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Acoustic telemetry was used to track salmon smolts during river migration and into the open marine coastal zone. We compared migration
direction and speed with particle tracking simulations to test the hypothesis that marine migration pathways are defined by active swimming
current following behaviour. Habitat-specific survival rates, movement speeds, depths and directions in riverine, estuarine, and coastal habitats
were also quantified. Salmon post-smolts did not disperse at random as they entered the unrestricted, coastal zone of the North sea; rather
they chose a common migration pathway. This was not the most direct route to marine feeding grounds (ca. 44� N); north in the direction of
the prevailing currents. Particle modelling showed that the actual post-smolt migration route was best predicted by active swimming at 1.2
body length.sec.�1 at a bearing of 70� from north but not by current following behaviour. Fish migrating in larger groups and earlier in the mi-
gration period had increased migration success. We conclude that: post-smolts have preferred migration routes that are not predicted by the
shortest direction to their ultimate destination; they do not simply use the current advantage to migrate; and that they actively swim, occa-
sionally directly against the current prevailing at the time.
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Introduction
Long-distance migration is a highly risky strategy. The energetic

costs directly incurred during the process of moving long distan-

ces are substantial (Dingle, 2014); the risks arising from naviga-

tion during migration and the uncertainty of finding suitable

habitat of good quality and exploiting this resource following a

successful migration are great (Rankin and Burchsted, 1992;

Cresswell et al., 2011; Dingle, 2014) and the ecological adaptation

required to be successful in the new environments are consider-

able (Alerstam et al., 2003).

The Atlantic salmon (Salmo salar L.) migrates from spawning

and nursery grounds in freshwater rivers to feeding areas at sea,

which include areas near the Faroe Islands and Greenland. The

species is of considerable conservation value and supports impor-

tant fisheries, mainly nowadays sport-fishing by rod and line.

Currently, the numbers of adult salmon returning to freshwater
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are declining, mainly as a result of reduced survival at sea (ICES,

2019). The migrating juvenile salmon face a broad range of chal-

lenges. If they are to be successful, they need to adapt to previ-

ously unknown habitats, very different ionic and osmotic

conditions, unknown prey, novel predators and they need to do

this whilst navigating through a set of unfamiliar environments

to marine feeding sites that they have never visited before (Hoar,

1988; Rikardsen and Dempson, 2011). There are therefore good

grounds for assuming that the earliest stages of seaward migration

are likely to be a critical period in the life cycle of Atlantic salmon

(Thorstad et al., 2012).

Migration of salmon during the riverine phase of seaward mi-

gration has been well studied. However, there is relatively little

accumulated empirical knowledge on the early marine stage of

the life cycle of salmon. This is the result of the practical difficul-

ties of studying salmon during transit from riverine to marine

habitats. What evidence does exist indicates that mortality in the

early marine stages of migration can be high. In their review of

the existing studies, Thorstad et al. (2012) showed that the data

suggest generally high, but also highly variable, mortality amongst

smolts entering the near-shore marine environment. Mortality of

up to 36% km�1 of migration has been reported in some estuar-

ies, and averages �6% km�1 in the early marine phase of migra-

tion (Thorstad et al., 2012).

A second element of the migration into marine habitats by

salmon that is poorly understood is the coastal migration path-

ways and the navigation cues used by smolts. The navigational

requirements of the riverine migration component of seaward

migration are relatively simple. The river channel constrains the

need for complex navigation and studies have shown that smolts

during seaward migration move with, and at a similar velocity to,

the prevailing river current [see review in Thorstad et al. (2012)].

The potentially available directional navigation cues are consider-

ably more diverse when smolts reach areas of standing waters

(Honkanen et al., 2018) once smolts reach the more complex

coastal environments. The only data available for migration path-

ways around the UK come from limited information on smolt

distribution at sea. Smolts were captured in the SALSEA-Merge

study in surface trawls in the North Atlantic Ocean at relatively

high concentrations in the Slope Current, which flows northeast

along the continental shelf edge to the west and north of Scotland

and Ireland (NASCO, 2011). These data indicate that many

smolts migrated by this route to a staging area in the Norwegian

Sea prior to moving on to other parts of the North Atlantic in-

cluding feeding areas near the Faroes and Greenland before even-

tually returning to home waters. However, these data only

provide a coarse resolution picture of migration routes and little

information on the cues to navigate these routes, although the

results were found to be consistent with active swimming that is

aligned with the surface current. What evidence there is thus sug-

gests that salmon post-smolts are showing swimming-augmented,

current following in the first few months of sea migration in the

North-East Atlantic (Mork et al., 2012; Ohashi and Sheng, 2018;

Chaput et al., 2019). Similar studies have not been conducted in

the North Sea and therefore no information is available on

whether salmon smolts in this area are responding similarly to

cues. Additionally, it is not known if smolts emanating from riv-

ers draining into the North Sea join the migration pathways of

those from the western coasts of the British Isles or whether they

take a more direct route to the same staging area in the

Norwegian Sea. More recently chinook salmon (Oncorhynchus

tshawytscha) have been shown to use inherited “magnetic maps”

to aid their navigational abilities (Putman et al., 2014). Similarly,

Minkoff et al. (2020) have shown that Atlantic salmon appear to

be able to use magnetic maps to aid in their navigation. Some

authors also suggest salmon actively migrate using celestial cues

(Hasler, 1966; Quinn et al., 1989). Thus Thorstad et al. (2012)

conclude that there are likely to be complex combinations of cues

and senses that are utilized by migrating fish to determine their

direction of travel in coastal zones and the open sea.

The use of electronic acoustic transmitters is a proven and ef-

fective technology for detecting movement and migration of

aquatic species in coastal, estuarine, and freshwater ecosystems

(Cooke et al., 2004, 2013). The development of telemetry and the

insights that it brings have been reviewed extensively (Lucas and

Baras, 2000; Hodder et al., 2007; Halttunen et al., 2009; Cooke

and Thorstad, 2011; Hussey et al., 2015). Briefly, acoustic teleme-

try requires a transmitter, attached to an individual animal, which

transmits a coded sonic signal to a receiver comprising of a hy-

drophone and a data logger. Acoustic tags are uniquely coded,

but are also able to determine and send information to the re-

ceiver on the environmental parameters (e.g. depth and tempera-

ture) being experienced by the fish at the precise moment of

transmission. Telemetry information can therefore be used to de-

termine the position of the tagged individual at a specific time

and provide environmental and physiological data on that fish

(Thorstad et al., 2013). By deploying receivers at various positions

in the study system, it is possible to monitor the behaviour and

survival of migrating tagged fish.

