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ABSTRACT

Asthma exhibits a marked time of day variation
in symptoms, airway physiology, and airway
inflammation. This is also seen in chronic
obstructive pulmonary disease (COPD), but to a
lesser extent. Our understanding of how physi-
ological daily rhythms are regulated by the cir-
cadian clock is increasing, and there is growing
evidence that the molecular clock is important
in the pathogenesis of these two airway dis-
eases. If time of day is important, then it follows
that treatment of asthma and COPD should also
be tailored to the most efficacious time of the
day, a concept known as ‘chronotherapy’. There
have been a number of studies to determine the
optimal time of day at which to take medica-
tions for asthma and COPD. Some of these
agents are already used ‘chronotherapeutically’
in practice (often at night-time). However,

several studies investigating systemic and
inhaled corticosteroids have consistently shown
that the best time of day to take these medica-
tions for treating asthma is in the afternoon or
early evening and not in the morning, when
these medications are often prescribed. Future,
large, randomized, placebo-controlled studies of
systemic and inhaled corticosteroids in asthma
and COPD are needed to inform clinical
practice.
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INTRODUCTION

Over the past 15 years, our understanding of the
body clock and biological rhythms has
increased immeasurably. In 2017, the Nobel
Prize in Physiology or Medicine was awarded
jointly to Jeffrey C. Hall, Michael Rosbash, and
Michael W. Young ‘‘for their discoveries of
molecular mechanisms controlling the circa-
dian rhythm’’ [1–3]. The circadian clock is cru-
cial in regulating daily physiological processes
and it is now realized that the time at which our
immune system is triggered (by infection [4],
vaccination [5], surgery [6]), appears to be crit-
ical to the way we respond to these insults.
Several inflammatory diseases, such as asthma,
display a marked time of day pattern in
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symptoms. Synchronizing drug treatment con-
centrations to rhythms in disease activity, to
increase efficacy as well as to reduce adverse
effects, is called chronotherapy. In this review
article, we will discuss recent advances in our
understanding of circadian biology, and how
this relates to the treatment and management
of asthma and chronic obstructive pulmonary
disease. This article is based on previously con-
ducted studies and does not contain any studies
with human participants or animals performed
by any of the authors.

WHAT IS THE CIRCADIAN (BODY)
CLOCK?

Our body clock allows us to generate circadian
rhythms. Circadian rhythms (circa = about,
dies = day) are patterns of behavior and physi-
ology that follow a 24-h cycle. Circadian
rhythms are autonomous, self-sustained oscil-
lations in biologic processes entrained to envi-
ronmental cues, the most important being light
[7]. The ability to generate circadian rhythms
enables us to anticipate environmental changes
and optimize our survival.

How are Circadian Rhythms Regulated?

Circadian rhythmicity at a cellular level consists
of the molecular clock, made up of a group of
clock proteins that oscillate in a transcrip-
tional–translational feedback loop. Each of
these ‘peripheral’ clocks can track light and dark
through messages received from the ‘central
clock’ or pacemaker in the suprachiasmatic
nucleus of the brain. The central pacemaker
integrates light and dark information and relays
the information downstream by a network
involving neural pathways, hormone release
(glucocorticoids), and metabolic cues from
rhythmic feeding behavior [8, 9]. Light is the
key entrainment factor for the SCN and feeding-
regulated metabolic cues are pivotal for the
regulation of many peripheral clocks [8, 9]
Fig. 1.

Both central and peripheral clocks use the
same molecular machinery to ‘‘time’’ the day.
Interlocking repressing and activating tran-
scriptional and translational feedback loops
culminate in the approximately 24-h rhythmic
expression and activity of a set of core clock
genes in each organ.

CLOCK and BMAL1 increase transcription of
period (PER1/2) and cryptochrome (CRY1/2)
genes. As protein levels increase, PER and CRY
associate and translocate into the nucleus,
repressing CLOCK/BMAL1, thereby inhibiting
their own transcription. Enzymatic degradation
of PERIOD and CRYPTOCHROME proteins
provides a delay mechanism prior to the onset
of the next transcriptional cycle. The expression
of positive factors, CLOCK and BMAL1, and
negative factors, PER and CRY, are in antiphase
to one another, providing circadian timing at
the molecular level.

