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∗We wish to thank the editor, Bernard Salanié, two anonymous referees, and Karim Abadir, Andrew Chesher,
Atsushi Inoue, Paul Labys, Oliver Linton, Enrique Sentana, Ron Smith, as well as the seminar participants at the
2003 Winter meeting of Econometric Society in Washington DC, the 2003 Forecasting Financial Markets Conference
in Paris, the 2003 Money, Macro and Finance Conference at London Metropolitan University, LSE-Financial Market
Group, the 2003 CIREQ-CIRANO Realized Volatility Conference at University of Montreal, IFS-UCL, Rutgers
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1 Introduction

Modelling, estimation and testing of financial volatility models has received increasing attention

over the recent years, from both a theoretical and an empirical perspective. In fact, accurate

specification of volatility is of crucial importance in several areas of financial risk management, such

as Value at Risk, and in hedging and pricing of derivatives. Asset prices are typically modelled as

diffusion processes; such processes are fully characterized by the drift and volatility function, which

describe the conditional instantaneous mean and variance of the asset price. The volatility term

has often been modelled as a function of some latent factors, which are also described by diffusion

processes.

The specification of the functional form of such diffusion processes has been suggested by eco-

nomic theory, often constrained by the need of mathematical tractability. Hence the need of devising

statistical procedures to test whether a chosen model is consistent with the data at hand.

Several tests have been proposed for the correct specification of the full model, thus including

both the drift term and the variance term. A frequently used approach consists in simulating

the model under the null hypothesis using a fine grid of parameters values, and then sampling the

simulated data at the same frequency of the actual data; one can then obtain an estimator by either

minimizing the distance between sample moments of actual and simulated data, as in simulated

generalized method of moments (see Duffie & Singleton, 1993), or minimizing the expectation,

under the simulated model, of the score of some auxiliary model, as in the efficient method of

moments (see e.g. Gallant & Tauchen, 1996; Gallant, Hsieh & Tauchen, 1997; Chernov, Gallant,

Ghysels & Tauchen, 2003). Both simulated generalized and efficient method of moments lead to

tests for the validity of overidentifying restrictions, whose rejection gives some information about

the deficiencies of the tested model. Recently, Altissimo & Mele (2003) have suggested a new

estimator based on the minimization of the weighted distance between a kernel estimator of the

actual data and of the simulated data. Then, a test based on the difference of the two estimated

densities can be constructed.

Another approach consists in testing the distributional assumptions implied by the model under

the null hypothesis. For example, Corradi & Swanson (2003) suggest a test based on the comparison

of the empirical cumulative distribution function of the actual and of the simulated data; Hong & Li

(2003) and Thompson (2002) propose tests based on the probability integral transform, exploiting

the fact that if F (Xt|Ft) is the true conditional distribution of Xt, then F (Xt|Ft) is distributed

as an i.i.d. uniform random variable on [0, 1]; and Bontemps & Meddahi (2003a,b) propose testing

moment conditions implied by the invariant distribution of the model under the null hypothesis.

All the estimators and the testing procedures mentioned above are based only on data and simu-

lated data on observable variables (e.g. prices of assets), thus avoiding the issue of non observability

of the volatility processes.
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An alternative approach is to test only for the volatility process, given that, in several instances,

such as hedging and pricing of derivative assets, particular interest lies in the specification of the

variance term.1 However, in this case one cannot directly compare actual and simulated volatility

moments, or the empirical distribution of actual and simulated volatility, given that the volatility

process is not observable. Over the past, squared returns have been a frequently used proxy for

volatility. Unfortunately, as pointed out by Andersen & Bollerslev (1998), squared returns are a

very noisy proxy for volatility. Implied volatilities, obtained by inverting the option price formulae,

are another popular proxy, but are model dependent and incorporate some price of risk, indicating

the expected future volatility.

Hence, the need for accurate and model free measures of volatility. Over the last few years there

has been great progress in this direction. A new proxy for volatility, termed realized volatility,

has been introduced concurrently by Andersen, Bollerslev, Diebold & Labys (2001, 2003) and

by Barndorff-Nielsen & Shephard (2001, 2002, 2004a,b), who have provided the relevant limit

theory and extensions to the multidimensional case. Assuming that we have M recorded intraday

observations for a given asset price process, over a given day, realized volatility is computed by

summing up the M squared returns. If prices have continuous paths and are not contaminated by

microstructure noise, then realized volatility is a consistent estimator of daily integrated volatility.

It is often believed, though, that (log) price processes may display jumps, due for example

to macroeconomic and financial announcement effects. Barndorff-Nielsen & Shephard (2004d)

have recently introduced a new realized measure, called bipower variation, which is consistent for

integrated volatility when the underlying price process exhibits occasional large jumps.

Finally, Zhang, Mykland & Aı̈t Sahalia (2003) have suggested a new realized measure, hereafter

termed modified subsampled realized volatility, which is consistent for integrated volatility when

prices are contaminated by microstructure noise.

The availability of these model free measures of integrated volatility immediately suggests their

use for testing some parametric models, by comparing some features of the realized measures with

those of the model.

This is the object of this paper. Within the class of eigenfunction stochastic volatility models

(Meddahi, 2001), which nests all the most popular stochastic volatility models as special cases, this

paper proposes a procedure to test for the correct specification of the functional form of the volatility

process. The procedure is based on the comparison of the moments of the realized measures with
1Recall that over a finite time span, the contribution of the drift term is indeed negligible. Specification test for

the variance, over a fixed time span and for the case in which the variance depends only on the asset price, have been

proposed by Corradi & White (1999), Dette & von Lieres und Wilkau (2003) and Dette, Podolskoj & Vetter (2004).

These tests are based on the comparison between a nonparametric estimator and a parametric estimator implied by

the null model. Within the same the context, but in the case of increasing time span, Aı̈t Sahalia (1996) fixes the

functional form of the drift term and then compares a nonparametric estimator of the density of the variance term

with the parametric estimator implied by the joint specification of the drift component and the marginal density.
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the corresponding ones of integrated volatility implied by the tested model.

The idea of using moment conditions for estimating and testing stochastic volatility models using

realized measures is not new. In fact, Bollerslev & Zhou (2002) have derived analytically the first

two conditional moments of the latent volatility process, for the class of affine stochastic volatility

models. Then they suggested a generalized method of moments estimator and an associated test

for the validity of overidentifying restrictions based on the comparison between the analytical

conditional moments of integrated volatility and the corresponding sample moments of realized

volatility. Bollerslev & Zhou consider the case of the time span T approaching infinity, for a given

number of intraday observations M. The effects of various values of M on the properties of the test

are analyzed via a Monte Carlo simulation.

The present paper extends Bollerslev & Zhou’s in three directions. First, we consider a double

asymptotic theory in which both T and M approach infinity, and we provide regularity conditions

on their relative rate of growth. Second, we also consider tests comparing (simulated) moments of

integrated volatility with sample moments of bipower variation, thus allowing for possible jumps,

and with sample moments of modified subsampled realized volatility, thus allowing for at least

some classes of microstructure noise. Finally, we do not confine our attention to affine stochastic

volatility models, but we consider the class of eigenfunction stochastic volatility models of Meddahi

(2001), where the latent volatility process is modelled as a linear combinations of the eigenfunctions

associated with the infinitesimal generator of the diffusion driving the volatility process.

The main reason why we focus on Meddahi’s eigenfunction stochastic volatility class is that it

ensures that the integrated volatility process has a memory decaying at a geometric rate and has

an ARMA(p, p) structure, when the number of eigenfunctions, p, is finite (see Andersen, Bollerslev

& Meddahi, 2002, 2004; Barndorff-Nielsen & Shephard, 2001, 2002); and that the measurement

error associated with the realized measures has a memory decaying at a fast enough rate. These

features are crucial, as in our context both T and M approach infinity.

Indeed, it should be stressed that Barndorff-Nielsen & Shephard (2004a) provide a central limit

theorem for the measurement error associated with realized volatility, which holds for a very general

class of semimartingale processes. However, their result concerns the fixed time span case, and thus

there is no need to impose restrictions on the degree of memory of the volatility process. Of course,

if one wishes to construct a testing procedure based on a finite time span, there is no need to

consider a specific class of models, and then he can benefit from the generality of Barndorff-Nielsen

& Shephard’s result.

This paper is organized as follows. Section 2 describes the set-up. Section 3 provides primi-

tive conditions on the measurement error, in terms of its first two moments and autocorrelation

structure, which allow to construct tests for overidentifying restrictions, based on the comparison

between sample moments of the realized measure and analytical moments of integrated volatility,

when the latter are known in closed form. In particular, we provide conditions on the rate at which
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the time span can approach infinity, in relation to the rate at which the moments of measurement

error approach zero. Section 4 considers the case in which there is no explicit closed form for the

moments of integrated volatility. For this case we propose a simulated version of the test based on

the comparison of the sample moments of realized measures and sample moments of the simulated

integrated volatility process. We also discuss the possibility of constructing a test based on the

comparison of sample moments of actual and simulated realized measure, for fixed M . Section 5

provides conditions under which realized volatility, bipower variation and modified subsampled

realized volatility satisfy the primitive conditions on the measurement error. In particular, it is

emphasized that the rate at which T can grow, relatively to M, differs across the three realized

measures. Section 6 provides an empirical illustration of the suggested procedure, based on data on

different stocks of the Dow Jones Industrial Average. Finally, Section 7 concludes. All the proofs

are gathered in the Appendix.

