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Abstract—This study presents analyses of guidance laws that
involve non-monotonic convergence in heading error from a
new perspective based on an advanced stability concept. Pure
proportional navigation with range-varying navigation gain is
considered, and the gain condition to guarantee asymptotic
convergence to the collision course is investigated while allowing
the heading error to exhibit patterns that involve intermediate
diversion. The extended stability criterion considered in this study
allows local increase of the function in some finite intervals, which
is less conservative than the standard stability theorem. The
existing guidance laws involving intentional modulation of the
heading error as well as the design of the navigation gain are
discussed with respect to the new stability criterion.

Index Terms—Stability Theory, Missile Guidance, Proportional
Navigation Guidance, Trajectory Modulation, Observability En-
hancement, Weaving Manoeuvre

I. Introduction

Advanced homing guidance strategies that are developed to
enhance the capabilities of missiles, such as target observ-
ability and survivability, usually exploit manoeuvre patterns
with alternating line-of-sight rates. The primary objective of
homing guidance is to enter a collision course, whereas the
other manoeuvre goals benefit from larger deviation in the
flight trajectory from the collision course, inevitably yielding
non-monotonic behaviours in the heading error. Dual-control
guidance strategies such as adaptive intermittent manoeuvre
(AIM) strategy [1]–[3] and optimal guidances [4]–[6] inten-
tionally involve the line-of-sight (LOS) rate excitation to suf-
fice an observability condition [2], [7]–[12] while sacrificing
the convergence to the collision course. Also, evasive guidance
strategies were designed for anti-ship missiles to accomplish
target interception while enhancing the survivability against
ship defence systems [13]–[15], where the weaving motion
leads to deviation from the collision course. Such oscillatory
or rapidly-changing manoeuvres cause an abrupt and drastic
change of flight path. Therefore, in order to prevent possible
instability arising from the abrupt behaviours, stability analysis
is a prerequisite in the design process.
The standard stability theory is limited in analysing the

stability of the guidance laws requiring non-monotonic LOS
rate convergence due to its conservative nature. In general, the
candidate function that represents convergence to a collision
course is expressed by the LOS rate or heading error. Under
the standard stability theory, the asymptotic stability of the
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guidance loop is analysed by showing that the derivative of the
function is negative definite [?], [?], [?], [16]–[20]. However,
negative definiteness of the derivative limits the asymptotic
stability of the system to the monotonic convergence of the
LOS rate. For this reason, while the standard stability theory
can explain the monotonically convergent response of the
generalised energy-optimal guidance law [21]–[25], it is inade-
quate for describing the asymptotic stability of guidance laws,
including non-monotonic motions. Therefore, an extended
stability theory that provides a relaxed stability criterion than
the standard stability theory is required to analyse the non-
monotonic characteristics for these types of guidance laws.
Asymptotic stability of time-varying nonlinear systems has

been widely investigated in many ways to relax and extend
the standard stability that requires negative definiteness of
the time derivative of the function for all time instances
to guarantee asymptotic stability. Krasovskii–LaSalle theorem
requires the time derivative to be negative semi-definite in
proving asymptotic stability whenever the weak zero-state
detectability property holds [26]. The averaging methods have
been developed to determine the exponential stability of the
original system through analysis on the exponential stability
of the time-invariant averaged system, assuming that the time-
varying part evolves sufficiently fast [27]. On the other hand,
the theorem expressed in terms of solutions at sampling
instances was introduced in [28]. The notion of uniform
asymptotic stability of time-varying nonlinear systems was
addressed by using a function whose value decreases along
with the solutions at sampling instances. Notably, this result
implies that the asymptotic convergence does not necessarily
require the time-derivative of the function to be negative
definite for all time instances. Further studies based on [28]
have been carried out in regard to the exponential stability [29],
showing that the global asymptotic stability of the averaged
system implies uniform semi-global practical stability of the
actual system.
The main objective is to investigate a less conservative

condition of the guidance loop stability than the existing
stability criterion and thus provide flexibility in designing
guidance laws. Motivated by the results in Ref. [28], this
study aims to provide a new perspective based on the ex-
tended stability theory that particularly suits the analysis of
the proportional navigation guidance (PNG) variants with
non-monotonic convergence to the collision course due to
trajectory modulation. The analysis focuses on the PNG with
a range-varying navigation gain as it represents a wealth of
guidance strategies. Since the asymptotic stability is defined
with respect to the solution behaviour as time tends to infinity
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while an interception problem ends at a finite time, a new
transformation of variable is introduced to change the asso-
ciated equations into the form suitable for stability analysis.
A sufficient condition for the asymptotic convergence of the
heading error to zero, i.e., convergence to the collision course,
in the transformed domain is established as a new criterion for
the guaranteed closed-loop stability. Subsequently, a condition
guaranteeing the satisfaction of the corresponding stability
criterion is derived in terms of the navigation gain function.
The stability of existing guidance laws is investigated in view
of the proposed criterion. Also, new guidance laws that entail
oscillatory responses in the heading error for trajectory shaping
while ensuring asymptotically stable convergence are proposed
based on the extended stability theory.
The analysis presented in this study has several implications.

First, the extended stability criterion discussed in this study is
less conservative than the classical counterpart that demands
strict negative definiteness of the rate of the function and
results in monotonic convergence of LOS rate to zero in the en-
tire time interval. Hence, the extended stability criterion allows
us to interpret the non-monotonic response characteristics of
the advanced guidance strategies. Second, it enables stability-
ensured design for a wider class of PNG variants, particularly
the ones in which line-of-sight rate may grow in intermediate
time intervals before the end of the engagement. In this way,
this study extends our understanding of advanced trajectory-
modulated guidance laws in a control-theoretic context.
The remainder of this study is organised as follows. Math-

ematical foundations and equations of motion are described
in Sec. II. In Sec. III, the extended stability criterion is
presented, and existing guidance laws are investigated from the
renewed viewpoint based on stability. Design of new guidance
laws based on the stability condition is demonstrated as well.
Simulation examples are provided to verify the theoretical
findings in Sec. IV. Summary and concluding remarks are
presented in Sec. V.

II. Preliminaries
This section describes mathematical foundations for this

study. This study begins with the stability theory in Sec. II-A.
The essential theorem addressed in Ref. [28] is reproduced
in a simpler form for completeness. The closed-loop missile
system governed by PNG are described in Sec.II.B. Since
the considered system is described in terms of the range, a
proper treatment is needed to address the closed-loop stability
in the considered stability sense. Sec. II-C describes how the
governing equations is transformed for the stability analysis.

A. Lyapunov Stability Theory for Continuous-Time Nonlinear
Systems
This section briefly reviews the stability of the dynamical

system. The non-autonomous nonlinear dynamics represented
in time can be summarised as follows.

