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Abstract: Modern wind turbines operate in continuously transient conditions, with varying speed,
torque, and power based on the stochastic nature of the wind resource. This variability affects not
only the operational performance of the wind power system, but can also affect its integrity under
service conditions. Condition monitoring continues to play an important role in achieving reliable
and economic operation of wind turbines. This paper reviews the current advances in wind turbine
condition monitoring, ranging from conventional condition monitoring and signal processing tools
to machine-learning-based condition monitoring and usage of big data mining for predictive
maintenance. A systematic review is presented of signal-based and data-driven modeling method-
ologies using intelligent and machine learning approaches, with the view to providing a critical
evaluation of the recent developments in this area, and their applications in diagnosis, prognosis,
health assessment, and predictive maintenance of wind turbines and farms.

Keywords: wind turbines; condition monitoring; diagnosis; prognosis; machine learning; data min-

ing; health management; operations and maintenance

1. Introduction

The combination of the ever-increasing global electricity demand and growing car-
bon emissions has in recent decades firmly positioned renewable energy generation as a
key for securing the future energy provision for our needs. As an effectively free and clean
energy source, renewables have rapidly captured the attention of power generation com-
panies, resulting in strong global growth [1]. Among renewable energy resources, wind
power occupies a prominent place and is generally accepted as a leading contributor with
strong future growth projections [2]. To ensure the much-needed continuity and expan-
sion of wind power generation, it is imperative that its productivity, reliability, and cost
are further improved.

Onshore and offshore wind turbines (WTs) often operate in harsh environments [3].
This invariably imposes a requirement for sophisticated and powerful real-time condition
monitoring (CM) systems that are capable of adapting to any environmental or opera-
tional condition during the conversion of kinetic energy into electricity. Thus, an accurate
modeling process will always be the primary link between an accurate health assessment
and a well-planned maintenance policy. Various modeling methods, including model-

Energies 2021, 14, 5967. https://doi.org/10.3390/en14185967

www.mdpi.com/journal/energies



Energies 2021, 14, 5967

2 of 33

based techniques as well as data-driven and hybrid modeling procedures have been ap-
plied in this task [4]. Accordingly, the emergence of sensing technologies makes it easier
to collect the relevant operating history, directing health CM research to go further to-
wards understanding better and more reliably characterizing the diagnostic features cap-
tured in CM signals, in an effort to enable more reliable diagnosis and prognosis of sub-
assembly failures and lifetime consumption. A particularly attractive methodology that
holds great potential to enable advances in this area is machine learning (ML), especially
when physical modeling becomes challenging to manipulate due to the physical complex-
ity of the system.

Modern WTs are able to continuously extract vast amounts of kinetic energy from
the wind flow and convert it into useful electricity, due to effective aerodynamic design
of blades and advanced turbine system operation, as well as the usage of sophisticated
performance enhancement equipment [5]. Understanding the concept of WT CM requires
a clear understanding of their operating principles. To this end, Figure 1 gives an over-
view of the most critical WT components that any CM software/system should consider
under operating conditions. The illustration focuses on horizontal axis WT design that has
today become a standard configuration for modern multi-megawatt (MW) scale variable
speed WT connected to the power grid.

Blades

\

Main bearings Gearbox

7N
Ve

Generator

Yaw system

Figure 1. Important components of a horizontal wind turbine.

WT CM along with ML tools has itself undergone many developments and improve-
ments over the decades [4]. This evolution is driven by the nature of WT operation and
the multitude of environmental and physical variables characterizing it. The continual
change in the physical state of WT components results in a higher level of access to dy-
namic samples. This time-varying dynamicity can be affected by several constraints in-
cluding the fatigue loading on faulty components, damage propagation, aging, and envi-
ronmental conditions [4]. Therefore, considerable research exists that is aimed at moving
towards advanced ML-based dynamic programming that is more suited to the nature of
this process, rather than the ordinary offline learning [6]. Likewise, for some modes of
operation, it is difficult to collect patterns sufficient for the prediction process, thus lead-
ing to engagement of knowledge from different sources, ranging from pre-hypotheses ob-
tained from pre-trained learners or experts to generative models such as generative ad-
versarial networks (GANSs) and transfer learning (TL) [7].

On the one hand, the multitude of WT failure modes in several components (e.g.,
gearbox, yaw, blades, and alternator) and the nature of their occurrence (gradually as in
degradation, fleetingly and frequently) under different conditions make the data collected
from non-similar events similarly resemble higher cardinality. This, therefore, requires
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special care in processing and extracting characteristics. This need to have significant data
brings out the complexity of the learning models by pushing them towards a more robust
extraction such as denoising or convolutional mapping. In contrast, the nature of the oc-
currence of the failure modes distinguishes the type of application from one to the other.
For example, the progressive propagation of damage requires prognostic algorithms,
which depend mainly on both clustering and regression, such as in bearings. Conversely,
other failure types are fully diagnostic specialties, which directly lead to classification.

In the recent literature reviews and in ML modeling context, many details about the
growth and depth of WT CM problems are missing. For instance, the review provided by
Stetco et al. [1] studied ML models as single entities that aim at classification or regression.
The diversities in terms of complexity such as simple and deep architectures have not
been discussed in detail. In addition, generative models that provide prior assumptions
such as TL and generative adversarial models have been discussed as in the same data-
driven frameworks and not knowledge-driven. The review of Liu et al. [8] has moved
slightly for the study of ML tools without providing enough detail because it focused on
things related to types of failures and classification. Another review by Rezamand et al.
[4] studied only the important critical component in WTs and provided general views on
both physical-based modeling methods and data-based methods. The authors only con-
centrated on prognostics where remaining useful life (RUL) was the main adopted health
evaluation metric. The authors also considered ML methods with different architecture as
single classes of data-driven methods or as black boxes without going deeply into archi-
tectures and learning procedures.

In general, CM systems comprise sensors, data acquisition, information processing,
feature extraction, pattern recognition, and decision-making units. The majority of avail-
able CM systems measure vibration, requiring a range of sensors for different frequencies.
Other systems measure parameters such as blade stress and temperatures of the nacelle,
coolant, oil, gearbox, and generator. Monitoring data may be stored locally or transferred
to a central computer for further diagnosis. Commercial wind farms usually employ a
SCADA (supervisory control and data acquisition) system, which contains valuable
online information regarding the performance and operational history of the turbines.
Therefore, SCADA data have also been employed widely by researchers as the CM basis.
Typically, around 200 signals are required to monitor an MW turbine continuously
through SCADA and CM systems, each with different sampling rates [9]. The large
amount of data generated require smart mining techniques in order to reveal the salient
patterns that can infer the nature, form, and extent of any faults existing in the system.

To address the limitations of existing reviews, this paper presents a systematic review
of recent developments in this area and their applications in diagnosis, prognosis, health
assessment, and predictive maintenance of WTs and farms. It is noted that this paper re-
views the signal-based and data-driven modeling methodologies using intelligent and ML
approaches, focusing on their relative advantages, capabilities, and limitations. Reviews
of model-based fault detection for WTs, which require a more accurate mathematical WT
model, can be referred to in the literature [10].

The paper is organized as follows. Section 2 presents a succinct review of conven-
tional signature-analysis-based CM systems and advanced sensing CM applications for
health monitoring and fault diagnosis of WTs. Section 3 introduces the main and recent
ML contributions, providing a classification of different ML tools in terms of evolution as
well as prediction complexity, and reviewing their application per most prominent WT
failure modes. Section 4 reviews data mining techniques to address challenges resulting
from big data collection and analytics as well as predictive maintenance based on health
condition and RUL estimation. The discussion, future work in this area, and conclusions
are given in Sections 5 and 6, respectively.
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2. Wind Turbine Condition Monitoring

The key CM objective is to reduce operation and maintenance (O&M) expenditure,
currently estimated to account for up to 20% and 30% of total onshore and offshore farm
lifetime costs, respectively, where the turbine drivetrain is a major contributor [9]. This
section therefore reviews the WT drivetrain components of health monitoring and fault
diagnosis.

The conventional approach to CM of the WT drivetrains principally relies on exter-
nally monitoring vibration of the individual drivetrain components [11,12]. The contem-
porary drivetrain-dedicated CM systems invariably employ an array of accelerometers
distributed along the drivetrain structure (i.e., generator, gearbox). The vibration sensors
are operated via an appropriate signal conditioning and acquisition charge amplifier de-
vice to enable continuous high-rate (kHz rate) monitoring of the vibration signals in rele-
vant positions in the drivetrain [13,14]. The inclusion of vibration monitoring platforms
in WT systems is formally stipulated by the relevant turbine CM certification criteria with
clear specifications on the minimum measuring point requirements [15]. Other drivetrain
signals that can be captured by WT CM platforms can include the generator electrical sig-
nals and the gearbox and the generator thermal signals, as well as acoustic signals, those
related to gearbox oil condition, and others [16]. The underlying aim of monitoring a se-
lection of appropriate drivetrain signals and their distinct diagnostic features is to enable
reliable fault presence identification and fault propagation trending online, i.e., during
WT operation [17].