2 The Model

The observable state variable, Yt = log St, where St denotes the price of a financial asset or the

exchange rate between two currencies, is modelled as a jump diffusion process with a constant drift

term. According to the eigenfunction stochastic volatility class, the variance term is modelled as a

measurable function of a latent factor, ft, which is also generated by a diffusion process. Thus,

dYt = mdt + dzt +
√

σ2
t

(√
1− ρ2dW1,t + ρdW2,t

)
(1)

and

σ2
t = ψ(ft) =

p∑

i=0

aiPi(ft) (2)

dft = µ(ft,θ)dt + σ(ft, θ)dW2,t, (3)

for some θ ∈ Θ ∈ R2p+1, where W1,t and W2,t refer to two independent Brownian motions, the

parameter ρ ∈ [0, 1) allows for leverage effects and Pi (ft) denotes the i -th eigenfunction of the

infinitesimal generator A associated with the unobservable state variable ft.2 The pure jump

process dzt specified in (1) is such that

Yt = mt +
∫ t

0

√
σ2

s

(√
1− ρ2dW1,s + ρdW2,s

)
+

Nt∑

i=1

ci,

2The infinitesimal generator A associated with ft is defined by

Aφ (ft) ≡ µ (ft) φ′ (ft) +
σ2 (ft)

2
φ′′ (ft)

for any square integrable and twice differentiable function φ (·). The corresponding eigenfunctions Pi (ft) and eigen-

values −λi are given by APi (ft) = −λiPi (ft). For a detailed discussion and analysis on infinitesimal generators and

spectral decompositions, see Aı̈t Sahalia, Hansen & Scheinkman (2004).
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where Nt is a finite activity counting process, and ci is a nonzero i.i.d. random variable, independent

of Nt. As Nt is a finite activity counting process, we confine our attention to models characterized

by a finite number of jumps over any fixed time span.

As customary in the literature on stochastic volatility models, the volatility process ia assumed

to be driven by (a function of) the unobservable state variable ft. Rather than assuming an ad hoc

function for ψ (·), the eigenfunction stochastic volatility model adopts a more flexible approach. In

fact ψ (·) is modelled as a linear combination of the eigenfunctions of A associated with ft. Notice

that the ai’s are real numbers and that p may be infinite. Also, for normalization purposes, it is

further assumed that P0 (ft) = 1 and that var (Pi (ft)) = 1, for any i $= 0. When p is infinite,

we also require that
∑∞

i=0 a2
i < ∞. The generality and embedding nature of the approach just

outlined stems from the fact that any square integrable function ψ (ft) can be written as a linear

combination of the eigenfunctions associated with the state variable ft. As a result, most of the

widely used stochastic volatility models can be derived as special cases of the general eigenfunction

stochastic volatility model. For more details on the properties of these models, see Meddahi (2001)

and Andersen, Bollerslev & Meddahi (2002) (hereafter ABM2002).

Finally, notice that we have assumed a constant drift term. This is in line with Bollerslev &

Zhou (2002), who assume a zero drift term and justify this with the fact that there is very little

predictive variation in the mean of high frequency returns, as supported the empirical findings

of Andersen & Bollerslev (1997). Indeed, the test statistics suggested below do not require the

knowledge of the drift term. However, some of the proofs make use of the fact that the drift is

constant.

Following the widespread consensus that transaction data occurring in financial markets are of-

ten contaminated by measurement errors, we assume to have a total of MT observations, consisting

of M intradaily observations for T days, for

Xt+j/M = Yt+j/M + εt+j/M , t = 1, . . . , T and j = 1, . . . , M,

where

εt+j/M ∼ i.i.d.(0, ν) and E(εt+j/MYs+i/M ) = 0 for all t, s, j, i. (4)

Thus, we allow for the possibility that the observed transaction price can be decomposed into the

efficient one plus a “noise” due to measurement error, which captures generic microstructure effects.

The microstructure noise is assumed to be identically and independently distributed and inde-

pendent of the underlying prices. This is consistent with the model considered by Aı̈t Sahalia, Myk-

land & Zhang (2003), Zhang, Mykland & Aı̈t Sahalia (2003), Bandi & Russell (2003a,b).3 Needless

to say, when ν = 0, then εt+j/M = 0 (almost surely), and therefore Xt+j/M = Yt+j/M (almost surely).

3Recently, Hansen & Lunde (2004) address the issue of time dependence in the microstructure noise, while

Awartani, Corradi & Distaso (2004) allow for correlation between the underlying price.
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The daily integrated volatility process at day t is defined as

IVt =
∫ t

t−1
σ2

sds, (5)

where σ2
s denotes the instantaneous volatility at time s. Proposition 4.1 in ABM2002 gives the

complete moment structure of integrated volatility

E(IVt (θ)) = a0

var(IVt (θ)) = 2
∑p

i=1
a2

i
λ2

i
(exp(−λi) + λi − 1)

cov(IVt (θ) , IVt−k (θ)) =
∑p

i=1 a2
i exp (−λi(k − 1)) (1−exp(−λi))

2

λ2
i

,

(6)

This set of moments provides the basis for the testing procedure derived in the next Sections. In

particular, since IVt is not observable, different realized measures, based on the sample Xt+j/M ,

t = 1, . . . , T and j = 1, . . . , M, are used as proxies for it. The realized measure, say RMt,M , is a

noisy measure of the true integrated volatility process; in fact

RMt,M = IVt + Nt,M ,

where Nt,M denotes the measurement error associated with the realized measure RMt,M . Note

that, in the case where ν > 0, any realized measure of integrated volatility is contaminated by two

sources of measurement errors, given that it is constructed using contaminated data.

Our objective is to compare the moment structure of the chosen realized measure RMt,M with

that of IVt given in (6). Note that when p = 1, cov(IVt (θ) , IVt−k1 (θ))/cov(IVt (θ) , IVt−k2 (θ)) =

exp(−λ1(k1 − k2)), so that, by using mean, variance and two autocovariances of IVt (θ), we obtain

one overidentifying restriction. Analogously, when p = 2, we shall be using four autocovariances,

as well as mean and variance, in such a way to obtain one overidentifying restriction.4 In order

to test the correct specification of a given eigenfunction volatility model, we impose the particular

parametrization implied by the model under the null hypothesis.

In the sequel, we will first provide primitive conditions on the measurement error Nt,M , in terms

of its moments and memory structure, for the asymptotic validity of tests based on the comparison

of the moments of RMt,M with those of IVt. Then, we shall adapt the given primitive conditions

on Nt,M to the three considered realized measures of integrated volatility: namely,

(a) realized volatility, defined as

RVt,M =
M−1∑

j=1

(
Xt+(j+1)/M −Xt+j/M

)2 ; (7)

4However, note that when p = 2, in the case of Ornstein-Uhlenbeck and affine processes, λ2 = 2λ1. Thus, in this

case we have one less parameter to estimate but also one less identifying restriction.
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(b) normalized bipower variation, defined as

(µ1)−2BVt,M = (µ1)−2 M

M − 1

M−1∑

j=2

∣∣Xt+(j+1)/M −Xt+j/M

∣∣ ∣∣Xt+j/M −Xt+(j−1)/M

∣∣ (8)

where µ1 = E |Z| = 21/2Γ(1)/Γ(1/2) and Z is a standard normal distribution;

(c) modified subsampled realized volatility, defined as

R̂V
u
t,l,M = RV avg

t,l,M − 2lν̂t,M , (9)

where

ν̂t,M =
RVt,M

2M
=

1
2M

M−1∑

j=1

(
Xt+(j+1)/M−Xt+j/M

)2
,

RV avg
t,l,M =

1
B

B∑

b=0

RV b
t,l,M =

1
B

B−1∑

b=0

M−(B−b−1)∑

j=b+1

(
Xt+jB/M−Xt+(j−1)B/M

)2
, (10)

and Bl ∼= M ; l denotes the subsample size and B the number of subsamples.

In particular, for each considered realized measure we will provide regularity conditions for the rel-

ative speed at which T, M, l go to infinity for the asymptotic validity of the associated specification

test for integrated volatility.

In the remainder of the paper, two main cases will be considered. The first is when explicit

formulae for the moments of the integrated volatility are available, and so the map between the

parameters (a0, . . . , ap,λ1, . . . ,λp) and the parameters describing the volatility diffusion in (2) is

known in closed form; the second case is when explicit formulae for the moments of the integrated

volatility are not available. As detailed in the following section, in the first case the parameters of

the model will be estimated with a generalized method of moments estimator, while in the second

case a simulated method of moments estimator will be employed.

3 The case where the moments are known explicitly

When explicit formulae for the moments of the integrated volatility are available, and so is the

map between the parameters (a0, . . . , ap,λ1, . . . , λp) and the parameters describing the volatility

diffusion in (2), we can immediately write the set of moment conditions as

gT,M (θ) =
1
T

T∑

t=1

gt,M (θ) (11)
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=





1
T

∑T
t=1 RMt,M − E(IV1 (θ))

1
T

∑T
t=1

(
RMt,M −RMT,M

)2 − var(IV1 (θ))
1
T

∑T
t=1

(
RMt,M −RMT,M

) (
RMt−1,M −RMT,M

)
− cov(IV1 (θ) , IV2 (θ))

...
1
T

∑T
t=1

(
RMt,M −RMT,M

) (
RMt−k,M −RMT,M

)
− cov(IV1 (θ) , IVk+1 (θ))





,

where RMT,M = T−1 ∑T
t=1 RMt,M and the moments of integrated volatility are computed under

the volatility model implied by the null hypothesis. The generalized method of moments (GMM)

estimator can be defined as the minimizer of the quadratic form

θ̂T,M = arg min
θ∈Θ

gT,M (θ)′W−1
T,MgT,M (θ). (12)

The weighting matrix in (12) is given by

WT,M =
1
T

T∑

t=1

(
g∗t,M − g∗T,M

) (
g∗t,M − g∗T,M

)′ (13)

+
2
T

pT∑

v=1

wv

T∑

t=v+1

(
g∗t,M − g∗T,M

) (
g∗t−v,M − g∗T,M

)′
,

where wv = 1− v
pT−1 , pT denotes the lag truncation parameter, g∗T,M = T−1 ∑T

t=1 g∗t,M and

g∗t,M =





RMt,M(
RMt,M −RMT,M

)2

(
RMt,M −RMT,M

) (
RMt−1,M −RMT,M

)

...
(
RMt,M −RMT,M

) (
RMt−k,M −RMT,M

)





. (14)

Note that the vector gT,M (θ) is (2p + 2)× 1, while the parameter space Θ ∈ R2p+1; therefore the

use of gT,M (θ) in estimating θ imposes one overidentifying restriction.

