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Abstract We present a frame- and reparametrisation-
invariant formalism for quantum field theories that include
fermionic degrees of freedom. We achieve this using methods
of field-space covariance and the Vilkovisky–DeWitt (VDW)
effective action. We explicitly construct a field-space super-
manifold on which the quantum fields act as coordinates. We
show how to define field-space tensors on this supermani-
fold from the classical action that are covariant under field
reparametrisations. We then employ these tensors to equip
the field-space supermanifold with a metric, thus solving a
long-standing problem concerning the proper definition of a
metric for fermionic theories. With the metric thus defined,
we use well-established field-space techniques to extend the
VDW effective action and express any fermionic theory in a
frame- and field-reparametrisation-invariant manner.

1 Introduction

The same theory of physics can often be written in many
different ways. By choosing a different parametrisation of
the underlying degrees of freedom, one can make the theory
appear very different. However, although intermediate cal-
culations may differ, the predictions of the theory should be
the same regardless of which parametrisation is chosen. This
idea is known as reparametrisation invariance.

Although one might expect reparametrisation invariance
to be satisfied almost trivially, there are actually several the-
ories of physics for which it is not obeyed, most notably
Quantum Field Theories (QFTs). As was first noted by Vilko-
visky [1,2], the standard definition of the quantum effective
action [3–6] for QFTs yields different results off-shell for
different parametrisations of the same theory [7–10]. These
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differences persist even when calculations are performed per-
turbatively using Feynman diagrams [11].

There have been several attempts to rectify these issues and
define a formalism in which reparametrisation invariance is
made manifest. Most progress in this direction has been made
using the technique of field-space covariance [1,2,12–20]. In
such an approach, the fields are interpreted as coordinates on
a manifold, known as the field-space manifold. In this way,
field redefinitions can be interpreted as diffeomorphisms of
the field space. With this identification, we can lean on the
vast resources of differential geometry to construct theories
for which reparametrisation invariance is made manifest. All
we need is to work exclusively with field-space tensors and
ensure that all field-space indices are fully contracted. This
formalism led to the reparametrisation invariant Vilkovisky–
DeWitt (VDW) effective action [1,2,13].

The method of field-space covariance has been very suc-
cessful for scalar field theories and has also been applied
to gravity [1,2,11,21–29] and gauge theories [1,2,7,30–32].
However the formalism has had less success in theories with
fermionic degrees of freedom. While there have been some
attempts to construct the VDW effective action for fermionic
theories, these have either made no attempt to calculate the
metric of the field-space [13,14] or used a definition specific
to the model under consideration [33,34]. As of yet, there
has been no method to systematically define the field-space
manifold for fermionic theories and this has potentially pre-
vented the use of the VDW formalism from becoming more
widespread.

The utility of generalizing the formalism to such theories
should be readily apparent. Fermions are an integral part of
all realistic quantum field theories, including the Standard
Model [35–37]. By constructing the field space for theories
with fermionic degrees of freedom, we will complete the
formalism and will therefore be able to describe all quantum
field theories in a way that is manifestly reparametrisation
invariant. The goal of this paper is therefore to explicitly
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construct a field space for fermionic theories and thereby
extend the applicability of the VDW effective action.

There are two main distinctions between fermionic fields
and bosonic fields that affect how we construct the field space.
First is the fact that fermions anti-commute with each other
[38–40]. This requires the introduction of new mathematics
to describe them even at the classical level – namely the intro-
duction of Grassmannian fields [41]. To include such anti-
commuting degrees of freedom in this formalism, we must
generalise the field space to a supermanifold [42–49]. This is
a manifold in which some of the coordinates are Grassman-
nian. We will discuss the implications of this in more detail
in Sect. 3.

In line with the conventions of the literature on superman-
ifolds, we will be using the prefix ‘super’ in several con-
texts. For example, we will employ the superdeterminant,
supertranspose and even a notion of supersymmetric (these
terms will be defined in due course). We wish to empha-
sise that, despite their names, these terms have nothing to
do with Supersymmetry (SUSY) as it is usually understood
in particle physics [50–52]. The formalism derived in this
paper is applicable to all theories regardless of their under-
lying symmetry and thus applies equally to both Supersym-
metric and non-Supersymmetric theories. We shall distin-
guish between the two concepts by writing terms related to
supermanifolds in lower case. In contrast, when referring to
theories with a physical Grassmannian symmetry, we shall
always use the term Supersymmetry with a capital S or the
acronym SUSY.

The second novelty of fermionic fields is that their equa-
tions of motion are only first order. This is in contrast to the
equations of motion for bosonic fields, which are of second
order and, in the absence of potential terms, constitute the
geodesic equation of the field space. This difference arises
from the fact that only single derivatives of fermions appear
in the Lagrangian. Because of this, a new definition of the
field-space metric is required for such theories. In fact, if we
simply kept the same definition as we had for scalar field the-
ories [11], we would get a singular metric when fermionic
degrees of freedom are included.

The paper is laid out as follows. We start in Sect. 2 by
reviewing the construction of the field space and the VDW
effective action for scalar field theories. In Sect. 3 we then
review the properties of supermanifolds and highlight the
implications of the Grassmannian nature of fermions. In
Sect. 4 we define a supermanifold for QFTs that include
fermionic degrees of freedom. In Sect. 5 we show how field-
space tensors on this supermanifold can be extracted from
the Lagrangian. In Sect. 6 we show how to equip the field
space supermanifold with a metric. We discuss what prop-
erties such a metric should possess in order to be consistent
with known results and show how a metric with the correct
properties can be constructed explicitly from the Lagrangian.

For illustration, we discuss a counterexample of a candidate
metric with bad properties in Appendix A. In Sect. 7 we then
combine these ideas with the VDW effective action in order
to construct a fully reparametrisation invariant expression for
the effective action. We then show some explicit examples of
our construction in Sect. 8, before summarising our findings
in Sect. 9.

2 Field-space covariance for scalar fields

The field-space covariant formalism was pioneered by Vilko-
visky [1,2] and DeWitt [13]. In this section we review their
construction of the field space for scalar field theories. This
will help us identify what aspects of the construction must
be altered when considering fermionic degrees of freedom.

We consider a theory of N scalar fields φA, collectively
denoted as φ living in a fixed spacetime with metric gμν .
Such a theory is generally described by the Lagrangian

L = 1

2
kAB(φ)gμν∂μφA∂νφ

B − V (φ) , (2.1)

where kAB(φ) is a general model function for the kinetic term
and V (φ) represents the scalar potential. We define the field
space to be an N -dimensional manifold with coordinates φA.
In so doing, reparametrisations of the fields

φA → ˜φA(φ) (2.2)

are interpreted as diffeomorphisms of the field space. We can
then impose reparametrisation invariance using well-known
techniques from differential geometry.

In order to take full advantage of these techniques, we
equip the field-space manifold with a metric

GAB = gμν

4

∂2L
∂(∂μφA)∂(∂νφB)

− ∂2L
∂φA∂(�φB)

− ∂2L
∂φB∂(�φA)

, (2.3)

which, for the Lagrangian (2.1), gives GAB = kAB . Note that
this definition differs from the one in [11] by the addition of
the last two terms. These terms ensure that the metric does
not depend on total derivatives appearing in the Lagrangian.
The two definitions are identical for Lagrangians that contain
no second derivative terms, as it is the case for (2.1).