¤x = f (x(𝑡), 𝑡) (1)

where f (x, 𝑡) is piecewise continuous in 𝑡 ∈ R and Lipschitz
continuous in x ∈ 𝑈, and the origin is an equilibrium point

satisfying f (x, 𝑡) → 0, ∀x → 0,∀𝑡 ∈ R. The definition of
the (asymptotic) stability and a relaxed asymptotic stability
condition are given by

Definition 1. ( [27]) Let 𝜙(𝑡, x(0)) be the solution of Eq. (1)
starting from x(0). Then,

• (Stable): if ∀𝜖 > 0, ∃ 𝛿(𝜖, 𝑡0) > 0 such that | |x(0) | | ≤
𝛿 ⇒ ||x(𝑡) | | ≤ 𝜖,∀𝑡 ≥ 𝑡0. If 𝛿 = 𝛿(𝜖) > 0 is independent
of 𝑡0, it is uniformly stable.

• (Attractive): If | |x(0) | | ≤ 𝛿 ⇒ lim𝑡→∞ 𝜙(𝑡, x(0)) → 0
• (Asymptotically stable) If the origin is stable as well as
attractive.

Theorem 1. ( [28]) Consider a system (1) with f being locally
Lipschitz continuous, and function 𝑉 : 𝑈 × R+ → R+ with
𝑈 ⊂ 𝑊 an open neighbourhood of the origin. Then the origin
is asymptotically stable if

• (C1) 𝑉 (x, 𝑡) is decrescent and positive definite, i.e.,
𝛼1 ( | |x| |) ≤ 𝑉 (x, 𝑡) ≤ 𝛼2 ( | |x| |) where 𝛼1 (·), 𝛼2 (·) : R+ →
R belong to class K function.

• (C2’) For all 𝑡 and x (𝑡), there exists a finite 𝑇 > 0 and a
class K function 𝛾(·) satisfying

𝑉 (x (𝑡 + 𝑇) , 𝑡 + 𝑇) −𝑉 (x (𝑡) , 𝑡) ≤ −𝛾( | |x| |) < 0

A remarkable property of Theorem 1 is that the negative
definiteness of ¤𝑉 (x, 𝑡) is no longer needed. The standard
Lyapunov stability condition [27] requires ¤𝑉 to be negative
definite to ensure the asymptotic stability. However, the stan-
dard stability criterion poses a limitation in that it demands
the Lyapunov function to decrease monotonically along with
the solution. In contrast, the decrement condition over a finite
interval [28] allows energy-growing and exploratory response
in achieving the asymptotic stability. Hence, the extended
theory enables stability-oriented design and analysis of control
systems that exhibit more general behavioural patterns in their
solutions.

B. Engagement Kinematics and Proportional Navigation
Guidance
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Fig. 1: Planar Engagement Guidance Geometry

This section describes the kinematic equations of motion
associated with the trajectory guided by PNG. Consider the
ideal planar engagement against stationary target. Figure 1
presents the guidance geometry and the definition of variables.
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In Fig. 1, 𝑟 and _ represent the range and the line-of-sight
angle, respectively. 𝛾 is the flight path angle, and 𝜎 = 𝛾 − _
is the lead angle. 𝑉𝑀 and 𝑎𝑀 denote the speed and the lateral
acceleration, respectively. The engagement kinematics is given
by

¤𝑟 = −𝑉𝑀 cos𝜎 (2a)

¤_ = −𝑉𝑀
𝑟

sin𝜎 (2b)

¤𝜎 =
𝑉𝑀

𝑟
sin𝜎 + 𝑎𝑀

𝑉𝑀
(2c)

In the equations of motion, the acceleration 𝑎𝑀 is regarded
as the guidance command to steer the missile to intercept the
target. Using Eqs. (2b) and (2c), the relative motion can be
expressed in terms of 𝑎𝑀 as

𝑟 ¥_ + 2 ¤𝑟 ¤_ = −𝑎𝑀 cos𝜎 (3)

Pure PNG (PPNG) generates the acceleration command per-
pendicular to the velocity to be proportional to the LOS rate
as

𝑎𝑀 = 𝑁 (𝑟)𝑉𝑀 ¤_ (4)

where 𝑁 (𝑟) is the navigation gain. By substituting the PPNG
command into Eq. (3), the closed-loop differential equation
can be written as

𝑟 ¥_ + (2 − 𝑁 (𝑟)) ¤𝑟 ¤_ = 0 (5)

Note that the origin (𝑟, ¤_, 𝜎) = 0 is not an equilibrium
because ¤𝑟 ≠ 0 as 𝜎 = 0. Hence, one cannot draw a conclusion
with regard to the guarantee of interception through analysing
the stability of an equilibrium point when treating the range
as a state variable. Instead, nullification of the heading error
determines stable entrance into a collision course with the
target. The following condition is introduced for the positive
closing speed.

Assumption 1. The range 𝑟 is monotonically decreasing
throughout the engagement, i.e., ¤𝑟 < 0 for all 𝑡 ≥ 𝑡0.

Assumption 1 holds as long as |𝜎 | < 𝜋/2. Assumption
1 ccan be justified in many guidance schemes formulated
with range as the independent variable, and in the methods
developed to respect the seeker’s field-of-view limit during
the engagement [30]–[34]. The one-to-one correspondence
between time and range allows us to represent Eq. (2) in the
range domain. Considering the transformation 𝑑

𝑑𝑡
= ¤𝑟 𝑑

𝑑𝑟
, Eq.

(5) can be expressed as

𝑑 ¤_
𝑑𝑟

≜
𝐾 (𝑟)
𝑟

¤_ =
𝑁 (𝑟) − 2

𝑟
¤_ (6)

Using this treatment, the zero heading error equilibrium can
be determined as stable if ¤_ in Eq. (6) converges to zero as 𝑟 →
0. It is worth noting that the differential equation is evolved
from 𝑟 = 𝑟0 to 𝑟 = 𝑟 𝑓 , which is the opposite to the time domain
evolution. Also, the feedback gains in Eqs. (6) is denominated
in 𝑟 , which makes violates the local Lipschitz continuity of
𝑓 =

𝐾 (𝑟)
𝑟

¤_ near 𝑟 = 0 required for the Lyapunov stability
theorems stated in Theorem 1.

C. Reformulation of Kinematics

Let us introduce a new variable 𝜏 = − ln 𝑟. Then, the one-
to-one correspondence between 𝜏 and 𝑟 permits change of the
independent variable. Equation (6) can be expressed in terms
of 𝜏 as

𝑑 ¤_
𝑑𝜏

= −𝐾 (𝜏) ¤_ (7)

Note that the state equation, Eq. (7), is a linear range-
varying (LRV) system, which makes it easier to analyse the
performance of guidance laws. If the solution of the closed-
loop system exists and is unique, the right hand side of
the equation should be integrable. For further developments,
let the gain 𝐾 (𝑟) be bounded from below and above as
𝐾 ≤ 𝐾 (𝑟) ≤ �̄� ∈ R+. The boundedness condition of 𝐾 is
sufficient for Lipschitz condition, which is required for the
uniqueness of the solution and stability analysis. That is,����𝑑 ¤_(𝜏1)

𝑑𝜏
− 𝑑 ¤_(𝜏2)

𝑑𝜏

���� = |𝐾 (𝜏) ¤_1 − 𝐾 (𝜏) ¤_2 | ≤ �̄� | ¤_1 − ¤_2 | (8)

The trajectory of ¤_ can be expressed as the fundamental
function Φ(𝜏, 𝜏0).