The general aim of the study presented here was to gather new

information on the migration of salmon smolts as they transit

from a river that drains into the North Sea on the east coast of

Scotland (the River Conon), through a marine estuary (the

Cromarty Firth), to a relatively open coastal zone (the Moray

Firth) in an area where there is very little information on migra-

tion passage routes in general. More specifically this study tested

the premise that salmon post-smolts migrating into the North

Sea are showing “augmented current following” (cf. Mork et al.,

2012). Thus, that their direction of travel is predicted by water

current direction but that the speed of travel would be greater

than the current speed. In addition, a number of subsidiary aims

were addressed. These were to estimate the rate of mortality and

the speed and timing of movement of salmon smolts during

lower river, estuary, and early marine migration phases of migra-

tion to the open sea.

Methods
Study area
The Moray Firth 57.9783�N 002.9650� W forms the largest single

marine embayment of the North Sea on the east coast of Scotland

(Figure 1). It is meso-tidal, with a relatively uniform tidal range

of <3.5 m around its coastline (see Hansom and Black, 1996).

The Cromarty Firth, 57. 6817�N 004.2117�W, is the major es-

tuary discharging into the west of the inner Moray Firth

(Stapleton and Pethick, 1996). The Cromarty Firth is the freshwa-

ter to marine estuarine transition zone for the River Conon catch-

ment, which discharges at the head of the relatively narrow firth.

The ca. 18 km long Cromarty Firth widens from west to east

through two relatively broad tidal bays, Udale and Nigg bay, but

then narrows (to 1.25 km) between the North and South Sutors

before discharging into the inner Moray Firth. There is a single,
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relatively deep (ca. 15–20 m), glaciated trench of about 1–1.5 km

width that approximately follows the midline of the firth.

Smolt capture and tagging
Atlantic salmon smolts (n¼ 120) were captured in a fixed Wolf

trap in a tributary of the River Conon, 33 km upstream from the

Cromarty Firth (Capture site, Figure 1). Fish greater than

130 mm fork length and which were also clearly smolting (Eek

and Bohlin, 1997; Sloat and Reeves, 2014) were anaesthetized

with clove oil (0.5 mg L–1) and measured for mass (M, g), fork

length (LF, mm), and whole body lipid density (%) (Distell fish

fat metre FM 692) prior to tagging. For this, fish were placed on a

v-shaped surgical pillow saturated with river water and an inci-

sion of 11–14 mm length was made along the ventral abdominal

wall anterior to the pelvic girdle. A 69 kHz coded acoustic trans-

mitter (Model LP-7.3, 7.3 mm diameter, 18 mm length, 1.9 g

mass in air, Thelma Biotel AS, Trondheim, Norway) was

inserted into the peritoneal cavity. The incision was closed with

two independent sterile sutures (6-0 ETHILON, Ethicon Ltd,

Livingston, UK). Fish were irrigated with 100% river water

throughout the procedure. Tags were programmed for an

acoustic transmission repeat cycle of 25 s 6 50%, giving a tag

life of in excess of 90 d. The acoustic tags also transmitted data

on the depth and temperature of the tag every 25 s 6 50%.

Depth measurements had a resolution of 10 cm up to a maxi-

mum depth of 25.5 m; temperature measurements to 60.5�C.

Tagged fish were placed in a bucket filled with aerated river

water and allowed to recover. Fish were then transported down-

stream (20 river km) to the release site (Figure 1: Smolt Release

site), 13 km upstream from the tidal limit of the Cromarty

Firth. Trapping and transport of migrating smolts are routinely

conducted by the Cromarty Firth District Salmon Fishery Board

(CDSFB) as an impoundment mitigation measure (Figure 1).

Tagging of smolts with passive integrated transponder tags in this

system has routinely demonstrated return rates of adult fish of

around 3–6% (S. Mckelvey, pers. comm.). Fish tagged with

acoustic transmitters were released into the river in a small, calm

eddy in the River Conon at the same time as untagged fish were

released �200 m upstream. Untagged fish were not used for any

analysis within this study. All procedures were conducted under

UK Home Office Licence PPL 70/8794.

Acoustic tracking
Movement of tagged smolts was determined by using acoustic

receivers at fixed position automatic listening stations (ALSs)

(Vemco VR2W, VR2Tx, or VR2-AR). All ALSs were deployed

prior to the commencement of fish tagging. One ALS, a VR2W,

was positioned in the lower reaches of the River Conon upstream

of the tidal limit (FW on Figure 1). Similarly, a gate of two ALSs

(VR2Ws) was positioned in fresh water at the upstream tidal limit

of the River Conon at the upstream limit of the Cromarty Firth

Estuary (marked “Estuary ALS” on Figure 1). Twenty VR2Tx

Figure 1. Top left: The location of the wider Moray and Cromarty Firths, North East Scotland. Main Figure: Deployment locations of ALSs
showing individual acoustic receiver curtains and Atlantic salmon smolt capture and release sites.
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receivers were positioned in three transverse curtains (sensu

Heupel et al., 2006) crossing the Cromarty Firth. ALS’s within

marine curtains A, B, and C were spaced on average 205 m apart.

Marine Curtain D (Figure 1) comprised of 40 VR2AR, ALS’s

within 5 km from either shore were spaced at 400 m intervals, in-

creasing to 750 m spacing further offshore. All ALSs remained in

place until 22 August 2016, at which time all fish would have mi-

grated and the expected life expectancy of the tags would have

passed. All ALS’s were deployed subsurface and without surface

markers to reduce any additional anthropogenic noise, thus pro-

moting the probability of detecting tagged fish.

Range testing
Range tests were undertaken prior to deployment of the final ar-

ray for Cromarty Firth ALS curtains. Two curtains of six receivers

were deployed for 1 week in the vicinity of marine curtains A and

C. Locations were selected to be representative of planned final

array positions. The data obtained indicated an acoustic detection

efficiency in excess of 75% at 200 m. Receivers were therefore

deployed to create overlap in the detection ranges of ALSs at this

distance. “Sync tags” comprising transmitters built into each

VR2Tx and VR2AR ALSs (i.e. at each of the four curtains) were

programmed to transmit with a power output equivalent to

142 dB re 1mPa at 1 m depth on all receivers to enable detection

efficiency testing, which remained high throughout the study pe-

riod with detections at distances in excess of 800 m.

In addition, detection efficiency of curtain C was further

tested. An acoustic tag (model LP-7.3, 139 dB re 1mPa at 1 m,

Thelma Biotel AS, Trondheim, Norway) was suspended at 3 m

depth and allowed to drift, at approximately maximum distance,

between each ALS to test for the non-detection of a transmitter as

it transited through the receivers (an acoustic breach). No acous-

tic breach (that is a non-detection of the transmitter) occurred

during these tests. Tag failure rate reported by the manufacturers

is low (<2%) and Gauld et al. (2013) reported failure rates for

the same tags of 0% in a field test.