With the metric defined in (2.3), we may introduce a con-
nection into the field space via the Christoffell symbols

�A
BC ≡ 1

2
GAD

[

∂GBD

∂φC
+ ∂GDC

∂φB
− ∂GBC

∂φD

]

, (2.4)
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where GAB is the inverse of GAB . Hence, we are able to
define a covariant derivative on the field space:

∇C X
A = ∂X A

∂φC
+ �A

CDX
D,

∇C XA = ∂XA

∂φC
− �D

CAXD ,

(2.5)

with obvious generalisation to higher order tensors.
To take account of the spacetime dependence of the fields,

the field-space manifold is often generalised to the infinite-
dimensional configuration space manifold by taking each
spacetime configuration of the fields as a different dimen-
sion on the manifold. This manifold can be described by
coordinates

φ
̂A ≡ φA(xA). (2.6)

Here we have introduced a condensed notation in which an
index with a hat̂ represents both a discrete field-space index
and a point in spacetime.

The metric of the configuration space is given by

G
̂ÂB = gμν

4

δ2S

δ(∂μφ
̂A)δ(∂νφ

̂B)
= GABδ(4)(xA − xB), (2.7)

where S = ∫

d4x
√−gL is the action and δ(4)(x) is the

covariant four-dimensional Dirac delta function, normalised
such that
∫ √−g δ(4)(x) d4x = 1. (2.8)

The definition of the configuration space metric leads to the
following definition for the configuration space connections

�
̂A
̂B̂C

≡ 1

2
G

̂ÂD
[

δG
̂B̂D

δφ
̂C

+ δG
̂D̂C

δφ
̂B

− δG
̂B̂C

δφ
̂D

]

= �A
BCδ(4)(xA − xB)δ(4)(xA − xC ) (2.9)

and hence configuration space covariant derivatives

∇
̂C X

̂A = δX ̂A

δφ
̂C

+ �
̂A
̂ĈD

X
̂D,

∇
̂C X̂A = δX

̂A

δφ
̂C

− �
̂D
̂ĈA

X
̂D,

(2.10)

with straightforward generalisation to higher order tensors.
Here we have adopted the condensed Einstein-DeWitt nota-
tion [21] in which repeated configuration space indices imply
summation over the discrete index and integration over
spacetime.

Having set up the field space and configuration space tech-
nology, we may now use the results of Vilkovisky [1,2] and

DeWitt [13] to write a reparametrisation-invariant expression
for the quantum effective action

exp

(

i

h̄
�[ϕ]

)

=
∫

[Dφ]√det G(φ) exp

[

i

h̄

(

S[φ]

+
∫

d4x
√−g

∂�[ϕ]
∂ϕA

�A[ϕ,φ]
)

]

.

(2.11)

Here ϕ stands for the mean field and

�A[ϕ,φ] = (C−1[ϕ])AB σ B[ϕ,φ] (2.12)

is a linear combination of the tangent vectors to the geodesics
connecting ϕ and φ, which are denoted σ A[ϕ,φ]. The
matrix C[ϕ]AB is chosen such that that 〈�A〉 = 0 and
thus all tadpole diagrams evaluate to zero. It can be shown
that C[ϕ]AB can be expanded as [13]

CA
B[ϕ] = 〈∇Bσ A[ϕ,φ]〉

=
〈

δAB − 1

3
RA

CBD[ϕ] σC [ϕ,φ] σ D[ϕ,φ] + · · ·
〉

(2.13)

where RA
CBD is the field-space Riemann tensor and all

covariant derivatives are taken with respect to the mean field
ϕ. Similarly, σ A[ϕ,φ] can be expanded as [1,2]

−σ A[ϕ,φ] = − (ϕA − φA)

+ 1

2
�A
BC [ϕ](ϕB − φB)(ϕC − φC ) + · · · .

(2.14)

The VDW effective action can be expanded perturbatively
using the background field method to give, at one and two
loop orders [15],

�(1)[ϕ] = − i

2
ln det ∇ ̂A∇

̂B S, (2.15)

�(2)[ϕ] = 1

8



̂ÂB

̂ĈD∇(̂A∇

̂B∇
̂C∇

̂D)S

− 1

12



̂ÂB

̂ĈD


̂ÊF

× (∇(̂A∇
̂C∇

̂E)S
)(∇(̂B∇

̂D∇
̂F)S

)

, (2.16)

respectively, where S = S[ϕ] is the action expressed in terms
of the mean field ϕ, 


̂ÂB = (∇
̂A∇

̂B S
)−1 is the covariant

propagator, and the parentheses (. . . ) denote symmetrisation
with respect to the indices enclosed.

In addition to computing quantum corrections using the
effective action formalism, we can also calculate correc-
tions perturbatively using Feynman diagrams [53]. In order
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to maintain reparametrisation invariance, these should be cal-
culated covariantly using covariant Feynman rules

A1

A2 A3

An

= ∇(̂A1
. . . ∇

̂An)
S. (2.17)

Notice that for theories with a non-trivial field space, these
covariant Feynman rules differ from the usual ones. This is
entirely by design, since the usual Feynman rules are not
field-space tensors and so can lead to results that depend on
the pararametrisation of the fields [11].

3 Supermanifolds

In order to construct a field-space manifold for fermionic
theories we must extend the notion of a Riemannian manifold
to include anticommuting coordinates. This is the definition
of supermanifold [42–47]. In this section we review the basic
properties of supermanifolds that will affect our construction
of the field space. We encourage interested readers to consult
[48,49] for further details of the rich mathematics of this
topic.

Originally, supermanifolds were invented in the context of
Supersymmetry (SUSY) [54,55]. In this context, the usual
spacetime is augmented with new Grassmannian coordinates
and diffeomorphisms of the new superspace result in Grass-
mannian Noether symmetries. However, since their inven-
tion, the mathematics of supermanifolds has been developed
as a subject in its own right and now has applications far
beyond SUSY [56–58].

It is in this latter context that we employ supermanifolds in
this paper. We are extending not the spacetime manifold, but
the field-space manifold. Thus, the new Grassmannian dif-
feomorphisms are not physical Grassmannian symmetries of
the theory, but merely reparametrisations of the fermionic
fields. As with all reparametrisations, these field-space dif-
feomorphisms cannot be considered a symmetry in the tradi-
tional sense and there will, in general, be no Noether current
or gauge degrees of freedom associated with them.

To set our notation, we consider a supermanifold with n
commutative coordinates and m anti-commutative coordi-
nates. We denote the coordinates xα withα = (1, 2 . . .m + n).
When we need to refer to the commutative and anti-
commutative coordinates separately we shall use x A for the
former and x I for the latter, with letters from the start of
the Latin alphabet indicating commutative coordinates and
letters from the middle of the same alphabet indicating anti-
commutative coordinates.

