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Applications of simple and accessible
methods for meta-analysis involving rare
events: A simulation study
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Abstract

Meta-analysis of clinical trials targeting rare events face particular challenges when the data lack adequate number of

events and are susceptible to high levels of heterogeneity. The standard meta-analysis methods (DerSimonian Laird (DL)

and Mantel–Haenszel (MH)) often lead to serious distortions because of such data sparsity. Applications of the methods

suited to specific incidence and heterogeneity characteristics are lacking, thus we compared nine available methods in a

simulation study. We generated 360 meta-analysis scenarios where each considered different incidences, sample sizes,

between-study variance (heterogeneity) and treatment allocation. We include globally recommended methods such as

inverse-variance fixed/random-effect (IV-FE/RE), classical-MH, MH-FE, MH-DL, Peto, Peto-DL and the two extensions

for MH bootstrapped-DL (bDL) and Peto-bDL. Performance was assessed on mean bias, mean error, coverage and

power. In the absence of heterogeneity, the coverage and power when combined revealed small differences in meta-

analysis involving rare and very rare events. The Peto-bDL method performed best, but only in smaller sample sizes

involving rare events. For medium-to-larger sample sizes, MH-bDL was preferred. For meta-analysis involving very rare

events, Peto-bDL was the best performing method which was sustained across all sample sizes. However, in meta-

analysis with 20% or more heterogeneity, the coverage and power were insufficient. Performance based on mean bias

and mean error was almost identical across methods. To conclude, in meta-analysis of rare binary outcomes, our results

suggest that Peto-bDL is better in both rare and very rare event settings in meta-analysis with limited sample sizes.

However, when heterogeneity is large, the coverage and power to detect rare events are insufficient. Whilst this study

shows that some of the less studied methods appear to have good properties under sparse data scenarios, further work

is needed to assess them against the more complex distributional-based methods to understand their overall

performances.
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1 Introduction

Meta-analysis (MAs) of binary data encounter problems when proportions of events are few.1 This is a particular
issue in MAs of adverse events that are associated with biomedical interventions.2 Difficulties often arise when
analysis is done either at patient level using individual patient data or at the study level using just aggregate data

1National Institute for Health Research (NIHR) School for Primary Care Research, Manchester Academic Health Science Centre, University of

Manchester, Manchester, UK
2Division of Informatics, Imaging & Data Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK

Corresponding author:

Alexander Hodkinson, NIHR School for Primary Care Research, Manchester Academic Health Science Centre, University of Manchester, Williamson

Building, Oxford Road, Manchester M13 9PL, UK.

Email: alexander.hodkinson@manchester.ac.uk

Statistical Methods in Medical Research

2021, Vol. 30(7) 1589–1608

! The Author(s) 2021

Article reuse guidelines:

sagepub.com/journals-permissions

DOI: 10.1177/09622802211022385

journals.sagepub.com/home/smm

https://orcid.org/0000-0003-2063-0977
https://orcid.org/0000-0001-6450-5815
mailto:alexander.hodkinson@manchester.ac.uk
http://uk.sagepub.com/en-gb/journals-permissions
http://dx.doi.org/10.1177/09622802211022385
journals.sagepub.com/home/smm


from each trial. We concentrate here on MAs of study-level summaries, which is far more common in the
assessment of adverse events, though patient-level analysis is to be preferred when data are available.3

The methods used when performing MAs of binary data are frequently done using the standard inverse-
variance fixed-effects model which is based on large-sample normal approximation, or fixed-effects methods
based on exact distributional theory such as the Mantel–Haenszel (MH)4 or Peto model,5 or the standard
random-effects DerSimonian–Laird (DL) model.6 Because these methods lack power to investigate the incidence
of rare events and are mostly based on large sample normal approximation particularly inverse-variance,7,8 their
statistical properties for estimating treatment effects are often judged as suboptimal either through results being
biased, confidence intervals being inappropriately wide or statistical power being too low to detect any true
differences. One leading cause of this bias is the estimation of the between-study variance (s2),9 which often
displays uncertainty in MAs when there are few studies involved.10

Several simulation studies have evaluated the performances of these mainstream methods for MAs11–13 and
shown that the estimate of s2 is particularly inaccurate when the number of included studies is small. However,
evidence of heterogeneity estimation across different sample size settings with varying low levels of incidence (i.e.
rare events) and imbalanced treatment allocations is currently lacking.

The Cochrane guidelines (Version 6.1, 2020) recommend the use of methods which are mostly accessible in
Review Manager (RevMan); software developed by the Nordic Cochrane Centre and is free-to-access.8

Specifically, the guideline suggests that when the event rate is below 1%,14 the ‘Peto odds ratio’ method is
considered the least biased and most powerful method and provides the best confidence interval coverage.5

The method is also thought to perform well when treatment and control group sizes within studies are balanced
and treatment effects are small. In other circumstances, when event risks are above 1% and for MAs involving
many studies with imbalanced treatment groups; the MH odds ratio (OR) without continuity correction, logistic
regression and exact methods are considered to be better performing.15 However, there are two shortcomings
when using these methods: (i) not all of them are available in RevMan, in particular, the MH without continuity
correction, logistic regression and exact methods, and (ii) when heterogeneity are present, meta-analysts often
have to revert from inverse-variance weighting to a random-effects DL, to reduce bias in estimation. But, there are
still some obvious shortcomings of random-effects methods, as they are based on large-sample variance
approximation.1

Most recently, there have been several new methods proposed for improved estimation of s2. These include
maximum likelihood, profile likelihood and restricted maximum likelihood or non-parametric ‘permutations’
method.16 More specifically, a non-parametric bootstrap of the DL estimator was shown to be a better performer
in small MAs that were falsely assumed to be homogenous under the standard DL model.12,17 This non-
parametric bootstrap of the DL has now been extended for both the MH and Peto models, but very little is
known about the performances of these methods in MAs involving rare events whilst compounded with the issue
of heterogeneity. As these methods are easily accessible and applicable, it is important to assess whether they
could support or improve the current recommendations on MAs of rare events.

The focus of this study is to evaluate the use of mainstream fixed- and random-effects MAs methods including
two non-parametric bootstrap extensions for analysing rare or very rare outcomes, in a simulation study covering
typical scenarios for rare adverse events or rare diseases. The paper is organised as follows. In section 2, we
descriptively assess other similar simulation studies to highlight research gaps and limitations, which we are
attempting to address in this work. In section 3, we discuss the various meta-analytic methods used for estimating
relevant model parameters. In section 4, we report on the simulation study and introduce the tools used to
measure the performance of the methods across the simulated scenarios. In section 5, findings are illustrated in
tables or graphically, and in section 6, we conclude and provide recommendations for practical work in the future.

2 Literature review of simulation studies on rare events

Several simulation studies have looked to assess the performance of MAs methods in clinical trials targeting rare
events (see Table S1, online Appendix 1). However, these studies had mostly included methods based on exact
distributional assumptions, were limited to certain values of incidence and did not explicitly assess the perform-
ances of measurement error based on varying values of heterogeneity. For example, in one study,18 only methods
that include double-zero studies (i.e. studies which report no event in treatment and control arm) and avoid
continuity correction were included; and so the standard methods as outlined in the Cochrane handbook were not
of primary concern.8 The study only used small values for s2 (0–0.806) across the simulated scenarios, limiting the
knowledge for performances of the methods based on different heterogeneity values. A second study10 evaluated
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heterogeneity across three newly derived methods including a simple (unweighted) average treatment effect esti-

mator, a new heterogeneity estimator and a parametric bootstrapping test. Only two values of s2 (0 and 1.2) were

explored in this study which again limit the performance evaluation for higher levels of heterogeneity; and results

reveal that the new derived methods showed poor performance in their ability to detect heterogeneity anyway,

yielding biased overall treatment estimates. Another study19 using the same simple average method as in the

aforementioned study10 showed similar results with s2 fixed at 0.5. Other simulation studies19–22 assumed no

heterogeneity in the treatment effects, and three studies15,23,24 had used a real data set where the true effect and

heterogeneity levels were unknown, and hence the studies were limited in the context of comparing methods.