Outputs from the molecular clock are gen-
erated through transcription or repression of
target genes. BMAL1 is regulated by rhythmic
interaction with REV-ERBa. REV-ERBa, a
nuclear hormone receptor and core clock gene,
is a critical regulator of inflammation and
metabolism. REV-ERBa function can be regu-
lated by small-molecule ligands and thus rep-
resents an exciting option for manipulation of
the clock in disease states [10, 11] Fig. 2.

WHAT IS KNOWN ABOUT
THE PERIPHERAL LUNG CLOCK?

Work in our laboratory has shown that the
peripheral lung clock is present in the Club cell
in the bronchial epithelium of mice [12] and
gates the recruitment of neutrophils to the lung
[13]. In healthy murine lung exposed to
lipopolysaccharide (LPS), enhanced production
of the neutrophil chemoattractant CXC-che-
mokine ligand 5 (CXCL5) and increased neu-
trophil recruitment are observed during the
day. At night, endogenous glucocorticoids bind
the glucocorticoid receptor (GR), inhibiting
Cxcl5 transcription reducing neutrophil influx.
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Targeted ablation of Bmal1 in Club cells has a
clear pro-inflammatory effect in this model [13].
Disruption of circadian rhythms in mice, to
mimic chronic jet lag or shift work, cause an
alteration in lung mechanics and clock gene
expression in the lung in a sexually dimorphic
manner [14]. Many genes expressed in the lung
are under rhythmic circadian control and are
involved in a vast number of processes [15].

IMMUNE CLOCK

Both the innate and adaptive immune systems
oscillate in a circadian manner. Trafficking of

immune cells, susceptibility to bacterial infec-
tions and septic shock, pattern recognition
receptor expression, phagocytosis, secretion of
cytokines and chemokines are all under rhyth-
mic control [16–24].

Haspel et al. used a genome-wide approach
to show that during acute endotoxemic lung
injury in mice, there was an increase in rhyth-
mic processes brought about through an up-
regulation in newly rhythmic pathways. This
suggests that a complex re-organization of cel-
lular and molecular circadian rhythms occurs in
acute lung injury and demonstrates the impor-
tance of circadian rhythm in disease processes
[25].

Fig. 1 The central and peripheral clocks. The ‘central’
clock or pacemaker in the suprachiasmatic nucleus (SCN)
of the brain integrates light and dark information and
relays the information downstream to ‘peripheral’ clocks
found in virtually every cell in the body, by a network

involving neural pathways, hormone release (glucocorti-
coids), and metabolic cues from rhythmic feeding behavior.
Light is the key entrainment factor for the SCN and
feeding-regulated metabolic cues are pivotal for the
regulation of many peripheral clocks
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CLINICAL TRANSLATION

Recently, the importance of time of day in
clinical practice has been realized [6, 26–35]
(Table 1). The time of day at which our immune
system is triggered, by for example sustaining a
wound, undergoing surgery or having a vacci-
nation, has a significant impact on how we
respond.

ASTHMA

Asthma is a heterogenous disease usually char-
acterized by chronic airway inflammation. It is
defined by the history of respiratory symptoms

such as wheeze, shortness of breath, chest
tightness, and cough that vary over time and in
intensity together with variable expiratory air-
flow limitation [36]. Asthma is a common dis-
ease affecting between 1 and 18% of the world’s
population in different countries [36].