The first subtlety we must consider is that when differenti-
ating with respect to an anticommuting coordinate, we must

specify whether we are differentiating from the left or from
the right. The two types of differentiation are related by

−→
∂αX = (−1)α(X+1) X

←−
∂α. (3.1)

In the above, we have introduced a new notation common
throughout the literature on supermanifolds. The expressions
in an exponent of −1 are not meant to be taken literally, but
as labels standing for the grading of their respective quan-
tities: 1 for anticommuting quantities and 0 for commuting
quantities. Thus, the quantity α that appears in the prefactor
on the RHS of (3.1) is not to be considered an index and is
not summed over as would be expected by the Einstein sum-
mation convention. Instead, it should be regarded as a label
that is 1 when α refers to an anticommuting coordinate and 0
when α refers to a commuting coordinate. Similarly, the X
in the exponent of −1 in (3.1) is to be considered a label that
is 1 when X is an anticommuting object and 0 when X is a
commuting object. Thus, (3.1) tells us that there is a factor
of −1 between a left and right derivative, when differenti-
ating a commuting object with respect to an anticommuting
coordinate, but that they are identical in all other cases.

When performing a diffeomorphism

xα → x̃α = x̃α(x), (3.2)

this difference between left and right derivatives leads to
a distinction between left and right Jacobians. These are,
respectively,

α J
β =

−→
∂

∂xα
x̃β, β J sTα = x̃β

←−
∂

∂xα
. (3.3)

We distinguish between tensors that transform with a left or
right Jacobian by writing the appropriate index to the right or
left, respectively, of the tensor. Thus, V α is a vector that trans-
forms with a left Jacobian and αV is a vector that transforms
with a right Jacobian, e.g. ˜V α = V β

β Jα and α
˜V = α J sTβ

βV .
Similarly, we define left and right covectors Vα and αV that
transform with the left and right inverse Jacobians, respec-
tively.

The superscript sT denotes the operation of supertranspo-
sition and is defined as

αMsT
β = (−1)β(α+1)

βM
α,

αM
sT
β = (−1)α+β+αβ

βMα,

αMβ sT = (−1)αβ βMα.

(3.4)

Note that the rules of supertransposition are different depend-
ing on the index placement. The supertranspose satisfies the
identities one would expect, namely
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(MsT)sT = M,

(M−1)sT = (MsT)−1,

(MN )sT = N sTMsT.

(3.5)

Note that this is in contrast to the regular transpose for
which (MN )T 	= NTMT in the presence of anticommuting
coordinates.

The definition of the supertranspose leads to the notion
of supersymmetric and anti-supersymmetric matrices, which
satisfy MsT = M and MsT = −M , respectively. Again, we
emphasise that the definition of supersymmetric here should
not be confused with the theory of SUSY.

Finally, we consider the superdeterminant, which is some-
times known as the Berezinian [43]. To define the superde-
terminant, we consider a square rank-2 tensor on the super-
manifold (sometimes known as a supermatrix), which has
the form

αMβ =
(

A AB ACJ

I DB I BJ

)

. (3.6)

Here A AB and I BJ are n × n and m × m matrices of com-
muting numbers, respectively and ACJ and I DB are n × m
and m×n matrices of anticommuting numbers, respectively.
The superdeterminant of such a matrix is given by

sdet M = det(A − CB−1D)

det B
. (3.7)

The superdeterminant, defined in this way, is such that the
Berezinian integral measure
√

sdet(M) dn+mx (3.8)

is invariant under diffeomorphisms of the supermanifold (3.2)
[43]. This is true for any rank-2 tensor αMβ .

4 The field space for scalar-fermion theories

In this section we construct the field space for a theory with N
real scalar fields and M Dirac fermions.1 Recalling that, in 4-
dimensional spacetime, each Dirac fermion propagates four
complex, or eight real, anticommuting degrees of freedom
[38], we see that the field space for such a theory should
be a supermanifold with N commuting coordinates and 8M
anticommuting coordinates. Throughout this paper, we shall
use the following set of coordinates to describe this field-
space supermanifold

α =
(

φA, ψ1
a , ψ1

ȧ, ψ2
a , ψ2

ȧ, . . .
)

, (4.1)

where the subscripts a and ȧ refer to the spinor compo-
nents of the Dirac fermions. As done previously, we use

1 A generalisation of this approach to theories with Weyl fermions will
be straightforward.

Greek indices from the beginning of the alphabet, which
run 1 ≤ α ≤ N + 8M , for the full supermanifold and, when
we need to refer to them separately, we will use capital
Latin letters from the beginning of the alphabet for the com-
muting coordinates and capital Latin letters from the mid-
dle of the alphabet for anticommuting coordinates. These
run 1 ≤ A ≤ N and 1 ≤ I ≤ 8M , respectively. We will refer
to all the field-space coordinates collectively as �.

A general field reparametrisation of the form

α → ˜α = ˜α(�) (4.2)

is equivalent to a diffeomorphism of the field-space super-
manifold and we can therefore enforce reparametrisation
invariance using the techniques of differential supergeome-
try discussed in Sect. 3. We note that the transformation (4.2)
is quite general and can, for instance, involve Grassmannian
parameters. However, the transformation cannot depend on
derivatives of the fields and so there are still certain trans-
formations that are not captured by (4.2), for example the
transformations of SUSY [50,51]. We believe extending the
formalism to include such transformations will not be too
difficult, but choose to leave such considerations for future
work.

With the field space thus defined, let us write the most
general Lagrangian for this theory using field-space tensors.
Including terms up to quadratic order in derivatives, we get

L = 1

2
gμν∂μα

αkβ(�) ∂ν
β + i

2
ζμ
α (�) ∂μα −U (�).

(4.3)

This expression contains three model functions that define
our theory: αkβ(�) is a rank-2 field-space tensor, ζ

μ
α (�) is

a field-space covector and a spacetime vector and U (�) is a
field-space and spacetime scalar. These model functions can,
in general, depend on both the scalar and fermion fields in
the theory, but not on their derivatives.

Let us analyse these three model functions in turn. The
tensor αkβ is the scalar field-space metric. In the absence of
fermion fields, this object just reduces to the metric (2.3).
Because fermionic fields only enter the Lagrangian with a
single derivative, we see that this tensor only has support in
the bosonic sector, implying that

αkI = I kα = 0. (4.4)

Because of this, the tensor αkβ is singular and cannot play
the role of the field-space metric in the presence of fermions.

Next we look at the potential term U (�). This term con-
tains the scalar potential V (φ), as well as both the fermion
mass terms and any momentum-independent interactions
between the scalars and fermions such as Yukawa interac-
tions [59]. As in the scalar case, the potential U (�) plays no
role in the construction of the field-space manifold and so
acts only as an external force.
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Finally, we consider the model function ζ
μ
α . This model

function has no analogue in a pure scalar field theory, because
scalars cannot appear in the Lagrangian with a single deriva-
tive in a diffeomorphism invariant way. Since ζ

μ
α cannot

depend on derivatives of the fields and there are no spacetime
vectors in this theory, the spacetime index μ of this tensor
can only come from a γ μ matrix. This tells us why such a
term cannot appear in a pure scalar theory, since there would
then be no fermions to contract with the spinor indices of γ μ.

