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Abstract

In the effort to develop critical cyber-physical systems, it is tempting to extend

existing computing formalisms to include continuous behaviour. This may happen

in a way that neglects elements necessary for correctly expressing continuous

properties of the mathematics and correct physical properties of the real-world

physical system. A simple language is taken to illustrate these possibilities. Issues

and risks latent in this kind of approach are identified and discussed under the

umbrella of ‘healthiness conditions’. Modifications to the language in the light of

the conditions discussed are elaborated, resulting in the language Combined

Discrete and Physical Programmes in Parallel (CDPPP). An example air conditioning

system is used to illustrate the concepts presented, and it is developed both in the

original ‘unhealthy’ language and in the modified ‘healthier’ CDPPP. The formal

semantics of the improved language is explored.
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1 | INTRODUCTION

With the massive proliferation in computing systems that interact with the real world, spurred by the tumbling costs of processors, memory and

sensor/actuator equipment, the need for reliable methods to construct such systems has never been greater, especially because so many of these

systems have high consequence aspects if they fail to behave as intended. In the light of this drive, systematic methodologies from the discrete

formalisms world are being adapted to incorporate the needs of the physical behaviours that are now intrinsic to these systems. Although this is

entirely appropriate as a broad objective, in reality, many such initiatives may turn out skewed in the execution, in that a great emphasis is placed

on the discrete aspects of such an extended formalism, to the neglect of needs coming from the continuous aspects, especially regarding the more

subtle of these pertaining to continuous behaviour, and to credible physical properties. The interplay between these worlds can also fail to get the

attention it requires. The balance of emphasis perceptible in typical texts in this area, such as Alur1 and Lee and Shesha,2 gives a good indication

of this situation.*

In this paper, we intend to illuminate the imbalance that we perceive by examining an example language for concurrent discrete update and

critically analysing the consequences that follow when continuous update facilities are added in a relatively naïve way. We describe this critical

*Having said that, much verification work, as presented in, for example, the HSCC series, proves to be soundly based, due to conservative design choices. See further discussion in Section 8.
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analysis as bringing some ‘healthiness considerations’ into play, by analogy with the terminology used in Unifying Theories of Programming

(UTP).3 Briefly, the main points of this can be indicated as follows.

• Physical behaviour extends over real time, and computing metaphors that interact intimately with it must be consistent with that.

• Differential equations (DEs) are unavoidable, and their properties (and limitations) must be properly integrated into the expressive framework.

• Physics is eager. Any description of a physical process must be total over the whole time interval of interest.

Some of the ramifications of these observations can be quite subtle, and act at a deep semantic level, for example, the precise formulation of

conditions that govern how the semantics of DEs interfaces with the semantics of the remainder of the language. We discuss these in due course.

Other aspects are more immediately perceptible at the syntactic level. For example, the last point precludes inserting continuous dynamics facili-

ties into the language in an arbitrary way, and this flies in the face of the impulse towards syntactic orthogonality and the arbitrary nesting of syn-

tactic constructs encouraged by Backus-Naur form (BNF)-like language definition mechanisms, particularly when the trends set by the Algol

family (and especially its more elaborate variants like Algol-684,5) are followed. Our example language development illuminates some of this in a

pedagogical manner.

Having brought these issues into the light, we explore how to modify our original language to better take them into account. This can partly

be done by reshaping the syntax, which is presented in its modified form, and which we call Combined Discrete and Physical Programmes in Par-

allel (CDPPP). Remaining aspects of healthiness reside within the semantics, and we discuss their impact. It is worth saying that our language is

not one that we would necessarily use seriously for such applications, but actually, its very lack of obvious suitability serves to better highlight the

points we make, somewhat like a caricature attracts an increased amount of attention to certain aspects of its subject (without necessarily imput-

ing anything negative thereby). A more wide ranging discussion of the context for languages and approaches for cyber-physical systems (CPS) can

be found in the related work section near the end of the paper.

We illustrate the above train of thought by developing a simple case study concerning the steady state operation of an air conditioning

(AC) system, this being a system where there is enough a priori physical behaviour to exemplify some of what we discuss in more abstract terms.

We give a development in the original language and an improved version in CDPPP.

The rest of the paper is as follows. In Section 2, we present our initial language, and our initial attempt at adding continuous behaviour, speci-

fied using DEs. Discussing the semantics of the extension, even relatively informally, implies a substantial technical detour regarding the possibili-

ties available when DEs are involved. For readability, the details of this are relegated to Appendices B1and C1. In Section 3, we give our initial AC

system development. Given that this appears to work out successfully, in Section 4, we ask the question of what might be missing from the treat-

ment thus far, and in doing so, we identify the healthiness considerations mentioned above, considerably enlarging the earlier semantic discussion

thereby. A large number of the points raised come from contemplating the physical world (as anticipated in the comments above) and the con-

straints imposed by physical theory. Such considerations are often neglected when computing science perspectives are to the fore. Section 5 then

modifies the initial language syntactically, where possible, resulting in CDPPP. Section 6 redevelops the AC system in CDPPP, alleviating some of

the problems noted earlier. Section 7 is more technical, and examines the formal operational semantics of CDPPP in detail, pointing out how the

earlier healthiness considerations interact with the technical details. Section 8 considers related approaches. Section 9 concludes. Finally, Appen-

dices B1 and C1 deal in more technical depth with DEs and with closure properties of the various guard constructs that arise in some of our lan-

guage constructs.

This paper is an extended version of Banach and Zhu.6 Aside from a much less terse style of discussion and a reorganised presentation of the

material for greater readability, many additional relevant facts are included, and there is an extended related work section. The principal additional

technical enhancement beyond6 is the discussion of formal semantics in Section 7.

2 | AN INITIAL CONCURRENT LANGUAGE AND ITS CONTINUOUS EXTENSION

In this section, we introduce a simple concurrent language and a naïve attempt to enhance it with facilities for continuous update. We discuss the

semantics fairly informally, focusing on issues that are often neglected in such exercises. This implies a significant detour regarding properties of

DEs, most details of which are relegated to an appendix.

2.1 | The initial concurrent language

We present the syntax of our initial language. This is a relatively conventional language featuring parallel processes, shared variables and the usual

structuring constructs and allowing delays of a specified (integral) number of time units. Besides the syntax given, we use parentheses in the usual

way for scoping, nesting and disambiguation. An explanation of the various constructs follows below.
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In connection with this definition, we make the following amplifying comments:

(1) All variables used, for example, x, have to be declared (and optionally, initialised, e.g., x0) with their typesT in a declaration block Decl in whose

scope (defined, as usual, to be the immediately following maximal Pr0 block in the specification Decl;Pr0) their uses occur. A Pr0 block may be

given a Name to allow reuse in more than one place in a programme. Obviously, each such Name should have a unique declaration somewhere

in the programme.

(2) The discrete variable assignment, conventionally written x:=e, is atomic, so that no action can interleave the reading of the variables needed

for e, the calculation of the value of e, and the writing of the result to x. The vacuous assignment (the assignment that changes nothing) is

written skip. Each variable has to be assigned an initial value (in terms of constants and already assigned variables) before it can be used. As

noted, initialisation is optionally taken care of during declaration.

(3) The simultaneous assignment {xs:=es} merely defines a package of several atomic updates, all of which are effected indivisibly at the same

instant. In particular, no other action can interject between the reading of all the variable values needed for es and the updates to xs.

(4) The discrete event-guard, @b, where b is a Boolean condition, is enabled when the guard b holds; otherwise, it is disabled. In the former case,

@b is equivalent to skip, so that nothing happens and execution of the programme proceeds to the next construct. In the latter case, the pro-

cess executing @b is suspended and waits until b becomes true, at which point execution proceeds to the next construct. The delay guard #r

represents an unconditional delay of r time units, the expression r being evaluated with respect to the valuation of variables at the moment

that the #r construct is encountered during the execution of the programme.

(5) The usual outer level programme constructs are familiar. if b then P else Q fi is the conditional, choosing branch P or branch Q according to

the value of Boolean condition b, and while b do P od is iteration, repeating P until the Boolean condition b becomes false. P;Q is sequential

composition: P is executed first, and provided it has terminated successfully, execution moves on to Q. Shared-variable concurrency is

expressed via P‖Q, where P and Q can contain the behaviours outlined. When P‖Q is encountered, the original process executing the pro-

gramme splits, and then, one process starts to execute P, and the other process starts to execute Q.

Semantically, if we momentarily disregard the delay #r, everything is quite conventional, and we do not need to repeat the details. A language

like Pr0 expresses updates to variables, which are related to each other via the usual syntactically derived causality relation, but there is no indica-

tion about how these updates might relate to the real world. In practice, (real-world counterparts of) the atomic updates are usually understood

to occur at isolated moments of real time, but there is no absolute necessity for this. A familiar alternative interpretation for appropriately struc-

tured families of updates arises in the duration calculus, in which sequences of updates can be associated with the same ‘real-time’ instant.7*

When we now reconsider the delay #r, things change. We are obliged to take note of real-world time. Consequently, we now stipulate that

all (packages of) update execution instances have their own specific isolated points in time at which they execute. In effect, this partially restricts

the semantics of our simple language, compared with possibilities allowed elsewhere.

We observe that a number of things are left vague in the preceding discussion. For instance, we have not defined what we mean by a pro-

cess. For such things, we can either rely on the reader's experience and intuition to furnish a workable definition, or we can suggest that the

reader ‘borrows’ the approach to the relevant issue from Section 7, where there is much more precision about all semantic matters.