Indeed, GMM is not the only available estimation procedure. For example, Barndorff-Nielsen

& Shephard (2002) suggested a Quasi Maximum Likelihood Estimator (QMLE) using a state-space

approach, based on the series of realized volatilities. Thus, QMLE explicitly takes into account

the measurement error between realized and integrated volatility. In the present context, we limit

our attention to (simulated) GMM, as our objective is to provide a specification test based on the

validity of overidentifying restrictions.

We can define the minimizer of the limiting quadratic form

θ∗ = arg min
θ∈Θ

g∞(θ)′W−1
∞ g∞(θ), (15)

where g∞(θ) and W−1
∞ are the probability limits, as T and M go to infinity, of gT,M (θ) and W−1

T,M ,

respectively.
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Hereafter, we shall test the following hypothesis

H0 : g∞(θ∗) = 0 versus HA : g∞(θ∗) $= 0. (16)

Note that correct specification of the integrated volatility process implies the satisfaction of the null

hypothesis. On the other hand, the test does not have power against a possible stochastic volatility

eigenfunction model leading to an integrated volatility having the same first two moments and the

same covariance structure as that implied by the null model.

In the sequel, we shall need the following set of assumptions.

Assumption A1: There is a sequence bM , with bM →∞ as M →∞, such that, uniformly in t,

(i) E (Nt,M ) = O(b−1
M ),

(ii) E
(
N2

t,M

)
= O(b−1

M ),

(iii) E
(
N4

t,M

)
= O(b−3/2

M ),

(iv) either

(a) Nt,M is strong mixing with size −r, where r > 2; or

(b) E (Nt,MNs,M ) = O(b−2
M ) + αt−sO(b−1

M ), where αt−s = O(|t− s|−2).

Assumption A2: ft is a time reversible process.

Assumption A3: the spectrum of the infinitesimal generator operator A of ft is discrete, and

denoted by λ0 = 0 < λ1 < . . . < λi < λi+1, where i ∈ N and −λi is the eigenvalue associated with

the i− th eigenfunction Pi(ft).

Assumption A4: Θ is a compact set of R2p+1, with p finite

Assumption A5:

(i) θ̂T,M and θ∗ are in the interior of Θ,

(ii) E (∂gt,M (θ)/∂θ|θ∗) is of full rank,

(iii) g∞(θ)′W−1
∞ g∞(θ) has a unique minimizer.

Assumption A1 states some primitive conditions on the measurement error Nt,M . Basically, it

requires that its first, second and fourth moments approach zero at a fast enough rate as M →∞,

and that E(Nt,MNt−k,M ) declines to zero fast enough as both |k|,M → ∞. As we shall see in

Section (), the rate at which b−1
M declines to zero depends on the specific realized measure we use.

Assumptions A2 and A3 are the assumptions used by Meddahi (2001, 2002b) and by ABM2002 for

the moments and covariance structure of IVt (θ) . One-dimensional diffusions are stationary and

ergodic if A2 is satisfied (see e.g. Hansen, Scheinkman & Touzi, 1998), while A3 holds providing
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that the infinitesimal generator operator is compact (Hansen, Scheinkman & Touzi, 1998) and is

satisfied, for example, in the square root or the log-normal volatility models.5

The test statistic for the validity of moment restrictions is given by

ST,M = TgT,M (θ̂T,M )′W−1
T,MgT,M (θ̂T,M ). (17)

The following Theorem establishes the limiting distribution of ST,M under the null hypothesis and

consistency of the associated test.

Theorem 1. Let A1-A5 hold. If as T,M → ∞, T/b2
M → 0, pT → ∞ and pT /T 1/4 → 0, then,

under H0,

ST,M
d−→ χ2

1,

and, under HA,

Pr
(
T−1 |ST,M | > ε

)
→ 1, for some ε > 0.

Notice that we require that T grows at a slower rate than b2
M . Thus, the slower is the rate of

growth of bM , the stronger is this requirement. The rate of growth of bM depends on the specific

realized measure RMt,M used and will be specified explicitly in Section 5.

As usual, once the null is rejected, inspection of the moment condition vector provides some

insights on the nature of the violation.

Remark 1. Recently, Barndorff-Nielsen & Shephard (2004a) have provided a feasible central limit

theorem for realized volatility and realized covariance valid for general continuous semimartingale

processes, allowing for generic leverage effects. More precisely, they show that M1/2
(
RVTM − IVT

)

has a mixed normal limiting distribution, when M →∞ and T is fixed. Thus, Barndorff-Nielsen &

Shephard’s feasible central limit theorem applies to the case in which the discrete interval between

successive observations approaches zero and the time span remains fixed. In this paper we deal

with a double asymptotics in which both T and M go to infinity, and in order to have a valid limit

theory we first need to show that

1√
T

T∑

t=1

(RMt,M − E(RMt,M )) =
1√
T

T∑

t=1

(IVt − E(IVt)) + op(1)

and then that T−1/2 ∑T
t=1 (IVt − E(IVt))) satisfies a central limit theorem. For this reason, we

need that the memory of IVt and of Nt,M declines at a sufficiently fast rate. This is ensured by

the class of stochastic eigenfunction volatility models; in fact, in this class integrated volatility has

a memory decaying at a geometric rate and has an ARMA(p, p) structure, when the number of

eigenfunctions, p, is finite.
5 The spectral decomposition of multivariate diffusion is analyzed by Hansen & Scheinkman (1995) and by Chen,

Hansen & Scheinkman (2000). The latter paper also addresses the issue of nonparametric estimation of the drift in

multidimensional diffusion processes.
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4 The case where the moments are not known explicitly

The testing procedure suggested above requires the knowledge of the specific functional form of the

eigenvalues and of the coefficients of the eigenfunctions, λi and a0, ai, i = 1, . . . , p, in terms of the

parameters characterizing the volatility process under the null hypothesis.

For the case where this information is not available, we can nevertheless construct a test based

on the comparison between the sample moments of the observed volatility measure and the sample

moments of simulated integrated volatility. If the null hypothesis is true, the two sets of moments

approach the same limit, as T and M approach infinity, otherwise they will converge to two different

sets of limiting moments.

As one can notice from (12), a test for the correct specification of mean, variance and covariance

structure of integrated volatility can be performed without knowledge of the leverage parameter ρ

and/or the (return) drift parameter m. This is because we rule out the possibility of a feedback

effect from the observable state variable to the unobservable volatility. Then, our objective is to

approximate by simulation the first two moments and a given number of covariances (depending on

the number of eigenfunctions of the model under the null hypothesis) of the daily volatility process.

This is somewhat different from the situation in which we simulate the path of the process

describing (the log of) the price of the financial asset, we sample the simulated paths at the same

frequency as the data, and then we match (functions of) the sample moments of the data and

of the simulated data using only observations at discrete time t = 1, . . . , T. In fact, in the latter

case it suffices to ensure that, for t = 1, . . . , T , the difference between the simulated skeleton

and the simulated continuous trajectories is approaching zero, in a mean square sense, as the

sampling interval approaches zero. Broadly speaking, in the latter case it suffices to have a good

approximation of the continuous trajectory only at the same frequency of the data, i.e. at t =

1, . . . , T.

On the other hand, in the current context, this does no longer suffice as we need to approximate

all the path, given that daily volatility (say from t − 1 to t) is defined as the integral of (instan-

taneous) volatility over the interval t − 1 and t. Pardoux and Talay (1985) provide conditions for

uniform, almost sure convergence of the discrete simulated path to the continuous path, for given

initial conditions. However, such a result holds only on a finite time span. The intuitive reason

is that the uniform, almost sure convergence follows from the modulus of continuity of a diffusion

(and of the Brownian motion), which holds only over a finite time span.

Therefore we shall proceed in the following manner. For any value θ in the parameter space Θ we

simulate a path of length k+1, where k is the highest order autocovariance that we want to include

into the moment conditions, using a discrete time interval which can be set to be arbitrarily small.

As with a finite time span we cannot rely on the ergodic properties of the underlying diffusion, we

need to draw the initial value from the invariant distribution of the volatility model under the null
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hypothesis. Such invariant distribution is indeed known in most cases; for example it is a gamma

for the square root volatility and it is an inverse gamma for the GARCH-diffusion volatility. Also,

at least in the univariate case, we always know the functional form of the invariant density. For

each θ ∈ Θ, we simulate S paths of length k + 1, for S sufficiently large. We then construct the

simulated sample moments by averaging over S the relevant quantities. More formally we proceed

as follows.