As an example to show the ubiquity of the expression (4.3),
we consider a theory of free scalars and fermions with
Lagrangian

L =
∑

A∈scalars

[

1

2
gμν∂μφA∂νφ

A − 1

2
m2

A(φA)2
]

+
∑

X∈fermions

[ i

2

(

ψ Xγ μ∂μψ X − ∂μψ Xγ μψ X
)

−mXψ XψX

]

. (4.5)

Such a theory has the following model functions:

αkβ =
(

δAB 0N×8M

08M×N 08M×8M

)

,

ζμ
α =

(

0N , ψ1
ȧγ

μ
ȧa, γ

μ
ȧaψ

1
a , ψ2

ḃ
γ

μ

ḃb
, γ

μ

ḃb
ψ2
b , . . .

)

U =
∑

A∈scalars

1

2
m2

A(φA)2 +
∑

X∈fermions

mXψ XψX . (4.6)

We will discuss more general examples in Sect. 8.
We can extract the model functions from the Lagrangian

in a constructive manner with the following definitions

αkβ = gμν

4

−→
∂

∂(∂μα)
L

←−
∂

∂(∂νβ)
, (4.7)

ζμ
α = 2

i

(

L − 1

2
gμν∂μα

αkβ ∂ν
β

) ←−
∂

∂(∂μα)
(4.8)

,U = 1

2
gμν∂μα

αkβ(�) ∂ν
β + i

2
ζμ
α (�) ∂μα − L.

(4.9)

Such a construction is important in ensuring the formalism
developed in this paper is unique.

5 Tensors in the field space

Having defined the field-space supermanifold, we now wish
to investigate which field-space tensors can be constructed,
given only the Lagrangian of the theory. The ultimate goal is
to define a metric for the field space so that we can apply the
formalism of the VDW effective action.

The model function ζ
μ
α is a covector in field space, but it

is also a spacetime vector. It would be nice to remove the μ

index somehow in order to obtain a pure field-space covector.
The simplest way to achieve this would be to contract ζμ

α with
some spacetime covector. However, there are no spacetime
covectors in the theory and ζ

μ
α does not have the right spinor

structure to allow a contraction with a γ μ matrix.
Instead, we rely on the observation noted earlier – the

spacetime properties of ζ
μ
α are inherited from a γ μ matrix.

We can therefore render a pure field-space covector from ζ
μ
α

by surgically removing the γ μ matrices.
We can do this in a rigorous way by defining the notion of

differentiation with respect to a γ μ matrix. In order to define
such a notion, we remember that any matrix Maȧ in spinor
space can be uniquely expressed in terms of 16 orthogonal
Lorentz-covariant bilinears as

Maȧ =
∑

i=S,P,V,A,T

a(i) �
(i)
aȧ ,

�(i) ∈ {I4, γ 5, γ μ, γ μγ 5, σμν} ,

(5.1)

where �(i) (with i = S, P, V, A, T ) are the basis matrices,
a(i) is a coefficient, and σμν ≡ i/2 [γ μ, γ ν]. We can use this
expansion to define the general partial differentiation,

δF

δ�(i)
≡ lim

ε(i)→0

F[�(i) → �(i) + ε(i) I4] − F[�(i)]
ε(i)

, (5.2)

such that when applied to a general matrix Maȧ for �(V ) =
γ μ, we have

δMaȧ

δγ μ
= a(V )

μ δaȧ . (5.3)

Note that we must insist that all spinor matrices are writ-
ten in the form (5.1) before applying (5.2) to ensure that no
ambiguities arise from the Clifford algebra.

We may therefore define2

ζα = 1

4

δζ
μ
α

δγ μ
. (5.4)

For the free theory (4.5) this gives

ζα =
(

0N , ψ1
ȧ, ψ1

a , ψ2
ḃ
, ψ2

b , . . .
)

. (5.5)

The quantity ζα defined in (5.4) is a true field-space cov-
ector and transforms as

ζα → ˜ζα = ζβ
β
(

J−1
)sT

α
(5.6)

under a field redefinition (4.2), where

β
(

J−1
)sT

α
= β

←−
∂

∂˜α
(5.7)

2 The factor of 1/4 is included in order to compensate for the factor of
4 arising from the contraction of spacetime indices.
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is the right inverse Jacobian of the transformation.
From ζα , we can also define a rank-2 tensor

αλβ =
−→
∂

∂α
ζβ − (−1)α+β+αβ

−→
∂

∂β
ζα . (5.8)

Despite the appearance of partial non-covariant derivatives
in (5.8), αλβ is still a rank-2 tensor and transforms as

αλβ → α
˜λβ = α

(

J−1
)γ

γ λδ
δ
(

J−1
)sT

β
. (5.9)

under a field redefinition (4.2). The reason why αλβ trans-
forms as a tensor despite the use of partial derivatives is the
same reason that the field strength tensor Fμν transforms
as a spacetime tensor in QED – namely, any connections
added to (5.8) would cancel between the two terms. This
cancellation also ensures that αλβ is left unchanged by the
addition of a total derivative to the Lagrangian. Note that the
matrix αλβ is odd under supertransposition (i.e. it is anti-
supersymmetric) obeying the property λsT = −λ.

Because of the presence of the scalar fields, the matrix αλβ

is singular even for well behaved theories limiting its useful-
ness. However, the sum

α�β = αkβ + αλβ (5.10)

is non-singular and therefore has an inverse and a non-zero
superdeterminant.

For the free theory (4.5), the definition (5.10) gives the
metric

α�β = αNβ ≡

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1N 0 0 0 0 · · ·
0 0 14 0 0 · · ·
0 14 0 0 0 · · ·
0 0 0 0 14 · · ·
0 0 0 14 0 · · ·
...

...
...

...
...

. . .

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (5.11)

6 The field-space metric

We now wish to define a metric for the field-space superman-
ifold. Such a metric should satisfy the following properties:

1. The metric should be determined solely and uniquely from
the action. As a corollary of this property, total derivatives
should not contribute to the metric.

2. The metric should transform as a rank 2 field-space tensor.
3. The metric should be supersymmetric, as any antisuper-

symmetric part will not contribute to the line element of
the field-space supermanifold.

4. The metric should not be singular, unless there are non-
dynamical degrees of freedom.

5. The metric should depend on the fields only and not on
their derivatives.

6. The metric for a theory with canonically normalised fields
should be given by

aHb ≡

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1N 0 0 0 0 · · ·
0 0 14 0 0 · · ·
0 −14 0 0 0 · · ·
0 0 0 0 14 · · ·
0 0 0 −14 0 · · ·
...

...
...

...
...

. . .

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (6.1)

which is the analogue of the Euclidean metric that governs
locally the supermanifold [48].

The tensor α�β may seem to be a good candidate for the
metric, but it does not satisfy property 3, since �sT 	= �.
This property is needed for a metric, since only the super-
symmetric part of a metric contributes to the field-space line
element. The supersymmetric part of α�β is αkβ which, as
we have argued before, cannot be used as a metric because
it is singular and so violates property 4.

One might be tempted to alter the definition (5.8) so that
there is a relative plus sign between the two terms instead
of a minus. However, as we show in Appendix A, such a
definition crucially depends on possible total derivatives that
one could add to the Lagrangian and so it violates property 1.