ASTHMA AND CIRCADIAN
RHYTHM

Symptoms

Asthma is a disease with a strong circadian
rhythm; it is characteristic of asthma that
symptoms worsen in the early hours of the

Fig. 2 The molecular circadian clock. Both central and
peripheral clocks use the same molecular machinery to
‘‘time’’ the day. Interlocking repressing and activating
transcriptional and translational feedback loops culminate
in the approximately 24-h rhythmic expression and activity
of a set of core clock genes in each organ. CLOCK and
BMAL1 increase transcription of period (PER1/2) and
cryptochrome (CRY1/2) genes. As protein levels increase,
PER and CRY associate and translocate into the nucleus,
repressing CLOCK/BMAL1, thereby inhibiting their own

transcription. Enzymatic degradation of PERIOD and
CRYPTOCHROME proteins provides a delay mechanism
prior to the onset of the next transcriptional cycle. The
expression of positive factors, CLOCK and BMAL1, and
negative factors, PER and CRY, are in antiphase to one
another, providing circadian timing at the molecular level.
Outputs from the molecular clock are generated through
transcription or repression of target genes. BMAL1 is
regulated by rhythmic interaction with REV-ERBa
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morning around 4:00 am [37]. Nocturnal
symptoms in asthma are common and are an
important indicator for escalation of treatment.
Sudden death in asthma also tends to occur
overnight [38].

Airway Physiology

Physiological parameters of airway resistance,
forced expiratory volume in 1 s (FEV1), and peak
expiratory flow (PEF) are commonly measured
in respiratory clinics and as outcome measures
in drug trials. Both FEV1 and PEF vary in a cir-
cadian manner in healthy individuals with a
nadir at approximately 4:00 am. However, in
asthma, the amplitude of the circadian rhythm
of both FEV1 and PEF is greatly magnified [39].

Airway Inflammation

There is a circadian variation in the number of
alveolar eosinophils (significantly more present at
4:00 am versus 4:00 pm) in subjects with noctur-
nal asthma compared to those with nonnocturnal
asthma, undergoing bronchoscopy [40] (Fig. 3).
Nocturnal asthma probably represents a group of
patients with poorly controlled asthma. However,
results are somewhat conflicting [41] and further
research in this area is needed.

Molecular Clock

Ehlers et al. demonstrated a potential role for
the clock gene bmal1 in modulating viral exac-
erbations in asthma; bmal1-/- mice developed
extensive asthma-like airway changes post-viral
infection, including mucus production and

Table 1 Summary of clinical studies demonstrating the importance of circadian clock biology

Clinical Comments References

Shift workers and

regular jet-lag

Misalignment of internal clocks with environmental light–dark levels.

Epidemiological studies show increased risks of: Cardiovascular disease, prostate

cancer, lymphoma, breast cancer and colorectal cancer

[26–31]

Critically ill patients

on ICU

Critically ill patients on ICU are nursed around the clock with no differentiation

between night and day. Such patients with sepsis have impaired circadian

melatonin rhythms

[32]

Chemotherapy

infusions

Timing chemotherapy infusions with circadian rhythms in patients with metastatic

colorectal cancer increased the effectiveness of chemotherapy and significantly

reduced toxic side-effects compared to conventional constant-rate infusion

[33]

Vaccination 276 patients (over 65 years of age) vaccinated in the morning had greater antibody

titers 1 month later than patients vaccinated in the afternoon.

[6]

Surgery In patients undergoing aortic valve replacement, the incidence of major adverse

cardiac events was lower in the afternoon surgery group than in the morning group.

Perioperative myocardial injury was significantly lower in the afternoon group than

in the morning group. Rev-Erba antagonism may be a pharmacological strategy for

cardioprotection

[34]

Wound healing Skin wounds in mice wounded during the circadian rest period healed less quickly

than those wounded during the active period. Analysis of a database of human burn

injuries showed that those incurred during the night (rest period) healed more

slowly than wounds acquired during the day (active period)

[35]

Pulm Ther (2018) 4:29–43 33



increased airway resistance [42]. Asthma is a
disease with a strong time-of-day variability and
therefore a chronotherapeutic approach to
treatment might be highly beneficial for
patients.

CHRONOTHERAPY IN ASTHMA

Chronotherapy is the synchronizing of drug
concentrations to rhythms in disease activity,
increasing efficacy as well as reducing adverse
effects. The effectiveness of chronotherapy for
asthma is most often determined by its effects
on the morning dip in PEF and FEV1; other
outcome measures are inflammation

(bronchoalveolar or blood inflammatory cells,
methacholine challenge PC20) and clinical out-
come measures, such as quality of life, noctur-
nal wakenings, and exacerbations.

