can access enterprise resources through a virtual desktop environment
using one device at a time. Another piece of research by Matias et al. [51] proposed
a flow-based NAC using an extended version of IEEE 802.1x to provide an effective
and secure authentication mechanism in the proactive mode. It provides simultaneous
authentication, authorisation and the proactive enforcement of defined network traffic
requested from specific services. These specific services are uniquely provided by the
service providers to avoid network collisions.

Inverse Inc. [52] developed a fully trusted open-source NAC solution called Pack-
etFence. PacketFence has a feature that enforces access control compliance policies
along with remediation, registration and centralised access management on both wired
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and wireless devices. It is integrated with the Snort/supricana intrusion detection
system and a vulnerability scanner to support the 802.1x layer2 isolation of problematic
devices. It also has an inbuilt intrusion detection system function that verifies and
monitors devices after authentication. Chao [53] proposed another open-source solution
called FreeNAC. The solution integrates 802.1x and Cisco virtual local area network
Membership Policy Server port security to provide access control, switch management
and live end-to-end network discovery. It has a function that can track devices on
the network and control how they access network resources with visibility regarding
their network usage. It also queries switches to alert network administrators to obtain
more information about new devices and users connected to an enterprise network.
Furthermore, other solutions available in the market, such as VMware, IBM, and
Samsung Knox, can also improve NAC based on mobile-centric technologies [54].

Mobile Virtual Machine Approaches

The VMware Mobile virtualisation platform presented in [55] uses desktop virtualisation
to deliver end-to-end solutions and facilitate the use of user-owned devices in the
workplace. It separates personal and enterprise workspaces based on type 2 hypervisors.
This solution is easy to use and avoids the need to install EMM solutions on personal
mobile devices. It also allows users to run multiple operating systems simultaneously on
the same device. The solution is coherent, although it cannot obtain the high capabilities
needed to execute in privileged mode because it relies on certain trusted components.
The limitation of this architecture is that VMware has a predefined environment, and
employees and/or organisations cannot redefine this environment according to their
preferences. Andrus et al. [56] proposed a lightweight virtualisation architecture that
enables a single mobile device OS to run multiple virtual machines simultaneously.
The architecture is configured to separate the virtual enterprise environment from the
personal mobile environment to ensure that the device in question is secure. Generally,
this architecture is efficient; it adopts kernel modification techniques and does not
require the user to run multiple OS instances. It gives users the flexibility to run
multiple mobile virtual phones on one device and display only a single application
at a time. However, this framework is limited to Android devices and the virtual
environment is separated, resulting in certain limitations regarding user interaction
and giving rise to certain privacy issues.

The para-virtualisation approach proposed in [57] allows users to perform multiple
tasks from different enterprise locations based on predefined security profiles. Users are
required to connect their personal mobile devices to the enterprise network before they
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are given access to the security profile. The security profile was configured to enforce
software isolation policies on the Android platform, separating work data from device
data at the same time. Each profile can be associated with one or more context, which
determines when the profile is activated. However, while the framework described
above is efficient, it is limited to Android OS and does not support another mobile
OS. It is also resource-intensive for mobile devices and is not amenable to automatic
policy enforcement. It is also unlikely to be able to access the virtual platform through
a mobile device without modifying the employee data. Further limitations to these
approaches are discussed in detail in [18], [58], to which the reader is referred for further
information.

Mobile Virtual Private Network Approaches

Chunle et al. [59] proposed an enhancement of NAC using mobile virtual private
networks. This is a technique that establishes secure network access and communication
through network terminals. Also, it adopts the characteristics of authentication,
encryption, key management and compression algorithms in traditional virtual private
networks. Mobile virtual private network technologies have, to date, been considered an
optimised and parallel reposition of traditional virtual private networks. This traditional
virtual private network has made considerable progress in decreasing transmission
delays, increasing throughput and reducing computational overheads [60]. This solution
can be implemented to prevent employees from gaining unauthorised access to their
organisation’s data [61]. Several research efforts have been conducted to improve the
security of mobile devices when connecting through virtual private network channels.

Uskov [62] developed a systematic approach that generates different mobile virtual
private network solutions to enhance NAC The solution is effective, but it needs
system administrators to analyse a variety of virtual network architectures, topologies
and/or a combination thereof to provide adequate access to enterprise networks. Also,
Garg et al. [63] improved mobile device authentication through mobile virtual private
networks based on the session key agreement approach. The session key provides
users with secure authentication services to the Socks v5 protocol for a virtual private
network using a mobile phone to access enterprise networks. The session keys are
generated based on the mobile device’s international mobile subscriber identity, which
provides a unique identification. Another research effort by Chunle et al. [59] proposed
the Communication Supportable Generic Model (CSGM) for mobile virtual private
networks, which addresses the gaps between the mobile network environment and
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mobile virtual private networks based on a scalable and stable virtual private network
service.

Having the above security measures in place is efficient and can protect NAC
systems from most security issues. However, the use of mobile devices to initiate
connectivity to mobile virtual machines and virtual private networks can give rise
to certain security concerns, particularly for wireless network connections. For this
reason, additional solutions are required to tighten up NAC security issues. Also, due
to the recent increase in the use of smartphones and tablets resulting from BYOD,
reliable connections can be very difficult to achieve due to both human and non-human
error [59]. The human factors involve users who are actively switching, opening or
closing network access, whereas external environments are usually the cause of non-
human errors. These factors can affect mobile virtual private network performance
as well as cause frequent application failure, reduce productivity and increase data
loss. Also, Information Security Officers may struggle to find the balance between
data protection and implementing access control policies for their IT infrastructures
[64]. These issues are critical when organisations do not own the devices used by their
employees. Therefore, this research aims to develop solutions to secure NAC by looking
into existing NAC features and finding ways to improve them.

2.1.3 Features of NAC

NAC system features are designed to enforce access control policies and mitigate against
insider attacks within enterprise networks based on two-tier strategies implemented
before and after access has been gained. These two-tier strategies constitute a pre-
admission and a post-admission phase. The pre-admission phase is used to verify
that the device attempting to connect to the enterprise network complies with an
associated predefined set of policies, which include malware and antivirus detection and
security patches installed on devices. If a device passes verification, it is granted access;
otherwise, it is quarantined or blocked from the enterprise network. The post-admission
phase controls the network hosts to ensure that the devices have complied with the
appropriate enterprise policies. This includes monitoring the network traffic to detect
deviations from normal network patterns and pushing security updates [65], [66], [67].

NAC uses the features described above to allow access control decisions based on
intelligent agents. The intelligent agent can be installed or configured independently
within a network to inform the network administrators about the behaviour of the end
systems. This approach has been adopted by modern operating systems to provide
network access protection agents as part of their releases [68], [69]. The agents work in
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two ways, namely the out-of-bound mode and inline mode. The former is configured
in a central server such that the agents can control the switches to enforce access
control policies and distribute the policies to the end systems. The latter is a client
solution that acts as an internal firewall for access-layer networks and enforces access
control policies. The remediation strategy feature allows network administrators to
deny network access to or otherwise quarantine users who do not have up-to-date
patches installed on their devices. The most commonly used features of remediation
strategies are quarantine and captive portals. The quarantine feature is implemented
based on a Virtual Local Area Network (VLAN) to restrict users with routed access
to specific hosts and applications, whereas the captive portal intercepts the network
access and redirects users to update their security patches.

2.1.4 NAC Security Challenges

The NAC systems authenticate and authorise user access to an enterprise network
through the installation of software applications on employee devices that passes
their login credentials to a RADIUS server. Given that NAC is a client application
that authorises and passes user credentials to a RADIUS server for authentication, it
becomes clear that NAC ultimately authorises users – not their devices. Therefore, an
employee can take advantage of this limitation to transfer their credentials to other
devices and thus gain unauthorised access to the enterprise network. Another limitation
of NAC is that it supports a limited range of devices, that is, Windows and MacOS
and deems other devices, such as printers and gaming systems, unmanageable [70].
Also, after NAC authenticates a user, it lacks the functions to detect and deal with
abnormal network traffic patterns [71]. Additionally, NAC lacks device authentication
and management functions as it only authenticates users, not devices [43], [72]. These
limitations can lead to various security challenges.

Specifically, these challenges include an attacker with an employee device stealing
their user credentials and thus gaining access to the enterprise network through the
device to, for instance, deceive the enterprise server by flooding the network with packets
or to steal sensitive information [73]. Also, the attacker can use the limitations of NAC
to cause damage to an organisation’s reputation. Insiders can pose another kind of
challenge if they are aware of these limitations; for example, as they cannot be detected,
they can use their privileges to cause damage to an enterprise network. Perhaps one of
the most significant forms of such damage is exposing customer and employee personal
data [74]. Such breaches also include identity theft, the inappropriate use of data or the
sale of sensitive information, leaving an organisation liable for the associated damage
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and potentially leading to regulatory compliance. Also, a competitive organisation’s
position might suffer due to the trading of intellectual property for unauthorised
purposes by internal employees [75], [76]. Other challenges lead to system damage,
such as server downtime, infected enterprise devices, and disrupted business operations.
Therefore, NAC systems should cover the limitations mentioned above to deal with
the inherent security challenges affecting the implementation of BYOD in the majority
of enterprise networks.

2.2 Enterprise Security Requirements for NAC
The security requirement is vital to the solutions to the different security challenges
of enterprise networks. If critical security requirements are provided, then security
will be much easier to achieve. Additionally, these security requirements (confidential-
ity, integrity, availability and non-repudiation) should be implemented in enterprise
networks to provide high-level security, although it is impossible to implement all of
them in a BYOD environment. They are designed to ensure that organisations can
identify the set of key requirements they need to secure their systems. For example, this
research aims to improve NAC systems, which are one of the key security requirements.
Additionally, all security requirements designed by an organisation should achieve
certain implementation objectives [77], [78], [79].

2.2.1 Overview of Security Requirements

• Confidentiality: The design of enterprise network security should ensure that
only authorised users have access to authorised network resources; moreover,
it should safeguard the privacy of the authorised enterprise resources from
unauthorised users and attackers. Confidentiality can be obtained using any of
the well-known mechanisms, such as encryption, authentication and access control.
Authentication and access control prevent unauthorised users and attackers from
accessing the transmitted information that passes through a network.

• Integrity: This ensures that the enterprise network guarantees that the data
are not modified, deleted, removed, recorded, corrupted or retransmitted by
unauthorised users, either intentionally or unintentionally. It must ensure that
illegal, unauthorised users and attackers do not modify any data or information
transmitted through the network, and there should also be an indication of
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information replay, which is essential in daily operations where such changes
could cause severe damage.

• Availability: This must ensure and guarantee that only legitimate devices have
on-demand access to enterprise resources. Also, security systems should ensure
that illegitimate users and attackers do not block access to wireless network
resources because attackers can compromise the availability of a network and
there is a need for mechanisms to safeguard such availability.

• Non-repudiation: This ensures that the receiver and sender cannot deny the
reception or sending of data to or from other end devices. This approach can
detect and isolate compromised end nodes. If Device A receives an erroneous
message from Device B to break down Device A‘s security, Device A can thereafter
‘accuse’ Device B of sending erroneous information and expose Device B to other
end devices to convince them that end device B is malicious and should not be
routed through in the future. This is very important in cases of disagreement of
this sort and can be obtained using digital signatures that relate the data, for
example, fingerprinting techniques.

2.2.2 Overview of NAC Security Attacks

Enterprise networks have moved from wired to wireless technologies, which has had
a negative impact on their security infrastructures. Generally, wired networks are
easier to secure, and poor implementation leads to security vulnerabilities that can
cause damage to an organisation. There has been significant failure or negligence in
addressing the vulnerabilities identified in organisations. The most common security
attacks in NAC systems are malware, eavesdropping, man-in-the-middle attacks, and
advanced persistent threats [3], [80]

• Malware: This is software created with the purpose of damaging or disrupting
the normal operation of applications and devices. It comes in the forms of
viruses, spyware, worms and Trojan horses and is intended to gather information
about other devices without permission. If there are insufficient or inappropriate
malware prevention measures in place, they can cause great damage to the
organisation, including information theft, interruption of business processes, the
capture of valuable or classified information, and the deletion of valuable or
sensitive data [14]. In terms of access control, this can lead to the denial of
legitimate users gaining access to enterprise network resources, for example by
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crashing the operating system, deleting the installed applications, formatting the
device storage, draining the battery or massively increasing the central processing
unit load [81]. Malware is one of the major contributors to cyber attacks in
most organisations, especially when employees’ own devices are allowed to access
enterprise network resources [82]. Therefore, an organisation needs to ensure
that the spread of malware infections is prevented through the use of antivirus
and anti-malware solutions [83].

• Eavesdropping attack: This type of attack can affect enterprise networks
when an employee accesses enterprise resources from a public network. Attackers
can easily join the network and use network monitoring tools to steal login and
valuable data that pass through the network. Mobile devices are particularly
vulnerable, and attackers can take advantage of stolen devices and non-updated
devices to steal enterprise data [84]. Integrity and confidentiality of information
are potentially compromised due to employee negligence. Chang et al. [25]
pointed out that enterprise data can be easily intercepted through public Wi-Fi.
Moreover, the integrity of the information and the confidentiality of data can be
compromised. However, it is also difficult for employees to differentiate between
reliable and compromised data, also for wireless networks. As discussed in [5],
this issue can be resolved by encrypting or tunnelling communication through a
virtual private network when using public Wi-Fi.

• Advanced Persistent Threat(APT): The purpose of this form of attack is
stealing intellectual property using multiple attack vectors. This attack can
be executed by extending and establishing a foothold within the organisation
information technology infrastructures with the purpose of exfiltrating information
to weaken the critical features of the organisation [85]. This type of attack is
stealthy and covertly targets organisations over an extended period. It can cause
severe damage to organisational infrastructure [86].

• Man-in-the-middle (MITM): This refers to an application-based attack which
occurs as a result of a vulnerability, or vulnerabilities, left by an application
developer during development, in which the attacker persistently changes the
URL of the server, caching the URL and taking control of the behaviour of
the application to create loopholes for multiple vulnerabilities. This type of
attack occurs in various forms, such as snooping for sensitive or confidential data,
password stealing, denial of service and advanced persistent threat. All mobile
OSs are susceptible to this type of attack and malicious spyware or key loggers
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can be installed on such devices to open loopholes to efficiently carry out the
attack, leaving the employee unknowingly and permanently loading the data
from the attacker’s site while sniffing sensitive organisational data [84], [86].

2.3 Review of Security Solutions for NAC Systems
Several research efforts have been conducted to improve NAC security using fingerprint-
ing techniques, behaviour profiling and intelligent filtering techniques. Fingerprinting
techniques include the active and passive collection of a configuration of attributes from
devices during a network 802.1x communication to accurately identify the connected
devices on the network from the wireless access points and conduct reconnaissance
against a potential target [87]. Behaviour profiling has been applied in mobile devices
to enhance security by monitoring unusual patterns or deviations from the normal
behaviour of the network devices. It also involves the use of algorithms to find correla-
tions in an enormous quantity of data, which can be used to identify the representation
of the observed users, devices and applications to form an associated profile [88]. The
intelligent filtering technique uses data from the behavioural characteristics of devices
and users to block what appear to be abnormal patterns that deviate from normal
network behaviour [89].

2.3.1 Fingerprinting Techniques

Research into fingerprinting began around 2010, focusing on querying web browsers
to measure network traffic to identify contextual information about the devices in
a network. The fingerprinting technique can also be used by attackers to conduct
reconnaissance against a target. Device-type fingerprinting is an approach to extracting
unique features from devices to generate device-specific signatures and use these to
identify the device-type. It consists of two techniques, namely passive and active. The
former relies on TCP/IP configurations, OS, clock-skew and wireless settings to gather
contextual device information, and it does not involve querying a client machine to
obtain the device fingerprint. The latter involves the installation of an application on
a client machine to query the switches to gain access to device information, such as
MAC address, serial number, IMEI number, etc. The existing fingerprinting techniques
in the network access control domain is presented in Table 2.1.

Franklin et al. [90] developed a passive technique that fingerprints wireless device
drivers running on 802.11 networks. The technique is unique in that an attacker



20 Network Access Control Systems

Table 2.1 A review of fingerprinting Techniques

Approach Detection Type Features Used

Franklin et al. [90] Device Driver Fingerprinting Time delta
Desmond et al. [91] Device Fingerprinting Time delta
Gao et al. [92] Access Point Fingerprinting Inter-arrival time
Jana et al. [93] Device Driver Fingerprinting Time delta
Neumann et al. [94] Device fingerprinting Transmission time and IAT
Arackaparambil et al. [95] Fake access point Fingerprinting Clock-skew
Corbett et al. [96] Vendor-type Fingerprinting Rate Switching
Radhakrishnan et al. [97] Device and Device type

Fingerprinting
Inter-arrival time

Xu et al. [98] Device Fingerprinting Transmitted signal frames and
location

Dalai et al. [99] Device type Fingerprinting Probe request frames

can use it to conduct reconnaissance against a potential target without requiring
physical access to modify the wireless drivers. This fingerprinting approach uses the
active scan functions of wireless clients to probe request access points to identify the
drivers employed on a device in a passive manner. The limitation of this approach
is that it cannot identify or differentiate versions of the same driver and it cannot
work if there is hardware abstract layer. Desmond et al. [91] proposed a passive
fingerprinting technique that uniquely differentiates devices through a timing analysis
of 802.11 probe request frames. The advantage of this technique is that it can be
used for spoof detection, reconnaissance and the implementation of access control
against masquerading attacks. This technique can be affected by network interference,
shadowing congestion, and packet loss, which may reduce its efficiency.

Gao et al. [92] proposed a black box-based fingerprinting technique that fingerprints
a network to identify the available access points. The approach can be used as an
offensive or defensive measure, depending on the situation. For example, network
administrators can use it to detect a rogue access point, whilst attackers may use
it to fingerprint access points to launch firmware-specific attacks. The proposed
fingerprinting technique by Jana et al. [93] uses a clock-skew method to fingerprint a
network to detect unauthorised access points. The clock-skew can be estimated using
the time synchronisation functions of a probe request-response and beacon frames to
differentiate between authorised and fake access points. Neumann et al. [94] proposed
a fingerprinting system that detects illegal and suspicious devices connected through
802.11 networks. The systems were designed to enable two similar devices to have
distinct signatures based on call diversity and anti-forgery mechanisms. The call
diversity slightly changes the network traffic attributes of the fingerprinted devices
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to uniquely identify their signatures. The anti-forgery mechanism in this system is
proposed to make it difficult for an attacker to forge a device fingerprint as well as
prevent replay attacks and separate forged from legitimate signatures. The proposed
wireless device fingerprinting approach by Arackaparambil et al. [95] uses a series of
network packets to observe the responses of the target fingerprinted device; it then
injects non-standard and malformed packets to distinguish between legitimate devices
and non-legitimate devices that spoof the MAC addresses of legitimate ones.

The proposed fingerprinting approach by Corbett et al. [96] uses network interface
cards from different vendors to develop a fingerprinting technique that identifies
unauthorised access to a network. This approach fingerprints all the network interface
cards and implements a spectral profile that can be used to separate legitimate and fake
network interface cards from different vendors. The limitation of this approach is that it
is limited to a number of devices, and increasing this number reduces its accuracy. The
proposed work by Radhakrishnan et al. [97] uses packet inter-arrival times to fingerprint
a series of devices and device-types to identify the variation of inter-arrival times for
different devices and device-types. This approach relies on differentiating devices
by looking into the statistical distribution of the packet inter-arrival time features
generated by a given device for different applications while accessing a network. They
assume that the physical features of devices, such as direct memory access controller,
memory, processor(s) and clock skew, reveal how these devices transmit packets over
the air. This can be used as an improvement to existing fingerprinting techniques by
generating signatures from devices and device-types to exploit the heterogeneity of
their functions based on different hardware configurations and variations in clock-skew.

Xu et al. [98] presented a tutorial on wireless device fingerprinting and discussed
various features that can be used to generate device fingerprints and classify features
based on protocol layers. Then, they analysed existing fingerprinting techniques and
determined the best approach for fingerprinting mobile devices. They concluded that
the best approach can be developed by combining fingerprinting approaches with
localisation and tracking to mitigate attacks in wireless networks. Dalai et al. [99]
proposed a technique that uses the homogeneity of wireless devices and measures
wireless networks utilising a probe frame request to produce device-type signatures.
The digital signature thus produced can be used to identify devices in a network. In
contrast, our research work aims to improve the works related above based on profiling
the packet inter-arrival time measurements of devices and their device-types to classify
normal and abnormal patterns.
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2.3.2 Behaviour Profiling

Behaviour profiling is a term commonly used in organisations to identify the working
patterns of an individual employee. In this work, a behaviour profile is defined as
a technique for detecting an abnormal pattern of devices in an enterprise network.
Behaviour profiling has been applied in mobile devices to enhance security by monitoring
for unusual patterns or deviations from normal network behaviour. It also involves
the use of algorithms to discover any correlations in an otherwise enormous quantity
of data. These data correlations can be used to identify the representation of the
observed users, devices and applications to form a profile [88]. It is widely recognised
that employees utilise their mobile devices in the workplace to be more productive.
These mobile devices are used by employees to perform various tasks, for example,
to access enterprise resources to perform their day-to-day work activities. Research
into behaviour profiling is divided into two categories: mobile behaviour and network
traffic profiling and are presented in Table 2.2. Mobile behaviour profiling focuses on
contextual data, such as calling activity, mobility, and battery, to obtain a behaviour
profile [100], whereas network profiling focuses on profiling the behaviour of network
traffic activities [101].

Behaviour Profiling on Mobile Devices

Research into mobile behaviour profiling started in 1995, and it mainly focused on
detecting abnormal patterns in mobile usage contextual data as obtained and monitored
by network service providers. The research presented by Li et al. [105] proposed a
behaviour profiling technique that continuously verifies mobile application usage based
on a smoothing function, verification time and application nature. The proposed work
was efficient as it was able to provide a continuous and non-intrusive verification of
mobile users in three different modes, regardless of the device hardware. Also, the
work was evaluated using a series of security scenarios in a simulated environment to
demonstrate the effectiveness of the framework and to verify legitimate and illegitimate
activities. The limitation of this work was that the MIT reality dataset [116] used in
their approach only contains information suitable for behaviour profiling at that time.
However, explosive growth in technology can have an impact on the use of this type of
dataset, and in this case, the MIT reality data set was collected from 100 Nokia 6600
phones in 2004. The operating system they used is now significantly out of date and
this device-type is longer manufactured, while the technology used in smartphones has
been vastly updated.
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Table 2.2 A review of behaviour profiling Techniques

Approach Profiling Technique Features Used

Giura et al. [102] SMS and Calling SMS and voice call records
Saevanee et al. [103] Linguistic Profiling Vocabulary and SMS style
Koh et al. [39] Usage Profiling contextual data of mobile device usage
Kim and Kim [71] Service use pattern device type, access time, access location

and use time
Stoecklin et al. [104] mobile usage users contextual data
Li et al. [105] Mobile usage telephony, device usage and Bluetooth

scanning
Kang et al. [40] Service use pattern Access time, location and time of use
Hall et al. [106] Battery service usage features
Buennemeyer et al. [107] Battery battery run time
Shabtai et al. [108] Battery device power, consumption, Bluetooth and

Wi-Fi connection
Frias-Martinez et al. [109] Network flows, average flow size, average flow

duration, packets in all flows, average
number of packets per flow, IP address
and average packet size

Zhauniarovich et al. [57] Network users users contextual data
Qin et al. [110] Network user URL, IP address, DNS query logs
Tsompanidis [111] Movie streaming Session, email synchronisation and web

browsing
Chen et al. [112] Mobile traffic behaviour location session, packet flow, user, type

and duration
Jakalan et al. [113] IP network host IP flow and time
Kihl et al. [114] User network traffic Session length and traffic rate distribution
El attar et al. [115] Network users CPU consumption, number of running

process, memory usage and battery
Sun et al. [31] User mobility Personal information, billing information,

users home location and mobility

The behaviour profiling approach proposed by Giura et al. [102] uses contextual
data from user sessions to profile the Short Messaging Service (SMS) and calling
activities of network users. The profile runs in a background process to detect unusual
call or SMS patterns for each user(s) and to prevent unauthorised access. The work was
efficient, but it mainly focused on identifying abnormal user calling or SMS patterns.
Saevanee et al. [103] presented a framework that applies secret-based knowledge and
behavioural biometric techniques to provide non-intrusive, transparent and continuous
authentication. The authentication is achieved without the knowledge of the user
during device usage rather than when the device is switched on. The behavioural
profile uses a linguistic profile for SMS for individual users based on their vocabulary
and style. The attributes are extracted based on users’ preferred words to form a
behavioural profile. Thus, the framework manually selects user-abbreviated, emotional,
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and favourite features as well as a set of linguistic features to automatically distinguish
between users. The above-related work only focused on the implicit and transparent
authentication of users rather than network access controls. Also, one of the challenges
affecting the implicit and transparent authentication domain comprises the security
and privacy threats posed to users’ data [117].

Behaviour profiling based on network usage patterns has been proposed in various
research efforts. Koh et al. [39] introduced a dynamic access control method using the
contextual information of individual devices or the group to which they belong. The
contextual data were collected from mobile device usage in agentless mode to develop a
usage profile which is stored in a detection system. The detection system compares the
security policies with abnormal behaviour to check for deviations and control access to
the network. The behaviour-based anomaly detection technique proposed by Kim and
Kim [71] can detect abnormal behaviour in the services used in a BYOD environment,
while the profiles can be obtained based on classifying the network vulnerabilities
occurring in this environment. Then, the contextual usage information of users (such
as device-type, access time, access location and use time to pattern users access) can
be used in the development of a usage profile, which can subsequently be used to detect
abnormal user patterns.

Stoecklin et al. [104] proposed a technique that can be used to detect abnormal
device(s) within an enterprise network. The framework introduced a non-intrusive
big-data analytic method to obtain visibility regarding mobile device usage. The
profiling data can be obtained directly from the devices’ contextual data without the
need to install an agent. Li et al. [105] developed a host-based multilevel behaviour
profile for mobile intrusion detection. The profile is computed based on attributes such
as telephony, device usage and Bluetooth scanning to form a behavioural profile for each
device. The framework was efficient as it was able to detect different users’ activities
and protect devices against misuse through an application. Li et al. [118] developed
a "sentinel", a behaviour profile approach that utilised application and service usage
to verify individual users continuously to analyse their behaviour in real-time. The
attributes used are telephone, text and web surfing, from which a behavioural profile
is computed via a combination of the user’s historical data with recent data to identify
the legitimacy of their actions. A dynamic rule-based classifier is used to deal with the
classification results accordingly.

Kang et al. [40] presented details of an abnormal behaviour detection method
that used Bayesian theory. It was developed based on spam filtering in three stages,
namely modelling the elements concerning the behaviour, patterning the behaviour,
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and detecting abnormal patterns. The model considered the use of unstructured data
in addition to network traffic. The attributes used were the type of device, access
time, access location and time of use, thereby profiling the behaviour pattern. Then,
those elements were classified using the probability of word occurrence behaviour to
detect the abnormal activities in the device usage. Kim and Kim [71] proposed a
behaviour-based anomaly detection technique that detected abnormal behaviour in the
services used in a BYOD environment. The vulnerabilities were classified according to
the user context. The attributes used in this instance were device-type, access time,
access location and use time to obtain user’s access pattern. The data were collected
through the network traffic to analyse the service use behaviour and compare the past
with the recent usage patterns. The above techniques only focus on usage profiling,
and the excessive use of mobile devices in a network background can result in various
security and privacy issues as well as increased energy consumption [119].

Various researchers have proposed mobility and battery profiling. Hall et al. [106]
introduced an anomaly-based intrusion detection framework that examines the mobility
of transport users. The behaviour profile was developed based on instance-based
learning using calling, mobility patterns and service usage features. Buennemeyer et
al. [107] proposed a battery-profiling system that alerted network administrators to
deviations from normal behaviour. The work was developed based on an examination of
smart battery drain times to ascertain the optimal transmission rate. The data used for
profile observation were taken from nine device-types. The proposed work by Shabtai
et al. [108] built unique profiles for smartphone batteries based on a network-centric
environment. The profile monitored device power consumption and Bluetooth and
Wi-Fi communication activity. The system was designed to continuously monitor the
activities on the network such that when abnormal or attack activity was detected, the
system alerted the network administrator. Also, it had other personalised functions
that enabled the automatic disconnection of any given device upon an attack and
the blacklisting of suspected activity until the profile was cleared of intrusion. This
profiling technique suffered from various privacy issues, however, as it required the
identification of users’ locations and device batteries; also, this technique is somewhat
outside the scope of this work. However, the review by Sharifi et al. [120] covered the
intensive research on mobility and battery-profiling techniques to which the reader is
referred for further information. In contrast to the abovementioned works, this research
focuses on developing a behaviour profiling approach based on device-type.
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Network Traffic Profiling

Research into network traffic profiling only recently began due to increased cyberattacks
and the emergence of applications that can affect network traffic [121]. Network traffic
models are aimed at detecting abnormal patterns and can be applied based on the
selection of models that provide a good description of network traffic type and then
estimate the parameters of the chosen model and test its accuracy to ensure suitability.

Frias-Martinez et al. [109] proposed a behaviour-based NAC based on the roles of
each device host connected to a network using a group voting process. This process
decides on the degree of similarity and makes appropriate decisions regarding the
devices that can be allowed to access the network. The behaviour profiles are computed
based on seven features (total number of flows, average flow size, average flow duration,
the total number of packets contained in all flows, the average number of packets per
flow, IP address and average packet size) from each host connected to the network.
The cluster-based abnormal behaviour detection sensors are responsible for detecting
abnormal behaviour in the profiles. An alert is sent only when a group of similar
behaviours correspond to the host behaviour, and the profile raises an alert when
the behaviour of the host does not correspond. Zhauniarovich et al. [57] introduced
an integrated security system to resolve security threats by examining contextual
information based on dynamic access control. The system collects users’ contextual
data in an agent-less mode following the authentication process. The contextual
data thus collected are analysed to allow the detection system to determine abnormal
behaviour in the process. It then forwards this to a control system to continuously
monitor and control network access.

Qin et al. [110] developed a multilevel user cluster mining framework that measures
user behaviour from different network prefix levels. Individual profiles are collected
from network flow patterns, whereby the behavioural attributes that are extracted to
compute the user profiles are URL, IP address, and DNS query log. The attributes
are clustered and analysed to detect deviations from normal behaviour. Tsompanidis
[111] proposed a behaviour-based traffic model that profiles movie streaming sessions,
email synchronisation and web browsing. The profile is computed based on features
such as session average bit rate and activity type to model the mutual interaction
between the network performance and user-generated traffic. The model employs a
Markov chain model to monitor behaviour. Chen et al. [112] proposed a model that
characterises mobile traffic and the engaging behaviour of end-users. The features used
for computing the profile are location session, packet flow, user type, and duration.
The behaviour profile measures mobile device usage based on application interactions
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and performance, and then compares this with previously determined volume metrics
to detect intrusions. Jakalan et al. [113] proposed an IP network host behaviour profile
that detects host dominant and persistent behaviour. The model uses IP flow and time
to compute behaviour profiles and can easily detect an attack within a network upon
deviation from normal behaviour.

Kihl et al. [114] analysed traffic measurements to model user behaviour, focusing
on internet usage to identify users based on session length and traffic rate distribution.
They also investigated user activities during a given period to form a usage profile for
applications, user activities and traffic volume. Xie et al. [122] developed Bprofiler,
which groups devices into intuitive groups within a hierarchical framework to profile
individual user behaviour based on multiple dimensions. This technique does not require
the installation of any application on the devices. Meanwhile, Kim [71] proposed a
behaviour-based anomaly detection system that detects abnormal behaviour in the
services used within a BYOD environment. A Bayesian network classifier is used to
classify the probability of occurrence of a behaviour in this environment to compute
behavioural patterns. The attributes used are device-type, access time, and access
location and time to pattern users’ access. This information is collected through
network traffic to analyse the service use behaviour and compares past and recently
used patterns to detect abnormal behaviour.

El attar et al. [115] proposed a behaviour-based detection system that relies on
a light agent installed on the device to collect various access information, which is
sent to a remote server using a secure socket layer connection. The attributes used
for profiling are CPU consumption, number of running processes, memory usage and
battery level. Sun et al. [31] proposed an efficient online abnormal detection algorithm
using a data compression technique to identify user mobility, thus forming a behavioural
pattern. The attributes utilised are users’ personal information, billing information,
and home location as well as identifying intrusions in users’ movements. An alert is
generated when the location is not registered on the system. In contrast to the works
presented above, the current research aims to use packet inter-arrival time network
traffic from device-types to identify abnormal network traffic patterns originating from
the device-types.

2.3.3 Intelligent Filtering Techniques

Filtering techniques use data from the behavioural characteristics of devices and users
to block abnormal network traffic patterns [89]. This can be accomplished using filtering
rules, which are expressed using a set of training data or known facts about abnormal
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network traffic. It enables network administrators to focus on attacks and apply
filters to security event logs to extract access information and improve the discovery
of frequent behaviour patterns. The filtering techniques are applied to mitigate the
impact of attacks on the enterprise network.

The research work by Hajamydeen et al. [123] proposed a refined filter that can
be used to retain the volume of abnormal network traffic in enterprise networks. The
technique reduces processing time and improves anomaly detection by segregating
network traffic into normal and abnormal. It then monitors these types of network
traffic to check for abnormal patterns; if an abnormal pattern exists, the filter blocks it
and allows normal patterns to continue flowing smoothly across the network. Jha et
al. [124] proposed a filtering-based approach that regards normal traffic as noise and
abnormal traffic as a signal. The technique sets a certain threshold on network traffic
to estimate the strength of a ‘signal’ in a given network. If the signal strength is found
to be above a specified threshold, this will indicate abnormal traffic and thus the trace
will be flagged abnormal and blocked by the filter. Yu et al. [125] developed a filtering
and refinement approach that detects abnormal behaviour in different mobile and web
applications. The technique is applied to network traffic data that contain a small
set of abnormal patterns. It separates the normal data instances and records them
as normal patterns. Further, it generates an agent that is compared to the recorded
patterns and that blocks any deviation so identified. A refinement was developed to
improve the computational efficiency and effectiveness of the technique.

Lakhina et al. [126] proposed a subspace method of detecting abnormal behaviour
in network traffic based on origin-to-destination flow to block unusual patterns. It uses
a Kalman filter to extract the normal traffic patterns and principal component analysis
to separate the normal from abnormal patterns. The identified abnormal patterns are
then blocked by the filter. Knorn et al. [127] developed a simple predictive model that
captures the baseline behaviour of central processing units. It partitions the behaviour
into normal and abnormal patterns and blocks the patterns that deviate from the rest
of the data. Handra et al. [128] proposed a filtering and refinement approach for more
effective and efficient anomaly detection using DBSCAN. This method clusters all the
instances and considers the abnormal clusters to be noise. Agarwal and Mittal [129]
proposed a hybrid approach combining entropy and a Support Vector Machine (SVM)
to detect abnormal behaviour in network traffic. This is achieved through calculating
the entropy values of different network traffic features and training the SVM to classify
the normal and abnormal traffic patterns.
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Huang et al. [130] proposed an approach to filtering normal from abnormal behaviour
in non-signature-based network traffic using principal component analysis and sketch-
based and signal analysis. The approach compares past with the most recent patterns
to detect abnormal behaviour. De la Hoz et al. [131] introduced a technique that uses
a classification and self-organising map to detect abnormal patterns in the network.
Principal component analysis and Fisher dominant ratio are used in feature selection
and noise removal. The probabilistic self-organising map is also used to model the
feature space and enable anomaly detection. Santos et al. [132] proposed a spam
filtering technique for anomaly detection, which reduces the necessity of labelling spam
messages and is employed to legitimate emails. The approach represents legitimate
emails as word frequency vectors, thereby measuring deviations from the normal
pattern.

Laorden et al. [133] proposed a spam filtering method for anomaly detection to
reduce the necessity of labelling spam messages, employing the representation of one
class of email (i.e., legitimate or spam). A data reduction algorithm is applied to
the labelled dataset to reduce processing time, maintaining the detection rates and
analysing the suitability of choosing a legitimate or spam email as a representation
of abnormal behaviour. Goodman et al. [134] proposed a technique using a bipharite
graph to give a score in anomaly detection by classifying a short message service
as either spam or normal to detect lateral movement within a network. The above
works were reviewed to identify ways to incorporate the technique into our intelligent
filtering technique based on device-type. A behaviour-based network access control
proposed in [65] uses network behaviour to provide access control policies. These
security policies are updated over time to adopt network host behavioural changes as
well as to determine the type of behaviour that can be accepted from network hosts in
enterprise networks. The proposed work implements a behaviour-based profile using
a voting process to detect and block behaviour that does not comply with enterprise
policies.

2.3.4 Comparison of the closely related works

Table 2.3 provides a comparison of the closely related works in the field of fingerprinting
and behaviour profiling techniques. These works use important attributes to fingerprint
or profile devices, device types, device drivers, access points, service use or network
traffic. Specifically, the fingerprinting techniques focus on the identification of network
devices, such as device, device type, device driver, or access points, whereas the
behaviour profiling techniques focus on the detection of abnormal patterns of network
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devices. Both approaches are important, yet none of the related works considers
combining them to develop a post-authorisation network access control technique that
can be used to identify abnormal patterns based on device type. Hence, the proposed
work combines the most important attributes used in fingerprinting and behaviour
profiling techniques. These attributes include the device and device type used, the
application used in generating the network traffic, e.g. the ping response from the
devices, the location and the packet inter-arrival times. These attributes are considered
here because they can help to identify the behaviour of the devices while accessing an
enterprise network. For instance, the devices and device types are smartphones, tablets
and laptops, which can be easily identified, while the applications can be ping and
iPerf. The location can be identified from the access points, and the packets can be
determined by the network traffic speed rate and payload size. In addition, the traffic
type can be identified from active and passive network monitors, and the inter-arrival
time is the time lapse between the two consecutively received frames.

Table 2.3 A comparison review of the closely related works

Approach Detection Type Features Used

Jana et al. [93] Device Driver Fingerprinting Time delta
Radhakrishnan et al. [97] Device and Device type

Fingerprinting
Inter-arrival time

Xu et al. [98] Device Fingerprinting Transmitted signal frames and
location

Dalai et al. [99] Device type Fingerprinting Probe request frames
Kim and Kim [71] Service use pattern device type, access time, access

location and use time
Kang et al. [40] Service use pattern Access time, location and time of

use
Frias-Martinez et al. [109] Network profiling flows, average flow size, average

flow duration, packets in all
flows, average number of packets
per flow, IP address and average
packet size

Proposed approach Device-type profiling Device type, application, traffic
type, location and IAT

The aforementioned attributes and packet inter-arrival times are used in the pro-
posed work because the latter creates a unique device signature that can be used to
easily identify a device or device type. By monitoring inter-arrival times, it should be
possible to distinguish individual devices or devices of the same type, i.e. devices that
have the same hardware configuration. It has been discussed in the literature [135] that
the packet inter-arrival time is a unique feature in which a device exhibits some traits
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inherent to its physical implementation. As a result, it is assumed that packet creation
varies across different device architectures and is influenced by the processor, direct
memory access controller, memory and clock-skew. Similar variations exist between
device architectures, which can be used to differentiate devices with the same hardware
configuration. Therefore, device type can be easily configured and identified based on
packet inter-arrival times, and abnormal patterns can be identified based on devices
or device types, depending on the given problem or the issue that the researcher is
addressing.

2.4 Chapter Summary
This chapter presented a literature review in the network access control domain.
The chapter started by introducing NAC systems, their background, history and
features. It also reviewed enterprise network security with the aim of determining
and identifying the security requirements for BYOD enterprise networks. Then, a
thorough investigation was conducted on the more prevalent security attacks on NAC
to identify their limitations and the suitable solutions. The reviewed work focused on
fingerprinting techniques, behaviour profiling and intelligent filtering techniques.

The fingerprinting techniques focus on reconnaissance (i.e. identification of de-
vices or device-types) to collect information about a possible attack. Conducting
reconnaissance is important, however, this technique does not provide the means to
take any action after the identification of a possible attack. Also, while the research
works presented in section 2.3.1 cover intensive research on fingerprinting techniques in
mobile device networks to identify hosts, access points, network interface cards, devices
and device-types, none actually address this problem. Our work in [3], however, did
address this problem and proposed a device-type profiling technique. The devices and
device-types are identified based on their packet inter-arrival time measurements.

Similarly, there are several publications in the literature in the field of behaviour
profiling on mobile devices and network traffic. The research works presented in
section 2.3.2 mostly focus on profiling user, location, calling activity, battery and
network contextual data. While these are important, privacy is a major challenge
in these approaches as they mainly focus on transparent and implicit authentication
techniques. Also, privacy is another concern in network profiling approaches as sensible
network contextual data are used for profiling. Another limitation is that none of these
studies proposed a way to deal with the abnormal patterns identified. Our work in
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[4] introduced a novel device-type profiling approach that detects abnormal patterns
using packet inter-arrival times.

The last part of this chapter in section 2.3.3 investigates intelligent filtering tech-
niques. These are techniques used in blocking abnormal patterns in network traffic.
There has been intensive research into filtering approaches, however, most of these
techniques focus on anomaly detection, using a filter that blocks abnormal patterns.
This chapter has investigated these techniques to identify ways to incorporate them into
our device-type profiling approach, which will use artificial intelligence techniques to
develop a mechanism that can block abnormal patterns based on device-type profiling.