Instead we make use of a useful property of super-
manifolds, which is inherited from their relation to ordinary
Riemannian manifolds. A supermanifold can always be made
locally flat by a suitable change of coordinates [60]. There-
fore, by switching to these local inertial coordinates, we can
render the field-space metric into a known, simple form.

Mathematically, this is expressed in terms of vielbeins
[61] as follows:

αGβ = αe
a
aHb

besTβ , (6.2)

where αGβ is the field-space metric, αea are the vielbeins
and aHb is defined in (6.1).

But, we know from property 6 that in the local inertial
frame the fields should be locally canonical with the same
kinetic terms as (4.5). Therefore, in the local inertial frame,
we must have a�b = aNb as shown in (5.11) and so

α�β = αe
a
aNb

besTβ . (6.3)

The only unknowns in (6.3) are the vielbeins and thus we can
use this equation to calculate αea and, hence, the field-space
metric αGβ .

The relation (6.3) does not define the vielbeins αea

uniquely, but only up to a matrix a Xb that satisfies

a X
c
cNd

d XsT
b = aNb . (6.4)
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The most general such matrix can be written as a product of
two other matrices as

a X
b = aY

c
cX

b
0 . (6.5)

The second matrix cXb
0 is given by

a X
b
0 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ON 0 0 0 0 · · ·
0 x1 0 0 0 · · ·
0 0 x−1

1 0 0 · · ·
0 0 0 x2 0 · · ·
0 0 0 0 x−1

2 · · ·
...

...
...

...
...

. . .

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (6.6)

where ON is an orthogonal N × N matrix and xi (with i =
1, 2, . . . , M) are a set of M arbitrary invertible 4×4 matrices.

The first matrix aY b in (6.5) accounts for the fact that aNb

is invariant under the exchange of ψ I ↔ ψ I for any fermion
in the theory. Thus, we can multiply αea by any matrix that
implements such an exchange. There are 2M such matrices,
which have the form

aY
b =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1N 0 0 · · · 0
0 y1 0 · · · 0
0 0 y2 · · · 0
...

...
...

. . .
...

0 0 0 · · · yM

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (6.7)

where each of the yi (with i = 1, 2, . . . M) is equal to either
(

14 0
0 14

)

or

(

0 14

14 0

)

. (6.8)

We notice that a Xc
0 cHd

d XsT
0 b = aHb. Consequently,

the choice of ON and xi does not affect the field-space met-
ric (6.2). However, aY c

cHd
dY sT

b 	= aHb and hence, the
choice of yi will result in 2M different possible metrics.

However, only one of these metrics will have a signature
compatible with (6.1) with all minus signs on the lower left
diagonal. The other 2M − 1 choices of metric will all have
at least one minus sign on the upper right diagonal. There-
fore, only one choice of aY b will result in an acceptable field
space vielbein. Any other choice would result in a difference
between the signature of the local metric and the global met-
ric. Such a signature difference is inadmissible on a super-
manifold, in the same way as it is on a regular manifold.

We can, therefore, define a unique field-space metric by
insisting that the ψ Iψ I components of the metric are posi-
tive, while the ψ Iψ I components are negative.3

3 Note that such a definition can only be made unambiguously if these
entries have the same sign everywhere in field-space. This is always
the case. For these entries to change sign, they would have to pass
through zero, at which point the metric would become singular and the
corresponding field would become non-dynamical. Such a situation is
unphysical and thus this requirement is unambiguous.

With the field-space metric αGβ determined as described
above, we can now proceed to evaluate the field-space con-
nections through the Christoffell symbols

α�βγ = 1

2
αGδ

[

δGβ
←−
∂ γ + (−1)βγ

δGγ
←−
∂ β

−(−1)β
−→
∂ δ βGγ

]

. (6.9)

We can then use these connections to define covariant deriva-
tives on the field space

Xα←−∇β = Xα

←−
∂

∂β
+ α�βγ X

γ ,

Xα
←−∇β = Xα

←−
∂

∂β
− Xγ

γ �αβ,

(6.10)

with straightforward generalisation to higher order tensors.
The field-space supermanifold can be straightforwardly

generalised to an infinite-dimensional configuration-space
manifold with coordinates

α̂ ≡ α(xα). (6.11)

We can define the configuration space metric analogously
to (2.7) by

α̂Ĝβ = αGβδ(4)(xα − xβ). (6.12)

Similarly, we can define the configuration space connections

α̂�
̂βγ̂ ≡ 1

2
α̂G

̂δ
[

̂δĜβ

←−
δ

δφγ̂
+ (−1)βγ

̂δG γ̂

←−
δ

δφ̂β
− (−1)β

−→
δ

δφ̂δ
̂βG γ̂

]

= α�βγ δ(4)(xα − xβ)δ(4)(xα − xγ ) (6.13)

and hence configuration space covariant derivatives

X α̂←−∇
̂β = X α̂

←−
δ

δφ̂β
+ α̂�

̂βγ̂ X
γ̂ ,

X α̂
←−∇

̂β = X α̂

←−
δ

δφ̂β
− X γ̂

γ̂ �
̂βα̂,

(6.14)

with straightforward generalisation to higher order tensors.
Finally, we can define a reparametrisation invariant mea-

sure

[DM] = √|sdet G|
[

DN+8Mq

]

, (6.15)

where �q represent collectively the quantum field coordi-
nates corresponding to � defined in (6.11). We note that in
the local inertial frame |sdet H | = |sdet N | as can be seen
from (6.1) and (5.11). Since these two quantities transform in
the same way, we therefore conclude that |sdet G| = |sdet �|
in all frames. Thus, we can always replaceG with � in (6.15),
without affecting the measure if this proves an easier quantity
to calculate.
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7 The covariant effective action

With the metric, connections and invariant volume ele-
ment determined for the field space in the previous sec-
tion, we are now in a position to make use of the VDW
formalism [1,2,13–15] and define the quantum effective
action for theories with fermionic degrees of freedom in a
reparametrisation-invariant manner. This leads us to the fol-
lowing implicit equation:

exp(i�[�]) =
∫

√|sdet G| [D�q
]

exp
(

i S[�q ]

− i
∫

d4x
√−g �[�]

←−
∂

∂α
�α[�q ,�]

)

,

(7.1)

where � denotes the mean field in this section. In the
above, �α[�q ,�] is related to the supergeodesic tangent
vector σα[�q ,�] by

�α[�q ,�] = (C−1[�q ])αβ σβ [�q ,�] , (7.2)

whereCα
β [�q ] ensures that tadpoles evaluate to zero. In [13],

it was found that

Cα
β [�q ] = 〈σα[�q ,�]←−∇β 〉

=
〈

δα
β − (−1)βγ 1

3
Rα

γβδ[�q ] σ δ[�q ,�] σγ [�q ,�] + . . .