The preceding sets the scene for introducing continuous variable updates. As we do so, the character of the language changes subtly. The dis-

crete event language given so far is a conventional imperative language, albeit a rather abstract one, because the guard commands @b and #r, as

well as concurrent composition ||, are handled via abstract combinators rather than the library calls one would expect in a true implementation

level language. When we add continuous update via DEs (our preferred technique for the time being) the language acquires much greater

specificational characteristics. A DE is a specification mechanism par excellence—it declares a property that one or more variables should satisfy

without describing how that property is to be realised. The language thus becomes, much more, a modelling language. Using it, the intention is

that we can describe how a system should behave, with certain aspects given explicitly, and other aspects more implicitly. We discuss the issues

left open by this in Section 4.

*In this paper, we wish to sidestep the race conditions that arise when two (packages of) updates that read each others' left hand side variables execute at exactly the same moment. We take

suitable semantic precautions for this below.
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2.2 | A continuous extension

We now extend the initial discrete concurrent language by adding the following syntactic facilities. Further discussion follows.

Regarding the above information, we make the following additional comments:

(6) Declarations may now include continuous variables as well as discrete variables. The same scope rules that apply to the discrete variables are

extended to also apply to the continuous case.

(7) The command @g waits for its guard g to be satisfied. It is like @b except that g may now contain continuous variables. This implies that the

model of time that is used must be a continuous time model (whereas a discrete time model would be sufficient for Pr0 programmes if all

typesT were themselves discrete).

(8) The DE command ½iv�D x= Fðx,y,τÞ until g first guards the entry point of executing the DE until the initial conditions on the variables of the

DE system (expressed in [iv]) are satisfied. If iv is not satisfied, execution is delayed, just as for @b or @g. (The presence of DEs to model physi-

cal quantities again implies the use of physical continuous time, there no longer being any choice in the matter). Once [iv] is satisfied, the cur-

rent values of the variables being updated define the DE's initial values, and the behaviour specified by the DE ensues (D denotes the time

derivative, operating on x). The behaviour specified by the DE continues until the preempting guard g is satisfied or the DE itself becomes

infeasible. The preempting guard g is a Boolean condition, like @g, and as soon as it becomes true the behaviour specified by the DE stops. If,

however, the DE behaviour becomes badly defined before g becomes true, the behaviour specified by the DE also stops.

2.3 | Semantic considerations

The above outline serves well for intuition. However, if we need to be precise, more details need to be carefully defined. Thus, although we have

some leeway in interpreting pure discrete events semantically (for instance, in the difference between allowing updates at the same moment of

time, or not, as discussed above), this evaporates when we add DEs. At least it does so if we want a credible correspondence with the real world.

Thus, although pure discrete event formalisms may, quite sensibly, be studied axiomatically, allowing a priori decisions to be made about how syn-

tactically specified updates correspond to semantic notions, this is never the case for DEs.

In conventional pure and applied mathematics, the ingredients of DEs are always first interpreted with respect to a semantic domain that is

stipulated in advance (albeit often implicitly in the case of applied mathematics). Different choices of such semantic domains are justified on gro-

unds of the differing generality that they permit in the properties of the functions that are deemed to solve those DEs; see, for example, Walter8

for a discussion of a few of the many options. In Appendix B1, we give a more incisive discussion of the issues surrounding DEs—that account

being one among a number of possibilities. Here, so as not to impede the exposition by a lengthy digression, we can simply assume that all the DE

cases we need are covered by a range of syntactically recognisable patterns, whose solutions are known in the mathematical literature, and which

consist of functions of (intervals of) time. With the preceding understood, we give an outline of the various elements of the semantics of the lan-

guage Pr1 in the following terms.

Working bottom-up from the most basic ideas, the fundamental semantic concept is the state σ, a mapping from each variable v to a value in

its type: v↦σ(v). Obviously, the state changes at various points of the execution of a programme written in our language.

We also need clocks, written generically as τ. A clock is a continuous real variable whose time derivative is fixed at 1. The phrase ‘a clock is

started’ means that a fresh clock, initialised to 0, starts to run from the beginning of the semantic interpretation of some non-atomic construct of

interest. The usual purpose of this is to ensure that different semantic events (most importantly, particular updates to the state) are separated

in time.

The Db part of the language is unsurprising. The discrete atomic variable assignment, x:=e, sends the state σ to the state σ[σ(e)/x], which is

identical to σ, except at x, the value of σ(x) becoming σ(e). Similarly for packaged atomic updates {xs:=es}, in which the state σ changes to the state

σ[σ(es)/xs], implying simultaneous update of the sequence xs to the sequence of values σ(es), all of which, are derived from σ, as usual.

For @b, if b is true in the current state, then the programme completes successfully. Otherwise, a clock is started and runs as long as it takes

for the evolution of the programme state to make b true, at which point the programme completes.
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For #r, if r ≤ 0, then the programme completes successfully. Otherwise, a clock is started and runs for r>0 time units.

Regarding the continuous behaviours, @g, as already noted, may contain continuous variables and thus may wait for an arbitrary (i.e., possibly

non-integral) number of time units, but otherwise is like @b.

Thus far, we have covered the semantics of individual constructs in terms of their individual durations. DEs, positive delays and unsatisfied

guards have all acquired non-zero durations. Non-positive delays and immediately satisfied guards are instantaneous, but because they do not

change the state, we can allow them to complete immediately.

Atomic updates do change the state though. And to ensure that (packages of) atomic changes of state take place at isolated points in time, to

execute an update, we start a clock that runs for a finite, unspecified, (but typically short) time, during which a nonclashing time point is chosen

and the update is done. Nonclashing means that the update is executed at a moment in time which is chosen to be separated from any moment in

time at which any other semantic event that updates the state in a discrete manner executes. This, perhaps, is a somewhat unusual semantics for

atomic update, but it is justified on physical grounds, given that we cannot avoid dealing with real time, now that DEs are present in our language.

The remaining outer level constructors offer few surprises. Sequential composition, P1;P2, starts by executing P1, and if it terminates after a

finite time, then P2 is started. If P1 takes forever, we never start P2. The conditional if b then P1 else P2 fi is familiar. Depending on the (instanta-

neous) truth value of b, the execution of either P1 or P2 is started, and the other is forgotten. For iteration, while b do P od, if b is false, the con-

struct terminates. If b is true, the execution of P is started. If it completes in finite time, the whole process is repeated. and if any of the iterates of

P takes forever, then nothing further takes place. The parallel construct P1‖P2 denotes programmes P1 and P2 running concurrently, and the dis-

cussion about process splitting that we gave for Pr0 applies here too. The parallel construct completes when both of its subprogrammes have

completed.

With the above, we can describe the runs of a Pr1 programme, having characteristics that are consistent with the physical picture we would

want in a formalism that includes DEs, by giving, for each variable, a function of time that gives its value at each moment. For discrete variables,

such a function is piecewise constant, and for precision, we stipulate that the intervals of time on which it is constant are left-closed right-open

intervals.* By convention, an atomic update taking place at time tα say, takes the left-limit value at tα to the actual value at tα.

For a continuous update (specified by a DE with a preemption guard g for example), that runs till a time τg say—at which point g preempts it—

we remove the final value of the closed interval [0…τg], getting a left-closed right-open interval again, and interpreting the guard g as its left-limit

value at τg.

Looking ahead a little, the main problem with Pr1 that is visible on the surface is that it mixes conventional computing discrete update, and

continuous physical evolution, at arbitrarily deeply nested points of a programme's syntax. This leads to a number of potential difficulties. Other

issues lie deeper in the semantics, and we discuss them in due course. In Section 7, we give a more detailed formal operational semantics of a

modified version of the Pr1 language, derived from Pr1 by taking a number of further considerations, inspired from the physical domain, into

account, and we discuss how these changes address the difficulties we identified.

3 | EXAMPLE: AN AC SYSTEM

We illustrate how the Pr1 language works via a simplified AC example. Although failures in AC systems are typically not safety critical, the kind of

modelling needed and the issues to be taken into account regarding the modelling are common to systems of much higher consequence, making

the simple example useful.

The AC system is controlled by a User. The user can switch it on or off, using the boolean runAC. The user can also increase or decrease the

target temperature by setting booleans tempUp and tempDown. Because Pr1 does not have pure events as primitives, the AC system reacts on

the rising edges of tempUp and tempDown, resetting these values itself (whereas it reacts to both the rising and falling edges of runAC).

Figure 1 contains the User programme. In the following, we assume available a function rnd, that returns a random non-negative integer value.

Note that runAC, tempUp and tempDown are not declared in the User programme because they need to be declared in an outer scope. Figure 1

models the nondeterministic behaviour of the user by using random waits between user events and random counts of temperature modification

commands. This is evidently a bit clumsy, but it is adequate for purposes of illustration.

The User controls an AC apparatus, simplified compared with reality for convenience, the Pr1 code for which appears in Figure 2. The AC

apparatus consists of a room unit and an external unit. It operates on a Carnot cycle, in which a compressible fluid (passed between the two units

via insulated piping) is alternately compressed and expanded. The fluid is compressed in the external unit to raise its temperature higher than the

surroundings, where it is cooled by forced ventilation to (close to) the temperature of the surroundings. The fluid is then expanded, cooling it, so

that, in the room unit, it is cooler than the room, and forced ventilation with the room's air warms it again, simultaneously cooling the room. The

cycle runs continuously. The inefficient thermodynamics of the Carnot cycle means this process cannot work without a constant input of energy,

which is what makes AC systems rather expensive to run.

*Note that any left-closed right-open interval must be of strictly positive duration and that such intervals are closed under the appendoperation.