2.1. Conventional Condition Monitoring Systems
2.1.1. Vibration Monitoring

Vibration monitoring (VM) is presently the most commonly used commercial CM
technique implemented on WTs for drivetrain online monitoring [18,19]. This largely
stems from the fact that VM for diagnostics of rotating machinery is a well-researched and
a well-understood concept, with extensive transferrable expertise available from other in-
dustries [20].

VM is chiefly based on the identification of drivetrain mechanical fault-related
changes in the vibration signal, which provides information about the mode and location
of a potential fault. VM is an online technique and is regulated by the relevant standards
[21] to define the position and implementation of the vibration sensors on a given device.
There are three main types of vibration sensors: distance sensors including displacement
and proximity, which operate between 1-100 Hz; velocity sensors (10 to 1 kHz); and ac-
celerometers (1 to 30 kHz) [22]. Some examples of the implementation of vibration sensors
in the drivetrain are low-frequency accelerometers for the main bearing, high-frequency
accelerometers for the gearbox and generator bearings, and proximity sensors such as in-
ductive distance sensors on other parts of the drivetrain [22]. The most commonly used
accelerometer type is the piezoelectric accelerometer, due to its wider bandwidth, robust-
ness, lower cost, and general availability in a broad range of sizes and configurations [23].
An example of the implementation of vibration sensors on a geared drivetrain configura-
tion is presented in Figure 2 [24].
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Figure 2. Example of vibration sensor positions on a drivetrain. Reproduced from [24], Elsevier.

The measured time-domain vibration signals are converted to the frequency domain
since fault-related frequency components can be identified and isolated in the frequency
domain. The frequency-domain analysis is generally achieved by processing the moni-
tored signals using the Fast Fourier transformation (FFT) [25]. However, a number of ad-
vanced signal processing methods such as wavelet transforms have also been researched
to increase the diagnostic capability of the vibration signal spectral analysis during varia-
ble load and speed operating conditions, where the conventional FFT analysis is chal-
lenged [26]. While these generally enable a more effective extraction of diagnostic infor-
mation in transient conditions, they are complex and computationally intensive to imple-
ment, especially for operational WTs [27].

The current commercial VM systems are found to be the most effective CM technique
for the early detection of faults in mechanical components [28]. In addition, the severity
of a fault can be recognized through the magnitude of the observed vibration signal com-
ponent [11]. Gearbox faults (e.g., tooth damage, breakage or fracturing of gear teeth), rotor
faults, shaft faults (e.g., misalignment, cracked shaft or coupling failure), faults in the me-
chanical brake (e.g., cracked disk), main bearing faults (e.g., bearing pitting or cracking)
and generator faults (i.e., short-circuit, rotor electrical imbalance) are some of the
drivetrain faults that have been shown possible to identify through VM
[8,13,22,25,26,29,30].

VM systems are unable to provide fault detection on specific electrical units such as
the converter since there are no moving parts [31]. In addition, VM requires the installa-
tion of not only the vibration sensors and the associated signal conditioning and data ac-
quisition equipment, but also the availability of advanced signal processing techniques to
extract useful information from the vibration data. Therefore, VM-based CM is generally
deemed to be a relatively costly monitoring method [32]. Furthermore, the installation of
vibration sensors on the surface or into the body of drivetrain components is a specialist
process [22]. VM is not highly efficient at detecting incipient stage faults, as the vibration
signals typically have a low signal-to-noise (SNR) ratio [22]. The application of VM sys-
tems in WTs is generally complicated by vibration data collection requirements and the
variable speed WT operating conditions, characterized by continuous variation of load
and thus drivetrain speed. It can also be challenged by effective transfer of VM-based di-
agnostics and systems used in other rotating machinery industries to the wind industry,
as the rotor speed is relatively lower. A reliable and consistent interpretation of the vast
amount of vibration data obtained from individual turbine and farm vibration-based CM
systems is required to obtain dependable diagnosis [11].

2.1.2. Oil Debris Analysis

The oil debris analysis technique has been effectively used for fault detection in gear-
boxes, generators, and bearings, as there are a number of locations in WTs where lubrica-
tion is used [33,34]. Oil debris analysis is principally used to monitor the status of the
lubrication of rolling components to detect oil degradation and contamination [35]. Dirt,
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wear debris, water, incorrect oil, depletion of additives, oxidation, and base stock break-
down are some of the reasons that can lead to the degradation and contamination of lu-
brication [36]. In addition, the oil debris analysis is important to achieve maximum service
life, especially for the gearbox [37].

The condition of the lubricant is found to carry useful information about the health
of the rolling components. For example, the amount of particles, size, shape, and compo-
sition can be monitored to determine faults without having to disassemble the entire sys-
tem. QOil debris analysis is also used to monitor the level of lubrication quality, as it is
important for the operation of rolling components. The lubricant can be affected by tem-
perature, oxidation, contaminants, moisture, and time in service, and more effective
maintenance action can be achieved by monitoring its quality [38]. The parameters that
are generally monitored to characterize the lubricant quality are [39]: acid content, viscos-
ity, water content, oxidation level, and temperature.

Currently, the dominant oil debris analysis approach is that of offline oil debris anal-
ysis [23]. Monitoring the relevant diagnostic parameters of oil in commercial WTs is gen-
erally conducted via laboratory techniques by means of special reagents, instruments, and
equipment, such as a viscometer and an optical emission spectrometer [22]. The typical
recommended interval for oil debris analysis if there are no abnormal operating condi-
tions is once every six months [36]. The analysis results provide information about the
status of tested samples, as well as recommendations to the owner/operator of the WTs.

Research is ongoing that is focused on developing effective, online, real-time oil de-
bris analysis to eliminate the current restrictions of oil debris analysis-based CM tech-
niques and potentially further increase the reliability of WTs [40]. Several sensors such as
particle counting sensors and oil condition sensors are generally installed in the gearbox
lubrication loop [36]. However, the use of additional sensors needed to enable online mon-
itoring increases the cost of oil debris analysis. Furthermore, the proposed online methods
can be limited in detection of certain gearbox failures [28]. The interpretation of the online
oil debris data can also be challenging due to its dependency on the operation conditions,
such as temperature. In combination with the lack of universal oil debris analysis for all
WTs (the oil debris analysis requirements are specific to particular WT manufacturers or
lubrication oil suppliers, and generally differ between these), this has limited the applica-
tion of this technique for commercial purposes [36].

The main drivers for offline oil debris analysis use are to monitor the parameters that
are not monitored by other online CM techniques and also to conduct analysis to identify
the failed parts of components and the root cause of a failure or to detect incipient faults.
The oil debris analysis is generally implemented in combination with vibration analysis
for the potential detection of a more extensive variety of faults and to increase the relia-
bility of diagnosis derived from usage of the oil debris analysis alone. While it has been
shown to be effective in CM of lubricated mechanical components, the oil debris analysis
accuracy is highly dependent on the type, number, and location of the sensors used, and
it is generally challenging to establish a cost-effective and universal oil debris analysis
technique for gearboxes due to their configuration complexity [36].

2.1.3. Acoustic Emission (AE)

Acoustic emission (AE) monitoring is available for commercial CM systems of WT
drivetrains as an online monitoring technique. AE monitoring employs AE sensors to ob-
tain and analyze sound information. This is based on utilizing the release of strain energy
in the form of transient elastic waves within or on the surface of a material, caused by a
deformation or damage; in practice, this means that observing and trending particular
frequencies of drivetrain-emitted sound can enable effective mechanical fault diagnosis
[28]. AE analysis is thus used to detect gearbox, bearings, generator, shaft, and rotor faults,
such as, for example, shaft misalignment or gear damage [22,27,41,42].

AE monitoring can be implemented in combination with vibration analysis to in-
crease the accuracy of fault detection and also reduce the number of false alarms [43]. The
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application of AE monitoring on WT drivetrains generally uses two types of AE sensors:
piezoelectric transducers and optic fiber displacement sensors. AE monitoring can exhibit
a high signal-to-noise ratio (SNR) and contain high-frequency vibrations ranging from 50
kHz to 1 MHz, which is not the case with conventional VM [44]. As a result, AE monitor-
ing can be more efficient in detection of early-stage fault compared with other established
CM techniques [23].

The wider use and application of AE monitoring of WT drivetrains is, however, im-
peded by some of its inherent drawbacks, such as [11,28,33]:

e  AE sensors are required to be placed at certain proximity locations to be able to ac-
curately detect a fault.

e  Accurate AE measurements require the installation of a large number of AE sensors,
which all require individual dedicated data acquisition equipment for the sensing,
analysis, and data transfer process.

e  AE measurements and analysis are expensive due to the data acquisition system cost
and the requirement of high sampling rates for signal processing.

e WT nacelles are not particularly suitable for AE sensor application due to the high
level of operational and ambient noise, which can complicate the identification of
target sound components.

e  The attenuation of the AE signals during propagation can also pose limitations in
implementation of this technique.