Current treatment guidelines do not reflect
chronotherapy, phenotype, or endotype; rather
they provide a linear treatment algorithm, based
on asthma symptoms [43]. Inhaled corticos-
teroids (ICSs), with or without long-acting beta
agonists (LABAs), are the mainstays of pharma-
cological treatment for mild-to-moderate asthma.
Severe asthma is defined as asthma that requires
treatment with high-dose ICSs plus a second
controller and/or systemic corticosteroids to pre-
vent it from becoming ‘‘uncontrolled’’ or that
remains ‘‘uncontrolled’’ despite this therapy [44].

Fig. 3 Asthma varies over 24 h. A summary of the changes
that occur in asthma over 24 h. Airways become more
narrowed at 4 am in asthma, coincident with increased
symptoms and increased airway inflammation also at this
time. The most efficacious time to take steroids (systemic
and inhaled) may well be about 3 pm. There is no adrenal

suppression of steroids are given between 8 am and 4 pm,
but there is adrenal suppression if given between midnight
and 4 am. Theophylline, leukotriene antagonists and
LABAs may be more efficacious if taken in the early
evening rather than the morning
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Systemic Corticosteroids

There is a well-recognized endogenous circadian
variation in cortisol levels, with levels of cortisol
highest in the morning and lowest during the
night. Infusion of methylprednisolone between
8:00 am and 4:00 pm caused no adrenal sup-
pression; yet an infusion administered between
12:00 and 4:00 am caused severe adrenocortical
suppression. Infusion during 4:00 and 8:00 pm
and between 4:00 am and 8:00 am resulted in
moderate adrenocortical suppression [45].

In a study investigating the best time of day
to administer 50 mg prednisolone, three time
points were looked at 8:00 am, 3:00 pm, or
8:00 pm and the outcome measure used was the
decline in over-night FEV1 as well as bron-
cholavage for inflammatory cells. Interestingly,
50 mg of prednisolone reduced the nocturnal
decline in FEV1 only at 3:00 pm (in association
with reduced neutrophils, eosinophils, lym-
phocytes and macrophages in the BAL), but was
ineffective at 8:00 am or 8:00 pm [46]. These
results are consistent with other studies, sug-
gesting that synthetic corticosteroids adminis-
tered at 3:00 pm are more effective in nocturnal
asthma and cause less disruption to endogenous
circadian cortisol rhythm [47].

Inhaled Corticosteroids (ICSs)

ICSs are the most important treatment for
asthma, controlling airway inflammation
[48, 49]. Inhaling corticosteroids rather than
taking them systemically reduces side effects.
Several studies have investigated the
chronotherapy of ICSs. Triamcinolone acetate
taken at 3:00 pm (800 lg) was at least equiva-
lent to a four-times-a-day (200 lg) treatment
schedule. Blood eosinophils and methacholine
challenge (PC20) were also measured but did not
vary significantly between groups [50]. Pincus
et al. showed that triamcinolone acetate taken
either four times a day (800 lg/day) or as a
single dose at 5:30 pm improved morning and
evening PEF in a comparable manner, but not if
taken as a single dose at 8:00 am. There was an
improvement in methacholine challenge in all
groups, but no difference between groups and

this was also the case for nocturnal wakenings
and quality of life indices, however there was a
significant decrease in blood eosinophils in the
four-times-a-day group compared to the other
two groups [51]. A double-blind, randomized,
parallel-group study of 209 asthmatic patients
investigated the efficacy of taking 200 lg
inhaled ciclesonide (Alvesco�, Teijin Pharma
Ltd, Tokyo, Japan) in the morning or in the
evening, for 8 weeks. Taking ciclesonide once
daily in the evening improved the morning PEF
better than if ciclesonide was taken only in the
morning. However, morning and evening
administration was equally effective for symp-
toms, use of rescue medication, and number of
asthma exacerbations [52, 53]. These results are
consistent with chronotherapeutic studies
investigating oral corticosteroids.