Chapter 3

Artificial Intelligence for Outlier
Detection

Having underlined the importance of network access control systems in BYOD enterprise
networks and highlighted the associated security issues, the thesis next introduces
the artificial intelligence techniques and algorithms used to respond to these security
challenges, for example, unauthorised access and data leakage, among others. Most of
the response techniques identified here are data mining and machine learning models,
which are categorised into supervised, unsupervised, and semi-supervised learning
models. Outlier detection techniques and classification techniques are discussed in
section 3.1, which also justifies choosing the clustering-based outlier detection and
neural network algorithms. Next, the clustering-based outlier detection techniques
are introduced in section 3.2, while section 3.3 concerns the neural network algorithm
and the evaluation metrics used in this research. A summary concludes the chapter in
section 3.4.

3.1 Outlier Detection and Classification Techniques
The significant amount of data that flows through mobile devices makes enterprise net-
works vulnerable. Attackers are using these vulnerabilities to break into organisations
to cause data leakage and to gain illegal access to enterprise data. AI techniques are
applied to address these challenges as physical devices such as sensors and actuators
cannot provide sufficient protection in this regard [26]. Artificial intelligence provides
numerous techniques that are flexible and that have learning capabilities that assists
in detecting and mitigating attacks. These techniques are referred to as Data Mining
and Machine Learning approaches, and are used interchangeably [136].



34 Artificial Intelligence for Outlier Detection

Data Mining (DM) is the process of transforming raw data into useful information.
DM algorithms focus on extracting knowledge from a large amount of data to discover
patterns that help to understand the complex relationships within a given dataset.
Another example is applying learning algorithms to extract the behavioural patterns
from network traffic. These techniques aid in the development of predictive models
that enable an adaptive security response team to identify the behavioural patterns of
the devices in the network, especially in cases were employees perform work-related
tasks using their personally owned mobile devices [137].

Machine Learning (ML) is an application of artificial intelligence that enables
automatic learning and then applies that learning without the need for human inter-
vention after gaining some particular knowledge from a dataset. ML is a subset of AI
technique that provides computing-based resources with the ability to learn without
being explicitly programmed for that particular purpose. Learning algorithms are
implemented in ML to formally compute the process of automatic pattern recognition
and intelligent decision making based on training sample datasets. ML algorithms
are categorised into immune-based, symbol based, connectionist based and behaviour
based, none of which have advantage over the others. Also, ML problems are solved
using supervised, unsupervised or semi-supervised learning approaches [137].

3.1.1 Supervised Outlier Detection Techniques

The current setting in enterprise networks is that they are vulnerable to attack due
to security flaws in the system designs and implementation. These flaws might be
procedural errors, or code or design errors, among others [138]. Attackers exploit these
security flaws or vulnerabilities using a series of techniques and sequence of events
to help them break into their target enterprise network. The sequence of events that
occur due to security flaws are referred to as attack patterns. These patterns can be
used to prevent further attacks by applying supervised detection techniques to the
network traffic datasets. The supervised machine learning approach uses a predefined
series of network traffic datasets with labelled inputs and a target (known outputs) to
build a detection model. The inputs are used to train a machine-learning algorithm
to predict the output of the pattern that is, or is not, part of the training dataset.
Supervised learning algorithms are used to solve problems where prior knowledge of the
data exist and the data itself is labelled [139]. They are categorised into classification
and regression models. Classification problems are used when the output variables
are classified into categories (e.g. normal or abnormal) whilst regression problems are
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used in cases where the output is a real value. Examples of such algorithms are neural
networks, support vector machines, and logistic regression, among others [140].

3.1.2 Semi-supervised Outlier Detection Techniques

In semi-supervised outlier detection techniques, the network traffic datasets are assumed
to have labelled instances for only normal class(es) and no labels in the anomaly class(es),
respectively. Due to the large network traffic data that pass through enterprise networks,
this type of outlier detection technique has been widely used to solve a variety of
problems in cases where the dataset is partially labelled and cannot specify all the
exact normal and abnormal class(es). Unsupervised learning algorithms are of great
practical value because of their capability to alleviate the cost of having to render
fully labelled training datasets, especially in cases where it is impossible to label all
data instances [139], [141]. The algorithms used in semi-supervised outlier detection
techniques are similar to those used in supervised and unsupervised algorithms as
the aim is to bridge the gap between them [142]. This is also known as the one-class
classification problem, for which a series of well-known algorithms are used to solve this
kind of problem, which include the one-class support vector machine, kernel density
estimation, and auto-encoders, among others [143].

3.1.3 Unsupervised Outlier Detection Techniques

In unsupervised learning outlier detection techniques, network traffic datasets are
assumed to have only inputs without known outputs. Unsupervised outlier detection
is introduced to address the problems with supervised techniques in real network
environments. For example, in the case of unauthorised access to enterprise network
resources, the combination of clustering-based outlier detection and deep learning
algorithms allows for cybersecurity systems to have a greater degree of accuracy and
confidence in what could be considered as a potential abnormal pattern(s). Since the
network traffic datasets in the real network environments consist of both normal and
abnormal traffic, unsupervised outlier detection techniques therefore use unlabelled data
as input to find abnormal traffic buried in the network network traffic datasets without
prior knowledge of the data labels. Subsequently, unsupervised outlier detection relies
on the following assumptions: “normal data covers majority while anomaly data are
minor in network traffic flow or audit logs; anomaly data points or normal data points
are similar in their identity groups while statistically different between groups” [137].
This learning paradigm is considered an imbalanced learning problem [137]. The normal
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and abnormal data can be clustered and the current solutions to unsupervised outlier
detection problems are found using clustering-based outlier detection techniques [141],
[143], [144]. Therefore, this research focusses on clustering-based outlier detection
techniques in order to gain better insight into the datasets and apply step-by-step
knowledge discovery processes to achieve all the objectives.

3.2 Clustering-Based Outlier Detection
Clustering-based outlier detection is categorised into clustering-based and K-Nearest
neighbour-based techniques. The rationale behind clustering-based outlier detection
is to train datasets with a clustering algorithm to learn the normal and abnormal
behavioural patterns of the data. Clustering-based outlier detection techniques can be
classified into density-based, hierarchical-based and partitioned-based clustering [141].
Density-based clustering can produce outlying points along with a normal cluster. The
hierarchical-based clustering identify the close clusters and continue merging them until
they are all merged. Partitioning techniques divide the data instances into multiple
partitions where each partition is referred to as a cluster. Partitioning-based methods
have certain advantages because exciting patterns and structures can be found directly
from large datasets with little background knowledge [145].

K-Nearest neighbour-based clustering algorithms can be categorised into two groups
[137]. The first group consists of K-means clustering and self-organising map-based
algorithms, whilst the second are density-based algorithms such as CLIQUE and
MAFIA [145]. Density-based algorithms are computationally intensive and their
anomaly detection results are not good, especially in cases where the data has varying
densities [137], [141], [146]. Therefore, the following sections will focus on clustering-
based algorithms due to their particular advantages.

3.2.1 K-means Clustering

K-means clustering is one of the most popular techniques used for outlier detection.
It is fast, robust and relatively efficient [115]. It is also easy to understand, and can
be used with iterative refinement to produce improved results when the dataset is
distinct, or data are well separated from each other [137]. The K-means clustering
technique is an iterative algorithm that partitions the dataset into k pre-defined distinct
non-overlapping subgroups called clusters where each data point belongs to only one
group [147]. The K-means clustering algorithm tries to group the intra-cluster data
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points to as similar as possible while keeping the different clusters to as far as possible.
Also, it assigns similar data points to a cluster such that the sum of the squared
distance between the data points and the arithmetic mean of all the data points that
belong to that cluster such that the less variation within clusters the more similar the
data points are within the same cluster.

K-means clustering algorithm iterates between these two steps until no data points
change the individual clusters. The iterations are performed after the algorithm
initialises and estimates cluster k parameters, and randomly assign centroids for each
cluster k. The algorithm iterates between two steps, data assignment and the centroid
update step. For the data assignment, the data is assigned to its closest centroid.
More formally, if cp is the collection of centroids in D (device) in set IAT , then each
data point x is assigned to cluster k based on cp ∈ D dist(cp,x)2, where dist = the
Euclidean distance and the ith cluster centroid is denoted by Si. Then the centroid
update step is recomputed using the mean of all the data points and assigned to the
cluster centroids to optimise the function of K-means [148], denoted as:

IAT = 1
Si

∑
Xi ∈ Si

Xi (3.1)

Moreover, to ensure that the centroid update step and data assignment guarantees
there will not be any data point change in the clusters and that the maximum number
of iterations is reached [2]. One of the major challenges in clustering is determining
the optimal number of clusters, k [115]. The correct choice of k is usually not clear,
with interpretations depending on the scale and shape of the data points and the
desired clustering analysis. Alternatively, the optimal choice of k should strike a
balance between the maximum compression of the data using two or more clusters. If
an appropriate value of k is not apparent from prior knowledge of the properties of
the data, it must be chosen randomly (i.e. k = 2,3,4,5...n) based on the problem at
hand. There are several methods can be used for determining the optimal number of k

[149]. Example of these methods are: elbow method, Davies Bouldin index, Silhouette
index, Dunn index, Partition Coefficient, among others. For example, Davies Bouldin
(DB) index was used in [150],[151], [152],[153] to determine the optimal number for k,
by calculating the intra-cluster similarities and inter-cluster differences to produce a
set of clusters with an index for each cluster parameter [154]. They stated that the
DB-index values helps them in determining the number of clusters k; based on the
smallest DB-index values they have identified. Also, DB index is the best criterion for
specifying the optimal number of k [155].
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3.2.2 Cluster-Based Local Outlier Factor (CBLOF)

This outlier detection technique follows a global approach in which the outlier score is
assigned to each instance of the entire dataset. He et al. [156] developed (CBLOF) a
measure to identify outliers using a squeezer algorithm. The squeezer algorithm takes
input from a dataset and sets a unique identifier for each tuple in the data to produce
cluster results. The first tuple in the data is read in, a cluster structure is formed, and
the other tuples are read iteratively. The similarity function is used to compute the
similarities for each cluster and embodied within the corresponding cluster structure.
The most significant similarity value is measured and compared against a threshold. If
the threshold falls within the range of smaller or larger cluster centroids, then the values
are added to the cluster with the highest similarity. The cluster structure continues
updating each tuple in the data until all the tuples have been traversed.

CBLOF assigns an outlier score based on the distance to the nearest Large Cluster
(LC) multiplied by the size of the cluster Cj , the object to which it belongs. From
the equation, point p lies in the Small Cluster (SC) and the score would be equal to
the distance to Ci which is the nearest LC multiplied by five which is the size of the
cluster in SC. The squeezer algorithm partitions the data into large and small clusters
and the Find CBLOF operation calculates the outlier score using two parameters: α,
which is set to have a value of 0.9 to 1.0, whilst the authors recommend assigning a
static value of 5 to β. α specifies the percentage of the non-outlying dataset and β

specifies the boundary (b) between the large and the small clusters. The anomaly score
is computed by the distance (t, cj) of each instance to its cluster centre multiplied by
the instances belonging to its cluster. For small clusters, the distance to the closest
larger cluster is used. The procedure of using the number of cluster members as a
scaling factor is used to estimate the local density of the clusters (t).

Goldsteine et al. [143] identified the fact that the use of cluster density as a
scaling factor might result in incorrect density estimation. They accordingly developed
unweighted-CBLOF (uCBLOF) using the K-means clustering algorithm and CBLOF
outlier detection. The cluster density estimation was thus removed, and the outlier
results were found to be better than for CBLOF. Duan et al. [157] proposed an
improvement of CBLOF using local density instead of clustering. The proposed
Cluster-Based Outlier Factor (CBOF) used Local Density Based Spatial Clustering of
Applications with Noise (LDBSCAN) to detect outliers and assign clusters to Local
Outlier Factors (LOF). However, their outlier detection algorithms are computationally
extensive in large datasets and it takes considerable time to produce a result, and
choosing the threshold can be difficult if the dataset is not well understood.
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3.2.3 Local Density Cluster-Based Outlier Factor (LDCOF)

This uses the local outlier detection approach to detect outliers that are ignored by
global approaches, especially in cases where there are varying densities within a dataset.
The LDCOF addresses CBLOF’s shortcoming by estimating the local density with
an average distance for all cluster members to the nearest centroid and by assuming
a spherical distribution of the cluster members. Amer et al. [144] proposed LDCOF
using the same approach as CBLOF. The only difference is that an outlier score has
been added to the data instances, where an outlier score of 1.0 or below is assigned to
normal instances. Likewise, a score above 1.0 is assigned to abnormal instances.

LDCOF estimates the local density from the average distance of all cluster members
from the centroid. In general, this seems a better estimation than CBLOF, but it
is still not perfect. In this case, there are two circumstances that might lead to a
bad estimation of the density: (1) in the case of having non-spherical distributions,
the average radius of the cluster can be misestimated, especially for very long-shaped
ellipsoids, normal instances at the long ends might get too large an anomaly score and
outlying instances close to the long side might also be incorrectly estimated as normal;
and (2) outliers far from the centroid point tend to increase the average distance
drastically. When the average distance is large, the local outliers are not found any
more since they are considered to be normal.

3.2.4 Clustering-based Multivariate Gaussian Outlier Score
(CMGOS)

CMGOS is an enhancement of LDOF that uses a Gaussian model to get an improved
estimation of local density for outlier detection. When the clustered data is connected
to a CMGOS operator, the data is assumed to originate from a Gaussian distribution.
Then, the algorithm calculates the local density using a fixed number of clusters to find
the best fit for the assumed Gaussian distribution or determine the number of clusters
based on a Bayesian approach. The outliers’ scores are computed according to the
centroid and the multivariate Gaussian of the cluster. Then, the local density estimation
is performed by estimating a multivariate Gaussian model and the divergence, such as
squared euclidean distance, mahalanobis distance, and squared loss, among others, can
all serve as a basis for computing the anomaly score [158].

The anomaly score is computed by dividing the divergence of an instance to
its nearest centre using a distribution fitted with a certain confidence interval as a
normalisation process, where an outlier score of ≤ 1.0 indicates a high probability
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of the instance being normal. The anomaly score can be estimated using reduction,
which is similar to the multivariate Grubb’s test, regularisation, which is similar to
classification, and the minimum covariance determinant (MCD), which has idea of
estimating a compact covariance matrix via a brute-force search for normal records.
The CMGOS algorithms works according to the following steps:

Algorithm 3.1 CMGOS Algorithm [158]
1 procedure CMGOS
2 SET Data X to {x1 ... Xn}
3 CALL clustering Algorithm with Data X
4 Input cluster output C = {C1 , C2 , ..., Ck}
5 SET threshold P → 0.95 -1.0
6 SET threshold y → 0.01 -0.05
7 SELECT reduction , regularisation or Minimum Covariant

Determinant (MCD) in CMGOS Operator Menu
8 IF MCD is selected THEN
9 SPECIFY sample according to the probability of

normal class
10 END IF
11 SPECIFY the number of time to remove outlier and to

recompute the covariance matrix
12 Compute distance for all instances x to cluster

centroid
13 end procedure .

3.3 Neural Network
Neural Networks (NN) is a type of supervised learning algorithm that attempts to
simulate a network of neurons as inspired by the working function of a human brain.
This approach has been used to solve complex classification and regression problems.
Neural networks are very well known due to their ability to identify and detect complex
non-linear relationships among input variables. Neural network algorithms consist of
an input, hidden, and output layers. The neural network is defined as an algorithm;
however, Howard Rheingold [159] defined NN as a kind of technology, not an algorithm,
that has weights on it such that the weights can be adjusted so that it learns. The
network is taken through trials until the desired model is achieved. The input, hidden,
and output layers are illustrated in Figure 3.1, which shows how each neural network
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layer is connected to the next to get the desired output. The input layer is responsible
for feeding the input variables provided whilst training the network. The hidden layer
consists of neurons used to process the input variables using activation functions to
translate the input values to output values.

The most well-known functions in NNs are the unit step function, linear function,
sigmoid function, and the hyperbolic tangent function (tanh), among others. These
activation functions are mathematical equations that are used to determine the output
of a neural network, and each function is attached to a neuron to determine the
network activation based on the relevance of the model’s predictions. Also, the
activation functions are used to normalise the output of each neuron between the
range 0 and 1 and −1 and +1. The elements in each layer of neural networks are
highly connected by connections based on numeric weights that are learned by the
algorithm. The output layer is responsible for predicting the class for a given input
according to the weights defined through the hidden layer. There are many types of
NNs such as feed-forward, back-propagation, multi-layer perceptron, and many more,
all of which function in an analogous manner to the nervous system in the body [160].
Due to the large amount of data that passes through a network and larger neural
networks to work with, deep learning neural networks were introduced to improve the
performance of neural networks in general [161]. Due to the nature of this research,
the kind of data, and the problems defined in the objectives, a deep learning neural
network algorithm was used to solve the related problems. The specific algorithm used
is part of a recurrent neural network called Long Short Term Memory (LSTM).

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Input
layer

Output
layer

Fig. 3.1 Neural Network Diagram
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3.3.1 Long Short Term memory Networks

LSTM was proposed by [162] as a solution to the vanishing gradient problem to
preserve the errors that can be backpropagated through time and layers. LSTM
maintains more constant errors which allows recurrent networks to continue to learn
over multiple time steps in order to remotely open the channels that link causes
and effects within a network. LSTMs are designed to remember information for a
long period of time in order to avoid long-term dependency problems where they
easily learn and remember the behaviour of a network. The LSTM form a chain of
repeating modules of neural network modules that initialises the weight matrices and
bias terms. The LSTM in Matlab toolbox consists of three options such as Nonlinear
Auto-regressive with External Inputs (NARX), Nonlinear Auto-Regressive (NAR) and
Nonlinear Input-output that can be used to solve nonlinear time series problems [162].
These architectures ends with a fully connected layer and a regression output layer.
Also, the addition of softmax layer between the fully connected layer and the regression
output can help to predict class labels.

The LSTM layers consists of input, hidden and output layers. The input layer
consists of an input x(t) device-type profile input and a delayed input y(t). The hidden
layers operate in gated cells so that information can be stored in, written to, and read
out from the cell. The cell state consists of four gates, namely the gate, forget, input
and output gates. A gate consists of a sigmoid activation function, which is similar
to tanh activation, and which uses values between 0 and 1 to update or forget. The
forget gate reads from the delayed input (y(t−1) to make the decision to identify the
abnormal pattern from y(t − 1) and keep the relevant pattern. It is associated with
a sigmoid function that forwards the input and target values or variables (0, 1) to
output gates to complete the flow of information throughout the gates, which can be
represented as:

xt = σ(Wx · [yt−1,ft]+ bx) (3.2)

The above equation multiplies the forget gate by the previous state such that when
the values 0×0 are identified as abnormal inter-arrival time points. In the input gate,
we pass the new values from the previous hidden state to the present cell state through
a sigmoid function so that the sigmoid layer decides on the values that update the
inputs and the tanh layer functions to create the vectors for new candidates being
added to the new cell state. The input gate is represented as:

it = σ(Wi · [yt −1,ft]+ bi) (3.3)
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C̃t = tanh(WC · [yt −1,ft]+ bC) (3.4)

Where it is the previous input cell and C̃t is the updated input cell, and to get
the present cell state multiplied by the previous cell state xt, forgetting the abnormal
patterns. Then, we add it and C̃t. These are the new vectors, scaled by the delays to
update each cell state value, as represented by:

Ct = yt ∗Ct −1+ it ∗ C̃t (3.5)

The final step in the hidden layer is the output state that decides on what hidden
state will do using the previous input to predict the next output by multiplying Ct by
tanh to block values between (−1,1) and then multiply the result with the output of
the sigmoid function so that the output of the filtered IAT traffic is displayed in the
output layer. The output gate is represented as:

ot = σ (Wo[xt −1, bt]+ bo) (3.6)
xt = ot ∗ tanh(Ct) (3.7)

Then, the final output layer presents the output results of the model, including the
number of values in the training, validation and testing. It displays the classification
accuracy

3.3.2 Neural Network Performance Metrics

Machine learning classification problems are generally evaluated in two stages, namely
training and testing. In the training stage, also called the learning process, the
evaluation metrics of the classification algorithm are used to optimise the classification
algorithm to select the optimal solution that produces the most accurate results, whereas
in the testing stage, the evaluation metrics are used to measure the effectiveness of
the classifier when tested with the unseen data. These classification metrics fall into
different categories such as threshold type, Area Under Curve (AUC), Hybrid, and
Mean Square Error (MSE), among others. The threshold type is used for solving
two-class problems, where the classification model decides over a set of objects that
can be expressed in a 2×2 matrix, where the rows indicate the actual class and the
columns represents the predicted class [163]. The example of threshold type includes
accuracy, recall, precision, and F-score, among others [164]. The AUC evaluation
metrics are used to optimise learning models and also to compare learning algorithms
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[165], whilst the hybrid is used for building an optimised heuristic classifier and the
MSE measures the differences between the predicted and the desired outcome of a
model and is used for evaluating data with continuous variables. As such, the best
performance metric depends on the problem domain and the existing studies have
not compared these metrics due to their complexity [166]. The most commonly used
performance evaluation metrics for evaluating neural network algorithms are classified
into metrics for evaluating classification and regression models.

Classification Evaluation Metrics: The most commonly used performance
metrics in classification are based on confusion matrices, such as accuracy, defined as
the number of correctly classified data points among all the data points. Precision
and recall are respectively defined as the percentage of positive points within all
positively labelled data points and the fraction of correctly classified data points of a
particular class within all data points that belong to that class. The F-score is the
weighted harmonic mean of precision and recall. Meanwhile, the Specificity (SPC), True
Negative Rate (TNR) and False Positive Rates (FPR) are respectively defined as the
number of correct negative predictions divided by the total number of all negatives, the
number of incorrect negative predictions divided by the total number of all negatives,
and the number of incorrect positive predictions divided by the total number of all
negatives [164]. These evaluation metrics provide quantifiable evidence of how effective
an algorithm is at classifying data patterns as normal or abnormal.

Regression Evaluation Metrics: Regression metrics are used to determine the
linear relationships between the dependent Yi and independent (predictor) variables,
Z1 [167]. These relationships are broadly used to predict the behaviour of the output
response variables along with changes in the prediction variables and their MSE values.
The lower the MSE values, the better the result. Also, R values are used to determine
the relationship between the two variables in which an R value of 1 means a close
relationship whilst 0 means a random relationship.

3.4 Chapter Summary
In summary, this chapter introduces all the algorithms used in this thesis. The chapter
starts by introducing the artificial intelligence technique in cybersecurity that was used
in outlier detection techniques. It also introduced outlier detection and classification
techniques in the network access control domain. These techniques were discussed and
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how they are applied to solve similar kinds of problems was described in detail in the
literature review. Clustering-based techniques are the well-known techniques used to
solve this kind of problems. Therefore, special attention has been given to clustering-
based outlier detection techniques. These techniques were introduced along with the
justification for selecting the technique used herein. The other section introduced
the network classification algorithm that will be used to validate the performance of
clustering-based data classification and long short term memory networks for building
the intelligent filtering technique described in the research objectives.





Chapter 4

Data Analysis using K-means
Clustering

In the previous chapter, we described and justified the existing outlier detection
techniques suitable for this research; therefore, this chapter identifies and analyses
a suitable dataset. The dataset identified was provided by the Georgia Institute
of Technology. It contains the packet inter-arrival time values of 27 mobile devices
captured from active, passive and isolated network monitors. K-means clustering is
one of the most commonly used exploratory data analysis techniques to analyse and
gain insight into data structures to group similar data points into subgroups known as
clusters. Section 4.1 justifies our dataset selection and description, and then section
4.2 presents the experimental settings, while 4.3 analyses the clustering results for the
devices in each dataset. After that, a device-type profiling is prepared in section 4.4
and section 4.5 contains a summary of the chapter.

4.1 Dataset Selection and Description
This research relies on an existing dataset consisting of network traffic traces from
mobile devices such as smartphones, tablets and laptops. The objective of the research is
to analyse the network traffic traces from these devices to define normal and abnormal
profiles and subsequently develop a technique that can classify abnormal profiles.
Therefore, this section outlines the dataset selection, description and analysis presented
in this chapter.



48 Data Analysis using K-means Clustering

4.1.1 Dataset Selection

In the selection of a suitable dataset for this research, several dataset repositories, such
as the Community Resource for Archiving Wireless Data at Dartmouth, (CRAWDAD),
Centre for Applied Internet Data Analysis (CAIDA), Outlier Detection Datasets
(ODDS), DARPA, and Measurement and Analysis on the WIDE Internet (MAWI),
among others, are researched to find suitable data to satisfy the requirements of
this research. Our selection of a dataset is based on the important attributes (e.g.
time, device-type, application used and location) suitable for defining and identifying
abnormal from normal patterns. We have compared the datasets and chosen the one
that satisfies our requirements. For example, the DARPA dataset [168] has been widely
used by the research community to solve anomaly detection problems; however, in our
case, the devices used to generate the data are not up to date and we are at the IoT
edge. Therefore, using this dataset would not add sufficient value to this research. The
ODDS dataset repository [169] also has a collection of datasets available for anomaly
detection problems. While there are enough datasets in these repositories, none of these
are suitable for the purposes of this research as the datasets were generated randomly
from network devices, making it difficult to differentiate the data from smartphones,
tablets and laptops; the same is true for the Centre for Applied Internet Data Analysis
(CAIDA) [170] datasets. Another problem with the CAIDA dataset is that a lot of
packets are lost, which would have a significant effect on this research. The closest
dataset we have identified is the MIT reality dataset [171]; however, this dataset is also
not up to date, whereby the devices used were 2004 models, and its main focus is on
mobile device usage and movements.

Finally, the Gatech fingerprinting dataset (GTID) [97] was identified from the
Crawdad repository [172]. This contains the packet inter-arrival time measurements
of 27 mobile devices, including smartphones, tablets and laptops, connected through
access point observation for different protocols (e.g. TCP, UDP and ICMP) and
directions. Therefore, this dataset is suitable for use throughout this thesis. It was
chosen because it contains the most important attributes needed for this research;
examples of the attributes are smartphone, tablet, and laptop, location, time, and
application. Moreover, it is the only one among the researched datasets to specify
whether the data were captured from smartphones, tablets, laptops, or gaming devices,
among others. While ODDS, MAWI, DARPA, etc. contain the target amount of
information for device-type profiling, the essential requirement for use with BYOD is
that the dataset needs to be specifically captured directly from smartphones, tablets
and laptops to address the research problem.
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4.1.2 Gatech Dataset Description

The characteristics of the datasets are device type, packet inter-arrival time, packet
payload size, network traffic speed rate, application, and traffic type. The device
types are smartphones, tablets and laptops. The packet inter-arrival time is the
unique signature generated by each device type. The speed rates and payload sizes
are represented in three cases (cases 1, 2, and 3), respectively. The packet payload
size for cases 1 and 3 are 64-byte packets at a speed rate of 1 megabit per second
(Mbps), while the packet size for case 2 is 1400 bytes at a speed rate of 8 Mbps. The
applications used are iPerf, Ping, SCP, and Skype, and the protocols used are TCP,
UDP and ICMP, respectively. In addition, the traffic type is represented based on
the traffic monitors (active, isolated and passive network traffic monitors) used for
capturing the inter-arrival time values for each device.

As stated earlier, the dataset contains the inter-arrival times of the device types
measured via active, isolated and passive network traffic datasets. In capturing the
network traffic, the authors in [97] state that they generated the data considering
various attack scenarios. These attack scenarios were introducing constant delays
to the packet stream, injecting random delays into the packets, tunnelling packets
through another protocol, loading the CPU with intensive applications to overshadow
normal behaviour, varying the packet size, and changing the data rate, among others.
These attack scenarios were included when capturing the data and caused anomalies
in the packet inter-arrival time capture while making it look like the devices had been
attacked by an attacker with knowledge of the behaviour of the devices accessing the
network. This is the main reason why the datasets contain anomalies. Moreover, after
capturing the datasets, the authors did not specify where the attack originated as well
as which device types or network traffic types contained the abnormal patterns. Also,
the datasets were not labelled as having normal or abnormal inter-arrival time points
based on the attack scenarios mentioned by the authors. This is one of the greatest
limitations of the research and leads us to make use of the k-means clustering technique
to gain insight into the data and to identify and separate the normal from abnormal
inter-arrival time points; we also use CMGOS to label the normal and abnormal
inter-arrival time points.

Moreover, the data contains multiple files (in the .mat format) suitable for use in
MATLAB. We select and extract the data files on smartphones, tablets and laptops
and convert them into Comma Separated Value (CSV) format. The reason for choosing
smartphones, tablets and laptops is that our research objectives focus on NAC devices,
and these are the only devices supported; therefore, other devices were not considered.
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The files are converted into CSV because most data mining tools, such as RapidMiner
Studio [173], do not support the .mat file extension. The files are then organised
according to filename → Application → Protocol → Case (e.g. iPerf-TCP-Case 2).
An overview of these datasets is presented in Tables 4.1, 4.2 and 4.3.

Table 4.1 An overview of the devices in the Active Network Traffic Datasets

Application Protocols Case No. Payload Size Speed Rate Device Types

Ping ICMP 1 64 bytes 1mbps 10 Acer Netbooks, 10 Asus
Netbooks, 8 Gateway
Netbooks , 2 Google Phones,
2 Lenovo Laptops and 2 Asus
Tablets.

Ping ICMP 2 1400 bytes 8mbps 10 Acer Netbooks, 10 Asus
Netbooks, 8 Gateway
Netbooks , 2 Google Phones,
2 Lenovo Laptops and 2 Asus
Tablets.

Table 4.2 An overview of the devices in the Isolated Network Traffic Datasets

Application Protocols Case No. Payload Size Speed Rate Device Types

Iperf TCP 2 1400 bytes 8mbps 5 Dell Netbooks, 3 iPad’s, 2
iPhone 3G, 2 iPhone 4G and
2 Nokia Phones.

Iperf UDP 1 64 bytes 1mbps 5 Dell Netbooks, 3 iPad’s, 2
iPhone 3G, 2 iPhone 4G and
2 Nokia Phones.

Iperf UDP 2 1400 bytes 8mbps 5 Dell Netbooks, 3 iPad’s, 2
iPhone 3G, 2 iPhone 4G and
2 Nokia Phones.

Iperf UDP 3 64 bytes 1mbps 5 Dell Netbooks, 3 iPad’s, 2
iPhone 3G, 2 iPhone 4G and
2 Nokia Phones.

Ping ICMP 1 64 bytes 1mbps 3 Dell Netbooks, 3 iPads, 2
iPhone 3G, 2 iPhone 4G and
2 Nokia Phones.

Ping ICMP 2 1400 bytes 8mbps 3 Dell Netbooks, 3 iPads, 2
iPhone 3G, 2 iPhone 4G and
2 Nokia Phones.

Scp TCP 1 64 bytes 1mbps 5 Dell Netbooks, 3 iPad’s, 2
iPhone 3G, 2 iPhone 4G and
2 Nokia Phones.
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Table 4.3 An overview of the devices in the Passive Network Traffic Datasets

Application Protocols Case No. Payload Size Speed Rate Device Types

Iperf TCP 1 64 bytes 1mbps 10 Acer Netbooks, 10 Asus
Netbooks, 8 Gateway
Netbooks , 2 Google Phones,
2 Lenovo Laptops and 2 Asus
Tablets.

Iperf UDP 1 64 bytes 1mbps 10 Acer Netbooks, 10 Asus
Netbooks, 8 Gateway
Netbooks , 2 Google Phones,
2 Lenovo Laptops and 2 Asus
Tablets.

Iperf UDP 3 64 bytes 1mbps 10 Acer Netbooks, 10 Asus
Netbooks, 8 Gateway
Netbooks , 2 Google Phones,
2 Lenovo Laptops and 2 Asus
Tablets.

Ping ICMP 1 64 bytes 1mbps 10 Acer Netbooks, 10 Asus
Netbooks, 8 Gateway
Netbooks , 2 Google Phones,
2 Lenovo Laptops and 2 Asus
Tablets.

Scp TCP 1 64 bytes 1mbps 10 Acer Netbooks, 10 Asus
Netbooks, 8 Gateway
Netbooks , 2 Google Phones,
2 Lenovo Laptops and 2 Asus
Tablets.

Iperf UDP 2 1400 bytes 8mbps 2 Lenovo Laptops and 1 Asus
Tablets.

Skype UDP 1 64 bytes 1mbps 2 Lenovo Laptops and 2 Asus
Tablets.

The active dataset presented in Table 4.1 contains the packet inter-arrival time
points of 68 devices, namely ten Acer Netbooks, ten Asus Netbooks, eight Gateway
Netbooks, two Google Phones, two Lenovo Laptops and two Asus Tablets in two
different cases. The isolated dataset presented in Table 4.2 contains the packet inter-
arrival time points of 94 mobile devices, namely five Dell Netbooks, three iPads,
two iPhone 4G, two iPhone 3G and two Nokia Phones in three different cases and
applications. The passive dataset presented in Table 4.3 contains the inter-arrival
time points of 245 devices, including ten Acer Netbooks, ten Asus Netbooks, eight
Gateway Netbooks, two Google Phones, two Lenovo Laptops and two Asus Tablets in
the different cases and applications, respectively. The applications used for generating
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these datasets are iPerf and Ping and are divided into three cases (cases 1, 2 and 3)
mentioned above according to different packet size/rate settings.

4.2 Packet Inter-Arrival Time Data Analysis
The packet inter-arrival time is the time between each arrival of a packet into the system
and the arrival of the next packet. Hence, it is commonly used to measure the incoming
and outgoing packets in a network, which is one of the fundamental characteristics of
internet traffic. Packet inter-arrival time measurements are integral parts of network
traffic management and monitoring and control tasks in packet-switched networks
[174]. Packet inter-arrival time is important in this research because it can help to
understand the behaviour of devices or device-types based on their packet inter-arrivals.
Moreover, we analyse these packet inter-arrival time values for each device using the
K-means clustering algorithm described in section 3.2.1 and following the experiment
settings presented in the next sections.

4.2.1 Data Analysis Experiment Settings

We pre-process the datasets in RapidMiner Studio [173], a data science and machine
learning platform for data science processes, such as data preparation, machine learning,
deep learning, text mining, and predictive analytics [175]. The operators needed to
perform K-means clustering in RapidMiner Studio are: (1) load data operator, (2) K-
means clustering operator, and (3) cluster model visualiser. Each operator is connected
to the next, has its own configuration settings (see the connections in Figure 4.1, and
is broken down with the background processes in Figure 4.2). The load data operator
can access the datasets stored in the repository and load them into the process. The
K-means operator has certain parameter configuration settings that can be used to
partition the dataset values according to the number of clusters. These parameters
are K, Maximum runs, Measure type, Divergence and Maximum optimisation steps.
K is used to determine the number of clusters, e.g. K = 2,3 . . .n. Maximum runs
and maximum optimisation steps are by default 10 and 100, respectively, but can be
adjusted based on user preference. Measure type consists of Mixed, Nominal, Numerical
and Bregman divergence, and it works hand-in-hand with the divergence option so that
when the measure type changes, the options in the divergence change. For example,
when we select nominal values, the divergence can be set to the nominal distance;
when we select Bregman divergence, the divergence has many options that can be used
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to calculate the cluster distance. The well-known examples of the cluster distance
measures are squared Euclidean distance, Mahalanobis distance, and squared loss,
among others, and these are available under the divergence tab. The last operator
helps in visualising the clustering results and captures the essential details of each
cluster along with the Davies–Bouldin performance index for each cluster.

Fig. 4.1 K-means operator configuration Rapidminer

4.2.2 Determining the Number of Clusters

To determine the number of clusters, we experiment with different cluster measures,
such as the silhouette index, Dunn index, elbow method, and Davies–Bouldin index,
and examples of these results are presented in Tables A.1, A.2 and A.3 in Appendix A.
The perfect settings that fit our datasets and give the best results are K = 2, maximum
runs = 10, Measure type = Bregman divergence, Divergence = squared Euclidean
distance and Maximum optimisation steps = 100. Also, the Davies–Bouldin index is
used to determine the number of clusters due to its advantages over the other measures,
including its simpler computation and the fact that the index is computed to measure
the ideal number of clusters for each dataset, among others. Examples of these results
are shown in Tables 4.4. The results in all the tables clearly show that the optimal
number is k = 2 as the Davies–Bouldin index increases with increasing k. Therefore,
the optimal number of k for solving this research problem is k = 2, which is used
throughout the experiments.

Therefore, in the remaining experiments, we define and configure the K-means
clustering algorithm based on the above justification. Our K-means clustering algorithm
uses a squared Euclidean distance function to compute the distances (i.e., similarities)
between the two clusters for each device and device-type to produce two clusters, i.e.,
C0 and C1. We assume the device and device-type to be represented by a set of vectors
DevD,DevDT = IAT1, IAT2, ......., IATn, where D is the device, DT is the device-type
and IAT is the data point distribution for each device or device-type. The clustering
algorithm distributes the inter-arrival time values into k according to distance d and
produces two clusters, cp. The squared Euclidean distances are calculated between
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Fig. 4.2 K-means operator configuration
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the clusters in a weighted Euclidean mode using an inverse of the average proportions
as weights. Suppose cj denotes the jth element of the average of each cluster; in
such a case, the squared Euclidean distance, denoted by E, between the two clusters
v = [v1,v2....vj ] and nv = [nv1,nv2....nvj ] can be defined as:

Ev,nv =

√√√√√ j∑
j=1

1
cj

(v −nv)2 (4.1)

Where v is the varied cluster and nv is the non-varied cluster for each device and
device-type. The squared Euclidean distance function computes the square root of
the sum of the squares of the differences between the inter-arrival time values for
each device or device-type. Note that all these features contribute equally to the
function value. The inter-arrival time distributions are used to discover the impact of
inter-arrival time variation from similar devices or device-types on the same network
traffic.

Table 4.4 Davies-Bouldin index for Active, Isolated and Passive network traffic datasets

Network Traffic Type Device k = 2 k = 3 k = 4 k = 5

Active

Acer 0.020 0.060 0.075 0.235
Asus 0.010 0.102 0.296 0.287
GatewayNB 0.100 0.216 0.369 0.420
GoogleP 0.509 0.541 0.642 0.649
Lenovo 0.140 0.420 0.433 0.513
Asus Tablets 0.409 0.438 0.492 0.565

Isolated

Dell 0.291 0.330 0.349 0.386
iPads 0.307 0.367 0.393 0.416
iPhone 3G 0.082 0.312 0.398 0.415
iPhone 4G 0.021 0.358 0.387 0.393
Nokia 0.169 0.228 0.236 0.248

Passive

Acer 0.043 0.328 0.360 0.381
Asus 0.010 0.336 0.372 0.377
GatewayNB 0.047 0.312 0.329 0.365
GoogleP 0.002 0.364 0.414 0.437
Lenovo 0.058 0.413 0.441 0.477
Asus Tablets 0.553 0.548 0.627 0.674
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4.2.3 Analysis of Clustering Results

The clustering results are analysed based on the inter-arrival time points associated with
the mean of each cluster, and the descriptive analysis of the clusters and are presented
in sections 4.3 and 4.4. The clustering analysis helps in the creation of clusters that
can be used to identify and analyse the relationships between the inter-arrival time
points for each device. For example, cluster centre analysis can be used to group the
inter-arrival time points to partition the data and identify abnormal inter-arrival time
points. It may be possible to use cluster centre analysis to solve many unsupervised
machine learning problems.

Descriptive statistics is a term given to data analysis techniques that describe the
main features of the data in a meaningful way so that patterns can emerge from that
data. To examine the potential positive features of the clusters, we apply descriptive
statistics to each cluster using quartiles to identify any significant data patterns. A
quartile is a statistical term used in descriptive analysis when describing a division of
observations. A quartile measures the spread of values below and above the mean by
dividing the distributions into four defined intervals (minimum, first quartile, median,
third quartile and maximum) based on the values of the data and how they compare
with the entire set of observations. A quartile divides data into three points, namely the
lower quartile (Q1), the median quartile (Q2), and the upper quartile (Q3) to describe
the data. The lower quartile is the middle number between the smallest number and
the median of the dataset. The median is the middle value of the data, and the upper
quartile is the middle value between the median and the highest value in the data.