2.1.4. Temperature Monitoring

Temperature monitoring (TM) is based on detecting unexpected temperature
changes in WT drivetrain components, which can be an indicator of increased heat origi-
nating from component degradation caused by a developing fault. This is a commonly
used CM method due to its maturity, cost efficiency, and reliability [33], whose applica-
tion features for various power equipment are regulated by the relevant standards (e.g.,
IEEE 1310-2012 [45], IEEE 1718-2012 [46], ISO 17359-2006 [47], and others) [23]. The tem-
perature of the main bearing, the gearbox, the generator bearings and windings, and the
lubrication and hydraulic oil temperatures are monitored for thermal changes arising
from the presence of underlying fault, such as mechanical damage of bearings and gears,
insufficient lubricant properties, loose or bad electrical connections, faults in the mechan-
ical brake (i.e., cracked disk), generator winding faults, and rotor over speed [22,23]. Op-
tical pyrometers, resistant thermometers, and thermocouples are some of the common
temperature sensors used in this approach [28].

Temperature sensors can, however, be highly invasive and fail in harsh environ-
ments. They can also be challenged in identifying fine thermal changes in devices, which
may be typical of incipient fault stages [22,23]. Furthermore, thermal-based diagnosis in
WT drivetrains can be complicated by the difficulty of reliable identification of the reasons
for an observed component temperature rise, as the temperature of different WT compo-
nents can be affected by their surroundings [28]. As a result, temperature monitoring is
generally used in combination with other CM techniques in order to achieve more accu-
rate diagnosis of fault.

2.1.5. Electrical Signal Analysis

Electrical signal analysis (ESA) has been gaining prominence as a CM technique to mon-
itor WT drivetrains and identify faults, due to its relatively simple implementation, efficiency,
lower hardware complexity, and cost effectiveness [22,48]. ESA is based on signature analysis
techniques in which the spectra of the generator electrical signals are analyzed with the view
of identifying fault-specific signatures that can be employed for reliable diagnosis purposes.
The magnitudes of these fault signatures provide information about the severity of a fault and
can be used to detect faults at an early stage [22]. The biggest advantage of ESA is that it is
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non-invasive and is relatively straightforward to implement and install on WTs, as the electri-
cal signals are already monitored during WT operation via the control and protection systems
(such as SCADA). Furthermore, the electrical signals are easily accessible without needing di-
rect access to a WT nacelle to install measurement sensors. Therefore, no additional sensors or
data acquisition devices are generally required for establishment of ESA-based CM schemes
[23]. In addition, ESA is more cost effective than other CM techniques that require mechanical
signal measurements, as electrical measurements are generally cheaper to obtain than me-
chanical measurements [32].

Voltage, current, power, flux, and control signals are some of the electrical signals inves-
tigated for monitoring the faults of WT drivetrain components. These signals are used to mon-
itor components such as the gearbox, bearings, and generator and are used to identify electri-
cal and mechanical faults such as bearing faults, air gap eccentricity, misalignment, electrical
imbalances, winding faults, and rotor mass imbalance [22,23,28,49-53]. As an example, utiliz-
ing current signal analysis for the identification of faults and the calculation of fault-specific
changes implemented on a real operational WT is presented in [54]. While generally promis-
ing, the method is highly device-design-specific, and the identification of signatures specific
to particular fault types can be a significant challenge. Its application is further complicated in
WT drivetrains due to their inherent variable speed operation which can impose considerable
complications in extraction and trending of the nonstationary target fault signatures for diag-
nosis purposes [55].

ESA is not yet widely implemented in commercial CM systems due to the lack of experi-
ence in the wind power industry [33]. In addition, one of the disadvantages of ESA is the rel-
atively low SNR of the electrical signals, which can reduce the observability of the relevant
diagnostic content [32]. Furthermore, it is important to reliably identify the relevant fault sig-
nature and choose an appropriate signal processing technique to obtain suitable results; oth-
erwise, there is considerable likelihood of false alarms and unreliable fault-detection processes
[32].

2.1.6. Torque Measurement

Torque measurements (TM) have also been used for monitoring and fault detection
of WT drivetrains [56]. The basis of TM is dependent on identifying a torsional oscillation
or disruption in a torque-speed ratio caused by the presence of electrical and/or mechan-
ical faults [56]. There are generally three different approaches used for practical TM: using
a rotary torque sensor, which measures the torque signal; using a reaction torque sensor,
which measures the bending moment signal; and using the estimated torque signal calcu-
lated from the electrical signals of a WT generator [22]. Signature analysis techniques have
to be applied to the measured or calculated torque signal for fault signature extraction,
which is then used to identify a fault in a WT drivetrain. The general premise of diagnostic
application is identical to that used for ESA; however, the torque signal is used for infer-
ring diagnostic information here.

Torque sensors are generally placed in line with the drivetrain rotating shafts to sense
the torque signal; this is generally only practical for smaller devices. TM has been re-
searched for detection of faults in the main shaft, bearings, the gearbox, mass imbalance,
and generator faults such as winding faults and unbalances [12,22,56,57].

TM as a WT drivetrain CM system is very challenging to implement due to practical
installation issues and the resulting cost implications [33]. In addition, the dominant com-
ponents in the spectrum of the torque signal are load-dependent, which results in the need
to utilize more complicated signal processing techniques to investigate the torque signal
compared to those used in vibration signal analysis [23]. Therefore, TM has found very
limited use in commercial applications for WT drivetrain monitoring [56].

2.1.7. SCADA Signals
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Commercial WTs are equipped as standard with a SCADA system for performance
monitoring, remote supervision, and control, and the usage of SCADA signals for diag-
nostic purposes has attracted considerable research interest. A SCADA system generally
uses 10 min intervals to monitor more than 200 signals from a WT and creates historical
datasets, which can then be used in a CM application through appropriate data analysis
solutions [33,58]. The SCADA signals measured via various sensors in a WT during each
interval are generally mean, maximum, and minimum values, and standard deviation of
temperature, current, voltage, power, rotor speed, wind speed, and various other WT sig-
nals [23]. These signals will invariably contain information related to WT health and can
therefore be exploited for CM. SCADA data collected from healthy WTs is usually used
as a reference to model behavior of a WT during operating conditions when there is no
fault in the system, and then any fault can be detected by comparing the monitored oper-
ational data with the reference data. Faults in the generator, main shaft, and gearbox of a
WT drivetrain are among the components whose diagnosis has been researched using
SCADA signal analysis [23,18,59].

SCADA offers an advantage in that no additional sensors and data acquisition equip-
ment cost is required for CM [60]. In addition, a SCADA system is also capable of moni-
toring the status of the alarms identified in a WT. A number of researchers have been
investigating using these alarms for CM of WT drivetrains [60]. However, the low sam-
pling rate of the SCADA signals is not sufficient for timely and highly accurate fault de-
tection, as the most useful diagnostic information of interest for most drivetrain failure
modes can be compromised [23]. Furthermore, a SCADA system can create false alarms
due to the varying operational nature of a WT. Therefore, it cannot presently be relied on
as the sole CM system in commercial WTs [33]. Moreover, since a SCADA system was not
designed initially for CM, it does not collect all of the required information to be able to
conduct a full CM of a WT [28].

A summary of the conventional CM methods for WT drivetrains is presented in Table 1.

Table 1. Conventional CM systems used in the WT drivetrain. Reproduced from [23], IEEE; from
[33], Durham University and from [61], Elsevier.

CM Techniques Monitored Drivetrain Intrusion Online/Offline Cost
Components
Main shaft
Vibration Bearings
Monitoring Generator

Gearbox

Invasive Online High

Bearings

Oil Debris Analysis Gearbox Invasive Online/Offline
Generator

Main shaft
Bearings

Medium to
High

Acoustic Emission Non-invasive Online High

Gearbox
Generator
Bearings
Temperature Monitoring Gearbox Invasive Online Medium
Generator
Main shaft

Bearings

Torque Measurement Invasive Online High

Gearbox
Generator
Main shaft

Bearings

Gearbox
Generator
Main shaft
SCADA Signals Gearbox Non-invasive Online Low
Generator

Electric Signals Non-invasive Online Low
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2.2. Advanced Sensing Condition Monitoring Techniques
2.2.1. Thermography Analysis (Infrared Thermography)

Thermography analysis (TA) is based on capturing heat patterns and thermal images
of components, which emit infrared radiation according to their temperature and emis-
sivity when a component starts to fail via temperature transmitters and high-resolution
thermographic (infrared) cameras [62]. TA does not need any physical contact for meas-
urements and is considered a highly noninvasive measurement technique. It therefore
minimizes the problems associated with the location and proximity of sensors.

Presently, TA is only commercially used as an offline CM technique in operating WTs
(generally via the periodical manual inspection) although infrared cameras and diagnostic
software are available for online CM [63]. This is largely caused by the high cost of ther-
mographic monitoring systems, and also by challenges in using TA in practical applica-
tions, such as the dependency of the results on the resolution of the cameras, as well as
the utilized image processing techniques. Furthermore, as it is predominantly based on
external thermal imaging of devices, TA is not capable of incipient fault detection since
the device surface temperature change caused by internal fault development is a slow
process [28]. Finally, the results obtained from thermographic cameras are interpreted vis-
ually and need to be interpreted correctly for reliable diagnosis.