b2-Adrenergic Agonist Medication

b2-agonists (BAs) cause relaxation of airway
smooth muscle, increasing airway diameter,
and relieving bronchoconstriction; they are also
anti-inflammatory [54]. Plasma adrenaline
levels fluctuate in a circadian manner with a
nadir at 4 am and a peak at 4:00 pm in both
healthy and asthma subjects [55]. BAs are short-
acting BAs (SABA) with duration of around 4 h,
or long-acting (LABA) effective for 12–24 h.
Procaterol (USAN) and fenoterol (Berotec—
WBP) are SABAs that strongly induce the clock
gene, hPer1, in human bronchial epithelial cells
in vitro [56]. The chronotherapy of inhaled
LABAs has not been extensively investigated
and it would be interesting to investigate
nighttime versus morning once-daily dosing
with these agents.

The LABA tablet formulation Terbutaline
(Bricanyl Depot�, AB Draco, Lund, Sweden) was
administered to asthmatics in synchrony with
the circadian rhythm of lung function; 5 mg
given in the morning (8:00 am) and in the
evening (8:00 pm) when lung function was
beginning its decline. This chronotherapeutic
strategy significantly increased the 24-h mean
PEF and FEV1 and almost prevented the noc-
turnal decline [57–59]. Bambuterol (Bambec�,
Astra Draco, Lund, Sweden), a prodrug of
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terbutaline, exerts a bronchodilator effect for
24 h. Evening dosing (20 mg) resulted in a
considerably higher morning FEV1 and PEF
compared to morning dosing.

Vilanterol (GlaxoSmithKline plc, United
Kingdom), an ultra-LABA, acts for 24 h. There is
no difference between morning or evening dos-
ing with fluticasone furoate/vilanterol 100/25 lg,
in patients with persistent asthma [60]; suggesting
that the timing of dosing with ultra-LABAs is not
important; however, any circadian effects of these
long-acting drugs may well be masked.

Anticholinergic Agents

Increased cholinergic tone through the vagus
nerve at night may cause bronchoconstriction
and mucus secretion [61]. The vagus may be one
of the most important pathways for conveying
circadian signals from the central clock to
peripheral clocks in the respiratory tract [62].
Inhaled muscarinic antagonists are classified
according to their duration of action; short-
acting muscarinic antagonists (SAMAs) include
ipratropium bromide and long-acting mus-
carinic antagonists (LAMAs) include tio-
tropium, aclidinium, and glycopyrronium.
Inhaled anticholinergic agents produce incon-
sistent results in patients with nocturnal asthma
[63, 64]. This may be because inadequate doses
were used [61]. Several studies have shown that
if large enough doses of anticholinergic medi-
cation are taken late at night or very early in the
morning, the nocturnal decline in PEF in noc-
turnal asthmatics can be prevented [63–65]. Of
the LAMAs, Tiotropium (Boehringer Ingelheim,
Ingelheim am Rhein, Germany) showed no
significant differences in effect on airway caliber
when administered once daily in the morning
versus evening [66]. However, the long duration
of action of this high-affinity medication may
mask possible circadian time-dependent effects.

LEUKOTRIENE RECEPTOR
ANTAGONISTS

Montelukast (Merck), a leukotriene receptor
antagonist, is recommended to be taken once

daily in the evening. A double-blind study
showed that montelukast better improved FEV1

when dosed in the evening than in the morning
[67].

THEOPHYLLINES

Theophyllines are anti-inflammatory agents.
Once-daily preparations are dosed at night as
this was shown to be more effective for
increasing serum theophylline concentration at
the time when lung function was worse, and
this regimen improved both symptoms and PEF
[68].

CHRONIC OBSTRUCTIVE
PULMONARY DISEASE (COPD)

COPD affects about 10% of people over 40 years
of age, is a leading cause of hospital admissions,
and is now the third-ranked cause of death
worldwide [69]. The major risk factor for COPD
in Western countries is cigarette smoking.
COPD is characterized by progressive airflow
obstruction, predominantly affecting the
peripheral airways; this leads to air trapping,
dynamic hyperinflation, and shortness of
breath on exertion.