4.3 Cluster Centre Analysis
The inter-arrival time points associated with the mean of each cluster for the active,
isolated and passive network traffic datasets described in section 4.1.2 is analysed. The
resulting means of the clusters for each device and device-type are presented in Tables
4.5, 4.6, and 4.7. The tables contain the number of clusters, represented as C0 for the
first cluster and C1 for the second cluster, which are the total number of inter-arrival
points associated with the mean of the first and second clusters, respectively. Moreover,
the descriptive analysis of the data in the cluster distributions of the individual devices
and their device-types are also presented in the tables, which are presented and analysed
based on notched box plots in section 4.4.1.
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4.3.1 Active Network Traffic Dataset

The active network traffic datasets consist of the inter-arrival time values of the
mobile devices described in the active network traffic dataset analysis. These mobile
devices are Acer Netbooks (AC1-10), Asus Netbooks (AS1-10), and Gateway Netbook
(GW1-8), Lenovo Laptops (L1-2), Google Phones(G1-2) and Asus Tablets (T1-2), and
their clustering results are presented below. The clustering results for Acer Netbooks
presented in Table 4.5 show that the devices AC1-10 have several inter-arrival time
points in the normal and abnormal clusters (C0 and C1), and C0 has more inter-arrival
time points than C1 for all the devices and device-types. For example, AC1 has
393,116 inter-arrival time points in C0 and 61 inter-arrival points in C1. The 393,116
inter-arrival time points for C0 are associated with the cluster centre 0.009s, and the 61
inter-arrival points for C1 are associated with the 0.935s cluster centre, which is similar
for other devices and their device-types. These cluster centres are the mean values
of each data partition, divided into two points for the devices and their device-types,
respectively ,which can help to obtain insight into the data and identify the outlying
inter-arrival time points. In the same table, the mean value of the normal cluster C0
for all the devices AC1-10 and their device-type Acer Netbook is 0.009s. Also, in C1,
the cluster centre for AC1-10 and Acer Netbook, the minimum mean value among all
the devices is 0.701s for AC6, while the maximum is 0.984s for AC7.

The devices AS1-10, GW1-8, G1-2, L1-2 and T1-2 and their device-types are
analysed below and their results are presented in Tables A.4 and A.5 in Appendix A.
The mean value of C0 for both devices and their device-types presented in the tables is
0.009s, while their associated inter-arrival time points are similar to AC1-10 above. The
cluster centre for the abnormal cluster C1 for AS1-10 is observed with a minimum mean
value of 0.721s and a maximum of 0.957s. Additionally, the minimum and maximum
inter-arrival time values of C1 for GW1-8, G1-2, L1-2 and T1-2 fall between 0.087 and
1.008s. There are cases where some devices, such as AS7, have a mean value of 5.053s
and influence the device-type with the same value. After a thorough investigation, by
removing this value and repeating the experiment, the value is identified as an outlier
and removing it improves the maximum value of both the device and the device-type,
leading to a maximum value of 0.936s; the same applies to AC5, AS8, AS7 and L1,
although L1 does not influence the device-type. Since this chapter is more concerned
with the clusters, the data are left as they are so that the clustering-based multivariate
outlier score algorithm in the next chapter can automatically detect it.

The above results inform us that the inter-arrival times of the normal cluster
are similar and that there are outliers in the abnormal cluster that need further
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Table 4.5 Descriptive analysis of device-types of Ping-ICMP-Case1 in active network
traffic datasets

Device Cluster IAT Points cluster cen-
tre(s)/Mean

Q1 Median Q3 Min Max Std

AC1 C0 393,116 0.009 0.008 0.009 0.010 0.000 0.437 0.005
C1 61 0.935 1.001 1.006 1.014 0.509 1.046 0.157

AC2 C0 394,563 0.009 0.008 0.009 0.010 0.000 0.425 0.005
C1 31 0.973 1.002 1.006 1.015 0.510 1.649 0.189

AC3 C0 396,468 0.009 0.009 0.009 0.009 0.000 0.289 0.002
C1 63 0.706 0.391 0.908 1.008 0.381 1.050 0.308

AC4 C0 394861 0.009 0.008 0.009 0.010 0.000 0.426 0.005
C1 32 0.937 1.001 1.006 1.011 0.504 1.037 0.161

AC5 C0 394,897 0.009 0.008 0.009 0.010 0.000 0.268 0.003
C1 63 0.716 0.392 0.874 1.007 0.382 1.038 0.302

AC6 C0 396,172 0.009 0.008 0.009 0.009 0.000 0.322 0.003
C1 53 0.701 0.394 0.661 1.006 0.383 1.019 0.292

AC7 C0 397,615 0.009 0.009 0.009 0.009 0.000 0.412 0.004
C1 29 0.984 1.005 1.007 1.012 0.633 1.026 0.084

AC8 C0 397,360 0.009 0.009 0.009 0.009 0.000 0.356 0.002
C1 62 0.710 0.393 0.759 1.005 0.381 1.019 0.289

AC9 C0 397,457 0.009 0.009 0.009 0.009 0.000 0.472 0.004
C1 54 0.953 1.003 1.007 1.011 0.512 1.051 0.148

A10 C0 397,095 0.009 0.008 0.009 0.010 0.000 0.416 0.004
C1 31 0.949 1.002 1.007 1.011 0.496 1.016 0.143

ACER C0 3,959,761 0.009 0.008 0.009 0.009 0.000 0.472 0.004
C1 326 0.957 1.003 1.006 1.010 0.496 1.649 0.140

investigation. The results of this investigation are used in the next step of this research.
To gain additional insight into the above results and to validate a device-type profiling
approach, we further analyse the clustering results using notched box plots in section 4.4
below.

4.3.2 Isolated Network Traffic Dataset

The isolated network traffic datasets consist of seven data files, each file containing
inter-arrival time traffic data for Dell Netbooks (DN1-5), iPads (IP1-3), iPhone 3G
(IT1-2), iPhone 4G (IF1-2) and Nokia Phones (NP1-2). Table 4.6 show example of
the clustering results for these mobile devices and their device-types. The clustering
results show the mean value for each cluster. The mean values for the normal cluster
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C0 is 0.001 s. The clustering results for the Dell Netbooks presented in Table 4.6 show
that C0 has more inter-arrival time point than C1. For example, the mean values of
the normal cluster for DN1 is 0.001. The total number of inter-arrival time points is
841,299 whereby C0 has 840,955 inter-arrival time points and C1 has 344. The other
devices, DN2-5, have more inter-arrival points in C0 and 17−344 inter-arrival time
points in C1, while their mean values fall between 0.007 and 0.428s, respectively. Also,
the mean values for C0 for IP1-3, IF1-2, IT1-2 and NP1-2 and their device-types are
0.001s, and the mean value of C1 ranges from 0.007 to 2.660s.

Table 4.6 Descriptive analysis of Dell-Netbooks of iPerf-TCP-Case 2 in isolated network
traffic datasets

Device Cluster IAT Points cluster
centre(s)/Mean

Q1 Median Q3 Min Max Std

DN1 C0 840955 0.001 0.001 0.001 0.001 0.000 0.058 0.001
C1 344 0.132 0.087 0.134 0.175 0.082 0.187 0.044

DN2 C0 1327118 0.001 0.001 0.001 0.001 0.000 0.037 0.001
C1 320 0.074 0.052 0.061 0.082 0.038 0.284 0.039

DN3 C0 1288629 0.001 0.001 0.001 0.001 0.000 0.053 0.001
C1 66 0.111 0.083 0.088 0.172 0.062 0.177 0.042

DN4 C0 2557115 0.001 0.000 0.001 0.001 0.000 0.004 0.000
C1 26530 0.007 0.004 0.005 0.008 0.004 0.202 0.004

DN5 C0 3059230 0.001 0.000 0.000 0.001 0.000 0.176 0.001
C1 17 0.428 0.268 0.447 0.543 0.233 0.657 0.154

Moreover, the results for the other devices and their device-types (IP1-3, IF1-2,
IT1-2 and NP2) in the isolated network traffic datasets are presented in Tables A.8 -
A.12 in Appendix A. In the tables, the mean values of the normal cluster C0 are 0.001s
and for the abnormal cluster C1 they lie between 0.016 and 0.122s. In some cases, the
values fall between 4.189 and 59.876s. These results show that the inter-arrival times
for the normal cluster are all similar, yet there are changes in the abnormal cluster
that need further investigation.

4.3.3 Passive Network Traffic Dataset

The passive network traffic dataset consists of eight data files. Each file contains inter-
arrival time network traffic data for the similar, Asus Netbooks, Gateway Netbooks,
Google Phones, Lenovo Laptops and Asus Tablets. The mean values for the normal
cluster are 0.001, 0.002, 0.009 and 0.011s. An example of the clustering result of
Gateway Netbooks is presented in Table 4.7. As can be seen from the table, the mean
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value of the normal cluster C0 for all devices and their device-types is 0.011s. The mean
values for C1 for all the devices and their device-types have minimum and maximum
values of 0.0128 and 0.135s, respectively. This result shows that the devices and their
device-types have similar mean values in the normal clusters and different values in
the abnormal clusters. Additionally, the mean values for C0 for the other devices and
devices types in the same dataset are presented in Table A.13 and remain at 0.011s.
Also, the minimum and maximum mean values of C1 for G1-2, L1-2 and T1-2 fall
between 0.016 and 0.021s and 0.0128 and 0.135s for AC1-10 and AS1-10, respectively.

Table 4.7 Descriptive analysis of device-types of iPerf-UDP Case 3 in passive network
traffic datasets

Device Cluster IAT Points Cluster
Centre(s)

Q1 Median Q3 Min Max Std

GW1 C0 320880 0.011 0.011 0.011 0.011 0.000 0.069 0.002
C1 355 0.135 0.132 0.135 0.138 0.076 0.143 0.005

GW2 C0 320913 0.011 0.011 0.011 0.011 0.000 0.070 0.003
C1 334 0.131 0.131 0.134 0.138 0.073 0.152 0.015

GW3 C0 320929 0.011 0.011 0.011 0.011 0.000 0.065 0.002
C1 312 0.134 0.132 0.135 0.138 0.074 0.146 0.007

GW4 C0 320803 0.011 0.011 0.011 0.011 0.000 0.069 0.004
C1 367 0.128 0.131 0.134 0.138 0.070 0.165 0.020

GW5 C0 320886 0.011 0.011 0.011 0.011 0.000 0.071 0.002
C1 311 0.135 0.132 0.135 0.138 0.080 0.152 0.006

GW6 C0 320925 0.011 0.011 0.011 0.011 0.000 0.069 0.002
C1 353 0.135 0.132 0.135 0.138 0.077 0.155 0.005

GW7 C0 320848 0.011 0.011 0.011 0.011 0.000 0.072 0.002
C1 355 0.135 0.132 0.135 0.138 0.076 0.148 0.006

GW8 C0 320874 0.011 0.011 0.011 0.011 0.000 0.072 0.002
C1 309 0.135 0.132 0.135 0.138 0.077 0.158 0.005

GatewayNB C0 2567066 0.011 0.011 0.011 0.011 0.000 0.072 0.002
C1 2688 0.134 0.132 0.135 0.138 0.072 0.165 0.010

The results for the other datasets are presented in Tables A.14 - A.16. As mentioned
earlier, the mean values of the normal cluster, C0, for all datasets are 0.001, 0.002,
0.009 or 0.011s, depending on the dataset. The normal cluster purely shows the mean
values for each dataset, and the results clearly demonstrate that the measurements for
each dataset are different. The minimum and maximum mean values for the abnormal
cluster, C1, for most of the devices and device-types in the remaining datasets fall
between 0.016 and 1.633s, respectively. In a few cases, we observe some devices having
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large values and influencing their device-type, such as the Acer in Table A.21, which
shows a mean value of 27.747s and 42.855s for Asus in Table A.19. This result does
not mean that these are abnormal inter-arrival time points but rather shows that they
have the greatest mean values. Therefore, these datasets will be investigated further
to identify abnormal profiles and provide the means with which these can be identified.
Moreover, the results for the device-types are not significantly different from the results
for their individual devices.

4.4 Notched Box Plot Analysis
The notched box plots of the clusters for the active, isolated and passive network
traffic datasets are analysed in this section. Notched box plots are used to gain insight
into each cluster to identify how their inter-arrival time values are distributed and to
validate whether device or device-type profiling is a valid approach [176]. This can
be determined when the notched boxes overlap. The notched box plots are a very
convenient visualisation of the statistical five-tuple, which consists of the quartiles and
the minimum and maximum data values. For each dataset, a box is drawn from the first
quartile to the third quartile, and the median is marked with a thick line. Additional
whiskers extend from the edges of the box towards the minimum and maximum of the
dataset, but no further than 1.5 times the inter-quartile range. Data points outside the
range of box and whiskers are considered outliers and are drawn separately as small
circles. A variation of standard box plots is to add notches. Notches surround the
median and roughly indicate the significance of differences between the values. If the
notches of two boxes do not overlap, their medians are significantly different at a 95%
confidence level.

Moreover, the notched box plots were also used to answer the third research question,
namely whether device-type profiling is a valid approach. It may only be considered
valid if the associated statistical assumptions are met, which would only be the case if
the notches of the devices and their device types overlap. Overlapping notches would
indicate that the inter-arrival time values in the devices are not significantly different
from their device types; having met this condition, device-type profiling is considered
as a valid approach within a 95% confidence level.
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4.4.1 Active Network Traffic Dataset

In the notched box plot results for the 68 mobile devices in the active network traffic
datasets, it was observed that all the notched boxes for the normal and abnormal
clusters for devices and their device-types overlap. This gives us 95% confidence that
the inter-arrival time values from the devices and their device-types are distributed
within the same range. For example, the notched box plot of the normal cluster for the
Acer Netbooks, illustrated in Figure 4.3a, shows that the notched boxes of the devices
and their device-type overlap. These overlapping notches give 95% confidence that
devices AC1-10 are from the same inter-arrival time distributions as their device-type
(Acer Netbook). Similarly, the notched box plots of the abnormal cluster, illustrated
in Figure 4.3b, overlap, indicating that AC1-10 and Acer Netbook are also from the
same inter-arrival time distributions.

(a) Normal (b) Abnormal

Fig. 4.3 Notched box plots of normal and abnormal cluster for devices (AC1-10) and
their device-type (Acer) in Active network traffic datasets

Another example of the normal cluster for the Asus Netbooks, presented in Fig-
ure 4.4a shows that the notched boxes of devices AS1-10 overlap with that of their
device-type (Asus). The notches overlap in the abnormal cluster for the same devices
and their device-types, as shown in Figure 4.4b. Thus, the results below show that the
inter-arrival time distributions of the devices are similar to those of their device-types.
Moreover, these results, and indeed the further examples presented in Figures A.1 -
A.4 in Appendix A, gave 95% confidence that device-type profiling is a valid approach
and can thus be implemented using active network traffic datasets.

4.4.2 Isolated Network Traffic Dataset

In the notched box plot results for the 94 mobile devices in the isolated network traffic
dataset, it was observed that the notched boxes for the devices in the normal cluster
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(a) Normal (b) Abnormal

Fig. 4.4 The notched box plots of normal and abnormal cluster for devices (AS1-10)
and their device-type (Asus) in Active network traffic datasets

and their device-types overlap. The notched boxes shows that the inter-arrival time
values of the devices and those of their device-type overlaps and lies within the 95%
confidence level. For example, the notched box plots for the cluster of Dell Netbooks
(DN1-5) presented in Figure 4.5a show that the inter-arrival time distributions of
DN1-5 are similar to that of their device-type (Dell Netbook). Based on the figure,
their inter-arrival time distribution values overlap, and as with the above, this gives us
95% confidence that the devices and their device-types are from the same inter-arrival
time distributions. Another example where one of the devices in the abnormal cluster
did not overlap with the rest of the devices and device-type is presented in Figure 4.5b.
The figure shows that DN1-4 overlap with their device-type, but DN5 does not overlap
with either the other individual devices or the device-type. Since the notched boxes
of the normal cluster for DN1-5 and the abnormal cluster for DN1-4 overlap with
their device-type, there is no confidence that all the devices and their device-types are
from the same inter-arrival distributions; however, in this instance, DN5 represents an
outlier that needs further investigation.

Figures 4.6a and 4.6b present other examples in which all the notched boxes of
both clusters of iPads (IP1-3) overlap, with the associated 95% confidence that all the
devices and the device-type are from the same inter-arrival time distributions.

Also, another example of Nokia Phones (NP1-2) in Figures 4.7a and 4.7b shows
that the notched boxes of the normal cluster overlap, whereas the abnormal cluster for
NP1 does not overlap with NP2 and the device-type. This result, based on the normal
cluster, indicates that the devices and their device-type are from the same inter-arrival
time distributions. This highlights that NP1 also needs further investigation. The
results for all the devices and their device-types in the isolated network traffic datasets
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(a) Normal (b) Abnormal

Fig. 4.5 The notched box plots of normal and abnormal cluster for devices (DN1-5)
and their device-type (Dell Netbooks) in Isolated network traffic datasets

(a) Normal (b) Abnormal

Fig. 4.6 The notched box plots of normal and abnormal cluster for devices (IP1-3) and
their device-type (iPads) in Isolated network traffic datasets

are not in any way distinct from the above results; further examples can be seen in
Figures A.5 - A.6 in Appendix A.

(a) Normal (b) Abnormal

Fig. 4.7 The notched box plots of normal and abnormal for (NP1-2) and their device
type (Nokia Phones) in Isolated network traffic datasets
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4.4.3 Passive Network Traffic Dataset

From the notched box plot results for the 245 mobile devices in the passive network
traffic datasets, it was observed that the notched boxes of the normal cluster for the
devices and their device-types overlap, giving 95% confidence that the data from the
various devices and their associated device-types have similar inter-arrival time values.
An example of the results for the passive network traffic datasets for a tablet, laptop
and smartphone are illustrated in the figures below. According to Figures 4.8a and 4.8b,
the inter-arrival time distributions for both clusters of the devices and their device-types
lie within the same inter-arrival time ranges, implying a similar 95% confidence that
the inter-arrival time values of the devices and their device-types overlap. Also, the
results demonstrate that device-type profiling is a valid approach for this device-type.

(a) Normal (b) Abnormal

Fig. 4.8 The notched box plots of normal and abnormal cluster for devices (T1-2) and
their device-type (Asus Tablets) in Passive network traffic datasets

Moreover, similar results are observed for both clusters for the Acer Netbooks, as
presented in Figures 4.9a and 4.9b. The outliers at the top and bottom of the devices
and device-types do not affect the results because the notches overlap and suggest
nothing that would otherwise invalidate our assumption. As outlier detection is one
of the main objectives of this research, these outliers will further be investigated in
chapter 5. Another example illustrated in Figures 4.10a and 4.10b, the notched boxes
for the Google Phones (G1-2) overlap with that of their device-type. These results
demonstrate that the devices and their device-type are from the same inter-arrival
time distribution, with no visible outliers. Therefore, device type profiling is also a
valid approach for this device-type.

In another example where one device has a large inter-arrival time value that
influences the device-type. For example, in Figures 4.11a and 4.11b, AS9 has a large
inter-arrival time value for one of its data points. After a thorough investigation, we
note that the devices and their device-type are within the same inter-arrival time
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(a) Normal (b) Abnormal

Fig. 4.9 The notched box plots of normal and abnormal cluster for devices (AC1-10)
and their device-type (Acer) in Passive network traffic dataset

(a) Normal (b) Abnormal

Fig. 4.10 The notched box plots of normal and abnormal cluster for devices (G1-2) and
their device-type (Google Phone) in Passive network traffic dataset

ranges. Therefore, these results demonstrate that device-type profiling remains a valid
approach for the passive network traffic datasets as per the 95% confidence limits
in that the devices and their device-types have similar inter-arrival values. Lastly,
the results for the other datasets, presented in Figures A.7 to A.10 in Appendix A,
suggest similar results, therefore, device-type profiling is a valid approach for all the
device-types in passive network traffic datasets.

4.5 Chapter Summary
K-means clustering is an established technique for data analysis. This chapter presents
a process of data analysis by applying K-means clustering to an existing dataset.
Instead of analysing the data using the popular K-means approach (scatter plot), it
used a notched box plot to provide additional insight into the data values. It started
by analysing individual device data and later concatenated all the data from the
same device-type into one data file and compared the results. The datasets were
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(a) Normal (b) Abnormal

Fig. 4.11 The notched box plots of normal and abnormal cluster for devices (AS1-10)
and their device type (Asus) in Passive network traffic datasets

concatenated to understand the relationships between the individual devices and their
device-types as well as to demonstrate that their data distributions were similar. The
results of the analysis presented in sections 4.3.1, 4.3.2, and 4.3.3 demonstrate that
device-type profiling is a valid approach. Also, the results give 95% confidence that
most of the distributions from the devices and device-types overlap. The clustering
analysis helped to identify the normal and abnormal inter-arrival time points, which
were then used to classify the data into normal and abnormal profiles. It should be
noted that similar results were observed for the datasets presented in Tables A.4 - A.14;
however, considering that each of the datasets would require a lengthy data analysis
without providing additional information, the same data analysis can be applied to the
other datasets. As a next step, we consider a device-type profiling approach in which
the output of the clustering algorithm (clusters) is used as input for the clustering-based
multivariate Gaussian outlier score (CMGOS) to classify the device-types into normal
and abnormal profiles, respectively. The CMGOS settings and configurations used to
classify the device-types into normal and abnormal profiles are presented in section 5.1.





Chapter 5

Device-Type Profiling Using
Clustering-Based Outlier Detection

The device-type profiling discussed in this chapter is developed using the pre-processed
data described and analysed in chapter 4. First, device-type profiling is defined in section
5.1, as are the device-type profiling algorithm and the experimental settings. Then,
sections 5.2 and 5.3 present the device-type profiling and data labelling, respectively,
both of which are achieved here using the clustering-based multivariate Gaussian
outlier score (CMGOS) algorithm. The device-type profiling shows the percentages
of the normal and abnormal inter-arrival time points. The data labelling labels the
device-type datasets with either normal or abnormal inter-arrival time points depending
on the outlier score so that the data can be useful in the identification of abnormal
inter-arrival time points. Finally, a summary is presented in section 5.4.

5.1 Device-Type Profiling
Profiling is a technique for classifying and identifying the inter-arrival time pattern(s)
that deviate from the rest of the inter-arrival time points. The profiling technique
was applied to individual device-type to obtain a normal and abnormal device-type
profile which can be use in identification of abnormal inter-arrival time point. In the
device-type profiling implementation, the output of the k-means clustering algorithm
was used as an input for CMGOS. The cluster centres help in the calculation of the
multivariate Gaussian outlier score of each cluster based on the probability of how
likely an inter-arrival time point is to be close to the cluster centre. For example,
the inter-arrival time points associated with or close to the first cluster are added to
the first cluster, with the same being true for all other clusters. Then, the CMGOS
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calculates the outlier score for each inter-arrival time point based on the multivariate
Gaussian outlier score of each cluster, and subsequently adds the outlier scores to
each inter-arrival time point. An outlier score > 1.0 indicates a high probability of
the instance being abnormal, whilst < 1.0 indicates a high probability of a normal
inter-arrival time following the standard defined by Goldstein et al. [143].

5.1.1 Device-Type Profiling Algorithm

The device-type profiling algorithm was developed using the CMGOS operator available
in RapidMiner Studio [173]. It combines the fast execution of k-means with the support
of the Gaussian mixture model (GMM) to estimate the density of each cluster. The
algorithm uses Euclidean distance as a distance measure to calculate the cluster
centroids and the GMM in compacting the cluster into the group by partitioning the
inter-arrival time points and adding them to the clustering groups they may belong to.
Since we know the number of clusters beforehand (see section 4.2.1), we can segment
the device-type data into two parts based on the number of clusters (k = 2), as justified
in section 4.2.2, to determine the clusters for the normal and abnormal device-type
profiles, whereby each data point local to each cluster is added to the closest cluster
centre. For example, if a point is very close to the first cluster, it is added to the
first cluster; otherwise, it is added to the second cluster. Then, we estimate the
covariance matrix, ∑

x, of each cluster Cx based on the Euclidean distance, Ed. The
covariance matrix for all inter-arrival times of Cx and are computed by reduction using
the formula:

∑
x

: Ed(Cx) =
√

Cn
x ×

∑
x

−1∗Cx (5.1)

The ∑
x estimation by reduction is an effective approach built into RapidMiner

Studio to determine whether an instance is normal or abnormal using the probability
Pn and the Chi-square distribution. This removes anomalies and recomputes ∑

x; it can
be repeated several times, but a single iteration is usually sufficient [143]. Therefore,
the output of the algorithm will add an outlier score to every inter-arrival time point.
We then classify the inter-arrival time points based on the outlier score to obtain the
normal and abnormal device-type profiles, add labels to the data, and visualise the
results.
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Algorithm 5.1 Device-Type Profiling algorithm
1 procedure CMGOS
2 SET Data X to CONCAT (D1 ... Dn)
3 CALL K-means clustering with Data X and number of cluster

K SET to 2
4 Input cluster output C = {C0 ,... , C1}
5 SET threshold P → 0.99
6 SET threshold y → 0.1
7 SELECT reduction in CMGOS Operator Menu
8 SPECIFY the number of time to remove outlier
9 Recompute the covariance matrix

10 Compute the Euclidean distance for all instances x to
cluster centroid

11 Add labels to all inter - arrival time points for each device
-type

12 IF outlier score <1.0 THEN
13 SET label to normal inter - arrival time point
14 ELSE
15 SET abnormal inter - arrival time point
16 end procedure .

5.1.2 Device-Type Profile Experiment Settings

To develop a device-type profiling based on active, isolated and passive network traffic
datasets, the experimental steps indicated in algorithm 5.1 are followed. This starts
by first concatenating the datasets for each device-type and input them into the
retrieve data operator, configure the k-means clustering operator using the same
settings discussed in section 4.2.1. Then, configured the CMGOS operator based on
the configurations that give the best results, namely the probability of normal = 0.99,
gamma (γ) = 0.1, covariance estimation = reduction, time to remove outlier = 1 (i.e.,
the number of times the minimum covariance matrix removes outliers) and the measure
type = mixed measure using mixed Euclidean distance. The local density estimation for
each cluster is achieved using a multivariate Gaussian model. The Euclidean distance
serves as the basis for computing the outlier score for each inter-arrival time point
in the cluster. The covariance matrix for each cluster is then computed using two
iterations to remove outliers and to recompute the covariance matrix.
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The outlier score is then calculated by dividing the Euclidean distance of the
inter-arrival time points nearest to each cluster centre to normalise the data with a
certain confidence interval. The chi-square distribution is used in normalisation such
that an outlier score <= 1.0 indicates a high probability of the inter-arrival time point
falling within the normal profile. All these parameter settings are selected to build a
device-type profile and label the inter-arrival time points for each device-type. The
reason for choosing the squared Euclidean distance as a measure for both k-means
and CMGOS is that it gives better results in terms of fast execution and accuracy
compared to other distance measures [177]. Also, we label the inter-arrival time points
based on their outlier scores by configuring the generate attributes operator with an
expression (if (outlier ≥ 1, ’Abnormal’, ’Normal’)) to count and assign the outlier
scores > 1.0 into abnormal or, otherwise, normal profiles, respectively.

5.2 Analysis of Device-Type Profiling
The device-type profiling results for the sample datasets from the active, isolated
and passive network traffic datasets is presented below. These samples can help in
identifying the inter-arrival time differences for the device-types based on the active,
isolated and passive network traffic measurements, hardware specifications, and model.
The device-type profiling was applied to these different network traffic datasets to
indicate the applicability of our approach.

5.2.1 Active Network Traffic

In the device-type profiling results for the device-types in the two active network traffic
datasets, it was observed that the Acer, Asus and Gateway Netbooks have more inter-
arrival time points than the Google Phone, Lenovo Laptop and Asus Tablet. During
the experiments, it was noted that the laptops have more inter-arrival time points than
smartphones and tablets, and they also have lower run times. This shows that there
were more responses from the laptops, but this does not impact the effectiveness of our
device-type profiling technique as the aim is to profile and label the inter-arrival time
points of each device-type as either normal or abnormal profiles.

The device-type profiling results for the device-types in the first active network
traffic dataset are presented in Figure 5.1. The figure shows that the normal device-
type profiles for the Acer, Asus and Gateway Netbooks have 99.9% of the normal
inter-arrival time points, and the Google Phone, Lenovo Laptop and Asus Tablet have
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Fig. 5.1 The normal and abnormal device-type profiles of Ping-ICMP-Case 1 datasets

97% of the normal inter-arrival time points. The abnormal device-type profiles for the
Acer, Asus and Gateway Netbooks have 0.1−0.3% of the inter-arrival time points. In
contrast, the abnormal device-type profiles for Google Phone, Lenovo Laptop and Asus
Tablet have 2.7−2.9% of the inter-arrival time points.
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Fig. 5.2 The normal and abnormal device-type profiles of Ping-ICMP-Case 2 datasets

The device-type profiling results for the second active network traffic dataset
presented in Figure 5.2 above show that the normal device-type profiles for the Acer,
Asus and Gateway Netbooks and Lenovo Laptop have 99.9% of the inter-arrival time
points, whereas the Google Phone and Asus Tablet have 97% of the inter-arrival time
points. The abnormal device-type profiles for the Acer, Asus and Gateway Netbooks
and Lenovo Laptop have 0.1 − 0.3% of the inter-arrival time points, while the Asus
Tablet and Google Phone have 2.4% and 3%, respectively.

The above results show that the majority of the device-types have few abnormal
inter-arrival time points and also that the normal and abnormal device-type profiles
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can be used to identify abnormal inter-arrival time points in active network traffic. The
numeric values for these results are presented in Tables A.22 and A.23 in Appendix A.

5.2.2 Isolated Network Traffic

In the device-type profiling results for the device-types in the isolated network traffic
datasets, it was observed that there is some fluctuations in the number of inter-arrival
time points. For example, the laptops have more inter-arrival time points, but in some
cases, the iPhones or iPad has more inter-arrival time points compared to the other
device-types. However, this is of little importance if the objective of this chapter can
be achieved, which is to profile and label the normal and abnormal patterns for each
device-type.

The device-type profiling results for the device-types in the isolated network traffic
datasets are presented in the figures below. In Figure 5.3, the normal device-type
profiles for the Dell Netbook, iPad, and iPhone 3G have 99% of the inter-arrival time
points. Also, the iPhone 4G and Nokia Phone have 97% of the inter-arrival time points.
The abnormal device-type profiles for the Dell, iPad and iPhone 3G have 0.1% of the
inter-arrival time points, while the iPhone 4G and Nokia Phone have 2.7% and 2.8%
of the inter-arrival time points, respectively.
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Fig. 5.3 The normal and abnormal device-type profiles of iPerf-TCP Case 2 datasets

In Figure 5.4 below, the device-type profiles for the Dell Netbook, iPad and iPhone
4G are shown to have 99% of the inter-arrival time points, while the iPhone 3G and
Nokia Phone have 98%. The abnormal device-type profiles for the Dell Netbook, iPad
and iPhone 4G have between 0.1 and 0.7% of the inter-arrival time points. Also, the
abnormal device-type profiles for the iPhone 3G and Nokia Phone have 1.3% and 1.7%
of the inter-arrival time points, respectively.
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Fig. 5.4 The normal and abnormal device-type profiles of iPerf-UDP-case 1 datasets

The above results show that most of the device-types have less abnormal inter-arrival
time points. Similarly, these results show no differences from the other device-type
profiles of the other five isolated network traffic datasets presented in Figures A.11 -
A.13. The numeric values for these results are also illustrated in Tables A.24 and A.30
in Appendix A.

5.2.3 Passive Network Traffic

The device-type profiling results for the device-types in the passive network traffic
datasets presented below, we observe that some device-types have no abnormal inter-
arrival time points. Also, in some cases, we note that the abnormal inter-arrival time
points are greater than in the active and isolated network traffic datasets. In this
section, we present the results for two datasets, each containing the device-type profiles
for the Acer, Asus and Gateway Netbooks, Google Phone, Lenovo Laptop, and Asus
Tablet in the passive network traffic datasets.

The device-type profile results in Figure 5.5 show that the normal device-type
profile for the Acer and Asus Netbooks have 100% normal inter-arrival time points.
These results show that not all networks have abnormal patterns, and there will be
cases where the network has small, large or no abnormal patterns. For example, in
the same datasets the Gateway Netbook, Lenovo Laptop and Asus Tablet have small
abnormal patterns (98.5 − 99%) normal inter-arrival time points. Their abnormal
device-type profiles contain between 0.4 and 1.5% inter-arrival time points.

The normal device-type profiles for the Acer, Asus and Gateway Netbooks, Google
Phone, Lenovo Laptop and Asus Tablet presented in Figure 5.6 it was observed that
five of the device-types have 99% of the inter-arrival points and the sixth device-type
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Fig. 5.5 The normal and abnormal device-type profiles of iPerf TCP Case 1 datasets
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Fig. 5.6 The normal and abnormal device-type profiles of Ping-ICMP-Case 1 datasets

(i.e. Asus Tablet) has 96.9%. Whilst, the abnormal device-type profiles for Acer, Asus
and Gateway Netbooks, Google Phone and Lenovo Laptop are 0.1% and for the Asus
Tablet is 3.1%. The above results show that the majority of the device-types have few
abnormal inter-arrival time points. Similarly, they show no significant differences to
the other device-type profiles in the other six passive network traffic datasets presented
in Figures A.14 - A.17. The numeric values of these results are also reported in Tables
A.31 and A.38 in Appendix A.

5.3 Data Labelling
Data labelling is defined as the process of labelling data to allow machine learning
algorithms to learn the patterns from that data. Data labelling is essential to machine
learning algorithm predictions and classification problems. In labelling our data, we
ensure that the inter-arrival time points for each device-type are labelled as being
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normal or abnormal. These labels are obtained based on the outlier scores using the
values identified in the device-type profiles. Our data labelling is achieved following
step 8 of algorithm 5.1. In labelling the datasets, the cluster centres described in
section 4.3 are used as a basis for separating the normal and abnormal profiles. For
example, the mean value of the first cluster, C0, is 0.009s, and the mean value of the
second cluster, C1, is 0.935s. Therefore, any value that falls into C0 is added to C0,
and similarly for C1. The data labelling results for the active, isolated and passive
network traffic datasets are presented in the following sections.

5.3.1 Data Labelling for Active network traffic dataset

The sample data labelling for the device-types in the active network traffic datasets are
presented in Table 5.1. As can be seen from the table, the Acer Netbook has 3,968,592
inter-arrival time points, comprising 3,965,611 and 2,981 normal and abnormal points,
respectively. Recalling the centroid point results presented in Table 4.5, the same
device-type is identified with one inter-arrival time point with a value of 5.744s in
C1. This result shows that the CMGOS identifies more outliers that fall on or are
close to C1. A similar situation exists for both the normal and abnormal inter-arrival
time points for the Asus and Gateway Netbooks, Google Phone, Lenovo Laptop and
Asus Tablet. Moreover, similar results were observed for the device-types in the active
network traffic datasets presented in Tables A.22 and A.23. Since the algorithm can
identify the inter-arrival time points for each cluster, we apply step 8 of algorithm
5.1 for all the inter-arrival time points to create the data labels for both normal and
abnormal inter-arrival time points. For instance, the 3,965,611 inter-arrival time points
of the device-type ‘Acer’ are labelled as normal inter-arrival time points, while 2,981
are labelled as abnormal inter-arrival time points. The algorithm takes 10−34 seconds
to identify the inter-arrival time points and label them into normal and abnormal
profiles accordingly.

Table 5.1 Data labelling for Ping-ICMP-Case 1 Active network traffic dataset

Device IAT Normal Abnormal % Run Time
Type points points points abnormal (s)

Acer 3,968,592 3,965,611 2,981 0.01 34
Asus 3,969,874 3,967,493 2,381 0.01 32
Gateway NB 3,179,980 3,178,136 1,844 0.01 28
Google Phone 796,817 774,416 22,401 0.3 17
Lenovo 798,309 777,037 21,272 0.3 10
Tablet 794,975 772,017 22,958 0.3 23
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5.3.2 Data Labelling for the Isolated Network Traffic Datasets

Data labelling was also applied to the device-types available in the isolated network
traffic datasets. The example of the data labelling results presented in Table 5.2 shows
that the results are similar to those for the active network traffic datasets. One of
the differences observed is that there are more inter-arrival time points than in the
active network traffic datasets. For example, the Dell Netbook has a total of 9,100,324
inter-arrival time points, which is by far the most among the device-types presented in
the active network traffic datasets. There are more abnormal inter-arrival time points
identified than in the k-means clustering analysis. Also, similar results are observed
for the device-types in the isolated network traffic datasets presented in Tables A.24 -
A.30. The run time of the algorithm is between 19 and 1.35 seconds.

Table 5.2 Data labelling for iPerf-TCP-Case 2 Isolated network traffic dataset

Device IAT Normal Abnormal % Run Time
Type points points points abnormal (s)

Dell Netbooks 9,100,324 9,034,201 66,123 0.7 1.35
iPads 4,581,539 4,570,163 11,376 0.2 54
iPhone 3G 1,129,399 1,113,549 15,850 0.1 9
iPhone 4G 8,300,764 8,260,063 40,701 0.5 1.10
Nokia 1,563,011 1,558,888 4,123 0.03 19

5.3.3 Data Labelling for the Passive Network Traffic Datasets

The data labelling was applied to all the device-types in the passive networks traffic
datasets. In labelling the datasets, we observe that some datasets have no abnormal
inter-arrival time points, such as the device-types Acer, Asus, and Gateway Netbooks in
Table 5.3. In contrast, the clustering analysis presented in section 4.3.3 shows less than
2000 abnormal inter-arrival time points across these device-types. After comparing the
data labelling and clustering results, the device-types are observed to have 99% of the
inter-arrival time values. Moreover, similar results are observed for the device-types
in the passive network traffic datasets presented in Tables A.31 - A.38. These results
show that not all networks have abnormal patterns, and there will be cases where the
network has small, large or no abnormal patterns. The run time of the algorithm is
between 1.57 and 5.51 seconds.
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Table 5.3 Data labelling for iPerf-UDP-Case 1 Passive network traffic dataset

Device IAT Normal Abnormal % Run Time
Type points points points abnormal (s)

Acer 45,000,000 45,000,000 0 0 5.51
Asus 45,000,000 45,000,000 0 0 5.20
Gateway NB 36,000,000 36,000,000 0 0 3.35
Google Phone 15,598,782 15,402,952 195,830 1.3 3.25
Lenovo 15,954,580 15,710,481 244,099 1.5 1.57
Tablet 15,340,910 15,097,390 243,520 1.6 4.53

5.4 Chapter Summary
In summary, this chapter developed a novel device-type profiling approach for smart-
phones, tablets and laptops using the packet inter-arrival time. The chapter introduced
the device-type profiling, profiling algorithm, experimental settings, and data labelling
for the device-type profiles. The objectives of this chapter were achieved based on
a series of experiments on active, isolated and passive network traffic datasets. The
device-type profiling and data labelling experiments were conducted using a clustering-
based multivariate gaussian outlier score algorithm whose implementation is available
in RapidMiner Studio [173]. Based on the results and analysis of these experiments,
the device-type profiling was successful as the normal and abnormal inter-arrival time
points for each device-type were observed and profiled.

Regarding the data labelling, we ensured that the correct labels were added to
each device-type profile using an expression (if (outlier ≥ 1, ’Abnormal’, ’Normal’)) to
count and assign the outlier scores > 1.0 into abnormal or, otherwise, normal profiles,
respectively. These expressions were generated based on the standard value defined
by [143]. The labels were added to the inter-arrival time points associated with each
device-type profile following step 8 of algorithm 5.1. The following chapter of this
research uses the device-type labelling results and trains a long short-term memory
(LSTM) network to identify, classify and predict these abnormal profiles. The LSTM
is selected because of its advantages over other algorithms used for time-series data
as well as its dynamic filtering capability. The dynamic filtering capability allows
recurrent networks to continue to learn over multiple time steps to identify the abnormal
inter-arrival times for each device type.





Chapter 6

Intelligent Filtering Technique
using Long Short-Term Memory

An intelligent filtering technique (IFT) was developed using the data labelling results
from the device-type profiling presented in chapter 5. It was then implemented using
the Bidirectional Long Short-Term Memory architecture of LSTM to identify the
abnormal inter-arrival time points from the device-types. The LSTM was proposed
by [162] as a solution to the vanishing gradient problem through time and layers.
As it maintains more consistent errors, it allows recurrent networks to continue to
learn over multiple time steps to identify the abnormal inter-arrival time for each
device-type profile. Section 6.1 first introduces the IFT and outlines the experiments
and experimental processes used. Then, sections 6.2 and 6.3 focus on the analysis of
the IFT training experiments as well as the performance analysis of all the trained IFT
for the testing data. Section 6.4 presents a discussion and comparative analysis of this
work and the related works. Finally, the chapter is summarised in section 6.5.

6.1 Intelligent Filtering Technique Implementation
The basic idea behind the developed IFT is that the pattern of each device-type’s data
from the network traffic is trained to identify the abnormal inter-arrival time points,
this can be determined based on the training results obtained, and the performance
of the trained IFT training are validated on the testing data. The input (it) of the
IFT is the inter-arrival time values available in each device-type. Then, the output
of the IFT (Ot) is the classification of the normal and abnormal inter-arrival time
points obtained for each device-type implemented using the bidirectional architecture
of LSTM (BiLSTM).
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The BiLSTM layer learns bidirectional long-term dependencies between time steps
of time series or sequence data. These dependencies are useful because they can give
an IFT the ability to learn from the complete time series for each device-type at each
time step [162], [178]. The LSTMs and their bidirectional variants are popular because
they have the ability to learn how and when to forget and when not to use gates (input,
forget and output gates) in their architecture [179], unlike in the previous recurrent
neural network architectures where vanishing gradients do not have sufficient learning
capability [180].

The advantage of using BiLSTM in IFT is that it consists of two LSTMs that process
the inter-arrival times input in a forward direction and reverse direction to identify
the abnormal patterns using its three gates (input, forget and output). The reverse
direction runs from the past to the future and the forward from future to past. This
approach differs from the main LSTM architecture that runs the input unidirectionally
[181]. The unidirectional LSTM runs backwards to preserve information from the
future and uses the two hidden states combined to preserve information from both
past and future. The main significance of using BiLSTM in IFT is that it improves
the learning of long-term dependencies and consequently improves the accuracy of
the classifier performance. This advantage helps in the identification of abnormal
inter-arrival time patterns from device-type profiles since it is time series data. The
BiLSTM provides better prediction, more specifically, it was observed that BiLSTM
provide better predictions compared to regular unidirectional LSTM [182].