¤_ (𝜏) = ¤_ (𝜏0) exp
(∫ 𝜏

𝜏0

−𝐾 (𝑠)𝑑𝑠
)
≜ ¤_ (𝜏0)Φ (𝜏, 𝜏0) (9)

Remark 1. The analysis is valid as long as the one-to-one
correspondence holds between variables (𝑡, 𝑟, 𝜏). To this end,
the range should be strictly decreasing with respect to time,
i.e., ¤𝑟 < 0. Defining a new variable [ = sin𝜎, the differential
equation can be written as [31]

𝑑[

𝑑𝑟
≜
𝐾[ (𝑟)
𝑟

[ =
𝑁 (𝑟) − 1

𝑟
[

𝑑[

𝑑𝜏
= −𝐾[ (𝜏)[ = −(𝐾 (𝜏) + 1)[

(10)

From Eq. (10), it is clear that Assumption 1 holds whenever
|[ | is strictly bounded by 1, i.e.

|[(𝜏) | = |[0 | exp
(
−
∫ 𝜏

𝜏0

(𝐾 (𝑠) + 1)𝑑𝑠
)
< 1 (11)

Note that | exp(𝑥) | = exp(𝑥) > 0 for all 𝑥 ∈ R. By change
of variable 𝜏 = 𝜏0 + 𝑥, 𝑥 ≤ 0 into Eq. (11), the inequality
condition can be equivalently expressed in terms of 𝐾 (𝜏) as∫ 𝜏0+𝑥

𝜏0

𝐾 (𝑠)𝑑𝑠 + 𝑥 > ln |[0 | , ∀𝑥 ∈ [0,∞) (12)

III. Stability Analysis of Guidance Laws

This section establishes a sufficient condition for the asymp-
totic convergence to a collision course that can be used as a
new criterion applicable to cope with a wider class of guidance
laws. We inspect how the guidance gain should be designed
in order to adopt the extended stability theory of Theorem 1
in guidance problems.
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A. Asymptotic Stability Criterion

This section addresses the stability of ¤_-dynamics. The
standard Lyapunov stability theorem determines a sufficient
condition of 𝐾 (𝜏) to stabilise the the LOS rate given in Eq.
(9) as

𝐾 (𝜏) > 0, ∀𝜏 ∈ [𝜏0,∞) (13)

The positivity of 𝐾 (𝜏) in the entire interval produces a
monotonically converging pattern of the trajectory. Many
guidance laws such as observability enhanced and evasive
maneouvres include some intervals in which 𝐾 (𝜏) is negative
in modulating the trajectory. Using the properties of Theorem
2, we can derive conditions to be satisfied by the associated
averaged system while allowing 𝐾 (𝜏) to be negative in some
intervals. The following properties describe the criteria for
system stabilization in this respect.

Theorem 2. Consider the engagement kinematics given by Eq.
(7) defined with respect to the variable 𝜏 = − ln 𝑟 ∈ [𝜏0,∞).
The closed-loop system is asymptotically stable in 𝜏 if there
exists a finite 𝑇 > 0 for all 𝜏 such that the following condition
holds ∫ 𝜏+𝑇

𝜏

𝐾 (𝑠)𝑑𝑠 > 0 (14)

Proof. Consider a Lyapunov candidate function

𝑉 (𝜏) = 1
2
¤_(𝜏)2 (15)

Using Eq. (9), the temporal difference of 𝑉 (𝜏) between 𝜏 +𝑇
and 𝜏 gives

𝑉 (𝜏 + 𝑇) −𝑉 (𝜏) =
¤_(𝜏)2

2

(
(Φ (𝜏 + 𝑇, 𝜏))2 − 1

)
= 𝑉 (𝜏)

(
exp

(∫ 𝜏+𝑇

𝜏

−2𝐾 (𝑠)𝑑𝑠
)
− 1

) (16)
By substituting Eq. (14) into (16), it can be proved that 𝑉 (𝜏 +
𝑇) −𝑉 (𝜏) < 0, which completes the proof.

There are several remarks on the stability criterion proposed
in this study.

• (Physical meaning of 𝑇) 𝑇 physically implies a decreasing
rate of the range in stabilising states. By the definition,
𝑟1 corresponding to 𝜏1 = 𝜏 + 𝑇 can be expressed as

𝑟1 = exp (−𝜏1) = exp (−𝜏 − 𝑇) = 𝑟0 exp(−𝑇) ≜ 𝛽𝑟0
(17)

where 𝛽 = exp(−𝑇) ≤ 1 for 𝑇 > 0. A sequence
{𝑟, 𝛽𝑟, 𝛽2𝑟 · · · , } is convergent as 𝛽𝑛𝑟 → 0 for all 𝑟 ≤ 𝑟0.
A small value of 𝑇 tends to fortify the convergence of the
system but also restricts the degree of the flexibility of the
manoeuvre. In the extreme case of 𝑇 → 0, the integrand
condition becomes 𝐾 (𝜏) > 0, which is equivalent to the
standard Lyapunov stability criterion. A large value of 𝑇
enlarges the size of the interval [𝜏, 𝜏 + 𝑇], and 𝑇 tends
to allow an increased degree of freedom in the choice of
possible response patterns over the given interval.

• (Relevance with stability of averaged system) The average
effect of the gain over the specific time interval is also
positive when the condition of Theorem 3 holds, because

𝐾𝑎𝑣𝑔 =
1
𝑇

∫ 𝜏+𝑇

𝜏

𝐾 (𝑠)𝑑𝑠 > 0 (18)

This implies that the state ¤_ tends to decrease in the
average sense during the range interval [𝑟, 𝛽𝑟].

• In choosing the parameter 𝑇 for guidance law design, a
too large 𝑇 may cause violation of the assumption ¤𝑟 < 0.
Therefore, 𝑇 is only feasible as long as condition (12)
holds. The feasible range of 𝑥 satsifying Eq. (12) can be
obtained by solving

find minimum value 𝑥 = 𝑥(𝑇)

s.t.
(∫ 𝜏0+𝑥

𝜏0

𝐾 (𝑠)𝑑𝑠 + 𝑥 = ln |[0 |
)

(19)

If 𝐾 is continuous in 𝜏, the upper bound 𝑇 can be obtained
by finding the extremum point 𝑥(𝑇) < 𝑇 that satisfies the
following conditions

𝐾 (𝜏0 + 𝑥(𝑇)) + 1 = 0,
∫ 𝜏0+𝑥 (�̄�)

𝜏0

𝐾 (𝜏)𝑑𝜏 + 𝑥(𝑇) = ln |[0 |
(20)

• (Stronger stability criterion (14) for practical requirement)
The asymptotic stability of the system is well explained
in the 𝜏 domain, but the behaviour of the system near
the interception may cause rapid manoeuvre or cause the
high-frequency excitation in the inner loop. To handle
such issues, it is desirable to design the gain 𝐾 (𝜏) to
satisfy the following condition.