COPD AND CIRCADIAN RHYTHM

In comparison to asthma, the link between
circadian rhythm and COPD is less well estab-
lished. Furthermore, there is a well-recognized
overlap condition asthma-COPD overlap syn-
drome (ACOS), occurring in over 20% of COPD
patients, in which features of both conditions
exist concurrently [70, 71]. It is possible that
ACOS influences the rhythmic findings in
COPD studies.

Symptoms

As in asthma, symptoms of COPD worsen in the
morning [72]. In patients who experience
morning symptoms, the most common morn-
ing symptoms were coughing, shortness of
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breath, and sputum production. Research has
also indicated that patients who experience
morning symptoms are at higher risk for exac-
erbations and are more likely to use their rescue
inhaler [73]. The diurnal variation in symptom
severity has been observed during COPD exac-
erbations, with elevated risk for intubation
during early morning hours in the emergency
department [74]. Importantly, a recent study
showed that COPD patients that report both or
either nocturnal or early morning symptoms
have poorer health compared with patients who
do not have a worsening of symptoms at
specific times of day [75].

Airway Physiology

There is a circadian variation in FEV1 in
stable COPD that demonstrates a similar pat-
tern, peaking at 4:00 pm and dipping at around
4:00 am, however the amplitude is substantially
less than in asthmatic subjects [66, 76].

Molecular Clock

Sirtuin1 (SIRT1), an NAD?-dependent deacety-
lase, affects clock function by binding with
CLOCK:BMAL1 complexes and deacetylating
BMAL1 and PER2 proteins [77, 78]. Rhythmic
levels and activity of SIRT1 are reduced in
mouse lungs exposed to cigarette smoke and in
patients with COPD [79, 80]. This leads to
BMAL1 acetylation and its enhanced degrada-
tion in mouse lungs [81].

A recent study by Sundar et al. shows a sig-
nificant reduction of REV-ERBa in small airway
epithelial cells taken from patients with COPD,
increased inflammatory responses in REV-ERBa
knockout (KO) mice as compared to wild-type
mice post cigarette smoke exposure, and a sig-
nificant increase in pro-inflammatory cytokines
in the KO. These findings highlight REV-ERBa
as an exciting target for clock-based treatment
for COPD [82].

The use of E-cigarettes is becoming increas-
ingly popular. Mice exposed to vapor from
E-cigarettes demonstrate altered clock gene
expression both systemically and in their lungs,

as well as disruption of downstream signaling
pathways [83].

Chronic CS exposure in mice combined with
Influenza A Virus (IAV) infection altered the
timing of clock gene expression and reduced
locomotor activity in parallel with increased
lung inflammation, disrupted rhythms of pul-
monary function, and emphysema. BMAL1 KO
mice infected with IAV showed pronounced
detriments in behavior and survival, and
increased lung inflammatory and pro-fibrotic
responses. This suggests that remodeling of lung
clock function following IAV infection alters
clock-dependent gene expression and normal
rhythms of lung function, enhanced emphyse-
matous, and injurious responses [84].

CHRONOTHERAPY IN COPD

Guidelines for the treatment of COPD have
consistently recommended long-acting inhaled
bronchodilators—either LAMAs or LABAs—as
initial maintenance therapy. If disease control is
not achieved, as manifested by inadequate lung
function and disease exacerbations, guidelines
recommend their combined use [85]. Although
there is general agreement about the role of
LAMAs and LABAs in the treatment of COPD,
the role for inhaled glucocorticoids in this
treatment guideline has been the object of
much debate because of their modest effective-
ness and concerns about safety, particularly the
risk of pneumonia [86]. The recent Global Ini-
tiative for Chronic Obstructive Lung Disease
(GOLD) guidelines recommend that the addi-
tion of an inhaled glucocorticoid be limited to
patients with severe loss of lung function and
those with frequent exacerbations [85].