While it has yet to find a more widespread use, TA has previously been used to iden-
tify cracks and damage on the main shaft, bearings, and also gearboxes. The technique is
considered promising for monitoring of generators and power electronics as well [28,64].

2.2.2. Shock Pulse Method

The shock pulse method (SPM) has been used for monitoring rolling element bear-
ings in WTs as a quantitative online CM method. SPM is based on detecting short-dura-
tion shock waves generated from the impacts in the bearings via a shock pulse transducer
and a probe piezoelectric accelerometer [65]. Piezoelectric accelerometers convert me-
chanical strain created as a result of shock waves to electric signals using the piezoelectric
effect. For CM, piezoelectric accelerometers operate at their resonant frequency (~32 kHz)
to generate large output signals from weak shock pulses since damped oscillations are
created at the resonance frequency [66,67].

The magnitudes of peaks as well as the signal levels between the peaks of the shock
waves can be measured using SPM. Furthermore, analysis of a normalized shock value
provides information about the conditions of bearings [68]. The correct interpretation of
the results obtained from SPM requires the knowledge of the bearing geometry, its oper-
ating conditions, and the shock values under different operating conditions. Low fre-
quency vibrations collected in the nacelle and created by other sources than the bearings
are electronically filtered out when SPM is used [67]. Although SPM is generally used to
monitor bearing conditions, it is also useful to obtain information about the thickness of
lubricants, which can be used to inform the preventive maintenance schedule and imple-
ment corrective action during the most suitable time frame.

2.2.3. X-ray Micro-Tomography

X-ray micro-tomography is a high-resolution 3D monitoring technique which ena-
bles investigation of internal structures without physically needing to open or cut through
the investigated sample. This CM technique has been reported to be used to identify in-
cipient-stage gearbox-bearing failures such as white structure flaking (WSF) or white etch-
ing cracks [69]. X-ray micro-tomography is based on the identification of initiators caused
by surface flaws/cracks, micro structural discontinuities, and non-metallic inclusion. Alt-
hough the early research results are promising, this CM technique is costly and new for
monitoring WT drivetrains, and therefore, it is not commercially used yet [70].
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2.2.4. Fiber Bragg Grating Sensors Measurement

Fiber Bragg grating (FBG) sensor measurement for WTs has increasingly been re-
searched as a promising alternative CM technique due to its advantages such as lower
signal-to-noise ratio, immunity to electromagnetic interference, small sensor size, flexibil-
ity, multiplexing, and multi-physical sensing capability [28,71-73]. An FBG sensor con-
tains a specially fabricated optic fiber, which is thin, flexible, and transparent and can re-
flect particular wavelengths of light from distinct fiber locations exposed to physical exci-
tation (e.g., temperature, strain, and others). FBG sensing is a power passive technology
that with appropriate design can be used for acquisition of a range of multi-physical meas-
urands and is most often employed as a thermal and/or strain-sensing solution [71]. The
measurement process involves the transformation of the measured physical quantity to a
distinct wavelength of light, which is then analyzed by a specialized interrogator device
to extract a physical measurand [74].

FBG measurement is commercially used in WT as a leading solution for monitoring
of WT blade stress [71]. Due to its inherent advantages, the technology has also received
recent research attention for application in drivetrain CM and power devices in general
and has been shown to have promising potential to enable advanced in situ CM solutions
for generators and also the power electronics components [72,75-82]. FBG monitoring is
currently not commercially used for WT drivetrain CM. While promising, this technology
does require specialized installation procedures and sensor design, and its wider adoption
will largely depend on whether it transitions from a niche high value application sensing
technology to a more generally adopted lower-cost solution [83].

3. Machine Learning for Wind Turbine Condition Monitoring

ML is one of the techniques that are at the forefront of diagnostic research in many
disparate areas of health assessment. This section aims to provide a dedicated review of
ML application in WT: the current research trends are reviewed, as are the proposed ML
diagnostic solutions for key WT subassemblies. Section 3.1 presents fundamentals of ML-
based CM, the used ML tools, and their classification and usage in WT CM. Section 3.2
reviews the application of ML techniques for CM of failure modes in key individual WT
components. Section 3.3 summarizes the selection of the appropriate ML models for WT
CM.

3.1. Machine-Learning-Based Condition Monitoring

Generally, WT CM based on ML tools is done by following the three main steps: data
acquisition, data analysis, and finally, health status assessment [22], as addressed by the
flow diagram of Figure 3.

Corrective feedback
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Figure 3. General solution of machine learning problems for wind turbine condition monitoring.
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3.1.1. Data Acquisition

In data acquisition, samples intended to convey health patterns are in the form of
signals that have been collected using various types of sensors. Here, particular sensor
type(s) may be used in specific diagnostic applications, such as, e.g., the accelerometers
are generally used to collect vibration signals from the WT drivetrain including bearings,
gearbox, and shafts [84-86]. Similarly, microphones can be used to record acoustic emis-
sions in harsh environments where it is difficult to implement accelerometers [87], and
thermocouples can also be used for the same purpose as accelerometers [6,88-90]. Finally,
cameras can be used for metal deformation image recording [91,92]. For more centraliza-
tion and ease of CM system implementation in a single processing system rather than
individually installed ones, wireless sensors can be used to send data measurements to a
centered data analysis base for less complex processing [93-95]. Moreover, one can find
more detection methods such as ultrasonic, thermo graphical, and radio graphical testing
(e.g., see Garcia Marquez et al. [96]). Tables 2-5 summarize some of the important ones
used in recent years.

3.1.2. Data Analysis

Data analysis is one of the major milestones of WT CM with ML tools; the reliability
of a CM system is directly related to the accuracy of the prediction model it employs. In
ML-based CM, incoming signals are generally unlabeled, and the ground truth real labels
are impossible to be assumed from experts. Therefore, one can find that most of applica-
tions in WT CM fundamentally depend on the clustering process [85,88,97-99] or the sig-
nal processing techniques [89,100,101]. Whether the user intended to perform an effective
detection, diagnosis, or prognosis operation, the first step consists in differentiating be-
tween operating behaviors in the case of diagnosis, or health stages in the case of progno-
sis. In the case of performance evaluation where the real RUL is missing, a labeling process
by experts can be evolved to associate certain probabilistic functions (linear or exponential
degradation model) to different samples of the life cycles presented by those measure-
ments to be able at least to obtain some knowledge on current physical conditions [102].
Figure 4 dictates the most important applications of ML in WT CM.

In recent literature and after a careful pattern-selection for training process, an ap-
proximation function should be selected for the assessment process. Therefore, the ap-
proaches developed upon these criteria have different architectures, ranging from tradi-
tional ML (TML) through hybrid to deep and complex networks with advanced training
procedures. The new generation of the WT ML analysis mostly depends on deep learning
techniques including CNN (convolutional neural network) and LSTM (long short-term
memory). Recent training procedures involve new techniques of generative models able
to guess to give prior assumptions for learning models by providing new enhanced rep-
resentation. The training models known as GANs and TL are very popular in recent stud-
ies, which gives ML a prediction of a new impression to extend the data-driven into the
knowledge-driven by providing different prior assumptions.
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Figure 4. Machine learning application for condition monitoring.

3.2. Common Failure Modes of Turbine Components

In a WT, as shown in Figure 1, the blowing wind creates a lift force that makes the
blade turn when moving through the airfoil cross-sections of the root-to-tip twisted
blades. The blades connected to a single hub in the center are controlled by a pitch con-
troller to collect the maximum amount of energy from the winds to increase the rotation
speed [3]. A low-speed shaft connects the hub and the gearbox to transport the mechanical
rotational energy. The resulting low torque due to mechanical construction of the equip-
ment is therefore boosted by the planetary gear set arrangement of the gearbox to produce
sufficient rotation trying to achieve maximum efficiency when driving the generator
[8,84]. All the components are brought together in a single housing chamber called the
nacelle. The nacelle itself is lifted on a top of a tower, and its direction is controlled by a
yaw motor with the help of a velocity sensor that measures the wind speed and direction
to ensure that the turbine rotor is always directly facing the wind flow. Brakes are also
installed in the nacelle to stop the rotation of the blades during a higher rotation speed or
to stop the yaw motor in windy conditions which could damage the system [4].

Since the WT operates in extremely harsh environments, the working conditions can
inherently compromise its integrity. An extreme wind speed can be considered too severe
for rotating equipment and even the entire core where the function of the brakes may not
be effective. In addition, extreme cold can cause malfunction of important equipment, in-
cluding the blades, and cause damage. Therefore, the function of CM is to offer a moni-
toring system capable of detecting, diagnosing, and prognosing such failures in order to
ensure the continuity of energy production by planning the necessary maintenance oper-
ations at appropriate times.

Since CM with ML is the main topic of this review, we have collected the important
contributions from recent literature, mostly studied during the last two years. The devel-
oped methods of detection, diagnosis, and prognosis have been classified according to the
main types of significant failures generally encountered by WTs. A complete list of work
that adopts the common failure modes, which includes gearbox, yaw, blades, and gener-
ator, is therefore provided, along with ML techniques being applied, respectively.