For any simulation i = 1, . . . , S, for j = 1, . . . , N and for any θ ∈ Θ, we simulate the volatility

paths of length k + 1 using a Milstein scheme, i.e.

fi,jξ (θ) = fi,(j−1)ξ (θ) + µ(fi,(j−1)ξ (θ) , θ)ξ − 1
2
σ′(fi,(j−1)ξ (θ) , θ)σ(fi,(j−1)ξ (θ) , θ)ξ

+σ(fi,(j−1)ξ (θ) , θ)
(
Wjξ −W(j−1)ξ

)
(18)

+
1
2
σ′(fi,(j−1)ξ (θ) , θ)σ(fi,(j−1)ξ (θ) , θ)

(
Wjξ −W(j−1)ξ

)2
,

where σ′ (·) denotes the derivative of σ (·) with respect to its first argument,
{
Wjξ −W(j−1)ξ

}
is

i.i.d. N(0, ξ), fi,0 (θ) is drawn from the invariant distribution of the volatility process under the null

hypothesis, and finally Nξ = k + 1. For each i it is possible to compute the simulated integrated

volatility as

IVi,τ,N (θ) =
1

N/(k + 1)

N/(k+1)∑

j=1

σ2
i,τ−1+jξ(θ), τ = 1, . . . , k + 1, (19)

where N/(k + 1) = ξ−1, assumed to be an integer for the sake of simplicity, and

σ2
i,τ−1+jξ(θ) = ψ(fi,τ−1+jξ (θ)).

Also, averaging the quantity calculated in (19) over the number of simulations S and over the

length of the path k + 1 yields respectively

IV S,τ,N (θ) =
1
S

S∑

i=1

IVi,τ,N (θ) ,

and

IV S,N (θ) =
1

k + 1

k+1∑

τ=1

IV S,τ,N (θ) .

We are now in a position to define the set of moment conditions as

g∗T,M − gS,N (θ) =
1
T

T∑

t=1

g∗t,M − 1
S

S∑

i=1

gi,N (θ) , (20)
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where g∗t,M is defined as in (14) and

1
S

S∑

i=1

gi,N (θ) =





1
S

∑S
i=1 IVi,1,N (θ)

1
S

∑S
i=1

(
IVi,1,N (θ)− IV S,N (θ)

)2

1
S

∑S
i=1

(
IVi,1,N (θ)− IV S,N (θ)

) (
IVi,2,N (θ)− IV S,N (θ)

)

...
1
S

∑S
i=1

(
IVi,1,N (θ)− IV S,N (θ)

) (
IVi,k+1,N (θ)− IV S,N (θ)

)





. (21)

Similarly to the case analyzed in the previous Section, it is possible to define the simulated

method of moments estimator as the minimizer of the quadratic form

θ̂T,S,M,N = arg min
θ∈Θ

(g∗T,M − gS,N (θ))′W−1
T,M (g∗T,M − gS,N (θ)), (22)

where W−1
T,M is defined in (13). Also, define

θ∗ = arg min
θ∈Θ

(g∗∞ − g∞ (θ))′W−1
∞ (g∗∞ − g∞ (θ)), (23)

where g∗∞, g∞ (θ) and W−1
∞ are the probability limits, as T , S, M and N go to infinity, of g∗T,M ,

gS,N (θ) and W−1
T,M , respectively.

Finally, the statistic for the validity of the moment restrictions is given by

ZT,S,M,N = T
(
g∗T,M − gS,N

(
θ̂T,S,M,N

))′
W−1

T,M

(
g∗T,M − gS,N

(
θ̂T,S,M,N

))
. (24)

Analogously to the case in which the moment conditions were known, we consider the following

hypothesis

H0 : (g∗∞ − g∞ (θ∗)) = 0 versus HA : (g∗∞ − g∞ (θ∗)) $= 0.

Before moving on the study of the asymptotic properties of ZT,S,M,N we need some further

assumptions.

Assumption A6: The drift and variance functions µ (·) and σ (·) , as defined in (3), satisfy the

following conditions:

(1a) |µ(fr (θ1) ,θ1)− µ(fr (θ2) , θ2)| ≤ K1,r ‖θ1 − θ2‖,

|σ(fr (θ1) , θ1)− σ(fr (θ2) ,θ2)| ≤ K2,r ‖θ1 − θ2‖,

for 0 ≤ r ≤ k + 1, where ‖·‖ denotes the Euclidean norm, any θ1, θ2 ∈ Θ, with K1,r, K2,r

independent of θ, and supr≤k+1 K1,r = Op(1), supr≤k+1 K2,r = Op(1).

(1b) |µ(fr,N (θ1) ,θ1)− µ(fr,N (θ2) , θ2)| ≤ K1,r,N ‖θ1 − θ2‖ ,

|σ(fr,N (θ1) ,θ1)− σ(fr,N (θ2) ,θ2)| ≤ K2,r,N ‖θ1 − θ2‖, where fr,N (θ) = f,Nrξ
k+1- (θ) and for

any θ1, θ2 ∈ Θ, with K1,r,N , K2,r,N independent of θ, and supr≤k+1 K1,r,N = Op(1),

supr≤k+1 K2,r,N = Op(1), uniformly in N .
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(2) |µ(x,θ)− µ(y, θ)| ≤ C1 ‖x− y‖ , |σ(x,θ)− σ(y, θ)| ≤ C2 ‖x− y‖ ,

where C1, C2 are independent of θ.

(3) σ (·) is three times continuously differentiable and ψ (·) is a Lipschitz-continuous function.

Assumption A7: (g∗∞ − g∞ (θ∗))′W−1
∞ (g∗∞ − g∞ (θ∗)) < (g∗∞ − g∞ (θ))′W−1

∞ (g∗∞ − g∞ (θ)), for

any θ $= θ∗.

Assumption A8:

(1) θ̂T,S,M,N and θ∗ are in the interior of Θ.

(2) gS (θ) is twice continuously differentiable in the interior of Θ, where

gS (θ) =
1
S

S∑

i=1

gi (θ) , (25)

where

gS (θ) =
1
S

S∑

i=1

gi (θ) =





1
S

∑S
i=1 IVi,1 (θ)

1
S

∑S
i=1

(
IVi,1 (θ)− IV S (θ)

)2

1
S

∑S
i=1

(
IVi,1 (θ)− IV S (θ)

) (
IVi,2 (θ)− IV S (θ)

)

...
1
S

∑S
i=1

(
IVi,1 (θ)− IV S (θ)

) (
IVi,k+1 (θ)− IV S (θ)

)





, (26)

and, for τ = 1, . . . , k + 1,

IVi,τ (θ) =
∫ τ

τ−1
σ2

i,s (θ) ds, IV S (θ) =
1

k + 1

k+1∑

τ=1

1
S

S∑

i=1

∫ τ

τ−1
σ2

i,s (θ) ds.

(3) E(∂g1 (θ) /∂θ|θ=θ∗) exists and is of full rank.

Assumption A6-(2)(3), corresponds to Assumption (ii)’ in Theorem 6 in Pardoux & Talay (1985),

apart from the fact that we also require uniform Lipschitz continuity on the parameter space

Θ. Uniform Lipschitz continuity on the real line is a rather strong requirement which is violated

by the most popular stochastic volatility models. However, most stochastic volatility models are

locally uniform Lipschitz. For example, the square root volatility model, analyzed in the empirical

application, is uniform Lipschitz provided that ft is bounded above from zero, a condition which is

satisfied with unit probability. As for the Lipschitz continuity of ψ (·), it is satisfied over bounded

sets. Now, note that, since we simulate the paths only over a finite time span, this is not a too

strong requirement. In fact, as the diffusion is stationary and (geometrically) ergodic, then the

probability that the process escapes from a (large enough) compact set is zero over a finite time

span.

Then, we can state the limiting distribution of ZT,S,M,N under H0 and the properties of the

associated specification test.
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Theorem 2. Let A1-A4 and A6-A8 hold. Also, assume that as T → ∞, M → ∞, S → ∞,

N →∞, T/N (1−δ) → 0, δ > 0, T/b2
M → 0, pT →∞, pT /T 1/4 → 0, and T/S → 0. Then, under H0,

ZT,S,M,N
d−→ χ2

1,

and, under HA,

Pr
(
T−1 |ZT,S,M,N | > ε

)
→ 1, for some ε > 0.

Given that we require T/S → 0, the simulation error is asymptotically negligible, and so

it is not surprising that the standard J-test for overidentifying restrictions and the simulation

based J-test are asymptotically equivalent. If T/S → π, with 0 < π < ∞, one may expect that

(1+π)−1/2ZT,S,M,N still has a χ2
1 limiting distribution. However, this is not the case. The intuitive

reason is that we simulate S volatility paths of finite length k +1, instead of a single path of length

S. Therefore, the long-run variance of the simulated moment conditions does not coincide with the

long-run variance of the realized volatility moment conditions.

Remark 2. Notice that, in Theorems 1 and 2, we have considered the case of mean, variance and a

given number of autocovariances of IVt. In principle, there is no particular reason why to confine

our attention to the set of conditions based on the moments defined in (6). In fact, we could

just consider a generic set of moment conditions E (φ(RMt,M , . . . , RMt−k,M )) , with the function

φ : Rk+1 → R2p+r, r ≥ 1, not necessarily known in closed form, satisfying Assumption A7 above.

For any i = 1, . . . , 2p + r, we could use a Taylor expansion around integrated volatility, yielding

φi(RMt,M , . . . , RMt−k,M ) = φi(IVt,M , . . . , IVt−k,M ) +
2∑

j=1

∂φi

∂RMt−j,M

∣∣∣∣
IVt−j

Nt−j,M

+
1
2

2∑

j=1

2∑

h=1

∂φ2
i

∂RMt−j,M∂RMt−h,M

∣∣∣∣
IVt−j ,IVt−h

Nt−j,MNt−h,M

+
2∑

j=1

2∑

h=1

op (Nt−j,MNt−h,M ) .