3 Statistical methods for MAs of rare data

The following methods described were used in our simulation study because they met our criteria: (i) simple to

implement (i.e. a lay trained person with basic MAs training could apply them), (ii) are mentioned in the Cochrane

handbook with the exception of the Peto/MH bootstrap methods and (iii) because of their accessibility in free

and/or mainstream statistical software such as RevMan, Stata or R.25–27

In each subsection heading, we provide the name of the method and, in the parentheses, its abbreviation in the

results figures/tables and the statistical software packages (with commands) can be used for parameter estimation.

The summations in all of the equations are over i, from 1 to the number of patients N, and k represents the total

number of studies, unless otherwise specified.
When analysing rare events and binary data in particular, the most commonly encountered effect measure used

in clinical trials is the OR. But, it is important to note that this effect measure is generally found to be approx-

imately the same as the relative risk when the outcome of interest is rare.28 However, because the Peto method is

only designed upon the OR, this prompted the use of OR for effect estimation throughout even though it is often

misinterpreted as being equivalent to the relative risk.29 But, it is worth noting that many of the other methods can

be analysed using relative risk.
In all MAs of k studies involving binary data, the results of each study can be presented in a 2� 2 table (see

Table 1).
Then, the OR from each study using Table 1 is given by

ORi ¼ aidi
bici

(1)

The standard error of the log OR being

se ln ORið Þ� � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ai
þ 1

bi
þ 1

ci
þ 1

di

r

3.1 Inverse-variance (IV) fixed effect (FE) and random effect (RE) [RevMan, R (meta,

metafor), Stata (metan)]

The inverse-variance method is the simplest approach to MAs, where the weights given to each study are the

inverse of the variance of the effect estimate (i.e. one over the square of its standard error). Thus, larger studies

which have smaller standard errors are given more weight than smaller studies, which have larger standard errors.

This choice of weight minimizes the imprecision (uncertainty) of the pooled effect estimate.

Table 1. Binary data from one trial.

Study k Event No event Total patients

Experimental ai bi n1i
Control ci di n2i

N

Note: i denotes the patient, k denotes the study and N denotes the total number of patients in that specific study.
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In the fixed-effects model, the weight (wi) is given as

wi ¼ 1

se dORi

� �� �2 (2)

This is then combined to give a summary estimate

dORIV�FE ¼
P

wi
dORiP
wi

(3)

with

se dORIV�FE

� �
¼ 1ffiffiffiffiffiffiffiffiffiffiffiP

wi

p (4)

The heterogeneity statistic is given by the following formula

QIV�FE ¼
X

wi
dORi � dORIV�FE

� �2
Under the null hypothesis that there are no differences in intervention effects among studies, this follows a chi-

squared distribution with k� 1 degrees of freedom (where k is the number of studies contributing to the MAs). I2

is calculated as

I2 ¼ max 100%�QIV�FE � k� 1ð Þ
QIV�FE

; 0

( )
In the random-effects analysis, each study is also weight by the inverse of it variance too, but the different is

that the variance now includes the original (within-studies) variance plus the between-studies variance, tau-
squared.

Concretely, under the random-effects model, the weight assigned to each study is

wi ¼ 1

Vi

where Vi is the within-study variance for study (i) plus the between-studies variance, tau-squared (s2Þ. That is

Vi ¼ Vi þ s2

The weighted mean (ORIV�REÞ is then computed as

dORIV�RE ¼
P

wiTiP
wi

(5)

where Ti is the observed effect calculated by

Ti ¼ ORi þ ei ¼ lþ Bi þ ei

The ORi is the true effect, and ei is the within study error. In turn, ORi is determined by the mean of all true
effects, l and the between-study error Bi.

The standard error of the combined effect is then

se dORIV�RE

� �
¼ 1ffiffiffiffiffiffiffiffiffiffiffiP

wi

p (6)

1592 Statistical Methods in Medical Research 30(7)



The heterogeneity statistic is given by the following formula

QIV�RE ¼
X

wi Ti � dORIV�RE

� �2
As is clearly outlined in the Cochrane handbook, because the IV method is based on large-sample variance

approximation, they are not intended for use with rare events.8 But for consistency, we included both the IV fixed

and random effects (IV-FE/IV-RE) in this simulation study as the baseline option. Whilst they have been shown

as poor performers globally, they have at times been shown to be useful when comparing the performances against

other methods.

3.2 Mantel–Haenszel

Unlike with IV methods, the MH estimation methods are considered the default fixed effect methods of MAs in

RevMan, and they use a different weighting scheme dependent upon which effect measure is used (e.g. ORs, risk

ratios and risk differences) to avoid the issue of normal approximation. MH is also preferred to inverse-variance

methods, as they have been shown to have better statistical properties when there are few events, which is common

among Cochrane and other reviews generally.

3.2.1 Classical Mantel–Haenszel (MH) [RevMan, R (meta, metafor), Stata (metan, metaan)]

The classical Mantel–Haenszel4 method is used specifically for log OR and OR. Here, the MH log OR is given by

ln ORMHð Þ ¼ ln

P
wMH;iORiP
wMH;i

 !

and the MH OR is given by

ORMH ¼
P

wMH;iORiP
wMH;i

(7)

where each study’s OR is given weight wMH;i ¼ bici
Ni
, bi is the number of non-events in the intervention group, ci is

the number of events in the control group and Ni is the total number of patients as detailed in Table 1.
The log OR has standard error given by

se ln ORMHð Þ� � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

E

R2
þ Fþ G

RS
þ H

S2

� �s
(8)

where

R ¼
X aidi

Ni
; S ¼

X bici
Ni

E ¼
X ai þ dið Þaidi

N2
i

;F ¼
X ai þ dið Þbici

N2
i

;

G ¼
X bi þ cið Þaidi

N2
i

;H ¼
X bi þ cið Þbici

N2
i

The heterogeneity test statistics is given by

QMH ¼
X

wi
dORi � dORMH

� �2
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where dORi represents the log OR and wi are the weights wMH;i ¼ bici
Ni
. Under the null hypothesis that there are no

differences in intervention effect among studies, this follows a chi-squared distributed with k�1 degrees of

freedom.
The statistic I2 is calculated as

I2 ¼ max 100%�QMH � k� 1ð Þ
QMH

; 0

( )

3.2.2 Mantel–Haenszel with fixed-effect weighting (MH-FE) [RevMan, R(meta, metafor), Stata (metaan)]

The MH-FE method differs to that of the classical MH method, with the use of a different weighting scheme.

Namely, the weight from equation (2) is used rather than the weight detailed in section 3.2.1. Then, the hetero-

geneity test statistics are the same but using this new weight.