3.2.1. Gearbox

A WT gearbox is a very essential part of transporting kinetic energy. It is used to
increase the low-speed rotation of the blades rotor to a higher speed to be able to produce
enough power to cause the initiation of the generator to produce electricity. Generally
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speaking, a WT gearbox has four main parts arranged in planetary form: the sun gear,
planetary gears, bearings, and planet gear carrier (Figure 5a). It is thus formed in a plane-
tary gear in order to be able to satisfy the aforementioned speed of rotation.

Under the operating conditions of harsh environments, each of these components
could be affected by the high rotational speed of the high-speed shaft of the gearbox. Con-
sequently, many types of failures could appear. According to [103,104] one may observe
several health levels of gears by taking into account different defects on gears teeth such
as cracked, chipped, missing root, surface defect and healthy gears as addressed by Figure
5b. Additionally, bearing faults such as internal race faults could affect the mechanical
transmission process of the drivetrain (Figure 5c) [105].

1 Planet gear 3 Sun gear
® 2 Bearing 4 Planet carrier
5Ring gear

Root crack gear Surface fault gear

v =

Chipped gear

Missing gear

Figure 5. Gearbox components and fault types. (a) Components and rotation mechanism of gears of
the planetary gearbox. (b) Gearbox gears failure types. Reproduced from [84], Elsevier and from
[103], IEEE. (c) Internal race faults in high-speed shaft. Reproduced from [102], MDPI.

One can provide from the literature a set of examples that have dealt with these types
of failures. For instance, in the work of Cao et al. [103], they studied how to detect different
states of health of the sun gear of the WT gearbox (cracked, chipped, missing root, surface
defect, and healthy gears). They mainly used multiple time domain features extruded
from three different accelerometers installed in different positions of the bearings (verti-
cal, horizontal, and radial). After that, in a simple way, they introduced these features into
a bidirectional long-short term memory (Bi-LSTM) specially designed for sequence-to-se-
quence classification problems. In the deep learning approach proposed by Cheng et al.
[104], a new learning path for fault classification (diagnosis) for gearboxes of dual-power
induction generator WTs is designed depending on the current signal processing. As a
new contribution in the gearbox fault diagnosis, Corley et al. [105] used a thermal model-
ing method coupled with the ML technique to be able to strengthen the CM system of the
WT. In the work of Fu et al. [106], an efficient approach to select gearbox temperature
measurements was adopted using an elastic neural network. After that, the obtained
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learning features were fed into a hybrid convolutional LSTM for precise universal approx-
imation and further generalization to be able to detect over-temperature fault warning. In
the work of Hu et al. [100], they mainly involved signal processing techniques to detect
failure thresholds of WT gearbox under operating conditions. After determining the learn-
ing classes from signal processing frames, training samples were fed into a randomly as-
signed extreme learning machine (ELM) network enhanced with the particle swarm opti-
mization (PSO) technique for a full-supervised fault detection. In the work of Inturi et al.
[88], a problem of fault classification for health state evaluation of the WT gearbox at dif-
ferent speed stages was aborted. A hybrid algorithm of fuzzy logic and ML, namely the
adaptive neuro-fuzzy inference system (ANFIS), was therefore developed. In the work of
Jiang et al. [107], an end-to-end CNN was involved to directly use the raw vibration sig-
nals recorded from sensors installed in the rotating planetary elements of the gearbox
without using any signal processing techniques. Thus, the designed approach has proven
its ability to detect different health stage patterns of the gearbox. In addition, other exam-
ples in the topic of fault types on the gearbox have been listed in Table 2.

Table 2. Gearbox condition monitoring state of the art review.

L ing Algo-
Method Tools Extraction Techniques Data Type earr;ilzlgm 80 Application
DL TL GAN TML
Faults classifica-
Y. Kong et al. [103] Bi-LSTM Time domain features Vibration v au SSOZSSI 1ca
Stacked autoencoder Rotation fundamental fre- 3
F. Cheng et al. Support vector ma quency Rotation frequency ¥ Faults classifica-
[104] PP . Hilbert transform d y tion
chine .
Angular resampling
ADA bl 1 -
B. Corley et al. Thermal Modeling 5C b acjcz);)s)f models pre Temperature Faults classifica-
T in mperatur
[105] Machine Learning P & peratu tion
CNN Adaptive elastic network Faults classifica-
v
J. Fu et al. [106] LSTM Temperature tion
Kernel extreme learn- ~ Wavelet packet transform
. . . . 4 Health-level clas-
W.Hu et al. [100] ing machine Time-domain sequence ap- Vibration e
. sification
PSO proximate entropy
V. Inturi et al. [88] Decision tree Wavelet coefficients Multiple sensors Clustering and
) ' ' ANFIS v “ P classification
NAN (no data pre-processing: .
Faults classifica-
G. Jiang et al. [107]  Multiscale CNN raw data are directly fed into Vibration v au stioarfSI fea
the learning model)
Discriminative dictionary
Y. Kong [84] Sparse re.;)?esgntation . learning . Multiple sensors Faults ?lassifica-
classification K-singular value decomposi- tion
tion
Deep belief neural net- Vibration signals
work . through self-pow- Faults classifica-
L.Luetal. [93 C d 4
uetal. [%3] Chaotic quantum PSO ompressed sensing ered wireless sen- tion
Least-squares (SVM) sor
Least-squares SVM Vibration signals
P h h self-pow- Faults classifica-
L. Lu et al. [94] Quantum' ,SO Stacked denoising autoencoder t rougn setpows aults classiiica
Stacked denoising au- ered wireless sen- tion
toencoder sor
Vibration signal
Deep belief network th;:la ;\0 :le;gn;vj Faults classifica
—POW- ifica-
L. Lu et al. [95] Quantum PSO NAN gh set-pow= ,
ered wireless sen- tion
Least squares SVM

sor
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Empirical mode decomposition

Extreme learning ma- with adaptive noise Regression
Y.Pan et al. [108] chine . .p Vibration (remaining use

Fruit flv of aleorithm Kernel principal component life)

i
yorals analysis (KPCA)
Weighted distribution . . .
C t tional mod Faults classifica-

H. Ren et al. [109] adaptation ompostte varationat mode Vibration autts classttica

t
Nearest neighbor enropy

tion

Stacked sparse autoencoder
Spectral kurtosi

S. Saufi et al. [98] Deep neural network pec. ral Kurtosis

Fourier transform

Wavelet transform

Images extracted
from multiple sen-

SOrs

Faults classifica-
tion

CNN SCADA black box models pre-
L. Xiang et al. [6)] LSTM with attention processing
mechanism

Multiple sensors

Faults classifica-
tion

- e SCADA black box models pre-
Deep joint variational

Faults classifica-

L. Yang et al. [99] autoencoder processing SCADA data ton
J. Zhang et al. Multi-branch CNN  Fast spectral kurtosis images Vibration Faults ?lassmca—
[110] tion
CNN Faults classifica-
X. Zhang et al. [86] PSO CNN Vibration .
SVM tion
J-H. Zhong et al. Sparse Bayesian ELM  Hilbert-Huang transform Vibration Faults classifica-

[101]

tion

It can be seen that most of the recently cited works, which have been carried out in
an attempt to study transmission anomalies of gearboxes, are generally classification
problems, used either to detect different stages of health, or to classify different modes of
failures. These techniques are based on powerful deep learning techniques for sequential
or ordinary multiclass classifications. Therefore, this explains the lack of work that has
been done in the regression problems, which generally consists of prognostic-based RUL
predictions that depend on the measure of the remaining useful life and is thus very cru-
cial in CM, especially for the recent decades of the remarkable industrial evolution.

3.2.2. Yaw System

The yaw system is designed to direct the nacelle around the tower axis to ensure
maximum power tracking and increase the energy capture through pointing the rotor to-
wards the direction of the incoming wind stream. As shown in Figure 6a, the yaw direc-
tion system consists of mechanical equipment that is loosely similar in functionality to
that of the gearbox system. Therefore, it could encounter the same failure modes of bear-
ings and gears, in addition to the failure modes of the yaw motors, as illustrated in Figure
6b. However, the working conditions are not the same because the yaw system affected
by the pressure encounters the entire WT in addition to the rotation speed of the blades

[87].
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Figure 6. Yaw system structure and failure illustration. (a) Graphical illustration of yaw system
components. (b) Some failure mode types of the yaw system. Reproduced from [87], Elsevier and
from [111], Elsevier.

CM techniques aiming to detect multiple yaw system faults have been reported in
literature. In the work of Reder et al. [112] they integrate semi-supervised data mining
approaches to process meteorological and fault data. The study mainly focused on the k-
means clustering to extract different groups of patterns related to cases of both healthy
and unhealthy operation of several WT components, including the yaw system. The work
of Chen et al. [87] represents an automatic damage detection algorithm applied to the yaw
system of WTs. This is a classification procedure totally based on the analysis of acoustic
signals. In fact, and unlike the installation of vibration and temperature sensors, the cur-
rent diagnostic system facilitates the installation of acoustic signals using only a regular
microphone installed next to the yaw system. The obtained signals are thoroughly pre-
processed before feeding a Bayesian network fault classifier. Another work by Chen et al.
[113] involved the use of unsupervised sequential autoencoders trained for feature extrac-
tion combined with an approximation neural network to obtain an accurate performance
evaluation model. The reconstruction and approximation networks were dynamically
trained with LSTM for the detection of multiple WT faults, including the yaw system,
using real SCADA data. Results were passed to a support vector machine (SVM) based on
an adaptive threshold algorithm to annotate healthy and health-related patterns.