BANACH AND ZHU 5 of 24



Our simplified model of AC operation depends on a number of temperature variables, reflecting the structure of the Carnot cycle: θS is the room

temperature set by the user, initialised to θS0, a value within a range of natural numbers defined by two constants, SL and SH; θR is the current room

temperature, initialised to θR0, a value within a range of real numbers defined by two constants, RL and RH. The remaining declarations in the square

brackets on lines 3 and 4 contain detail that may be dispensed with if one is prepared to accept the constants introduced at face value. Thus, θX

is the temperature of the external unit's surroundings, initialised to θX0, a value within a range of reals defined by constants XL and XH; θFH is the

temperature of the fluid when compressed; θFL is the temperature of the fluid when expanded, all of these being real valued. The fluid expanded

temperature is defined via a simple proportionality to the difference between the fluid compressed temperature and the external temperature.

When an AC system is started, each part will be at the temperature of its own surroundings, and there will be a transient phase during which

the AC system reaches its operating conditions. For simplicity, we ignore this, and our model starts in a state in which all components are

initialised to their steady state operating conditions. Consequently, θFH, θFL and θX are assumed constant, so do not require their own dynamical

equations, in line with the ‘optional’ declarations in red square brackets on lines 3 and 4.

For simplicity, we assume that θFH is independent of other quantities and that θFL is lower than θFH by an amount related to θFH0 − θX0. We

also assume that when operating, the AC system cools the room air according to a simple linear law D θR = −KRðθR−θFLÞ, with KR constant.

Putting the User and the ACapparatus together gives us the complete system, shown in Figure 3. We see that it includes a number of declara-

tions omitted earlier. Note that in Figure 3, although runAC works as a toggle, tempUp and tempDown are reset by the apparatus. Finally, we rec-

ognise that for a sensibly behaved system, even as crude and simple a system as we have described, we would need a considerable number of

relations to hold between all the constants that implicitly define the static structure of the system.

F IGURE 3 The complete air conditioning (AC) system in
Pr1

F IGURE 1 The User programme in Pr1

F IGURE 2 The ACapparatus in Pr1
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4 | WHAT IS WRONG WITH PR0?—HEALTHINESS CONSIDERATIONS

At this point, we step back from the detailed discussion of the example to cover a number of general considerations that arise when physical

systems interact with computing formalisms.

[A] First, we know that continuous variables must be considered as functions of real time; physics demands this (in the classical physics

sphere). For discrete variables, we have a number of possibilities, because the main fact about them is that they take on a sequence of values dur-

ing a run of the system. We thus have the option of mapping the sequence of values to a function of time, which is piecewise constant, with each

value in the sequence holding for the period of time that elapses between the relevant pair of update events. Allowing all variables of interest to be

considered as functions of time yields a convenient uniformity between the isolated updates of the discrete variables and the continuous updates of

the continuous variables. Treating the two kinds of variable and/or the two kinds of update in different ways, can lead, at the very least, to a certain

amount of technical awkwardness, not to exclude mathematically sound but physically unacceptable characteristics, all of which are best avoided.

[B] When all variables correspond to functions of time, values at individual points in time have no physical significance. Only

values aggregated over an interval of time make sense physically, because all physical law is defined using DEs, and their integrals—even impulsive

physics, such as the description of collisions, are consistent with this. For values aggregated over an interval of time to be well defined, the func-

tions of time in question have to be sufficiently well behaved. They have to satisfy some appropriate regularity property, for example, they can be

continuous (from one side, or the other). Strictly speaking, the property of being integrable would actually be sufficient.

[C] In dealing with CPS, we must take into account the consequences of using DEs. We have already broached this topic in our discussion of

the semantics of our language Pr1 in Section 2. The existence of solutions to arbitrary DEs cannot be taken for granted without the imposition of

appropriate sufficient conditions. An easy way to ensure these, as already suggested in Section 2, is to impose strict syntactic restrictions on the

form of the permitted DEs, for example, by insisting that they are linear.

[D] Physics is relentlessly eager, in that physical law is always valid and must be obeyed at all moments of time. In conventional discrete sys-

tem formalisms, assuming that the discrete events in question are intended to correspond with real world events, the precise details of the corre-

spondence with moments of time are seldom critical (other than for explicitly timed systems), and more than one interpretation is permissible,

provided that the causal order of events remains the same. This is made possible by the fact that aside from moments of state change, in discrete

system formalisms, the state remains constant until the next state change, so the next state change can usually be delayed (in real-world time)

without harm. As soon as physical behaviour enters the scene though, this choice and the range of possibilities it offers disappears. If one physical

behaviour stops (within a given physical system), another must take over immediately (in the same physical system), as the universe does not ‘go

on hold’ until some new favourable state of affairs arises. A formalism that is adequate for the description of systems with a physical component

must take the eagerness of physics into account.

[E] Point [D] places quite strong restrictions on the semantics of languages intended for the integrated descriptions of computing and physical

behaviour, because many of the options available for discrete systems simply disappear. Although it is perfectly possible to design languages that

ignore this consideration and integrate continuous behaviour and discrete behaviour in an arbitrary fashion, such languages might not be fit for

purpose physically. Thus, even though they may be perfectly consistent mathematically, unless they take due consideration of the requirements of

the physical world, they become irrelevant for the description of real-world systems. One simple consequence of this is that for any putative

parallel construct in such a language, both branches must terminate together for the overall parallel construct to terminate in a well defined way—

it is inconceivable that one part of the universe simply stops and ‘nothing happens there’ until some other part of the universe catches up.

[F] Points [D] and [E] boil down to a requirement that descriptions of physical behaviour must be guaranteed to be total as a function over

the time period which is of interest in the system model. Languages intended for CPS and critical systems should not permit gaps in time during

which the behaviour of some physical component is undefined.

[G] The requirements of the last few points can be addressed by having separate formalisms for the discrete and continuous behaviours of

the whole system and having a well thought out framework for their interworking. However, in cases of multiple cooperating formalisms, it is

always the cracks between the formalisms that make the most hospitable hiding places for bugs, so particular vigilance is needed to prevent that.

In the present context, it is not so much ‘programming errors’ that we are referring to when we say bugs, but semantic consequences of the cho-

sen way of interworking, that while being mathematically sound enough, are unacceptable on physical grounds, for instance grounds such as the

ones we have been discussing above.

[H] The impact of the preceding points may be partly addressed by careful syntactic design—we demonstrate this to a degree in Section 5. How-

ever, most aspects are firmly rooted in the semantics. In this regard, a language framework that puts such semantic criteria to the fore is highly beneficial.

The semantic character of most of the issues discussed implies that an approach restricted to syntactic aspects can only achieve a very limited amount.

[I] The implications of the heavily semantic nature of most of the issues discussed above further implies the necessity of having runtime

abortion as an ingredient of the operational semantics of any language suitable for the purposes we contemplate. This is seldom an issue per se

for practical languages, which must include facilities for division, hence for runtime occurrences of division by zero. Nevertheless, it is perfectly

possible to contemplate languages in which all primitive expression building operations are total, and hence to dispense with runtime abortion,

even if such languages are of largely theoretical interest.
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The overwhelmingly semantic nature of the preceding discussion motivates our referring to the matters raised as ‘healthiness conditions’.

(The nomenclature is borrowed from UTP,3 where appropriate structural conditions that play a similar role are baptised thus.) Checking that the

necessary conditions hold for a given system, compels checking that the relevant criteria, formulated as suits the language in question, hold for

the system at runtime (for the entire duration of the execution). Depending on the language and how it is structured, this may turn out to be more

convenient or less convenient.

5 | AN IMPROVED CONCURRENT LANGUAGE, CDPPP

In this section, we redesign the syntax of our earlier language, and we name the redesigned language CDPPP.

5.1 | The CDPPP language

The CDPPP syntax is given in Figure 4. Note that in contrast to the earlier language, the occurrences of declarations in programme contexts now

appear within braces (clauses Pr0 and PrSys). This is to make the scopes of the declarations unambiguous, which makes life easier when we con-

sider the formal semantics in Section 7.

In the CDPPP grammar, the healthiness considerations of Section 4 that can be addressed via the syntax have been incorporated in the struc-

ture of the language. Thus, there is a visible separation between the previous discrete programme design Pr0 (which remains unchanged) and the

provisions made for describing physical behaviour, Pr2, which have been restructured from the earlier Pr1.

Specifically, there are now no facilities for Pr2 processes to wait, avoiding the loophole of designing descriptions of physical behaviour that

just stop dead at some point. Furthermore, physical behaviour can only be combined with discrete processes at top level, precluding the sudden

appearance of physical behaviour part way through a system run. This also means that physical behaviour must be declared at top level, which is

also reflected in the design of the PrSys syntax.

Note the additional obey Rstr clause for physical behaviour, where Rstr is a predicate in the variables (and constants, etc.). It simply demands

that the (physical) variables engage in any behaviour that satisfies Rstr, until such a time as the preemption guard g becomes true. This permits rel-

atively loosely defined behaviour to be specified in cases where more prescriptive behaviour via a DE is not desired, or is impossible due to lack

of knowledge, or for some other reason. This replaces the use of waiting clauses in the earlier grammar. Note that DE behaviour and obey behav-

iour are the only permitted ways of describing continuous behaviour at the bottom level. Any physical process must be executing a DE behaviour

or an obey behaviour at all moments of an execution.