3.2.3 Mantel–Haenszel with DL random-effects weighting (MH-DL) [RevMan, R (metafor), Stata (metaan)]

When data are sparse, either in terms of event rates being low or study size being small, the estimates of the

standard errors of the effect estimates that are used in the inverse-variance weighting can be poor. A variation on

the inverse-variance method is to incorporate an assumption that the different studies are estimating different, yet

related, intervention effects. This produces a random-effects MAs, and the simplest version is known as the

DerSimonian and Laird (DL) method.
The DL method is the oldest and most widely used random-effects MAs and has proven to be remarkably

robust in various scenarios.6

Effect sizes are assumed to have a distribution of ORi � N OR; s2
� �

, and the estimate of s2 is given by

bs2DL ¼ max
Q� ðk� 1ÞPk

i¼1 bwi �
Pk

i¼1
cw2
i =
Pk

i¼1 bwi

; 0

( )
(9)

where the wi are the inverse-variance weights, calculated as w0
i ¼ 1

se cORi

� �2, k is the number of studies contributing

to the MAs and Q is the heterogeneity statistic. For binary data, either QIV�FE=RE or QMH may be taken. Both are

implemented in RevMan, and this is the only difference between random-effects methods under MH and IV

options.
Each study’s effect size is given by the weight

wi ¼ 1

se dORi

� �2 þds2DL

(10)

The summary effect size is given by

dORDL ¼
P

wi
dORiP
wi

(11)

and

se dORDL

� �
¼ 1ffiffiffiffiffiffiffiffiffiffiffiP

wi

p (12)

where the heterogeneity statistic Q is less than or equal to its degrees of freedom (k�1), the estimate of the between

study variation, ds2DL , is zero, and the weights coincide with those given by the IV method.

1594 Statistical Methods in Medical Research 30(7)



3.2.4 Mantel–Haenszel with bootstrapped DL random-effects weighting (MH-bDL) [R (metafor), Stata (metaan)]

Kontopantelis et al.12 recently suggested a non-parametric bootstrap version of the DL method (bDL) by

randomly sampling B sets of studies with replacement and then selecting the mean of the truncated

estimates. In each set, the MH effect size is estimated as explained in section 3.2.3, and s2 is estimated using

the DL method (bs2DLÞ from equation (9) and then is truncated if negative. bs2bDL is estimated as the mean of these

B estimates.17

Whilst the MH-bDL method is not recommended by Cochrane, it has been shown to be a good performer

in both detecting heterogeneity and returning more accurate overall effect estimates. However, its performance

has not yet been extensively assessed in rare event settings, and so it was important to include in our

simulation study.

3.3 Peto OR

3.3.1 Peto OR with fixed-effect weighting (Peto) [R (metafor), Stata (metan, metaan)]

Peto’s method5 can only be used to pool ORs. It uses an inverse-variance approach but utilizes an approximate

method of estimating the log OR and uses different weights.
The individual ORs are given by

ORPeto;i ¼ exp
Xi

Vi

	 

(13)

where Xi is the ‘O – E’ observed minus expected statistic

Xi ¼ ai � E ai½ �

with the expected number of events in the experimental intervention group

E ai½ � ¼ n1i ai þ cið Þ
Ni

and the hypergeometric variance of ai

Vi ¼ n1in2i ai þ cið Þ bi þ dið Þ
N2

i Ni � 1ð Þ (14)

The logarithm of the OR has standard error

se ln ORPeto;ið Þ� � ¼
ffiffiffiffiffi
1

Vi

r
(15)

Peto for combining summary log OR across studies is given by

ln ORPetoð Þ ¼
P

Viln ORPeto;ið ÞP
Vi

and the summary OR by

ORPeto ¼ exp

P
Viln ORPeto;ið ÞP

Vi

	 

(16)

where the odds ratio ORPeto;i is calculated using the approximated method described in equation (13), and Vi are

the hypergeometric variances described in equation (14).
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The heterogeneity statistic is given by

QPeto ¼
X

Vi lnORPeto;ið Þ2 � lnORPetoð Þ2
n o

3.3.2 Peto OR with DL random-effects weighting (Peto-DL) [R (metafor or lme4), Stata (metaan)]

The summary Peto OR from section 3.3.1 is used for effect estimation, and bs2DL is estimated using equation (9).

3.3.3 Peto OR with bootstrapped DL random-effects weighting (Peto-bDL) [R (metafor), Stata (metaan)]

Again, equivalent to section 3.2.4, but this time using the s2 which is estimated using the DL method (bs2DLÞ from
equation (9), then bs2bDL is estimated as the mean of B estimates. bs2bDL is truncated if negative.

3.4 Excluded methods

The following methods were excluded because they either could not be accessed in RevMan or were not included

in the Cochrane guidelines: Binomial-normal hierarchical model,30 Poisson-normal hierarchical model,31 Poisson-

Gamma Hierarchical Model32 or Beta-binomial model,18 Bayesian MAs including weak informative priors,21

Exact method based on combining CIs,33 Logistic regression34,35 and Arcsine difference.36

4 Simulation setup

The data sets are generated under the ipdpower command in Stata37 which calculates the power for mixed-effects

aggregate (two-level) data from clinical trials. All definitions and calculations might be checked using the original

code (online Appendix 2). To mirror real data, true values for the design factors were gathered where possible,

from empirical data on performed MAs. Thus, the largest study to date includes 14,886 Cochrane reviews.38 Other

meta-analyses39–41 of rare events were also used to help inform on the design.
An important point to appreciate when designing and analysing of simulation studies is that they are empirical

experiments, meaning performance measures are themselves estimated, and estimates of performances are thus

subject to error. This feature of simulation studies is often not widely appreciated.42 The implications can be two-

fold. It is therefore important to present estimates of the simulation uncertainty in relation to bias and error

estimation of the methods and consider the number of repetitions needed.
Monte Carlo standard errors are key to quantifying simulation uncertainty by providing a standard error of

the estimate according to the number of simulations. We used this in our study to assess for simulation uncer-

tainty.43 The design factors for the simulation design are explained in section 4.1, and the measures used to assess

the performance of the methods and simulation uncertainty are explained in section 4.3.

4.1 Design factors

The following design factors were varied in the simulation study as follows:

• Number of patients in a single study: In a pivotal study that assessed the influence of trial sample size on binary

treatment effect estimates within 93 MAs (involving 735 individual trials),44 the observed trial sample sizes

varied among the MAs (median 34–2371 patients) and within MAs (e.g. trial sample size ranged from 106 to

48,835 patients in one MAs). With this in mind, we include sample size settings of 1500 to 50,000 patients

among MAs. We choose to fix the number of patients in the simulations to allow for more consistency when

reporting the results and when comparing across heterogeneity and the event incidence level.
• Number of studies per MAs: Given that the distribution of the number of studies in Cochrane38 and non-

Cochrane39 studies vary from on average 5 and 23, respectively. We selected a maximum of 20 studies in all

scenarios to avoid excessive simulation time. We also chose 3, 5, 7 and 10 studies for scenarios that would

reflect that similar of Cochrane reviews involving few studies in MAs.
• Degree of heterogeneity: Between-study variance (s2) on its own is perhaps not an efficient way to quantify

heterogeneity, since the within variance estimate component (r2) cannot be ignored. In logistic regression

within Stata, the within-variance component is fixed to u2/3 or 3.289668, which is central to the data generation

mechanism with ‘ipdpower’.
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Given s2¼ (I2�u2/3)/(100� I2), then if