𝐾 (𝜏) > 0 for 𝜏 ≥ − ln 𝑟1∫ 𝜏+𝑇

𝜏

𝐾 (𝑠)𝑑𝑠 > 0 for − ln 𝑟0 ≤ 𝜏 ≤ − ln 𝑟1
(21)

where 𝑟1 is a specified value. Using Eq. (21), the trajec-
tory can be modulated such that the closed-loop response
shows the monotonic convergence in LOS rate near the
end of the engagement while satisfying the condition in
Theorem 2. The largest possible value of 𝑇 can be se-
lected as 𝑇 = ln(𝑟1/𝑟miss), if 𝑟 decreasing below a certain
threshold 𝑟miss is regarded as a successful interception.
Note that the above condition does not imply the guidance
law should switch at 𝑟1. Instead, one can choose suitable
design parameters in 𝐾 to make the guidance command
consistently continuous in time.

B. Stability Analysis of Existing Guidance Laws
This section revisits existing guidance laws from the view-

point of the extended stability theory discussed in Sec. III-A.
Given a navigation gain 𝑁 (𝑟), the problem considered in this
study can be stated as follows.

Problem 1. Find a finite 𝑇 ≥ 0 such that the following
condition holds for all 𝜏.

F (𝜏;𝑇) ≜
∫ 𝜏+𝑇

𝜏

𝐾 (𝑠)𝑑𝑠 > 0 (22)
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The following examples show how the extended stability
theory enables analysis of the PNG variants that has remained
impossible with the standard Lyapunov theory.

1) Adaptive Intermittent Manoeuvre Strategy: In this sec-
tion, consider the AIM strategy [1], [3]. The central concept
is to maintain the LOS rate within a predefined layer and
achieve both information acquisition and LOS stabilisation by
switching the navigation gain. The switching layers ¤_𝑈 and ¤_𝐿
are introduced as

¤_𝑈 = `𝑈𝑟
𝑘 = `𝑈 exp(−𝑘𝜏), ¤_𝐿 = `𝐿𝑟

𝑘 = `𝐿 exp(−𝑘𝜏)
(23)

where the design parameter 𝑘 is a positive constant. The
guidance law for AIM is expressed as

𝑎𝐴𝐼𝑀 = 𝑆𝑙𝑁𝑉𝑀 ¤_ (24)

where 𝑆𝑙 is the switching sequence given by

S0 =

{
1 if | ¤_ | > ¤_𝐿
0 if | ¤_ | ≤ ¤_𝐿

,S𝑙 =


1 if | ¤_ | ≥ ¤_𝑈
S𝑙−1 if ¤_𝐿 ≤ | ¤_ | ≤ ¤_𝑈

0 if | ¤_ | ≤ ¤_𝐿
(25)

Suppose that ¤_(𝜏0) is chosen within the layer [ ¤_𝐿 , ¤_𝑈], and
the algorithm is initialised with 𝑆0 = 0. Then ¤_ grows until it
reaches the upper bound ¤_𝑈 . After while, the LOS rate shows
a zig-zag pattern due to the on-off sequence. Substituting Eqs.
(24) and (25) into Eq. (9), ¤_-dynamics can be expressed as

𝑑 ¤_
𝑑𝜏

= −𝐾 (𝜏) ¤_ =


2 ¤_ 𝜏0 ≤ 𝜏 ≤ 𝜏1,𝑜𝑛

−(𝑁 − 2) ¤_ 𝜏𝑖,𝑜𝑛 ≤ 𝜏 ≤ 𝜏𝑖,𝑜 𝑓 𝑓
2 ¤_ 𝜏𝑖,𝑜 𝑓 𝑓 ≤ 𝜏 ≤ 𝜏𝑖+1,𝑜𝑛

(26)

where 𝜏𝑖,𝑜𝑛 and 𝜏𝑖,𝑜 𝑓 𝑓 correspond to the 𝑖-th incidents at which
¤_ reaches the lower/upper bounds, respectively. Ref. [1] shows
that the transition interval 𝜏𝑖,𝑜 𝑓 𝑓 − 𝜏𝑖,𝑜𝑛 and 𝜏𝑖+1,𝑜𝑛 − 𝜏𝑖,𝑜𝑛 is
consistent at every cycle. The ratio of transition 𝛼1 and 𝛼2 for
cycle 𝑖 can be defined as

𝛼1 = 𝜏𝑖,𝑜 𝑓 𝑓 − 𝜏𝑖,𝑜𝑛 =
1

𝑁 − 2 − 𝑘 ln
(
`𝑈

`𝐿

)
𝛼2 = 𝜏𝑖+1,𝑜𝑛 − 𝜏𝑖,𝑜𝑛 =

𝑁

(𝑁 − 2 − 𝑘) (2 + 𝑘) ln
(
`𝑈

`𝐿

) (27)

Note that the ratio is constant regardless of the cycle. The
detailed derivation of Eq. (27) can be found in Ref. [1].
Alternating between increase and decrease in LOS rate (due
to repeated switching of 𝑆𝑙 between 0 and 1) is necessary for
observability enhancement. To trigger and maintain such fluc-
tuating pattern until the end of engagement, Ref [1] suggests
to choose a navigation gain bounded by parameter 𝑘 as

𝑁 − 2 > 𝑘 (28)

If the gain condition is violated, switching of manoeuvre takes
place only once at the most, and the missile cannot perform
the observability enhanced manoeuvre by AIM.
Now, we aim to show that the AIM guidance system

satisfying condition (28) is guaranteed to be asymptotically
stable. Note that the standard Lyapunov stability theorem
cannot sufficiently explain the convergence with the ‘zig-zag’
pattern of the AIM response because the off sequence causes
the growth of the LOS rate. Using the proposed stability

criterion, the focus of the present analysis is to show the
existence of 𝑇 satisfying Eq. (22). To this end, integration
of 𝐾 (𝜏) over the ‘on’ to ‘on’ sequence for cycle 𝑖 gives∫ 𝜏𝑖+1,𝑜𝑛

𝜏𝑖,𝑜𝑛

𝐾 (𝜏)𝑑𝜏 =
∫ 𝜏𝑖,𝑜 𝑓 𝑓

𝜏𝑖,𝑜𝑛

𝐾 (𝜏)𝑑𝜏 +
∫ 𝜏𝑖+1,𝑜𝑛

𝜏𝑖,𝑜 𝑓 𝑓

𝐾 (𝜏)𝑑𝜏

= (𝑁 − 2)𝛼1 − 2(𝛼2 − 𝛼1) = 𝑁𝛼1 − 2𝛼2

=
𝑁

𝑁 − 2 − 𝑘
𝑘

2 + 𝑘 ln
(
`𝑈

`𝐿

)
(29)

It is obvious that Eq. (28) is positive when the navigation
gain satisfies the condition in Eq. (29). Using the property,
the asymptotic stability can be investigated for two cases. First,
suppose that the manoeuvre mode is ‘off’, i.e., 𝐾 = −2, at the
current 𝜏. Then the duration Δ𝜏 until ¤_ reaches ¤_𝑈 (𝜏) has the
following relation:

¤_(𝜏) exp(2Δ𝜏) = `𝑈 exp (−𝑘 (𝜏 + Δ𝜏)) (30)

Δ𝜏 can be calculated as

Δ𝜏 = − 𝑘

𝑘 + 2
𝜏 + 1

𝑘 + 2
ln

(
`𝑈
¤_(𝜏)

)
(31)