The mentioned contributions indicate that most of the algorithms designed were
based on both deep learning and feature extraction. Multiple feature recording techniques
(e.g., acoustic and vibration signals) have been involved where the accuracy of detection
process primarily depends on a clustering process that aims to identify the degree of dam-
age spread (for more details, see Table 3).

Table 3. Yaw system condition monitoring state of the art review.

Method

Tools Extraction Techniques Data Type Learning Algorithm Application

DL TL GAN TML Faults classification

Clustering and clas-

M. Reder et al. [112] k-means NAN Meteorological data v e
sification of faults
Adaptive threshold.
H. Chen et al. [113] LSTM Time window Multiple sensors v/ V" Faults classification
SVM

B. Chen et al. [87]

Bayesian network

Self-organizing map

. ; Acoustic signals V' Faults classification
Information gain rate
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3.2.3. Blades

Blades are a key WT component, which is exposed to considerable stress in operation.
They are aerodynamically designed in a form of twisted blades with gradually decreasing
airfoil cross-sections from root to tip. Blades could be affected either by the high wind
speed or turbulence, or, for example, cold weather conditions where the presence of blade
ice can be particularly challenging and lead to breakdown of the system [91,114]. The ice
formation on the surface of blades (Figure 7a) is the result of existence of water particles
in the wind stream. Sand/particle-contaminated wind streams can also erode and cause
considerable damage to the blade material, as shown in Figure 7b.

Ice formation on the blades surface

Peeling Cracking

b)

Figure 7. Icing phenomenon and blade failure types. (a) Icing phenomenon. Reproduced from
[115], Elsevier. (b) Different possible failures types. Reproduced from [92], Elsevier.

Fault detection in blades can generally be performed via several methods including
ultrasonic waves, measurement of frequency in resonance, vibration measurement, or via
optical measurement [115]. In a test aimed at detecting blade icing in WTs with machine
learning-based CM, Yi et al. [97] focused on a field SCADA data problem related to the
detection of WT ice under unbalanced classification. They proposed a synthetic technique
of grouping minority and oversampling to separate the recorded data into specific clusters
related to the icing stages. The resulting clusters were preprocessed using a linear inter-
polation algorithm before feeding the regular ML classifier. In the work of Yang et al. [92],
a pattern recognition algorithm was designed to classify the images of WT blades obtained
via an unmanaged aerial vehicle. The main objective was to detect damage in the blades
by involving three main learning mechanisms: i) a CNN for the extraction of the best fea-
tures, ii) TL algorithms to improve generalization, and iii) a random forest set to improve
the blade defect detection process. In an attempt to predict the gradual formation of ice
on the rotor blades of WTs, research by Kreutz et al. [116] developed a data-based ice
prediction approach using two different ML methods, namely the SVM and the DNN
(deep neural network). The analyzed data were collected from the SCADA monitoring
system with the help of specific sensors installed in WTs from a wind farm located in
Germany with around 10 WTs. In their work [91], the authors studied the same subject
based on a CNN that learns patterns from RGB (Red Green Blue) images obtained with a
camera installed in the nacelle.

The subject of blade icing is an entirely environmental variable; it is different from
the problems of bearing and gear faults, which can be a hybridization of physical and
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environmental variables. Therefore, detection techniques can be challenged by the unpre-
dictable dynamics of the underlying events. Recent work employs recorded measure-
ments from different sensors containing images and their analysis by different learning

tools that attempt to address the key health patterns of interest (see Table 4).

Table 4. Blade condition monitoring state of the art review.

L ing Algo-
Method Tools [Extraction Techniques Data Type earr;il’:;lgm 80 Application
DL|TL|GAN|TML
L. Chen et al. [117] Triplet loss SCADA black box models pre- Multiple sensors | v | Faults ?lassifica-
CNN rocessing tion
ICNN (Alesxnet) [Unmanned aerial Faults classifica
X. Yang et al. [92] [Ensemble random for- [Otsu threshold segmentation vehicle (UAV)im-| v | ¥ v fion
est ages
W. Chen et al. Inception V3 SCADA black box models pre- . Faults classifica-
. Multiple sensors | ¥ | ¥ .
[118] TrAdaBoost rocessing tion
M. Kreutz etal.  [Traditional artificial . . Faults classifica-
Time window Temperature v .
[119] neural networks tion
A.Joshuva et al J48 decision tree Faults classifica
) " [Locally weighted Histogram features Vibration signals v .
[120] . tion
learning
K. Chandrasekhar Gaussian Processes  [Frequency analysis IRotation signals v | Faults classifica-
etal. [121] quency analy & tion
/Autoregressive and principal
. . . component analysis .
AA. t al. 20 Machine L Faults classifica-
Jiménez et al. 20 Achne LEaiNg N jonlinear-AR exogenous and [Ultrasonic signal v aufls classttica
[122] classifiers . . . .. tion
hierarchical non-linear princi-
al component analysis

3.2.4. Generator

Common serious problems to WT generators remain in rolling elements such as bear-
ings, similar to the examples of inner race defects shown in Figure 8.

Figure 8. Common defects of inner race generator rolling bearings of wind turbines. Reproduced

from [85], Elsevier.

Structures and architecture ML algorithms similar to the work mentioned above have
been carried out in this field. Typically, they involve a preprocessing unit and deep, ordi-
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nary, ensemble, or hybrid learning algorithms to solve classification problems. For in-
stance, in the work of Chen et al. [85], due to the problem of unlabeled health CM data, a
self-setting health threshold has been assigned to solve health stage splitting problem by
training a GAN network, which is a type of autoencoder via adversarial learning. Zhang
et al. [123] have also developed a semi-automatic learning approach based on generative
adversarial learning that helps in bearing fault classification using incomplete datasets
(i.e., unlabeled small amount of vibration signals). On the other hand, Chang et al. [89]
developed a parallel CNN with multi-scale kernels for the classification of health stages.
One of the main advantages of their contributions has been focused on the absorption of
raw signals without any preprocessing, which reduces human intervention. One can no-
tice that the work done on the generator CM is similar to those done on the gearbox CM
in both detection and processing (see Table 5).

Table 5. Generator condition monitoring state of the art review.

L ing Algo-
Method Tools Extraction Techniques Data Type earr;iligm 89 Application
DL|TL|GAN|TML
Generative adversarial Time window Faults classifica
P. Chen [85] networks i Vibration v v .
Fast Fourier transforms tion
CNN
Parallel Faults classifica-
Y. Chang [89] arallel CNN NAN Vibration v v | Fauls classiica
Multi-scale kernels tion
Generative adversarial
networks
Convolutional autoen-
d Faults classifica-
T. Zhang [123] coger NAN Vibration | v |v| v | v [Tauisclassiica
Self-taught learning tion
networks
Dropout regulariza-
tion

3.3. Selection of Machine Learning Models

The selection of the appropriate ML model depends on many important factors: the
nature of the application (feature extraction, classification, regression, and clustering), the
nature of the data provided (complete balanced labeled data, unbalanced data, incomplete
data with missing labels), and the nature of the driven samples (time series, images). For
example, LSTM is a better tool for sequence-to-sequence learning, which can be applied
for both classification and regression. CNN is very helpful when it comes to pattern de-
tection such as image segmentation. The above Tables 2-5 are introduced to scan most of
the important work that has been performed so far in CM of WTs. They are devoted to the
training algorithms, extraction techniques, learning architecture, learning behavior, and
applications.

On the one hand, according to the pie charts presented in Figure 9, it can be observed
that deep learning algorithms are incredibly growing in WT CM by occupying about 39%
of the used techniques, which is only 10% less than TML tools. Most of the deep architec-
tures are based on powerful hierarchical architectures developed based on CNN. Further-
more, one can find that most of the work (45%) has been focused on signal processing
extraction techniques rather than ML tools (only 29%). As a matter of fact, all the applica-
tions of WT CM are mainly based on fault classification. Besides, the extension to GAN
networks and TL is largely in its infancy stage.
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Figure 9. Pie chart analysis of the used machine learning methods in wind turbine condition moni-
toring.

4. Big Data Mining and Predictive Maintenance
4.1. Big Data Problems and Challenges

A tremendous amount of data, referred to as big data, has been generated by the
improvement of science and technology, particularly ICT (information and communica-
tion technology) for CM in recent years. The concept of big data is defined by Garter [124]
as a data type that has the characteristics of high volume, velocity, and variety. By using
new processing paradigms, the decision-making and data processing procedures can thus
be optimized. However, because of the high volume, velocity, and variety of the data, the
conventional CM technologies might not be able to explore the full potential of big data.
Hence, developing big data applications for information extraction from vast data
amounts has become a challenge.