Although, through the redesign of the earlier Pr1 clauses to the Pr2 clauses of CDPPP, we have ensured that Pr2 processes cannot wait for

syntactic reasons, we have to ensure that they cannot wait for semantic reasons either. Thus, we must stipulate what happens in the DE and obey

cases when one or other of their syntactic components fails. Taking the DE case first, if iv does not evaluate to true,* then the whole top level

PrSys process must abort, that is to say, execution terminates abruptly in a failing state. Note that this contrasts sharply with the behaviour

described in Section 2 for the iv=false case, where we permitted the DE construct to wait. If F fails to satisfy the conditions for existence of a DE

solution, then the top level PrSys process aborts. If g does not evaluate to true at some moment in the DE solution, in case that the duration of

the DE solution τf is finite, then when τf is reached, the top level PrSys process aborts. Turning to the obey case, if Rstr does not evaluate to

true in a left closed right open time interval starting from the moment the obey construct is encountered (or amounts to skip at that moment),

then the top level PrSys process aborts. If g does not evaluate to true at some moment during the true interval of Rstr, in case that the duration of

the true interval of Rstr, say τf, is finite, then when τf is reached, the top level PrSys process aborts.

F IGURE 4 The Combined Discrete and Physical Programmes
in Parallel (CDPPP) syntax

*That is to say, it evaluates to false, or fails to evaluate to a well-defined value at all.
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5.2 | Healthiness issues revisited

Taking on board the discussion in Section 4 and having defined the syntax of the improved language CDPPP, we can check how it addresses the

healthiness conditions described earlier.

Regarding [A], there is nothing in the syntactic definition of CDPPP that prevents the interpretation of discrete variables being made in terms

of piecewise constant functions of time, along with the interpretation of physical variables being piecewise continuous functions of time. So our

syntactic definition does not impede what was considered desirable in Section 4 concerning these points.

Regarding [B], the absence of observable effects that depend on an isolated value of a function of time, this is also implicit in the structure of

CDPPP, but there are aspects of this issue that are more subtle, which thus bear closer examination. Concerning this, we indicated at the end of

Section 2 that the semantic universe of our language(s) is based on functions that are piecewise continuous (or constant) on left-closed right-open

intervals. Every point in the domain of such a function has a neighbourhood extending to the right (even if not necessarily extending to the left) on

which the function is continuous. Thus, there are no functions in the semantics, which exhibit isolated values. This is consistent with the fact that

CDPPP has updates that take place instantaneously at moments of time, which are isolated from one another. Thus, it is impossible to have an

update to a variable at a certain moment of time and immediately follow it with another update at ‘the next moment of time’ because (a) the inter-

pretation of updates given in Section 2 forbids it and (b) there is no such thing as ‘the next moment of time’ because time is dense and the expres-

sions we are able to write down can only refer to isolated time values anyway. All this is made clear in the formal semantics of CDPPP in Section 7.

Regarding [C], concerning DEs, we already made an extensive detour around the issues that arise when we consider DEs in Section 2 and

made further comments in Section 4. We consider these to be sufficient.

Regarding [D], concerned with ensuring eagerness in the description of physical behaviour, we have designed the syntax of CDPPP to

prohibit explicit lazy behaviour by disallowing the explicit wait-for-condition clauses that were present in Pr1.

This same justification extends to point [E], which is concerned with disallowing descriptions of physical behaviour that are unphysical. The

fact that DE behaviour and o bey behaviour are the only permitted ways of describing physical behaviour at the bottom level eliminates the

temptation to mix inappropriate constructs into the physical description.

Additionally, completion of the execution of one physical behaviour needs to be followed immediately by the execution of the next physical

behaviour, guaranteeing the totality over time of the description of physical behaviour that point [F] highlights as important, provided the

behaviour described by the syntax is well defined semantically. The details of this aspect are somewhat implicit in the discussion above and will

emerge more directly in the formal semantics of CDPPP in Section 7.

Point [G] recommends a well-thought-out framework for the interworking of the discrete and physical parts of a system. The design of CDPPP

contains separately designed syntactic subsystems and integrates them into a consistent whole, thus adequately satisfying this requirement. Point [H]

stresses the inescapable semantic issues that must be faced in the design of such a language system. These will be addressed in detail in Section 7.

Point [I] indicates the necessity of having runtime aborts in the semantics. Although we remarked earlier that constructing languages in which it is

possible to claim statically that runtime errors can never occur a priori is possible, such languages tend not to meet the requirements of practical sys-

tems, so are of little general interest. This is made the more so by the presence of physical behaviour, whose eagerness can potentially make such errors

inevitable from innocent looking precursor system configurations. Again, this is a point to be explored in detail in the formal semantics of Section 7.

5.3 | Semantics and verification

The heavy dependence on semantics of the preceding discussion raises the question of how we can be sure that any system that is written down

defines a sensible behaviour—because in extremis, it is only determinable at ‘runtime’ whether this is the case or not. In purely discrete languages,

there is a well-trodden route from the syntactic structure of a system description, through semantic considerations, to verification condition

schemas that are sound with respect to the semantics and that assure correct behaviour if satisfied for a given system model, to the instantiations of

the verification condition schemas using the data of a given system model, which when then proved to hold, confirm the absence of runtime errors.

The same approach extends to languages containing continuous update, such as ours. The syntactic structure of such a language can be analysed

to elicit all the dependencies between different syntactic elements that can arise at runtime, and these dependencies can be used to create template

verification conditions. Given a specific model, the generic template verification conditions can then be instantiated to the elements of the model to

provide sufficient (although not necessarily necessary) conditions for runtime well definedness. Still, it has to be conceded that such conditions can

be more challenging than in the discrete case because of the more subtle nature of aspects of continuous mathematics.

Although we do not give a comprehensive account of the verification templates for our improved CDPPP language (it has, after all, been con-

structed specifically for illustrative purposes), we can give an indication of how a couple of them would go. More such conditions can be inferred

from the formal semantics in Section 7.

To take one example, if the flow of control reaches an DE construct ½iv�Dx= Fðx,y,τÞ until g , we need to know the initial value guard will

succeed. We can ensure statically that this will be the case if the DE construct occurs in a case analysis whose collection of guards covers all

values that could be generated. It is easy enough to generate a verification condition to enforce this, for example,
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HYP‘ iv1_iv2_…_ivn,

where iv1,iv2,…,ivn are the iv's of the various cases of the DE case analysis and HYP includes information about values of variables, and so forth,

that can be deduced statically from the context of the case analysis (and whose strength would depend on the incisiveness of the static analysis

of the programme).

For another example, once a DE construct has been preempted by its preemption guard g becoming true, we need to ensure that there is a

viable continuous successor behaviour for the physical process to engage in. This is helped in our case by the syntax and can be supported by a

proof that the truth of the preemption guard enables some syntactically available successor option. Again, verification conditions to enforce this

are easy to define, for example,

HYP‘ g) iv,

HYP‘ g)Rstr,

where, in the first case, iv is the entry condition to a sequentially following DE construct, and in the second case, Rstr is the condition of a

sequentially following obey construct, and HYP is as previously. Some additional detail would be needed to preclude the use of such verification

conditions at points where the execution of the programme was expected to terminate.

For an easy last example, in the discrete part of the language, the success of an if statement can be assured, provided there is an else clause

to capture exceptional cases. This is straightforward to enforce.

Still, achieving full static assurance of freedom from runtime errors may require fully simulating the system, which will usually be impractical.

Much depends on the language design. To help the process, languages may be designed in which all expression forming constructs are guaranteed

to correctly denote (e.g. in extremis by not having division, or similar ‘risky’ constructs, in the language). Such languages may help in the verified

design of critical systems, depending on the application.

6 | THE AC SYSTEM IN CDPPP

In the light of the preceding discussions, we return to our AC running example and restructure it for the CDPPP language. For simplicity, we will

omit the bracketed constant declarations that appeared in the earlier ACapparatus. We also keep the definition of the User the same, as that con-

forms to the syntax of CDPPP. Regarding the ACapparatus, it requires some significant restructuring.

First, the previous design mixed discrete and continuous update in a fairly uncritical manner. Thus, the DE D θR = −KRðθR−θFLÞ , describing
the fluid behaviour, is mixed with discrete updates to θS, done at the behest of the User. Worse, when the DE is preempted, no physical behaviour

is defined for the fluid—the ACapparatus just hangs around waiting for the next opportunity to do some cooling. This is not really acceptable: the

fluid does not stop being a physical system, subject to the laws of nature, just because, with our focus on the ACapparatus design, we have no

great interest in its behaviour during a particular period.

Our restructured design separates the physical from the discrete aspects. The earlier ACapparatus is split into an ACcontroller process, looking

after the discrete updates, and a ACfluid process, which describes the physical behaviour of the fluid.

Normally, the User would communicate with the ACcontroller, which would then control the ACfluid, but we are a bit sloppy, and allow the

User's runAC variable to also directly control the ACfluid, thus sharing the fluid control between the User and the ACcontroller. The latter therefore

just controls the θS value while runAC is true.

The ACfluid process, now constrained by the restricted syntax for physical processes, describes the fluid's properties at all times. At times

when the DE behaviour is not relevant, an o bey clause defines default behaviour, amounting to θR remaining within the expected range. The

separation of control and fluid allows us to make the fluid responsible for detecting temperature and to only initiate the DE behaviour when the

temperature is at least a degree above the set point θS. Of course this is rather unrealistic, and a more credible (and detailed) design would involve

sensors under the control of the ACcontroller to manage this aspect. Putting all the three components together gives us the complete revised

system, shown in Figure 5.