〉

,

(7.3)

where the quantum expectation 〈 〉 is calculated using (7.1).
In this VDW formulation, the tangent vector σα[�q ,�] can
be expanded to give

− σα[�q ,�] = −(α
q − α)

+ 1

2
�α

βγ [�q ](γ
q − γ )(β

q − β) + · · · . (7.4)

The effective action (7.1) can be expanded covariantly
giving at one- and two-loop levels,

�(1)[�] = i

2
ln sdet

(−→∇ α̂S
←−∇

̂β

)

, (7.5)

�(2)[�] = i

8
S
←−∇ α̂

←−∇
̂β

←−∇ γ̂
←−∇

̂δ
̂δγ̂ 


̂βα̂


+ (−1)γ̂
̂β+ε̂(̂δ+̂β) i

12

(

S
←−∇ ε̂

←−∇ γ̂
←−∇ α̂

)

× α̂

̂β γ̂ 


̂δ ε̂

̂ζ

(−→∇
̂ζ

−→∇
̂δ

−→∇
̂β S

)

. (7.6)

As expected, these expressions are fully reparametrisation
invariant.

The two-loop correction (7.6) to the VDW effective action
can also be written as a sum of two covariant Feynman dia-
grams, i.e.

�(2)[�] = + . (7.7)

Note that because of the choice (7.3), �(2)[φ] contains only
1PI graphs, whereas other possible one-particle reducible
diagrams, such as

, (7.8)

evaluate to zero.
In evaluating the expressions (7.5) and (7.6), we should

use the covariant Feynman rules, which are defined by

α1

α2 α3

αn

= ∇{̂α1 . . . ∇α̂n}S . (7.9)

Here the notation {· · · } implies supersymmetrisation over the
indices, i.e.

{αi · · ·αn} = 1

n!
∑

P

(−1)P P[αi · · ·αn] , (7.10)

where P runs over all permutations of the n indices and
(−1)P gives −1 when the permutation involves an odd num-
ber of fermionic commutations and +1 otherwise.

8 Examples

8.1 Single fermion

As an explicit example, let us consider a theory with a single
scalar field φ and a single Dirac fermion field ψ . The most
general Lagrangian for such a theory with up to quadratic
kinetic terms is

L = 1

2
k(φ)∂μφ∂μφ − 1

2
h(φ)ψγ μψ∂μφ + i

2
g(φ)ψγ μ∂μψ

− i

2
g(φ)∂μψγ μψ − Y (φ)ψψ − V (φ), (8.1)

where k, h, g, Y and V are arbitrary real functions of φ.
Employing (4.7) and (4.8), we may derive the kinetic

model functions for (8.1),

αkβ =
⎛

⎝

k(φ) 0 0
0 0 0
0 0 0

⎞

⎠ ,

ζμ
α = (

ih(φ)ψγ μψ, g(φ)ψγ μ, g(φ)γ μψ
)

.

(8.2)

By means of (5.4), we then obtain

ζα = (

ihψψ, gψ, gψ
)

(8.3)
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and (5.10) yields

α�β =
⎛

⎝

k 1
2 (g′ − ih)ψ 1

2 (g′ + ih)ψ
1
2 (g′ − ih)ψ 0 g14
1
2 (g′ + ih)ψ g14 0

⎞

⎠ ,

(8.4)

where a prime ′ indicates differentiation with respect to the
field φ.

We may now calculate the field-space metric αGβ through
the vielbeins as described in Sect. 6. Solving Eq. (6.3), we
see that the vielbeins for this theory are

αe
a =

⎛

⎜

⎝

√
k g′+ih

2
√
g ψ x g′−ih

2
√
g ψ x−1

0
√
gx 0

0 0
√
gx−1

⎞

⎟

⎠
, (8.5)

where x is an arbitrary invertible 4×4 matrix that can depend
on both φ and ψψ .4 As discussed in Sect. 6, the choice
of x(φ,ψψ) is irrelevant and will cancel out when we cal-
culate the field-space metric.

Using (6.2), we therefore find the field-space metric to be

αGβ =
⎛

⎜

⎝

k − g′2+h2

2g ψψ − 1
2 (g′ − ih)ψ 1

2 (g′ + ih)ψ
1
2 (g′ − ih)ψ 0 g14

− 1
2 (g′ + ih)ψ −g14 0

⎞

⎟

⎠
.

(8.6)

The superdeterminant of the metric αGβ to be used in the
path integral measure is

sdet(G) = k

g8 . (8.7)

Substituting (8.6) into (6.9), we may calculate the field-
space affine connections of the theory, which we find to be

φ�φφ = k′

2k
,

ψa�φφ =
[

−h2 + g′2

4g2 + g′′ + ih′ − k′
2k (g

′ + ih)

2g

]

ψa,

ψa�ψbφ = ψa�φψb = g′ + ih

2g
δab,

ψ ȧ�φφ =
[

−h2 + g′2

4g2 + g′′ − ih′ − k′
2k (g

′ − ih)

2g

]

ψ ȧ,

ψ ḃ�ψ ȧφ
= ψ ḃ�φψ ȧ

= g′ − ih

2g
δȧḃ, (8.8)

with all other connections vanishing.

4 Note that there exists another solution

αea =
⎛

⎜

⎝

√
k g′−ih

2
√
g ψx−1 g′+ih

2
√
g ψx

0 0
√
gx

0
√
gx−1 0

⎞

⎟

⎠
. But, as discussed in Sect. 6, this

leads to a metric with the wrong signature.

Knowing the field-space connections in (8.8), we may
evaluate the field-space Riemann tensor [48]

αRβγ δ = −α�βγ
←−
∂ δ + (−1)γ δ α�βδ

←−
∂ γ

+(−1)γ (β+ε) α�εγ
ε�βδ

−(−1)δ(ε+β+γ ) α�εδ
ε�βγ . (8.9)

In this way, we find that all the components of αRβγ δ van-
ish identically, which implies that the field space described
by (8.6) is flat. Consequently, the theory (8.1) can be
made canonical with a suitable field reparametrisation. The
reparametrisation in question is

φ → ˜φ =
∫ φ

0

√

k(φ)dφ ,

ψ → ˜ψ = √

g(φ) exp

(

i

2

∫ φ

0

h(φ)

g(φ)
dφ

)

ψ ,

ψ → ˜ψ = √

g(φ) exp

(

− i

2

∫ φ

0

h(φ)

g(φ)
dφ

)

ψ .

(8.10)

Introducing the field-space multiplet

˜α =
(

˜φ, ˜ψ, ˜ψ

)

, (8.11)

we find

L = 1

2
∂μ

˜φ∂μ
˜φ + i

2
˜ψγ μ∂μ

˜ψ

− i

2
∂μ

˜ψγ μ
˜ψ − ˜Y (˜φ)˜ψ˜ψ − ˜V (˜φ), (8.12)

is canonical as expected. In (8.12), we have defined

˜Y (˜φ) = g(φ)Y (φ),

˜V (˜φ) = V (φ) .
(8.13)

Notice that, with the choice

x = exp

(

i

2

∫ φ

0

h(φ)

g(φ)
dφ

)

14, (8.14)

the vielbeins in (8.5) can be identified with the Jacobians of
the transformation (8.10). Indeed, we see

αe
a =

−→
∂

∂α
˜a . (8.15)

As expected, for a flat field space, the vielbeins can be identi-
fied with the Jacobian of a transformation and therefore one
can move to a field-space frame that is flat everywhere, not
just locally.