• I2¼0% (no heterogeneity), then s2¼0.822467
• I2¼20% (small heterogeneity), then s2¼0.822467
• I2¼50% (medium heterogeneity), then s2¼3.289868
• I2¼90% (high heterogeneity), then s2¼29.60881

Because other reviews10,18,22 have focused only on small values of heterogeneity, we therefore included sce-
narios of a higher degree of heterogeneity for complete coverage in meta-analyses, especially since heterogeneity
tends to be underestimated.12

• Probability of membership for the intervention and control (denoted as r): For the treatment and control arm
randomisation, we considered both 1:1 allocation (r¼ 0.5) and unbalanced allocations favouring intervention
by r¼ 0.1 (10%–90%). Although a review paper has shown that 78% of clinical trials were conducted with
equal patient allocation strategies,45 we include imbalanced allocation due to the unpredictable performances
associated with Peto OR.1

• Incidence of event: We considered three different frequencies of rare events, Rare (�0.01% to< 0.1%), Very
rare (<0.01%) and Common (�1% to< 10%) as defined by the World Health Organisations Council for
International Organizations of Medical Sciences,46 European Medicines Agency47 and the Food and Drug
Administration.48

• Treatment effect-size: In all simulation settings, we imagined the situation of MAs with the outcome being a
rare adverse (or sparse) event where the treatment is aiming for a further lowering of events as compared with
the control. As such, we consider the null hypothesis with an OR of 1 as the true treatment effect in the ‘no
effect’ situation. In the medium effect situation, we use an OR of ln (0.5)¼�0.69, which corresponds to the
median OR from Turner et al.38

4.2 Simulation scenarios

Details of the simulation scenarios are shown in Table 2. In total, there were 360 MAs scenarios, each involving
1000 iterations to reduce simulation error. Due to the high number of iterations, it was necessary to use sophis-
ticated in-house high-computational clustering to enable a wider range of scenarios.

4.3 Evaluating simulation performance

The following five measures were used to assess the performance of the nine methods on the simulated scenarios:

• Mean error is calculated as the aggregate of the ‘absolute difference’ in the estimate of treatment effect to the
true parameter (z) expressed as

1

1000

X1000
i¼1

jz� bzi j
• Mean bias is the aggregate of the difference in the estimate to the true parameter (z) and is expressed as

1

1000

X1000
i¼1

z� bzið Þ

• Coverage measures the percentage of the true treatment effects included in the available 95% confidence
intervals over all generated data. This should theoretically be close to 95%.

• Power indicates the percentage of iterations in which a model coefficient was found to be statistically significant
and in the hypothesized direction. Information is then aggregated across all simulated datasets to approximate
the overall power.

• Coverage and power is a combined average across both measures. Because they are interlinked, it is fundamen-
tal and important to assess them simultaneously in this study.
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5 Results

We present the results on the five performance measures separately, and in the final part, we provide a summary

for application of the methods for practitioners.

5.1 Mean bias

For MAs involving ‘rare events’ with imbalanced patient randomisation to each treatment group (r¼ 0.1), the

results show that when there is no heterogeneity, the pattern of mean bias is consistently low across all of the

methods (Figure 1). However, with heterogeneity increasing, the mean bias performance worsened. The MH-DL

and MH-bDL methods maintained the lowest levels of bias among greater levels of heterogeneity; this was true

across all sample size settings. In MAs with a balanced treatment allocation ratio (r¼ 0.5) (online Figure S1), the

mean bias was more modest across all values of heterogeneity, but the pattern was similar to MAs with imbal-

anced treatment ratio, with the exception of when heterogeneity was around 90%, where Peto-DL and Peto-bDL

resulted in the lowest bias estimate. In MAs involving ‘very rare’ events unsurprisingly, the mean bias was greater

across all methods and all values of heterogeneity (online Figures S2 and S3). However, in MAs displaying zero

heterogeneity, Peto, Peto-DL, Peto-bDL and MH methods maintained the lowest mean bias; and in MAs with

high levels of heterogeneity, only Peto-DL/bDL were able to maintain low desirable levels of bias. For

non-rare events, the mean bias was similar but was higher across the different values of heterogeneity (online

Figures S4 and S5).

5.2 Mean error

The performance based on mean error was almost identical across both treatment allocation settings, and the

mean error and heterogeneity estimates were positively associated as they increased. For MAs with balanced

treatment allocations and involving rare events (Figure 2), the Peto-DL and Peto-bDL methods maintained the

lowest mean error. This was more prevalent amongst MAs presenting with higher levels of heterogeneity. In

contrast, MAs involving imbalanced treatment allocations (online Figure S6) revealed that MH-DL and MH-

bDL were preferred. For very rare events, the mean error performance was similar in either treatment allocation

setting; but the error rate was greater across all sample size settings than observed within MAs of rare events

(online Figures S7 and S8). For none-rare events, the pattern remained consistent and the level of error was

smaller than that observed for rare and very rare event settings (online Figures S9 and S10).

Table 2. Parameter setup in different simulation scenarios.

Simulation

scenarios

Number of

patients

Number

of studies Between-study variance (s2)a

Incidence rate of rare

event (rare, very rare,

non-rare)a

Probability of

membership for

interventiona

1 1500 3 0/0.822467/3.289868/29.60881 1/1000; 1/10000; 1/10 0.5/0.1

2 2500 5 0/0.822467/3.289868/29.60881 1/1000; 1/10000; 1/10 0.5/0.1

3 3000 3 0/0.822467/3.289868/29.60881 1/1000; 1/10000; 1/10 0.5/0.1

4 3500 7 0/0.822467/3.289868/29.60881 1/1000; 1/10000; 1/10 0.5/0.1

5 5000 5 0/0.822467/3.289868/29.60881 1/1000; 1/10000; 1/10 0.5/0.1

6 5000 10 0/0.822467/3.289868/29.60881 1/1000; 1/10000; 1/10 0.5/0.1

7 7000 7 0/0.822467/3.289868/29.60881 1/1000; 1/10000; 1/10 0.5/0.1

8 7500 3 0/0.822467/3.289868/29.60881 1/1000; 1/10000; 1/10 0.5/0.1

9 10000 10 0/0.822467/3.289868/29.60881 1/1000; 1/10000; 1/10 0.5/0.1

10 10000 20 0/0.822467/3.289868/29.60881 1/1000; 1/10000; 1/10 0.5/0.1

11 12500 5 0/0.822467/3.289868/29.60881 1/1000; 1/10000; 1/10 0.5/0.1

12 17500 7 0/0.822467/3.289868/29.60881 1/1000; 1/10000; 1/10 0.5/0.1

13 20000 20 0/0.822467/3.289868/29.60881 1/1000; 1/10000; 1/10 0.5/0.1

14 25000 10 0/0.822467/3.289868/29.60881 1/1000; 1/10000; 1/10 0.5/0.1

15 50000 20 0/0.822467/3.289868/29.60881 1/1000; 1/10000; 1/10 0.5/0.1

aEach of the parameters for heterogeneity, incidence and membership probability were simulated across all 15 scenarios.
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5.3 Coverage

In the absence of heterogeneity, the performance of the methods based on coverage in MAs with rare events was

consistently higher than the 95% level in all four methods (MH-DL, MH-bDL, Peto-DL and Peto-bDL).