The four Vs used to describe big data characteristics are volume, variety, velocity,
and veracity [125]. The first and the most well-known characteristic of big data is volume
which describes the amount, size, and scale of the data. For CM systems, the data acquired
from the sensors has a major impact on the system. The installation of an effective WT CM
system requires a high number of sensors with high sampling frequency in general, espe-
cially for the electrical components within the turbine, thus generating a large amount of
data. However, the use of a large number of sensors may compromise and reduce the
overall reliability of the sensor system [126]. Besides, processing and interpreting large
amounts of data acquired from a sensor system can be a complex task even for the expe-
rienced data analyst [127].

The second relates to variety that defines the structural variation of the dataset and
the data types of the big data [128]. There are two major challenges associated with the
variety of big data in CM: data heterogeneity, and incomplete and noisy data. Data heter-
ogeneity refers to the syntactic and semantic characteristics of the data, which indicate the
diversity of the data types and different interpretations of the data. For a WT SCADA
system, various types of data are included, such as mechanical, temperature, and electrical
data. The data integration would be a problem since the data may come from different
sources with different physical meanings. Hence, solving the data heterogeneity problem
has attracted renewed attention in recent years [129]. The data acquired from the sensors
may contain various types of measurement errors, missing values, outliers, and noisy data
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[130], while the noise can be accumulated especially with high-dimensional datasets typ-
ical of big data. Therefore, it is important to extract valid data from the noisy data subse-
quently following data collection and integration [131].

The third dimension is velocity, which describes not only how the data are generated
but also how the data are sampled in terms of frequency rate. For real-time data streaming,
the new data are continuously generated, which causes nonstationary behavior of big
data; thus, it is impossible to acquire the entire dataset before processing [132]. This would
bring challenges to acquisition of the necessary datasets for real-time processing.

The last important characteristic of big data is associated with veracity. Because of
the inherent unreliability of the data sources, the provenance and quality of big data
would define the veracity together [133]. Similar with variety, the challenges of veracity
are often brought by the data sources. The original dataset can be too large in the context
of big data, and thus extra computational cost becomes overwhelming [134]. Moreover,
the veracity of a dataset can be affected by the uncertainty of the data source. The noise
contained in the data is not unique, which makes the noise in a large dataset more difficult
to handle.

4.2. Data Mining Condition Monitoring

A WT CM system consists of the combination of sensors and signal processing units
[135]. The CM techniques comprise statistical analysis, signal processing, and increas-
ingly, the data-driven and data mining techniques, which are used to diagnose and prog-
nose the health status of major WT subassemblies (e.g., blades, nacelle, gearbox, generator,
and power electronic converter). The monitoring process can be online or offline; the
online monitoring provides real-time data that reflect the instantaneous feedback of oper-
ation condition while the off-line monitoring collects data at regular time intervals for
analysis based on different data acquisition systems [136]. With appropriate CM tech-
niques, maintenance actions can be planned appropriately to prevent further damage to
the turbine while the turbine is still kept operational, and thus the downtime and O&M
costs are reduced [137].

Data mining techniques have been designed to solve big data problems such as var-
iable selection, dimension reduction, feature extraction, and online processing. The data
mining techniques, especially ML-based CM methods, have drawn more attention in re-
cent years. The ML approaches are commonly referred to as the data-driven CM, which
does not require prior knowledge of the turbine.

Due to the large amount of data and untraceable data sources, the raw data might be
messy and contain lots of noise. Incomplete and incorrect data will lead to misjudgment
in CM, and data cleaning is therefore necessary before processing the data. The kernel-
based local outlier factor (KLOF) has been proposed for data cleaning [138]. With this
method, the data are first divided into several segments and then the features extracted
from those segments, such as mean, maximum, and peak-to-peak value, and used to eval-
uate the degree of each segment being incorrect data by adapting KLOF. A proper thresh-
old was set to distinguish the incorrect data from correct data. The results demonstrated
that the proposed method could effectively identify incorrect data and abnormal seg-
ments. A method based on minimization of dissimilarity- and uncertainty-based energy
(MDUE) was also proposed for data cleaning [139]. This method transformed scattered
data into a digital image in grey scale and then determined an optimum threshold based
on intensity-based class uncertainty and shape dissimilarity. The abnormal data were fi-
nally marked by image thresholding.

The dimension reduction techniques have been widely applied to reduce the com-
plexity of the original dataset and thus the computation load while processing the large
amount of data. Principal component analysis (PCA) is a well-established data mining
technique that extracts principal components from various types of variables, which has
often been used in dimension reduction and feature extraction. By adapting PCA, the
computation load can be significantly reduced. Wang et al. proposed a PCA-based
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method to select certain variables among all variables relating to a target fault. The pro-
posed method reduced the dimensions of two different datasets to 51.7% (15 out 29 vari-
ables) for simulation data and 45.4% (35 out of 77 variables) for SCADA data, respectively.
The average correlation and information entropy after dimension reduction were kept at
99.81%, 0.0082, and 81.32% for simulation data, and 99%, 0.162, and 88.88% for SCADA
data, respectively. Clearly, this method can detect faults efficiently and effectively while
reducing the number of variables for CM [9]. Other data mining techniques such as par-
allel factor analysis, k-means clustering, auto-encoders, and deep belief network have also
shown their capability in dimension reduction and feature extraction [140-142].

There are still challenges in dealing with big data for CM, particularly for online pro-
cessing. In the context of streaming/online data, ML algorithms may not fulfil such tasks
due to being trained by historical and previously training data [143]. In this scenario, in-
cremental learning was therefore taken into consideration to prevent retraining of the pre-
vious model based on support vector regression and Karush-Kuhn-Tucker [144]. The di-
mension of the training dataset would change if the new sample comes in; however, the
weights could be updated automatically without retraining the data. Thus, online moni-
toring can be achieved without building new models for training. It is noted that the
online monitoring also needs to consider data uploading problems. To solve this, a hier-
archical extreme learning machine embedded with cloud computing was proposed to re-
duce the data upload quantity [145]. The result showed that the uploaded data volume
could be reduced to 12.5% of the original data size before compression, while in the mean-
time, the data transmission security was improved since the parameters of model and
original input data were compressed in the first hidden layer.

4.3. Condition-Based Predictive Maintenance

The conventional WT maintenance is often divided into corrective or scheduled
maintenance. The corrective maintenance is performed after system failure, which can be
caused by, e.g., a component fatigue, unreliable design, and environmental operational
factors. Engineers often implement corrective maintenance during WT inspection or when
the WT shuts down due to a fault. Thus, the O&M cost of corrective maintenance is the
highest among all maintenance strategies. In contrast, the scheduled maintenance, also
known as the periodic-based maintenance or preventive maintenance, is carried out by
repairing at fixed time intervals usually recommended by the supplier. The fatigue com-
ponents can be replaced before the failure [146,147]. Scheduled maintenance can indeed
reduce the unscheduled downtime; however, setting maintenance tasks more frequently
than usual would increase the O&M cost since the replaced components may have not yet
reached their full useful life. A more advanced policy, called opportunistic maintenance,
has also been developed as the combination of corrective maintenance with preventive
maintenance. When a WT component reaches its critical degradation state, there is an op-
portunity to implement preventive maintenance for the others, thus reducing the losses
of accidental failures [148]. An optimal opportunistic maintenance policy was proposed
for a deteriorating multi-bladed offshore WT subjected to stress corrosion cracking and
environmental shocks by employing field failure data from the SCADA system [149].

Thus, the condition-based predictive maintenance takes into consideration the health
condition of the turbine to mitigate against major component failures, where the intelli-
gent-based approaches have become a promising solution [150]. This strategy includes a
whole set of data acquisition, data processing and analysis, and fault diagnosis and prog-
nosis in order to provide optimal maintenance actions [151,152]. By adapting this strategy,
unscheduled and unnecessary maintenance tasks are prevented, hence significantly re-
ducing the O&M cost.
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4.3.1. Decision-Making Framework

Data-driven CM approaches have recently attracted more attention in predictive
maintenance. Based on the Energy Roadmap 2050, European electricity will be supplied
by wind energy from 31.6% to 48.7% [153]. Offshore wind farms have now been deployed
in deep seas for richer wind resources, which have caused more difficulties in terms of
maintenance activities [154]. Hence, it is vital for wind farm operators to perform predic-
tive maintenance in order to increase the useful lifetime of WTs [155]. By using historical
and real-time data from various parts, the WT CM can be performed to achieve a more
reliable predictive maintenance for the turbines. The data acquired from the WTs are
multi-dimension time-series, which need a precise modeling method to predict the fault
[156]. The condition-based predictive maintenance is able to gather necessary information
from CM system and SCADA system to analyze the operational status of the WT compo-
nents in order to prevent major failures from happening [61,157].