Therefore, the asymptoric validity of a test based on E (φ(RMt,M , . . . , RMt−k,M )) follows by the

same argument used in the proof of Theorem 1 if E (φ(RMt,M , . . . , RMt−k,M )) is known explicitly

and of Theorem 2 otherwise.

Finally, in order to construct a simulated GMM test, we could also follow an alternative route.

We can simulate the trajectories of both the volatility and log price processes and then sample

the latter at the same frequency of the data. Then we can compare the moments of the realized

measure of volatility computed using actual and simulated data. If data are simulated from a

model which is correctly specified for both the observable asset and the volatility process, then

the two set of moments converge to the same limit as T → ∞, regardless of M. In the context of

the applications analyzed below, this is viable only in the case in which we use realized volatility
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as the chosen realized measure. In that case, if we properly model the leverage effect and if the

constant drift specification is correct, then moments of realized volatility and simulated realized

volatility approach the same limit as the time span go to infinity, regardless of whether M → ∞.

However, this is not a viable solution when we use either normalized bipower variation or the

modified subsampled realized volatility as the chosen realized measures. In fact, if simulate the log

price process without jumps, then the moments of actual and simulated realized bipower variation

measures do not converge to the same limit for T →∞, for fixed M, unless also the actual log price

process does not exhibit jumps. Analogously, also the moments of actual and simulated subsampled

realized volatility cannot converge to the same limit for T →∞, for fixed M, unless also the actual

log price process is observed without measurement error.

In the next Section the testing procedure outlined above will be specialized to the three con-

sidered measures of integrated volatility, namely realized volatility, bipower variation and modified

subsampled realized volatility.

5 Applications to specific estimators of integrated volatility

Assumption A1 states some primitive conditions on the measurement error between integrated

volatility and realized measure. Basically, it requires that the first, second and fourth moments

of the error approach zero as M → ∞, thus implying that the realized measure is a consistent

estimator of integrated volatility; and that the autocorrelations of Nt,M , corr(Nt,M , Ns,M ), decline

to zero at a rate depending on both the number of intradaily observations (M) and on the absolute

distance |t− s|.
More precisely, if T grows at a slower rate than b2

M , then averages over the number of days

(scaled by
√

T ) of sample moments of the realized measure and of the integrated volatility process

are asymptotically equivalent. It is immediate to see that the slower the rate at which bM grows,

the stronger is the requirement that T/b2
M → 0. In this section we provide exact rates of growth

for bM and necessary restrictions on the model in (1) and on the measurement error in (4), under

which realized volatility, defined as RVt,M in (7), bipower variation, defined as BVt,M in (8) and

modified subsampled realized volatility, defined as R̂V
u
t,M in (9), satisfy Assumption A1 and then

lead to asymptotically valid specification tests.

5.1 Realized Volatility

Realized volatility has been suggested as an estimator of integrated volatility by. When the (log)

price process is a continuous semimartingale, then realized volatility is a consistent estimator of

the increments of the quadratic variation (see e.g. Karatzas & Shreve, 1988, Ch.1). The relevant

limit theory, under general conditions, also allowing for generic leverage effects, has been provided
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by Barndorff-Nielsen & Shephard (2004a), who have shown that

√
M

(
RVTM −

∫ T

0
σ2

sds

)
d−→ MN

(
0, 2

∫ T

0
σ4

sds

)
, (27)

for given T , where the notation RMTM in (27), (28) and (29) means that the realized measure has

been constructed using intradaily observations between 0 and T .

The result stated above holds for a fixed time span and therefore the asymptotic theory is based

on the interval between successive observations approaching zero.

The regularity conditions for the specification test obtained using realized volatility are con-

tained in the following Proposition.

Proposition 1. Let dzt = 0, a.s. and ν = 0, where dzt and ν are defined in (1) and in (4),

respectively. Then Assumption A1 holds with RMt,M = RVt,M for bM = O(M).

From the Proposition above, we see that, when there are no jumps and no microstructure noise

in the price process, then Assumption A1 is satisfied for bM = M and so Proposition 1 holds with

T/M2 → 0.

5.2 Bipower Variation

Bipower variation has been introduced by Barndorff-Nielsen & Shephard (2004d), who have shown

that, when the (log) price process contains a finite number of jumps, and when there is no leverage

effect, then
√

M

(
µ−2

1 BVTM −
∫ T

0
σ2

sds

)
d−→ MN

(
0, 2.6090

∫ T

0
σ4

sds

)
. (28)

Again, the provided limit theory holds over a finite time span. As one can immediately see from

comparing (27) and (28), robustness to rare and large jumps is achieved at the expense of some loss

in efficiency. The intuition behind the results by Barndorff-Nielsen and Shephard is very simple.

Since only a finite number of jumps can occur over a finite time span, then the probability of having

a jump over two consecutive observations will be low, and then this will not induce a bias on the

estimator. The fact that when there are no jumps, both RVT ,M and µ−2
1 BVT ,M are consistent

estimators for IVT , with the former being more efficient can be used to construct Hausman type

tests for the null hypothesis of no jumps. For example, Huang & Tauchen (2003) suggest different

variants of Hausman tests based on the limit theory of Barndorff-Nielsen & Shephard (2004c) and

Andersen, Bollerslev & Diebold (2003) provide empirical findings about the relevance of jumps in

predicting volatility.

The following Proposition states the regularity conditions on the relative rates of growth of T

and M for the specification test constructed using bipower variation.
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Proposition 2. Let ρ = 0 and ν = 0, where ρ and ν are defined in (1) and in (4), respectively.

Then Assumption A1 holds with RMt,M = BVt,M for bM = O(M1/2).

In the case of large and occasional jumps, and in the absence of leverage effect, the measurement

error associated with the bipower variation process satisfies Assumption A1 for bM = M1/2. Thus,

in this case Theorems 1 and 2 apply provided that T/M → 0. It may seem a little bit strange that in

the case of bipower variation the rate of growth of bM should be slower than in the case of realized

volatility. In fact, Barndorff-Nielsen & Shephard (2004c) have shown that both realized volatility,

in the continuous semimartingale case, and bipower variation are consistent for integrated volatility

at the same rate
√

M . However, they consider the case of a finite time span, say 0 ≤ t ≤ T < ∞,

and thus, without loss of generality, they can assume that supt≤T σ2
t is bounded. On the other

hand, in the present context we let the time span approach infinity, and so we simply assume that

supt≤T (σ2
t /
√

T ) = op(1). Therefore, the error between bipower variation and realized volatility and

the additional error due to the presence of a drift term, are of order o(T 1/2M−1) instead of O(M−1).

This is why we require T to grow at a slower rate with respect to M in the bipower variation case.

5.3 Modified Subsampled Realized Volatility

In order to provide an estimator of integrated volatility robust to microstructure errors, Zhang,

Mykland & Aı̈t Sahalia (2003) have proposed a subsampling procedure. Under the specification for

the microstructure error term detailed in (4), they show that, in the absence of jumps in the price

process,

M1/6

(
R̂V

u
TM −

∫ T

0
σ2

sds

)
d−→

(
s2

)1/2 N(0, 1) , (29)

for given T , where the asymptotic spread s2 depends on the variance of the microstructure noise,

the length of the fixed time span and on integrated quarticity. Inspection of the limiting result

given in (29) reveals that the cost of achieving robustness to microstructure noise is paid in terms of

a slower convergence rate. The logic underlying the subsampled robust realized volatility of Zhang,

Mykland & Aı̈t Sahalia is the following. By constructing realized volatility over non overlapping

subsamples, using susbamples of size l, we reduce the bias due to the microstructure error; in fact

the effect of doing so is equivalent to using a lower intraday frequency. By averaging over different

non overlapping subsamples, we reduce the variance of the estimator. Finally, the estimator of the

bias term is constructed using all the M intradaily observations, and so the error due to the fact

that we correct the realized volatility measure using an estimator of the bias instead of the true

bias, is asymptotically negligible.6 Thus, if there are no jumps, and if the subsample length l is of
6Zhang, Mykland & Aı̈t Sahalia (2003) consider a more general set-up in which the sampling interval can be

irregular. Also note that, as subsamples cannot overlap, Bl is not exactly equal to M ; however such an error is

negligible as B and l tend to infinity with M .
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order O(M1/3), and so the number of non overlapping subsamples is of order M2/3, Assumption 1

is satisfied with RMt,M = R̂V
u
t,M . The regularity conditions are stated precisely in the following

Proposition.

Proposition 3. Let dzt = 0 a.s., where dzt is defined in (1). If l = O(M1/3), then Assumption

A1 holds with RMt,M = R̂V
u
t,l,M , for bM = M1/3.

It is immediate to see that in this case, T has to grow at a rate slower than M2/3. However, this

is not a too big problem. In fact, one reason for not using the highest possible frequency is that

prices are likely to be contaminated by microstructure error, and in general, the signal to noise

ratio decreases as the sampling frequency increases. Nevertheless, if we employ a volatility measure

which to robust to the effect of microstructure error, we can indeed employ the highest available

frequency. In this sense, the requirement that T/M2/3 → 0 is not as stringent as it may seems.