Fish migration behaviour
Fish migration behaviour was inferred from the pattern of detec-

tions of tags at, and between, the fixed position ALSs. Two princi-

pal measures of behaviour were quantified in this study. A

“residency event” was defined as at least two consecutive detec-

tions of a fish at an individual gate or curtain (Campbell et al.,

2012; Breece et al., 2018). A residency event begins when either a

tag was detected at an ALS curtain where it had not been detected

previously or where it had not been detected at that curtain for a

period of greater than 60 min. Thus, any individual fish may be

recorded as having multiple consecutive residency events at a sin-

gle curtain if they occur more than 60 min apart. A residency

event will thus have a location and duration associated with it.

Tag depth was also determined during a residency event as the

mean depth of a tag during a single residency event of any length.

A “movement event” was defined as the period between two

residency events where the tag is detected at different curtains.

Each movement event had four measurable variables associated

with it. A movement “direction” was simply defined as either sea-

ward (i.e. towards the open sea, downstream) or landward (in the

opposite direction, upstream). A movement “duration” was de-

termined as the time from the end of one residency event to the

start of the next. The “distance travelled” between curtains C and

D was determined using the straight-line distances between the

individual ALSs where the tag was detected. For all other array

pairs, distance travelled was taken to be the distance between the

curtains measured along the centre line of the river/estuary using

QGIS software.

The rate of movement (ROM) was determined as the ground

speed of an individual between two curtains calculated as the dis-

tance between receivers divided by the time difference between

the last detection at one curtain and the first detection at the sec-

ond. The design of this study did not allow for the exact route

taken by a fish between curtains to be determined (only the di-

rect, and thus minimum, distance travelled) therefore both dis-

tance travelled, and ROM must be regarded as minimum values

of these metrics.

Confirmed survival (i.e. successful migration) was determined

by detection of individuals at successive seawards receivers. It was

assumed that fish, which were detected at an upstream receiver

but not at the subsequent downstream receiver, were lost to the

study within that intervening area. Losses are reported as % km�1

to enable comparisons between sites and studies.

Environmental data
Meteorological data were obtained from a weather station located

at Tain Range (57.8167�N 003.9667�W) �14 km north of the

study site (Figure 1). Tidal height data were provided by the

Scottish Environment Protection Agency (SEPA) from a moni-

toring station adjacent to the Cromarty Firth. The timing of sun-

rise and sunset were calculated using the “maptools” package in

R (Bivand and Lewin-Koh, 2016; R Core Team, 2016).

Tag detection efficiency
Since there is potential that some tagged fish were not detected as

they passed an ALS curtain, interpreting detection as the total

survival of tagged fish may be confounded by the probability of

transmitter detection. Knowledge of detection probability is

therefore essential in obtaining unbiased estimates of the survival

rate of migrating smolts.

There are several strands of evidence from this study that indi-

cate detection rates of passing fish are high. Transmissions from

sync tags were detected at distances in excess of 400 and 800 m,

although efficiency reduced with distance. Thus, detection of fish

passing through each of the three curtains in the Cromarty Firth

was possible by two or more receivers. Where there were receiver

curtains in a seaward direction from any curtain of interest, cur-

tain efficiency can be estimated from fish detected at subsequent

curtains but not at the one of interest. For curtain D, where addi-

tional downstream receiver curtains are not available, it is possi-

ble to estimate the potential detection error from known

detection efficiency data. Detection efficiency estimates made at

curtain D were used to model the likelihood of a smolt migrating

through a receiver curtain without detection. Simulations were

based on the method proposed by Hayden et al. (2016). Virtual

fish are “swum” at a receiver line, a simulated signal from a tag is

transmitted randomly with intervals of between 15 and 45 s (as

per tag spec in this study). The distance between transmission lo-

cation and each receiver is calculated. A detection range curve is

then used to calculate the probability (p) that the signal was

detected on each receiver. Detection or non-detection at each re-

ceiver is determined by drawing from a Bernoulli distribution

with a probability of p. Detection range curves were calculated
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from sync tags [Model LP-7.3, 7.3 mm diameter, 18 mm length,

1.9 g mass in air, Power output (dB re 1 uPa at 1 m) 139 decibels,

Thelma Biotel AS, Trondheim, Norway] positioned within the

coastal marine curtain. Detection probabilities were calculated for

3-h periods during the time when fish were actively migrating

across the curtains and used within the simulations (Hayden

et al., 2016).

Statistical modelling
Four models were constructed to examine possible drivers of mi-

gration behaviour in this study. Model 1: The mean ROM for

each movement event was modelled as a response to four poten-

tial explanatory variables: movement location [the pair of cur-

tains between which the movement event occurs (n range 19–

86)], wind speed, fish fork length (LF) and fish body lipid content

using a generalized linear mixed effect model (GLMM), for

Gamma distributed data. Other possible variables: fish mass and

tag mass: body mass ratio were not included because they were all

strongly correlated with fish LF and thus violated collinearity cri-

teria for inclusion. Fish tag number was included as a random

factor to account for repeated measures. Between-group post hoc

tests were conducted by Tukey’s HSD. Model 2: The duration for

each residence event was regressed against five explanatory (fixed)

variables [tide state (ebb or flood), mean swimming depth, lipid

content, FL, and curtain] using a GLMM for Gamma distributed

data. Fish tag number was included as a random factor to account

for repeated measures. Model 3: The proportion of within group

survival, that is the confirmed survival rate of a group of smolts

released on any one day, defined as the total number that sur-

vived to the coastal marine curtain (D) as a proportion of the

number in the group, was modelled using the day of year at re-

lease (DOY), and the total number of fish in the release group in

a logistic regression model for binomial distributed data.

Explanatory variables were treated as fixed effects. A group refers

to the number of tagged fish released at any one time; the number

within the group reflects a subsample of the population of fish

migrating on that day (for numbers see Supplementary material).

Model 4: Confirmed survival (Yes or No) measured as detection

of a tag at the coastal marine curtain (curtain D) was modelled as

a binary response to five potential explanatory variables: fork

length (LF), ROM measured through Cromarty Firth (ES to SU),

fish lipid content, DOY, total number of fish within release

group. All explanatory variables were treated as fixed effects.