Performance was considerably better in MAs with balanced treatment allocation (Figure 3). Unsurprisingly,

for high levels of heterogeneity, only the DL random-effects methods were able to maintain a coverage above

50%, this was true in both treatment allocation settings (see online Figure S11 for imbalanced setting). For MAs

involving very rare events with balanced treatment allocation, the results were similar to that of MAs with rare

events (online Figure S12). However, in MAs involving an imbalanced treatment allocation, the coverage varied

somewhat across the different sample size settings and for different values of heterogeneity (online Figure S13).

The best coverage across all sample size settings and heterogeneity scenarios were maintained by the Peto-DL and

Peto-bDL. Coverage performance in non-rare events is shown in online Figures S14 and S15.

5.4 Power

The performances based on power in MAs involving rare events show that all methods are able to maintain 80%

power or above when minimal heterogeneity is present. This was particularly true in MAs with balanced

Figure 1. Mean bias of rare event scenarios with imbalanced treatment allocation (r¼ 0.1). The percentage values on the y-axis
represent the heterogeneity group, i.e. 0%, 20%, 50% and 90%. The value within these groups on the y-axis represents the number of
patients/studies in each meta-analysis scenario. All other scenarios are provided in the online Appendix. IV: inverse variance; FE: fixed
effect;RE: random effect; DL: DerSimonian and Laird; MH: Mantel–Haenszel; bDL: bootstrapped DL.
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treatment allocations (Figure 4). However, the performance was less consistent in MAs with lower sample sizes

and imbalanced treatment allocation (online Figure S16). For example, when heterogeneity was above 20%, this

resulted in a power below 30% across all methods. In the smaller sample size settings, the standard MH and Peto

methods performed well. In MAs involving very rare events, the power was far less robust and was seen as

insufficient. For example, in MAs involving imbalanced treatment allocations, the power to detect a true event

failed to exceed 20% in most settings (Figure 5). In contrast, the performance in MAs involving balanced treat-

ment allocations was moderately better when heterogeneity was below 20% (online Figure S17). The results for

non-rare events are shown in online Figures S18 and S19.

5.5 Convergence

All 360 simulated MAs scenarios successfully converged across all methods (online Figures S20 to S25), and

therefore, non-convergence was not an issue for this simulation study. Results for the 360 scenarios are provided

in the online Appendix.

5.6 Making informed decisions about which methods to use in certain scenarios

In this section, we evaluate the methods used in this simulation study and discuss which are best suited for specific

MAs settings. The preferred choice of the methods should always be based on the performances due to coverage

Figure 2. Mean error for rare event scenarios with balanced treatment allocation (r¼ 0.5). IV: inverse variance; FE: fixed effect; RE:
random effect; DL: DerSimonian and Laird; MH: Mantel–Haenszel; bDL: bootstrapped DL.
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and power combined. As the primary concern in MAs of safety should be to discern whether there is any signal of
harm in the data, coverage and power are therefore of most importance. The results of coverage and power
combined for rare, very rare and non-rare event settings are shown in online Figures S26 to S31.

The most optimal performing methods based on incidence and heterogeneity in MAs involving balance treat-
ment allocations are presented in Table 3. For rare events, the Peto-bDL or Peto-DL methods performed best in
MAs with lower sample size (�3500 patients) settings and when small-to-moderate heterogeneity (0%–50%) were
present. When higher values of heterogeneity were present, the MH-bDL method was preferred over Peto. This
was especially true when the sample size was above 3500 patients. In MAs involving very rare events, the pattern
was similar to that of rare events. However, Peto-bDL was the preferred method in higher sample size settings.
For non-rare events, there was no obvious preferred method in the absence of heterogeneity. Otherwise, when
heterogeneity was present, MH-DL or MH-bDL was preferred.

In MAs involving imbalanced treatment allocations (online Table S2), the trend of the performance was
remarkably similar. However, the Peto methods performed well in rare event MAs with sample size settings of
up to 5000 patients. In larger sample size settings above 5000 patients with higher levels of heterogeneity, MH-
bDL was preferred. For very rare event MAs, Peto-bDL was clearly the most optimal method across all of the
design features; and for non-rare event MAs, the Peto-bDL was preferred among smaller sample size settings
(<3500 patients) and MH-bDL for larger samples (�3500 patients). One notable and important observation was

Figure 3. Coverage of rare event scenarios in meta-analysis with balanced treatment allocation (r¼ 0.5). IV: inverse variance; FE:
fixed effect;RE: random effect; DL: DerSimonian and Laird; MH: Mantel–Haenszel; bDL: bootstrapped DL.
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that none of the methods were able to achieve above 50% coverage and power whilst heterogeneity levels exceeded

50% in rare event MAs, and 20% in very rare event MAs.

6 Discussion

Our results show that some methods used for MAs of rare events can perform better than others under certain

samples size settings, incidence and levels of heterogeneity. In MAs involving rare events with no heterogeneity,

coverage and power revealed very small performance-based differences between the methods. In very rare event

MAs displaying no heterogeneity, the Peto-bDL method performed best across all sample sizes. However, when

heterogeneity was above 20%, convergence and power failed to exceed 50% performance – which only worsened

as heterogeneity increased. There was a similar trend in MAs involving rare events, where the Peto-bDL was the

preferred method, but this was only true in MAs with smaller sample sizes. In MAs involving medium-to-large

sample sizes, MH-bDL generally outperformed the other methods.
The error associated with the methods measured by mean bias and mean error was almost identical across all

methods in MAs of rare incidence. However, as the mean bias and mean error increased, this trend was closely

associated with increased levels of heterogeneity. In general, the MH-bDL method was able to achieve the lowest

bias and error in MAs of rare events. However, in MAs involving very rare events, the Peto-DL and Peto-bDL

Figure 4. Power of rare event scenarios in meta-analysis with balanced treatment allocation (r¼ 0.5). IV: inverse variance; FE: fixed
effect;RE: random effect; DL: DerSimonian and Laird; MH: Mantel–Haenszel; bDL: bootstrapped DL.
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methods maintained better performances. A cautious approach is needed when MAs differ between balanced and

imbalanced treatment allocations, where we have shown that using MH-DL and MH-bDL rather than Peto

method is preferred in MAs with imbalanced treatment allocations.

6.1 Strengths and limitations

We have performed the largest simulation study on rare event meta-analyses to date including 360 realistic data

sets with varied incidence rates, sample size settings, allocation of patients by treatment group and heterogeneity.

We also include four newly proposed methods (MH-DL, MH-bDL, Peto-DL and Peto-bDL) which have not been

used before in rare event MAs and are not specific to the Cochrane guidelines.
Despite these strengths, there remain several limitations. First, whilst our simulation study was restricted to the

use of mostly the mainstream Cochrane recommended methods that are easily accessible and regularly used

amongst the systematic review community. We are aware that improved performances have been shown in

some of the more advanced statistical methods based on exact distributional assumptions.18,21,30–32 Such methods

are designed on the principles of the inclusion of single zero or double zero events.15,20 But, there are several

drawbacks to using these methods such as (i) they are not available in RevMan and therefore are not being used

widespread among the Cochrane community, (ii) they are not included in any of the main guidelines for