7 | FORMAL SEMANTICS OF CDPPP

Although our presentation of CDPPP has been relatively informal thus far, in this section, we show that we can make it quite precise by

giving a formal operational semantics for it. We keep certain aspects relatively straightforward by, for instance, insisting that a runtime error

aborts the whole semantic construction, as well as other simplifications. On the other hand, by allowing scopes to be defined fairly arbitrarily (by

comparison with some other formalisms), allowing very general coupling between variable, we see that a certain degree of unavoidable

complexity arises too.
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7.1 | Initial considerations

We start by listing some simplifying assumptions about the syntactic form of the CDPPP programmes whose semantics we give. Thus, let P be a

CDPPP programme.

1. Every occurrence of a variable declaration in P declares a different variable.

2. There are no occurrences in P of undeclared variables, or of variables outside the scope of their declaration (the scope being defined via the

declaration's immediately enclosing braces).

3. There are no programme Name occurrences in P.

Programmes satisfying these conditions are called ‘rectified’. An arbitrary programme can be manipulated relatively easily into rectified form,

provided it contains no undeclared, multiply declared, or circularly declared Names, or variables that are undeclared or multiply declared, or vari-

ables that are used outside their scope (and we use the usual scope nesting rules to disambiguate variable occurrences in nested scopes). From

now on, we assume that all CDPPP programmes are rectified, without further comment. We make some comments on nonrectifiable CDPPP

programmes at the end of this section.

A syntax for rectified CDPPP programmes, simplified from Figure 4, appears in Figure 6. It contains labels for various node types in the syntax

tree, shown in a smaller font (and in red), for example, [PrSys]. This is for use in the semantics. More details appear below.

The starting point of the semantics is the definition of (the semantics of) time, which is the non-negative semi-infinite interval of the reals:

T� ½0…∞Þ⊆R. Moments in time will be referred to using the variable t.

Suppose a CDPPP programme P has a set of variables* V , with each v 2V taking values in a set Sv , where each Sv contains an unassigned

value unassv 2Sv . The semantics of P is given by a system trace, which can be seen as a higher order map:

*Although rectified CDPPP has loops, it has no recursion, so that the set of variables can be read off from the declarations contained in P. Similarly for processes, the maximum nesting of

compound constructs determines the number of concurrent processes.

F IGURE 5 The redesigned ACcontroller and ACfluid
definitions, and the redesigned ACsystem
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SemðPÞ : f⊥Pg
]

V!T!
]

v2VSv ,

where the following restriction holds:

SemðPÞ=⊥P � ð8v 2V,t2T•SemðPÞðvÞðtÞ 2SvÞ:

So, either P aborts (SemðPÞ=⊥P ), or at all times, each variable takes a value in its appropriate semantic space.

On the face of it, there are at least two ways of constructing the semantics of a programme P . We can follow the traditional syntax-directed

route, or we can follow an iterative strategy. In the syntax-directed approach, to every syntactic clause of Figure 4, for example, CbE ::

= ½iv�D x= Fðx,y,τÞ until g, we would have one or more rules such as

The above is an example of a typical ‘big step’ semantic rule, which aligns with our aim to develop the semantics as a set of functions from

time to the semantic domains of variables. What this rule says in symbols is:

IF we assume that the semantics of x is defined as far as t=tA; process P is at the entry point of the relevant DE clause of the syntax tree of P;
the entry conditions to the DE clause, iv(v(tA), hold; the vector function f is defined over an interval [tA…tB] with range in the semantic space of x,

i.e. Sv; at t=tA, f and x agree; f solves the DE; from t=tA up to, but not including t=tB, g, with f substituted for x in v as needed, does not hold; and

at t=tB, g, with f substituted for x in v, holds, THEN f provides a suitable extension to the semantics of x on [tA…tB].

Quite aside from the fact of how difficult it is to conveniently write such a rule in the conventional ANTECEDENTS
CONSEQUENT format, what is interesting

about this approach is, less what it says, so much as what it fails to say. Among such omissions, we can mention the following.

■ In common with almost all uses of this kind of rule-based semantic definition, the rule implicitly assumes that facts about x can be deduced

independently from other aspects of the semantics of P, thus building the semantics in a ‘divide and conquer’ manner. Many of the points that

follows demonstrate that this is not appropriate in a hybrid/cyber-physical context.

■ Although the evolution of x in the time interval following t=tA generally depends on x, it may often depend on other variables, for example,

y too, whose value may be defined in another process, as seen in D x= Fðx,y,τÞ. Not only this, but the evolution of y may itself depend on the

value of x and so forth. Thus, the syntactic structure may disregard the true semantic dependencies of P.
■ The value of the right hand side (RHS) of the DE F(x,y,τ) may be affected by discontinuities arising indirectly (or even directly, in a slightly

altered language syntax) from activities in processes running concurrently. The syntax directed approach does not help to deal with such

issues.

■ The evolving values of the variables in the time interval following t=tA affects the value of g, which is needed to determine the value of tB,

needed for the duration of the interval itself. Again, the syntax directed approach does not help to deal with such issues.

The remarks above confirm that syntactic divide and conquer is unhelpful in determining the semantics of P, which emerges in a manner that

relies much more on interdependencies between concerns that cut across the syntactic structure. Moreover, many similar considerations arise

when we consider other rules generated from the syntax. Accordingly, we adopt a much more imperative operational approach to the semantics.

7.2 | Operational semantics

Broadly speaking, the absence of ‘programme names’ and of recursion in a rectified CDPPP programme P, implies, as noted already in footnote 5,

that there is no dynamic process creation and no dynamic variable creation. This brings a welcome degree of structural simplification because we

F IGURE 6 The decorated syntax for rectified
Combined Discrete and Physical Programmes in
Parallel (CDPPP)
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can navigate through the static syntax tree of P to locate the next construct to execute in each process. Once we have found it, we can then

execute it, which is the approach we take to the semantics.

We base the semantics of a rectified CDPPP programme P on the following assumptions, definitions and other details, listed below. Much of

the impact of these definitions can be summarised in the state transition diagram of Figure 7, which outlines the process of navigating the syntax

tree of P in order to locate the required leaf nodes, in which the job of extending the SemðPÞ-so-far is actually done and which is described in

detail later.

■ We have available the syntax tree T of P. Its nodes are labelled using the labels shown in Figure 6.

■ A compound node of T is a node labelled by one of the following: [Db], [Pr0], [DPr0], [Pr0Sq], [Pr0If], [Pr0Wh], [CbE], [Pr0Par],

[Pr2], [Pr2Sq], [Pr2If], [Pr2Wh], [Pr2Par] [PrSys], [DPrSys] and [PrSysPar].

■ A basic node of T is a node labelled by one of the following: [As], [AsP], [Wb], [Wr], [DE] and [OB]. Clearly, basic nodes occur at the

leaves of T .

■ A process is (identified with) a node which is either the root node of T , or is a child node of a node labelled by one of the following:

[PrSysPar], [Pr0Par] and [Pr2Par]. The name of a process node is the path π in T to the node. N.B. Processes conceptually correspond

with the agents that execute P , in the evident way. The process named by the empty path hi is the root process (corresponding to the root

node of T ). Each node of T is executed by the process corresponding to its nearest process node ancestor in T .

■ At runtime (i.e., during the execution of P) each process has a state, which is one of the following: suspended, activated, leaf and terminated.

N.B. The former two states are concerned with executing compound nodes, that is, navigating through T , whereas leaf is concerned with

executing basic nodes. The last state speaks for itself.

■ Variables are divided into discrete variables VD and physical variables VP: V =VD
U
VP.

■ initialassign unassv to v means make an initial definition of SemðPÞðvÞðtÞ to unassv for all t2T.
■ abort means abandon the construction of the semantics and set SemðPÞ=⊥P .

■ evaluate d means attempt to evaluate d. If d does not evaluate, abort. Otherwise, obtain val(d).

■ assign d to z means evaluate d; assign val(d) to programme variable z. Time may or may not occur as a parameter in an assignment. If it does,

in order to be nonaborting, the assignment must be nonaborting for all the relevant values of time.

■ The construction of SemðPÞ requires a further data structure, the task pool. Its entries are triples [proc, task, stage], where proc is the name of

a process: task corresponds to the syntactic content of a basic node, that is, the command to be executed; stage identifies the current position

in the execution of the task (the stages are detailed below). In speaking generically, we refer to task entries using their node types, that is, one

of the following: [As], [AsP], [Wb], [Wr], [DE] and [OB].

■ SemðPÞ is constructed step by step, extending the functions of time in SemðPÞ in stages. Parts of such extensions may be contingent, for tech-

nical convenience, and may get overridden subsequently. The parts of the functions in SemðPÞ that are definitive are the intial segments with

domain up to, but not including, the time mentioned in the most recently executed commit command.

■ A commit e command is, in effect, equivalent to assign e to t, where t is the time variable. Thus, updates to t correspond to successive defini-

tions of the interval of time within which the semantics has been made definitive.

■ SemðPÞ is constructed step by step, the steps being guided by the structure of T . There are progress steps, work steps and return steps.

■ progress steps are steps executed by processes in the activated state, and in these, the locus of control descends deeper into T , or moves to

sibling child nodes of appropriate compound nodes, when attempting to locate the next basic node to execute. When progressing from the

following compound node types, the associated actions are performed:

— [PrSys], [Pr0], [Pr2], [Db], [CbE]: descend to child;

— [DPrSys], [DPr0]: assign any [Ini]tialisations in the Declarations; proceed to subprocess;

— [PrSysPar], [Pr0Par], [Pr2Par]: set state of current process to suspended; set state of child processes to activated, fork locus of

control, and descend to child processes;

— [Pr0Sq], [Pr2Sq]: descend to first child; upon return, progress once more, descending to second child;

— [Pr0If], [Pr2If]: evaluate condition b; if true, descend to first child; otherwise descend to second child;

— [Pr0Wh], [Pr2Wh]: evaluate condition b; if false then return; otherwise descend to child.