LABA AND LAMA

Currently, two types of inhaled long-acting
bronchodilators are commonly utilized in
COPD: LABA (formoterol, salmeterol) with
duration of action of 12h, and a LAMA (tio-
tropium) with duration of action[24 h
[66, 87].
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In a study looking at tiotropium as a single
agent either in the morning or evening, there was
an overall increase in FEV1 throughout the day in
both groups with no significant difference in the
improvement in night-time dip between the two
groups [66]. van Noord et al. reported that a
maintenance therapy of combined tiotropium
and formoterol, both once-daily, provided addi-
tive effects on FEV1 throughout the 24 h in
patients with COPD [88]. Add-on therapy of for-
moterol in the morning to maintenance therapy
of tiotropium significantly improved FEV1, forced
vital capacity (FVC) and inspiratory capacity (IC)
in COPD. A second formoterol dose in the eve-
ning provided a further improvement in average
FEV1, FVC, and IC during the night-time hours
[89]. In a randomized, blind, crossover study, five
different treatments were compared: tiotropium
in the morning, tiotropium in the morning and
formoterol at night, formoterol twice daily, tio-
tropium in the morning and formoterol twice
daily, and lastly, formoterol twice daily and tio-
tropium at night. In patients with moderate to
severe COPD, combination therapy with tio-
tropium administered in the morning (and for-
moterol twice daily) was the most effective; in
patients with prevailing night-time symptoms,
treatment with tiotropium in the evening (and
formoterol twice daily) reduced symptoms and
use of salbutamol and showed less variability of
FEV1 during the 24 h [90]. This suggests that the
timing of tiotropium should be guided by the
presence of night-time symptoms.

More recently, once-daily dosing with tio-
tropium-like drugs such as umeclidinium
(GlaxoSmithKline) and glycopyrronium (No-
vartis Pharmaceuticals UK Ltd) are being used in
clinical practice. To date, there are no
chronotherapy studies using these agents.

Theophyllines

Three regimens of sustained-release theo-
phylline (SRT), Theostat, were administered in a
randomized cross-over trial. In the first, a high
dose (8 mg/kg) in the morning, and a low dose
(4 mg/kg) at night, in the second intermediate
dosing (6 mg/kg) morning and evening, and in
the third low dose in the morning and high

dose in the evening. Serial FEV1 measurements
demonstrated that unequal, twice-daily SRT
dosing with the greater amount of drug at night
was the most beneficial in the treatment of
COPD [91].

DISCUSSION

Asthma varies considerably throughout the day,
and to a lesser extent so does COPD. The
rhythmic variation in symptoms, airway physi-
ology, and inflammation point to a role for the
molecular clock in the pathogenesis of both
these inflammatory airway diseases. Although
there have been many small chronotherapeutic
trials, particularly in asthma, the findings are
not always being put into practice, particularly
when it comes to prescribing systemic and
inhaled corticosteroids, which may be more
effective if taken in the afternoon rather than in
the morning. Future large, randomized clinical
trials are needed to inform clinical practice.

Poor adherence to inhaled corticosteroid is a
major obstacle in the management of asthma
[92]; how chronotherapy would impact adher-
ence rates is an important area for future
research. Delayed release preparations might
allow the drug to be taken in the morning, but
only become active later in the day.

Our growing understanding of how compo-
nents of the molecular clock interact with crit-
ical elements of inflammatory pathways offers
the exciting potential for the use of pharmaco-
logical agents that target these clock proteins as
anti-inflammatory agents. The challenge now is
to produce high-affinity, high-efficacy mole-
cules that enhance the activity of clock pro-
teins. Topically delivered, clock-acting
compounds might allow selective manipulation
of the pulmonary clock.

Elucidating the molecular pathways that
precede the diurnal worsening of symptoms
may provide a major advance in treatment
options for patients with asthma. Targeting a
well-defined circadian molecular pathway at a
predictable time point, when the pathway is
upregulated, will result in more efficacious
therapies with fewer side effects.
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