Because `𝐿 exp(−𝑘𝜏) ≤ ¤_ ≤ `𝑈 exp(−𝑘𝜏), the following
inequality holds

− ln `𝑈 ≤ −𝑘𝜏 − ln ¤_(𝜏) ≤ − ln `𝐿 (32)

From (32), it is easy to show that Δ𝜏 ≤ 𝛼2−𝛼1. Now, consider
𝑇 as the transition ratio 𝛼2 as

𝑇 = 𝛼2 =
𝑁

(𝑁 − 2 − 𝑘) (2 + 𝑘) ln
(
`𝑈

`𝐿

)
(33)

F (𝜏, 𝑇) can be expressed as

F (𝜏, 𝑇) =
∫ 𝜏+𝑇

𝜏

𝐾 (𝑠)𝑑𝑠

=

∫ 𝜏+Δ𝜏

𝜏

−2𝑑𝑠 +
∫ 𝜏+Δ𝜏+𝛼1

𝜏+Δ𝜏
(𝑁 − 2)𝑑𝑠 +

∫ 𝜏+𝛼2

𝜏+Δ𝜏+𝛼1

−2𝑑𝑠

= −2Δ𝜏 + (𝑁 − 2)𝛼1 − 2 (𝛼2 − (Δ𝜏 + 𝛼1))
= 𝑁𝛼1 − 2𝛼2 > 0

(34)
Likewise, suppose that the manoeuvre mode is ‘on’, i.e., 𝐾 =

𝑁 − 2, at the current 𝜏. The duration Δ𝜏2 until ¤_ reaches the
lower switching boundary ¤_𝐿 (𝜏) has the following relation:

¤_(𝜏) exp(−(𝑁 − 2)Δ𝜏2) = `𝐿 exp(−𝑘 (𝜏 + Δ𝜏2) (35)

Δ𝜏2 can be obtained as

Δ𝜏2 =
𝑘

𝑁 − 2 − 𝑘 𝜏 + ln
( ¤_(𝜏)
`𝐿

)
(36)

From (32), Δ𝜏2 ≤ 𝛼1. Then it can be shown that F (𝜏, 𝑇) is
greater than zero as

F (𝜏, 𝑇) =
∫ 𝜏+𝑇

𝜏

𝐾 (𝑠)𝑑𝑠

=

∫ 𝜏+Δ𝜏2

𝜏

(𝑁 − 2)𝑑𝑠 +
∫ 𝜏+Δ𝜏2+(𝛼2−𝛼1)

𝜏+Δ𝜏2

−2𝑑𝑠 +
∫ 𝜏+𝛼2

𝜏+Δ𝜏2+(𝛼2−𝛼1)
(𝑁 − 2)𝑑𝜏

= (𝑁 − 2)Δ𝜏2 − 2(𝛼2 − 𝛼1) + (𝑁 − 2) (𝛼1 − Δ𝜏2) = 𝑁𝛼1 − 2𝛼2 > 0
(37)

By Theorem 2, it can be shown that 𝑁 > 2 + 𝑘 ensures the
stability of the equilibrium ¤_ = 0 with 𝑇 = 𝛼2. In summary,
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the extended stability criterion ensures the non-monotonic
asymptotic convergence of LOS rate regardless of the current
manoeuvre mode at a given instance, provided that the gain
satisfies the condition of Eq. (28).

2) Observability-Enhancement Optimal Guidance:
Observability-enhancement optimal guidance (OEOG) law [6]
was designed to enhance the target observability in passive
homing missiles in the optimal control framework. The
guidance command is converted to a PNG form, where the
navigation gain is given by

𝑁 = 𝜔

( 𝑟
𝑉

)𝑁 𝑓

cot
(
𝜔

𝑁 𝑓

( 𝑟
𝑉

)𝑁 𝑓

)
=

𝜔

𝑉𝑁 𝑓
exp

(
−𝑁 𝑓 𝜏

)
cot

(
𝜔

𝑁 𝑓𝑉
𝑁 𝑓

exp
(
−𝑁 𝑓 𝜏

) )
≜ 𝑁 𝑓 ℎ(𝑧) = 𝑁 𝑓 𝑧 cot 𝑧

(38)

where 𝜔 > 0 and 𝑁 𝑓 > 2 are the design parameters, and
𝑧(𝜔, 𝜏) = 𝜔

𝑁 𝑓

(
𝑟
𝑉

)𝑁 𝑓 = 𝜔

𝑁 𝑓𝑉
𝑁𝑓

exp(−𝑁 𝑓 𝜏) is the auxiliary
variable dependent on 𝜔 and 𝜏. It is assumed that 𝜔 is properly
chosen so that 𝑧(𝜔, 𝜏) < 𝜋 to prevent singularity of 𝑁 . For
ease of notation, 𝜔 and 𝜏 in 𝑧 are omitted. Now, let us analyse
the stability of OEOG under the extended stability criterion.
The stability analysis aims to show the existence of a finite
𝑇 > 0 for all 𝜏 that satisfies the following inequality with
F (𝜏;𝑇):

F (𝜏;𝑇) =
∫ 𝜏+𝑇

𝜏

(
𝑁 𝑓 𝑧(𝜔, 𝑠) cot 𝑧(𝜔, 𝑠) − 2

)
𝑑𝑠

=

∫ 𝑧 (𝜏+𝑇)

𝑧 (𝜏)
− cot(𝑧)𝑑𝑧 −

∫ 𝑇

0
2𝑑𝜏

= − ln
(
sin

(
𝜔

𝑁 𝑓

( 𝑟
𝑉

)𝑁 𝑓

exp(−𝑁 𝑓𝑇)
))

+ ln
(
sin

(
𝜔

𝑁 𝑓

( 𝑟
𝑉

)𝑁 𝑓

))
− 2𝑇 > 0

(39)
Suppose that 𝑇 satisfies

𝑇 ≥ 1
𝑁 𝑓 − 2

ln
©«

𝜔
𝑁 𝑓

( 𝑟0
𝑉

)𝑁 𝑓

sin
(
𝜔
𝑁 𝑓

( 𝑟0
𝑉

)𝑁 𝑓

) ª®®¬ (40)

Since 0 ≤ 𝑧 < 𝜋, sin 𝑧 < 𝑧 and − ln(sin 𝑧) > − ln 𝑧, we have

F (𝜏;𝑇) ≥ − ln
(
𝜔

𝑁 𝑓

( 𝑟
𝑉

)𝑁 𝑓

exp(−𝑁 𝑓𝑇)
)
+ ln

(
sin

(
𝜔

𝑁 𝑓

( 𝑟
𝑉

)𝑁 𝑓

))
− 2𝑇

= (𝑁 𝑓 − 2)𝑇 + ln
©«

sin
(
𝜔
𝑁 𝑓

(
𝑟
𝑉

)𝑁 𝑓

)
𝜔
𝑁 𝑓

(
𝑟
𝑉

)𝑁 𝑓

ª®®¬
(41)

Because 𝑧 ≤ 𝑧0 < 𝜋 and 𝑧
sin 𝑧 ≤ 𝑧0

sin 𝑧0
, Eqs. (40) and (41) yield

F (𝜏;𝑇) ≥ (𝑁 𝑓 − 2)𝑇 + ln
©«

sin
(
𝜔
𝑁 𝑓

(
𝑟
𝑉

)𝑁 𝑓

)
𝜔
𝑁 𝑓

(
𝑟
𝑉

)𝑁 𝑓

ª®®¬
≥ ln

©«
𝜔
𝑁 𝑓

( 𝑟0
𝑉

)𝑁 𝑓

sin
(
𝜔
𝑁 𝑓

( 𝑟0
𝑉

)𝑁 𝑓

) ª®®¬ − ln
©«

𝜔
𝑁 𝑓

(
𝑟
𝑉

)𝑁 𝑓

sin
(
𝜔
𝑁 𝑓

(
𝑟
𝑉

)𝑁 𝑓

) ª®®¬ > 0

(42)
Therefore, the existence of 𝑇 satisfying Eq. (40) implies that
the OEOG asymptotically stabilises the LOS rate according to
Theorem 2. It is worth noting that the parameters 𝑁 𝑓 and 𝜔 are
properly selected to satisfy Eq. (12) in Remark 1. Using Eq.