For all models, a maximal model with all fixed effects included

was created. A minimum model was then derived using the top

down strategy as described by Zuur et al. (2009) with the elimina-

tion of non-significant explanatory terms. Stepwise significance

testing between nested models was conducted in ANOVA. The fi-

nal model contained only the significant predictors of the re-

sponse variables. Pseudo R2 values for models generated without

a gamma distribution were calculated using the r-squared GLMM

function in the MuMln package (Barto�n, 2016).

Particle tracking
To test the hypothesis that migrating post-smolts are actively

swimming with the prevailing current (sensu Mork et al., 2012), a

particle tracking model was used to explore where passive, neu-

trally buoyant, particles released in the Cromarty Firth would

travel under the influence of the natural hydrodynamics in the

Moray Firth region and subsequently to test other models of

passage such as augmented current following. The particle track-

ing model was forced by a hydrodynamic model of the Moray

Firth previously developed by Marine Scotland Science

(Campbell, 2018). The model has 10 terrains following vertical

layers, each representing 10% of the water column, and an un-

structured computational grid with individual node spacing vary-

ing from 60 m in some inshore areas to 2.6 km at the mouth of

the Moray Firth. The node spacing within the Cromarty firth par-

ticle release zone was around 150–200 m. For the purpose of the

present study, the model was run for the period March—August

2016. The hydrodynamic model was based on the Scottish Shelf

Model (SSM) (Wolf et al., 2016; De Dominicis et al., 2018). The

SSM is a high resolution hydrodynamic model of the wider

Scottish Shelf and is an implementation of the Finite Volume

Community Ocean Model (FVCOM) (Chen et al., 2003). The

Moray Firth model was forced at the boundary by data from the

Atlantic Margin Model at 7 km resolution, which is an opera-

tional forecast model run by the UK Met Office (Edwards et al.,

2012; O’Dea et al., 2012). The forcing parameters at the boundary

were current speeds, water elevation, temperature, and salinity.

The wind and atmospheric properties for the model were forced

by modelled data from the European Centre for Medium Range

Weather Forecasts (ECMWF) ERA-Interim reanalysis (Dee et al.,

2011). The freshwater river input for the model used here in-

cluded five dominant rivers (Conon, Ness, Findhorn, Spey and

Deveron; Figure 1). The river discharge data were provided by the

Scottish Environment Protection Agency and the National River

Flow Archive (https://nrfa.ceh.ac.uk/) for the appropriate gauging

stations in these rivers during the time of interest.

The Lagrangian particle tracking model used has recently been

upgraded to enable additional horizontal advection of particles,

representing configurable behaviour, by Ounsley et al., (2019).

The code builds on the FISCM software originally developed for

FVCOM output by Liu et al. (2015) and solves a non-linear sys-

tem of ordinary differential equations in order to update the par-

ticle position as it changes with time due to the hydrodynamic

environment. A more detailed description of the Lagrangian par-

ticle tracking model is given by Chen et al., (2011) and Liu et al.

(2015).

Particle tracking modelling was used to simulate potential be-

haviour and pathways smolts might be using to navigate in the

coastal environment. A variety of simulations (Table 3) were used

to cover a variety of possible biological factors. PT1 models had

passive particles, i.e. drifting with currents exhibiting no biologi-

cal behaviour. This model would predict the direction of passage

(although not the speed) of fish exhibiting augmented current

following. PT2 models comprised directed swimming scenarios

with specific bearings [at 60
�
, 70

�, 80
�

90
�

from North in a clock-

wise direction (PT2.1 to PT2.4)]. PT3 models had directed swim-

ming in the opposite direction to the currents in order to

simulate negative rheotaxis (Table 3), with PT3.1 forcing particles

to behave in this manner continuously throughout (regardless of

the phase of the tide). Some variations of PT3.1 were also ex-

plored with PT3.2 and PT3.3, where directed swimming was

turned on/off depending on the direction of the currents (i.e. ebb

or flood tide). To simulate the effects of directional swimming in

addition to current effects on pathways used by smolts, theoreti-

cal particles were given a swimming speed of 0.168 m s�1, a speed

derived from smolts with a fork length of 140 mm (in the middle

of the range of smolts in this study) swimming at 1.2 body lengths

per second (bl s�1) relative to the water, which Thorstad et al.
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(2004) give as a typical value for migrating post-smolts. To im-

plement the particle tracking simulations, the particle trajectories

were a function of deterministic flow fields from the hydrody-

namic model and particle behaviour, and stochastic dispersion

(random walk diffusion). For this stochastic component of dis-

persion a horizontal diffusivity (controlling the rate at which par-

ticles randomly spread horizontally using a random walk scheme)

of 10 m2 s�1 was applied in all of these experiments as this has

previously been deemed to be representative of Scottish waters in

general (Okubo, 1971). These experiments are likely to be domi-

nated by the deterministic flow fields and behaviour rather than

the stochastic component and the diffusivity value chosen is un-

likely to have a strong baring on the results.

For each particle tracking model run, a total of 1000 particles

were released at the surface from 10 locations/time combinations

at curtain C, 100 particles from each location/time. These release

locations/times were determined by actual detections of individ-

ual smolts at curtain C. Particle releases were made at 57.6826�

N, 004.0015� W where four smolts were detected, at 57.6899� N,

004.0005� W where two smolts were detected, and at three other

locations (57.6864�, 004.4.0008� W; 57.6813� N, 004.0017� W;

57.6864� N, 004.0008� W) at each of which one smolt was

detected. The particle release times were between 23 April and 19

May. The particles were released, and forced to stay, at the surface

where they were subject to the deterministic flow fields modelled

by the top hydrodynamic vertical layer representing the top 10%

of the water column. The particles were not subject to vertical ad-

vection either by the hydrodynamics or stochastic diffusion. This

was because the tag depth data showed that the smolts stayed in

the top 5 m of the water column.

Results
Acoustic tracking
In total, 120 downstream migrating Atlantic salmon smolts were

tagged with acoustic tags and released during the study

(Supplementary Table S1). These fish had a mean fork length

(LF) of 144.3 6 6.7 mm SD, a mean mass (M) of 29.4 6 4.2 g SD,

and mean lipid level of 2.7 6 1.2% SD. Fish were detected on ev-

ery curtain within the study area; there were 59 248 detections of

tags from study fish and >1 500 000 detections of sync tags. Fish

were detected at the first ALS in the array (FW) on average

3.9 6 5.3 SD days after release (distance from release site to FW

ALS ¼ 6.1 km). Detection of a fish at the FW ALS confirmed its

downstream migration. Subsequently, movement was generally

rapid, taking on average 8.1 6 3.5 (mean 6 SD) days to travel the

ca. 62 km from the most upstream ALS to the outer curtain D

(Figure 1); a minimum travel speed of 7.7 km.d�1. Despite tag-

ging and releasing fish over a period of around 30 d, the majority

of fish (80.3%) passed through curtain D within a 10-d period

(31 April to 9 May).