6.1.1 Overview of the IFT Experiments

The experiments are performed in a dedicated lab provided by De Montfort University
with the best available, highest specification computers. The lab consists of sixteen
HP Eliteone Desktop computers with an Intel (R) Core(TM) i5-7500 CPU at 3.40GHz,
and 8.00 GB of RAM. The Operating Systems (OS) of the machines are Windows 10
Education (Version 1709). Also, all the experiments are carried out in MATLAB’s
2019a Neural Network Toolbox 11.0 using BiLSTM architecture of the LSTM [178]. The
BiLSTM architecture used for the experiments easily handles the problem of abnormal
inter-arrival time identification in one-dimensional inter-arrival time sequences. This
was validated internally using a testing set presented in section 6.3. The overview of
the testing samples used for the internal validation for each device-type is shown in
Table 6.1.

Moreover, the overview of the device-types used for training and testing the IFT
is presented in Table 6.1. The tables show the total number of the inter-arrival time



6.1 Intelligent Filtering Technique Implementation 83

values for each device-type in active, isolated, and passive network traffic datasets.
The device-types on the table are the only device-types used because they are the most
commonly used among active, isolated, and passive network traffic datasets, falling
into cases 1, 2 and 3, respectively. This will help to understand how IFT performed
in different network traffic measurements and protocols, and whether the IFT can be
generalised in different network traffic and protocols. Moreover, other experiments are
carried out on the other device-types available in datasets preprocessed in section 5.3,
although there are cases where some device-types and datasets are not experimented
due to limited computational power and the random access memory’s inability to
handle large data contained in the device-type profile datasets, for example, the Dell
Netbook in isolated network traffic, among others. The results of the other experiments
that are not presented here are similar to those reported in section 6.3, therefore,
reporting additional experiment results would lead to long and tedious analysis without
any significant added value.

Table 6.1 An overview of all the Network Traffic Training and Testing Samples used
for the implementation of IFT.

Real Datasets Training and Testing Split Ratio

Network Traffic Type Device-Type Training IATs (80%) Testing IATs (20%)

Active

Acer NB 3,174,825 793,718
Asus NB 3,174,850 793,975
Gateway NB 2,543,935 635,996
Google Phone 637,405 159,363
Lenovo Laptop 637,613 159,662
Asus Tablet 635,931 158,995

Isolated

iPad 3,655,182 916,308
iPhone 3G 903,479 225,870
iPhone 4G 6,640,562 1,660,153
Nokia 1,250,360 312,602

Passive

Acer NB 2,569,901 642,487
Asus NB 2,569,713 642,440
Gateway NB 2,055,754 513,951
Google Phone 520,123 130,043
Lenovo Laptop 514,021 128,517
Asus Tablet 513,953 128,500

Moreover, recalling from section 5.3, all the device-types are observed with ap-
proximately between 0.1−3.1% abnormal inter-arrival time points, with other points
considered normal, without adequate data preprocessing such as normalisation, and
stratification steps presented in Algorithm 6.1, the LSTM will not converge towards
high accuracy because the datasets have only a small number of abnormal inter-arrival
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time points. The data preprocessing steps are described in the experimental process
section.

6.1.2 IFT Experimental Process

The normalisation is the most important part in ensuring that all input sequences
are similar in terms of value range. A simple “division by maximum value” data
normalisation was used for each individual sequence, so each abnormal inter-arrival
time point is presented in the local context of the given sequence. Another parameter
in the data preparation step for training is “ratioNegativeToPositive”. This handles
the problem of highly imbalanced datasets like the one used in our experiments (there
are approximately between 0.1 − 3.1% abnormal inter-arrival time points in all the
device-types, with other points considered normal). In the first training (10 epochs)
all abnormal samples from the training set are taken along with double the number
of normal samples, which is a 33% to 66% distribution between the two classes. The
IFT was trained to an accuracy of > 99%. After that the IFT was retrained but with
a ratioNegativeToPositive = 10, meaning that now we have an approximately 9% to
91% distribution between the two classes, which is closer to the real case of 3% versus
97% in the class distribution. Without this second training the classifier would be too
biased towards the positive class and would label many normal sequences as abnormal.

As for the training and testing parameter settings for the IFT, the steps in Algorithm
6.1 is followed accordingly. Algorithm 6.1 shows the data preprocessing processes that
includes inputting the data, selecting the number of sequences and hidden layers, and
splitting the data into training and testing sets. As well as the training options for
BiLSTM, how the training was performed, and visualises the outputs for training and
testing for each device-type. Moreover, the algorithms show the parameters used in
the experiments for inputting training and testing samples, and the LSTM parameter
configurations. The goal of data input is to load the data for each device-type into
the workspace and split into training and testing set. Whereas, the LSTM parameter
configuration shows the best settings used in configuring the LSTM for training and
testing the IFT.

For the input parameters, the data for each device type was experimented on using
different training and testing split ratios, e.g., starting from 60/40 increasing to 70/30
and 80/20 and comparing the performance results; they all worked well. However,
80/20 gave the best performance with low false detection rates; therefore, 80% for
training and 20% for testing split ratio were chosen as the best input parameters for
all the experiments. Another reason for choosing 80% for training and 20% for testing
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was because it is always better to have as much data in the training set as possible
while still keeping enough in the testing set for the testing to be valid/strong enough
[183]. The LSTM parameters for training and testing are sequence length, number of
hidden layers, and the training options. The sequence length is important because
the abnormal versus normal inter-arrival time points for each device-type have to be
distinguishable in every given sequence, and this is in itself highly dependent on the
sequence length. A length 50 was used and indeed appeared to work well, though it
is likely that slightly shorter or longer sequences would work too (but not too short).
Lastly, all the steps shown in the algorithms are the best parameters that gave the
best performance among all the other settings we explore.

Algorithm 6.1 Device-Type IFT algorithm
1 procedure preprocessing , normalisation and stratification

steps
2 LOAD device -type IAT data into MATLAB workspace
3 Preprocess the data into a sequence of double arrays
4 Preprocess the target variable as a categorical array
5 Training and Testing steps for BiLSTM
6 SET the sequence size to 50
7 Randomise and split the data into 80% for training and

20% for testing
8 Organise the sequences into a cell array
9 SET bidirectional LSTM layer to value 50

10 Apply softmax function to the input in the softmax layer
11 Classification
12 Compute cross - entropy loss
13 SET training algorithm to adaptive moment estimation (

ADAM) solver .
14 SET Max Epochs to 10
15 SET Sequence Length parameter to ’longest ’
16 SET Gradient Threshold to 1
17 Fixing imbalance problem for IFT classification
18 Take all N positive samples from training set and 2 x N

randomly selected negative samples .
19 SET Epochs to 10
20 Take all N positive samples from training set and 10 x N

randomly selected negative samples
21 SET Epochs to 5
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22 Display training progress as number of iterations increases
23 Display training and testing accuracy in the performance

confusion matrix .
24 End procedure

6.2 Analysis of the IFT Training Results
The inter-arrival time values used for training the IFT for all the device-types in the
active, isolated and passive network traffic datasets is illustrated in Table 6.1. From
the table, it can be seen that 80% of the inter-arrival time points for each device-type
was used for training the IFT so that the parameter estimate will not have a great
variance with less training data. Also, the IFT results using 80% training samples
gave an accuracy > 95% for most of the device-types in active, isolated and passive
network traffic datasets. The training results are analysed in the following sections
and the training states for all the experiments is presented in Figures B.2 - B.32 in
Appendix B. The training state show the training accuracy and errors during training
the IFT, the training time for each device-type, and the training cycles along with
the number of iterations. The IFT training results is presented so that when the IFT
is tested we can compare the training and testing results to observed any high bias
and high variance in the IFT. The high bias happens when there is under fitting i.e.,
the IFT is not presenting an accurate picture of the relationship between the inputs
and predicted output. Whereas, the high variance happens when there is overfitting
which is the opposite of high bias, meaning the IFT work well on the training sets
but will not know how well it performed until compared the training against the test
results. Therefore, next section present the analysis of the IFT training results and
the following section evaluates the IFT on testing sets.

6.2.1 Analysis of the Active Network Traffic Dataset

This network traffic dataset consists of inter-arrival time data points for Acer, Asus,
Gateway and Lenovo as well as one Asus Tablet and a Google Phone in all the two active
network traffic datasets, as stated in section 4.1.2. The experiment was conducted
on all the datasets, however, only the results of all device-types from one dataset are
presented in this section because there were no significant differences between the
results for the chosen device-types and the other device-types in the other datasets. A
full consideration of all the datasets would lead to a long and tedious analysis without
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significant added value. However, in cases where there are significant differences in the
results, all the datasets are considered in the analysis. Figures 6.1 - 6.6 present the IFT
training results for the device-types in the chosen datasets. Here, the diagonal cells
shaded green show the number of correctly classified inter-arrival time points, while
the cells shaded red show the number of incorrectly classified inter-arrival time points.
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Fig. 6.1 The intelligent filtering technique training confusion matrix for Acer Netbook
in active network traffic dataset.

Acer Netbook

From the actual output of the IFT training confusion matrix for the Acer Netbook
presented in Figure 6.1, it was observed that the IFT correctly identified 3,164,420
and 2,642 falling into normal and abnormal profiles, respectively. For the predicted
output, the IFT incorrectly predicts 7,733 inter-arrival time points falling into the
normal profile. Also, predicts 30 inter-arrival time points falling into the abnormal
profile. Moreover, from the diagonal cells shaded green the total inter-arrival time
points that are correctly identified by the IFT is 3,167,062, which corresponds to
99.9% of the training samples. Similarly, from the diagonal cells shaded red, 7,763 is
the total inter-arrival time points that were incorrectly identified or the errors made
by the IFT during training, which corresponds to 0.1% of the training samples.

This training result show that the IFT correctly identify the abnormal inter-arrival
time points from this device-type, however, to measure the efficiency and effectiveness
of the IFT, it will be evaluated on the testing sets. The performance on the testing
sets should be able to judge whether the IFT outperformed or not. The way it shows
whether it outperformed or not is when the test results return higher true negative rates
and lower false positive rates [184], [185], similar measure apply to all the device-types
trained and analyse in this section.

Asus Netbook

From the actual output of the IFT training confusion matrix for the Asus Netbook
presented in Figure 6.2, it was observed that the IFT correctly identified 3,171,687 and
1,515 inter-arrival time points falling into normal and abnormal profiles, respectively.
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Fig. 6.2 The intelligent filtering technique training confusion matrix for Asus Netbook
in active network traffic dataset.

In the predicted output, the IFT predicts 26 inter-arrival time points falling into the
normal profile and 2,622 inter-arrival time points falling into the abnormal profile.
Meanwhile, from the overall training samples for this device-type, the total inter-arrival
time points that are correctly identified is 3,173,202 and incorrectly identified is 2,648,
these values are calculated by calculating the summations of the total inter-arrival time
points in the diagonal cells shaded green and red. In this device-type, it was observed
that there is only 0.1% error in the IFT training.
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Fig. 6.3 The intelligent filtering technique training confusion matrix for Gateway
Netbook in active network traffic dataset.

Gateway Netbook

The training confusion matrix of the IFT for the Gateway Netbook is presented in
Figure 6.3. In the actual output, it was observed that the IFT correctly identified
2,539,020 inter-arrival time points in the normal profile, while incorrectly identifying
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1,477 of the inter-arrival time points in the abnormal profile. Besides, in the predicted
output, the IFT predicts 8 inter arrival time points for normal profile and 3,430 for
abnormal profile. Overall, the total inter-arrival time points used for training this
device-type is 2,543,935, in which the IFT correctly identified 2,540,497 inter-arrival
time points and incorrectly identifying 3,438 inter-arrival time points, which indicated
that there is only 0.1% error in the IFT training.
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Fig. 6.4 The intelligent filtering technique training confusion matrix for Google Phone
in active network traffic dataset.

Google Phone

The IFT training confusion matrix for the Google Phone is presented in Figure 6.4.
In the actual output, the IFT correctly identified 618,490 inter-arrival time points
in the normal profile and 16,718 inter-arrival time points falling into the abnormal
profile. Moreover, the incorrectly predicted inter-arrival time points in the normal and
abnormal profiles are 98 and 2,099 with the total points corresponding to 0.3% of the
training samples. Similarly, the inter-arrival time points in diagonal cells represents
the total inter-arrival time points that are correctly and incorrectly trained by the IFT
which is 635,208 in the cells shaded green, and 2,197 in the cells shaded red. This
device-type was observed with 0.3% error during the IFT training.

Lenovo Laptop

The IFT training confusion matrix for the Lenovo Laptop is presented in Figure 6.5.
In the actual output, it correctly identified 618,559 which is 96.9% of the inter-arrival
time points falling into the normal profile and 18,766 corresponding to 2.9% into the
abnormal profile. The incorrectly predicted inter-arrival time points in the normal
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Fig. 6.5 The intelligent filtering technique training confusion matrix for Lenovo Laptop
in active network traffic dataset.

profile observed was 179 and 1,094 for abnormal profile corresponding to 0.3% of the
training samples. Moreover, from the diagonal cells shaded green and red, the IFT
correctly identified 99.7% and incorrectly identified 0.3%, which corresponds to 637,325
and 1,273 of the inter-arrival time points in training. Like in the other device-types
analysed above this device-type was observed with only 0.3% error during the IFT
training.
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Fig. 6.6 The intelligent filtering technique training confusion matrix for Asus Tablet in
Active active network traffic dataset.

Asus Tablet

The IFT training confusion matrix for the Asus Tablet is presented in Figure 6.6. In
the actual output, the IFT correctly identified 615,892 and 16,899 inter-arrival time
points corresponding to 96.8% and 2.7% of the inter-arrival time points falling into
the normal and abnormal profiles, respectively. The incorrectly predicted inter-arrival
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time points in the normal profile observed was 245 and for abnormal profile 2,895
corresponding to 0.5% of the training samples. Moreover, from the diagonal cells
shaded green and red, the IFT correctly identified 632,798 corresponding to 99.5% and
incorrectly identified 3,140 corresponding to 0.5% of the inter-arrival time points in
training. The overall error made by the IFT in training this device-type is 0.5%.

6.2.2 Analysis of the Isolated Network Traffic Dataset

This network traffic dataset consists of inter-arrival time values for the Dell Netbook,
iPad, iPhone 3G, iPhone 4G, and Nokia Phone. In this case, we observe that the IFT
was able to identify the abnormal inter-arrival time points for all the device-types;
however, the experiment was not conducted for the Dell Netbook due to the large
number of inter-arrival time points it contained, which could not be handled by the
computers available for use in these experiments. One of our findings is that the IFT
results for most of the device-types in this network traffic dataset are similar to those
for the device-types analysed in section 6.2.1. In addition, we experimented with the
other six datasets in the isolated network traffic dataset using similar device-types and
observed similar performances. Since the IFT performance is good in this network
traffic datasets, we analysed the device-types from TCP network traffic to facilitate an
analysis that was different from that of active and passive network traffic traces.
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Fig. 6.7 The intelligent filtering technique training confusion matrix for iPad in isolated
network traffic dataset.

iPad

The IFT training confusion matrix for the iPad is presented in Figure 6.7. For this
device-type, the IFT correctly identified 3,651,349 inter-arrival time points for the
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normal profile and 9,193 for the abnormal profile in the actual output class. In the
predicted output, the IFT incorrectly predicted 128 inter-arrival times for the normal
profile and 4,512 for abnormal profile. Meanwhile, the total inter-arrival time points
calculated from the diagonal cells shaded green and red, it was observed that the IFT
correctly identified 3,660,542 of the inter-arrival time points and incorrectly identified
4,640 from the training samples, which indicated that the IFT had 0.1% error in
training this device-type.
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Fig. 6.8 The intelligent filtering technique training confusion matrix for iPhone 3G in
isolated network traffic dataset.

iPhone 3G

The IFT training confusion matrix for the iPhone 3G is presented in Figure 6.8. From
the actual output, it can be seen that 886,366 and 8,494 inter-arrival time points are
correctly identified falling into normal and abnormal profiles. Meanwhile, the predicted
inter-arrival time points for the normal profile is 250 and 8,360 for abnormal profiles,
respectively. Moreover, from the total inter-arrival time points in the diagonal cells
shaded green and red, the IFT correctly identified 894,860 and incorrectly identified
8,610 inter-arrival time points from the training sets. Like in the other device-types
analysed above this device-type was observed with 0.9% error during the IFT training.

iPhone 4G

The IFT training confusion matrix for the iPhone 4G is presented in Figure 6.9. As
can be seen from the figure, the actual output the IFT correctly identified 6,519,825
inter-arrival time points in the normal profile and 33,516 inter-arrival time points
falling into the abnormal profile. Moreover, the incorrectly predicted inter-arrival time
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Fig. 6.9 The intelligent filtering technique training confusion matrix for iPhone 4G in
isolated network traffic dataset.

points in the normal and abnormal profiles are 330 and 14,891 inter-arrival time points.
Whilst, from the total inter-arrival time points in the diagonal cells shaded green and
red the IFT was observed to have correctly identified 6,591,825 of inter-arrival time
points and incorrectly identified 15,221 in the training. The overall error made by the
IFT in training this device-type is 0.2%.
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Fig. 6.10 The intelligent filtering technique training confusion matrix for Nokia Phone
in isolated network traffic dataset.

Nokia Phone

The IFT training confusion matrix for the Nokia Phone is presented in Figure 6.10. In
the actual output, it correctly identified 618,559 which is 99.5% of the inter-arrival
time points falling into the normal profile and 18,766 corresponding to 0.2% into the
abnormal profile. Moreover, in the predicted output class, the normal profile was
observed with 58 inter-arrival time points and abnormal profile with 2,877 corresponding
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to 0.2% of the training samples. Moreover, the total inter-arrival time points observed
in the diagonal cells shaded green and red, the IFT correctly identified 1,247,424 and
incorrectly identified 2,935 of the inter-arrival time points in training. Overall, this
device-type was observed with 0.2% error during the IFT training.

6.2.3 Analysis of the Passive Network Traffic Dataset

This network traffic dataset consists of network traffic traces for the six device-types in
the UDP traffic of the passive network traffic dataset. The six device-types are the
Acer, Asus, and Gateway Netbooks, Google Phone, Lenovo Laptop, and Asus Tablet.
For these device-types, we observe that the intelligent filtering technique correctly
identified the majority of the abnormal inter-arrival time points. Furthermore, the
results demonstrate a similar performance with the other device-types in both the
active and isolated network traffic datasets. Moreover, there are seven different datasets
in the passive network traffic dataset, whereby experiments were conducted for similar
device-types and we observe performances similar to what is presented in the analysis
below. Since the identification by the IFT is good in these network traffic datasets,
we analysed UDP traffic so that we could conduct an analysis different from those
performed for the active and isolated network traffic datasets. This will help in the
evaluation chapter, where the results for the isolated, active and passive network traffic
datasets are compared. However, this section only analyses the UDP network traffic
dataset, since the TCP and ICMP are analysed in the previous sections above.
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Fig. 6.11 The intelligent filtering technique training confusion matrix for Acer Netbook
in passive network traffic dataset.
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Acer Netbook

The IFT training confusion matrix for the Acer Netbook is presented in Figure 6.11. In
the actual output, the IFT correctly identified 2,549,371 and 16,845 inter-arrival time
points in the normal and abnormal profiles, respectively. In the predicted output, the
IFT incorrectly identified 169 inter-arrival time points being normal and incorrectly
identified 3,516 as abnormal from the training samples. Moreover, the total inter-arrival
time points observed in the diagonal cells shaded green and red, the IFT correctly
identified 2,566,216 and incorrectly identified 2,685 of the inter-arrival time points
in training. Overall, this device-type was observed with 0.1% error during the IFT
training.
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Fig. 6.12 The intelligent filtering technique training confusion matrix for Asus Netbook
in passive network traffic dataset.

Asus Netbook

From the actual output of the IFT training confusion matrix for the Asus Netbook
presented in Figure 6.12, it can be seen that 2,555,751 and 8,114 inter-arrival time
points are correctly identified in the normal and abnormal profiles. Meanwhile, the
incorrectly predicted inter-arrival points for the normal profile is 64 and 5,784 for
abnormal profile. Meanwhile, from the overall training samples for this device-type, the
total inter-arrival time points that are correctly identified is 2,563,865 and incorrectly
identified is 5,848, these values are calculated by calculating the summations of the
total inter-arrival time points in the diagonal cells shaded green and red. In this
device-type, it was observed that there is only 0.2% error in the IFT training.
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Fig. 6.13 The intelligent filtering technique training confusion matrix for Gateway
Netbook in passive network traffic dataset.

Gateway Netbooks

The Gateway Netbook confusion matrix for the training is presented in Figure 6.13.
For the actual output this device-type, it was observed that the IFT correctly identified
2,040,458 for normal profile and 120,654 for abnormal profile. Meanwhile, in the
predicted output, the inter-arrival time points observed in the normal profile is 26
and 3,206 in the abnormal profile. Overall, the total inter-arrival time points used for
training this device-type is 2,055,754, in which the IFT correctly identified 2,161,112,
while incorrectly identifying 3,232 of the inter-arrival time points in the training
samples, which indicated that there is only 0.2% error in the IFT training.

Normal Abnormal
Actual Output

N
or

m
al

A
bn

or
m

al
P

re
di

ct
ed

O
ut

pu
t 505,235

97.1%
175

0.0%

1,787
0.3%

12,926
2.5%

Fig. 6.14 The intelligent filtering technique training confusion matrix for Google Phone
in passive network traffic dataset.
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Google Phone

The IFT training confusion matrix for the Google Phone is presented in Figure 6.14.
In the actual output the IFT correctly identified 505,235 inter-arrival time points
in the normal profile and 12,926 inter-arrival time points falling into the abnormal
profile. Moreover, the incorrectly predicted inter-arrival time points in the normal and
abnormal profiles are 175 and 1,787 inter-arrival time points, respectively. Similarly, the
inter-arrival time points in diagonal cells represents the total inter-arrival time points
that are correctly and incorrectly trained by the IFT which is 518,161 inter-arrival
time points in the cells shaded green, and 1,962 in the cells shaded red. Overall, this
device-type was observed with 0.3% error during the IFT training.
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Fig. 6.15 The intelligent filtering technique training confusion matrix for Lenovo Laptop
in passive network traffic dataset.

Lenovo

The IFT confusion matrix for the Lenovo Laptop is presented in Figure 6.15. In
the actual output, it shows that the IFT correctly identified 5,056,508 and 5,332
inter-arrival time points in both the normal and abnormal profiles, respectively. In
the predicted output, the IFT predicted 69 and 2,112 inter-arrival time points in the
normal profile abnormal profiles, respectively. Moreover, from the diagonal cells shaded
green and red, the IFT correctly identified 5,061,840 and incorrectly identified 2,181
inter-arrival time points from the training samples. Like in the other device-types
analysed above this device-type was observed with 0.4% error during the IFT training.
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Fig. 6.16 The intelligent filtering technique training confusion matrix for Asus Tablet
in passive network traffic dataset.

Asus Tablet

The IFT confusion matrix for the Asus Tablet is presented in Figure 6.16, from the
actual output, the IFT correctly identified 497,828 and 13,411 inter-arrival time points
in the normal and abnormal profiles, respectively. In the predicted output, the IFT
predicts 501 and 2,213 inter-arrival time points in both normal and abnormal profiles.
Moreover, from the diagonal cells shaded green and red, the IFT correctly identified
511,239 and incorrectly identified 2,714 inter-arrival time points in training. The
overall error made by the IFT in training this device-type is 0.5%.

6.3 Performance Evaluation of the IFT
The summary of the remaining 20% testing sets illustrated in Table 6.2 are used to
evaluate the performance of the IFT in the unseen data and to calculate the prediction
error. The prediction error is calculated based on the misclassification error metric,
which gives a binary output by simply testing whether each prediction is correct or
incorrect. This binary output is used to calculate the true positives and true negatives
(the percentage of inter-arrival time points correctly identified by the IFT) and false
positives and false negatives (the percentage of inter-arrival time points incorrectly
identified by the IFT). Moreover, as the IFT is a two-class problem in which the
classifier decides over a set of objects (i.e., normal and abnormal inter-arrival time
points), binary evaluation metrics are used in IFT evaluation. These metrics are
accuracy, recall (also known as sensitivity or true positive rate), precision (positive
predictive value) and F-score, and they provide quantifiable evidence as to how effective
the IFT is at making correct predictions.
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Table 6.2 An overview of all the Network Traffic Testing Samples used for the imple-
mentation of IFT.

Real Datasets Testing Samples

Network Traffic Type Device-Type Testing IATs (20%)

Active

Acer NB 793,718
Asus NB 793,975
Gateway NB 635,996
Google Phone 159,363
Lenovo Laptop 159,662
Asus Tablet 158,995

Isolated

iPad 916,308
iPhone 3G 225,870
iPhone 4G 1,660,153
Nokia 312,602

Passive

Acer NB 642,487
Asus NB 642,440
Gateway NB 513,951
Google Phone 130,043
Lenovo Laptop 128,517
Asus Tablet 128,500

Other complementary measures are Specificity (SPC), the Negative Predictive
Value (NPV), and False Positive Rates (FPR). These are used in highly imbalanced
classification tasks, such as anomaly detection, where a biased classifier achieves high
recall (sensitivity) at the expense of low precision. This behaviour is acceptable when
the system requirements strongly demand a certain action in the case of an anomaly,
but that same action is not as critical in the case of a false positive. An obvious example
would be a cancer diagnosis system, where additional check-ups are not harmful in
the case of a false-positive diagnosis yet can save a patient’s life in the case of a true
positive. Hence, very good recall is essential, and relatively bad precision is acceptable.
This justifies the effectiveness of the IFT in all the device-types in cases with low
precision. The respective metric equations are defined below:

• The Accuracy is defined as the number of correctly classified inter-arrival time
points out of all the inter-arrival time points, represented as:

TP + TN
TP + TN + FP + FN ×100 (6.1)

where TP are the true positives, TN the true negatives, FP the false positives
and FN are the false negatives. Also, the TP are the inter-arrival time points
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that are correctly classified as the actual class(es), TN are the inter-arrival time
points that are correctly classified as not being the actual class(es), FP is the
error, or inter-arrival time points that are incorrectly classified as the actual class,
and the FP are the error inter-arrival time points from the actual class that are
incorrectly classified as (an)other class(es).

• Precision is defined as the percentage of positive inter-arrival time points within
all positive labelled inter-arrival time points, represented as:

TP
TP + FP ×100 (6.2)

• Recall is defined as the fraction of correctly classified inter-arrival time points of
a particular class within all inter-arrival time points that belong to that class,
represented as:

TP
TP + FN ×100 (6.3)

• F-Score is defined as the weighted harmonic mean of precision and recall repre-
sented as:

2×precision× recall
precision+ recall ×100 (6.4)

• Specificity (SPC) is defined as the number of correct negative predictions divided
by the total number of all negatives. The best specificity is 1.0, and the worst is
0.0. The recall is represented as:

TN
TN + FP ×100 (6.5)

• Negative Predictive Value (NPV) is defined as the number of incorrect negative
predictions divided by the total number of all negatives and the best NPV is 1.0
whereas the worst is 0.0. The negative predictive value is represented as:

TP
TN + FN ×100 (6.6)

• False Positive Rate (FPR) is defined as the number of incorrect positive predictions
divided by the total number of all negatives and the best false positive rate is 0.0
whereas the worst is 1.0 and it is represented as:
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FP
TN + FP ×100 (6.7)

6.3.1 Evaluation of Device-Types in Active Network Traffic

The performance evaluation of the testing sets for the Acer, Asus and Gateway Netbooks,
one Lenovo Laptop as well as the Google Phone and Asus Tablet is presented below.
The performance evaluation was based on the testing samples illustrated in Table 6.1.

Table 6.3 The Evaluation Metrics For the Device-Types in Active network traffic
datasets

Accuracy Precision Recall F-Score SPC NPV FPR
Device (%) (%) (%) (%) (%) (%) (%)

Acer 99.9 100 99.9 99.9 98.3 41.5 2
Asus 99.9 100 99.9 99.9 99.7 24.4 0.3
GatewayNB 99.9 100 99.9 99.9 97.8 37.7 2
GoogleP 99.6 100 99.6 99.8 99.2 88.9 0.8
Lenovo 99.9 100 99.9 99.9 99.5 94.2 0.5
Asus Tablet 99.3 99.9 99.4 99.6 98.2 85.6 2

The performance evaluation of the studied device-types in the active network traffic
datasets is presented in Table 6.3. The table shows the device-types and the different
metrics used to measure the IFT’s effectiveness and efficiency in identifying abnormal
inter-arrival time points. Hereby, the table demonstrates that the accuracies for the
device-types are 99.3, 99.6, and 99.9% and the recall for the device-types is 99.9%,
except for the Google Phone and Asus Tablet, which have 99.6 and 99.4%, respectively.
Additionally, the Precision for the device-types is 100%, except for the Asus Tablet,
for which it is 99.9%, and the F-score falls between 99.6 and 99.9%. For example,
regarding the interpretation of these metrics in the Acer Netbook, the inter-arrival
time points used for testing the IFT is 793,718; out of these inter-arrival time points,
the IFT correctly identified 99.9% and incorrectly identified 0.1%, corresponding to
792,764 and 954 inter-arrival time points, respectively. As for the recall, the IFT
identified 99.9% of the inter-arrival time points, corresponding to 793,409 inter-arrival
points in the normal profile, while identifying 0.1%, corresponding to 309 inter-arrival
time points, in the abnormal profile. Regarding the precision (predicted output), the
IFT predicted 99.8% and 0.2% of the inter-arrival time points (i.e. 792,457 and 1,261)
in the normal and abnormal profiles, respectively, meaning the total precision is 100%.
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Moreover, the accuracy, precision, recall, and F-score are higher (i.e. 99.9%), which
shows that the IFT outperforms on the testing sets. It should be noted that as the
datasets are imbalanced, with most of the inter-arrival time points being labelled as
normal, achieving high classification accuracy is not difficult. To ensure the correctness
of the IFT identification, the performance is further justified using SPC, NPV, and
FPR. The SPC was used to measure the efficiency of the IFT in correctly identifying
the abnormal inter-arrival time points, whereas the NPV and FPR measured the
effectiveness of the IFT identification of the abnormal inter-arrival time points. The
SPC falls between 97.8 and 99.7%, whereby the Gateway Netbook has the lowest
SPC of 97.8% and the Asus Netbook has the highest SPC at 99.7%. In contrast,
the NPV ranges between 24.4 and 94.2%, with the Asus Netbook having the lowest
NPV and the Lenovo Laptop having the highest NPV, and the FPR ranges between
0.3 and 2%. These metrics show that the intelligent filter is not biased towards false
positive or false negative classes but correctly identifies both normal and abnormal
inter-arrival time points. Hence, according to the NPV, the Lenovo Laptop had the
best performance, followed by the Google Phone and the Asus Tablet, then the Acer
and Gateway Netbooks as well as the Asus Netbook, which has the lowest NPV among
the device-types, this low NPV was because of the fewer false negatives. Hence, the
FPR is below 1% and the SPC is greater than 80%, therefore the performance is
good as it has reached the acceptable standard for a workable intrusion detection
system [186], [187], [188], meaning that the NPV will not affect the IFT identification.
Moreover, the network administrators will be able to identify intrusions when there is
a decrease in the NPV and the false alarms when there is an increase in the FPR.

6.3.2 Evaluation of Device-Types in Isolated Network Traffic

The performance evaluation of the testing sets for the iPad, iPhone 3G, iPhone 4G,
and Nokia Phone is presented below. The performance evaluation is based on the
testing samples illustrated in Table 6.1.

Table 6.4 Testing Evaluation Metrics For Isolated network traffic datasets

Accuracy Precision Recall F-Score SPC NPV FPR
Device (%) (%) (%) (%) (%) (%) (%)

iPads 99.9 100 99.9 99.9 99.1 89.5 0.9
iPhone 3G 98.2 99.8 98.4 99.0 93.3 64.8 7
iPhone 4G 99.8 100 99.8 99.9 99.4 69.8 0.6
Nokia 99.9 100 99.9 99.9 98.6 70.7 1
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The performance evaluation of the studied device-types in the isolated network
traffic datasets is presented in Table 6.4. From the table, we observe that the accuracies
of the four device-types lie between 98.2 and 99.9%, the recall is between 98.4 and
99.9%, and the precision is 100%, except for the iPhone 3G, which has 99.8%. Besides,
the F-score for the device-types is 99.9%, except for the iPhone 3G, which has 99.0%.
As an example, in the interpretation of these metrics for the iPad, the number of
inter-arrival time points used for testing the IFT is 916,308; out of these, the IFT
correctly classified 916,049 and incorrectly classified 259, corresponding to 99.9% and
0.1% of the inter-arrival time points, respectively. As for the actual output, the IFT
identified 914,253 inter-arrival time points, corresponding to 99.9% of the inter-arrival
points in the normal profile, while identifying 2,036, corresponding to 0.1%, of the
inter-arrival time points in the abnormal profile. Moreover, in the predicted output,
the IFT predicted 914,032 and 2,276 of the inter-arrival time points in the normal and
abnormal profiles, respectively. A similar performance was observed for the iPhone 4G
and Nokia Phone, although each device-type had a different number of inter-arrival
time points.

Moreover, the accuracy, precision, recall, and F-score are higher (i.e. 99.9%),
showing that the IFT outperformed on the testing sets. As mentioned above for the
active network traffic, we must be cautious with such high accuracies as the dataset is
imbalanced and thus accuracy by itself is not a suitable performance metric for this
device-type. Therefore, the IFT performance is further justified using the SPC, NPV,
and FPR. The SPC falls between 98.6 and 99.4%, whereby the iPhone 4G has the
highest (97.8%) and the Nokia Phone has the lowest (99.7%), and the NPV ranges
between 64.8 and 89.5%, with the iPad having the highest (89.5%) and the iPhone
3G having the lowest (64.8%). As for the FPR metrics, the values range between 0.6
and 7%, which means that the intelligent filter is not biased towards false positive or
false negative classes but instead correctly identifies both the normal and abnormal
inter-arrival time points for all the device-type profiles. It should be noted that the
iPhone 3G has the largest FPR of all the experimented device-types in the active, and
isolated network traffic datasets; this does not affect its performance. Also, the NPV
and FPR for all the device-types are below 10% and the NPV is above 60%, which
shows that the IFT identification performance for the device-types in the isolated
network traffic datasets is slightly better than in the active network traffic datasets.
Therefore, the network administrators will be able to identify intrusions when there is
a decrease in the NPV and the false alarms when there is an increase in the FPR.



6.3 Performance Evaluation of the IFT 105

6.3.3 Evaluation of Device-Types in Passive Network Traffic

The performance evaluation of the testing sets for the Acer, Asus and Gateway Netbooks,
one Lenovo Laptop as well as the Google Phone and Asus Tablet. The performance
evaluation was based on the testing samples illustrated in Table 6.1.

Table 6.5 Testing Evaluation Metrics For Passive network traffic datasets

Accuracy Precision Recall F-Score SPC NPV FPR
Device (%) (%) (%) (%) (%) (%) (%)

Acer 99.9 100 99.9 99.9 99.2 87.3 0.8
Asus 99.8 100 99.8 99.9 99.6 53.9 0.4
GatewayNB 99.9 100 99.9 99.9 99.9 77.0 0.08
GoogleP 99.3 99.9 99.3 99.6 95.0 76.4 15
Lenovo 99.6 100 99.6 99.8 99.0 71.2 1
Asus Tablet 99.9 99.9 99.9 99.0 98.3 87.4 3

The performance evaluation of the studied device-types in the active network traffic
datasets is presented in Table 6.5. The table demonstrates that the accuracy for the
device-types is 99.3, 99.6, and 99.8 - 100%, the recall and F-score are also similar to
the accuracy, and the precision falls between 99.9 and 100%. In the Google Phone, for
example, we observe that the IFT correctly classifies 129,074 and incorrectly identifies
969 inter-arrival time points out of the total 130,043 used for testing the IFT. As for
the actual output (recall), the IFT identified 99.3% of the inter-arrival time points in
the normal profile and 0.7% of the inter-arrival time points in the abnormal profile.
Moreover, for the predicted output (precision), the IFT predicted 99.9% and 0.1% of
the inter-arrival time points in the normal and abnormal profiles, respectively.

Furthermore, the accuracy, precision, recall, and F-score are higher, demonstrating
that the IFT outperformed on the testing sets. We reiterate here that such high
accuracies may not offer much meaning due to the imbalanced dataset; hence, we
use additional performance metrics, such as the SPC, NPV, and FPR. The SPC falls
between 98.2 and 99.9%, in which the Asus Tablet has the lowest SPC of 97.8% and
Gateway Netbook has the highest SPC of 99.9%. The NPV ranges between 53.8 and
87.4%, with the Asus Netbook having the lowest NPV and the Acer and Asus Tablets
having the highest NPV. Hence, based on the NPV, the Acer Netbook and Asus Tablet
have the best performance, followed by the Gateway Netbook, Google Phone and
Lenovo Laptop, while the Asus Netbook had the lowest NPV among the device-types.
As for the FPR, the metrics fall between 0.08 and 15%, which shows that there are more
false-positive alerts. In comparison to the active and isolated network traffic datasets, it
can be seen that the Google Phone has the largest FPR (15%), although this does not
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affect the IFT performance because the FPR was affected by the fewer false negatives
and higher SPC as evident from the NPV. These metrics show that the intelligent
filter is not biased towards false positive or false negative classes but correctly identifies
both the normal and abnormal inter-arrival time points. Furthermore, the NPV and
FPR for all the device-types are below 10% and the NPV is above 70%, except in the
case of the Asus Netbook, which has 53.9%. These performance metrics show that the
IFT identification for the device-types in the passive network traffic datasets is slightly
better than in the active and isolated network traffic datasets. Therefore, the network
administrators will also be able to identify intrusions when there is a decrease in the
NPV and false alarms when there is an increase in the FPR.

6.4 Discussion and Comparison
As previously discussed in the literature review, most of the related works developed
fingerprinting and behaviour profiling techniques to address network access control
issues. In their approaches, they considered using important attributes, such as devices,
device types, access points, and service use, to fingerprint or profile network devices.
Contrarily, the proposed work utilizes the important attributes used in fingerprinting
and behaviour profiling techniques, e.g., devices, device types, application, location and
packet inter-arrival times, to profile and identify abnormal patterns based on device
type. The most closely related works among those reviewed are [97], [100], and [135],
whereby [97] and [135] used the same datasets as in the proposed research and [97]
and [135] focused on profiling mobile devices.

In terms of the algorithm selection in the closely related works, Radhakrishnan et al.
[97] selected a neural network algorithm to fingerprint devices and device types using
packet inter-arrival times. However, they did not show how the data were pre-processed,
and it was unclear how many training samples were used for the training and testing.
Also, the choice of the algorithm was not justified. Kulin et al. [135] selected the k

nearest neighbour algorithm, decision trees, logistic regression and a neural network to
provide an in-depth illustration of different classification algorithms used in developing
device or device-type fingerprinting. Li et al. [100] selected a neural network to profile
telephony, device usage, and Bluetooth scan using publicly available data and evaluate
their study by simulating device usage, telephony and Bluetooth scans to generate
data. However, they did not show how the data were pre-processed and it was unclear
how many training samples were used for the training and testing. Here too, the
choice of the algorithm was not justified. The work presented here selected three
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different algorithms, namely K-means, CMGOS and LSTM, to develop a device-type
profiling technique utilising the same dataset used in [97] and [135]. First, the dataset
selection, the algorithm selection, and how they were used are justified. For example,
K-means clustering was used to gain insight into the dataset, and CMGOS was used
in labelling the data as normal or abnormal inter-arrival time points. The LSTM
was used for training and testing for the identification of abnormal inter-arrival time
patterns based on device type; all of these are justified in chapters 4, 5 and 6. Lastly,
the detailed experimental steps presented here can be repeated for future evaluation
and comparison.

In terms of performance, the performance metrics used in [97] and [135] are accuracy,
while recall and precision and equal error rates are used in [100]. The proposed work
uses accuracy, recall, precision, f-score, specificity, negative predictive value and false-
positive rates. The performance results reported in [97] show that the accuracy for the
identification of device and device types falls between 83 and 95%, and the recall is
between 54 and 94%. The performance results for the device-type identification in [135]
show an accuracy between 88 and 91% and recall and precision between 46 and 99%.
Meanwhile, the performance of the behaviour profiling technique in [100] achieved
equal error rates between 13 and 35%. In comparison to the proposed work, the device-
type IFT performed better than in the related works. The metrics (such as accuracy,
recall, precision, F-score, and specificity) used in measuring the IFT outperformed,
with performance accuracies (accuracy, precision, recall, etc) between 98 and 99%.
Moreover, the complementary metrics used in the identification of abnormal patterns
(such as NPV and FPR) outperformed the results of previous studies with very few false
positives, which is normal for anomaly detection as the IFT still identifies the minimal
proportion of abnormal inter-arrival time points. Also, the device-type performance
is significantly better than the equal error rates reported in [100]. More importantly,
the performance of the device-type IFT shows that the proposed technique can be
generalised to identify abnormal device types in the cybersecurity domain, specifically
for anomaly detection problems.