In this paper, we have considered the case of one asset and one latent factor. Extensions to

the case of two or more factors driving the volatility process are straightforward. In fact, following

Meddahi (2001) and considering, without loss of generality, the case of two independent factors f1,t

and f2,t, it is possible to expand the instantaneous volatility as

σ2
t = ψ (f1,t, f2,t) =

p1∑

i=0

p2∑

j=0

ai,jP1,i(f1,t)P2,j(f2,t) with
p1∑

i=0

p2∑

j=0

a2
i,j < ∞.

Then defining

Pi,j (ft) = P1,i(f1,t)P2,j(f2,t) with ft = (f1,t, f2,t)′

it is possible to use all the results given in the previous Sections. Of course, in the multifactor case,

the reversibility assumption is not necessarily satisfied (a test for the reversibility hypothesis has

been provided by Darolles, Florens & Gouriéroux, 2004).

6 Empirical Illustration

In this section an empirical application of the testing procedure proposed in the previous section

will be detailed. A stochastic volatility model very popular both in the theoretical and empirical

literature is the square root model proposed by Heston (1993). The model takes its name from the

fact that the variance process σ2
t (θ) is square root, i.e.

dσ2
t (θ) = κ

(
µ− σ2

t (θ)
)
dt + ησt (θ) dW2,t, κ > 0.

Following Meddahi (2001) it is then possible to define α and the unobservable state variable ft by

α =
2κµ

η2
− 1, ft (θ) =

2κ

η2
σ2

t (θ) .
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Then the equation describing the dynamic behaviour of ft is given by

dft (θ) = κ (α + 1− ft (θ)) dt +
√

2κ
√

ft (θ)dW2,t

and it turns out that the variance process σ2
t (θ) is explained completely by the first eigenfunction

of the infinitesimal generator associated with ft (θ) through the equation

σ2
t (θ) = a0 + a1P1 (ft (θ))

= µ−
√

µη
√

2κ

2κµ/η2 − ft (θ)√
2κµ/η2

. (30)

Moreover, in this case θ =
(
µ,
√

µη/
√

2κ, κ
)′ and the marginal distribution of σ2

t (θ) is given by a

Gamma γ (α + 1, µ/ (α + 1)).

Using (6), it is possible to obtain the relevant moments for this specific stochastic volatility

model. In fact, by considering

E(IVt (θ)) = a0 = µ

var(IVt (θ)) = 2 a2
1

λ2
1
(exp(−λ1) + λ1 − 1) = µη2

κ3 (exp(−κ) + κ− 1)

cov(IVt (θ) , IVt−1 (θ)) = a2
1 exp (1−exp(−λ1))

2

λ1
= µη2

2κ
(1−exp(−κ))2

κ2

cov(IVt (θ) , IVt−2 (θ)) = a2
1 exp (−λ1)

(1−exp(−λ1))
2

λ1
= µη2

2κ exp (−κ) (1−exp(κ))2

κ2

(31)

one obtains exactly one overidentifying restriction to test and the elements of the test statistic

defined in (17) are given respectively by

gT,M (θ) =





1
T

∑T
t=1 RMt,M − µ

1
T

∑T
t=1

(
RMt,M −RMM

)2 − µη2

κ3 (exp(−κ) + κ− 1)
1
T

∑T
t=1

(
RMt,M −RMM

) (
RMt−1,M −RMM

)
− µη2

2κ
(1−exp(−κ))2

κ2

1
T

∑T
t=1

(
RMt,M −RMM

) (
RMt−2,M −RMM

)
− µη2

2κ exp (−κ) (1−exp(κ))2

κ2




(32)

and by the results of the calculation required in (13).

The empirical analysis is based on data retrieved from the Trade and Quotation (TAQ) database

at the New York Stock Exchange. The TAQ database contains intraday trades and quotes for all

securities listed on the New York Stock Exchange, the American Stock Exchange and the Nasdaq

National Market System. The data is published monthly since 1993. Our sample contains the

three most liquid stocks included in the Dow Jones Industrial Average, namely General Electric,

Intel and Microsoft, and extends from January 1, 1997 until December 24, 2002, for a total of

1509 trading days.7 Our choice for the stocks included in the sample is motivated by the need of

sufficient liquidity in order to compute the subsampled robust realized volatility.

From the original data set, which includes prices recorded for every trade, we extracted 10

seconds and 5 minutes interval data, similarly to Andersen & Bollerslev (1997). The 5 minutes
7 Trading days are divided over the different years as follows: 253, 252, 252, 252, 248, 252 from 1997 to 2002.

Note that there are 5 days missing in 2001 due to September 11th.
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frequency is generally accepted as the highest frequency at which the effect of microstructure biases

are not too distorting (see Andersen, Bollerslev, Diebold & Labys, 2001). Conversely, 10 seconds

data have been extracted in order to compute the subsampled robust realized volatility.

The price figures for each 10 seconds and 5 minutes intervals are determined as the interpolated

average between the preceding and the immediately following transaction prices, weighted linearly

by their inverse relative distance to the required point in time. For example, suppose that the

price at 15:29:56 was 11.75 and the next quote at 15:30:02 was 11.80, then the interpolated price

at 15:30:00 would be exp(1/3× log(11.80) + 2/3× log(11.75)) = 11.766. From the 10 seconds and

5 minutes price series we calculated 10 seconds and 5 minutes intradaily returns as the difference

between successive log prices.

The New York Stock Exchange opens at 9:30 a.m. and closes at 4:00 p.m.. Therefore a full

trading day consists of 2341 (resp. 79) intraday returns calculated over an interval of 10 seconds

(resp. five minutes). For some stocks, and in some days, the first transactions arrive some time

after 9:30; in these cases we always set the first available trading price after 9:30 a.m to be the

price at 9:30 a.m.. Highly liquid stocks may have more than one price at certain points in time (for

example 5 or 10 quotations at the same time stamp is very common for Intel and Microsoft); when

there exists more than one price at the required interval, we select the last provided quotation. For

interpolating a price from a multiple price neighborhood, we select the closest provided price for

the computation.

The square root model for the volatility component has been tested considering all the realized

measures considered in Section 5. In particular, the test has been conducted for

(a) realized volatility, using a time span of a hundred days (T = 100) and an intradaily frequency

of five minutes (M = 79);

(b) normalized bipower variation, using two different daily time spans (T = 50, 100), with M =

79;

(c) subsampled robust realized volatility, using T = 100, M = 2341, the size of the blocks l = 30

and finally the number of blocks B = 78.

The results are summarized in Tables 1 to 3. The Tables reveal some interesting findings. First,

it seems that the square root model is a good candidate to describe the dynamic behaviour of the

volatility, at least in the chosen sample. In fact, especially for General Electric and Microsoft, the

model is rejected only for a relatively small fraction of times, irrespective of the realized measure

used.

Second, realized volatility is the measure which leads to more frequent rejections. This is not

surprising, since realized volatility is not robust to either jumps or microstructure noise in the price

process. There are cases where the only measure which does not reject the model is normalized
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bipower variation; this is a signal that in that period jumps have occurred in the log price process.

For example, this happens for Intel for the periods going from day 701 to 800 and from day 1101 to

1200; for Microsoft, for the periods going from day 901 to 1000. Conversely, there are cases where

the only measure which does not reject the model is modified subsampled realized volatility; this is a

signal that in that period prices are strongly contaminated by microstructure effects. This happens

for General Electric for the periods going from day 601 to 700 and 701 to 800; for Microsoft, for

the periods going from day 1101 to 1200 and 1201 to 1300. The test using normalized bipower

variation and conducted with T = 50, to conform to the regularity conditions in Proposition 2,

generally confirms the findings of the test with T = 100. Of course, in this case the power of the

test may be particularly low, due to smaller number of observations used.

Finally, it is worth mentioning the relative stability of the estimated parameters over different

stocks and over different time spans. Specifically, µ ranges from 0.0003 and 0.0004, η from -0.02 to

0.05 and κ from 1 to 3.

7 Concluding Remarks

In this paper a testing procedure for the hypothesis of correct specification of the integrated volatil-

ity process is proposed.

The procedure is derived by employing the flexible eigenfunction stochastic volatility model of

Meddahi (2001), which embeds most of the stochastic volatility models employed in the empirical

literature. The proposed tests rely on some recent results of Barndorff-Nielsen & Shephard (2001,

2002), ABM2002 and Meddahi (2003) establishing the moments and the autocorrelation structure

of integrated volatility.

The tests are performed by comparing sample moments of realized measures with those of

either the analytical moments of integrated volatility, when these are known, or with those of

simulated integrated volatility. We provide primitive conditions on the measurement error between

integrated volatility and realized measure, which allow to consider an asymptotically valid test for

overidentifying restrictions. We then provide regularity conditions on the relative rate of growth

of T, l, M under which realized volatility, normalized bipower variation and modified subsampled

realized volatility satisfy the given primitive conditions on the measurement error.

Finally, we report findings from an empirical example in which we test the validity of the square

root stochastic volatility model of Heston (1993) for three stocks, namely General Electric, Intel

and Microsoft. Overall, the tested model seems to explain reasonably well the dynamic behaviour

of the volatility process.