Direction of travel
Progress through the Cromarty Firth was largely downstream and

seaward to the open coast with 90% of all recorded movements

(total N¼ 185) in this direction. All landward (upstream) move-

ments recorded in the firth occurred between curtains A and B.

Of the 83 fish detected at curtain B, 19 (22%) were re-detected at

curtain A before exiting the firth. Three of these 19 individuals

(16%) exhibited this behaviour twice, thus transitioning between

curtains A and B five times prior to exiting the firth.

Fish were detected across all ALSs within each of the three cur-

tains in the Cromarty Firth with no clear route preference across

curtains. This was not the case, however, for curtain D. Here,

a clear a route preference was observed with fish detected pre-

dominantly on the south-eastern ALSs. Of the 56 fish detected on

curtain D, 39 (69.6%) were detected within 6 km from the south-

eastern shore of the Moray Firth (Figure 2). No detections of

tagged fish occurred on the north-western 6 km of the curtain.

Five fish recorded more than one residence event at curtain D.

Confirmed survival
The confirmed survival of fish tagged in the River Conon seaward

to curtain D was 46.7% (56 of 120) (Figure 3) at a total loss rate

(across the whole of the migration route examined in this study)

of 0.69% km�1. More specifically, escapement differed across the

four principal habitat types. River escapement (freshwater to es-

tuary) was 73.3% (n¼ 88 of 120) at a loss rate of 2.2% km�1.

Estuarine escapement (estuary receiver to curtain A) was 95%

(n¼ 84 of 88) at a loss rate of 0.37% km�1. Firth escapement

(curtain A to curtain C) was 94% (n¼ 79 of 84) at a loss rate of

0.32% km�1. Early marine escapement (Curtain C to Curtain D)

was 71% (n¼ 56 of 79) at a loss rate of 1.2% km�1. Thus, relative

loss rate (Table 1) was highest between the release site and FW

receivers (3.1%/km loss rate) followed by marine migration be-

tween Curtain C and Curtain D (1.2%/km).

Three fish were not detected at curtain C, which were subse-

quently detected at curtain D. This is a detection error rate of

3.9% for this curtain. These three fish are included within the

analysis and survival estimates since they were detected at curtain

D. No other fish were detected at a seaward curtain, which had

not been detected at the preceding landward curtain. On average,

fish had 19 6 21 detections (mean 6 SD) at curtain D; thus the

complete lack of detection of a fish adds credibility to the infer-

ence of loss as opposed to non-detection.

Model simulations were conducted to determine the probabil-

ity of a fish transiting curtain D without being detected. Ten

thousand individual simulations comprising 79 fish (the total

number detected passing through the previous curtain (C))

swimming randomly at the entire length of the curtain D at

speeds between 0.6 and 1.4 ms�1 [the maximum ROM between

curtain C to curtain D and between FW and the estuary ALS

(Figure 1) (i.e. fastest travel speeds)] were run. Transmitted sig-

nal interval was allowed to vary randomly between 15 and 45 s

to simulate the tag settings in this study. The model thus incor-

porated realistic variables at the top of the range of data

recorded and thus were likely to yield a maximum estimate of

undetected fish (i.e. a worst-case scenario). The mean [6 stan-

dard deviation (SD)] proportion of simulated fish that were

detected across the 10 000 simulations was 0.97 6 0.03. Given

that 56 fish were detected at the coastal marine curtain, these

simulations indicated the potential that two (1.68) additional

fish may have passed curtain D without being detected thus po-

tentially increasing confirmed survival by 2.4%In another simu-

lation to investigate the effect of swimming speed on detection

probability, it was found that fish would need to swim in excess

of 1.7 ms�1 to reduce detection probability to <0.9.
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Swimming depth
Swimming depth of a fish was calculated as the mean depth of

detections (as indicated by the acoustic transmitter) for each fish

during each residence event at each curtain. Fish exhibited a

significant diurnal effect in their swimming depth. In fresh water

and estuary, fish were significantly deeper (Wilcoxon,

W¼ 2417.5, p � 0.005) at night (mean ¼ 2.53 6 SD 0.75 m) than

during the day (mean ¼ 1.74 6 SD 0.77 m). In saline

Figure 2. The numbers of first detections of fish by individual ALSs along the Coastal Marine curtain (Curtain D; Figure 1).

Figure 3. The proportion of the tagged smolts detected on the migration route through river, estuary, and coastal marine habitats. The
possible likely maximum number of undetected fish at the last curtain (C) is derived from simulations described in the text and is indicated
by the dashed line.
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environments (curtains: A, B, C, D), fish were significantly

(Wilcoxon, W¼ 25074, p � 0.005) shallower during the night

(mean ¼ 0.56 6 SD 0.56 m) than in the day (mean ¼ 1.03 6 SD

0.62 m). Throughout the Cromarty Firth and Moray Firth migra-

tion, fish were predominantly recorded within the top metre of

the water column (mean ¼ 0.8 6 SD 0.6 m), although fish were

recorded throughout the top 5 m of the water column. One indi-

vidual reached the maximum depth that can be recorded by the

tag recording of 25.5 m at curtain C. This individual was removed

from depth analysis at the curtain C array due to the exact depth

of the fish being un-identifiable. The fish was subsequently

detected at curtain D at <5 m depth. Fish were also deeper during

a flooding tide (mean 6 SD, 0.87 6 0.67) than during an ebbing

tide (mean 6 SD, 0.77 6 0.2) although the absolute difference in

depth was small and not significantly different.

Model 1: ROM
The ROM during movement events was significantly predicted by

two variables. The final model accounts for 25.0% of variation in

the data, 24.6% of this variance is explained by where the move-

ment occurred (i.e. between specific curtains) (v2
5 ¼ 111.38, p �

0.001) and 0.4% of variation is explained by wind speed (v2
1 ¼

5.61, p¼ 0.002), with higher windspeeds increasing ROM. Fish

fork length is close to statistical significance (p¼ 0.056), with

length having a slight positive effect on ROM.

A post hoc Tukey’s test showed that the ROM differed signifi-

cantly (p< 0.05) between migration zones. Movement between

curtains A and B was the most rapid and significantly different

from all other movements. This held true for movements in both

the “upstream” and “downstream” movements at this location.

Model 2: Residence event duration
The mean duration of a residence event for fish at an individual

ALS was significantly predicted (v2
2 ¼ 46.65, p � 0.001) by the

additive effects of tidal state (v2
1 ¼ 27.60, p � 0.001) and mean

depth of the fish (v2
3 ¼ 14.91, p � 0.001) during the residence

event. Mean residence of fish within the range of an ALS was sig-

nificantly higher when the residence event occurred during a

flooding tide (mean ¼ 27.9 6 50.44 SD min) as opposed to an

ebbing tide (mean ¼ 15.28 6 30.45 SD min).