F IGURE 7 The transition diagram describing the construction of
the semantics for a process in a rectified Combined Discrete and
Physical Programmes in Parallel (CDPPP) programme. The activity of
extending the system trace takes place in the leaf state during work
steps. The progress step from suspended to activated is shown faint
because it is an action in a different process that causes the transition
(in the process of interest)
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■ When a progress step results in a process arriving at a basic node, the process state becomes leaf, and [π, [ty]:cmd, st] is added to the task

pool, where π is the name of the current process, [ty]:cmdis the command to be executed (i.e., the content of the basic node, together with

its type [ty]), and st denotes the start stage.

■ At a basic node, SemðPÞ is constructed step by step, using work steps, described below. These use the task pool.

■ Upon completion of the execution of a basic node, the relevant task pool entry becomes [π, cmd, return], and the process state becomes

activated once more.

■ return steps are steps executed by processes in the activated state, and in these, the process ascends higher into T , when attempting to

locate the next basic node to execute. When returning from the following node types, the pool entry causing the return is removed and the

associated actions are performed:

— [PrSys]: if there is no parent then the (root) process state becomes terminated (and the semantics is completed); otherwise ascend to parent;

— [Pr0], [Pr2], [Db], [CbE], [DPrSys], [DPr0]: ascend to parent;

— [PrSysPar], [Pr0Par], [Pr2Par]: unless the child processes have completed at exactly the same moment in time then abort;

otherwise, set state of child processes to suspended; set state of parent process to activated; merge locus of control, and ascend to parent;

— [Pr0Sq], [Pr2Sq], [Pr0If], [Pr2If]: ascend to parent;

— [Pr0Wh], [Pr2Wh]: evaluate condition b; if true then progress; otherwise ascend to parent.

With the above structural considerations in place, we turn to the construction of the semantics of a rectified CDPPP programme P , which

now becomes more focused on the execution of the basic constructs and the actual changes of state which they implement. The operational

semantics is given by the pseudocode below.* This combines the progress and return steps that navigate the syntax tree T , with the work steps

needed to build SemðPÞ.
Figure 8 shows the lower level transition diagrams that break up the activity of constructing SemðPÞ during work steps into the smaller steps

needed. This breakup is needed because of the fact that we deal with concurrent steps, some of which have a non-zero and statically unknown

duration, all of which additionally take place over real time. Fine-grained scheduling is therefore required to construct the semantics in a way that

conforms to all the real world requirements and healthiness considerations we set out earlier.

The various cases in Figure 8 can be outlined as follows. Case [OB] progresses a behaviour conforming to Rstr. Because this occupies a non-

empty interval of time, it is regularly interrupted by the instantaneous events that may update the state discontinuously. The [DE] case is similar,

but needs an instantaneous step to check [iv] before proceeding to progressing the solution of the DE system. The [Wr] case starts by calculating

the waiting interval. If it is nonpositive, the construct can complete immediately. Otherwise, the process waits, until the required elapsed time has

passed. The [Wb] case is similar, but no calculation as such is needed. The most complicated cases are the [As] and the [AsP] cases, because

we decided earlier that they would execute in isolation from other events, necessitating the introduction of suitable waiting intervals. So they first

must fix on a nonclashing waiting interval; then, when that expires, the assignment(s) can be done. Then, another waiting interval must be found,

after which the task can complete.

In outline, the pseudocode does the following. After initialisation, the outer main loop performs all available progress tasks and then enters the

main inner loop. On entry to this, the main inner loop attends to a collection of tasks that take no time, on the assumption that the scheduler is

executing the pseudocode at a suitably selected moment. These tasks include aborting [iv]-failing DE constructs, dealing with expired assignment

construct waits, dealing with wait-on-condition constructs with true conditions and dealing with wait-for-expression constructs with nonpositive or

expired wait intervals. If any of these cases arise, they are dealt with, and the main execution loop is restarted in case there are more cases to deal

with or there are consequences that affect the subsequent evolution. If not, the main loop proceeds to evolving the functions of time in SemðPÞ.
Evolving the functions of time is a global task, which must take all the active DE and o bey constructs and must solve them simultaneously.

Obviously, this is one point in the semantics at which the problem of being able to calculate what is required must remain open, because of the

very limited decidability properties of such systems. A consequence of this is that although we have no generic technique for constructing such a

F IGURE 8 The lower level transition diagrams for the work steps that
implement the activity of extending the system trace, for the various kinds
of leaf nodes of T . Thicker arrows denote transitions that require the
passage of time to complete, whereas thin arrows denote transitions that
can complete immediately when their guard condition holds. The blobs that
decorate two states denote self-loops, indicating that the transitions
emerging from them, may be subdivided into a number of substeps

*In the pseudocode, we use ;; as the meta-level sequential separator. Other constructs are self-explanatory.

14 of 24 BANACH AND ZHU



global solution for an arbitrary CDPPP programme,* it is nevertheless the case that the mathematical framework within which we have cast the

semantics guarantees the semantics exists, that is, either there is a solution (even if we may not know what it is), or there is no solution, in which

case the attempt to assign it will cause an abort.

Assuming though that a solution has been arrived at, the remaining job for the main loop is to determine the next interruption point. Again,

this is an element of the semantics at which the ability to calculate what is required must remain open, for the same reasons as before. But, again,

assuming that the required information has been obtained somehow, the knowledge of the soonest needed interruption point allows the times of

any pending assignment to be chosen strictly earlier, thus ensuring it does not clash with any other event. Taking all this into account, the new

interruption point is finally determined, and the interval up to the new interruption point can be committed. This done, the main inner loop

restarts. When there are no further worksteps to perform, the main inner loop exits, and any available return tasks are executed. Then, the outer

main loop restarts.
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Unlike the rule-based approach to the semantics suggested in Section 7.1, the above definition, although quite intricate, lays bare the true

complexities of the scheduling required by having both real-time and shared variable concurrent processes in the same formalism. As we see, the

pseudocode expresses a real-time scheduler at the level of abstraction needed for a sufficiently precise definition. The design of our CDPPP

language was deliberately chosen to bring into sharp focus the consequences of having these two features simultaneously present in a fairly

unrestricted way.

7.3 | Follow-up comments

In this section, we make some additional comments regarding issues not fully explored earlier.

First, we return to nonrectified CDPPP programmes. If a CDPPP programme is nonrectified because it contains Names, the obvious technique

to use is to substitute a Name's definition for occurrences of the Name. This works unless there are cyclic dependencies among the Name defini-

tions, in which case, the back substitution process will never end. Provided that each dependency cycle contains at least one link that starts with

something other than a reference to a Name, then recursive runtime stack techniques could handle such complications. The same comments apply

to variables occurring in declarations contained in such cycles. The semantic details would add considerable complexity to our already complicated

definition, so, because the techniques are by now very well known in operational semantics, we did not incorporate these possibilities in this paper.

Second, and somewhat under the bonnet for traditional semantic approaches, is the precise nature of the continuous mathematics entities

that figure in a framework such as we have outlined. Arbitrary functions of time do not have properties that can be directly reconciled with the

kind of properties we need for calculus and other ‘engineering mathematics’ purposes. The field of mathematical analysis has been active for a

couple of centuries or so, engaged in investigating logically sound formulations of the kinds of property that are needed. Although, done properly,

such logically sound formulations would be consistent with the kind of approach typical of model-based formal methods, the bad news is that

‘done raw’, it would require each property to be formulated with so many interleavings of quantifiers that practical use would be rendered impos-

sible. In practice, we would need to restrict quite heavily to ‘calculationally feasible’ fragments of engineering mathematics in order to build actual

systems. Thus, as well as the ‘physically based’ healthiness conditions we discussed at length in this paper, there lies underneath a further layer of

lower level ‘mathematical healthiness’ considerations, pertaining to the continuous world, that we have largely ignored. Although it would take us

too far outside the scope of this paper to delve in any depth into this material, some hint of the technical details involved is evident in the use of

the ‘infimum’ concept in the pseudocode of the formal semantics and in the discussion in Appendix C1 of the closedness (or otherwise) of the sets

of states defined by guard constructs of our languages, which potentially intrudes at user level.
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We observe thirdly that the semantics of our language permits executions of finite duration and Zeno phenomena. Executions of finite dura-

tion are not excluded and are nonaborting, provided that all parallel processes come to an end at exactly the same moment in time. Zeno phenom-

ena arise when a countably infinite sequence of execution fragments has an overall finite duration. The semantics takes no precautions to

attempt to continue beyond a Zeno point for the sake of expository simplicity.

8 | RELATED APPROACHES

Hybrid systems have been identified as being of high importance for many years now. Some of the earliest work that we can cite includes papers

like the previous studies.9-12 This initial effort rapidly led to other work such as the previous studies.13-20 Slightly later formulations include other

studies.21-28 The more than decade old survey29 covers a large number of formulations such as these and, in particular, the tools that support

them, such as HyTech,30 d/dt,31 PHaVer32 and others.

Modern developments along these lines continue apace. The fruits of much of the work that has been done has appeared in the annual Inter-

national Conference on Hybrid Systems: Computation and Control, which acts as the focus of a major annual exposition of relevant work.