Let us calculate the one-loop effective potential for (8.12).
Since this Lagrangian is canonically normalised, the field
space is trivial and hence we can replace covariant derivatives
with partial derivatives. We therefore have
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−→∇ α̂S
←−∇

̂β

=
⎛

⎜

⎝

−� − ˜V ′′(˜φ) − ˜ψ˜ψ˜Y ′′(˜φ) −˜ψ˜Y ′(˜φ) ˜ψ˜Y ′(˜φ)
˜ψ˜Y ′(˜φ) 0 −/∂ − ˜Y (˜φ)

−˜ψ˜Y ′(˜φ) (/∂ + ˜Y (˜φ))T 0

⎞

⎟

⎠

× δ(4)(xα − xβ).

(8.16)

Plugging this result into (7.5), we find up to one-loop,

�[] =S[] − i

2
Tr ln

(

� + ˜V ′′(˜φ)

+ ˜ψ
[

2
(

˜Y ′(˜φ)
)2

(/∂ + ˜Y )−1 − ˜Y ′′(˜φ)
]

˜ψ
)

− i Tr ln
(

/∂ + ˜Y (˜φ)
)

. (8.17)

This agrees with previous results in the literature (see eq.
(8.49) in [62]).

8.2 Multiple fermions

We now generalise the previous example by including N
scalars φA and M Dirac fermions ψ X . The most general
Lagrangian derivable from (4.3) for such a theory with up to
quadratic kinetic terms is

L = 1

2
gμνkAB(�)∂μφA∂νφ

B − 1

2
hAXY (�)ψ Xγ μψY ∂μφA

+ i

2
gXY (�)

(

ψ Xγ μ∂μψY − ∂μψ
X
γ μψY

)

+ i

2
jW XY Z (�)ψWγ μψ X

(

ψY ∂μψ Z − ∂μψYψ Z
)

− YXY (�)ψ XψY − V (φ).

(8.18)

In the above expression, W , X , Y and Z run over the dif-
ferent species of fermion field, so they lie in the inter-
val 1 ≤ (W, X,Y, Z) ≤ M .

The model functions for this theory are

αkβ =
(

kAB 0N×8M

08M×N 08M×8M

)

,

ζμ
α =

⎛

⎝

ihAXY ψ Xγ μψY

gY X ψYγ μ + jWY X ZψWγ μψYψ Z

gXY γ μψY + jWY Z XψWγ μψYψ Z

⎞

⎠ ,

U = YXYψ XψY + V .

(8.19)

For illustration, we consider the case when the Lagra-
ngian (8.18) contains no terms higher than quadratic order
in the fermions. We therefore set jW XY Z = 0 and assume all
other model functions to depend only on the scalar fields. In

this case, the Lagrangian takes on the simpler form

L = 1

2
gμνkAB(φ)∂μφA∂νφ

B − 1

2
hAXY (φ)ψ Xγ μψY ∂μφA

+ i

2
gXY (φ)

(

ψ Xγ μ∂μψY − ∂μψ Xγ μψY
)

−YXY (φ)ψ XψY − V (φ) . (8.20)

From (5.4), we have, for the Lagrangian (8.20),

ζα =
(

ihAXY ψ XψY , gY X ψY , gXY ψY
)

, (8.21)

which, using (5.10) gives

α�β =
⎛

⎝

kAB − (hAW Z ,B − hBW Z ,A)ψWψ Z

1
2 (gZX,B − ihBZ X )ψ Z

1
2 (gXZ ,B + ihBX Z )ψ Z

1
2 (gZY,A − ihAZY )ψ Z 1

2 (gY Z ,A + ihAY Z )ψ Z

0 gY X14

gXY 14 0

⎞

⎠ .

(8.22)

We notice that the Lagrangian (8.20) includes a term with
a single derivative of a scalar field as did the Lagrangian (8.1).
Such a term should be there generically and even appears in
free canonically normalised theories if we perform a suitable
field redefinition. To make this more explicit, let us consider
a field redefinition of the form

ψ X → ˜ψ X = (K (φ)−1)XY ψY . (8.23)

In the new fields, the Lagrangian (8.20) becomes

L =1

2
gμνkAB∂μφA∂νφ

B

− 1

2

[

hAXY K
∗X
W KY

Z

+ igXY

(

K ∗X
W

∂KY
Z

∂φA
− ∂K ∗X

W

∂φA
KY

Z

)

]

˜ψWγ μ
˜ψ Z∂μφA

+ i

2
gXY K

∗X
W KY

Z

(

˜ψWγ μ∂μ
˜ψ Z − ∂μ

˜ψWγ μ
˜ψ Z

)

− YXY K
∗X
W KY

Z
˜ψW

˜ψ Z − V .

(8.24)

We see that, even if originally the theory was canonical
with hAXY = 0 and gXY = δXY , a term with a single
derivative of the scalar field will appear after the transfor-
mation (8.23).

We may attempt to undo this transformation in order to
remove hAXY with an appropriate field redefinition. If we
can find a matrix K X

Y (φ) that satisfies

hAXY K
∗X
W KY

Z = igXY

(

∂K ∗X
W

∂φA
KY

Z − K ∗X
W

∂KY
Z

∂φA

)

, (8.25)
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then this term can be removed by performing the transforma-
tion (8.23). However, we see that unlike in the single-fermion
case, (8.25) cannot always be solved in multi-fermion theo-
ries, and hence the hAXY -dependent term must be considered
consistently.

In order to obtain the field-space vielbeins, and hence the
metric, for this theory we need to solve (6.3) with α�β given
by (8.22). This is a very challenging equation to solve in
general, and we save such a general solution for future work.

However, we can solve this equation for a simple case
with only a single bosonic field φ. This allows us to suppress
all indices in the bosonic sector. In this case, (8.22) reduces
to

α�β

=
⎛

⎝

k 1
2 (g′

ZY − ihZY )ψ Z 1
2 (g′

Y Z + ihY Z )ψ Z

1
2 (g′

Z X − ihZ X )ψ Z 0 gY X14
1
2 (g′

X Z + ihX Z )ψ Z gXY 14 0

⎞

⎠ .

(8.26)

Solving (6.3), we find the the vielbeins for this theory are

αe
a =

⎛

⎝

√
k 1

2
√
g−1
YW (g′

ZW + ihZW )ψ Z 1
2
√
g−1
WY (g′

ZW − ihZW )ψ Z

0
√
gY X 0

0 0
√
gXY

⎞

⎠ .

(8.27)

Here
√
gXY is the matrix square root of gXY , satisfying

√
gXZ

√
gZY = gXY (8.28)

and
√
g−1
XY is its inverse.

Plugging this into (6.2), we find that the metric for this
theory is

αGβ =
⎛

⎝

k − 1
2 (g′

XZ − ihX Z )g−1
ZW (g′

WY + ihWY )ψ XψY

1
2 (g′

Z X − ihZ X )ψ Z

− 1
2 (g′

XZ + ihX Z )ψ Z

− 1
2 (g′

ZY − ihZY )ψ Z 1
2 (g′

Y Z + ihY Z )ψ Z

0 gY X14

−gXY 14 0

⎞

⎠ .