6.5 Chapter Summary
This chapter developed a novel intelligent filtering technique for identification of
abnormal inter-arrival time patterns based on device-type. The confusion matrices
presented in Figures 6.1 to 6.16 demonstrate the applicability of the intelligent filtering
technique based on the numbers and percentages of correctly and incorrectly identified
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abnormal inter-arrival time points for each device-type. Also, the performance of the
IFT presented in section 6.3 highlights its acceptability as it was able to correctly
identify most abnormal inter-arrival time points from the three different network traffic
datasets based on device-type. This technique can improve network access control
systems and can be adapted to overcome the NAC challenges discussed in section 2.1.4.

A particularly interesting part of the IFT is that the performances are good for all
the device-types, and the testing evaluation metrics in Tables 6.3, 6.4, and 6.5 show
that there is a certain similarity in their individual performances. These similarities
underline that the inter-arrival time points of network traffic can be used to identify
both abnormal inter-arrival time points based on device-type profiling and abnormal
network behaviour in general. For example, while the network traffic measurements
for the active, isolated, and passive datasets are different, the device-types available
in the active and passive datasets are similar, yet the training and testing accuracy
for all the device-types falls between 99.0 and 99.9%. Nevertheless, the IFT was
further evaluated using precision, recall, F-score, SPC, NPV, and FPR due to the
small number of abnormal inter-arrival time points for all device-types. Based on
the performance results presented in section 6.3 using the aforementioned evaluation
metrics, the IFT is considered successful. Although there are cases where the NPV
is lower for some device-types, this is not a problem because the IFT still identifies
the minimal proportion of abnormal inter-arrival time points, which is justified based
on the lower FPR obtained in all the device-types. The following chapter evaluates
the performance of the intelligent filtering technique by testing it in different distinct
scenarios.



Chapter 7

Evaluation of Device-Type
Intelligent Filtering Technique

The evaluation process of the IFT developed in this research is described here, its
performance is evaluated through real and synthetic datasets. The real data are
described and analysed in chapter 4, and the synthetic data were generated using
empirical distribution functions, specifically the random variable histogram. The
detailed synthetic data generation processes are described in section 7.1. Thereafter,
the study examines the performance of the device-type IFT in two different experiments
(i.e. network traffic rates and synthetic data) and present the results in sections 7.2 and
7.3. The first experiment trains the IFT using real datasets from active, isolated, and
passive network traffic datasets, and a further evaluation is conducted with a synthetic
dataset. Meanwhile, the second experiment involves training and evaluation based on
network traffic protocol; that is, training with the UDP network traffic dataset from
the isolated network traffic dataset and evaluating with the TCP datasets, and vice
versa. These experiments give some insight into how well the IFT performs on all
device-types for different network traffic datasets and the synthetic datasets. Finally,
the chapter is summarised.

7.1 Generating Synthetic Datasets
The IFT was further evaluated using synthetic data generated from the device types
previously used in the IFT implementation. As stated previously in section 4.1.1,
several of the dataset repositories explored here do not have sufficient datasets that
meet the requirements of this research. The criteria are that the dataset must be
generated from BYOD devices (i.e. smartphones, tablets and laptops) and should
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contain the important attributes outlined in section 2.3.4. However, most of the datasets
investigated, such as that provided by [189], generated the data from all network devices,
making it difficult to differentiate the data from BYOD devices. Given this limitation,
a synthetic dataset is the only viable option to complement the real data. Moreover,
the goal of generating synthetic data is to have additional data that can be used to
evaluate the performance of the device-type IFT. In generating the synthetic data, an
empirical and theoretical concept, specifically probability distribution fitting, was used
to measure the inter-arrival time distributions and generate synthetic data based on the
distributions that best fit the data for each device type. The probability distribution
fitting is the fitting of a probability distribution to a series of data concerning the
repeated measurement of a variable phenomenon.

The distribution fitting helps to determine the model that best fits the supplied
data. The goal of fitting the distributions to a dataset is to observe the empirical
data sample via a theoretical distribution model. To fit the distributions to our
datasets, three different steps were followed. The first is that descriptive statistics,
which give valuable indications through the histogram and skewness of the observed
data, as to the choice of a suitable theoretical model. The second step uses means and
standard deviations to determine the distribution parameters and to estimate the likely
parameters for the empirical datasets. The third step is that of using the significance
level to determine how well the observed data matches the theoretical model using
the estimated parameters. The significance level is computed using a goodness-of-fit
test such that if the significance level is beyond a predefined threshold, the hypothesis
is accepted, or else otherwise rejected. The accepted hypothesis is when data follow
the specified distribution and the rejected is when the data do not follow the specified
distribution. The above three steps were applied when generating synthetic data.

7.1.1 Probability Distribution Fitting

In the synthetic data generation using probability distribution fitting, we imported
the numpy, scipy, and seaborn Python libraries and data into the Pycharm IDE
environment, and model the data to fit a distribution that best fits the supplied data.
The first step in generating the data was fitting various distributions to the data to
perform a number of checks and select the distribution that allowed for a best fit.
These test distributions include normal, lognormal, cauchy, and gamma, among others
[190]. After applying the above steps, we observed that the distributions did not fit
our datasets and all the fitted distributions fall within different range(s). We then
attempted to use the Kolmogorov Smirnov goodness-of-fit test and curve fitting to
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determine whether any of the data fits were acceptable [191], but the results remained
essentially similar with no apparent improvement. Therefore, this was rejected and
a Random Variable (RV) histogram attempted instead. The plots for the sample
distributions that did not fit our datasets are presented in figures B.36 - B.38 in
Appendix B.

7.1.2 Random Variable Histogram

The numpy, scipy, and seaborn Python libraries and data were imported into the
Pycharm IDE environment to model and represent the data in a given histogram. The
random variable histogram is a continuous variable used to generate data samples using
empirical distributions. The RV histogram for the dataset containing inter-arrival
times for device-type (DevT ) defines how the IAT values are distributed over the values
of a random variable(s). The following conditions were considered when generating
synthetic data: it was verified that functions (IATx) were not taking negative values,
and that the sum of the probabilities of each IAT value of the random variables lies
within a certain interval available in the dataset. These conditions were met and fit
the data into the distribution. The autocorrelation plots in Figure 7.1 show that there
is a degree of similarity between a given inter-arrival time points and a lagged version
of itself over successive time intervals, also, there is positive correlation between the
real and synthetic data. Therefore, synthetic dataset can be generated from all the
device-types using the RV Histogram. In this case, the synthetic dataset was generated
from the device-types according to the above justification. In generating the synthetic
dataset, the entire dataset for each device-type containing inter-arrival time points
were used. For example, the Dell Netbooks and Nokia Phones shown in the plots
had 9,100,324 and 1,563,011 inter-arrival time points, respectively. The 9,100,324
inter-arrival time points for Dell Netbook were used to generate synthetic data for the
Dell Netbook and the 1,563,011 for the Nokia, with similar for the other device-types
in the active, isolated, and passive network traffic datasets.

7.1.3 IFT Performance Evaluation

Before starting the evaluation, it would be useful to explain how the generated synthetic
data was analysed. Here, the same algorithms and experimental settings as in sections
4.2.1 and 5.1.2 were applied to the synthetic datasets, the results of which are reported
in Tables B.1 - B.17 in Appendix B. The analyses are similar to those in section 5.2.
In the results, it was observed that there were no significant differences between the



112 Evaluation of Device-Type Intelligent Filtering Technique

0 200 400 600 800 1000
lag

0.0

0.2

0.4

0.6

0.8

1.0

Au
to

co
rre

la
tio

n

DellNetbooks

(a) Dell Netbooks

0 200 400 600 800 1000
lag

0.0

0.2

0.4

0.6

0.8

1.0

Au
to

co
rre

la
tio

n

Nokia

(b) Nokia

Fig. 7.1 Generating synthetic Data using Random Variable Histogram

analysis of the original and synthetic datasets, and therefore analysing the results will
not add any value to this chapter as the main focus is to evaluate IFT using synthetic
data following similar processes to those used in the original datasets.

As stated earlier, the main objective for generating a synthetic data is to evaluate
the effectiveness of the IFT using the datasets that are not part of the training sets.
This was conducted in two distinctive experiments, respectively. The first experiment
is that of comparing real data at different speed rates (e.g. 1 Mbps and 8 Mbps) as
described in section 4.1.2 and network traffic protocols (TCP, UDP, and ICMP). While,
the second experiment is that of training the IFT with the real data and test using a
synthetic data. These two experiments apply similar experimental settings to those in
section 6.1.1.

7.2 Evaluation based on different Network Traffic
Rates

The IFT was trained by taking an 80/20% split of the data for training and testing
purposes, respectively, followed by additional testing with 100% of the other dataset
from other network traffic measurement. For example, in Table 7.1 the active network
traffic has two different datasets measured for cases 1, 2 and 3. The payload sizes for
case 1 and 3 is 64 bytes and for case 2 is 1400 bytes and the speed rate for Case 1 was
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measured at a speed of 1 Mbps and cases 2 and 3 at 8 Mbps, and therefore the IFT
is trained with the case 1 dataset and tested with the case 2 dataset, and vice versa.
A similar approach is applied for the isolated and passive network traffic datasets in
case 3, but in this case apart from the speed there is an additional network protocol
comparison, i.e., TCP versus UDP, ICMP versus UDP, and TCP versus ICMP, and
vice versa for each.

Table 7.1 Overview of the IFT Evaluation based on different network traffic rates

Network
Experiment 1 Experiment 2

Traffic Type Training Dataset Testing Dataset Training Dataset Testing Dataset

Active ICMP-case 1 ICMP-case 2 ICMP-case 2 ICMP-case 1
Isolated TCP-case 2 UDP-case 3 UDP-case 3 TCP-case 2
Passive UDP-case 3 ICMP-case 1 ICMP-case 1 UDP-case 3

Moreover, the results of these evaluation experiments are illustrated in the receiver
operating characteristic (ROC) curve in Figures 7.2, 7.3, and 7.4. The ROC curve is
a metric to determine the evaluation accuracy via Area Under The Curve (AUC). It
is constructed by plotting the true positive rate against the false positive rate. The
x-axis show the false positive rate and the y-axis show true positive rate, and the
AUC reflects the trade-offs between the FPR and TPR, where an AUC value of 0.50
indicates that the classification is equivalent to a pure random guess, and an AUC
value of 1.0 indicates that the classifier perfectly distinguishes the classes (i.e., Normal
and Abnormal device-type profiles). The LSTM outputs a score for each sequence
(a number between 0 and 1), and if that score is >= 0.5, the classifier performs well
without errors; if the score is < 0.5, the classifier did not perform well and gave many
errors.

7.2.1 Active Network Traffic Datasets

The ROC curves for the device-types in the two active network traffic datasets are
illustrated in Figure 7.2. As shown in the upper-left corner of the figure, the curves for
the Asus, Acer and Gateway Netbooks, Google Phone, and Asus Tablet are relatively
high, corresponding to the > 0.99 AUC value. These results are good as the IFT
performed well in both experiments, although the Lenovo Laptop has a relatively low
AUC (0.6614), which might be due to the two datasets (Ping-ICMP-Case 1(Lenovo)
and Ping-ICMP-Case 2 (Lenovo)) being very different in nature, meaning a classifier
trained on Case 1 may still be generalised on Case 2, and vice-versa. These AUC
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values clearly indicate that the IFT can be generalised on all the device-types in active
network traffic datasets. This also highlights that conducting the IFT training at a
speed of 1 Mbps and testing at a speed of 8 Mbps, and vice versa, does not affect its
performance.

Fig. 7.2 The ROC curves for experiments 1 and 2 for the device-types in the active
network traffic

7.2.2 Isolated Network Traffic Datasets

In these network traffic datasets, two experiments were conducted to determine whether
the IFT could be generalised. In the first experiment, the device-types were trained on
TCP case 2 and tested against UDP case 3. In the second experiment, the device-types
were trained on UDP case 3 and tested against TCP case 2. As stated in section 4.1.2,
the TCP case 2 device-types were measured at a speed rate of 8 Mbps while the UDP
was measured at 1 Mbps. Therefore, two comparisons based on the speed rate and
protocol type were conducted to assess whether the IFT can be generalised. The ROC
curves for the device-types in the TCP and UDP of isolated network traffic datasets
are illustrated in Figure 7.3. The device-types available in the experiments are the
Nokia Phone, iPad, iPhone 3G, and iPhone 4G. As can be seen from the top-left corner
of the figure, the curves for the Nokia Phone, iPad, iPhone 3G, and iPhone 4G are
relatively high, whereby the iPad, iPhone 3G, and iPhone 4G were observed to have
an AUC value of 0.99 while the Nokia Phone had an AUC value of 0.96. The AUC
values for these device-types are good, clearly indicating that the IFT performed well
and can be generalised based on these network traffic datasets due to relatively good
performance across device-types.



7.2 Evaluation based on different Network Traffic Rates 115

Fig. 7.3 The ROC curves for experiments 1 and 2 for the device-types in the isolated
network traffic

7.2.3 Passive Network Traffic Datasets

In these network traffic datasets, we performed two experiments to explore whether the
IFT can be generalised by training the IFT with the datasets measured on UDP case 3
and tested against ICMP case 1, and vice versa. The ROC curves for the device-types
in the two passive network traffic datasets are illustrated in Figure 7.4.

Fig. 7.4 The ROC curves for experiments 1 and 2 for the device-types in the passive
network traffic

As can be seen in the upper-left corner of the figure, the curves for all device-
types are relatively high, indicating a good IFT performance. The Asus and Gateway
Netbooks and Google Phone had AUC values of 0.99, the Acer Netbook and Lenovo
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Laptop had AUC values of 0.97, and the Asus Tablet had the lowest AUC value of
0.92. The results show that the IFT performed well for all device-types and can be
generalised on the device-types in these network traffic datasets.

7.3 Evaluation based on Synthetic Datasets
Similar experimental settings to those in section 6.1.1 with an additional testing step
with 100% synthetic datasets was applied to evaluate the effectiveness of using a data
that was not part of the training set. The overview of the training and testing for each
device-type used for IFT evaluation using synthetic dataset is illustrated in Table 7.2.

Table 7.2 Overview of the IFT Evaluation based on synthetic datasets for the Device-
Types in Active Network traffic Datasets.

Real Datasets Synthetic Datasets

Network Device Training IATs Testing IATs Testing IATs
Traffic Type Type (80%) (20%) (100%)

Active

Acer NB 3,174,825 793,718 3,968,543
Asus NB 3,174,850 793,975 3,968,825
Gateway NB 2,543,935 635,996 3,179,931
Google Phone 637,405 159,363 796,768
Lenovo Laptop 637,613 159,662 797,275
Asus Tablet 635,931 158,995 794,926

Isolated

iPad 3,655,182 916,308 4,571,490
iPhone 3G 903,479 225,870 1,129,349
iPhone 4G 6,640,562 1,660,153 8,300,715
Nokia 1,250,360 312,602 1,562,962

Passive

Acer NB 2,569,901 642,487 3,212,388
Asus NB 2,569,713 642,440 3,212,153
Gateway NB 2,055,754 513,951 2,569,705
Google Phone 520,123 130,043 650,166
Lenovo Laptop 514,021 128,517 642,538
Asus Tablet 513,953 128,500 642,453

The most important aspect of evaluating the effectiveness of the IFT is its ability
to predict the correct output classes. This was measured using the accuracy, recall,
precision, and F-score, SPC, NPV, and FPR evaluation metrics with their metrics
equations defined in section 6.3, which illustrates the performance of the IFT identifi-
cation on the synthetic datasets. This metrics provides quantifiable evidence of how
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effective the IFT is at making correct predictions. The IFT evaluation results for all
the network traffic datasets experimented, using the considered evaluation metrics for
the device-types, are presented in Tables 7.3, 7.4, and 7.5. The tables show the normal
and abnormal inter-arrival time points used for testing the IFT with synthetic data
and the evaluation metrics for each device-types. In the tables, we observe the IFT to
have outperformed in all the device-types with evaluation accuracy, recall, precision,
and F-Score between 97.0 to 99.9%.

7.3.1 Active Network Traffic Datasets

The IFT evaluation results for the active network traffic datasets, based on the
considered evaluation metrics for the studied device-types, are presented in Table 7.3.
The device-types analysed are the Acer, Asus, and Gateway Netbooks, the Lenovo
Laptop, and the Asus Tablet in the ICMP case 1 dataset, enabling the results to be
compared with the other network traffic datasets. Meanwhile, the results for the other
device-types are similar to what was found for the other device-types in the ICMP
case 2 datasets; therefore, they are also part of the analysis and comparison. The
overall accuracy, precision, recall, and F-score are similar for all device-types, which is
a good sign that the IFT identification outperforms when testing with synthetic data.
In addition, to ensure the correctness of the IFT identification, other complementary
metric equations, such as SPC, NPV, and FPR, as described in section 6.3, are used
to measure the IFT performance for the device-types in the active network traffic
datasets.

Table 7.3 Testing Evaluation Metrics with Synthetic Data for the Device-Types in the
Active Network

Inter-arrival Time (s)

Normal Abnormal Accuracy Precision Recall F-Score SPC NPV FPR
Device (%) (%) (%) (%) (%) (%) (%) (%) (%)

Acer NB 3,967,663 880 99.7 99.9 99.8 99.8 92.7 98.2 7
Asus NB 3,967,892 933 99.7 99.9 99.8 99.8 91.6 79.8 8
Gateway NB 3,177,727 2,204 98.1 99.9 98.1 99.8 99.1 3.4 0.9
Google Phone 775,750 21,018 99.1 99.8 99.3 99.5 92.2 78.2 8
Lenovo Laptop 776,498 20,777 99.5 99.7 99.8 99.7 89.3 90.9 11
Asus Tablet 775,869 19,057 99.6 99.9 99.6 99.4 84.5 72.9 13

Table 7.3 shows the synthetic data testing evaluation results for the device-types in
the active network traffic datasets. The table shows that the IFT outperforms with
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the synthetic data in all three metrics for all device-types, with the IFT identification
accuracy surpassing 98.1%. Among all the device-types, the Acer and Asus Netbooks
obtain the highest values for accuracy, recall, precision, and F-score, which means
that the IFT correctly identified the inter-arrival time points in both the normal and
abnormal device-type profiles while incorrectly identifying between 0.1 and 0.3% of the
inter-arrival points in both profiles. Meanwhile, the Asus Tablet has the second-highest
accuracy, at 99.6%, which indicates that the IFT correctly identified 99.6% of the
inter-arrival points, with 0.4% being incorrectly identified. Besides, the Asus Tablet
has 99.9% precision and 99.6% recall, indicating that the IFT identified not only the
normal profile but also the abnormal profile. The performance of the other device-types
falls between 98.1 and 99.5%, meaning that the IFT correctly identified between 98.1
and 99.5% of the inter-arrival time points while incorrectly identifying between 0.5 and
1.9%. Moreover, the precision, recall, and F-score values show that the IFT correctly
identified 99.3 and 99.8% of the inter-arrival time points in the normal and abnormal
profiles, respectively.

In terms of the false positive alarm rates, the IFT is further evaluated using SPC,
NPV, and FPR. As can be seen from the table, the SPC for all the device-types falls
between 84.5 and 99.1%, whereby the Google Phone has the highest SPC at 99.2%
and the Asus Tablet has the lowest SPC at 84.5%. Meanwhile, the NPV for the
device-types ranges between 72.9 and 98.2%, except for the Gateway Network, which
has the lowest NPV (3.4%). Within this range (72.9 to 98.2%), the Acer Netbook
has the highest NPV and the Asus Tablet has the lowest NPV. Judging by the NPV
values, we can conclude that the IFT identification outperforms for the rest of the
device-types, except for the Gateway Netbook, which requires further investigation.
Furthermore, the FPR ranges between 0.3 and 2%, with the Gateway Netbook having
the lowest (0.9%) and the Asus Tablet having the highest (13%) values. The FPR is
not high, which means that the IFT is not biased towards false positive or false negative
classes but rather correctly identifies both normal and abnormal inter-arrival time
points. Hence, the FPR rules out the NPV for the Gateway Netbook and the other
device-types that have lower NPVs. Based on the evaluation metrics, it is concluded
that the IFT outperforms for all the device-types in the active network traffic datasets
and can thus be generalised, with similar results being observed for the device-types in
the passive ICMP case 2 datasets.
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7.3.2 Isolated Network Traffic Datasets

The IFT evaluation results for the Isolated Network Traffic Datasets, based on the
considered evaluation metrics for the available device-types, are presented in Table 7.4.
The iPad, iPhone 3G, iPhone 4G, and Nokia in the TCP case 2 dataset are analysed to
enable a comparison of the results. Furthermore, as the results for the other device-types
in the UDP case 3 dataset are similar to those found for the device-types examined,
they are also part of the analysis and comparison with the other device-types in the
active and passive network traffic datasets. The overall accuracy, recall, precision, and
F-score are similar for all the device-types, whereby the best performance was observed
for the iPhone 3G and iPhone 4G, followed by the iPad and Nokia Phone. Also, the
SPC, NPV, and FPR described in section 6.3 are used to measure the IFT performance
for the device-types in the isolated network traffic datasets.

Table 7.4 Testing Evaluation Metrics with Synthetic Data for the Device-Types in the
Active Network

Inter-arrival Time (s)

Normal Abnormal Accuracy Precision Recall F-Score SPC NPV FPR
Device (%) (%) (%) (%) (%) (%) (%) (%) (%)

iPads 4,562,847 8,643 99.7 99.9 99.8 99.8 53.8 99.9 46
iPhone 3G 1,113,955 15,394 97.1 98.5 97.1 97.8 98.1 31.6 2
iPhone 4G 8,258,186 42,529 99.5 99.8 99.5 99.6 99.2 51.8 0.8
Nokia 1,562,486 476 99.7 99.9 99.8 99.8 33.6 99.9 66

Table 7.4 presents the synthetic data testing evaluation results for the iPad, iPhone
3G, iPhone 4G and Nokia Phone. According to the table, the IFT correctly identified
99.7% of the inter-arrival time points for the iPad, while incorrectly identifying 0.3%.
In terms of precision and recall, the IFT identified 99.9% of the inter-arrival time
points in both the normal and abnormal profiles. For the iPhone 3G, the accuracy
is 97.1%, meaning that the IFT correctly identified 97.1% of the inter-arrival time
points while incorrectly identifying 2.9%. Here, the recall is similar to the accuracy
and the precision is 98.5%, which is an indication that the IFT correctly identified
the inter-arrival time points as categorised into normal and abnormal profiles in both
the actual and predicted outputs. Moreover, the performance for the Nokia Phone is
similar to that for the Acer and Asus Netbooks, whereas for the iPhone 4G it is similar
to that for the Lenovo Laptop in the active network traffic datasets.
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Regarding the false positive alarm rates, the IFT is further measured using SPC,
NPV, and FPR. The table shows that the SPC for all the device-types falls between
33.6 and 99.2%, whereby the Nokia Phone has the lowest SPC at 33.6% and the iPhone
4G has the highest SPC at 99.2%. Meanwhile, the NPV for the device-types is 31.6
and 51.8% for the iPhone 3G and iPhone 4G, respectively, and is 99.9% for both the
iPad and the Nokia Phone. Based on the NPV, it is clear that the IFT identification
outperforms for the iPad and Nokia Phone but does not perform well for the iPhone
3G and iPhone 4G. Beyond that, the FPR falls into two ranges (i.e. 0.8 to 2% and 46
to 66%), whereby the lower range shows the percentage of the device-types for which
the IFT outperforms, while it does not perform well for those in the higher range. In
this case, the iPhone 3G and iPhone 4G have the lowest FPR and the Nokia Phone
and iPad have the highest, which is the opposite of the NPV results. Hence, the NPVs
for the iPhone 3G and iPhone 4G are ruled out by the FPR. The FPR is not high in
the case of the iPhone 3G and iPhone 4G, which means that the IFT is not biased
towards false positive or false negative classes but rather correctly identified both
normal and abnormal inter-arrival time points. Moreover, it does not perform well for
the iPad and Nokia Phone due to the lower SPC and higher FPR. Indeed, based on the
evaluation metrics used, it is concluded that the IFT outperforms for the iPhone 3G
and iPhone 4G in the isolated network traffic datasets and can be generalised, while
further investigation is required for those device-types for which it produced large false
alarms (iPad and Nokia Phone). Similarly, the testing results for the device-types in
the isolated UDP case 3 dataset are not different from the results analysed here or for
the active network traffic datasets.

7.3.3 Passive Network Traffic Datasets

Based on the considered evaluation metrics for the available device-types, the IFT
evaluation results for the passive network traffic datasets are presented in Table 7.5.
This section analyses the Acer, Asus, and Gateway Netbooks, the Lenovo Laptop, and
the Asus Tablet in the UDP case 3 dataset to facilitate a comparison of the results with
the device-types in the ICMP case 1 dataset as well as the active and isolated network
traffic datasets. The overall accuracy, recall, precision, and F-score are similar for all
device-types, indicating the fact that the IFT identification outperforms when testing
with passive network traffic synthetic data. Furthermore, to verify the correctness
of the IFT identification, complementary metric equations, namely SPC, NPV, and
FPR, as described in section 6.3, are used to evaluate the IFT performance for the
device-types in the active network traffic datasets.
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Table 7.5 Testing Evaluation Metrics with Synthetic Data for the Device-Types in the
Active Network

Inter-arrival Time (s)

Normal Abnormal Accuracy Precision Recall F-Score SPC NPV FPR
Device (%) (%) (%) (%) (%) (%) (%) (%) (%)

Acer NB 3,193,659 18,729 99.8 99.9 99.8 99.8 97.2 79.1 3
Asus NB 3,202,827 9,326 99.8 99.9 99.8 99.8 97.9 59.7 2
Gateway NB 2,556,156 13,549 99.8 99.9 99.8 99.8 98.4 77.2 2
Google Phone 636,873 13,293 97.0 99.8 97.1 98.4 91.4 39.4 9
Lenovo Laptop 635,962 6,576 98.0 99.5 98.5 98.9 47.7 25.0 52
Asus Tablet 625,987 16,466 99.5 99.9 99.6 99.7 95.1 87.0 5

Table 7.5 shows the synthetic data testing evaluation results for the device-types in
the passive network traffic datasets. The table demonstrates that the IFT outperforms
with the synthetic data in all the three metrics for all the device-types, whereby the
IFT identification accuracy surpasses 97%. Of the device-types, the Acer, Asus and
Gateway Netbooks obtain the highest values in terms of accuracy, recall, precision and
F-score, showing that the IFT correctly identified 99.8% of the normal and abnormal
inter-arrival time points for these device-type profiles, with between 0.2% inter-arrival
points being incorrectly identified. The performance for the Asus Tablet was slightly
lower, with an accuracy of 99.5%, which indicates that the IFT correctly identified
99.5% of the inter-arrival points and incorrectly identified 0.5%. Furthermore, the
99.9% precision, 99.6% recall, and 99.8% F-score indicate that the IFT identified
not only the normal profile but also the abnormal profile. The performance for the
Lenovo Laptop and Google Phone falls between 97 and 98%, highlighting that the
IFT correctly identified between 97 and 98% of the inter-arrival time points while
incorrectly identifying between 2 and 3%. Moreover, the precision, recall and F-score
show that the IFT correctly identified between 97.1 and 99.5% of the inter-arrival time
points in the normal and abnormal profiles, respectively.

In terms of the false positive alarm rates, the IFT is further evaluated using SPC,
NPV, and FPR. As per the table, the SPCs for all the device-types fall between 47.7%
and 98.4%, whereby the Lenovo Laptop has the smallest SPC (47.7%) and the Gateway
Netbook has the highest SPC (98.4%). Meanwhile, the remaining device-types fall
within the range of 95.1 to 98.4%. As for the NPV, it ranges between 25.0 and 87.0%,
with the Lenovo Laptop and Google Phone having 25% and 39%, respectively, which
are the lowest values among all the device-types, followed by the Asus Netbook with
59.7%; the remaining device-types have between 77.2 and 87.0%. Based on the NPV,
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the IFT identification outperforms for the rest of the device-types, although in the
case of the Lenovo Laptop and Google Phone, further investigation is needed. In
addition, the FPR ranges between 3 and 9%, except for the Lenovo Laptop, which
has the highest FPR (53%) among the device-types evaluated here. An FPR between
3 and 9% is not high, which means that the IFT is not biased towards false positive
or false negative classes but instead correctly identified both normal and abnormal
inter-arrival time points. Hence, the FPR rules out the NPV for the Google Phone
and the other device-types with a lower NPV. However, the Lenovo Laptop could not
be ruled out due to the lower SPC and NPV observed for this device-type. Finally,
based on the evaluation metrics used, it is concluded that the IFT outperforms for the
majority of the device-types examined in the active network traffic datasets and can
be generalised, with similar results being observed for the device-types in the passive
ICMP case 1 datasets.

7.4 Chapter Summary
The first part of this chapter discussed the generation of synthetic data using different
synthetic data-generating techniques. The random variable histogram was used to
generate synthetic datasets because this was found to give the best fits to our datasets.
Algorithms such as K-means clustering and clustering-based multivariate gaussian
outlier score were applied to the generated synthetic data to prepare and obtain a
labelled dataset that was used to evaluate the intelligent filtering technique. The second
part of the chapter evaluates the IFT based on different network traffic rates, whilst the
third part analysed the evaluation results based on synthetic data. The results of the
evaluation using the well-known classification metrics used for the intelligent filtering
technique, as presented above, demonstrate the accuracy, robustness, and effectiveness
of intelligent filtering technique in correctly identifying the abnormal inter-arrival time
points for each device-type.

The evaluation results for the original datasets (first experiment) based on speed
and network protocol comparison, as analysed in section 7.2, clearly show that the IFT
performed well for all device-types although Lenovo Laptop had lower AUCs of 0.66
and 0.92, which is not a problem as the AUC values are greater than 0.5 . The AUCs for
other device-types ranged between 0.97 to 0.99. The analysis of the IFT with synthetic
data (second experiment), as presented in section 7.3, showed that the IFT correctly
identified the abnormal inter-arrival time points for all device-types with an accuracy
between 90 to 99%. From the analysis, it was clear that some device-types have a
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lower NPV, which is not a problem in anomaly detection as the lower FPR normally
ruled that out especially in cases where the datasets are not balanced. Additionally,
the results for both experiments did not suggest that any one of the evaluations was
better than the others, but did show the effectiveness and robustness of the IFT and,
indeed, that it can be generalised.





Chapter 8

Conclusion and Future Work

An IFT is developed in this thesis as a technique for the identification of abnormal
network traffic pattern(s) based on the device-type. In the IFT implementation, three
algorithms, namely K-means clustering, CMGOS, and long short-term memory, as
described and justified in chapter 3, are used. This chapter outlines how the research
objectives are met. First, section 8.1 introduces the overall problem(s) addressed in
this work. Then, the contributions made in this research are presented in section 8.2,
which also presents further work that could be carried out to advance what has been
achieved and the limitations of the research are highlighted in section 8.3 and section
8.4 presents the future work. Finally, the chapter is summarised in section 8.5.

8.1 Introduction
Network Access Control (NAC) is an underlying system for cybersecurity defence. The
premise of NAC is to provide security for end-to-end solutions based on policy-based
access to different parts of the enterprise network by blocking or quarantining the
devices that do not comply with a set of predefined security policies or provide an
indication of vulnerabilities in the network. Also, NAC solutions provides endpoint
visibility after device data has passed into the network defence system but before
the data is stored on a storage system. NAC has gained wider acknowledgement and
use following the rise of Bring Your Own Device (BYOD) trend, so that enterprise
networks no longer depend solely on the traditional security measures [192]. This is
because the traditional security measures do not sufficiently protect enterprise networks
from cyber-attacks [193]. NAC security standards operate in IEEE 802.1x protocols to
define and encapsulate network traffic based on the Extensible Authentication Protocol
(EAP) over IEEE 802. These are established standards based on traffic encryption and
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integrity that protects network infrastructure as well as preventing unauthorised and
illegal access to enterprise network. The 802.1x security cannot rely purely on security
protocols to protect network traffic during data communication. Therefore, achieving a
robustly secure and reliable BYOD network design poses a huge challenge to enterprise
networks. It has become highly crucial to develop and adopt an improved approach to
strengthen the security level in evolving enterprise network systems.

This research has considered a crucial security issue inherent in NAC that relates
to the limitation or failure to recognise and/or prevent the use of genuine devices by
unauthorised users to access or compromise the enterprise networks. As a solution,
this research proposes an intelligent filtering technique (IFT) that addresses this
concern by looking into the variation of packet inter-arrival time patterns of the
device-types connected to the enterprise networks. This can be used to identify and
filter abnormal network traffic patterns or devices that suggest malicious activity
and to help control access. Different kinds of security issues can cause abnormal
network traffic in NAC systems that can compromise enterprise networks. Initial
literature study reveals that different kinds of security issues can cause abnormal
network traffic in NAC systems that can compromise enterprise networks. Some
of these issues include; identity theft and unauthorised access. Initial literature
study also presents some of the key security requirements for this kind of system,
such as ensuring confidentiality, integrity, and availability. The literature study also
explored the possibility of finding a common pattern that could be used to establish
preventive measures against the security issues identified which can cause abnormal
network traffic. The most commonly used countermeasures identified in the literature
reviewed are behaviour profiling and fingerprinting techniques [2] which vary, but both
rely on identification or profiling abnormal patterns. However, neither behavioural
profiling nor fingerprinting in isolation provides a sufficiently robust preventive measure
against device network access control threats. While fingerprinting techniques focus
on reconnaissance, i.e., gathering information about devices accessing the network,
current behavioural profiling techniques typically focus on device users. This research
combines the two countermeasure techniques to achieve a more robust approach to
protect enterprise networks from intrusion. This is achieved by identifying a device-type
and profiling the device to identify abnormal network traffic patterns that suggest
malicious activity from packet inter-arrival times, and use same to control access.



8.2 Contributions 127

8.2 Contributions
The main contribution of this research is the development of a novel security technique
for Bring Your Own Device-based network access control (NAC) systems. The security
technique is unique in that it employs device-type profiling technique to distinguish
abnormal (malicious) from normal (benign) network traffic. No prior work has been
found to adopt this approach for NAC systems. In the novel approach proposed, a
unique inter-arrival time data analysis using K-means and notched box plots was
developed. A device-type profiling technique was developed using the clustering-based
multivariate gaussian outlier scores. The identification of abnormal network traffic
detection was achieved using long short-term memory networks. The device type
intelligent filtering assumption and the way it is used in defining these algorithms
are also novel. The overview of the main contributions of this research and how the
research objectives and questions were answered is presented in Figure 8.1. The figure
shows the series of stages taken, from the literature review to the evaluation of the
device-type IFT described in detail below.

Fig. 8.1 An overview of the research methodology

1. Literature review: In chapter 2, An overview of the inherent security threats,
vulnerabilities, attacks and security requirements associated with BYOD-enabling
technologies is presented. Current measures in the domain for addressing security
risks and requirements are also described. The chapter starts by introducing
the NAC and enterprise security requirements. Then, it reviews the related
works in behaviour profiling, fingerprinting techniques and IFTs to determine
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the weaknesses in the related works as well as address the identified weaknesses.
In relation to the research objectives and questions, the literature chapter review
addresses research objectives 1 and 2 as well as research questions 1 and 2.

2. Description and justifications of algorithms: chapter 3 investigated the appropri-
ate machine learning techniques for outlier detection along with the justification
for selecting the technique used throughout the thesis. In relation to the re-
search objectives and questions, the methodology justification chapters addressed
research objectives 1 and 2, as well as research questions 1 and 2. The clear
contributions to knowledge of this work are covered in chapters 4 to 7 of this
thesis report, and are summarised as follows:

3. Data analysis: In chapter 4, The approach used to analyse the data and the
experimental settings are both unique and present an improvement to existing
concepts available in this domain. Current works use clustering techniques
to assume normal and abnormal patterns. Other researchers use classification
techniques, e.g. neural networks, to classify normal and abnormal patterns. The
new approach proposed in this study uses K-means clustering to understand
the inter-arrival time patterns of the data from the devices before defining or
classifying normal and abnormal patterns. No known technique has been found
in this area that uses this type of data analysis approach (using K-means to
understand the inter-arrival time patterns, and notched box plots to validate the
device-type profiling approach) to assess datasets containing inter-arrival time
data values for multiple mobile devices from three different network monitors
(active, isolated and passive). In relation to the research objectives and research
questions, the data analysis chapter addressed research objective 3 and a part of
research question 3.

4. Device type-profiling using packet inter-arrival times: This is one of the contri-
butions of this research and is presented in chapter 5. It includes the definition
of the algorithm and a device-type profiling technique developed to classify and
label the device type datasets to distinguish abnormal from normal inter-arrival
times. The main idea behind this approach is to use the clusters identified in
the clustering algorithm to profile, classify, and label the normal and abnormal
inter-arrival time points for each device type. In doing so, we use the output
of the clustering algorithm by feeding this into the input of a clustering-based
multivariate gaussian outlier score and then calculate how likely a data instance
is to be close to the cluster centre. For example, the data values associated with,



8.3 Limitations of the research 129

or close to, each cluster are added to where they belong. The outlier score for
each data instance is later computed based on the multivariate gaussian of each
cluster, an outlier score is added to inter-arrival time points, and each point is
labelled either normal or abnormal following the standard defined by Goldstein
et al. [143]. This device type profiling will enable system administrators to
clearly group the packet inter-arrival times into normal and abnormal classes for
labelling and model training. In relation to the research objectives and research
questions, the device-type profiling chapter addresses research objective 4 and
answered a part of research question 3.

5. Intelligent filtering technique based on device type: This novel contribution
covered in chapter 6, uses the bidirectional architecture of long short-term
memory network due to its dynamic filtering capability in training the IFT. The
idea behind this approach is that the labelled dataset containing the inter-arrival
time values and target (normal or abnormal) inter-arrival time points from the
device types is used to train the IFT. The IFT has been shown to correctly
identify the abnormal inter-arrival time points from all the device types with an
accuracy above 99%. In relation to the research objectives and research questions,
the device type profiling chapter successfully answered research question 4 and
addressed research objective 5. Also, the evaluation results in chapter 7 showed
the effectiveness of the IFT for different forms of network traffic and protocols.
The evaluation demonstrates that the device type IFT can be generalised for
similar datasets, as demonstrated and justified using the two different scenarios
in the evaluation chapter.

This research and the novel outputs have made positive contributions to the BYOD
enterprise network domain evidenced by their acceptance and publication at conference
and in peer reviewed journals. One of the conference papers was selected based on the
reviewers’ comments and invited to be extended for submission to a special issue of
the Journal of Sensors and Actuators. Although it was not extended at the time, it is
currently being revised with the intention to submit to another journal.

8.3 Limitations of the research
The network access control for BYOD enterprise network domains has been improved.
However, despite the objectives of this thesis having been met, there are several
limitations associated with this research that were beyond the author’s control. Some



130 Conclusion and Future Work

of these limitations were mostly related to the datasets, which were not labelled with
normal and abnormal inter-arrival time points. Therefore, it was difficult to differentiate
the abnormal from the normal inter-arrival time points. This was addressed in this
research by applying K-means clustering to identify the normal and abnormal inter-
arrival time points and using CMGOS to label and classify the normal and abnormal
inter-arrival time points. However, there is still a need for a labelled dataset that has
normal and abnormal inter-arrival time points to ensure the correct identification of
abnormal patterns. To address this limitation, an experiment needs to be conducted
on real BYOD devices, such as smartphones, tablets and laptops, to generate normal
data. In addition, an attack needs to be conducted on the aforementioned BYOD
devices to generate abnormal data. Performing such an experiment on real devices has
a cost implication in terms of buying the mobile devices and computational complexity,
which is also a limitation. To address the cost implication, a limitation testbed can
be implemented to generate normal and abnormal data, although testbeds may have
performance issues, such as slow data generation, which would have implications in
anomaly detection as the normal inter-arrival times could behave abnormally. The
closest solution to address the cost implication is to configure virtual machines using
the images of smartphones, tablets and laptops based on their model and operating
systems, which could be reflected in future work.

8.4 Future Work
This research has improved the network access control for BYOD enterprise network
domains. However, there are some areas where further work could be carried out to
advance upon what has been achieved in this research. Although the objectives of this
thesis having been met, the outcome of this research can be further improved with the
availability of higher computational resources (i.e., random access memories’ capability
to handle large data) to apply the techniques for all the datasets described in section
4.1.2. More specifically, other areas of further work related to this research can be the
development of an IFT into a mobile application that can intelligently detect abnormal
patterns based on the device-type in a BYOD enterprise network environment.

Furthermore, the device-type IFT needs the attention of a network administrator
to monitor and respond to abnormal inter-arrival time patterns. Hence, there is need
to develop an alert system based on inter-arrival times that can inform the network
administrator about intrusions. Such an alert system would need to have components
that can automatically pre-process the abnormal inter-arrival time patterns learned
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by the IFT and cluster, and then merge the alerts. Further research could explore
and develop a technique to block the abnormal inter-arrival time patterns identified
by the IFT. Another research direction involves investigating the application and
efficiency of the device-type IFT in a real BYOD enterprise network. The application
can be developed as an add-on security module that can be added to NAC systems or
configured on hardware to function as an intelligent filter. This can help to consolidate
the validity and reliability of device-type IFT to detect and prevent intrusions in a
real network environment. It could also help to discover new parameters that may not
have been considered in the development of the IFT.