(20), an extreme point 𝑥 and an upper bound �̄� that comprises
the feasible range Ωextended,F>0 = [0, �̄�] can be obtained by
solving the algebraic equation:

𝐾 (𝜏0 + 𝑥) + 1 = 𝜔

( 𝑟0
𝑉

)𝑁 𝑓

exp
(
−𝑁 𝑓 𝑥

)
cot

(
𝜔

𝑁 𝑓

( 𝑟0
𝑉

)𝑁 𝑓

exp
(
−𝑁 𝑓 𝑥

) )
− 1 = 0

F (𝜏0; 𝑥) = − ln
(
sin

(
𝜔

𝑁 𝑓

( 𝑟0
𝑉

)𝑁 𝑓

exp(−𝑁 𝑓 𝑥)
))

+ ln
(
sin

(
𝜔

𝑁 𝑓

( 𝑟0
𝑉

)𝑁 𝑓

))
− 𝑥 = ln |[0 |

(43)
Note that Eq. (43) should be sloved numerically to obtain 𝑥 =
𝑥∗ and 𝜔 = �̄�. To this end, let us define another auxiliary
variable 𝑎 as

𝑎 = exp(𝑥) ≥ 1 (44)

Equation (43) can be expressed in terms of 𝑧 and 𝑎 as

ℎ(𝑧) : 𝑁 𝑓 𝑧 cot 𝑧 − 1 = 0 (45a)

𝑓2 (𝑎; 𝑧) : − ln (sin (𝑧∗)) + ln
(
sin

(
𝑧∗𝑎𝑁 𝑓

))
− ln 𝑎 = ln |[0 |

(45b)

Note that ℎ(𝑧) = 𝑧 cot 𝑧 is one-to-one function from 𝐷 =

(0, 𝑧0] ∈ (0, 𝜋) to (−∞, 1). Thus, Eq. (45a) always has
the solution in the interval such that ℎ(𝑧∗) = 1

𝑁 𝑓
. Letting

𝑧∗ = ℎ−1 ( 1
𝑁 𝑓

), Eq. (45b) is equivalent to

sin
(
𝑧∗𝑎𝑁 𝑓

)
𝑎

= sin(𝑧∗) |[0 | (46)

It can be shown that 𝑓2 (𝑎) = sin(𝑧∗𝑎𝑁 𝑓 )/𝑎 is one-to-one
correnspondence, and it is bounded as 𝑓2 ∈ [0, sin(𝑧∗)] for
𝑎 ∈ [1, 𝜋/(𝑧∗)] because f.2 (𝑎)/𝑑𝑎 ≤ 0. From mean value
theorem, there exists 𝑎∗ satsifying 𝑓2 (𝑎∗) = sin(𝑧∗𝑎∗𝑁 𝑓 )/𝑎∗ =
sin(𝑧∗) |[0 |. Using the solution 𝑧∗ and 𝑎∗, 𝑥 and 𝜔 can be
calculated as

𝜔 = 𝑁 𝑓 𝑧
∗𝑎𝑁 𝑓

(
𝑉

𝑟0

)𝑁 𝑓

, 𝑥 = ln 𝑎∗ (47)

Hence, feasible range of 𝜔 and T using extended stability
criteria is obtained as

𝜔 ∈ Ωextended,F>0 =

[
0, 𝑁 𝑓 𝑧∗𝑎𝑁 𝑓

(
𝑉

𝑟0

)𝑁 𝑓

]
,

𝑇 ∈
[
0,

1
𝑁 𝑓 − 2

ln
(

𝑧∗𝑎𝑁 𝑓

sin
(
𝑧∗𝑎𝑁 𝑓

) )] (48)

C. Design of a Weaving Guidance Law with Guaranteed Non-
monotonic Convergence
This section presents a simple example showing how to

design a new range-varying navigation gain based on the
stability criterion. Under the PNG structure, consider the
guidance gain 𝑁 (𝜏) given by the following form:

𝐾 = 𝑁𝑏𝑎𝑠𝑒 + 𝑁𝑝𝑒𝑟𝑡 (𝜏) − 2 = 𝑁 − 2 + 𝑁𝑝𝑒𝑟𝑡 (𝜏) (49)

Then, the sufficient condition for asymptotic stability of the
guidance system is existence of 𝑇 such that∫ 𝜏+𝑇

𝜏

{
(𝑁 − 2) + 𝑁𝑝𝑒𝑟𝑡 (𝑠)

}
𝑑𝑠 = (𝑁 − 2)𝑇 +

∫ 𝜏+𝑇

𝜏

𝑁𝑝𝑒𝑟𝑡 (𝑠)𝑑𝑠 > 0, ∀𝜏 ∈ [𝜏0,∞)

(50)
Now, let us consider the following guidance problem.
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Problem 2. Suppose that the perturbation term 𝑁𝑝𝑒𝑟𝑡 is
parameterised by p, and the length of the interval 𝑇 with
which the sufficient condition for stable convergence should
hold. The guidance problem under consideration is to find
proper guidance parameters p associated with 𝑁𝑝𝑒𝑟𝑡 (𝜏; p) by
satisfying the following condition to ensure the asymptotic
stability. ∫ 𝜏+𝑇

𝜏

𝑁𝑝𝑒𝑟𝑡 (𝑠; p)𝑑𝑠 > −(𝑁 − 2)𝑇 (51)

In this study, a weaving manoeuvre is considered to per-
form dual-control guidance or evasive manoeuvre during the
terminal phase. The perturbation gain includes an oscillatory
component to produce the manoeuvre and reduces its effect
near the interception to prevent any conflict with the baseline
PPNG. To this aim, consider the navigation gain given by the
following form

𝑁𝑝𝑒𝑟𝑡 (𝜏; 𝐴𝑤 , 𝜔) = 𝐴𝑤 sin
(
𝜔
𝑟

𝑟0

)
= 𝐴𝑤 sin(𝜔 exp(−(𝜏 − 𝜏0)))

(52)
where the magnitude 𝐴𝑤 and frequency 𝜔 denote the param-
eters to be determined for stability. The integral of 𝑁𝑝𝑒𝑟𝑡 is
calculated as∫ 𝜏+𝑇