Model 3: Group survivorship
The proportion of within-group tag detection to curtain D was

significantly predicted by both DOY and the total number of

individuals within the release group (Table 2). The odds ratio and

model summary indicate that as DOY of release increases, sur-

vival decreases, and as group number increases so does survival.

This is also an additive effect in that larger groups migrating ear-

lier in the migration period have better survival than larger

groups migrating later in the migration period. A model with an

interaction between DOY and number of individuals had less sta-

tistical support than the additive model.

Model 4: Individual survival
None of mean fork length (LF), ROM through Cromarty Firth

(calculated from ES to SU), fat content, DOY of release, or total

number of fish in the release group significantly predicted detec-

tion of an individual smolt through the study area. Thus, al-

though it is possible to predict the probability of survival of a

group, it is not possible to predict survival of individual fish

within the specific group.

Particle tracking
Each particle tracking simulation modelled the release of particles

at curtain C. For each trial, the location and time that each parti-

cle first crossed curtain D, and the transport duration was

recorded. Thus, results formed a distribution of crossing locations

along curtain D. The particle tracking simulation, the mean trans-

port durations (between curtain C and D), and some comments

regarding the distribution of crossing locations are summarized

in Table 3. Figure 4 shows output from PT2.2 where each particle

was given a swimming behaviour comprising a constant speed of

0.168 m s�1 on a bearing of 70� from N. Curtain D crossing

points are distributed along the south-eastern two-thirds of the

curtain, with by far the most crossings occurring at the south-

eastern end. This distribution is typical of most of the particle

tracking experiments performed, with no particles ever crossing

towards the north-western end of the curtain during simulations

PT2 and PT3. For PT1 (passive particles, indicative of the route

that would be taken under the assumption of augmented current

following), there was a more even distribution across the curtain,

which did not match the pattern shown by fish passage.

Table 1. Mean and SDs of rates of movement and the duration of fish moving between each curtain.

Movement location Mean ROM ms�1 SD ROM ms�1 Mean duration (h) SD duration (h) Loss per km (%)

Release - > FW ALS 0.08 0.09 90.69 127.11 3.14
FW ALS - > estuary ALS 0.26 0.38 46.32 54.76 1.55
Estuary ALS - > Curtain A 0.13 0.15 52.79 43.77 0.37
Curtain A - > Curtain B 0.53 0.34 6.63 15.02 0.21
Curtain B - > Curtain A * 0.62 0.13 2.50 0.68 0.00
Curtain B - > Curtain C 0.29 0.30 25.45 22.04 0.37
Curtain C - > Curtain D 0.27 0.14 37.39 20.84 1.18

*Landward movement from curtain C to B.

Table 2. Beta, standard error, and confidence intervals for a logistic
regression model, which predicts the survival rate of each group of
smolts.

95% CI for odds ratio

B (SE) Lower Odds ratio Upper

Constant 7.8 (3.9)
DOY �0.07 (0.03) 0.87 0.93 0.99
Group number 0.03 (0.02) 0.99 1.03 1.08
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Most of the particle tracking simulations produced the ob-

served pattern of most of the smolts crossing the south-eastern

end of curtain D. The only simulation that did not produce this

result was PT2.1 where a constant bearing of 60� was imposed on

the particles, forcing them to cross the transect further north.

There was a wide variation in the duration that the particles took

to travel from curtain C to curtain D between simulations. Most

of the particle tracking simulations produced mean durations

much longer than the observed time of 37.39 6 20.84 SD h taken

by tagged smolts (Table 1), but PT2.1 and PT2.2 had very similar

mean durations of 39 6 55 SD h and 41 6 48 SD h, respectively.

Of all the models tested PT2.2 with a constant bearing of 70� at

0.168 m s�1 produced an overall spatial distribution of crossing

locations and mean transit times closest to those observed.

Table 3. Particle tracking simulations performed and the mean duration of particles to travel from their release location on Curtain C
(Figure 4) to Curtain D (Figure 1).

Behaviour
Mean
duration (h)

SD duration
(hours) Distribution of crossing locations at Curtain D

PT1 Passive particles 132 103 Particles distributed along transect with highest
concentration at the south-eastern end

PT2.1 Constant advection speed of 0.168 m s�1 at a
bearing of 60� from N

39 55 Crossing points distributed across the south-eastern
two-thirds of the transect, with most particles
approximately in the middle of the transect

PT2.2 Constant advection speed of 0.168 m s�1 at a
bearing of 70� from N

41 48 Crossing points distributed across the south-eastern
two-thirds of the transect, with most particles
crossing at the south-eastern end

PT2.3 Constant advection speed of 0.168 m s�1 at a
bearing of 80� from N

76 116 Most particles cross at the south-eastern end

PT2.4 Constant advection speed of 0.168 m s�1 at a
bearing of 90� from N

175 189 All particles cross at the south-eastern end

PT3.1 Negative rheotaxis with speed of 0.168 m s�1 at
all times

101 88 Crossing points distributed across the south-eastern
two-thirds of the curtain, with the majority of
particles crossing at the south-eastern end

PT3.2 Negative rheotaxis with speed of 0.168 m s�1

only when eastern velocity > 0 m s�1.
126 98 Crossing points distributed across the south-eastern

two-thirds of the curtain, the majority of particles
crossing at the south-eastern end

PT3.3 Negative rheotaxis with speed of 0.168 m s�1

only when easterly velocity >0 m s�1 and
northerly velocity >0 m s�1.

109 84 Crossing points distributed across the south-eastern
two-thirds of the transect, the majority of
particles crossing at the south-eastern end

Figure 4. The output from two particle tracking models comprising 1000 particles released from 10 locations (shown as RL). Lines denote
individual particle paths. (a) Model PT1, particles are passive in this model (i.e. drifting with the current, exhibiting no biological behaviour).
The direction of travel (but not the time of travel) in this model is equivalent to augmented current following. Mean time to crossing
receiver curtain D: 5.5 6 4.3 d. The red points indicate the locations of particles crossing marine curtain D. (b) Model PT2.2 in this model
particles were modelled as actively swimming on a bearing of 70

�
(clockwise from north) at 0.168 m s�1 (equivalent to 1.2 bl s�1 for a

140 mm length fish). Yellow colouration indicates more particles, green intermediate number and blue, fewer particles crossing curtain D.
Mean time to reach curtain D under these conditions was 1.7 6 2.0 d. This model best represented both the direction and timing of travel of
fish in this study.
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Whilst the PT3 simulations, imposing a negative rheotaxis on

the particles, reduced the duration of travel time between curtain

C and D compared to PT1 (passive particles), they did not reduce

this time as much as PT2 simulations (swimming on a constant

bearing). This indicates that whilst the natural flow fields contrib-

ute to the modelled position of the particles and their curtain D

crossing times/locations, it is active swimming at a constant bear-

ing, which best predicts actual smolt migration pathway.