One is struck, in the early work indicated, by the typically low expressivity in the continuous sphere of many of the systems discussed. This is

motivated, of course, by the desire for decidability of the resulting languages and systems. For decidability reasons, most such formalisms are

based on variations of the early hybrid automaton concept.10,11,23 In fact, for simple time linear behaviours—which are very frequently at the heart

of such systems, for exanple, D x=K, with K constant, as is often found—there is very little difference between using a DE of the form just quoted

on the one hand, and on the other hand, using an expression x0=x+KΔT, where ΔT is the duration of the behaviour. The consequences of the latter

can be elicited by simple algebraic calculation, making this approach highly attractive for tool-based approaches. Ironically, this self same low level

of expressivity helps enormously in avoiding some of the problems we were concerned with in Section 4.

Despite the wealth of knowledge about DEs and how to solve them,33 the proportion of equations that can be solved analytically is vanish-

ingly small, and the need to tackle practical applications often forces the use of equations for which the only approach is numerical.34,35 In this

realm too, the aim is to reduce the approximate solution of a DE to a family of calculations based on the simple linear form x0=x+KΔT, with suit-

ably chosen K and ΔT for each individual instance, according to the strategy dictated by the numerical scheme being followed. Thus, despite com-

ing from very different starting points, many efficient approaches target the linear goal, and one sees a confluence of computation concerns on

the one hand with similar concerns from numerical mathematics.

A major consumer of knowledge about hybrid behaviour is, of course, the CPS field, for example, other studies,1,2,36-44 as well as the wealth

of current work presented at the annual CPS Week gatherings in recent years.

In this context, we can point to the extensive survey,45 which covers a wide spectrum of research into CPS, the tools and techniques used in

that domain, as well as the applications that are tackled in the practical sphere. As we might expect, despite the relative newness of the CPS area,

formal approaches are somewhat overshadowed by more traditional and simulation-based techniques, especially when it comes to practical

applications.

This can be traced back to a number of causes. One is the wide breadth of mathematics that is needed to properly integrate the various

aspects of CPS in a sound way, some of which was the focus of discussion in the preceding sections (and much of which (it has to be said) is unfa-

miliar to a large part of the computer science community). Another, very cogent one in the context of commercial applications, is the simple pres-

sure to get to market rapidly in what has become a very competitive sector—in such a situation, it is much easier, and quicker, to fall back on

traditional approaches, rather than to invest in potentially more conceptually challenging ones.

One consequence of the wide variety of approaches seen in this arena is the propensity to combine the different formalisms for describing

behaviour in the different contributing disciplines of CPS in a relatively ad hoc manner. This leads to the risk of ‘bugs between formalisms’ that

we noted earlier, when multiple formalisms need to be combined.

The fact that it is often not possible to solve a hybrid/cyber-physical system exactly is not the insuperable obstacle it might, at first, seem to

be. Often, it is sufficient to know that a system will stay in a safe region of the state space indefinitely, without knowing exactly what the system

dynamics will be. Terminology differs here. Some authors speak of an ‘unsafe region’ that is to be avoided. Others speak of a ‘safe region’ that the

system is to be confined to. Other work speaks of an ‘invariant’ expression concerning the state space that defines the safe region. It is sufficient

to regard the safe and unsafe regions as complementary in the set of values of the collection of variables of the system.*

When it is sufficient for the system to stay in a target region of the state space, various kinds of ‘helper functions’ may be employed to gain

assurance that the system behaves well.

Variant functions are familiar from the classical discrete programming world.46-48 To help control the behaviour of recursions and unbounded

iterations, a variant function (of the state) is required to be decreased by each iteration's state change, the idea being that it is easier to ascertain

*Although it is not possible to have states that are both safe and unsafe, it is possible to imagine states that are neither. In such a situation, the nominated safe region may exclude states which

are not hazardous (i.e. it is overly conservative), and/or, the nominated unsafe region may exclude states which are not immediately unsafe but which may become so (i.e. it is overly optimistic).

We need not delve into these possibilities.
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this than to argue about the iterative behaviour directly. When the variant function takes its values in a well-founded set, this gives a guarantee

of termination, the ‘safe region’ aimed for being the states in which the iterative behaviour is not enabled.

‘Liapunov functions’ are well known from continuous control theory.49-51 To help establish stability, the flow defined by the dynamics is

required to decrease the Liapunov function (of the state), this being easier to ascertain than to argue about the flow itself, because it can be

checked directly from the DE defining the flow. The Liapunov function has an easily identified minimum, which coincides with a stable fixed point

of the dynamics, the state at which this occurs being the safe region aimed for.

‘Barrier functions’ have become a familiar technique for establishing safety in the hybrid systems world.52-54 They are required to have one

sign (positive say) in the unsafe region and to have the other sign (negative) in the set of initial states. Provided that the barrier function is

decreased by the flow defined by the continuous dynamics and is also decreased by each discrete state change, the unsafe region can never be

reached. Barrier functions thus combine the basic ideas behind both variant functions and Liapunov functions. Clearly, the rich structure of the

hybrid systems paradigm gives rise to many opportunities for fusing ideas from these two precursor worlds.

When a formalism for hybrid or CPS is defined precisely enough, rigorous formal reasoning about invariants and barrier functions becomes

possible.* This includes recent, less restrictive variants of hybrid automata, for example.

Closer to the style of this paper are language systems purposely conceived for proof regarding hybrid systems. One example is Hybrid CSP

together with the tools that support it.12,55,56 Another is the dynamic logic approach of Platzer,57,58 supported by the KeyMaera verification

tool59 that supports the kind of modelling exemplified in this paper. The original formulation of action systems for discrete systems60 was

extended to the hybrid sphere in Back et al.61

Action systems provided much of the inspiration for the Event-B formalism,62 which builds on the earlier classical B-Method63 (which is still

actively used in critical applications in the urban rail sector, e.g., Clearsy64). The mathematical flexibility of the Event-B formalism and the open

architecture of its Rodin tool65,66 lent themselves to supporting verification of hybrid and CPS in various ways.67-69 And an ab initio reappraisal

and extension of the Event-B formalism, not tied to the techniques of the earlier discrete tool, is the Hybrid Event-B formalism.70,71

Although these systems are defined with complete precision, most exhibit some features that, in the light of the arguments of Section 4, we

might view as undesirable. Most, for instance, make no distinction between discrete ‘programme style’ variables and ‘continuous physical’ variables

to which ‘physics rules’ ought to apply (aside from the immediate consequences of their different types). Many do not prevent the mixing of physi-

cal and discrete behaviours in the same thread of control, permitting (at least in principle) gaps in which physical behaviour is incomplete. Some do

not monitor continuous behaviour closely enough to show safety continuously, unless specific precautions are taken. Some do not temporally iso-

late discrete (i.e., discontinuous) state changes—which, while comprehensible for programme variables, where having several state changes at the

same moment of time idealises close-to-instantaneous program execution—is unphysical when applied to genuine physical variables.

The one system that we are aware of that has been expressly designed to avoid the kind of traps regarding unphysical continuous behaviour

and verification that we discussed earlier in this paper is Hybrid Event-B,70,71, mentioned above. The cited work contains a much more thorough

discussion of these issues in the Hybrid Event-B context.

It has to be said that although we are not aware of any serious consequences of the features we have highlighted in existing systems, a resid-

ual risk of inappropriate system modelling nevertheless remains if designers are not sufficiently aware of the implications of physical systems.

Thus far, our discussion has avoided mentioning noise or randomness. This is legitimate when the physical considerations imply that it is negli-

gible, which, in fact, is very much the case in many realistic situations. But if sources of uncertainty are significant, then probabilistic techniques

need to be taken on board. These add nontrivial complication to the semantics of any language. The inclusion of probabilistic techniques in com-

puting formalisms is a large and active area. A brief indication of the issues that can arise and that are most closely related to the concerns of this

paper can be found in other studies.72-76

If we look at the above as it applies an industrial context, a large percentage of the hybrid and CPS work one sees, concerns systems that

have an identifiable critical element. For such systems, an increasing number of standards have been published that aim to confirm that system

production practices in the relevant sphere meet a minimum level of proficiency. Among the newer standards in key fields, we can mention, for

example, DO-178C (for avionics77), ISO 26262 (for automotive systems78), IEC 62304 (for medical devices79) or CENELEC EN 50128 (for railway

systems80). It is apparent though, that in these instances, the methods proposed are still heavily weighted in favour of mandating such things as

thoroughly documented processes, specific testing strategies and other practices heavily rooted in traditional development approaches—all rather

far from the formally verified approaches discussed just above. Thus, it is fair to say that the critical systems industry is rather conservative. This

is understandable to a degree, because prematurely advocating radical new ways of doing things, such as processes heavily reliant on unfamiliar

formal techniques that may not enjoy the highest levels of trust (from those responsible for decision making in the industrial sphere), risks major

disasters in the field (from the point of view of such traditional managements).

Thus, the entry of formal techniques into the standardised critical systems development portfolio is rather cautious, despite the strong evi-

dence in niche quarters, and in the academic field, about the dependability that can be gained by appropriate use of formal development, when it

is suitably integrated into the wider system engineering process.

*It has to be said that many systems in the literature are not defined with sufficient precision to do this, and they avoid trouble by restricting attention to cases that are ‘obviously well behaved’.
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One can conjecture that this is as much because entrenched industrial practice cannot move as nimbly as one might ideally wish, even when

the evidence for attempting to do so is relatively strong. And the reasons for that range from simple human reluctance to change familiar ways

that people do things, to genuine concern about the integrity, reliability and even the legal defensibility of a novel production process, particularly

if it is intended for a heavily regulated sphere.

9 | CONCLUSION

Motivated by the current dramatic proliferation in critical and CPS, especially in urbanised areas all over the world, in the preceding sections, we

examined the problem of extending typical existing, more conventional formalisms for programming, to allow them to incorporate the needed

physical behaviour that is a vital ingredient of these systems. Such integrated formalisms can come into their own if we contemplate the integrated

verification of critical CPS, in which we seek to avoid the possibilities of there being bugs that hide in the semantic cracks between separate for-

malisms that are used to check separate parts of the behaviour.