Figure 5. Power of very rare event scenarios with imbalanced treatment allocation (r¼ 0.1). IV: inverse variance; FE: fixed effect; RE:
random effect; DL: DerSimonian and Laird; MH: Mantel–Haenszel; bDL: bootstrapped DL.
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performing MAs,8,49 (iii) they rely upon authors reporting zero case events in their primary report, potentially

precluding their inclusion in MAs in the first place and (iv) they require an understanding of statistical modelling

based on distributions or Bayesian inference,18 which is another reason for their poor uptake, as the practitioner

may not be statistically astute to such methods without adequate training.7 We also did not include some of the

more recent methods that have only just be added to the Stata package ‘metan’,50 which include likelihood-based

methods such as profile likelihood and the Bartlett and Skivgaard corrections to the likelihood. Both have been

used in an earlier study,51 but showed little improvement in MAs involving common events.
Second, we only include methods which include the OR and did not consider other measures like relative risk

or risk differences. Whilst OR is considered to have the best statistical properties in the case of the Peto OR, it

is often misinterpreted as a relative risk, and authors might opt for the use of other effect measures that are easier

to interpret.18

Finally, measurement errors can often complicate interpretation of the results by potentially concealing impor-

tant differences between groups or by indicating differences, which, in reality, do not exist. The total measurement

error is generally partitioned into two separate classes of error: systematic and random.52 Systematic errors (also

known as ‘bias’) are reproducible inaccuracies that lead to a measured value that is consistently larger or smaller

than the true value. Random errors lead to variable differences from the true value and give rise, unpredictably, to

measurements that are greater or smaller than the true value. Random errors can be reduced by averaging over a

number of observations and observing the Monte Carlo standard error. However, if the number of simulations

is not large enough, it is likely that differences in point estimates (such as coverage and power) are due to

Table 3. Lookup table for optimal method(s) based on coverage and power for MAs involving balanced allocation ratio (r¼ 0.5).

s2

0% 20% 50% 90%

Sample size setting

(patients/studies)

1500/3 VR¼Peto VR¼Peto-bDL VR¼Peto-bDL VR¼Peto-bDL

R¼Peto R¼Peto-bDL R¼Peto-bDL R¼MH-bDL

NR¼Not obvious NR¼Peto-DL NR¼Peto-bDL NR¼MH-bDL

2500/5 VR¼Peto VR¼Peto-bDL VR¼Peto-bDL VR¼MH-bDL

R¼Peto R¼Peto-DL R¼Peto-bDL R¼MH-bDL

NR¼Not obvious NR¼MH-DL NR¼MH-DL NR¼MH-bDL

3000/3 VR¼Peto VR¼Peto-bDL VR¼Peto-bDL VR¼MH-bDL

R¼Peto R¼Peto-DL R¼Peto-bDL R¼MH-bDL

NR¼Not obvious NR¼Peto-DL NR¼Peto-bDL NR¼MH-bDL

3500/7 VR¼MH VR¼Peto-bDL VR¼Peto-bDL VR¼MH-bDL

R¼MH-bDL R¼Peto-bDL R¼Peto-bDL R¼MH-bDL

NR¼Not obvious NR¼MH-DL NR¼MH-DL NR¼MH-bDL

5000/5 VR¼Peto/MH VR¼Peto-DL VR¼Peto-bDL VR¼MH-bDL

R¼MH-bDL R¼MH-DL R¼MH-bDL R¼MH-bDL

NR¼Not obvious NR¼MH-DL NR¼MH-DL NR¼Peto-bDL

5000/10 VR¼MH VR¼Peto-bDL VR¼Peto-bDL VR¼MH-bDL

R¼MH-bDL R¼MH-DL R¼MH-bDL R¼MH-bDL

NR¼Not obvious NR¼MH-DL NR¼MH-DL NR¼Peto-bDL

7000/7 VR¼MH VR¼Peto-bDL VR¼Peto-bDL VR¼MH-bDL

R¼MH-bDL R¼MH-DL R¼MH-DL R¼MH-bDL

NR¼Not obvious NR¼MH-DL NR¼MH-DL NR¼Peto-bDL

10000/10 VR¼MH VR¼Peto-DL VR¼Peto-bDL VR¼MH-bDL

R¼MH-bDL R¼MH-DL R¼MH-DL R¼MH-bDL

NR¼Not obvious NR¼MH-DL NR¼MH-DL NR¼MH-bDL

10000/20 VR¼MH VR¼Peto-bDL VR¼Peto-bDL VR¼Peto-bDL

R¼Peto-bDL R¼MH-DL R¼MH-bDL R¼MH-bDL

NR¼Not obvious NR¼MH-DL NR¼MH-bDL NR¼MH-bDL

20000/20 VR¼MH VR¼Peto-bDL VR¼Peto-bDL VR¼MH-bDL

R¼MH-bDL R¼MH-bDL R¼MH-bDL R¼MH-bDL

NR¼Not obvious NR¼MH-DL NR¼MH-DL NR¼MH-bDL

VR: very rare; R: rare; NR: non-rare.
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random/simulation error.37 Nevertheless, we are confidence whilst averaging the performance measures over 1000

iterations that this is large enough to avoid the potential caveat of random error.

6.2 Implications for future practice

Not surprisingly, the random-effects model DL was the preferred method from our simulation analysis, as they

are more general models as compared with their fixed-effect counterparts. As such, our work is a convenient and

important extension of some of the most recent simulation studies for MAs with rare events.1,10,14 These earlier

efforts mainly concentrated on the standard fixed-effect methods and were unable to include the more recent MH

and Peto DL weighted schemes; and in particular, the non-parametric bootstrap extensions of DL which are not

recommended in the guidelines. The bootstrapped DL had been seen to perform well overall despite its larger

heterogeneity bias for small MAs12,17; however, its performance based on rare events remained relatively

unknown until know. Here, we show that the bootstrap DL extensions for both Peto and MH generally outper-

form the other methods. This was particularly true based on the performances for coverage and power. Therefore,

we stress the importance for further research to assess the wider use of these methods for when synthesising rare

event data and recommend that any future updates of the guidelines should reflect these findings to encourage

their uptake.
Over the last decade, there has been overwhelming support of methods which aim to include double zero

studies without continuity correction by applying exact distributional assumptions instead of approximate like-

lihood. It has been shown that these methods can lead to reduced bias when such data are reported in the primary

report. The most recent update of the Cochrane guidelines in 201953 now give some credence to the existence of

these methods. Whilst the methods do clearly hold some promise, they are still not being used widespread in the

research community; as one study had recently shown.7 There are several reasons for this, firstly, they are still in

their infancy stage of development, and therefore are not readily available in mainstream statistical software used

for performing MAs. Secondly, is of course the fact that researchers are likely to take a rather dogmatic approach

when zero events are present and simply apply a risk difference in a sensitivity analysis or apply some sort of

continuity correction, or beyond they may just delete double zero studies from their data precluding their inclu-

sion in a MAs. One thing that remains unclear is that when working with published results, whether the failure to

mention a particular adverse event means there were no such events, or simply that such events were not included

as a measured endpoint.54 Meta-analysts need not only clear and more precise guidance, but there should also be a

policy requirement for reporting studies with no events by considering ‘joint reporting’ of clinical endpoints and

safety events in clinical trials.55,56

A major fragility when performing MAs of rare events is that most of the included trials are not adequately

powered to detect an effect on the event of interest such is the case for adverse events.37,57 This issue mostly arises

because adverse events are often defined as secondary outcomes of interest in the study. Applied analysts need to

think more critically about whether random-effects meta-analyses, when applied to highly heterogeneous datasets

with very few studies or events, are likely to provide more power than individual studies. Power calculations are

an important component of research grant proposals, but are rarely used in practice.58–60 There are several

software options available for performing simple and quick power calculations. For example, in Stata, there is

the ‘power’ command which enables robust calculations including power estimation for cluster randomised con-

trolled trials.61 There is also a similar command in R (‘clusterPower’) which allows for exactly the same calcu-

lation.62 Recent supporting evidence for power calculations suggests that at least five or more studies are needed

to reasonably consistently achieve powers from random-effects MAs.57 But, because this was based on MAs of

common events, the statistical inferences in our study which are drawn from MAs with very few studies and/or

events means that MAs are likely to be considered even less worthwhile. Further research is desperately needed

into power assumptions when the data are sparse.