Somewhat counter-intuitively, simulations PT3.2 (negative rheo-

taxis with a swimming speed of 0.168 m.s�1 when easterly velocity

>0 m.s�1.) and PT3.3 (negative rheotaxis with a swimming speed

of 0.168 m s�1 only when easterly velocity >0 m.s�1 and northerly

velocity > 0 m.s�1) lengthened the travel durations, relative to

PT3.1. We hypothesized that by removing the behaviour during

times of flood tide (dominantly south-west direction in the inner

Moray Firth region) the degree of movement back into the inner

Moray Firth would be reduced. This proved not to be the case;

the tidal patterns in this region are likely to be more complex.

This also shows how the natural flow fields do indeed have a role

to play in the ultimate trajectory of the salmon smolts.

Discussion
Previous modelling of the migration of Atlantic salmon post-

smolts in the first few weeks at sea indicated that migration was

consistent with the fish following water currents and actively

swimming in the direction of those currents (Mork et al., 2012),

which has also been supported by Atlantic salmon smolt tracking

on the east coast of Canada (Ohashi and Sheng, 2018). Two real-

istic but alternative hypotheses might be that post-smolts disperse

in random directions once they reach the open coast or, arguably

more plausible is that they take the most direct marine route to

their known feeding grounds in the Norwegian Sea. The study

presented here did not support any of these three alternatives.

Post-smolts entering the Moray Firth made a clear and surpris-

ingly consistent choice of migration direction. There was no evi-

dence of random dispersal of post-smolts on reaching the coastal

zone, with 70% of tagged post-smolts being detected in the 6 km

at the south-east end of the 23 km curtain D. This pattern was

consistent across individuals, over the period of the migration

and across tidal cycles, indicating that these fish were making

clear choices of their route of migration over the first few days

following entry into the open coastal zone. The chosen migration

direction is not the most direct route towards known feeding

grounds in the Norwegian Sea, which would have taken them to

the north-east on entering the coastal zone on a bearing of

around 44�. In fact, no fish were detected crossing the outermost

detection curtain within the most north-easterly 6 km section of

curtain D. Rather, post-smolts migrating from the River Conon

consistently used a migration route taking them almost directly

east (ca 80�), and relatively close to the coast.

Unlike the directional current cues that smolts appear to use in

riverine migration (Thorstad et al., 2012), the present study indi-

cates that migration direction is not simply the result of orienta-

tion downstream in a directional current for this population in

the Moray Firth. However, it is clear that post-smolts are actively

swimming. The passive particle tracking simulations clearly show

that post-smolts are not swimming with the prevailing current

but are, at least at times, swimming against the prevailing current.

This current flows predominantly westwards (ca 220� from N)

along the southern coast of the Moray Firth area of the inner firth

to the west of Cullen (Adams and Martin, 1986; Hansom and

Black, 1996). Modelling of actively “swimming” particles shows

that the best alignment of modelling and the empirical tracking

occurs with smolts swimming at a speed of around 0.168 ms�1

(1.2 body lengths.s�1 for a 140 mm LF fish) and on a course to-

wards 70� from N.

Some partial support for the findings presented here is pro-

vided in two other studies. Moriarty et al. (2016) simulated

Atlantic salmon post-smolt movements in the Gulf of Maine and

similarly concluded that smolts were not passive drifting on ma-

rine currents. Thorstad et al. (2007) found that Atlantic salmon

and anadromous brown trout (Salmo trutta) post-smolt move-

ments in a Norwegian fjord also did not coincide with the water

currents. Although we show that the migration of smolts in the

present study is consistent with them swimming directionally on

a fixed vector at a relatively fast swimming speed, it is not possible

to determine if fish are migrating on a fixed bearing or if the de-

termined bearing is a consequence of fish responding to other

navigational cues.

The route taken by post-smolts in this study has the potential

for some advantage. Further to the east (beyond the outermost

curtain in this study), the predominant currents flow eastwards

(Adams and Martin, 1986; Hansom and Black, 1996), which may

be energetically favourable on later stages of the migration to-

wards the known feeding grounds in the Norwegian Sea. The

finding that post-smolt migration swimming is strongly direc-

tional is consistent with a recent modelling study by Ounsley

et al. (2019), which showed that current-following behaviours did

not facilitate outward migration from any of the modelled parti-

cle release locations on the Scottish coast. These authors showed

that directed swimming behaviours (swimming speeds of 1–3

body lengths s�1 were tested) were needed during early migration

for simulated post-smolts to successfully reach their marine feed-

ing grounds. Although a recent study from Ireland has showed

that smolts progressed through the Irish sea in a northerly trajec-

tory at speeds of 0.5 body lengths s�1over a maximum distance of

250 km (n¼ 3) and detections suggested the use of favourable

ocean currents (Barry et al., 2020).

Knowledge of post-smolt marine migration routes is essential

to enable coastal zone management of activities, which have the

potential to impact upon salmon post-smolts. Of particular im-

portance is the rapid growth of offshore renewables in the British

Isles (Esteban and Leary, 2012). Further insights into migratory

behaviour in coastal waters could be gained through particle

tracking experiments, which introduce additional but realistic

variation in swimming speeds and behaviour and known coastal

current patterns. For example, models could include vertical mi-

gration of the tracked particles. Although fish in this study

remained within the top 5 m of water, Atlantic salmon are known

to exhibit deeper diving behaviour.

Depending upon at what point in the marine migration this

behaviour is initiated, it could result in potential interactions

with any sea bed activities such as demersal fishing or sea bed de-

velopment and construction. Tracking fish further out to sea than

was achieved in this study may enable the identification of such

behaviour in the marine environment. However, passive acoustic

telemetry may not provide the most robust method for studying

such behaviour.

Prediction of the migration patterns of Atlantic salmon smolts

in the open sea distant from the coast presents further difficulties.

An understanding of the details of the cues used by smolts and

post-smolts to determine swimming direction, and thus
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migration routes, are needed to populate the models. However,

the approach adopted in the current study presented here pro-

vides one route through which this process might begin. The

combination of smolt trawling surveys (Mork et al., 2012), active

tracking and particle tracking simulation are required to facilitate

more informed model outputs. It is likely a better understanding

of the fine scale drivers of navigation (e.g. currents, geomagne-

tism, salinity, resource availability) and where, when and how

they are used, is required to refine our understanding of migra-

tion routes in the open ocean.