Rather than being comprehensive, our approach in this paper has been to illustrate the range of issues to be considered, by taking a some-

what prototypical shared variable language for concurrent sequential programming and extending it in a relatively naïve way to incorporate con-

tinuous behaviour. We then critically examined the consequences of this and identified a number of issues that are not always taken sufficiently

into account when embarking on such an extension exercise. For want of a pithy name, we termed these healthiness considerations, by analogy

with the nomenclature used in UTP. This done, we showed how the earlier naïve syntax could be improved to partially address some of these

issues, resulting in our CDPPP language. The remaining issues need to be addressed within the semantics of CDPPP.

We illustrated our particular solution with a simplified AC system. We first developed it in the relatively naïve style of our starting language,

showing how the core steady state behaviour could be captured. Having improved the language, we then redeveloped the AC system in CDPPP,

showing how the restructured language leads to a better partition of concerns within the syntactic and semantic description.

It is important to emphasise that we do not claim that the details of our solution (even in the case of our specific language) are unique. One

could resolve the same issues in a number of ways that differ in the low level detail—some of these variations were touched on in the discussion

of the formal semantics of CDPPP. Nevertheless, the broad sweep of the things needing to be considered would remain similar.

We also do not claim that our language (and its improved version, CDPPP) is to be particularly recommended for actual critical cyber-physical

system development. Not least, this is because we chose to rely on the existence of solutions to the calculationally difficult fragments of the lan-

guage, rather than pursuing criteria that made achieving a solution computable (which is the goal of a very large proportion of work on the formal

aspects of cyber-physical systems). But, in many ways, the issues we have striven to highlight are brought more clearly in a language that one

would rather not choose to use in practice.

We can liken the urge to match the surface syntactic features of the language as closely as possible to what is needed by the semantics of

the physical considerations, with the longstanding process whereby machine code was superseded by assembly language, which was then super-

seded by higher level languages, which are nowadays superseded by sophisticated IDEs and so forth. In each case, the desire was to raise the level

of abstraction in such a way as to preclude as many perceived user level errors as possible, by making them syntactically illegal (or simply impossi-

ble to express), and backing this up semantically.

It is to be hoped that the insights from an exercise like the one we have undertaken can help to improve the broader awareness of the issues

lurking under the bonnet when formalisms for critical and cyber-physical systems are contemplated in the future.
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APPENDIX A: A Technicalities regarding differential equations

If we write a general first-order DE as Φðv,Dv,tÞ= 0, where v is some tuple of real variables, Dv is a corresponding tuple of real variables intended

to denote the derivatives of v, and Φ is an arbitrary real-valued function, then nothing can be said about whether any sensible interpretation of

such an equation exists. See, for example, Walter,8 or any other rigorous text on DEs, for a wealth of counterexamples that bear this out.
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Accordingly, rigorous results on DEs that cover a reasonably wide spectrum of cases are confined to DE forms that fit a restricted syntactic shape

and satisfy specific semantic properties.* The best known such class covers first-order families that can be written in the form:

D x= Fðx,τÞ or D x= Fðx,y,τÞ:

Here, the left-hand form refers to a closed system of variables x, whereas the right-hand form also permits the presence of additional external

controls y. As well this syntactic shape, conditions have to be demanded on the vector of functions F and on the entry conditions of the

behaviour-to-be that we are trying to define using these techniques.

For simplicity, we assume that the vector of functions F is defined on a real, closed rectangular region, where for each x component index i,

we have a Cartesian component xi 2 ½xiL…xiU�⊆R, and for each y component index j, we have a Cartesian component yj 2 ½yjL…yjU�⊆R, and where

the time dependence of F has been normalised to a clock τ2[0…τf], with τf maximal, which starts when the DE system starts.

For each xi component, xiL is either −∞ or a finite real number, and xiU is either +∞ or a finite real number, and if both are finite, then xiL<xiU.

Similarly for the yj components, we denote this region by XY×T, where XY refers to all the x,y components and T refers to clock time. We write

X for just the x components and Y for just the y components, so that XY=X×Y.

To guarantee existence of a solution, it is enough to demand that F must satisfy a Lipschitz condition:

9K•K 2R^8x1,y1,x2,y2,τ•ðx1,y1Þ 2XY^ðx2,y2Þ 2XY^τ2 T)
jjFðx1,y1,τÞ−Fðx2,y2,τÞjj∞ ≤Kjjðx1,y1Þ−ðx2,y2Þjj∞:

Here, we have used the supremum norm ||�||∞ because it composes best under logical operations. (For finite dimensional systems, any norm is just

as good; see Horn and Johnson81,82). Additionally, we require that F is continuous in time for all (x,y)2XY.
With the above in place, if x0 is an initial value for x such that x02X, then the standard theory for existence and uniqueness of solutions to

DE systems guarantees us a solution x(τ) for τ2 ½0…τx0 �, where τx0 ≤ τf , with x(τ) differentiable in the interval ½0…τx0 � and satisfying the DE system,

and such that we have 8τ•τ2 ½0…τx0 �) xðτÞ 2X. See Walter8 for details.

For convenience below, let us abbreviate the syntactic construct ½iv�D x= Fðx,y,τÞ until g , to ½iv� DE until g . We now observe that for

soundness, on the one hand, we need to assume that all the properties discussed above regarding F hold. But on the other hand, in the syntax of

a practical language, it is impractical to include all the data needed to establish this suite of properties. Compounding the problem is the fact that

even if we included all the required data syntactically in the language, it would not absolve us from the obligation of provingall the required prop-

erties on the basis of the given data—which is not necessarily trivial by any means in the general case.

On pragmatic grounds, we therefore take the view that the presence of F in the DE language construct is accompanied, behind the scenes, by

the needed machinery for doing all that is required. What this boils down to in practice is a syntactic check that F matches one or other specific

pattern for which it is known that the required generic properties hold and, therefore, that no explicit proving has to take place. This is the stan-

dard pragmatic approach to DEs.

APPENDIX B: Closure properties of guards and their impact

Our various languages feature guard constructs of various kinds. Some of them are discrete, such as @b and #r. Of these, @b has the characteristic

that it changes from uncompleted (i.e., with more time to run) to completed, in a single step, as the discrete variables making up b change value in

a discrete manner. In the case of #r, if r is an expression of discrete variables and time progresses in discrete time units, a similar state of affairs

applies. In these cases, there is no ambiguity about when, in the course of time, these constructs complete.

Other guard constructs have a continuous nature, for example, @g, the guard g in ½iv� DE until g and [iv] itself in the language Pr1 (though

not in Pr2, where it either skips or aborts). Because the expressions defining these contain continuous variables, and time also moves continu-

ously in all the relevant languages, they may define sets of states that are entered (thus discharging the guard) at imprecisely defined points

in time.

An example will illustrate. Suppose the guard @g is @(x>1), and that at t=0, x(0)=0 and that x increases at unit rate. At what moment is the

guard @(x>1) first satisfied? The obvious answer, namely, t=1 is not strictly speaking correct, because at t=1, we have x(1)=1, which is a value that

is not strictly greater than 1. In fact, there is no time at which @(x>1) is first satisfied, because if tf were to be the first time, then on the one hand

tf>1, and on the other (1+tf)/2 is a strictly earlier time at which @(x>1) is satisfied. Contradiction. But the semantics requires a specific time at

which the transition in behaviour prompted by the guard takes place.

*In fact, there are many possibilities for this, familiar in the DE world. We just pick on a familiar and straightforward case.
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There are two evident approaches to resolving this impasse. In the first, we simply insist that the sets of states defined by such guards are

(topologically) closed. In this case, @(x>1) is forbidden, whereas @(x ≥ 1) is permitted. The semantics of Section 7 assumes this implicitly, and we

took this line in this paper for expository simplicity. In the other, a guard construct like @(x>1) is simply interpreted via its topological closure, yield-

ing @(x ≥ 1). Because the topological closure is a generic concept for the kind of R-valued sets of states that we are interested in, this approach

leads to a well-defined time, and we have a way of interpreting arbitrary guards. Note, though, that this is quite a subtle point.

What we have just been discussing impacts the semantics of the ½iv� DE until g construct. Along with the properties of F, we need to know

that on entry to DE , the iv properties hold. This means that [x02X^P(x0)] has to hold, where P(x0) denotes any properties needed to establish iv

that go beyond the simple domain requirement x02X. The semantics of iv is then as for any other guard depending on which language we have in

mind. In both Pr1 and Pr2, if iv holds, then the guard succeeds immediately, and execution of DE commences. If iv fails, then in Pr1, the process

pauses, a clock is started, and it runs until the programme state makes iv true, at which point the guard succeeds. For the latter to be well defined

in our semantics, the true set of iv has to be closed, as noted. If iv fails and we are considering Pr2, then the whole execution aborts, also as

noted.

Assuming the guard has succeeded, a fresh clock is started to monitor the progress of the solution to DE—this clock is the one that is referred

to as τ in the expression F(x,y,τ). We are guaranteed that the solution exists for some period of time.*

Finally, in the preemption guard g, as for @g, for the preemption moment to be well defined, we demand that the true set of g is closed. If

during the period ½0…τx0 � for which we have a solution, g becomes true, execution of the solution is stopped and the execution of the whole

construct ½iv� DE until g succeeds. If during the period ½0…τx0 � , g never becomes true, then as in other cases, the execution of ½iv� DE until g

stops once τx0 is reached.
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