8.5 Chapter Summary
The overall objectives of this research as originally specified in the first chapter have
been met. The research questions are answered in the form of chapters, which describe a
series of experimental studies and synthetic data generation undertaken for the profiling
of mobile devices according to device type and developing an IFT to identify abnormal
network traffic pattern(s) based on device type. The main contribution of this thesis
is a new comprehensive security technique for the identification of abnormal network
traffic pattern(s) in BYOD enterprise networks. This security technique is unique as no
similar approach exists. The results produced here for the IFT identification training
and testing underscore its potential in identifying abnormal network traffic patterns in
BYOD enterprise networks. Moreover, the evaluation results show that the IFT can be
generalised to provide a more robust underlying security for BYOD enterprise networks
and can also be expanded to function as a hardware device. BYOD security concerns
often arise due to a lack of sufficiently innovative methods to control employees’ devices
accessing enterprise networks, thereby rendering these mobile devices vulnerable to
malicious attackers. For example, if an attacker can gain possession of a lost or stolen
device, they become, in effect, an internal user/employee, allowing them to access
the sensitive information contained on the device and cause considerable damage to
the BYOD enterprise network. BYOD is a new paradigm that requires advanced
security countermeasures, and the device-type IFT developed here offers a new security-
counter measure that will enhance BYOD network access control, ultimately reducing
the impact of unauthorised and illegal access as well as insider threats to BYOD
enterprise networks. With the implemented technique, BYOD enterprise networks will
have enhanced security that protects not only users/employees but also the devices
connected to the networks. Moreover, this solution can also be implemented to address
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anomaly detection problems in other security-related areas, such as industrial control
systems, the Internet of Things, and health care systems, among others.

The research has led to four publications, and further articles will be published
later from this thesis. Finally, the chapter introduced the problems addressed in thesis
in section 8.1, the research contributions made in section 8.2, the future research
directions in section 8.3 as well as summary of the chapter.
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A.1 K-means Clustering Results

A.1.1 Determining the number of clusters for Active network
traffic Datasets

Table A.1 Active network traffic Dataset Results based on Trial and Error in Configu-
ration settings

Db_index Db_index Db_index Db_index
Device (k = 2) (k = 3) (k = 4) (k = 5)
AC1 2 6 381 458
AC2 2 6 409 482
AC3 2 6 274 423
AC4 2 6 293 437
AC5 2 6 36 2,402
AC6 2 13 287 456
AC7 2 6 17 527
AC8 2 6 512 504
AC9 2 6 424 643
A10 2 6 758 688
ACER 2 6 457 1,912
AS1 2 6 457 460
AS2 2 6 495 490
AS3 2 6 371 558
AS4 2 6 368 506
AS5 2 6 19 394
AS6 2 10 404 543
AS7 2 7 490 516
AS8 2 15 443 2,662
AS9 2 6 44 512
AS10 2 6 16 483
Asus 2 6 13 2,894
GW1 2 6 395 587
GW2 2 6 404 415
GW3 2 6 340 463
GW4 2 6 357 538
GW5 2 6 303 450
GW6 2 6 187 458
GW7 2 6 489 514
GW8 2 6 534 536
GatewayNB 2 6 458 455
G1 2 5 16 33
G2 2 6 13 67
GoogleP 2 6 14 33
L1 2 6 44 63
L2 2 37 45 79
Lenovo 2 7 44 67
T1 2 7 41 64
T2 2 7 13 35
Tablets 2 7 13 62
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A.1.2 Determining the number of clusters for Isolated net-
work traffic Datasets

Table A.2 Isolated network traffic Dataset Results based on Trial and Error in Config-
uration settings

Db_index Db_index Db_index Db_index
Device (k = 2) (k = 3) (k = 4) (k = 5)
DN1 2 86 169 203
DN2 2 60 191 215
DN3 2 89 199 221
DN4 2 9 34 91
DN5 2 28 137 233
Dell-Netbooks 2 83 158 497
IP1 2 86 170 203
IP2 2 60 191 215
IP3 2 89 199 220
iPads 2 18 44 54
IT1 2 11 18 184
IT2 2 46 57 70
iPhone3G 2 47 151 174
IF1 2 197 356 457
IF2 2 325 367 467
iPhone4G 2 208 362 464
NP1 2 7 88 218
NP2 2 7 26 34
Nokia Phones 2 7 19 361
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A.1.3 Determining the number of clusters for Passive net-
work traffic Datasets

Table A.3 Active network traffic Dataset Results based on Trial and Error in Configu-
ration settings

Db_index Db_index Db_index Db_index
Device (k = 2) (k = 3) (k = 4) (k = 5)
AC1 2 11 24 42
AC2 2 13 31 55
AC3 2 12 20 39
AC4 2 9 42 59
AC5 2 10 21 814
AC6 2 7 53 70
AC7 2 9 22 40
AC8 2 8 17 2,882
AC9 2 9 30 42
A10 2 9 18 33
ACER 2 10 27 49
AS1 2 9 19 34
AS2 2 11 28 36
AS3 2 10 24 48
AS4 2 10 22 29
AS5 2 10 25 39
AS6 2 9 22 32
AS7 2 9 31 48
AS8 2 11 26 59
AS9 2 10 30 60
AS10 2 16 45 67
Asus 2 12 25 47
GW1 2 13 18 6,162
GW2 2 12 21 42
GW3 2 9 17 828
GW4 2 9 20 43
GW5 2 8 18 1,178
GW6 2 11 644 1,414
GW7 2 8 30 59
GW8 2 10 21 39
GatewayNB 2 10 22 971
G1 2 20 50 86
G2 2 14 39 69
GoogleP 2 16 44 73
L1 2 13 52 155
L2 2 10 247 306
Lenovo 2 15 60 201
T1 2 12 33 55
T2 2 12 23 44
Tablets 2 12 23 52
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A.2 Dataset Analysis

A.2.1 Analysis of Active traffic Datasets
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Table A.4 Descriptive Analysis of Ping-ICMP-Case1 Data (Real-Active Testbed)
Device Cluster IAT Points Centroid Q1 Median Q3 Min Max Std

AC1 C0 395,457 0.009 0.008 0.009 0.001 0.000 0.406 0.0045
C1 33 0.990 1.004 1.007 1.011 0.518 1.022 0.087

AC2 C0 396,464 0.009 0.008 0.009 0.009 0.000 0.281 0.003
C1 54 0.706 0.389 0.699 1.007 0.382 1.024 0.298

AC3 C0 395,847 0.009 0.008 0.009 0.009 0.000 0.396 0.005
C1 64 0.970 1.002 1.005 1.008 0.530 1.015 0.110

AC4 C0 397,180 0.009 0.009 0.009 0.009 0.000 0.405 0.004
C1 31 0.943 1.002 1.005 1.009 0.507 1.026 0.143

AC5 C0 396,442 0.009 0.009 0.009 0.009 0.000 1.016 0.010
C1 1 5.744 5.744 5.744 5.744 5.744 5.744 0.0

AC6 C0 396,316 0.009 0.009 0.009 0.009 0.000 0.431 0.005
C1 33 0.968 1.002 1.004 1.008 0.630 1.019 0.106

AC7 C0 397,669 0.009 0.009 0.009 0.009 0.000 0.217 0.003
C1 31 0.694 0.391 0.641 1.007 0.383 1.066 0.293

AC8 C0 397,266 0.009 0.009 0.009 0.009 0.000 0.417 0.004
C1 34 0.971 1.003 1.005 1.008 0.507 1.022 0.113

AC9 C0 398,019 0.009 0.009 0.009 0.009 0.000 0.180 0.002
C1 56 0.696 0.389 0.695 1.0057 0.382 1.013 0.292

A10 C0 397,566 0.009 0.009 0.009 0.009 0.000 0.406 0.004
C1 29 0.990 1.004 1.006 1.010 0.515 1.020 0.092

ACER C0 3,968,591 0.009 0.009 0.009 0.009 0.000 1.066 0.010
C1 1 5.744 5.744 5.744 5.744 5.744 5.744 0.0

AS1 C0 396,821 0.009 0.009 0.009 0.009 0.000 0.278 0.003
C1 62 0.706 0.387 0.758 1.005 0.378 1.011 0.302

AS2 C0 397,570 0.009 0.009 0.009 0.009 0.000 0.393 0.004
C1 54 0.925 0.880 1.005 1.007 0.510 1.012 0.146

AS3 C0 397,874 0.009 0.009 0.009 0.009 0.000 0.261 0.001
C1 62 0.705 0.390 0.757 1.006 0.382 1.011 0.299

AS4 C0 397,871 0.009 0.009 0.009 0.009 0.000 0.396 0.004
C1 34 0.963 1.002 1.006 1.008 0.519 1.021 0.131

AS5 C0 398,143 0.009 0.009 0.009 0.009 0.000 0.402 0.003
C1 30 0.955 1.001 1.003 1.006 0.510 1.010 0.124

AS6 C0 396,873 0.009 0.009 0.009 0.009 0.000 0.404 0.005
C1 53 0.944 0.999 1.005 1.008 0.630 1.020 0.127

AS7 C0 396,735 0.009 0.008 0.009 0.009 0.000 0.457 0.004
C1 33 0.989 1.003 1.006 1.011 0.637 1.027 0.077

AS8 C0 395,369 0.009 0.008 0.009 0.009 0.000 1.029 0.010
C1 1 7.070 7.070 7.070 7.070 7.070 7.070 0.0

AS9 C0 396,064 0.009 0.008 0.009 0.009 0.000 0.416 0.005
C1 53 0.955 1.002 1.010 1.017 0.518 1.089 0.139

AS10 C0 396,108 0.009 0.009 0.009 0.009 0.000 0.433 0.005
C1 64 0.982 1.002 1.006 1.012 0.634 1.270 0.117

Asus C0 3,969,873 0.009 0.009 0.009 0.009 0.000 1.270 0.010
C1 1 7.0698 7.070 7.070 7.070 7.070 7.070 0.0

GW1 C0 397,768 0.009 0.009 0.009 0.009 0.000 0.384 0.002
C1 61 0.762 0.394 1.001 1.007 0.385 1.011 0.284

GW2 C0 397,486 0.009 0.009 0.009 0.009 0.000 0.405 0.004
C1 31 0.947 1.001 1.005 1.008 0.50842 1.022 0.136

GW3 C0 397,048 0.009 0.009 0.009 0.009 0.000 0.40 0.004
C1 31 0.955 1.003 1.005 1.009 0.515 1.054 0.136

GW4 C0 398,201 0.009 0.009 0.009 0.009 0.000 0.407 0.003
C1 56 0.946 1.002 1.004 1.007 0.509 1.016 0.135

GW5 C0 396,844 0.009 0.009 0.009 0.009 0.000 0.411 0.004
C1 55 0.985 1.002 1.006 1.009 0.506 1.012 0.095

GW6 C0 397,420 0.009 0.009 0.0009 0.009 0.000 0.399 0.004
C1 55 0.965 1.002 1.004 1.008 0.630 1.027 0.111

GW7 C0 397,646 0.009 0.009 0.009 0.009 0.000 0.406 0.004
C1 32 1.005 1.002 1.003 1.006 1.000 1.013 0.004

GW8 C0 397,210 0.009 0.009 0.009 0.009 0.000 0.415 0.004
C1 36 0.938 1.000 1.004 1.008 0.507 1.019 0.140

GatewayNB C0 3,179,519 0.009 0.009 0.009 0.009 0.000 0.278 0.002
C1 461 0.705 0.388 0.759 1.005 0.378 1.054 0.298

G1 C0 389,003 0.009 0.009 0.009 0.009 0.000 0.011 8.847
C1 9491 0.0138 0.012 0.013 0.014 0.011 0.086 0.003

G2 C0 385,259 0.009 0.009 0.009 0.009 0.000 0.012 0.001
C1 13,064 0.014 0.012 0.013 0.015 0.0115 0.113 0.004

GoogleP C0 774,342 0.009 0.009 0.009 0.009 0.000 0.011 0.001
C1 22,475 0.014 0.012 0.013 0.015 0.011 0.113 0.004

L1 C0 399,050 0.009 0.009 0.009 0.009 0.000 0.048 0.002
C1 78 0.087 0.087 0.094 0.098 0.048 0.125 0.020

L2 C0 399,112 0.009 0.009 0.009 0.009 0.000 0.051 0.002
C1 69 0.095 0.093 0.096 0.099 0.053 0.121 0.010

Lenovo C0 798,163 0.009 0.009 0.009 0.009 0.000 0.050 0.002
C1 146 0.091 0.091 0.095 0.099 0.050 0.125 0.016

T1 C0 397,910 0.009 0.009 0.009 0.009 0.000 0.113 0.002
C1 4 0.233 0.230 0.230 0.243 0.224 0.247 0.010

T2 C0 397,059 0.009 0.009 0.009 0.010 0.000 0.127 0.003
C1 2 0.269 0.245 0.270 0.293 0.245 0.293 0.034

Tablets C0 765,850 0.009 0.009 0.009 0.009 0.000 0.013 0.002
C1 29,125 0.016 0.013 0.015 0.017 0.013 0.293 0.007
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Table A.5 Descriptive Analysis of Ping-ICMP-Case2 Data (Real-Ping-ICMP-Case2
Testbed)

Device Cluster IAT Points Centroid Q1 Median Q3 Min Max Std

AC1 C0 393,116 0.009 0.008 0.009 0.010 0.000 0.437 0.005
C1 61 0.935 1.001 1.006 1.014 0.509 1.046 0.157

AC2 C0 394,563 0.009 0.008 0.009 0.010 0.000 0.425 0.005
C1 31 0.973 1.002 1.006 1.015 0.510 1.649 0.189

AC3 C0 396,468 0.009 0.009 0.009 0.009 0.000 0.289 0.002
C1 63 0.706 0.391 0.908 1.008 0.381 1.050 0.308

AC4 C0 394861 0.009 0.008 0.009 0.010 0.000 0.426 0.005
C1 32 0.937 1.001 1.006 1.011 0.504 1.037 0.161

AC5 C0 394,897 0.009 0.008 0.009 0.010 0.000 0.268 0.003
C1 63 0.716 0.392 0.874 1.007 0.382 1.038 0.302

AC6 C0 396,172 0.009 0.008 0.009 0.009 0.000 0.322 0.003
C1 53 0.701 0.394 0.661 1.006 0.383 1.019 0.292

AC7 C0 397,615 0.009 0.009 0.009 0.009 0.000 0.412 0.004
C1 29 0.984 1.005 1.007 1.012 0.633 1.026 0.084

AC8 C0 397,360 0.009 0.009 0.009 0.009 0.000 0.356 0.002
C1 62 0.710 0.393 0.759 1.005 0.381 1.019 0.289

AC9 C0 397,457 0.009 0.009 0.009 0.009 0.000 0.472 0.004
C1 54 0.953 1.003 1.007 1.011 0.512 1.051 0.148

A10 C0 397,095 0.009 0.008 0.009 0.010 0.000 0.416 0.004
C1 31 0.949 1.002 1.007 1.011 0.496 1.016 0.143

ACER C0 3,959,761 0.009 0.008 0.009 0.009 0.000 0.472 0.004
C1 326 0.957 1.003 1.006 1.010 0.496 1.649 0.140

AS1 C0 398,160 0.009 0.009 0.009 0.009 0.000 0.393 0.003
C1 34 0.864 0.604 1.005 1.007 0.507 1.010 0.214

AS2 C0 397,087 0.009 0.009 0.009 0.009 0.000 0.427 0.004
C1 28 1.007 1.003 1.008 1.009 1.001 1.022 0.004

AS3 C0 397,901 0.009 0.009 0.009 0.009 0.000 0.269 0.002
C1 60 0.709 0.388 0.700 1.006 0.382 1.016 0.291

AS4 C0 397,786 0.009 0.009 0.009 0.009 0.000 0.414 0.003
C1 34 0.969 1.002 1.004 1.007 0.510 1.023 0.112

AS5 C0 398,135 0.009 0.009 0.009 0.009 0.000 0.392 0.003
C1 30 0.966 1.003 1.005 1.007 0.511 1.030 0.127

AS6 C0 394,642 0.009 0.008 0.009 0.010 0.000 0.449 0.005
C1 32 0.936 0.917 1.008 1.016 0.514 1.046 0.147

AS7 C0 395,314 0.009 0.008 0.009 0.010 0.000 1.039 0.010
C1 1 5.053 5.053 5.053 5.053 5.053 5.053 0.000

AS8 C0 395,365 0.009 0.008 0.009 0.010 0.000 0.194 0.003
C1 65 0.712 0.390 0.808 1.007 0.384 1.041 0.298

AS9 C0 395,435 0.009 0.008 0.009 0.010 0.000 0.288 0.003
C1 53 0.725 0.388 0.812 1.008 0.381 1.275 0.303

AS10 C0 396,678 0.009 0.009 0.009 0.009 0.000 0.265 0.003
C1 60 0.721 0.389 1.000 1.007 0.380 1.062 0.308

Asus C0 3,966,571 0.009 0.009 0.009 0.009 0.000 0.481 0.004
C1 329 0.967 1.003 1.006 1.009 0.494 5.053 0.266

GW1 C0 397,674 0.009 0.009 0.009 0.009 0.000 0.401 0.004
C1 33 0.971 1.002 1.005 1.008 0.514 1.051 0.113

GW2 C0 396,660 0.009 0.009 0.009 0.009 0.000 0.294 0.003
C1 29 0.700 0.388 0.760 1.006 0.380 1.018 0.305

GW3 C0 396,277 0.009 0.009 0.009 0.009 0.000 0.463 0.004
C1 55 0.990 1.002 1.006 1.009 0.507 1.027 0.093

GW4 C0 397,923 0.009 0.009 0.009 0.009 0.000 0.407 0.003
C1 29 0.987 1.004 1.006 1.008 0.630 1.065 0.084

GW5 C0 395,006 0.009 0.009 0.009 0.009 0.000 0.412 0.004
C1 56 0.943 1.003 1.007 1.010 0.499 1.100 0.166

GW6 C0 397,795 0.009 0.009 0.009 0.009 0.000 0.178 0.002
C1 28 0.698 0.388 0.702 1.007 0.383 1.021 0.312

GW7 C0 397,585 0.009 0.009 0.009 0.009 0.000 0.404 0.004
C1 34 0.966 1.002 1.004 1.008 0.508 1.013 0.113

GW8 C0 397,265 0.009 0.009 0.009 0.009 0.000 0.412 0.004
C1 63 0.911 0.763 1.006 1.008 0.510 1.021 0.160

GatewayNB C0 3,176,050 0.009 0.009 0.009 0.009 0.000 0.463 0.004
C1 463 0.967 1.003 1.006 1.008 0.499 1.100 0.119

G1 C0 393,396 0.009 0.009 0.009 0.009 0.000 0.012 0.001
C1 5834 0.015 0.013 0.014 0.017 0.012 0.084 0.004

G2 C0 384,887 0.009 0.009 0.009 0.009 0.000 0.013 0.001
C1 12,448 0.016 0.013 0.015 0.017 0.013 0.127 0.006

GoogleP C0 778,623 0.009 0.009 0.009 0.009 0.000 0.012 0.001
C1 17,942 0.016 0.013 0.014 0.017 0.012 0.127 0.005

L1 C0 394,960 0.009 0.009 0.009 0.009 0.000 1.100 0.004
C1 1 3.729 3.729 3.729 3.729 3.729 3.729 0.000

L2 C0 398,496 0.009 0.009 0.009 0.009 0.000 0.044 0.002
C1 106 0.009 0.009 0.009 0.009 0.000 0.105 0.002

Lenovo C0 793,562 0.009 0.008 0.009 0.010 0.000 0.130 0.003
C1 1 0.322 0.280 0.317 0.367 0.264 0.409 0.054

T1 C0 397,829 0.009 0.009 0.009 0.009 0.000 0.113 0.002
C1 5 0.233 0.230 0.230 0.243 0.224 0.247 0.010

T2 C0 396,165 0.009 0.009 0.009 0.010 0.000 0.127 0.003
C1 5 0.269 0.245 0.270 0.293 0.245 0.293 0.034

Tablets C0 793,994 0.009 0.009 0.009 0.009 0.000 0.013 0.002
C1 10 0.016 0.013 0.015 0.017 0.013 0.293 0.007
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A.2.2 Analysis of Isolated traffic Datasets

Table A.6 Descriptive Analysis of iPerf-Udp-Case1 Data (Isolated Testbed)
Device Cluster IAT Points Centroid Q1 Median Q3 Min Max Std

DN1 C0 291445 0.011 0.011 0.012 0.012 0.000 0.031 0.004
C1 8076 0.051 0.037 0.044 0.058 0.031 0.278 0.022

DN2 C0 302380 0.011 0.012 0.012 0.012 0.000 0.044 0.002
C1 1588 0.077 0.056 0.071 0.088 0.044 0.213 0.030

DN3 C0 305859 0.012 0.012 0.012 0.012 0.000 0.073 0.002
C1 121 0.136 0.092 0.100 0.180 0.085 0.190 0.044

DN4 C0 224164 0.016 0.015 0.016 0.016 0.008 0.287 0.008
C1 83271 0.001 0.000 0.001 0.001 0.000 0.008 0.001

DN5 C0 296627 0.011 0.000 0.015 0.016 0.000 0.059 0.008
C1 2329 0.108 0.070 0.087 0.107 0.059 3.015 0.106

Dell-Netbooks C0 1507482 0.011 0.012 0.012 0.015 0.000 0.049 0.005
C1 8378 0.087 0.057 0.069 0.092 0.049 3.015 0.068

IP1 C0 291446 0.011 0.011 0.012 0.012 0.000 0.031 0.004
C1 8075 0.051 0.037 0.044 0.058 0.031 0.278 0.022

IP2 C0 302380 0.011 0.012 0.012 0.012 0.000 0.044 0.002
C1 1588 0.077 0.056 0.071 0.088 0.044 0.213 0.030

IP3 C0 305859 0.012 0.012 0.012 0.012 0.000 0.073 0.002
C1 121 0.136 0.092 0.100 0.180 0.085 0.190 0.044

iPads C0 909933 0.012 0.011 0.012 0.012 0.000 1.549 0.013
C1 6 4.907 5.001 5.001 5.001 4.436 5.002 0.231

IT1 C0 2208 0.004 0.001 0.004 0.006 0.000 0.007 0.003
C1 319446 0.011 0.011 0.011 0.011 0.007 0.042 0.001

IT2 C0 306532 0.012 0.012 0.012 0.012 0.000 0.064 0.002
C1 250 0.122 0.119 0.122 0.125 0.067 0.135 0.005

iPhone3G C0 628186 0.011 0.011 0.011 0.012 0.000 0.064 0.002
C1 250 0.122 0.119 0.122 0.125 0.067 0.135 0.005

IF1 C0 306410 0.012 0.012 0.012 0.012 0.000 0.146 0.003
C1 3 4.218 3.826 5.001 5.001 2.652 5.001 1.356

IF2 C0 306688 0.012 0.012 0.012 0.012 0.000 1.637 0.004
C1 2 4.016 3.686 4.016 4.346 3.355 4.676 0.934

iPhone4G C0 613098 0.012 0.012 0.012 0.012 0.000 1.637 0.004
C1 5 4.137 3.355 4.676 5.001 2.652 5.001 1.073

NP1 C0 250221 0.006 0.001 0.003 0.011 0.000 0.019 0.005
C1 69723 0.032 0.026 0.030 0.039 0.019 0.860 0.008

NP2 C0 228474 0.006 0.001 0.004 0.012 0.000 0.018 0.005
C1 72450 0.031 0.025 0.030 0.038 0.018 1.650 0.010

Nokia Phones C0 478850 0.006 0.001 0.004 0.011 0.000 0.019 0.005
C1 142018 0.031 0.026 0.030 0.039 0.019 1.650 0.009
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Table A.7 Descriptive Analysis of iPerf-TCP-Case2 Data (Isolated Testbed)
Device Cluster IAT Points Centroid Q1 Median Q3 Min Max Std

DN1 C0 840955 0.001 0.001 0.001 0.001 0.000 0.058 0.001
C1 344 0.132 0.087 0.134 0.175 0.082 0.187 0.044

DN2 C0 1327118 0.001 0.001 0.001 0.001 0.000 0.037 0.001
C1 320 0.074 0.052 0.061 0.082 0.038 0.284 0.039

DN3 C0 1288629 0.001 0.001 0.001 0.001 0.000 0.053 0.001
C1 66 0.111 0.083 0.088 0.172 0.062 0.177 0.042

DN4 C0 2557115 0.001 0.000 0.001 0.001 0.000 0.004 0.000
C1 26530 0.007 0.004 0.005 0.008 0.004 0.202 0.004

DN5 C0 3059230 0.001 0.000 0.000 0.001 0.000 0.176 0.001
C1 17 0.428 0.268 0.447 0.543 0.233 0.657 0.154

Dell-Netbooks C0 9099736 0.001 0.000 0.001 0.001 0.000 0.065 0.001
C1 588 0.130 0.086 0.091 0.175 0.066 0.657 0.073

IP1 C0 840955 0.001 0.001 0.001 0.001 0.000 0.058 0.001
C1 344 0.132 0.087 0.134 0.175 0.082 0.187 0.044

IP2 C0 1327118 0.001 0.001 0.001 0.001 0.000 0.037 0.001
C1 320 0.074 0.052 0.061 0.082 0.038 0.284 0.039

IP3 C0 1288629 0.001 0.001 0.001 0.001 0.000 0.053 0.001
C1 66 0.111 0.083 0.088 0.172 0.062 0.177 0.042

iPads C0 4575663 0.002 0.001 0.002 0.003 0.000 0.085 0.002
C1 5876 0.168 0.126 0.152 0.156 0.085 2.950 0.139

IT1 C0 429247 0.001 0.001 0.001 0.001 0.000 0.002 0.000
C1 259529 0.003 0.002 0.003 0.003 0.002 0.146 0.001

IT2 C0 354579 0.002 0.001 0.001 0.002 0.000 0.004 0.001
C1 86044 0.007 0.006 0.006 0.007 0.004 0.149 0.005

iPhone3G C0 1025156 0.002 0.001 0.001 0.002 0.000 0.004 0.001
C1 104243 0.007 0.005 0.006 0.007 0.004 0.149 0.005

IF1 C0 4162258 0.001 0.001 0.001 0.001 0.000 0.055 0.001
C1 180 0.132 0.131 0.133 0.134 0.094 0.148 0.004

IF2 C0 4138098 0.001 0.001 0.001 0.001 0.000 0.043 0.001
C1 228 0.133 0.132 0.134 0.135 0.069 0.149 0.005

iPhone4G C0 8300356 0.001 0.001 0.001 0.001 0.000 0.055 0.001
C1 408 0.133 0.132 0.134 0.135 0.069 0.149 0.005

NP1 C0 844462 0.001 0.001 0.001 0.001 0.000 0.791 0.006
C1 69 1.593 0.963 1.118 2.356 0.808 5.280 0.853

NP2 C0 718428 0.001 0.001 0.001 0.001 0.000 1.395 0.010
C1 52 2.863 2.349 2.609 2.993 1.490 10.360 1.344

Nokia Phones C0 1562927 0.001 0.001 0.001 0.001 0.000 1.316 0.009
C1 84 2.660 2.243 2.538 2.805 1.335 10.360 1.176
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Table A.8 Descriptive Analysis of iPerf-UDP-Case2 Data (Isolated Testbed)
Device Cluster IAT Points Centroid Q1 Median Q3 Min Max Std

DN1 C0 2357977 0.001 0.001 0.001 0.001 0.000 0.026 0.001
C1 11412 0.050 0.034 0.043 0.057 0.026 0.273 0.024

DN2 C0 2449322 0.001 0.001 0.001 0.001 0.000 0.013 0.000
C1 16 0.032 0.026 0.032 0.036 0.020 0.043 0.007

DN3 C0 2432821 0.001 0.001 0.001 0.002 0.000 0.044 0.001
C1 126 0.130 0.086 0.094 0.174 0.066 0.277 0.046

DN4 C0 2441282 0.001 0.000 0.001 0.001 0.000 0.339 0.003
C1 3 4.214 3.821 5.001 5.001 2.641 5.001 1.363

DN5 C0 2417674 0.001 0.000 0.000 0.000 0.000 1.206 0.004
C1 2 5.002 5.001 5.002 5.002 5.001 5.002 0.001

Dell-Netbooks C0 12110630 0.001 0.000 0.001 0.001 0.000 1.206 0.003
C1 5 4.529 5.001 5.001 5.001 2.641 5.002 1.056

IP1 C0 2357977 0.001 0.001 0.001 0.001 0.000 0.026 0.001
C1 11412 0.050 0.034 0.043 0.057 0.026 0.273 0.024

IP2 C0 2449322 0.001 0.001 0.001 0.001 0.000 0.013 0.000
C1 16 0.032 0.026 0.032 0.036 0.020 0.043 0.007

IP3 C0 2432821 0.001 0.001 0.001 0.002 0.000 0.044 0.001
C1 126 0.130 0.086 0.094 0.174 0.066 0.277 0.046

iPads C0 5065600 0.002 0.001 0.001 0.002 0.000 0.083 0.002
C1 6577 0.164 0.125 0.151 0.158 0.083 5.002 0.155

IT1 C0 1817797 0.001 0.001 0.001 0.001 0.000 0.003 0.000
C1 376014 0.004 0.003 0.004 0.005 0.003 0.124 0.002

IT2 C0 284342 0.006 0.006 0.006 0.007 0.004 0.740 0.004
C1 1064940 0.002 0.001 0.001 0.001 0.000 0.004 0.001

iPhone3G C0 2961128 0.001 0.001 0.001 0.001 0.000 0.003 0.001
C1 581965 0.006 0.004 0.006 0.006 0.003 0.740 0.003

IF1 C0 2436508 0.001 0.001 0.002 0.002 0.000 0.210 0.001
C1 2 4.912 4.867 4.912 4.957 4.822 5.002 0.127

IF2 C0 2434156 0.001 0.001 0.002 0.002 0.000 0.138 0.001
C1 3 4.724 4.585 5.001 5.002 4.168 5.002 0.481

iPhone4G C0 4870664 0.001 0.001 0.002 0.002 0.000 0.210 0.001
C1 5 4.799 4.822 5.001 5.002 4.168 5.002 0.361

NP1 C0 2357053 0.002 0.001 0.001 0.002 0.000 0.162 0.002
C1 1 4.844 4.844 4.844 4.844 4.844 4.844 0.002

NP2 C0 784694 0.002 0.001 0.001 0.002 0.000 0.060 0.845
C1 37 59.876 60.014 60.014 60.015 54.876 60.015 0.004

Nokia Phones C0 3141748 0.002 0.001 0.001 0.002 0.000 4.844 0.845
C1 37 59.876 60.014 60.014 60.015 54.876 60.015 1.176
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Table A.9 Descriptive Analysis of iPerf-UDP-Case3 Data (Isolated Testbed)
Device Cluster IAT Points Centroid Q1 Median Q3 Min Max Std

DN1 C0 3009408 0.001 0.001 0.001 0.001 0.000 0.002 0.000
C1 500851 0.004 0.003 0.003 0.004 0.002 0.136 0.002

DN2 C0 4042040 0.001 0.000 0.001 0.001 0.000 0.047 0.001
C1 941 0.093 0.070 0.086 0.102 0.047 0.416 0.038

DN3 C0 3521409 0.001 0.000 0.001 0.001 0.000 0.002 0.000
C1 528995 0.003 0.003 0.003 0.003 0.002 0.177 0.002

DN4 C0 4805163 0.001 0.000 0.001 0.001 0.000 0.255 0.001
C1 2 4.281 3.920 4.281 4.641 3.560 5.001 1.019

DN5 C0 5702774 0.001 0.000 0.000 0.000 0.000 0.218 0.002
C1 2 4.097 3.646 4.097 4.549 3.194 5.001 1.278

Dell-Netbooks C0 22111581 0.001 0.000 0.001 0.001 0.000 0.416 0.001
C1 4 4.189 3.469 4.281 5.001 3.194 5.001 0.949

IP1 C0 3009408 0.001 0.001 0.001 0.001 0.000 0.002 0.000
C1 500851 0.004 0.003 0.003 0.004 0.002 0.136 0.002

IP2 C0 4042040 0.001 0.000 0.001 0.001 0.000 0.047 0.001
C1 941 0.093 0.070 0.086 0.102 0.047 0.416 0.038

IP3 C0 3521409 0.001 0.000 0.001 0.001 0.000 0.002 0.000
C1 528995 0.003 0.003 0.003 0.003 0.002 0.177 0.002

iPads C0 5760633 0.002 0.001 0.001 0.002 0.000 0.084 0.002
C1 6606 0.166 0.127 0.151 0.157 0.084 5.001 0.165

IT1 C0 379124 0.005 0.004 0.004 0.005 0.003 0.842 0.003
C1 1958155 0.001 0.001 0.001 0.001 0.000 0.003 0.000

IT2 C0 1071329 0.002 0.001 0.001 0.001 0.000 0.004 0.001
C1 284944 0.006 0.006 0.006 0.006 0.004 0.743 0.004

iPhone3G C0 659471 0.005 0.004 0.005 0.006 0.003 0.842 0.004
C1 3034081 0.001 0.001 0.001 0.001 0.000 0.003 0.001

IF1 C0 4057488 0.001 0.000 0.001 0.001 0.000 1.170 0.001
C1 2 5.001 5.001 5.001 5.001 5.001 5.001 0.000

IF2 C0 4094726 0.001 0.000 0.001 0.001 0.000 1.411 0.001
C1 2 5.002 5.001 5.002 5.002 5.001 5.002 0.001

iPhone4G C0 8152214 0.001 0.000 0.001 0.001 0.000 1.411 0.001
C1 4 5.001 5.001 5.001 5.001 5.001 5.002 0.001

NP1 C0 5131698 0.001 0.000 0.001 0.001 0.000 0.122 0.001
C1 1 4.626 4.626 4.626 4.626 4.626 4.626 0.000

NP2 C0 4206160 0.001 0.000 0.001 0.001 0.000 0.004 0.004
C1 37923 0.006 0.005 0.006 0.006 0.004 0.116 0.001

Nokia Phones C0 9375781 0.001 0.000 0.001 0.001 0.000 0.122 0.845
C1 1 4.626 4.626 4.626 4.626 4.626 4.626 1.176
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Table A.10 Descriptive Analysis of Ping-ICMP-Case1 Data (Isolated Testbed)
Device Cluster IAT Points Centroid Q1 Median Q3 Min Max Std

DN1 C0 1467593 0.001 0.000 0.001 0.001 0.000 0.002 0.000
C1 101759 0.004 0.003 0.003 0.004 0.002 0.217 0.003

DN2 C0 1550704 0.001 0.001 0.001 0.001 0.000 0.043 0.001
C1 305 0.086 0.054 0.072 0.096 0.044 0.698 0.054

DN3 C0 1568945 0.001 0.001 0.001 0.001 0.000 0.178 0.001
C1 1 10.109 10.109 10.109 10.109 10.109 10.109 0.004

DN4 C0 1514332 0.001 0.001 0.001 0.001 0.000 1.968 0.004
C1 1 10.402 10.402 10.402 10.402 10.402 10.402 0.003

DN5 C0 1514215 0.001 0.000 0.000 0.001 0.000 2.406 0.203
C1 1 10.012 10.012 10.012 10.012 10.012 10.012 0.000

Dell-Netbooks C0 7717853 0.001 0.000 0.001 0.001 0.000 2.406 0.003
C1 3 10.174 10.061 10.109 10.256 10.012 10.402 0.001

IP1 C0 1467436 0.001 0.000 0.001 0.001 0.000 0.002 0.054
C1 101916 0.004 0.003 0.003 0.004 0.002 0.217 0.001

IP2 C0 1550704 0.001 0.001 0.001 0.001 0.000 0.043 0.007
C1 305 0.086 0.054 0.072 0.096 0.044 0.698 0.144

IP3 C0 1568945 0.001 0.001 0.001 0.001 0.000 0.178 0.002
C1 1 10.109 10.109 10.109 10.109 10.109 10.109 0.058

iPads C0 5247176 0.002 0.001 0.001 0.002 0.000 2.065 0.003
C1 3 9.951 9.898 10.009 10.033 9.786 10.057 0.003

IT1 C0 2197441 0.002 0.001 0.001 0.002 0.000 0.178 0.001
C1 72 0.355 0.339 0.374 0.397 0.188 0.420 0.036

IT2 C0 1599097 0.001 0.000 0.001 0.001 0.000 0.401 0.001
C1 1 10.033 10.033 10.033 10.033 10.033 10.033 0.005

iPhone3G C0 1598943 0.001 0.001 0.001 0.001 0.000 0.697 0.003
C1 1 10.075 10.075 10.075 10.075 10.075 10.075 0.030

IF1 C0 1597996 0.001 0.000 0.001 0.001 0.000 0.188 0.001
C1 57 0.378 0.370 0.392 0.399 0.241 0.420 0.049

IF2 C0 463984 0.002 0.001 0.001 0.002 0.000 0.004 0.001
C1 135476 0.007 0.006 0.006 0.007 0.004 0.350 0.046

iPhone4G C0 3198040 0.001 0.000 0.001 0.001 0.000 0.697 0.001
C1 2 10.054 10.044 10.054 10.065 10.033 10.075 0.049

NP1 C0 1567738 0.001 0.001 0.001 0.001 0.000 0.067 0.001
C1 3007 0.134 0.079 0.146 0.167 0.067 0.642 0.000

NP2 C0 1311670 0.001 0.001 0.001 0.001 0.000 0.052 0.004
C1 5112 0.103 0.069 0.076 0.145 0.052 0.323 0.001

Nokia Phones C0 2879463 0.001 0.001 0.001 0.001 0.000 0.058 0.845
C1 8064 0.115 0.072 0.093 0.159 0.058 0.642 1.176



A.2 Dataset Analysis 161

Table A.11 Descriptive Analysis of Ping-ICMP-Case2 Data (Isolated Testbed)
Device Cluster IAT Points Centroid Q1 Median Q3 Min Max Std

DN1 C0 1467593 0.001 0.000 0.001 0.001 0.000 0.002 0.000
C1 101759 0.004 0.003 0.003 0.004 0.002 0.217 0.003

DN2 C0 1550704 0.001 0.001 0.001 0.001 0.000 0.043 0.001
C1 305 0.086 0.054 0.072 0.096 0.044 0.698 0.054

DN3 C0 1568945 0.001 0.001 0.001 0.001 0.000 0.178 0.001
C1 1 10.109 10.109 10.109 10.109 10.109 10.109 0.004

DN4 C0 1514332 0.001 0.001 0.001 0.001 0.000 1.968 0.004
C1 1 10.402 10.402 10.402 10.402 10.402 10.402 0.003

DN5 C0 1514215 0.001 0.000 0.000 0.001 0.000 2.406 0.203
C1 1 10.012 10.012 10.012 10.012 10.012 10.012 0.000

Dell-Netbooks C0 7717853 0.001 0.000 0.001 0.001 0.000 2.406 0.003
C1 3 10.174 10.061 10.109 10.256 10.012 10.402 0.001

IP1 C0 1467436 0.001 0.000 0.001 0.001 0.000 0.002 0.054
C1 101916 0.004 0.003 0.003 0.004 0.002 0.217 0.001

IP2 C0 1550704 0.001 0.001 0.001 0.001 0.000 0.043 0.007
C1 305 0.086 0.054 0.072 0.096 0.044 0.698 0.144

IP3 C0 1568945 0.001 0.001 0.001 0.001 0.000 0.178 0.002
C1 1 10.109 10.109 10.109 10.109 10.109 10.109 0.058

iPads C0 5247176 0.002 0.001 0.001 0.002 0.000 2.065 0.003
C1 3 9.951 9.898 10.009 10.033 9.786 10.057 0.003

IT1 C0 2197441 0.002 0.001 0.001 0.002 0.000 0.178 0.001
C1 72 0.355 0.339 0.374 0.397 0.188 0.420 0.036

IT2 C0 1599097 0.001 0.000 0.001 0.001 0.000 0.401 0.001
C1 1 10.033 10.033 10.033 10.033 10.033 10.033 0.005

iPhone3G C0 1598943 0.001 0.001 0.001 0.001 0.000 0.697 0.003
C1 1 10.075 10.075 10.075 10.075 10.075 10.075 0.030

IF1 C0 1597996 0.001 0.000 0.001 0.001 0.000 0.188 0.001
C1 57 0.378 0.370 0.392 0.399 0.241 0.420 0.049

IF2 C0 463984 0.002 0.001 0.001 0.002 0.000 0.004 0.001
C1 135476 0.007 0.006 0.006 0.007 0.004 0.350 0.046

iPhone4G C0 3198040 0.001 0.000 0.001 0.001 0.000 0.697 0.001
C1 2 10.054 10.044 10.054 10.065 10.033 10.075 0.049

NP1 C0 1567738 0.001 0.001 0.001 0.001 0.000 0.067 0.001
C1 3007 0.134 0.079 0.146 0.167 0.067 0.642 0.000

NP2 C0 1311670 0.001 0.001 0.001 0.001 0.000 0.052 0.004
C1 5112 0.103 0.069 0.076 0.145 0.052 0.323 0.001

Nokia Phones C0 2879463 0.001 0.001 0.001 0.001 0.000 0.058 0.845
C1 8064 0.115 0.072 0.093 0.159 0.058 0.642 1.176
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Table A.12 Descriptive Analysis of Scp-TCP-Case4 Data (Isolated Testbed)
Device Cluster IAT Points Centroid Q1 Median Q3 Min Max Std