𝜏

𝑁𝑝𝑒𝑟𝑡 (𝑠)𝑑𝑠 = −𝐴𝑤
(
Si

(
𝜔𝑒−(𝜏+𝑇)

)
− Si (𝜔𝑒−𝜏)

)
(53)

where Si(𝑥) =
∫ 𝑥

0
sin 𝑠
𝑠
𝑑𝑠. By substituting Eq. (53) into (51),

the parameters 𝐴𝑤 and 𝜔 must satisfy the following inequality
for any 𝜏 ≥ 𝜏0

−𝐴𝑤
(
Si

(
𝜔𝑒−(𝜏−𝜏0+𝑇)

)
− Si

(
𝜔𝑒−(𝜏−𝜏0)

))
> −(𝑁 − 2)𝑇 (54)

Let 𝛼 = 𝜔𝑒−(𝜏−𝜏0) < 𝜔 and 𝛽 = exp(−𝑇) < 1 be auxiliary
variables. The partial derivative of the right-hand side of Eq.
(53) with respect to 𝛼 is
𝜕 (−𝐴𝑤 (Si (𝛼𝛽) − Si(𝛼)))

𝜕𝛼
= −𝐴𝑤

(
sin(𝛼𝛽) − sin𝛼

𝛼

)
(55)

For 𝜔 > 0 and 𝐴𝑤 < 0, Eq. (54) takes its minimum value at
𝛼 = 𝜋

𝛽+1 . Substituting the extreme point into Eq. (54) gives

− (𝑁 − 2)𝑇

Si
(

exp(𝑇)
exp(𝑇)+1𝜋

)
− Si

(
𝜋

exp(𝑇)+1

) < 𝐴𝑤 < 0 (56)

Equation (56) implies that 𝐴𝑤 is the only parameter associated
with 𝑇 . A large value of 𝑇 leads to a large magnitude 𝐴𝑤 . Also,
the greater the 𝜔 value is, the more oscillatory behaviour the
guidance law exhibits. High-frequency oscillations should be
avoided because an abrupt change in the guidance command
may lead to potential instabilities. Considering the range 𝑟1
of Eq. (22) in which the strict convergence is assured, the
frequency can be bounded by

𝜔
𝑟

𝑟0
<
𝜋

2
, 𝐴𝑤 sin

(
𝜔
𝑟

𝑟0

)
+ 𝑁 > 2, for all 𝑟 ≤ 𝑟1 (57)

Note that 𝐴𝑤 < 0 obtained from Eq. (56). By substituting
𝑟 = 𝑟1 into Eq (57), the feasible range of 𝜔 can be obtained
as

0 < 𝜔 ≤ min
(
𝜋𝑟0
2𝑟1

,
𝑟0
𝑟1

sin−1
(

2 − 𝑁
𝐴𝑤

))
(58)

It is worth noting that the inequality condition in Eq. (58) car-
ries a slight degree of conservatism stemming from Assump-
tion 1 which requires the distance to decrease monotonically
to zero even though the LOS rate may exhibit non-monotonic
behaviours.

IV. Simulation Results
This section performs numerical simulations to verify anal-

ysis results based on the presented stability criterion. We
consider guidance laws presented in Sec. III-B and III-C
to demonstrate the benefits of using the extended stability
criterion in relation to the choice of design parameters. The
simulation is performed in MATLAB environment, where
a fixed-time solver is used for numerical integration with
Δ𝑡𝑠𝑖𝑚 = 5 · 10−4𝑠. The simulation is terminated if 𝑟 is less
than 0.1𝑚. A second-order lag model 𝑎 (𝑠)

𝑎𝑐 (𝑠) =
𝜔2

𝑛

𝑠2+2Z 𝜔𝑛𝑠+𝜔2
𝑛

with magnitude limiter |𝑎 | ≤ 𝑎max is included in simulation
for autopilot response, Z = 0.8 is the damping ratio, and 𝜔𝑛 is
the natural frequency which is set to 𝜔𝑛 = 2Z/0.05 = 32/𝑠𝑒𝑐
[35]. Other simulation parameters are summarised as follows

(𝑋𝑚, 𝑌𝑚) = (0, 1, 000𝑚), (𝑋𝑡 , 𝑌𝑡 ) = (10, 000𝑚, 0)
𝑉𝑀 = 300𝑚/𝑠, 𝛾0 = 30𝑑𝑒𝑔, 𝑁𝑏𝑎𝑠𝑒 = 3, 𝑎max = 100𝑚/𝑠2

A. Performance of AIM Strategy [1]
In this simulation case, AIM is considered with different

design parameters 𝑘 and initial conditions 𝜎0. In cases 1-1 and
1-2, the parameter 𝑘 is selected to satisfy the condition in Eq.
(28). `𝐿 and `𝑈 are chosen as `𝐿 = | ¤_0 |/𝑟𝑘0 = 0.5𝑉𝑀/𝑟1.2

0
and `𝑈 = 1.4`𝐿 = 0.7𝑉𝑀/𝑟1.2

0 so that the AIM starts the
simulation on the lower switching layer. For a comparison
study, case 1-3 uses 𝑘 = 1.2 which does not satisfy the
condition (28). Note that the repeated switching sequence
may involve chattering near the interception. To prevent this
phenomenon, the lower switching layer is truncated to zero
when 𝑟 < 𝑟1 = 300𝑚 [3]. The following functional is also
introduced to discuss the performance of AIM strategy.

F0 (𝜏; 𝜏0) =
∫ 𝜏0+𝜏

𝜏0

𝐾 (𝑠)𝑑𝑠 (59)

By definition, F (𝜏;𝑇) = F0 (𝜏 + 𝑇 ; 𝜏0) − F0 (𝜏; 𝜏0).
Figure 2 shows the simulation results for AIM strategy. The

AIM allows to switch the navigation gain while regulating
the variables 𝜎 and ¤_. As shown in Fig. 2-(b), the Lyapunov
candidate function tends to converge to zero over 𝜏. Notably,
𝑉 increases in some intervals because of the ‘off’ sequence,
which is not acceptable in the standard Lyapunov stability
theorem. On the other hand, using the extended stability
theorem addressed in this study, F (𝜏, 𝑇) > 0 implies that
𝑉 (𝜏) is less than 𝑉 (𝜏 + 𝑇) and eventually regulates to zero.
Note that F is kept constant, meaning that the decrement
is consistent regardless of 𝜏. Additionally, there exists a
relationship between the Lyapunov function and F0 in that
the Lyapunov function is less than the initial value when F0
is positive.
In case 1-2, the simulation shows similar results with case

1-1, meaning that the asymptotic stability holds for different
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Fig. 2: Simulation Results for Case 1 : AIM Strategy [1]

initial value when 𝑘 is selected to satisfy the stability condition
𝑁 > 𝑘 + 2. In case 1-3, where the pair (𝑁, 𝑘) violates the
condition Eq. (28), missile completes the interception but
does not perform any observability enhancing manoeuvre as
intended in the AIM strategy because the guidance gain is
switched only once and maintains PPNG until the end of
interception. The closed-loop response does not exhibit any
instability phenomenon. The result indicates that satisfying
Eq. (28) serves as a requirement to perform the repeated
AIM manoeuvre for enhanced observability rather than a
necessary condition for stability. The stability criterion is
inherently a sufficient condition for stability rather than a full
characterisation of the region of attraction. Nevertheless, the
proposed stability criterion is valuable in that satisfaction of
the requirement regarding the gain design guarantees closed-
loop stability, the argument which has been unavailable with
the standard Lyapunov stability theory.