6.3 Conclusions

To conclude in MAs of rare binary outcomes, we have shown that the Peto-bDL or Peto-DL was most effective in

both rare and very rare event settings, with the exception of MAs involving medium-to-large sample sizes where

MH-bDL is preferred. In cases where heterogeneity is large, performance estimation based on coverage and power

was mostly insufficient. Here, we advise analysts to think more critically about their MAs approach, when applied

to highly heterogeneous datasets with very few events, and we strongly encourage the use of power calculations

before considering a MAs. Whilst this simulation study has clearly shown that some of the methods that are used
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less often in MAs do appear to have good properties under sparse data scenarios, we urge the need for further

work to assess the methods alongside more complex distributional-based methods in future simulation or empir-

ical studies.

Author contributions

AH and EK designed the study. AH and EK wrote the simulation programme, conducted the statistical analysis and drafted

the manuscript. EK provided further input and support for the ‘ipdpower’ simulation command in Stata. Both AH and EK

approved the statistical content and final manuscript.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this

article.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article: This work was

supported by a Presidential Fellow grant at the University of Manchester held by AH and the National Institute of Health

Research School for Primary Care Research and Evidence Synthesis Working Group of which both authors are members of.

ORCID iDs

Alexander Hodkinson https://orcid.org/0000-0003-2063-0977
Evangelos Kontopantelis https://orcid.org/0000-0001-6450-5815

Supplemental material

Supplementary material for this article is available online.

References

1. Bradburn MJ, Deeks JJ, Berlin JA, et al. Much ado about nothing: a comparison of the performance of meta-analytical

methods with rare events. Stat Med 2007; 26: 53–77.
2. Sutton AJ, Cooper NJ, Lambert PC, et al. Meta-analysis of rare and adverse event data. Expert Rev Pharmacoecon

Outcomes Res 2002; 2: 367–379.
3. Cheng LL, Ju K, Cai RL, et al. The use of one-stage meta-analytic method based on individual participant data for binary

adverse events under the rule of three: a simulation study. PeerJ 2019; 7: e6295.
4. Mantel N and Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer

Inst 1959; 22: 719–748.
5. Yusuf S, Peto R, Lewis J, et al. Beta blockade during and after myocardial infarction: an overview of the randomized

trials. Prog Cardiovasc Dis 1985; 27: 335–371.
6. DerSimonian R and Laird N. Meta-analysis in clinical trials. Controll Clin Trials 1986; 7: 177–188.
7. Warren FC, Abrams KR, Golder S, et al. Systematic review of methods used in meta-analyses where a primary outcome is

an adverse or unintended event. BMC Med Res Methodol 2012; 12: 64.
8. Cochrane Handbook 5.1. Chapter 16, section 16.9.5 Validity of methods of meta-analysis for rare events, https://hand

book-5-1.cochrane.org/chapter_16/16_9_5_validity_of_methods_of_meta_analysis_for_rare_events.htm (accessed 16

January 2020).
9. Veroniki AA, Jackson D, Viechtbauer W, et al. Methods to estimate the between-study variance and its uncertainty in

meta-analysis. Res Synth Methods 2016; 7: 55–79.
10. Bhaumik DK, Amatya A, Normand SL, et al. Meta-analysis of rare binary adverse event data. J Am Stat Assoc 2012; 107:

555–567.
11. Chung Y, Rabe-Hesketh S and Choi I-H. Avoiding zero between-study variance estimates in random-effects meta-anal-

ysis. Stat Med 2013; 32: 4071–4089.
12. Kontopantelis E, Springate DA and Reeves D. A re-analysis of the cochrane library data: the dangers of unobserved

heterogeneity in meta-analyses. PLoS One 2013; 8: e69930.
13. Sidik K and Jonkman JN. A comparison of heterogeneity variance estimators in combining results of studies. Stat Med

2007; 26: 1964–1981.
14. Sweeting MJ, Sutton AJ and Lambert PC. What to add to nothing? Use and avoidance of continuity corrections in meta-

analysis of sparse data. Stat Med 2004; 23: 1351–1375.
15. Efthimiou O. Practical guide to the meta-analysis of rare events. Evid-Based Mental Health 2018; 21: 72–76.
16. Follmann DA and Proschan MA. Valid inference in random effects meta-analysis. Biometrics 1999; 55: 732–737.

1606 Statistical Methods in Medical Research 30(7)

https://orcid.org/0000-0003-2063-0977
https://orcid.org/0000-0003-2063-0977
https://orcid.org/0000-0001-6450-5815
https://orcid.org/0000-0001-6450-5815
https://handbook-5-1.cochrane.org/chapter_16/16_9_5_validity_of_methods_of_meta_analysis_for_rare_events.htm
https://handbook-5-1.cochrane.org/chapter_16/16_9_5_validity_of_methods_of_meta_analysis_for_rare_events.htm


17. Petropoulou M and Mavridis D. A comparison of 20 heterogeneity variance estimators in statistical synthesis of results

from studies: a simulation study. Stat Med 2017; 36: 4266–4280.
18. Kuss O. Statistical methods for meta-analyses including information from studies without any events—add nothing to

nothing and succeed nevertheless. Stat Med 2015; 34: 1097–1116.
19. Li L and Wang X. Meta-analysis of rare binary events in treatment groups with unequal variability. Stat Methods Med Res

2019; 28: 263–274.
20. Cheng J, Pullenayegum E, Marshall JK, et al. Impact of including or excluding both-armed zero-event studies on using

standard meta-analysis methods for rare event outcome: a simulation study. BMJ Open 2016; 6: e010983.
21. Günhan BK, R€over C and Friede T. Random-effects meta-analysis of few studies involving rare events. Res Synth Methods

2020; 11: 74–90.
22. Spittal MJ, Pirkis J and Gurrin LC. Meta-analysis of incidence rate data in the presence of zero events. BMC Med Res

Methodol 2015; 15:42.
23. Sharma T, Gotzsche PC and Kuss O. The Yusuf-Peto method was not a robust method for meta-analyses of rare events

data from antidepressant trials. J Clin Epidemiol 2017; 91:129–136.
24. Lane PW. Meta-analysis of incidence of rare events. Stat Methods Med Res 2013; 22: 117–132.
25. Wallace BC, Schmid CH, Lau J, et al. Meta-analyst: software for meta-analysis of binary, continuous and diagnostic data.