DN1 C0 1467593 0.001 0.000 0.001 0.001 0.000 0.002 0.000
C1 101759 0.004 0.003 0.003 0.004 0.002 0.217 0.003

DN2 C0 1550704 0.001 0.001 0.001 0.001 0.000 0.043 0.001
C1 305 0.086 0.054 0.072 0.096 0.044 0.698 0.054

DN3 C0 1568945 0.001 0.001 0.001 0.001 0.000 0.178 0.001
C1 1 10.109 10.109 10.109 10.109 10.109 10.109 0.004

DN4 C0 1514332 0.001 0.001 0.001 0.001 0.000 1.968 0.004
C1 1 10.402 10.402 10.402 10.402 10.402 10.402 0.003

DN5 C0 1514215 0.001 0.000 0.000 0.001 0.000 2.406 0.203
C1 1 10.012 10.012 10.012 10.012 10.012 10.012 0.000

Dell-Netbooks C0 7717853 0.001 0.000 0.001 0.001 0.000 2.406 0.003
C1 3 10.174 10.061 10.109 10.256 10.012 10.402 0.001

IP1 C0 1467436 0.001 0.000 0.001 0.001 0.000 0.002 0.054
C1 101916 0.004 0.003 0.003 0.004 0.002 0.217 0.001

IP2 C0 1550704 0.001 0.001 0.001 0.001 0.000 0.043 0.007
C1 305 0.086 0.054 0.072 0.096 0.044 0.698 0.144

IP3 C0 1568945 0.001 0.001 0.001 0.001 0.000 0.178 0.002
C1 1 10.109 10.109 10.109 10.109 10.109 10.109 0.058

iPads C0 5247176 0.002 0.001 0.001 0.002 0.000 2.065 0.003
C1 3 9.951 9.898 10.009 10.033 9.786 10.057 0.003

IT1 C0 2197441 0.002 0.001 0.001 0.002 0.000 0.178 0.001
C1 72 0.355 0.339 0.374 0.397 0.188 0.420 0.036

IT2 C0 1599097 0.001 0.000 0.001 0.001 0.000 0.401 0.001
C1 1 10.033 10.033 10.033 10.033 10.033 10.033 0.005

iPhone3G C0 1598943 0.001 0.001 0.001 0.001 0.000 0.697 0.003
C1 1 10.075 10.075 10.075 10.075 10.075 10.075 0.030

IF1 C0 1597996 0.001 0.000 0.001 0.001 0.000 0.188 0.001
C1 57 0.378 0.370 0.392 0.399 0.241 0.420 0.049

IF2 C0 463984 0.002 0.001 0.001 0.002 0.000 0.004 0.001
C1 135476 0.007 0.006 0.006 0.007 0.004 0.350 0.046

iPhone4G C0 3198040 0.001 0.000 0.001 0.001 0.000 0.697 0.001
C1 2 10.054 10.044 10.054 10.065 10.033 10.075 0.049

NP1 C0 1567738 0.001 0.001 0.001 0.001 0.000 0.067 0.001
C1 3007 0.134 0.079 0.146 0.167 0.067 0.642 0.000

NP2 C0 1311670 0.001 0.001 0.001 0.001 0.000 0.052 0.004
C1 5112 0.103 0.069 0.076 0.145 0.052 0.323 0.001

Nokia Phones C0 2879463 0.001 0.001 0.001 0.001 0.000 0.058 0.845
C1 8064 0.115 0.072 0.093 0.159 0.058 0.642 1.176
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A.2.3 Analysis of Passive traffic Datasets

Table A.13 Descriptive Analysis of iPerf-UDP-Case3 Data (Passive-Real Testbed)
Device Cluster IAT Points Centroid Q1 Median Q3 Min Max Std

L1 C0 12505346 0.000 0.000 0.000 0.000 0.000 0.001 0.000
C1 415801 0.002 0.001 0.001 0.002 0.001 0.089 0.001

L2 C0 11181747 0.000 0.000 0.000 0.000 0.000 0.001 0.000
C1 452340 0.002 0.001 0.002 0.002 0.001 0.574 0.002

Lenovo C0 23687261 0.000 0.000 0.000 0.000 0.000 0.001 0.000
C1 867973 0.002 0.001 0.001 0.002 0.001 0.574 0.002

T1 C0 12635525 0.000 0.000 0.000 0.000 0.000 0.129 0.000
C1 5 1.224 1.264 1.317 1.331 0.862 1.347 0.205

T2 C0 12635525 0.000 0.000 0.000 0.000 0.000 0.129 0.000
C1 5 1.224 1.264 1.317 1.331 0.862 1.347 0.205

Tablets C0 6897784 0.001 0.001 0.001 0.002 0.000 0.004 0.001
C1 279794 0.007 0.005 0.005 0.007 0.006 0.312 0.004

Table A.14 Descriptive Analysis of Skype-UDP-Case1 Data (Passive-Real Testbed)
Device Cluster IAT Points Centroid Q1 Median Q3 Min Max Std

L1 C0 384361 0.002 0.000 0.000 0.002 0.000 0.011 0.003
C1 143127 0.020 0.015 0.019 0.023 0.011 0.114 0.007

L2 C0 382128 0.002 0.000 0.000 0.001 0.000 0.009 0.002
C1 192799 0.016 0.012 0.016 0.019 0.009 0.116 0.004

Lenovo C0 332562 0.018 0.014 0.017 0.020 0.010 0.116 0.006
C1 769853 0.002 0.000 0.000 0.002 0.000 0.010 0.003

T1 C0 364401 0.002 0.000 0.001 0.003 0.000 0.011 0.003
C1 142465 0.020 0.016 0.021 0.024 0.011 0.114 0.005

T2 C0 365432 0.002 0.000 0.001 0.003 0.000 0.011 0.003
C1 141919 0.020 0.016 0.021 0.024 0.011 0.522 0.005

Tablets C0 729846 0.002 0.000 0.001 0.003 0.000 0.011 0.003
C1 284371 0.020 0.016 0.021 0.024 0.011 0.522 0.005
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Table A.15 Descriptive Analysis of iPerf-TCP-Case1 Data (Passive-Real-Testbed)
Device Cluster IAT Points Centroid Q1 Median Q3 Min Max Std

AC1 C0 4499987 0.001 0.000 0.001 0.001 0.000 0.749 0.002
C1 13 1.574 1.079 1.251 1.813 1.001 3.615 0.765

AC2 C0 4499979 0.001 0.000 0.001 0.001 0.000 0.421 0.001
C1 21 0.948 0.575 0.754 1.071 0.502 2.992 0.589

AC3 C0 4499990 0.001 0.000 0.001 0.001 0.000 0.751 0.002
C1 10 1.568 1.043 1.416 2.070 0.931 2.470 0.610

AC4 C0 4499997 0.001 0.000 0.001 0.001 0.000 1.615 0.003
C1 3 4.129 3.437 4.149 4.831 2.724 5.514 1.395

AC5 C0 4499984 0.001 0.000 0.001 0.001 0.000 0.643 0.002
C1 16 1.450 1.107 1.315 1.584 0.874 2.882 0.575

AC6 C0 4499985 0.001 0.000 0.001 0.001 0.000 0.649 0.001
C1 15 1.562 1.058 1.150 1.635 0.998 4.400 0.905

AC7 C0 4499973 0.001 0.000 0.001 0.001 0.000 0.457 0.001
C1 27 0.958 0.596 0.876 1.110 0.505 2.579 0.502

AC8 C0 4499915 0.001 0.000 0.001 0.001 0.000 0.169 0.001
C1 85 0.341 0.253 0.256 0.377 0.179 1.328 0.195

AC9 C0 4499979 0.001 0.000 0.001 0.001 0.000 0.420 0.001
C1 21 0.879 0.570 0.629 1.085 0.502 2.556 0.512

A10 C0 4499979 0.001 0.000 0.001 0.001 0.000 0.402 0.001
C1 21 0.909 0.574 1.000 1.117 0.476 1.671 0.385

ACER C0 44999870 0.001 0.000 0.001 0.001 0.000 0.649 0.002
C1 130 1.393 1.019 1.143 1.462 0.705 5.514 0.742

AS1 C0 4499980 0.001 0.000 0.001 0.001 0.000 0.628 0.002
C1 20 1.323 0.999 1.074 1.456 0.874 2.567 0.509

AS2 C0 4499984 0.001 0.000 0.001 0.001 0.000 0.466 0.001
C1 16 1.090 0.967 1.038 1.187 0.567 2.194 0.374

AS3 C0 4499987 0.001 0.000 0.001 0.001 0.000 0.587 0.001
C1 13 1.414 1.091 1.167 1.555 0.857 2.753 0.571

AS4 C0 4499990 0.001 0.000 0.001 0.001 0.000 0.570 0.001
C1 10 1.234 0.874 1.099 1.579 0.744 2.206 0.480

AS5 C0 4499912 0.001 0.000 0.001 0.001 0.000 0.185 0.001
C1 88 0.382 0.253 0.255 0.385 0.201 2.324 0.318

AS6 C0 4499982 0.001 0.000 0.001 0.001 0.000 0.751 0.002
C1 18 1.710 1.087 1.368 2.249 0.873 3.834 0.835

AS7 C0 4499982 0.001 0.000 0.001 0.001 0.000 0.569 0.001
C1 18 1.177 0.756 1.072 1.334 0.625 2.364 0.526

AS8 C0 4499986 0.001 0.000 0.001 0.001 0.000 0.632 0.002
C1 14 1.621 1.106 1.174 1.663 0.876 3.585 0.885

AS9 C0 4499987 0.001 0.000 0.001 0.001 0.000 0.632 0.002
C1 13 1.395 1.026 1.141 1.453 0.836 3.524 0.710

AS10 C0 4499987 0.001 0.000 0.001 0.001 0.000 1.000 0.002
C1 13 2.579 2.019 2.393 3.032 1.404 5.522 1.070

Asus C0 44999851 0.001 0.000 0.001 0.001 0.000 0.632 0.001
C1 149 1.454 0.999 1.149 1.660 0.730 5.522 0.759

GW1 C0 4499992 0.001 0.000 0.001 0.001 0.000 0.505 0.001
C1 8 1.375 1.148 1.467 1.507 1.075 1.713 0.237

GW2 C0 4499990 0.001 0.000 0.001 0.001 0.000 0.754 0.002
C1 10 1.598 1.056 1.318 1.917 0.997 2.868 0.681

GW3 C0 4499978 0.001 0.000 0.001 0.001 0.000 0.412 0.001
C1 22 0.971 0.628 0.977 1.278 0.504 1.757 0.361

GW4 C0 4499983 0.001 0.000 0.001 0.001 0.000 0.627 0.001
C1 17 1.414 0.951 1.189 1.744 0.869 2.494 0.572

GW5 C0 4499964 0.001 0.000 0.001 0.001 0.000 0.313 0.001
C1 36 0.641 0.395 0.504 0.751 0.376 1.507 0.326

GW6 C0 4499985 0.001 0.000 0.001 0.001 0.000 0.751 0.002
C1 15 1.525 0.998 1.326 1.659 0.876 4.016 0.817

GW7 C0 4499979 0.001 0.000 0.001 0.001 0.000 0.816 0.002
C1 21 1.633 1.003 1.164 1.951 0.873 3.885 0.834

GW8 C0 4499950 0.001 0.000 0.001 0.001 0.000 0.333 0.001
C1 50 0.689 0.392 0.503 0.691 0.362 2.341 0.475

GatewayNB C0 35999878 0.001 0.000 0.001 0.001 0.000 0.644 0.002
C1 122 1.341 0.951 1.151 1.523 0.681 4.016 0.622

G1 C0 1264929 0.001 0.001 0.001 0.001 0.001 0.139 0.001
C1 4549791 0.000 0.000 0.000 0.001 0.000 0.001 0.000

G2 C0 5039267 0.001 0.000 0.001 0.001 0.000 0.003 0.001
C1 100560 0.005 0.003 0.004 0.005 0.003 0.173 0.003

GoogleP C0 10818131 0.001 0.000 0.001 0.001 0.000 0.003 0.000
C1 136416 0.005 0.003 0.004 0.005 0.003 0.173 0.004

L1 C0 4152526 0.001 0.000 0.001 0.001 0.000 0.003 0.001
C1 108251 0.006 0.004 0.004 0.006 0.003 0.180 0.005

L2 C0 4448269 0.000 0.000 0.001 0.001 0.000 0.001 0.000
C1 1242339 0.001 0.001 0.001 0.001 0.001 0.091 0.001

Lenovo C0 9750694 0.001 0.000 0.001 0.001 0.000 0.003 0.000
C1 200691 0.005 0.003 0.004 0.005 0.003 0.180 0.004

T1 C0 1162486 0.001 0.001 0.001 0.001 0.001 0.094 0.001
C1 4469386 0.000 0.000 0.001 0.001 0.000 0.001 0.000

T2 C0 3377797 0.001 0.001 0.001 0.001 0.001 0.100 0.001
C1 2626864 0.000 0.000 0.000 0.000 0.000 0.001 0.000

Tablets C0 9163241 0.000 0.000 0.000 0.001 0.000 0.001 0.000
C1 2473292 0.001 0.001 0.001 0.001 0.001 0.100 0.001
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Table A.16 Descriptive Analysis of iPerf-UDP-Case1 Data (Passive-Real Testbed)
Device Cluster IAT Points Centroid Q1 Median Q3 Min Max Std

AC1 C0 4488394 0.000 0.000 0.000 0.000 0.000 0.010 0.001
C1 11606 0.020 0.012 0.015 0.021 0.010 0.165 0.018

AC2 C0 4499783 0.000 0.000 0.000 0.000 0.000 0.060 0.001
C1 217 0.120 0.128 0.130 0.131 0.061 0.199 0.024

AC3 C0 4499802 0.000 0.000 0.000 0.000 0.000 0.060 0.001
C1 198 0.130 0.129 0.130 0.130 0.127 0.136 0.001

AC4 C0 4499814 0.000 0.000 0.000 0.000 0.000 0.063 0.001
C1 186 0.127 0.129 0.130 0.131 0.065 0.144 0.013

AC5 C0 4499798 0.000 0.000 0.000 0.000 0.000 0.063 0.001
C1 202 0.130 0.129 0.130 0.131 0.069 0.180 0.007

AC6 C0 4499812 0.000 0.000 0.000 0.000 0.000 0.055 0.001
C1 188 0.130 0.129 0.130 0.130 0.127 0.138 0.002

AC7 C0 4499835 0.000 0.000 0.000 0.000 0.000 0.038 0.000
C1 165 0.130 0.129 0.130 0.130 0.127 0.147 0.002

AC8 C0 4499791 0.000 0.000 0.000 0.000 0.000 0.060 0.001
C1 209 0.121 0.128 0.129 0.130 0.061 0.141 0.020

AC9 C0 4499824 0.000 0.000 0.000 0.000 0.000 0.052 0.000
C1 176 0.130 0.129 0.130 0.130 0.127 0.136 0.001

A10 C0 4499834 0.000 0.000 0.000 0.000 0.000 0.054 0.001
C1 166 0.130 0.129 0.130 0.131 0.077 0.140 0.005

ACER C0 44998023 0.000 0.000 0.000 0.000 0.000 0.063 0.001
C1 1977 0.126 0.129 0.130 0.130 0.063 0.199 0.015

AS1 C0 4499834 0.000 0.000 0.000 0.000 0.000 0.061 0.001
C1 166 0.129 0.129 0.130 0.130 0.065 0.138 0.005

AS2 C0 4499819 0.000 0.000 0.000 0.000 0.000 0.064 0.000
C1 181 0.129 0.129 0.130 0.130 0.067 0.160 0.008

AS3 C0 4499802 0.000 0.000 0.000 0.000 0.000 0.065 0.000
C1 198 0.130 0.129 0.130 0.130 0.128 0.137 0.001

AS4 C0 4499802 0.000 0.000 0.000 0.000 0.000 0.056 0.000
C1 198 0.130 0.129 0.129 0.130 0.128 0.137 0.001

AS5 C0 4499824 0.000 0.000 0.000 0.000 0.000 0.039 0.000
C1 176 0.130 0.129 0.130 0.130 0.128 0.134 0.001

AS6 C0 4499809 0.000 0.000 0.000 0.000 0.000 0.063 0.001
C1 191 0.127 0.129 0.130 0.130 0.064 0.143 0.013

AS7 C0 4499778 0.000 0.000 0.000 0.000 0.000 0.063 0.001
C1 222 0.128 0.129 0.130 0.131 0.065 0.148 0.012

AS8 C0 4499756 0.000 0.000 0.000 0.000 0.000 0.065 0.001
C1 244 0.131 0.129 0.130 0.132 0.066 0.559 0.037

AS9 C0 4499816 0.000 0.000 0.000 0.000 0.000 0.064 0.001
C1 184 0.127 0.129 0.130 0.131 0.065 0.137 0.012

AS10 C0 4499785 0.000 0.000 0.000 0.000 0.000 0.063 0.001
C1 215 0.126 0.129 0.130 0.130 0.064 0.136 0.015

Asus C0 44998027 0.000 0.000 0.000 0.000 0.000 0.065 0.001
C1 1973 0.129 0.129 0.130 0.130 0.065 0.559 0.016

GW1 C0 4499792 0.000 0.000 0.000 0.000 0.000 0.071 0.000
C1 208 0.146 0.129 0.130 0.130 0.074 1.931 0.143

GW2 C0 4499816 0.000 0.000 0.000 0.000 0.000 0.063 0.001
C1 184 0.128 0.129 0.130 0.130 0.065 0.146 0.012

GW3 C0 4499814 0.000 0.000 0.000 0.000 0.000 0.064 0.001
C1 186 0.132 0.129 0.130 0.131 0.068 0.561 0.037

GW4 C0 4499822 0.000 0.000 0.000 0.000 0.000 0.061 0.000
C1 178 0.130 0.129 0.130 0.130 0.068 0.196 0.007

GW5 C0 4499805 0.000 0.000 0.000 0.000 0.000 0.064 0.001
C1 195 0.129 0.129 0.130 0.130 0.065 0.562 0.042

GW6 C0 4499799 0.000 0.000 0.000 0.000 0.000 0.054 0.000
C1 201 0.129 0.129 0.130 0.130 0.067 0.137 0.007

GW7 C0 4499802 0.000 0.000 0.000 0.000 0.000 0.057 0.000
C1 198 0.130 0.129 0.130 0.130 0.127 0.134 0.001

GW8 C0 4499834 0.000 0.000 0.000 0.000 0.000 0.059 0.000
C1 166 0.130 0.129 0.130 0.130 0.076 0.138 0.004

GatewayNB C0 35998483 0.000 0.000 0.000 0.000 0.000 0.066 0.001
C1 1517 0.132 0.129 0.130 0.130 0.066 1.931 0.057

G1 C0 1180814 0.001 0.001 0.001 0.001 0.001 0.246 0.001
C1 6332616 0.000 0.000 0.000 0.000 0.000 0.001 0.000

G2 C0 8026377 0.000 0.000 0.000 0.001 0.000 0.003 0.000
C1 58975 0.005 0.003 0.004 0.006 0.003 0.096 0.004

GoogleP C0 15512046 0.000 0.000 0.000 0.001 0.000 0.003 0.000
C1 86736 0.006 0.004 0.005 0.007 0.003 0.246 0.004

L1 C0 7568619 0.000 0.000 0.000 0.000 0.000 0.001 0.000
C1 433437 0.002 0.001 0.001 0.002 0.001 0.092 0.002

L2 C0 7531872 0.000 0.000 0.000 0.000 0.000 0.001 0.000
C1 420652 0.002 0.001 0.001 0.002 0.001 0.098 0.002

Lenovo C0 15100992 0.000 0.000 0.000 0.000 0.000 0.001 0.000
C1 853588 0.002 0.001 0.001 0.002 0.001 0.098 0.002

T1 C0 7847388 0.000 0.000 0.000 0.001 0.000 0.003 0.000
C1 56983 0.006 0.004 0.005 0.007 0.003 0.085 0.003

T2 C0 7328753 0.000 0.000 0.000 0.001 0.000 0.003 0.000
C1 107786 0.005 0.003 0.004 0.006 0.003 0.095 0.003

Tablets C0 15175346 0.000 0.000 0.000 0.001 0.000 0.003 0.000
C1 165564 0.005 0.003 0.004 0.006 0.003 0.095 0.003
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Table A.17 Descriptive Analysis of iPerf-UDP-Case3 Data (Passive-Real Testbed)
Device Cluster IAT Points Centroid Q1 Median Q3 min max Std

AC1 C0 320879 0.011 0.011 0.011 0.011 0.000 0.071 0.003
C1 367 0.134 0.132 0.135 0.138 0.073 0.166 0.011

AC2 C0 320974 0.011 0.011 0.011 0.011 0.000 0.070 0.003
C1 318 0.134 0.132 0.135 0.138 0.073 0.159 0.010

AC3 C0 320865 0.011 0.011 0.011 0.011 0.000 0.072 0.003
C1 352 0.136 0.132 0.135 0.139 0.127 0.163 0.005

AC4 C0 315 0.135 0.132 0.135 0.138 0.075 0.199 0.010
C1 320839 0.011 0.011 0.011 0.011 0.000 0.072 0.003

AC5 C0 320878 0.011 0.011 0.011 0.011 0.000 0.072 0.003
C1 359 0.135 0.132 0.135 0.138 0.077 0.163 0.008

AC6 C0 320966 0.011 0.011 0.011 0.011 0.000 0.068 0.002
C1 310 0.135 0.132 0.135 0.138 0.102 0.144 0.004

AC7 C0 320906 0.011 0.011 0.011 0.011 0.000 0.065 0.002
C1 309 0.135 0.132 0.136 0.139 0.074 0.150 0.005

AC8 C0 320916 0.011 0.011 0.011 0.011 0.000 0.069 0.002
C1 325 0.132 0.131 0.135 0.138 0.073 0.152 0.013

AC9 C0 320917 0.011 0.011 0.011 0.011 0.000 0.061 0.002
C1 308 0.135 0.132 0.135 0.138 0.128 0.159 0.004

A10 C0 321024 0.011 0.011 0.011 0.011 0.000 0.067 0.002
C1 310 0.135 0.132 0.135 0.138 0.075 0.155 0.006

ACER C0 3209165 0.011 0.011 0.011 0.011 0.000 0.073 0.003
C1 3272 0.135 0.132 0.135 0.138 0.073 0.199 0.008

AS1 C0 320873 0.011 0.011 0.011 0.011 0.000 0.071 0.003
C1 354 0.134 0.132 0.135 0.138 0.074 0.155 0.009

AS2 C0 320861 0.011 0.011 0.011 0.011 0.000 0.063 0.001
C1 309 0.135 0.132 0.135 0.138 0.082 0.147 0.005

AS3 C0 320904 0.011 0.011 0.011 0.011 0.000 0.068 0.001
C1 352 0.135 0.132 0.135 0.138 0.129 0.143 0.003

AS4 C0 320801 0.011 0.011 0.011 0.011 0.000 0.065 0.001
C1 353 0.135 0.132 0.135 0.138 0.077 0.146 0.005

AS5 C0 320871 0.011 0.011 0.011 0.011 0.000 0.066 0.001
C1 309 0.135 0.132 0.135 0.138 0.076 0.143 0.005

AS6 C0 320944 0.011 0.011 0.011 0.011 0.000 0.070 0.002
C1 315 0.134 0.132 0.135 0.138 0.073 0.151 0.008

AS7 C0 320886 0.011 0.011 0.011 0.011 0.000 0.071 0.002
C1 353 0.135 0.133 0.135 0.138 0.108 0.150 0.004

AS8 C0 320870 0.011 0.011 0.011 0.011 0.000 0.071 0.002
C1 354 0.135 0.132 0.135 0.138 0.074 0.152 0.006

AS9 C0 320946 0.011 0.011 0.011 0.011 0.000 0.063 0.002
C1 311 0.135 0.132 0.135 0.138 0.077 0.150 0.006

AS10 C0 320875 0.011 0.011 0.011 0.011 0.000 0.070 0.002
C1 361 0.134 0.132 0.135 0.138 0.074 0.156 0.007

Asus C0 3208832 0.011 0.011 0.011 0.011 0.000 0.073 0.002
C1 3370 0.135 0.132 0.135 0.138 0.074 0.156 0.006

GW1 C0 320880 0.011 0.011 0.011 0.011 0.000 0.069 0.002
C1 355 0.135 0.132 0.135 0.138 0.076 0.143 0.005

GW2 C0 320913 0.011 0.011 0.011 0.011 0.000 0.070 0.003
C1 334 0.131 0.131 0.134 0.138 0.073 0.152 0.015

GW3 C0 320929 0.011 0.011 0.011 0.011 0.000 0.065 0.002
C1 312 0.134 0.132 0.135 0.138 0.074 0.146 0.007

GW4 C0 320803 0.011 0.011 0.011 0.011 0.000 0.069 0.004
C1 367 0.128 0.131 0.134 0.138 0.070 0.165 0.020

GW5 C0 320886 0.011 0.011 0.011 0.011 0.000 0.071 0.002
C1 311 0.135 0.132 0.135 0.138 0.080 0.152 0.006

GW6 C0 320925 0.011 0.011 0.011 0.011 0.000 0.069 0.002
C1 353 0.135 0.132 0.135 0.138 0.077 0.155 0.005

GW7 C0 320848 0.011 0.011 0.011 0.011 0.000 0.072 0.002
C1 355 0.135 0.132 0.135 0.138 0.076 0.148 0.006

GW8 C0 320874 0.011 0.011 0.011 0.011 0.000 0.072 0.002
C1 309 0.135 0.132 0.135 0.138 0.077 0.158 0.005

GatewayNB C0 2567066 0.011 0.011 0.011 0.011 0.000 0.072 0.002
C1 2688 0.134 0.132 0.135 0.138 0.072 0.165 0.010

G1 C0 317000 0.011 0.011 0.011 0.011 0.000 0.015 0.001
C1 4143 0.020 0.016 0.017 0.020 0.015 0.295 0.008

G2 C0 311976 0.011 0.011 0.011 0.011 0.000 0.013 0.001
C1 17096 0.015 0.013 0.014 0.015 0.013 0.080 0.003

GoogleP C0 638844 0.011 0.011 0.011 0.011 0.000 0.014 0.001
C1 11371 0.018 0.015 0.016 0.018 0.014 0.295 0.006

L1 C0 321198 0.011 0.011 0.011 0.011 0.000 0.045 0.001
C1 61 0.093 0.091 0.093 0.096 0.052 0.101 0.006

L2 C0 321264 0.011 0.011 0.011 0.011 0.000 0.050 0.001
C1 64 0.091 0.088 0.092 0.096 0.051 0.103 0.009

Lenovo C0 642463 0.011 0.011 0.011 0.011 0.000 0.051 0.001
C1 124 0.092 0.090 0.093 0.096 0.052 0.103 0.007

T1 C0 16866 0.015 0.013 0.014 0.015 0.013 0.073 0.002
C1 304414 0.011 0.011 0.011 0.011 0.000 0.013 0.001

T2 C0 318213 0.011 0.011 0.011 0.011 0.000 0.016 0.001
C1 3009 0.021 0.017 0.019 0.022 0.016 0.132 0.008

Tablets C0 623763 0.011 0.011 0.011 0.011 0.000 0.014 0.001
C1 18739 0.016 0.014 0.015 0.017 0.014 0.132 0.004
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Table A.18 Descriptive Analysis of iPerf-UDP-Case4 Data (Passive-Real Testbed)
Device Cluster IAT Points Centroid Q1 Median Q3 Min Max Std

AC1 C0 4499987 0.001 0.001 0.001 0.001 0.000 0.062 0.001
C1 13 0.130 0.130 0.130 0.131 0.626 0.157 0.007

AC2 C0 4499980 0.001 0.001 0.001 0.001 0.000 0.063 0.001
C1 20 0.130 0.130 0.130 0.131 0.563 0.209 0.010

AC3 C0 4499968 0.001 0.001 0.001 0.001 0.000 0.064 0.001
C1 32 0.130 0.130 0.130 0.131 0.544 0.141 0.001

AC4 C0 4499981 0.001 0.001 0.001 0.001 0.000 0.064 0.001
C1 19 0.129 0.130 0.130 0.131 0.568 0.144 0.008

AC5 C0 4499979 0.001 0.001 0.001 0.001 0.000 0.064 0.001
C1 21 0.128 0.129 0.130 0.131 0.754 0.138 0.010

AC6 C0 4499957 0.001 0.001 0.001 0.001 0.000 0.063 0.001
C1 43 0.129 0.129 0.130 0.131 0.331 0.160 0.009

AC7 C0 4499922 0.001 0.001 0.001 0.001 0.000 0.064 0.001
C1 78 0.130 0.129 0.130 0.131 0.227 0.157 0.005

AC8 C0 4499964 0.001 0.001 0.001 0.001 0.000 0.062 0.001
C1 36 0.130 0.130 0.130 0.131 0.346 0.143 0.002

AC9 C0 4499998 0.001 0.001 0.001 0.001 0.000 0.066 0.001
C1 2 0.130 0.129 0.130 0.131 0.130 0.143 0.003

A10 C0 4499913 0.001 0.001 0.001 0.001 0.000 0.056 0.001
C1 87 0.130 0.130 0.130 0.131 0.204 0.157 0.005

ACER C0 44999998 0.001 0.001 0.001 0.001 0.000 0.064 0.001
C1 2 0.130 0.130 0.130 0.131 18.498 0.209 0.007

AS1 C0 4499951 0.001 0.001 0.001 0.001 0.000 0.065 0.001
C1 49 0.128 0.130 0.130 0.131 0.351 0.179 0.013

AS2 C0 4499954 0.001 0.001 0.001 0.001 0.000 0.063 0.000
C1 46 0.130 0.130 0.130 0.131 0.347 0.135 0.004

AS3 C0 4499965 0.001 0.001 0.001 0.001 0.000 0.059 0.001
C1 35 0.130 0.130 0.130 0.130 0.330 0.140 0.004

AS4 C0 4499958 0.001 0.001 0.001 0.001 0.000 0.056 0.000
C1 42 0.130 0.130 0.130 0.130 0.335 0.135 0.003

AS5 C0 4499983 0.001 0.001 0.001 0.001 0.000 0.063 0.001
C1 17 0.130 0.130 0.130 0.131 0.567 0.138 0.002

AS6 C0 4499977 0.001 0.001 0.001 0.001 0.000 0.064 0.001
C1 23 0.127 0.129 0.130 0.131 0.626 0.141 0.012

AS7 C0 4499956 0.001 0.001 0.001 0.001 0.000 0.062 0.001
C1 44 0.130 0.130 0.130 0.131 0.323 0.144 0.004

AS8 C0 4499987 0.001 0.001 0.001 0.001 0.000 0.065 0.001
C1 13 0.130 0.130 0.130 0.131 0.742 0.143 0.007

AS9 C0 4499978 0.001 0.001 0.001 0.001 0.000 0.064 0.001
C1 22 0.128 0.130 0.130 0.131 0.503 0.141 0.012

AS10 C0 4499956 0.001 0.001 0.001 0.001 0.000 0.064 0.001
C1 44 0.130 0.130 0.130 0.131 0.379 0.151 0.007

Asus C0 44999743 0.001 0.001 0.001 0.001 0.000 0.065 0.001
C1 257 0.129 0.130 0.130 0.131 0.442 0.179 0.008

GW1 C0 4499933 0.001 0.001 0.001 0.001 0.000 0.065 0.000
C1 67 0.130 0.130 0.130 0.131 0.734 0.137 0.005

GW2 C0 4499908 0.001 0.001 0.001 0.001 0.000 0.062 0.001
C1 92 0.123 0.129 0.130 0.131 0.220 0.147 0.019

GW3 C0 4499988 0.001 0.001 0.001 0.001 0.000 0.065 0.001
C1 12 0.129 0.130 0.130 0.131 0.627 0.151 0.007

GW4 C0 4499913 0.001 0.001 0.001 0.001 0.000 0.009 0.001
C1 87 0.018 0.011 0.014 0.019 0.229 0.157 0.015

GW5 C0 4499902 0.001 0.001 0.001 0.001 0.000 0.012 0.001
C1 98 0.023 0.014 0.018 0.024 0.202 0.224 0.018

GW6 C0 4499975 0.001 0.000 0.001 0.001 0.000 0.008 0.001
C1 25 0.014 0.009 0.012 0.015 0.503 0.171 0.013

GW7 C0 4499980 0.001 0.001 0.001 0.001 0.000 0.060 0.001
C1 20 0.130 0.130 0.130 0.131 0.701 0.141 0.005

GW8 C0 4499960 0.001 0.001 0.001 0.001 0.000 0.064 0.001
C1 40 0.129 0.130 0.130 0.131 0.354 0.144 0.009

GatewayNB C0 35999841 0.001 0.001 0.001 0.001 0.000 0.064 0.001
C1 159 0.127 0.130 0.130 0.131 0.658 0.224 0.014

G1 C0 516929 0.001 0.001 0.001 0.001 0.000 0.005 0.000
C1 23008 0.008 0.006 0.007 0.008 0.068 0.073 0.005

G2 C0 2130087 0.004 0.003 0.004 0.005 0.000 0.071 0.002
C1 91205 0.001 0.001 0.001 0.001 0.013 0.003 0.000

GoogleP C0 2735307 0.001 0.001 0.001 0.001 0.000 0.004 0.000
C1 25922 0.007 0.005 0.006 0.008 0.065 0.073 0.004

L1 C0 4241494 0.001 0.001 0.001 0.001 0.000 0.003 0.001
C1 114112 0.006 0.004 0.005 0.006 0.003 0.127 0.004

L2 C0 4328813 0.001 0.001 0.001 0.001 0.000 0.041 0.001
C1 131900 0.086 0.085 0.086 0.089 0.003 0.094 0.008

Lenovo C0 252638 0.001 0.001 0.001 0.001 0.003 0.004 0.001
C1 8563681 0.006 0.004 0.005 0.006 0.000 0.127 0.004

T1 C0 3424589 0.001 0.001 0.001 0.002 0.000 0.003 0.001
C1 135049 0.006 0.004 0.005 0.006 0.006 0.093 0.003

T2 C0 3473107 0.001 0.001 0.001 0.002 0.000 0.005 0.001
C1 144833 0.008 0.005 0.006 0.009 0.006 0.312 0.005

Tablets C0 6897784 0.001 0.001 0.001 0.002 0.000 0.004 0.001
C1 279794 0.007 0.005 0.005 0.007 0.006 0.312 0.004
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Table A.19 Descriptive Analysis of Ping-ICMP-Case1 Data (Passive-Real Testbed)
Device Cluster IAT Points Centroid Q1 Median Q3 min max Std

AC1 C0 393855 0.009 0.009 0.009 0.009 0.000 0.069 0.003
C1 359 0.134 0.133 0.135 0.137 0.076 0.166 0.008

AC2 C0 396376 0.009 0.009 0.009 0.009 0.000 0.066 0.001
C1 309 0.135 0.134 0.136 0.137 0.078 0.150 0.004

AC3 C0 390799 0.009 0.009 0.009 0.009 0.000 0.071 0.003
C1 356 0.134 0.132 0.134 0.137 0.074 0.166 0.006

AC4 C0 393827 0.009 0.009 0.009 0.009 0.000 0.070 0.002
C1 473 0.131 0.130 0.136 0.137 0.071 0.270 0.018

AC5 C0 395389 0.009 0.009 0.009 0.009 0.000 0.061 0.001
C1 354 0.134 0.133 0.135 0.137 0.075 0.141 0.005

AC6 C0 393468 0.009 0.009 0.009 0.009 0.000 0.066 0.002
C1 362 0.133 0.132 0.134 0.137 0.072 0.151 0.009

AC7 C0 393658 0.009 0.009 0.009 0.009 0.000 0.070 0.002
C1 333 0.133 0.132 0.134 0.137 0.072 0.225 0.011

AC8 C0 393839 0.009 0.009 0.009 0.009 0.000 0.066 0.002
C1 359 0.134 0.132 0.135 0.136 0.076 0.339 0.013

AC9 C0 310 0.135 0.133 0.135 0.137 0.076 0.155 0.005
C1 395963 0.009 0.009 0.009 0.009 0.000 0.066 0.001

A10 C0 395912 0.009 0.009 0.009 0.009 0.000 0.068 0.002
C1 311 0.134 0.132 0.135 0.137 0.078 0.142 0.006

ACER C0 3943087 0.009 0.009 0.009 0.009 0.000 0.071 0.002
C1 3525 0.134 0.132 0.135 0.137 0.071 0.339 0.010

AS1 C0 387655 0.009 0.009 0.009 0.009 0.000 0.153 0.005
C1 1 42.855 42.855 42.855 42.855 42.855 42.855 0.003

AS2 C0 394210 0.009 0.009 0.009 0.009 0.000 0.071 0.006
C1 312 0.134 0.132 0.135 0.137 0.074 0.154 0.001

AS3 C0 396224 0.009 0.009 0.009 0.009 0.000 0.065 0.004
C1 353 0.134 0.131 0.136 0.137 0.093 0.145 0.001

AS4 C0 396255 0.009 0.009 0.009 0.009 0.000 0.064 0.004
C1 352 0.135 0.131 0.136 0.138 0.127 0.149 0.001

AS5 C0 396882 0.009 0.009 0.009 0.009 0.000 0.042 0.003
C1 308 0.134 0.131 0.136 0.137 0.128 0.149 0.001

AS6 C0 396468 0.009 0.009 0.009 0.009 0.000 0.048 0.003
C1 308 0.135 0.131 0.135 0.137 0.128 0.149 0.001

AS7 C0 396042 0.009 0.009 0.009 0.009 0.000 0.066 0.006
C1 355 0.134 0.132 0.136 0.137 0.074 0.151 0.002

AS8 C0 394735 0.009 0.009 0.009 0.009 0.000 0.070 0.009
C1 364 0.133 0.131 0.135 0.137 0.072 0.160 0.002

AS9 C0 395395 0.009 0.009 0.009 0.009 0.000 0.068 0.005
C1 310 0.135 0.132 0.135 0.137 0.079 0.152 0.001

AS10 C0 395747 0.009 0.009 0.009 0.009 0.000 0.071 0.006
C1 355 0.134 0.132 0.135 0.137 0.078 0.156 0.004

Asus C0 3952630 0.009 0.009 0.009 0.009 0.000 0.160 0.002
C1 1 42.855 42.855 42.855 42.855 42.855 42.855 0.016

GW1 C0 394932 0.009 0.009 0.009 0.009 0.000 0.071 0.001
C1 385 0.134 0.133 0.136 0.137 0.072 0.309 0.003

GW2 C0 396732 0.009 0.009 0.009 0.009 0.000 0.068 0.003
C1 308 0.135 0.134 0.136 0.138 0.129 0.146 0.021

GW3 C0 393063 0.009 0.009 0.009 0.009 0.000 0.067 0.001
C1 374 0.126 0.130 0.134 0.136 0.068 0.182 0.003

GW4 C0 396678 0.009 0.009 0.009 0.009 0.000 0.042 0.003
C1 308 0.135 0.134 0.136 0.137 0.129 0.140 0.026

GW5 C0 393499 0.009 0.009 0.009 0.009 0.000 0.070 0.001
C1 373 0.131 0.131 0.134 0.137 0.074 0.390 0.007

GW6 C0 395698 0.009 0.009 0.009 0.009 0.000 0.060 0.002
C1 313 0.134 0.133 0.135 0.137 0.076 0.144 0.006

GW7 C0 391720 0.009 0.009 0.009 0.009 0.000 0.070 0.002
C1 356 0.135 0.133 0.135 0.137 0.078 0.166 0.007

GW8 C0 394419 0.009 0.009 0.009 0.009 0.000 0.066 0.002
C1 357 0.134 0.133 0.135 0.137 0.072 0.163 0.014

GatewayNB C0 3156748 0.009 0.009 0.009 0.009 0.000 0.071 0.002
C1 2767 0.133 0.132 0.135 0.137 0.071 0.390 0.002

G1 C0 45188 0.022 0.021 0.022 0.023 0.017 0.084 0.002
C1 155603 0.011 0.010 0.010 0.012 0.000 0.017 0.004

G2 C0 163681 0.010 0.010 0.010 0.011 0.000 0.013 0.002
C1 118665 0.016 0.014 0.016 0.017 0.013 0.111 0.004

GoogleP C0 351056 0.011 0.010 0.010 0.012 0.000 0.015 0.001
C1 132081 0.019 0.016 0.018 0.021 0.015 0.111 0.003

L1 C0 399323 0.009 0.009 0.009 0.009 0.000 0.049 0.001
C1 61 0.094 0.092 0.094 0.096 0.084 0.100 0.003

L2 C0 399557 0.009 0.009 0.009 0.009 0.000 0.047 0.001
C1 60 0.094 0.092 0.095 0.096 0.087 0.101 0.003

Lenovo C0 798880 0.009 0.009 0.009 0.009 0.000 0.049 0.001
C1 121 0.094 0.092 0.094 0.096 0.084 0.101 0.004