B. Performance of Observability-Enhanced Optimal Guidance
[6]
Simulation case 2 aims to demonstrate with the numerical

example using OEOG that the relaxed stability criterion based

on Theorem 2 extends the feasible range of the design param-
eter for guaranteed asymptotic stability. For this purpose, the
feasible range of 𝜔 based on the standard stability criterion
is first obtained. The navigation gain of Eq. (38) satisfies the
following properties

𝜕ℎ(𝑧)
𝜕𝑧

= cot 𝑧 − 𝑧 csc2 𝑧 < 0 for 0 ≤ 𝑧 < 𝜋

𝜕𝑁 (𝜏)
𝜕𝜏

= −𝑁2
𝑓 𝑧
𝜕ℎ(𝑧)
𝜕𝑧

> 0 for 𝜏0 ≤ 𝜏 < ∞
(60)

By substituting 𝑧(𝜏0) = 𝜔
𝑁 𝑓

( 𝑟0
𝑉

)𝑁 𝑓 into Eqs. (38) and (13), the
stability criterion in terms of 𝜔 can be obtained as

𝐾 (𝑧) = 𝑁 − 2 > 𝜔
( 𝑟0
𝑉

)𝑁 𝑓

cot
(
𝜔

𝑁 𝑓

( 𝑟0
𝑉

)𝑁 𝑓

)
− 2 > 0 (61)

Equivalently, the feasible range Ωstandard,𝐾>0 can be determined
as

Ωstandard,𝐾>0 =

[
0, 𝑁 𝑓

(
𝑉

𝑟0

)𝑁 𝑓

ℎ−1
(

2
𝑁 𝑓

)]
(62)

where ℎ−1 (𝑥) is the inverse function of ℎ(𝑥) = 𝑥 cot 𝑥. By
substituting the simulation parameters into Eqs. (48) and (62),
the feasible range of 𝜔 guaranteeing asymptotic stability based
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on the extended and the standard stability criteria can be
calculated as follows.

Ωextended,F>0 = [0, 0.00190], Ωstandard,𝐾>0 = [0, 0.00077]

It is shown that there exists an inclusive relation between the
feasible ranges as Ωstandard,𝐾>0 ⊂ Ωextended,F>0. Likewise, the
feasible range of 𝑇 can be calculated as 0 ≤ 𝑇 ≤ 1.2413 from
Eq. (48).

TABLE I: Simulation Parameter for Case 2

Case 2-1 2-2 2-3 2-4 2-5 2-6
𝜔 0.7E-4 1.4E-4 1.9E-4 1.901E-4 1.905E-4 2.0E-4
𝑇 0 0.5791 1.2395 1.2413 1.2487 1.4406

Six examples are considered with different values of 𝜔 for
comparative study. The parameters and the corresponding 𝑇
is summarised in Table I. Note that 𝜔 for case 2-1 lies in
the feasible range Ωstandard,𝐾>0, and 𝜔 for cases 2-5 and 2-
6 is assigned outside the feasible range. Figure 3 shows the
simulation result. The missiles for cases 2-1 to 2-4 achieve
successful interception. For case 2-1, the positive gain 𝐾

leads to the monotonic convergence to the collision course as
shown in Fig. 3-(b). When 𝜔 is chosen in the feasible range
(cases 2-2, 2-3, and 2-4), the gain 𝐾 takes a negative value at
the beginning due to the observability enhancing manoeuvre,
which increases the Lyapunov function in this period, as shown
in Figs. 3-(b) and 3-(c). Since 𝑇 obtained by Eq. (48) lie in the
feasible range as shown in Table 1, F0 is kept positive after
𝜏 ≥ 𝜏0 + 𝑇 , and 𝑉 (𝜏) consistently converges to zero as shown
in Fig. 3-(c). It implies that the asymptotic convergence to the
collision course is assured in the context of extended stability
theory. It is also observed that the trajectory is elongated as
the 𝜔 is selected as the closest to the extreme value. Any
larger 𝑇 in the stable range permits a longer period of the
increase LOS rate and thus elongates the path. It is noted that
a large 𝜔 as shown in cases 2-5 and 2-6 causes an abrupt
manoeuvre and deviates from the collision course when 𝜔
is selected outside the feasible range. The infeasible 𝑇 cannot
ensure the asymptotic convergence to the collision course, and
the missile fails to intercept the target.

C. Performance of Guidance Law with Guaranteed Non-
monotonic Convergence
In this simulation, the weaving guidance law designed in

Sec. III-C is considered. Three cases of the parameter sets are
considered to demonstrate the performances with the stability
perspective. For case 3-1, 𝐴𝑤 and 𝜔 are selected to satisfy the
criterion based on the standard Lyapunov stability theory. For
the others, 𝐴𝑤 is calculated by a specified 𝑇 = 4, and different
values of 𝜔 are assigned within the range obtained in Eq. (58)
as follows.

𝐴𝑤 = − (𝑁 − 2)𝑇

Si
(

exp(𝑇)
exp(𝑇)+1𝜋

)
− Si

(
𝜋

exp(𝑇)+1

) + 0.01 = −2.22, 𝜔 ∈
[
0,

𝑟0
500

sin−1
(

2 − 𝑁
𝐴𝑤

)]
= [0, 9.399]

Figure 4 shows the simulation results. Missiles for all cases
successfully intercept the target; meanwhile ¤_ and 𝜎 exhibit
oscillatory response while converging to zero. As shown in

case 3-1, 𝐴𝑤 is assigned for a small value to keep 𝐾 positive,
and therefore the perturbation effect is insignificant. When
𝐴𝑤 is selected considering the extended stability theorem,
it amplifies the magnitude of oscillation. The gain 𝐾 (𝜏)
alternates to a negative value, F keeps positive for all interval
to ensure stability. 𝜔 contributes to the oscillation frequency
in 𝐾 , which is fortified as it increases. The responses can
be explained along with stability. This result indicates that
the choice of 𝐴𝑤 and 𝜔 in the design process can ensure the
asymptotic stability of the system while exploiting the increase
of the Lyapunov function in some intervals.

V. Conclusion
This study presented a new stability criterion for propor-

tional navigation guidance laws with range-varying naviga-
tion gain. The stability criterion does not demand the time
derivative of the Lyapunov function to be strictly negative.The
proposed criterion allows even increase of the Lyapunov
function in some intervals while ensuring overall asymptotic
stability. This stability condition is expressed in terms of the
integral of navigation gain corresponding to the Lyapunov
function variation. The length of the interval for the integral
represents the degree of stability under which the guidance
command tolerates the increase in the Lyapunov function and
stabilises asymptotically. The stability condition suggested in
this study applies to a wider class of guidance laws including
those involving weaving manoeuvres. This analysis can be
utilised to design new guidance schemes, e.g., guidance with
evasive and observability-enhanced manoeuvres. The relaxed
stability criterion may also provide a useful insight towards
other control problems that demand dual-control approaches.
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