In common with other studies, the study presented here also

showed that the loss rate during smolt migration was variable

across habitat types. This effect may in part be the result of differ-

ential migration speeds as there was a non-significant (p< 0.09)

trend for migration speed to predict loss rate. Generally, overall

loss rates in this study were relatively low when compared with

other studies (Table 1). Thorstad et al. (2012) in a review of stud-

ies up to that date, found Atlantic salmon smolt mortality rang-

ing between 0.3–5% km�1 in freshwater, 0.6–36% km�1 in

estuaries, and 0.8–3.4% km�1 in the marine environment. We

found an average loss of 2.35% km�1 in freshwater, 0.32% km�1

in the estuary and 1.18% km�1 in the coastal marine environ-

ment (Moray Firth). The loss rate in the Moray Firth was slightly

higher than the 0.8% km�1 found by Lacroix et al. (2005) for

Atlantic salmon post-smolts in the Gulf of Maine. The mortality

rate in the estuarine Cromarty Firth was low compared to that for

freshwater-marine transitional zones reported in other studies

(see Thorstad et al., 2012), and lower than that in freshwater in

the River Conon. Although observed detections of fish were

slightly lower than the predicted detections, the general trend of

high confirmed survival rates supports the conclusions. Localized

reductions and the temporal reduction in efficiency (e.g. boat

passing overhead) may coincide with smolt passage to reduce de-

tection efficiency at that time, hence the slight reduction in ob-

served detection compared to predicted detections at curtain C.

The variation in loss rate estimates across different migration

habitats is likely due to site-specific geographical features and

predator assemblages. There may be multiple reasons for losses

during smolt migration but those most commonly cited are a

lack of physiological preparedness for transition between the fresh

and saltwater environments and predation (Jarvi, 1989; Jepsen

et al., 2006; Thorstad et al., 2012). If poor physiological prepared-

ness for entry to sea water were the main influence mortality pat-

terns then we might expect survival to be positively correlated

with day of year (with later migrating smolts more likely to be

physiologically prepared for sea entry) (Stich et al., 2015) and a

peak in losses soon after the entry to the marine environment.

There was no evidence of either pattern in the current data

strongly suggesting that this source of mortality was not a princi-

pal factor in this population. Although we have little direct evi-

dence of this predation by birds, larger fish, and marine

mammals could be an important factor in losses and such preda-

tors have been shown to have significant effects in other studies

(Dieperink et al., 2005; Svenning et al., 2005; Blackwell and

Juanes, 2011). This requires further investigation. Migration suc-

cess was, however, predicted by the size of the group that was mi-

grating on any day and by the migration time; with large groups

and migration earlier in the migration period resulting in higher

migration success.

Movement through the study system was fast and the smolts

spent little time in the coastal zone, taking on average 8.1 6 3.5

SD days to travel the ca. 62 km from the most upstream ALS to

the most outer curtain D (a minimum speed of 7.7 km.day�1). A

pattern of fast movement through estuary and coastal areas to-

wards the outer sea is frequently reported for Atlantic salmon

smolts (e.g. Lefèvre et al., 2012), however, there are also examples

of smolts spending much longer time periods in coastal areas

(e.g. >70 days in an inland sea).

What has not been reported previously is the tidal oscillation

in migration direction seen in this study, 22% of fish made at

least one detected movement in the direction opposite to seaward

in the tidal estuary. These events were detected during flooding

tides in the relatively constrained estuarine areas of the Cromarty

Firth. Rapid migration into the coastal areas is often linked with

higher survival (e.g. Renkawitz et al., 2012).

The speed of migration differed between habitat types. Rate of

movement was lowest in the lower freshwater reaches of the river

where the current velocity is low, and highest within the inner

Cromarty firth (A to B) where tides are likely constrained, with

increased local water velocities, which may increase smolt move-

ment speed. It is likely water velocities in this area are greater

than smolt swimming ability since movement in both the up-

stream and downstream direction was faster than elsewhere in the

study. The duration of residency events in the Cromarty Firth

was significantly longer under a flooding tide than an ebb tide,

possibly indicating fish persistently actively swimming in a sea-

ward direction, i.e. swimming with the ebb tide but against the

flood tide. The mean ROM in the Cromarty Firth (0.32 ms�1)

was similar to other estimates of Atlantic salmon post-smolt

movement in coastal areas (Kocik et al., 2009: 0.28 ms�1). The

ROM has previously been correlated with tidal cycle (and cur-

rents), wind-induced currents (Fried et al., 1978; Lacroix et al.,

2004; Stich et al., 2015), barometric pressure, lunar illumination,

cloud cover, and wave height (Fried et al., 1978), and such rela-

tionships vary across studies. Given that tagged smolts are only

detectable for a relatively short period of time when close to a re-

ceiver, combined with the heterogeneity of the environmental

variables and small-scale, localized changes in conditions, it is dif-

ficult to identify common patterns of migration behaviour across

study systems (Hedger et al., 2008). This also highlights that the

localized dynamics of the marine environment need to be consid-

ered as this may dictate the progression rate of smolts.

Changes in swimming depth of salmonids have been strongly

related to temperature and salinity (Plantalech Manel-La et al.,

2009), and light conditions (Davidsen et al., 2008). In this study,

smolts were predominantly detected within the top 1 m of the wa-

ter column and were detected higher in the water column at night

than during the day. Smolt migration close to the water surface

was also reported by Davidsen et al. (2008) who recorded individ-

ual mean depths of tagged smolts of <2.3 m and Renkawitz et al.

(2012) who found 95% of daytime detections to be in <5 m

depth. Similar preference for the near-surface habitat (<5 m

depth) in coastal areas has also been found for adult Atlantic

salmon (Godfrey et al., 2015). Few studies have explored diurnal

effects during coastal migration but those that have, report results

similar to this study (Reddin and Short, 1991; Davidsen et al.,

2008; Hedger et al., 2008). The greater variability in depth during

daylight may be due to fish actively foraging since they rely on vi-

sual cues to identify prey (Davidsen et al., 2008; Hedger et al.,

2008; Renkawitz et al., 2012), or avoiding predators (Reddin and

Short, 1991).
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The results from the study presented here indicate that salmon

post-smolts in the nearshore coastal zone actively swim along

preferred migration routes that these routes are not directly pre-

dicted by simple current direction and speed and, at least at

times, do not align with the most logical direct route to know

feeding grounds.
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