23



Table 1: Values of the test statistic ST,M for different realized measures - General Electric

Days RVt,M µ−2
1 BVt,M R̂V

u
t,l,M

1-50 0.04
1− 100

51-100
1.83 1.69

1.40
2.79

101-150 0.45
101− 200

151-200
0.18 0.04

0.43
0.43

201-250 3.04
201− 300

251-300
2.54 1.87

0.74
1.07

301-350 0.07
301− 400

351-400
1.85 2.15

1.71
0.83

401-450 2.08
401− 500

451-500
14.52 15.83

0.96
11.17

501-550 0.83
501− 600

551-600
0.77 0.27

1.95
1.92

601-650 1.38
601− 700

651-700
5.24 5.99

4.49
3.78

701-750 0.13
701− 800

751-800
4.54 4.38

3.20
0.55

801-850 0.04
801− 900

851-900
0.53 0.25

1.23
1.87

901-950 0.57
901− 1000

951-1000
2.71 2.66

0.66
1.13

1001-1050 4.36
1001− 1100

1051-1100
3.07 3.45

2.39
3.44

1101-1150 0.30
1101− 1200

1051-1100
2.69 2.96

5.50
1.34

1201-1250 0.30
1201− 1300

1251-1300
0.27 0.30

0.13
0.80

1301-1350 0.50
1301− 1400

1351-1400
4.45 2.84

3.75
2.35

1401-1450 1.71
1401− 1500

1451-1500
7.89 6.00

0.12
5.21
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Table 2: Values of the test statistic ST,M for different realized measures - Intel

Days RVt,M µ−2
1 BVt,M R̂V

u
t,l,M

1-50 0.01
1− 100

51-100
1.64 0.13

0.31
0.01

101-150 0.09
101− 200

151-200
0.68 0.23

0.71
2.04

201-250 0.16
201− 300

251-300
1.11 1.09

3.88
4.77

301-350 1.27
301− 400

351-400
1.23 1.56

0.06
2.95

401-450 0.64
401− 500

451-500
5.00 3.04

11.67
3.86

501-550 0.17
501− 600

551-600
0.01 0.01

0.81
0.39

601-650 1.12
601− 700

651-700
6.07 3.18

2.32
0.74

701-750 0.38
701− 800

751-800
6.32 3.81

1.97
9.75

801-850 1.48
801− 900

851-900
18.33 8.22

2.00
16.10

901-950 2.95
901− 1000

951-1000
6.39 9.56

3.40
13.00

1001-1050 2.21
1001− 1100

1051-1100
0.74 2.93

1.36
2.12

1101-1150 1.38
1101− 1200

1051-1100
5.29 1.96

1.90
3.92

1201-1250 6.39
1201− 1300

1251-1300
6.45 6.12

0.16
17.48

1301-1350 2.42
1301− 1400

1351-1400
10.09 0.15

3.40
3.47

1401-1450 0.82
1401− 1500

1451-1500
5.41 4.03

3.03
9.89
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Table 3: Values of the test statistic ST,M for different realized measures - Microsoft

Days RVt,M µ−2
1 BVt,M R̂V

u
t,l,M

1-50 3.74
1− 100

51-100
2.50 1.08

1.17
1.01

101-150 1.23
101− 200

151-200
1.08 1.25

2.23
2.70

201-250 3.89
201− 300

251-300
3.70 1.91

2.26
1.68

301-350 0.01
301− 400

351-400
0.76 0.07

1.52
3.08

401-450 0.59
401− 500

451-500
1.78 1.20

1.42
1.43

501-550 0.83
501− 600

551-600
0.26 0.67

0.96
0.83

601-650 0.42
601− 700

651-700
1.69 0.39

0.79
1.37

701-750 0.36
701− 800

751-800
1.55 1.93

1.32
3.43

801-850 0.20
801− 900

851-900
1.65 0.81

1.06
3.64

901-950 1.21
901− 1000

951-1000
8.39 2.62

1.67
11.40

1001-1050 1.69
1001− 1100

1051-1100
1.08 3.30

2.02
2.22

1101-1150 1.42
1101− 1200

1051-1100
10.08 9.71

2.66
2.74

1201-1250 2.53
1201− 1300

1251-1300
4.20 4.32

2.58
1.58

1301-1350 5.76
1301− 1400

1351-1400
14.45 2.79

2.21
1.71

1401-1450 6.69
1401− 1500

1451-1500
6.67 7.13

3.08
11.57
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A Appendix

In the sequel, let IVt and IVt(θ∗) denote respectively the “true” underlying daily volatility and

the daily volatility implied by the null model, respectively. The proof of Theorem 1 requires the

following Lemmas.

Lemma 1. Given A1-A5, if as T, M →∞, T/b2
M → 0, then, under H0,

√
TgT,M (θ∗) d−→ N(0,W∞),

where W∞ = limT→∞ var
(√

TgvT (θ∗)
)

, and

gvT (θ∗)

=





1
T

∑T
t=1 IVt − E(IV1 (θ∗))

1
T

∑T
t=1

(
IVt − IV

)2 − var(IV1 (θ∗))
1
T

∑T
t=1

(
IVt − IV

) (
IVt−1 − IV

)
− cov(IV2 (θ∗) , IV1 (θ∗))

...
1
T

∑T
t=1

(
IVt − IV

) (
IVt−k − IV

)
− cov(IVk+1 (θ∗) , IV1 (θ∗))





, (33)

with the moments of IVt (θ∗) given as in (6) but evaluated at θ∗.

A.1 Proof of Lemma 1

We first need to show that

1√
T

T∑

t=1

RMt,M =
1√
T

T∑

t=1

IVt + op(1), (34)

1√
T

T∑

t=1

(
RMt,M − 1

T

T∑

t=1

RMt,M

)2

=
1√
T

T∑

t=1

(
IVt −

1
T

T∑

t=1

IVt

)2

+ op(1) (35)

and

1√
T

T∑

t=1

(
RMt,M − 1

T

T∑

t=1

RMt,M

)(
RMt−k,M − 1

T

T∑

t=1

RMt,M

)

=
1√
T

T∑

t=1

(
IVt −

1
T

T∑

t=1

IVt

)(
IVt−k −

1
T

T∑

t=1

IVt

)
+ op(1). (36)

To show (34), it suffices to show that var
(

1√
T

∑T
t=1 Nt,M

)
= o(1).

Given A1(i), and given that T/b2
M → 0, then 1√

T

∑T
t=1 E(Nt,M ) = o(1). Also, let N t,M =

Nt,M − E(Nt,M ) and note that

var

(
1

T 1/2

T∑

t=1

(Nt,M − E (Nt,M ))

)
=

1
T

T∑

t=1

E
(
N t,M

)2 +
1
T

T∑

t=1

∑

s<t

E
(
N t,MN s,M

)
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+
1
T

T∑

t=1

∑

s>t

E
(
N t,MN s,M

)
, (37)

where E
(
N

2
t,M

)
= O(b−1

M ), given A1(ii). Now, if A1(iv-a) holds, then for the information set

defined as Fs = σ (Xu,σu, u ≤ s)
∣∣∣∣∣
1
T

T∑

t=1

∑

s<t

E
(
N t,MN s,M

)
∣∣∣∣∣ =

∣∣∣∣∣
1
T

T∑

t=1

∑

s<t

E
(
N s,ME

(
N t,M

)
|Fs

)
∣∣∣∣∣

≤ 1
T

T∑

t=1

(
E

(
N2

t,M

)) ∑

s>t

αt−s → 0, as M →∞,

because of mixing inequality (see e.g. Davidson, 1994, Theorem 14.2). If instead A1(iv-b) holds,

then
1
T

T−1∑

t=0

∑

s<t

E
(
N t,MN s,M

)
= TO(b−2

M ) +
1
T

T∑

t=1

O(b−1
M )

∑

s<t

αt−s → 0 as M →∞.

This completes the proof for (34). As for (35),

1√
T

T∑

t=1

(
RMt,M − 1

T

T∑

t=1

RMt,M

)2

− 1√
T

T∑

t=1

(
IVt −

1
T

T∑

t=1

IVt

)2

=
1√
T

T∑

t=1

N
2
t,M +

2√
T

T∑

t=1

N t,M

(
IVt −

T

T∑

t=1

IVt

)
+ op(1), (38)

where the op(1) comes from the fact that we have replaced 1
T

∑T
t=1 Nt,M with E(Nt,M ). Now,

var

(
1√
T

T∑

t=1

N
2
t,M

)
=

1
T

T∑

t=1

E(N4
t,M ) +

1
T

T∑

t=1

∑

s<t

E
(
N

2
t,MN

2
s,M

)
+

1
T

T∑

t=1

∑

s>t

E
(
N

2
t,MN

2
s,M

)

→ 0,

given that 1
T

∑T
t=1 E(N4

t,M ) → 0 and

1
T

T∑

t=1

∑

s>t

E
(
N

2
t,MN

2
s,M

)
≤ 1

T

T∑

t=1

∑

s>t

(
E

(
N

4
t,M

))
→ 0

by A1(iii) and recalling that T/b2
M → 0. Also, the second term of the right hand side of (38)

approaches zero as a direct consequence of Cauchy-Schwartz inequality. This completes the proof

of (35).

Finally, (36) follows by a similar argument as that used to show (35). The statement in the

Lemma then follows from the central limit theorem for mixing processes. !

Lemma 2. Given A1-A5,
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(i) if as M, T →∞, T/b2
M → 0, pT →∞ and pT /T 1/4 → 0, then

W−1
T,M

p−→W−1
∞ ,

where, under H0, W∞ = limT,M→∞ var
(

1√
T

∑T
t=1 gt,M (θ∗)

)
.

(ii) if as M,T →∞, T/b2
M → 0, pT →∞ and pT /T 1/4 → 0, then

θ̂T,M
p−→ θ∗.

A.2 Proof of Lemma 2

(i) Given Lemma 1, by the same argument used in the proof of Lemma 1 and by Theorem 2 in

Newey & West (1987).