BMC Med Res Methodol 2009; 9: 80.
26. Martorell-Marugan J, Toro-Dominguez D, Alarcon-Riquelme ME, et al. MetaGenyo: a web tool for meta-analysis of

genetic association studies. BMC Bioinform 2017; 18: 563.
27. TTN Top TIP BIO. 13 best free meta-analysis software to use, https://toptipbio.com/free-meta-analysis-software/

(accessed 15 January 2020).
28. Deeks JJ and Altman DG. Effect measures for meta–analysis of trials with binary outcomes. In: Systematic reviews in

health care. London: BMJ Books, 2001, pp. 313–335.
29. Davies HT, Crombie IK and Tavakoli M. When can odds ratios mislead? BMJ (Clin Res ed.) 1998; 316: 989–991.
30. Jackson D, Law M, Stijnen T, et al. A comparison of seven random-effects models for meta-analyses that estimate the

summary odds ratio. Stat Med 2018; 37: 1059–1085.
31. Bohning D, Mylona K and Kimber A. Meta-analysis of clinical trials with rare events. Biometric J Biometrische Zeitschrift

2015; 57: 633–648.
32. Cai T, Parast L and Ryan L. Meta-analysis for rare events. Stat Med 2010; 29: 2078–2089.
33. Tian L, Cai T, Pfeffer MA, et al. Exact and efficient inference procedure for meta-analysis and its application to the

analysis of independent 2 x 2 tables with all available data but without artificial continuity correction. Biostatistics

(Oxford, England) 2009; 10: 275–281.
34. Firth D. Bias reduction of maximum likelihood estimates. Biometrika 1993; 80: 27–38.
35. Heinze G. A comparative investigation of methods for logistic regression with separated or nearly separated data. Stat

Med 2006; 25: 4216–4226.
36. Rucker G, Schwarzer G, Carpenter J, et al. Why add anything to nothing? The arcsine difference as a measure of treatment

effect in meta-analysis with zero cells. Stat Med 2009; 28: 721–738.
37. Kontopantelis E, Springate DA, Parisi R, et al. Simulation-based power calculations for mixed effects modeling: ipdpower

in Stata. J Stat Softw 2016; 74: 1–25.
38. Turner RM, Davey J, Clarke MJ, et al. Predicting the extent of heterogeneity in meta-analysis, using empirical data from

the Cochrane database of systematic reviews. Int J Epidemiol 2012; 41: 818–827.
39. Moher D, Tetzlaff J, Tricco AC, et al. Epidemiology and reporting characteristics of systematic reviews. PLoSMed 2007; 4: e78.
40. Nissen SE and Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular

causes. New Engl J Med 2007; 356: 2457–2471.
41. Davey J, Turner RM, Clarke MJ, et al. Characteristics of meta-analyses and their component studies in the Cochrane

database of systematic reviews: a cross-sectional, descriptive analysis. BMC Med Res Methodol 2011; 11: 160.
42. Ripley BD. Stochastic simulation. Hoboken, NJ: John Wiley & Sons, 1987.
43. Morris TP, White IR and Crowther MJ. Using simulation studies to evaluate statistical methods. Stat Med 2019; 38:

2074–2102.
44. Dechartres A, Trinquart L, Boutron I, et al. Influence of trial sample size on treatment effect estimates: meta-

epidemiological study. Br Med J 2013; 346: f2304.
45. Dumville JC, Hahn S, Miles JN, et al. The use of unequal randomisation ratios in clinical trials: a review. Contempor Clin

Trials 2006; 27: 1–12.
46. Reporting Adverse Drug Reactions. Definitions of terms and criteria for their use. Geneva: Council for International

Organizations of Medical Sciences, https://cioms.ch/wp-content/uploads/2017/01/reporting_adverse_drug.pdf (accessed

17 January 2020).
47. European Commission, Enterprise and Industry Directorate-General (Consumer Goods – Pharmaceuticals). A guideline

on summary of product characteristics (SmPC), September 2009, https://ec.europa.eu/health//sites/health/files/files/eudra

lex/vol-2/c/smpc_guideline_rev2_en.pdf (accessed 17 January 2020).

Hodkinson and Kontopantelis 1607

https://toptipbio.com/free-meta-analysis-software/
https://cioms.ch/wp-content/uploads/2017/01/reporting_adverse_drug.pdf
https://ec.europa.eu/health//sites/health/files/files/eudralex/vol-2/c/smpc_guideline_rev2_en.pdf
https://ec.europa.eu/health//sites/health/files/files/eudralex/vol-2/c/smpc_guideline_rev2_en.pdf


48. U.S. Department of Health and Human Services. Food and Drug Administration. Center for Drug Evaluation and
Research (CDER), Center for Biologics Evaluation and Research (CBER). Guidance for industry. Good pharmacovigi-
lance practices and pharmacoepidemiologic assessment. March 2005, Clinical Medical, www.fda.gov/media/71546/down
load (accessed 17 January 2020).

49. Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of
studies that evaluate health care interventions: explanation and elaboration. PLoS Med 2009; 6: e1000100.

50. Fisher D, Harris R, Bradburn M, et al. METAN: Stata module for fixed and random effects meta-analysis. Boston:
Statistical Software Components S456798, Boston College Department of Economics, 2006.

51. Veroniki, AA, Jackson, D, Bender, R, et al. Methods to calculate uncertainty in the estimated overall effect size from a
random-effects meta-analysis. Res Synth Meth 2019; 10: 23–43.

52. Springate SD. The effect of sample size and bias on the reliability of estimates of error: a comparative study of Dahlberg’s
formula. Eur J Orthodont 2011; 34: 158–163.

53. Higgins JPT, Thomas J, Chandler J, et al. (eds). Cochrane handbook for systematic reviews of interventions version 6.0.
London: Cochrane, 2019. www.training.cochrane.org/handbook (updated July 2019).

54. Phillips R, Hazell L, Sauzet O, et al. Analysis and reporting of adverse events in randomised controlled trials: a review.
BMJ Open 2019; 9: e024537.

55. Guimar~aes PO, Lopes RD, Stevens SR, et al. Reporting clinical end points and safety events in an acute coronary
syndrome trial: results with integrated collection. J Am Heart Assoc 2017; 6: e005490.

56. Aizpuru F. Adverse events as end points: the need to account for both sides of the same coin. J Am Heart Assoc 2017; 6:

e006018.
57. Jackson D and Turner R. Power analysis for random-effects meta-analysis. Res Synth Methods 2017; 8: 290–302.
58. Guyatt GH, Oxman AD, Kunz R, et al. GRADE guidelines 6. Rating the quality of evidence–imprecision. J Clin

Epidemiol 2011; 64: 1283–1293.
59. Thorlund K and Mills EJ. Sample size and power considerations in network meta-analysis. Systemat Rev 2012; 1: 41.
60. Pereira TV and Ioannidis JPA. Statistically significant meta-analyses of clinical trials have modest credibility and inflated

effects. J Clin Epidemiol 2011; 64: 1060–1069.
61. Power analysis for cluster randomized designs. Stata software, www.stata.com/features/overview/power-analysis-for-clus

ter-randomized-designs/ (accessed 3 April 2020).
62. Power Calculations for Cluster-Randomized and Cluster-Randomised Crossover Trials. An R-package ‘clusterPower’.

Released 5 September 2017, https://cran.r-project.org/web/packages/clusterPower/clusterPower.pdf (accessed 3 April
2020).

1608 Statistical Methods in Medical Research 30(7)

http://www.fda.gov/media/71546/download
http://www.fda.gov/media/71546/download
http://www.training.cochrane.org/handbook
http://www.stata.com/features/overview/power-analysis-for-cluster-randomized-designs/
http://www.stata.com/features/overview/power-analysis-for-cluster-randomized-designs/
https://cran.r-project.org/web/packages/clusterPower/clusterPower.pdf

	table-fn1-09622802211022385
	table-fn2-09622802211022385
	table-fn3-09622802211022385