T1 C0 333549 0.010 0.010 0.010 0.010 0.000 0.013 0.001
C1 17186 0.016 0.014 0.015 0.017 0.013 0.133 0.004

T2 C0 338981 0.010 0.010 0.010 0.010 0.000 0.013 0.001
C1 13499 0.016 0.014 0.015 0.017 0.013 0.101 0.004

Tablets C0 672556 0.010 0.010 0.010 0.010 0.000 0.013 0.001
C1 30659 0.016 0.014 0.015 0.017 0.013 0.133 0.004
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Table A.20 Descriptive Analysis of Ping-ICMP-Case2 Data (Passive-Real Testbed)
Device Cluster IAT Points Centroid Q1 Median Q3 Min Max Std

AC1 C0 390050 0.009 0.009 0.009 0.009 0.000 0.070 0.003
C1 379 0.132 0.131 0.134 0.136 0.071 0.191 0.014

AC2 C0 395114 0.009 0.009 0.009 0.009 0.000 0.066 0.002
C1 309 0.134 0.131 0.133 0.136 0.127 0.145 0.003

AC3 C0 389878 0.009 0.009 0.009 0.009 0.000 0.070 0.003
C1 359 0.134 0.131 0.134 0.137 0.079 0.199 0.008

AC4 C0 395048 0.009 0.009 0.009 0.009 0.000 0.065 0.002
C1 308 0.134 0.130 0.133 0.137 0.128 0.143 0.003

AC5 C0 355 0.133 0.131 0.134 0.136 0.072 0.148 0.005
C1 394268 0.009 0.009 0.009 0.009 0.000 0.066 0.002

AC6 C0 392329 0.009 0.009 0.009 0.009 0.000 0.068 0.002
C1 371 0.132 0.131 0.134 0.136 0.072 0.160 0.011

AC7 C0 392541 0.009 0.009 0.009 0.009 0.000 0.068 0.002
C1 330 0.131 0.131 0.134 0.137 0.074 0.149 0.013

AC8 C0 392976 0.009 0.009 0.009 0.009 0.000 0.064 0.002
C1 356 0.134 0.132 0.134 0.137 0.077 0.155 0.007

AC9 C0 395696 0.009 0.009 0.009 0.009 0.000 0.058 0.001
C1 308 0.133 0.130 0.133 0.136 0.126 0.142 0.003

A10 C0 394008 0.009 0.009 0.009 0.009 0.000 0.059 0.002
C1 309 0.134 0.132 0.134 0.137 0.093 0.145 0.004

ACER C0 3931910 0.009 0.009 0.009 0.009 0.000 0.071 0.002
C1 3382 0.133 0.131 0.134 0.136 0.071 0.199 0.008

AS1 C0 392956 0.009 0.009 0.009 0.009 0.000 0.056 0.003
C1 355 0.134 0.131 0.134 0.137 0.076 0.150 0.006

AS2 C0 394141 0.009 0.009 0.009 0.009 0.000 0.069 0.002
C1 310 0.134 0.131 0.134 0.137 0.111 0.159 0.004

AS3 C0 394593 0.009 0.009 0.009 0.009 0.000 0.066 0.001
C1 354 0.134 0.131 0.134 0.136 0.082 0.149 0.005

AS4 C0 395628 0.009 0.009 0.009 0.009 0.000 0.054 0.001
C1 352 0.134 0.131 0.134 0.136 0.129 0.143 0.003

AS5 C0 396260 0.009 0.009 0.009 0.009 0.000 0.065 0.001
C1 308 0.134 0.131 0.134 0.136 0.129 0.147 0.003

AS6 C0 394808 0.009 0.009 0.009 0.009 0.000 0.067 0.001
C1 313 0.133 0.131 0.134 0.136 0.076 0.156 0.008

AS7 C0 394506 0.009 0.009 0.009 0.009 0.000 0.071 0.001
C1 354 0.134 0.131 0.135 0.137 0.073 0.152 0.006

AS8 C0 389350 0.009 0.009 0.009 0.009 0.000 0.071 0.002
C1 361 0.134 0.131 0.134 0.137 0.072 0.164 0.007

AS9 C0 392935 0.009 0.009 0.009 0.009 0.000 0.066 0.001
C1 309 0.134 0.131 0.134 0.136 0.112 0.146 0.004

AS10 C0 394 0.129 0.131 0.133 0.136 0.070 0.177 0.016
C1 388268 0.009 0.009 0.009 0.009 0.000 0.069 0.003

Asus C0 3933445 0.009 0.009 0.009 0.009 0.000 0.071 0.002
C1 3410 0.133 0.131 0.134 0.136 0.071 0.177 0.008

GW1 C0 386684 0.009 0.009 0.009 0.009 0.000 0.061 0.002
C1 354 0.134 0.131 0.134 0.136 0.073 0.178 0.007

GW2 C0 396131 0.009 0.009 0.009 0.009 0.000 0.051 0.001
C1 308 0.133 0.130 0.134 0.136 0.128 0.143 0.003

GW3 C0 394429 0.009 0.009 0.009 0.009 0.000 0.067 0.002
C1 330 0.131 0.131 0.134 0.136 0.071 0.158 0.014

GW4 C0 396168 0.009 0.009 0.009 0.009 0.000 0.052 0.001
C1 309 0.133 0.130 0.133 0.136 0.113 0.144 0.003

GW5 C0 392477 0.009 0.009 0.009 0.009 0.000 0.071 0.003
C1 316 0.133 0.131 0.134 0.137 0.072 0.178 0.010

GW6 C0 393993 0.009 0.009 0.009 0.009 0.000 0.064 0.002
C1 309 0.134 0.131 0.134 0.136 0.086 0.147 0.004

GW7 C0 394472 0.009 0.009 0.009 0.009 0.000 0.057 0.001
C1 353 0.134 0.131 0.134 0.136 0.079 0.149 0.004

GW8 C0 393613 0.009 0.009 0.009 0.009 0.000 0.070 0.001
C1 362 0.134 0.131 0.134 0.136 0.071 0.233 0.010

GatewayNB C0 3147968 0.009 0.009 0.009 0.009 0.000 0.071 0.002
C1 2640 0.133 0.131 0.134 0.136 0.071 0.233 0.008

G1 C0 199437 0.011 0.010 0.010 0.012 0.000 0.016 0.002
C1 64181 0.022 0.021 0.022 0.023 0.016 0.093 0.002

G2 C0 295996 0.012 0.010 0.011 0.014 0.000 0.053 0.003
C1 449 0.094 0.092 0.096 0.100 0.053 0.119 0.013

GoogleP C0 444568 0.011 0.010 0.010 0.012 0.000 0.016 0.002
C1 115495 0.020 0.017 0.020 0.022 0.016 0.119 0.006

L1 C0 397811 0.009 0.009 0.009 0.009 0.000 0.049 0.001
C1 74 0.090 0.091 0.094 0.097 0.050 0.108 0.013

L2 C0 399349 0.009 0.009 0.009 0.009 0.000 0.048 0.001
C1 62 0.093 0.091 0.094 0.097 0.058 0.106 0.007

Lenovo C0 797161 0.009 0.009 0.009 0.009 0.000 0.050 0.001
C1 135 0.092 0.091 0.094 0.097 0.054 0.108 0.010

T1 C0 325781 0.010 0.010 0.010 0.010 0.000 0.013 0.001
C1 21973 0.017 0.014 0.015 0.018 0.013 0.128 0.005

T2 C0 331384 0.010 0.010 0.010 0.010 0.000 0.014 0.001
C1 15841 0.018 0.015 0.016 0.019 0.014 0.136 0.006

Tablets C0 657998 0.010 0.010 0.010 0.010 0.000 0.014 0.001
C1 36981 0.017 0.015 0.016 0.018 0.014 0.136 0.005
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Table A.21 Descriptive Analysis of SCP-TCP-Case1 Data (Passive-Real Testbed)
Device Cluster IAT Points Centroid Q1 Median Q3 Min Max Std

AC1 C0 4499987 0.001 0.000 0.001 0.001 0.000 0.5042 0.001
C1 13 1.225 1.015 1.050 1.354 0.626 2.231 0.460

AC2 C0 4499980 0.001 0.000 0.001 0.001 0.000 0.50451 0.001
C1 20 1.048 0.635 1.055 1.129 0.563 2.6042 0.540

AC3 C0 4499968 0.001 0.000 0.001 0.001 0.000 0.50593 0.002
C1 32 1.067 0.633 0.821 1.291 0.544 2.4095 0.557

AC4 C0 4499981 0.001 0.000 0.001 0.001 0.000 0.53599 0.001
C1 19 1.082 0.772 1.022 1.282 0.568 1.8765 0.390

AC5 C0 4499979 0.001 0.000 0.001 0.001 0.000 0.64123 0.002
C1 21 1.359 0.913 1.006 1.393 0.754 5.9587 1.087

AC6 C0 4499957 0.001 0.000 0.001 0.001 0.000 0.29274 0.001
C1 43 0.619 0.379 0.417 0.942 0.331 1.3262 0.320

AC7 C0 4499922 0.001 0.000 0.001 0.001 0.000 0.21856 0.001
C1 78 0.442 0.255 0.376 0.504 0.227 1.3329 0.264

AC8 C0 4499964 0.001 0.000 0.001 0.001 0.000 0.31924 0.001
C1 36 0.647 0.399 0.504 0.875 0.346 1.4488 0.315

AC9 C0 4499998 0.001 0.000 0.001 0.001 0.000 9.2488 0.006
C1 2 27.747 23.122 27.747 32.371 18.498 36.995 13.079

A10 C0 4499913 0.001 0.000 0.001 0.001 0.000 0.19717 0.001
C1 87 0.402 0.252 0.257 0.395 0.204 1.8477 0.300

ACER C0 44999998 0.001 0.000 0.001 0.001 0.000 9.2488 0.003
C1 2 27.747 23.122 27.747 32.371 18.498 36.995 13.079

AS1 C0 4499951 0.001 0.000 0.001 0.001 0.000 0.32888 0.001
C1 49 0.685 0.402 0.504 0.876 0.351 1.8269 0.397

AS2 C0 4499954 0.001 0.000 0.001 0.001 0.000 0.27271 0.001
C1 46 0.672 0.380 0.503 0.986 0.347 1.6494 0.354

AS3 C0 4499965 0.001 0.000 0.001 0.001 0.000 0.31731 0.001
C1 35 0.660 0.379 0.501 0.782 0.330 1.86 0.411

AS4 C0 4499958 0.001 0.000 0.001 0.001 0.000 0.30542 0.001
C1 42 0.652 0.397 0.510 0.919 0.335 1.2237 0.279

AS5 C0 4499983 0.001 0.000 0.001 0.001 0.000 0.50197 0.001
C1 17 1.091 0.999 1.077 1.224 0.567 1.6879 0.287

AS6 C0 4499977 0.001 0.000 0.001 0.001 0.000 0.5066 0.001
C1 23 1.171 0.812 1.037 1.208 0.626 3.6125 0.649

AS7 C0 4499956 0.001 0.000 0.001 0.001 0.000 0.29583 0.001
C1 44 0.641 0.379 0.442 0.709 0.323 3.1397 0.472

AS8 C0 4499987 0.001 0.000 0.001 0.001 0.000 0.5027 0.001
C1 13 1.173 0.875 1.008 1.450 0.742 2.5864 0.497

AS9 C0 4499978 0.001 0.000 0.001 0.001 0.000 0.38062 0.001
C1 22 0.972 0.572 0.908 1.102 0.503 1.8692 0.395

AS10 C0 4499956 0.001 0.000 0.001 0.001 0.000 0.32605 0.001
C1 44 0.666 0.425 0.503 0.768 0.379 2.1481 0.371

Asus C0 44999743 0.001 0.000 0.001 0.001 0.000 0.43852 0.001
C1 257 0.881 0.504 0.802 1.077 0.442 3.6125 0.441

GW1 C0 4499933 0.001 0.000 0.001 0.001 0.000 0.61686 0.002
C1 67 1.458 1.178 1.483 1.779 0.734 2.0251 0.350

GW2 C0 4499908 0.001 0.000 0.001 0.001 0.000 0.21263 0.001
C1 92 0.429 0.255 0.300 0.504 0.220 1.6322 0.285

GW3 C0 4499988 0.001 0.000 0.001 0.001 0.000 0.50622 0.001
C1 12 1.170 0.897 1.115 1.270 0.627 2.4137 0.480

GW4 C0 4499913 0.001 0.000 0.001 0.001 0.000 0.21447 0.001
C1 87 0.441 0.255 0.379 0.503 0.229 1.5906 0.259

GW5 C0 4499902 0.001 0.000 0.001 0.001 0.000 0.19436 0.001
C1 98 0.397 0.253 0.258 0.437 0.202 1.6819 0.292

GW6 C0 4499975 0.001 0.000 0.001 0.001 0.000 0.4482 0.001
C1 25 0.929 0.622 0.893 1.110 0.503 1.7021 0.353

GW7 C0 4499980 0.001 0.000 0.001 0.001 0.000 0.63389 0.002
C1 20 1.316 1.004 1.143 1.505 0.701 2.4694 0.507

GW8 C0 4499960 0.001 0.000 0.001 0.001 0.000 0.32302 0.001
C1 40 0.690 0.384 0.510 0.755 0.354 2.7952 0.485

GatewayNB C0 35999841 0.001 0.000 0.001 0.001 0.000 0.63612 0.002
C1 159 1.294 1.017 1.178 1.584 0.658 2.7952 0.411

G1 C0 516929 0.001 0.000 0.001 0.001 0.000 0.067616 0.002
C1 23008 0.134 0.122 0.129 0.134 0.068 0.44301 0.026

G2 C0 2130087 0.001 0.000 0.001 0.001 0.000 0.012561 0.001
C1 91205 0.024 0.020 0.021 0.024 0.013 2.0048 0.016

GoogleP C0 2735307 0.001 0.000 0.001 0.001 0.000 0.065175 0.004
C1 25922 0.129 0.118 0.128 0.134 0.065 2.0048 0.033

L1 C0 4241494 0.001 0.000 0.001 0.001 0.000 0.002817 0.000
C1 114112 0.005 0.003 0.004 0.005 0.003 0.15524 0.004

L2 C0 4328813 0.001 0.000 0.001 0.001 0.000 0.002503 0.000
C1 131900 0.004 0.003 0.003 0.005 0.003 0.09638 0.003

Lenovo C0 252638 0.005 0.003 0.004 0.005 0.003 0.15524 0.003
C1 8563681 0.001 0.000 0.001 0.001 0.000 0.002627 0.000

T1 C0 3424589 0.001 0.000 0.001 0.001 0.000 0.005725 0.001
C1 135049 0.011 0.008 0.010 0.012 0.006 0.32368 0.004

T2 C0 3473107 0.001 0.000 0.001 0.001 0.000 0.005689 0.001
C1 144833 0.011 0.009 0.010 0.012 0.006 0.14789 0.004

Tablets C0 6897784 0.001 0.000 0.001 0.001 0.000 0.005708 0.001
C1 279794 0.011 0.009 0.010 0.012 0.006 0.32368 0.004
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A.2.4 Notched Box plots of the datasets

Active Datasets

(a) Normal (b) Abnormal

Fig. A.1 The notched box plots of normal and abnormal cluster centroid points for
devices (GW1-8) and their device type (Gateway Netbooks) in Active network traffic
datasets

(a) Normal (b) Abnormal

Fig. A.2 The notched box plots of normal and abnormal cluster centroid points for
devices (G1-2) and their device type (Google Phones) in Active network traffic datasets

Isolated
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(a) Normal (b) Abnormal

Fig. A.3 The notched box plots of normal and abnormal cluster centroid points for
devices (L1-2) and their device type (Lenovo Laptop) in Active network traffic datasets

(a) Normal (b) Abnormal

Fig. A.4 The notched box plots of normal and abnormal cluster centroid points for
devices (T1-2) and their device type (Asus Tablet) in Active network traffic datasets

(a) Normal (b) Abnormal

Fig. A.5 The notched box plots of normal and abnormal cluster centroid points for
devices (IF1-2) and their device type (iPhone 3G) in Isolated network traffic datasets
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(a) Normal (b) Abnormal

Fig. A.6 The notched box plots of normal and abnormal cluster centroid points for
devices (IT1-2) and their device type (iPhone 4G) in Isolated network traffic datasets
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Passive Dataset

(a) Normal (b) Abnormal

Fig. A.7 The notched box plots of normal and abnormal cluster centroid points for
devices (AS1-10) and their device type (Asus) in Passive network traffic dataset

(a) Normal (b) Abnormal

Fig. A.8 The notched box plots of normal and abnormal cluster centroid points for
devices (GW1-8) and their device type (Gateway) in Passive network traffic dataset

(a) Normal (b) Abnormal

Fig. A.9 The notched box plots of normal and abnormal cluster centroid points for
devices (G1-2) and their device type (Google Phone) in Passive network traffic dataset
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(a) Normal (b) Abnormal

Fig. A.10 The notched box plots of normal and abnormal cluster centroid points for
devices (L1-2) and their device type (Lenovo) in Passive network traffic dataset

A.3 Device Type Profiling Tables

A.3.1 Device Type Profiles of Active traffic Datasets

Table A.22 A Device Type Profile of Ping-ICMP-Case 1 Active Traffic Dataset

Device IAT Normal Abnormal % Run Time
Type points points points abnormal (s)

Acer 3,968,592 3,965,611 2,981 0.01 34
Asus 3,969,874 3,967,493 2,381 0.01 32
Gateway NB 3,179,980 3,178,136 1,844 0.01 28
Google Phone 796,817 774,416 22,401 0.3 17
Lenovo 798,309 777,037 21,272 0.3 10
Tablet 794,975 772,017 22,958 0.3 23

Table A.23 A Device Type Profile of Ping-ICMP-Case 2 Active Traffic Dataset

Device IAT Normal Abnormal % Run Time
Type points points points abnormal (s)

Acer 3,960,087 3,956,597 3,490 0.01 37
Asus 3,966,900 3,964,199 2,701 0.01 36
Gateway NB 3,176,513 3,174,852 1,661 0.01 29
Google Phone 796,565 772,834 23,731 0.3 15
Lenovo 793,563 791,341 2,222 0.01 4
Tablet 794,004 775,337 18,667 0.2 10
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A.3.2 Device Type Profiles of Isolated traffic Datasets

Table A.24 A Device Type Profile of iPerf-TCP-Case 2 Isolated Traffic Dataset

Device IAT Normal Abnormal % Run Time
Type points points points abnormal (s)

Dell Netbooks 9,100,324 9,034,201 66,123 0.7 1.35
iPads 4,581,539 4,570,163 11,376 0.2 54
iPhone 3G 1,129,399 1,113,549 15,850 0.1 9
iPhone 4G 8,300,764 8,260,063 40,701 0.5 1.10
Nokia 1,563,011 1,558,888 4,123 0.03 19

Table A.25 A Device Type Profile of iPerf-UDP-Case 1 Isolated Traffic Dataset

Device IAT Normal Abnormal % Run Time
Type points points points abnormal (s)

Dell Netbooks 1,515,860 1,501,041 14,819 0.1 12
iPads 909,939 909,256 6,683 0.07 6
iPhone 3G 628,436 620,255 8,181 0.3 4
iPhone 4G 613,103 612,754 349 0.01 3
Nokia 620,868 610,467 10,401 0.2 4

Table A.26 A Device Type Profile of iPerf-UDP-Case 2 Isolated Traffic Dataset

Device IAT Normal Abnormal % Run Time
Type points points points abnormal (s)

Dell Netbooks 12,110,635 12,030,595 80,040 0.7 1.36
iPads 5,072,177 5,060,025 12,152 0.2 47
iPhone 3G 3,543,093 3,513,112 29,981 0.8 29
iPhone 4G 4,807,669 4,870,140 529 0.001 40
Nokia 3,141,785 3,141,747 38 0.001 24

Table A.27 A Device Type Profile of iPerf-UDP-Case 3 Isolated Traffic Dataset

Device IAT Normal Abnormal % Run Time
Type points points points abnormal (s)

Dell Netbooks 22,111,585 22,024,347 87,238 0.04 4.19
iPads 5,767,239 5,755,094 12,145 0.02 46
iPhone 3G 3,693,552 3,668,007 25,545 0.7 29
iPhone 4G 8,152,218 8,150,471 1,747 0.001 1.06
Nokia 9,375,782 9,319,851 55,931 0.6 1.14
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Table A.28 A Device Type Profile of Ping-ICMP-Case 1 Isolated Traffic Dataset

Device IAT Normal Abnormal % Run Time
Type points points points abnormal (s)

Dell Netbooks 1,079,208 1,070,022 9,186 0.09 12
iPads 929,699 922,545 7,154 0.08 12
iPhone 3G 634,786 629,714 5,072 0.08 3
iPhone 4G 1,346,876 1,335,132 11,744 0.09 7
Nokia 718,296 699,750 18,546 0.3 11

Table A.29 A Device Type Profile of Ping-ICMP-Case 2 Isolated Traffic Dataset

Device IAT Normal Abnormal % Run Time
Type points points points abnormal (s)

Dell Netbooks 1,079,984 1,061,970 18,014 0.02 12
iPads 929,699 920,836 7,964 0.01 9
iPhone 3G 634,786 618,618 11,917 0.02 3
iPhone 4G 1,340,598 1,327,588 13,010 0.09 10
Nokia 609,364 592,325 17,039 0.03 8

Table A.30 A Device Type Profile of SCP-TCP-Case 4 Isolated Traffic Dataset

Device IAT Normal Abnormal % Run Time
Type points points points abnormal (s)

Dell Netbooks 7,717,856 7,697,906 18,950 0.3 1.06
iPads 5,247,179 5,237,190 9,989 0.02 45
iPhone 3G 2,197,593 2,180,607 16,906 0.01 23
iPhone 4G 3,198,042 3,197,294 748 0.001 23
Nokia 2,887,527 2,875,990 11,537 0.004 38
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A.3.3 Device Type Profiles of Passive traffic Datasets

Table A.31 A Device Type Profile of iPerf-TCP-Case 1 Passive Traffic Dataset

Device IAT Normal Abnormal % Run Time
Type points points points abnormal (s)

Acer 45,000,000 45,000,000 0 0 6.37
Asus 45,000,000 45,000,000 0 0 6.04
Gateway NB 36,000,000 35,954,206 52,794 0.1 5.11
Google Phone 10,954,547 15,402,952 146,070 1.3 3.40
Lenovo 9,951,385 15,710,481 145,123 1.5 3.36
Tablet 11,636,533 15,097,390 48,428 0.4 5.15

Table A.32 A Device Type Profile of iPerf-UDP-Case 1 Passive Traffic Dataset

Device IAT Normal Abnormal % Run Time
Type points points points abnormal (s)

Acer 45,000,000 45,000,000 0 0 5.51
Asus 45,000,000 45,000,000 0 0 5.20
Gateway NB 36,000,000 36,000,000 0 0 3.35
Google Phone 15,598,782 15,402,952 195,830 1.3 3.25
Lenovo 15,954,580 15,710,481 244,099 1.5 1.57
Tablet 15,340,910 15,097,390 243,520 1.6 4.53

Table A.33 A Device Type Profile of iPerf-UDP-Case 2 Passive Traffic Dataset

Device IAT Normal Abnormal % Run Time
Type points points points abnormal (s)

Lenovo 24,555,234 24,140,905 414,329 1.7 2.37
Tablet 12,635,530 12,571,571 63,959 0.5 1.16

Table A.34 A Device Type Profile of iPerf-UDP-Case 3 Passive Traffic Dataset

Device IAT Normal Abnormal % Run Time
Type points points points abnormal (s)

Acer 3,212,437 3,193,800 18,637 0.06 15
Asus 3,212,202 3,202,305 9,867 0.03 14
Gateway NB 2,569,754 2,566,525 13,229 0.05 12
Google Phone 650,215 634,293 15,922 0.24 3
Lenovo 642,587 636,035 6,552 0.10 3
Tablet 642,502 625,439 17,063 0.27 10
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Table A.35 A Device Type Profile of Ping-ICMP-Case 1 Passive Traffic Dataset

Device IAT Normal Abnormal % Run Time
Type points points points abnormal (s)

Acer 3,946,612 3,927,516 19,096 0.5 23
Asus 3,952,631 3,949,211 3,420 0.1 21
Gateway NB 3,159,515 3,142,926 16,589 0.5 19
Google Phone 483,137 479,484 3,653 0.8 3
Lenovo 799,001 791,056 7,945 1 4
Tablet 703,215 681,710 21,505 3.1 11

Table A.36 A Device Type Profile of Ping-ICMP-Case 2 Passive Traffic Dataset

Device IAT Normal Abnormal % Run Time
Type points points points abnormal (s)

Acer 3,935,292 3,913,797 21,499 0.5 23
Asus 3,936,855 3,921,189 15,666 0.4 23
Gateway NB 3,150,608 3,136,357 14,251 0.5 19
Google Phone 560,063 556,851 3,212 0.6 3
Lenovo 797,296 786,356 10,940 1.4 4
Tablet 694,979 675,791 19,188 2.8 9

Table A.37 A Device Type Profile of SCP-TCP-Case 1 Passive Traffic Dataset

Device IAT Normal Abnormal % Run Time
Type points points points abnormal (s)

Acer 45,000,000 44,992,290 7,710 0.01 5.47
Asus 45,000,000 45,000,000 0 0 5.51
Gateway NB 36,000,000 35,971,240 28,760 0.1 4.18
Google Phone 2,761,229 2,732,776 28,453 1 18
Lenovo 8,816,319 8,658,176 158,143 1.8 3.09
Tablet 7,177,578 6,915,337 262,241 3.7 55

Table A.38 A Device Type Profile of Skype-UDP-Case 1 Passive Traffic Dataset

Device IAT Normal Abnormal % Run Time
Type points points points abnormal (s)

Lenovo 1,102,415 1,057,680 44,735 4.1 1
Tablet 1,014,217 1,010,920 3,297 0.3 6
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A.3.4 Device Type profile Plots for Isolated Network Traffic
Dataset
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Fig. A.11 Normal and Abnormal Device Type Profiles of iPerf-UDP-case 2 and 3
Datasets
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Fig. A.12 Normal and Abnormal Device Type Profiles of Ping-ICMP-case 1 and 2
Datasets
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Fig. A.13 Normal and Abnormal Device Type Profiles of SCP-TCP-Case 4 Dataset
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A.3.5 Device Type profile Plots for Passive Network Traffic
Dataset
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Fig. A.14 Normal and Abnormal Device Type Profiles of iPerf UDP Case 1 Datasets
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Fig. A.15 Normal and Abnormal Device Type Profiles of iPerf-UDP-Case 2 and 3
Datasets
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Fig. A.16 Normal and Abnormal Device Type Profiles of Ping-ICMP-Case 2 Dataset
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Fig. A.17 Normal and Abnormal Device Type Profiles of SCP-TCP Case 1 and Skype-
UDP-Case 1 Datasets





Appendix B

Intelligent Filtering Technique

B.1 Intelligent Filtering Technique Results

B.1.1 Active Network Traffic

Fig. B.1 The intelligent filtering technique training progress for Acer Netbook
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Fig. B.2 The intelligent filtering technique additional training progress for Acer Netbook

Fig. B.3 The intelligent filtering technique training progress for Asus Netbook

Fig. B.4 The intelligent filtering technique additional training progress for Asus Netbook
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Fig. B.5 The intelligent filtering technique training progress for Gateway Netbook

Fig. B.6 The intelligent filtering technique additional training progress for Gateway
Netbook

Fig. B.7 The intelligent filtering technique training progress for Google Phone
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Fig. B.8 The intelligent filtering technique additional training progress for Google
Phone

Fig. B.9 The intelligent filtering technique training progress for Lenovo Laptop

Fig. B.10 The intelligent filtering technique additional training progress for Lenovo
Laptop
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Fig. B.11 The intelligent filtering technique training progress for Asus Asus Tablet

Fig. B.12 The intelligent filtering technique additional training progress for Asus Asus
Tablet

B.1.2 isolated Network Traffic

Fig. B.13 The intelligent filtering technique training progress for iPad
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Fig. B.14 The intelligent filtering technique additional training progress for iPad

Fig. B.15 The intelligent filtering technique training progress for iPhone 3G

Fig. B.16 The intelligent filtering technique additional training progress for iPhone 3G
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Fig. B.17 The intelligent filtering technique training progress for iPhone 4G

Fig. B.18 The intelligent filtering technique additional training progress for iPhone 4G
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Fig. B.19 The intelligent filtering technique training progress for Nokia Phone

Fig. B.20 The intelligent filtering technique additional training progress for Nokia
Phone
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B.1.3 Passive Network Traffic

Fig. B.21 The intelligent filtering technique training progress for Acer Netbook

Fig. B.22 The intelligent filtering technique additional training progress for Acer
Netbook

Fig. B.23 The intelligent filtering technique training progress for Asus Netbook
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Fig. B.24 The intelligent filtering technique additional training progress for Asus
Netbook

Fig. B.25 The intelligent filtering technique training progress for Gateway Netbook

Fig. B.26 The intelligent filtering technique additional training progress for Gateway
Netbook
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Fig. B.27 The intelligent filtering technique training progress for Google Phone

Fig. B.28 The intelligent filtering technique additional training progress for Google
Phone

Fig. B.29 The intelligent filtering technique training progress for Lenovo Laptop
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Fig. B.30 The intelligent filtering technique additional training progress for Lenovo
Laptop

Fig. B.31 The intelligent filtering technique training progress for Asus Tablet

Fig. B.32 The intelligent filtering technique additional training progress for Asus Tablet
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B.2 Synthetic Data Generation

B.2.1 Probability Distribution Fitting

Fig. B.33 The sample probability distribution fitting for iPhone 4G
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Fig. B.34 The sample probability distribution fitting for iPhone 3G
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Fig. B.35 The sample best fitted distribution for Dell Netbook (DN5)
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Fig. B.36 The sample best fitted distribution for Dell Netbook (DN4)
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B.2.2 Curve Fitting

Fig. B.37 The Sample Curve Fitting for Dell Netbooks
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Fig. B.38 The Sample Curve Fitting for iPad
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B.3 Synthetic Data Analysis

B.3.1 Active Traffic Dataset

Table B.1 A Device Type Profile of Ping-ICMP-Case 1 Active Traffic Dataset

Device IAT Normal Abnormal % Run Time
Type points points points abnormal (s)

Acer Netbook 3,968,592 3,967,712 880 0.000 18
Asus Netbook 3,969,874 3,968,941 933 0.000 15
Gateway NB 3,179,980 3,177,776 2,204 0.001 13
Google Phone 796,817 775,799 21,018 0.026 12
Lenovo Laptop 798,309 777,532 20,777 0.026 3
Asus Tablet 794,975 775,918 19,057 0.024 3

Table B.2 A Device Type Profile of Ping-ICMP-Case 2 Active Traffic Dataset

Device IAT Normal Abnormal % Run Time
Type points points points abnormal (s)

Acer Netbook 3,960,087 3,956,798 3,379 0.001 17
Asus Netbook 3,966,900 3,965,662 1,238 0.001 17
Gateway NB 3,176,513 3,174,421 2,092 0.001 15
Google Phone 796,565 773,631 22,934 0.029 16
Lenovo Laptop 793,563 792,992 571 0.001 3
Asus Tablet 794,004 777,797 16,207 0.020 4
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B.3.2 Isolated

Table B.3 A Device Type Profile of iPerf-TCP-Case 2 Isolated Traffic Dataset

Device IAT Normal Abnormal % Run Time
Type points points points abnormal (s)

Dell Netbooks 9,100,324 9,079,941 20,383 0.2 56
iPads 4,581,539 4,572,896 8,643 0.2 28
iPhone 3G 1,129,399 1,114,005 15,394 0.4 5
iPhone 4G 8,300,764 8,258,235 42,529 0.5 41
Nokia 1,563,011 1,562,535 476 0.001 9

Table B.4 A Device Type Profile of iPerf-UDP-Case 1 Isolated Traffic Dataset

Device IAT Normal Abnormal % Run Time
Type points points points abnormal (s)

Dell Netbooks 1,515,860 1,503,365 12,495 0.8 16
iPads 909,939 904,018 5,921 0.7 3
iPhone 3G 628,436 620,184 8,252 0.1 2
iPhone 4G 613,103 612,363 340 0.01 2
Nokia 620,868 604,059 16,809 0.3 2

Table B.5 A Device Type Profile of iPerf-UDP-Case 2 Isolated Traffic Dataset

Device IAT Normal Abnormal % Run Time
Type points points points abnormal (s)

Dell Netbooks 12,110,635 12,105,723 4,912 0.001 50
iPads 5,072,177 5,064,519 7,568 0.2 21
iPhone 3G 3,543,093 3,520,521 22,572 0.6 16
iPhone 4G 4,807,669 4,870,356 313 0.001 19
Nokia 3,141,785 3,141,733 52 0.001 11

Table B.6 A Device Type Profile of iPerf-UDP-Case 3 Isolated Traffic Dataset

Device IAT Normal Abnormal % Run Time
Type points points points abnormal (s)

Dell Netbooks 22,111,585 22,094,304 2,281 0.001 1.41
iPads 5,767,239 5,759,559 7,680 0.01 24
iPhone 3G 3,693,552 3,680,397 13,155 0.4 15
iPhone 4G 8,152,218 8,151,849 369 0.001 36
Nokia 9,375,782 9,375,603 179 0.001 41
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Table B.7 A Device Type Profile of Ping-ICMP-Case 1 Isolated Traffic Dataset

Device IAT Normal Abnormal % Run Time
Type points points points abnormal (s)

Dell Netbooks 1,079,208 1,069,850 9,358 0.09 7
iPads 929,699 922,389 7,310 0.08 8
iPhone 3G 634,786 629,737 5,049 0.08 2
iPhone 4G 1,346,876 1,342,775 4,101 0.09 5
Nokia 718,296 700,178 18,118 0.3 9

Table B.8 A Device Type Profile of Ping-ICMP-Case 2 Isolated Traffic Dataset

Device IAT Normal Abnormal % Run Time
Type points points points abnormal (s)

Dell Netbooks 1,079,984 1,060,982 19,002 0.2 5
iPads 929,699 921,062 7,738 0.08 6
iPhone 3G 634,786 620,099 10,436 0.2 2
iPhone 4G 1,340,598 1,328,980 11,618 0.9 5
Nokia 609,364 592,571 16,793 0.3 4

Table B.9 A Device Type Profile of SCP-TCP-Case 4 Isolated Traffic Dataset

Device IAT Normal Abnormal % Run Time
Type points points points abnormal (s)

Dell Netbooks 7,717,856 7,717,731 125 0.001 43
iPads 5,247,179 5,242,413 4,766 0.001 21
iPhone 3G 2,197,593 2,184,460 13,053 0.06 9
iPhone 4G 3,198,042 3,197,620 422 0.001 13
Nokia 2,887,527 2,877,004 10,523 0.04 22
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B.3.3 Passive Dataset

Table B.10 A Device Type Profile of iPerf-TCP-Case 1 Passive Traffic Dataset

Device IAT Normal Abnormal % Run Time
Type points points points abnormal (s)

Acer Netbook 45,000,000 44,998,502 1,498 0.001 6.11
Asus Netbook 45,000,000 44,998,503 1,497 0.001 5.50
Gateway NB 36,000,000 35,998,444 1,556 0.001 3.58
Google Phone 10,954,547 10,801,581 152,966 1.4 3.19
Lenovo Laptop 9,951,385 9,831,216 120,196 1.2 3.26
Asus Tablet 11,636,533 11,479,367 157,166 1.4 3.20

Table B.11 A Device Type Profile of iPerf-UDP-Case 1 Passive Traffic Dataset

Device IAT Normal Abnormal % Run Time
Type points points points abnormal (s)

Acer Netbook 45,000,000 44,804,507 195,493 0.4 4.56
Asus Netbook 45,000,000 44,943,410 56,490 0.01 4.43
Gateway NB 36,000,000 35,993,794 6,206 0.001 3.03
Google Phone 15,598,782 15,503,278 95,504 0.6 2.29
Lenovo Laptop 15,954,580 15,761,201 193,379 1.2 1.20
Asus Tablet 15,340,910 15,104,289 236,621 1.5 4.10

Table B.12 A Device Type Profile of iPerf-UDP-Case 2 Passive Traffic Dataset

Device IAT Normal Abnormal % Run Time
Type points points points abnormal (s)

Lenovo Laptop 24,555,234 24,544,550 10,684 0.001 2.49
Asus Tablet 12,635,530 12,634,492 5,038 0.001 1.00

Table B.13 A Device Type Profile of iPerf-UDP-Case 3 Passive Traffic Dataset

Device IAT Normal Abnormal % Run Time
Type points points points abnormal (s)

Acer Netbook 3,212,437 3,193,708 18,729 0.6 16
Asus Netbook 3,212,202 3,202,876 9,326 0.03 16
Gateway NB 2,569,754 2,556,205 13,549 0.05 11
Google Phone 650,215 636,922 13,293 0.02 3
Lenovo Laptop 642,587 636,011 6,576 0.01 2
Asus Tablet 642,502 626,036 16,466 0.3 12
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Table B.14 A Device Type Profile of Ping-ICMP-Case 1 Passive Traffic Dataset

Device IAT Normal Abnormal % Run Time
Type points points points abnormal (s)

Acer Netbook 3,946,612 3,926,621 19,991 0.05 17
Asus Netbook 3,952,631 3,952,631 0 0 50
Gateway NB 3,159,515 3,144,295 15,220 0.05 15
Google Phone 483,137 479,115 4,022 0.08 2
Lenovo Laptop 799,001 791,336 7,665 0.01 3
Asus Tablet 703,215 682,681 20,534 0.03 13

Table B.15 A Device Type Profile of Ping-ICMP-Case 2 Passive Traffic Dataset

Device IAT Normal Abnormal % Run Time
Type points points points abnormal (s)

Acer 3,935,292 3,914,252 21,040 0.05 17
Asus Netbook 3,936,855 3,922,436 14,419 0.04 18
Gateway NB 3,150,608 3,135,235 15,373 0.05 13
Google Phone 560,063 556,627 3,436 0.006 2
Lenovo Laptop 797,296 786,658 10,638 0.001 3
Asus Tablet 694,979 678,709 16,270 0.002 8

Table B.16 A Device Type Profile of SCP-TCP-Case 1 Passive Traffic Dataset

Device IAT Normal Abnormal % Run Time
Type points points points abnormal (s)

Acer Netbook 45,000,000 44,999,659 341 0.001 4.15
Asus Netbook 45,000,000 44,998,461 1,539 0.001 7.38
Gateway NB 36,000,000 35,997,731 2,269 0.001 4.12
Google Phone 2,761,229 2,734,066 27,163 0.01 17
Lenovo 8,816,319 8,671,336 144,983 1.6 1.20
Asus Tablet 7,177,578 6,944,623 232,955 3.2 48

Table B.17 A Device Type Profile of Skype-UDP-Case 1 Passive Traffic Dataset

Device IAT Normal Abnormal % Run Time
Type points points points abnormal (s)

Lenovo Laptop 1,102,415 1,057,214 45,201 0.4 13
Asus Tablet 1,014,217 1,004,789 9,428 0.009 7
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B.4 Intelligent Filtering Synthetic Data Evaluation

B.4.1 Evaluation results for Active Network traffic Datasets
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Fig. B.39 The intelligent filtering technique Evaluation Confusion Matrix for Acer
Netbook
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Fig. B.40 The intelligent filtering technique evaluation confusion matrices for the Asus
Netbook
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Fig. B.41 The intelligent filtering technique evaluation confusion matrices for the
Gateway Netbook
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Fig. B.42 The intelligent filtering technique Evaluation Confusion Matrix for Google
Phone
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Fig. B.43 The intelligent filtering technique evaluation confusion matrices for the
Lenovo Laptop
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Fig. B.44 The intelligent filtering technique Evaluation Confusion Matrix for Asus
Tablet

B.4.2 Evaluation results for Isolated Network traffic Datasets
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Fig. B.45 The intelligent filtering technique Evaluation Confusion Matrix for iPad
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Fig. B.46 The intelligent filtering technique Evaluation Confusion Matrix for iPhone
3G
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Fig. B.47 The intelligent filtering technique evaluation confusion matrices for the
iPhone 4G
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Fig. B.48 The intelligent filtering technique Evaluation Confusion Matrix for Nokia
Phone
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B.4.3 Evaluation results for Passive Network Traffic Datasets
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Fig. B.49 The intelligent filtering technique Evaluation Confusion Matrix for Acer
Netbook

Normal Abnormal
Actual Output

N
or

m
al

A
bn

or
m

al
P

re
di

ct
ed

O
ut

pu
t

2,555,751
99.5%

64
0.0%

5,784
0.2%

8,114
0.3%

(a) Training Confusion Matrix

Normal Abnormal
Actual Output

N
or

m
al

A
bn

or
m

al
P

re
di

ct
ed

O
ut

pu
t

639,257
99.5%

7
0.0%

1,464
0.2%

1,712
0.3%

(b) Testing Confusion Matrix

Fig. B.50 The intelligent filtering technique Evaluation Confusion Matrix for Asus
Netbook
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Fig. B.51 The intelligent filtering technique evaluation confusion matrices for the
Gateway Netbook
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Fig. B.52 The intelligent filtering technique evaluation confusion matrices for the
Google Phone
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Fig. B.53 The intelligent filtering technique Evaluation Confusion Matrix for Lenovo
Laptop
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Fig. B.54 The intelligent filtering technique Evaluation Confusion Matrices for the
Asus Tablet
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