Decision-making for condition-based predictive maintenance can be implemented by
two methods: current condition evaluation-based (CCEB) and future condition predic-
tion-based (FCPB) [158]. The major difference between the two decision-making methods
is that the CCEB focuses more on the current state (i.e., diagnosis) while the FCPB focuses
on the future state (i.e., prognosis). Figure 10 shows the framework of these two decision-
making methods, both of which highly rely on the CM techniques. Maintenance activities
can be scheduled as long as the estimated health condition exceeds a certain threshold

[112,149,159,160].

Diagnosis A 4
Data modelling to
evaluate the current
equipment condition

h 4 Prognosis

Prediction for future
data

Data modelling to
evaluate the future
equipment condition

Is operation condition
reached failure limit?

s operation condition
reached failure limit?

activities FCPB

Figure 10. Typical decision framework of CCEB and FCPB.

The implementation of CCEB and FCPB strategies can be challenging during real in-
dustrial practice. In fact, when implementing CCEB, there may not be enough time for
maintenance planning if the health condition shows that the components have already
reached the fault limit. Although the FCPB can indeed solve this problem since it is able
to predict future health condition of the components, the reliability of short-term predic-
tions is higher than that of long-term ones. When dealing with long-term prediction, the
FCPB might not be precise enough. To provide a reliable maintenance decision, the CCEB
and FCPB need to be chosen carefully for an optimal decision.
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4.3.2. Remaining Useful Life Estimation

Condition-based maintenance activities have also focused on fault prognosis and re-
maining useful life (RUL) estimation. Cheng et al. proposed a fault prognosis and RUL
prediction method for WT gearbox [161], where an ANFIS was used to learn the state
transition function of the fault features. Then, a particle filtering algorithm was employed
to predict the RUL of the gearbox via the learned state transition function. The effective-
ness of this method has been demonstrated by their run-to-failure tests. Another case
study presented in [162] has shown that a power-purchase-agreement-managed wind
farm by incorporating estimation of the WT RUL can enable predictive maintenance for
the wind farm, thus avoiding corrective maintenance and reducing the cost and down-
time. Zhang et al. proposed a fatigue prediction model of the blade to reproduce the fa-
tigue damage evolution in the composite blades subjected to aerodynamic loadings by
cyclical winds. The lifetime probability of fatigue failure of the blades was then investi-
gated by stochastic deterioration modeling, and a cost benefit model was finally built to
optimize the maintenance cost [163]. Zhu et al. investigated new importance measures of
evaluating the maintenance values of WT components in terms of increasing the mean of
RUL and mean residual system profit over the RUL. Their study showed that the pro-
posed importance measures were suitable and effective for selecting components for in-
spection and maintenance actions to take [164].

To estimate the RUL of a WT, the prognostics and health management (PHM) tech-
niques can be adapted. A turbine with PHM was studied with a stochastic jump-diffusion
model in order to model the random evolution of deterioration process and production
output. Monte-Carlo simulation was performed to find the optimal maintenance data as
well as the lowest maintenance cost [160]. Not only are the mechanical components of WT
used to estimate their RUL, the RUL estimation of electrical components is also necessary.
A Gaussian process regression technique was proposed to estimate the RUL for degraded
high-power IGBTs (insulated-gate bipolar transistor) [165]. This method was proven com-
patible with accelerated ageing database of real devices as defined under thermal over-
stress utilizing a direct current at the gate.

As shown in the literature, both diagnostic and prognostic/RUL estimation strategies
can provide valuable information for condition-based preventive maintenance. On the
other hand, a number of researches have also been conducted to investigate the schedul-
ing optimization. Garcia et al. proposed a maintenance system, called intelligent system
for predictive maintenance (SIMAP), for the WT gearbox and showed that the SIMAP can
adapt the maintenance calendar of a WT to its real needs and operating times [166]. Zhong
et al. proposed a maintenance scheduling optimization model as a two-phase solution
framework by integrating the fuzzy arithmetic operation and the non-dominated sorting
genetic algorithm. The schedules were derived from the trade-offs between the maximum
reliability and minimum cost [167]. Except the CM methods for WT components, the labor
cost and production loss as objective functions have also been taken into consideration for
maintenance scheduling decision. By analyzing historical weather data and a statistical
model for weather description, the maintenance problem was formulated compactly as a
mixed-integer linear programming model. Compared with the periodic preventive
maintenance, the expected labor cost and production loss were reduced approximately by
30% and 20%, respectively [168]. Other parameters such as maintenance vessel allocation,
electrical price, and dynamic safe access pre-requisites for WTs and crane also play an
important role for maintenance scheduling optimization [169,170].

It is noted that condition-based predictive maintenance suffers from a lack of details
in the existing data collection system. The RAMS (reliability, availability, maintainability,
and safety) databases have therefore been constructed to provide more detailed infor-
mation on maintenance planning, scheduling optimization, and life cycle cost minimiza-
tion [171]. Another concern is associated with the data reliability since the data can be lost,
noised, and hacked during the transmission process. In order to improve the CM accuracy
and reliability, data encryption has also often been taken into account.
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5. Discussion and Future Work

Conventional WT CM is implemented by signal-processing-based approaches. This
is achieved through detection and analysis of pre-learned signal features that are specific
to particular fault modes. These features are commonly time and/or spectral domain arte-
facts in the monitored signals and are generally referred to as the fault signature. There is
a general requirement to keep the CM process as low-cost as possible and ideally as min-
imally invasive to the device hardware as is practical, assuming retention of diagnostic
capability. This, in principle, imposes a trade-off between the device operative features
that can feasibly and practically be sensed and those that could contain an inherently
higher density of diagnostic information, such as device-embedded stress in the vicinity
of known failure points. The sensing technology underpinning a given CM method thus
also plays an important role in the diagnostic process, and its advancement remains the
objective of continuous research.

In addition to improved diagnostic reliability, the realization of more accurate
maintenance planning is needed to enable more profound impact on the O&M cost that
the sector requires. Although reviewed in this paper, the lack of more significant work in
prognosis and especially in RUL prediction indicates a strong need for intensification of
research efforts in this area. Additionally, since WT CM is generally performed based on
data acquisition, and in particular vibration analysis, which is a completely unlabeled data
problem, this can create challenges associated with bad generalization related to incon-
sistency between new forced labels and learning inputs. Furthermore, the lack of similar-
ity in distribution between training and testing samples due to the dynamicity of working
conditions could lead to mispredictions (false alarms) of a CM system. Besides, for exam-
ple, some bearing problems, data have been generated from accelerated life tests that pro-
vide incomplete and unlabeled list of patterns. Therefore, future work in this space would
need to attempt to fill these gaps by incorporating more knowledge from pertained mod-
els through involving GANs and TL.

Sensing for WT CM is an area that provides the principal source of diagnostic infor-
mation and as such has a profound impact. As stated earlier, the general desire is to rely
on a minimum number of additional sensing points to those inherent to core system op-
erative functionality and rely on system-contained signals for diagnosis where possible.
However, this level of non-invasiveness is generally a challenge to attain and can restrict
the diagnostic and prognostic capability. Increasing sensor numbers or adopting alterna-
tive and more advanced sensing methodologies can improve the diagnostic relevance and
coverage of measurements; the cost and complexity of the CM system need to be carefully
taken into consideration in this process. Sensor failures or misreporting are highly unde-
sirable as they increase the risk of CM system unreliability, resulting in the scheduling of
unnecessary maintenance or downtime. Deployment of advanced sensing techniques
could, however, lead to much improved characterization of the subassembly failure and
degradation process and caries the potential to be strategically used either for develop-
ment of higher-fidelity, validated diagnostic models or for dedicated, high-value compo-
nent-specific monitoring solutions. A strong interest remains in employing the readily
available low-resolution standalone SCADA data, or in combination with high-resolution
CM data, to improve the CM system accuracy. However, achieving high reliability diag-
nosis and prognosis remains a challenge. Therefore, future work is required to develop
new CM methods by means of artificial intelligence and ML to improve the CM robust-
ness and accuracy, considering also the inputs of advanced, strategic sensor inputs where
pertinent. Moreover, the deployment of a CM system to WTs at the farm level would lead
to new insights into predictive maintenance strategies; therefore, the performance and re-
liability of a CM system itself are crucial [172]. Future work is also required to develop
more accurate and reliable CM systems for corresponding condition-based maintenance
opportunities with a multi-system approach by considering dependencies among WTs
and optimizing operational decisions.
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6. Conclusions

The paper reviews the general state of the art and upcoming advances in the area of
WT CM systems by intelligent and ML approaches. The review covers recent develop-
ments in conventional signal-based CM and tools, from data-driven ML-based CM to big
data mining and predictive maintenance. It has been found that the general focus in WT
CM research largely remains associated with classification driven by application of ML
and big data techniques and is aimed at underpinning more effective diagnosis. CM sys-
tems should detect, diagnose, and eliminate hidden faults rapidly and predict failures of
the system with as little human intervention as possible, particularly given the rapidly
growing size of wind farms and moving further offshore. System level automation of this
process is highly desirable yet remains a challenge for the existing state of the art. The
intelligent and ML approaches reviewed in this paper hold potential to provide a viable
and efficient solution to improve CM capabilities and hence reliability and availability of
WTs and ultimately to reduce the O&M costs. However, considerable further research is
needed to achieve this goal.
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