(8.29)

Hence, the superdeterminant of the metric, which will appear
in the path integral measure, is given by

sdet (G) = k

(det g)8 . (8.30)

Notice that sdet(G) = sdet(�) as expected.
From the metric (8.29), we could proceed as before and

compute, through (6.9), the field space connections which
enter the VDW effective action. However, such a compu-
tation becomes inextricably involved and so we choose to
present these results in a future publication.

9 Discussion

We have constructed a field-space supermanifold for theo-
ries with fermionic degrees of freedom. We have shown how
to equip the field space with a proper metric that can be
calculated from the classical Lagrangian. This was achieved
through the use of field-space vielbeins. Finally, we have
shown that this field-space metric can be used to write down
the quantum effective action for fermionic theories in a way
that is frame- and reparametrisation-invariant.

The addition of fermionic degrees of freedom makes
the identification of the field-space metric more involved.
For purely bosonic field theories, the Lagrangian contains
terms with two derivatives and the coefficients of such
a term readily transform as a rank-2 tensor. However,
fermions only appear with one derivative in the Lagrangian
and so there is no analogous rank-2 tensor that can be
immediately identified with the metric. Thus, whereas for
bosonic theories the metric can be calculated directly from
the Lagrangian, for fermionic theories the metric must
be found indirectly by solving (6.3) for the field-space
vielbeins.

This difference also means that the relation between the
field theory and the geometry of the field space is much more
hidden for fermionic theories than it is for bosonic theories.
For bosonic theories, the kinetic part of the Lagrangian is
proportional to the line element of the field space. Conse-
quently, in the absence of potential terms, the equations of
motion of a scalar field theory are the geodesic equations of
the field space. In addition, any Noether symmetries of the
field theory must obey Killing’s equation on the field space
[63].

With the addition of fermions, this connection is no longer
evident. The Lagrangian bears no direct relation to the line
element of the field-space supermanifold and as such, the
equations of motion of the fields are not directly related to the
geodesic equation for this field space. It would be interesting
to examine whether the relation between Noether symmetries
of field theory and Killing vectors of the field space still holds
in fermionic theories, but such investigations lie beyond the
scope of the present work.

Nevertheless, the VDW effective action formalism can
still be applied and used to define a frame- and reparame-
trisation-invariant quantum effective action, as stated in (7.1).
Hence, it is possible to describe the complete theory with an
effective action that is independent of field reparametrisa-
tions. This allows us to draw a clear dividing line between
the content of a theory (i.e. the physical observations it pre-
dicts) and its representation (how we choose to write the
theory down).

We have so far considered only scalar-fermion theories
with up to quadratic kinetic terms. An interesting general-
ization would be to consider theories with higher derivatives.
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If the techniques developed in this paper were to be applied
directly to such theories they would lead to a Finslerian met-
ric [64], i.e. one that depends on both the fields and their
derivatives. Investigating the effects of such a metric would
be a worthwhile task, but is beyond the scope of this current
paper.

Other possible directions for future work include the study
of field-space torsion or non-metricity. We have so far taken
the field-space connections to be the Christoffel symbols for
the metric and so have excluded such possibilities. How-
ever, it may be advantageous to define torsionful or non-
metric field spaces for certain theories. We note that this
would only be possible for theories with a curved field
space. For theories with a flat field space, it is always pos-
sible to define a parametrisation for which the kinetic terms
are canonical, at which point all field-space effects should
disappear.

The VDW effective action has been applied to scalar the-
ories [1,2,12–18], gauge theories [1,2,7,30–32] and gravity
[1,2,11,21–29]. The addition of fermions in this paper com-
pletes the geometrisation of QFTs for a wide range of the-
ories. We are now in a position to express any theory that
includes scalar fields, gravity, gauge bosons, or fermions
with up to quadratic kinetic terms in a frame- and repara-
metrisation-invariant manner. It should therefore be straight-
forward to construct a field-space supermanifold, not only
for the generic models presented in this paper, but for real-
istic theories of high energy physics, including the Standard
Model.
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A Failed attempt: the covariant metric

In this appendix we consider an alternative definition of the
metric

α
˜Gβ = αkβ + −→∇αζβ + (−1)α+β+αβ−→∇βζα, (A.1)

which is a supersymmetric rank-2 field-space tensor. We
show explicitly why such a definition does not work.

Note that connection terms on the RHS of (A.1) do not
cancel as they do in (5.8) and thus the metric α

˜Gβ appears
on both sides of this implicit equation. Such an equation is
difficult to solve in general, but we can still solve it in certain
cases.

We consider solving (A.1) for the example theory of a
single scalar field φ and a single Dirac fermion ψ shown
in (8.1). We take as an ansatz

α
˜Gβ

=
⎛

⎝

H(φ) + A(φ)ψψ B(φ)ψ + C(φ)ψ D(φ)ψ + E(φ)ψ

−B(φ)ψ − C(φ)ψ 0 G(φ)

−D(φ)ψ − E(φ)ψ −G(φ) 0

⎞

⎠ .

(A.2)

This is the most general ansatz compatible with the fermionic
structure of the metric. After plugging (A.2) into (A.1) and
performing some algebra, we find that the solution is

α
˜Gβ =

⎛

⎝

k(φ) + A(φ)ψψ B(φ)ψ −B(φ)ψ

−B(φ)ψ 0 0
B(φ)ψ 0 0

⎞

⎠ , (A.3)

where A(φ) and B(φ) are arbitrary functions of φ.
We can immediately see several problems.

1. The metric (A.3) contains arbitrary functions A(φ)

and B(φ) and as such, it is not uniquely defined by (A.1)
or the Lagrangian (8.1).

2. The metric (A.3) does not reduce to the flat metric in the
canonical case with h = 0, g = 1 and k = 1.

3. The metric (A.3) is singular with sdet(˜G) = ∞.
4. The metric (A.3) has no dependence on the model func-

tions h and g, and so it is disconnected with the fermionic
part of the theory that it should describe.

We can find one more problem with the metric (A.1) if
we consider adding to the Lagrangian a total derivative term

L → ˜L = L + i

2
∂μ

(

t (φ)ψγ μψ
)

. (A.4)

Such a boundary term will drop out of the classical action
when integrated and thus will not affect the results of the
theory. However, if we repeat the above derivation for ˜L, we
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find the metric defined by (A.1) is

α
˜Gβ

=

⎛

⎜

⎜

⎝

k + Aψψ Bψ
[

−B + 2 (B−ih−t ′)t
g+t

]

ψ

−Bψ 0 −2t
[

B − 2 (B−ih−t ′)t
g+t

]

ψ 2t 0

⎞

⎟

⎟

⎠

,

(A.5)

where A and B are again arbitrary functions of φ. We observe
that (A.5) depends strongly on the function t (φ) even though,
as we argued above, this function is irrelevant to the physics
of the theory. Note that, in contrast, the tensor α�β defined
in (5.10) is not affected by the transformation (A.4) and there-
fore the metric defined in Sect. 6 does not suffer from this
issue.

We conclude from this exercise that (A.1) does not consti-
tute a proper definition of the field-space metric for fermionic
theories.
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