(ii) Given A5, it suffices to show that

sup
θ∈Θ

∣∣∣gT,M (θ)′W−1
T,MgT,M (θ)− g∞(θ)′W−1

∞ g∞(θ)
∣∣∣ p−→ 0. (39)

The desired result then follows by e.g. Gallant & White (1988, ch.3). From part (i), we know

that W−1
T,M

p−→W−1
∞ . First note that, by the same argument used in the proof of Lemma 1

gT,M (θ) = gvT (θ) + op (1)

where the ramainder term does not depend on θ and gvT (θ) is defined as in (33), but

evaluated at a generic θ. As IVt follows an ARMA process, (39) follows from the uniform

law of large numbers for α−mixing processes. !

A.3 Proof of Theorem 1

We begin by showing the limiting distribution of the test statistic under the null hypothesis. Via

a mean value expansion around θ∗, we have that

√
T (θ̂T,M − θ∗) =

(
−∇θgT,M (θ̂T,M )′W−1

T,M∇θgT,M (θT,M )
)−1

∇θgT,M (θ̂T,M )′W−1
T,M

√
TgT,M (θ∗),

where θT,M ∈
(
θ̂T,M , θ∗

)
.

By the uniform law of large numbers for strong mixing processes, as M, T →∞ and T/b2
M → 0,

sup
θ∈Θ

∣∣∇θgT,M (θ)− E (∇θgvT (θ))
∣∣ p−→ 0,

where gvT (θ) is defined as in (33), but evaluated at a generic θ. Given Lemma 2, part (ii), it

follows that

∇θgT,M (θ̂T,M ) p−→ d0 = E (∇θgvT (θ∗)) .
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Analogously, the same convergence result can be established for∇θgT,M (θT,M ). Now, given Lemma 2,

√
TgT,M (θ̂T,M ) =

(
I− d∞(d′∞W∞d∞

)−1 d′∞W−1
∞ )
√

TgT,M (θ∗) + op(1),

and therefore, given Lemma 1,

√
TgT,M (θ̂T,M ) d−→ N

(
0,

(
I− d∞(d′∞W∞d∞

)−1 d′∞W−1
∞ )W∞

(
I− d∞(d′∞W∞d∞

)−1 d′∞W−1
∞ )′

)
.

Finally, given Lemma 2 part (ii), and by noting that
(
I−W−1/2

∞ d∞(d′∞W∞d∞)−1d′∞W−1/2
∞

)
is

idempotent, then

√
TW−1/2

T,M gT,M (θ̂T,M ) d−→ N
(
0,

(
I−W−1/2

∞ d∞(d′∞W∞d∞)−1d′∞W−1/2
∞

))
.

The limiting distribution under H0 then follows straightforwardly from Lemma 4.2 in Hansen (1982).

The rate of divergence under the alternative comes straightforwardly from the fact that g∞(θ∗) $=
0. !

The proof of Theorem 2 requires the following lemmas.

Lemma 3. Given A1-A4, A6-A8, if as T, S, M, N → ∞, T/b2
M → 0, T/N (1−δ) → 0, δ > 0,

T/S → 0, then, under H0,

√
T (g∗T,M − gS,N (θ∗)) d−→ N(0,W∞),

where W∞ is the probability of limit of WT,M as defined (13).

A.4 Proof of Lemma 3

T−1 ∑T
t=1 g∗t,M can be treated as in the proof of Lemma 1, so that (34), (35) and (36) hold. Similarly

to the proof of Lemma 1, we first need to show that

1
S

S∑

i=1

IVi,1,N (θ∗) =
1
S

S∑

i=1

IVi,1 (θ∗) + op(T−1/2), (40)

1
S

S∑

i=1

(
IVi,1,N (θ∗)− IV N (θ∗)

)2 =
1
S

S∑

i=1

(
IVi,1 (θ∗)− IV (θ∗)

)2 + op(T−1/2) (41)

and

1
S

S∑

i=1

(
IVi,1,N (θ∗)− IV N (θ∗)

) (
IVi,k+1,N (θ∗)− IV N (θ∗)

)

=
1
S

S∑

i=1

(
IVi,1 (θ∗)− IV (θ∗)

) (
IVi,k+1 (θ∗)− IV (θ∗)

)
+ op(T−1/2). (42)
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As for (40),

1
S

S∑

i=1

(IVi,1,N (θ∗)− IVi,1 (θ∗)) =
1
S

S∑

i=1



 1
N/(k + 1)

N/(k+1)∑

j=1

σ2
i,jξ (θ∗)−

∫ 1

0
σ2

i,u (θ∗) du



 ,

where ξ−1 = N/(k + 1). Now, let σ2
i,r,N (θ∗) = σ2

i,)Nrξ/(k+1)* (θ∗), for 0 ≤ r ≤ k + 1. Given A6, by

Corollary 1.8 in Pardoux & Talay (1985), then

sup
r≤(k+1)

N1/2(1−δ)
∣∣∣σ2

i,)Nrξ/(k+1)* (θ∗)− σ2
i,r (θ∗)

∣∣∣ a.s.−→ 0, as N →∞ (ξ → 0).

Thus, it follows that
∣∣∣∣∣∣

1
N/(k + 1)

N/(k+1)∑

j=1

σ2
i,jξ (θ∗)−

∫ 1

0
σ2

i,u (θ∗) du

∣∣∣∣∣∣
= Oa.s.(N−1/2(1−δ)) = oa.s.(T−1/2),

as T/N1/(1−δ) → 0. By a similar argument, (41) and (42) follow too.

Now, let

1
T

T∑

t=1

g∗t =





1
T

∑T
t=1 IVt

1
T

∑T
t=1(IVt − IV )2

...
1
T

∑T
t=1(IVt − IV )(IVt−k − IV )




,

and

1
S

S∑

i=1

gi (θ∗) =





1
S

∑S
i=1 IVi,1 (θ∗)

1
S

∑S
i=1

(
IVi,1 (θ∗)− IV (θ∗)

)2

...
1
S

∑S
i=1

(
IVi,1 (θ∗)− IV (θ∗)

) (
IVi,k+1 (θ∗)− IV (θ∗)

)




.

Then, given Lemma 1, and given (40), (41) and (42),

√
T

(
g∗T,M − gS,N (θ∗)

)
=

1√
T

T∑

t=1

g∗t −
√

T√
S

1√
S

S∑

i=1

gi (θ∗) + op(1)

=
1√
T

T∑

t=1

(g∗t − E(g∗1))−
√

T√
S

1√
S

S∑

i=1

(gi (θ∗)− E (g1 (θ∗)))

+
√

T (E(g∗1)− E (g1 (θ∗))) + op(1). (43)

The second last term of the right hand side of (43) is zero under the null hypothesis. As any

simulation draw is independent of the others, by the central limit theorem for i.i.d. random variables,

1√
S

S∑

i=1

(gi (θ∗)− E (g1 (θ∗))) = Op(1)

and, as T/S → 0, the second term of the right hand side of (43) is op(1). The statement follows by

the same argument as the one used in Lemma 1. !
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Lemma 4. Given A1-A4 and A6-A8, if as M, T, S,N → ∞, T/b2
M → 0, T/N (1−δ) → 0, δ> 0,

T/S → 0, pT →∞ and pT /T 1/4 → 0, then

θ̂T,S,M,N
p−→ θ∗.

A.5 Proof of Lemma 4

Given A7 (unique identifiability), it suffices to show that
∣∣∣∣∣∣

1
N/(k + 1)

N/(k+1)∑

j=1

σ2
i,jξ (θ)−

∫ 1

0
σ2

i,u (θ∗) du

∣∣∣∣∣∣
= op(1) (44)

uniformly in θ. The statement then follows from the uniform law of large numbers and unique

identifiability, as in the proof of Lemma 2, part (i). Now,
∣∣∣∣∣∣

1
N/(k + 1)

N/(k+1)∑

j=1

σ2
i,jξ(θ)−

∫ 1

0
σ2

i,u(θ)du

∣∣∣∣∣∣
≤ sup

r≤k+1

∣∣σ2
i,r,N (θ)− σ2

i,r(θ)
∣∣ = Op(N−1/2(1−δ)) = op(1)

pointwise in θ, by Corollary 1.8 in Pardoux & Talay (1985), given A6(2)(3). We now show that

A6, parts (1a)(1b), also ensure that supr≤k+1

∣∣∣σ2
i,r,N (θ)− σ2

i,r(θ)
∣∣∣ is stochastic equicontinuous over

Θ.

In fact, for θ′ ∈ Θ and S(ε) = {θ : ‖θ − θ′‖ ≤ ε} ,

sup
r≤k+1

sup
θ

sup
θ′∈S(ε)

∣∣(σ2
i,r,N (θ)− σ2

i,r(θ)
)
−

(
σ2

i,r,N (θ′)− σ2
i,r(θ

′)
)∣∣

≤ sup
r≤k+1

sup
θ

sup
θ′∈S(ε)

∣∣σ2
i,r(θ)− σ2

i,r(θ
′)
∣∣ + sup

r≤k+1
sup

θ
sup

θ′∈S(ε)

∣∣σ2
i,r,N (θ)− σ2

i,r,N (θ′)
∣∣ . (45)

We begin by showing that the first term of the right hand side of (45) is op(1). In fact, given

the Lipschitz-continuity of ψ (·),

sup
r≤k+1

sup
θ

sup
θ′∈S(ε)

∣∣σ2
i,r(θ)− σ2

i,r(θ
′)
∣∣ ≤ C sup

r≤k+1
sup

θ
sup

θ′∈S(ε)

∣∣fi,r(θ)− fi,r(θ′)
∣∣

≤ (k + 1) sup
θ

sup
θ′∈S(ε)

∣∣µ(fr(θ),θ)− µ(fr(θ′), θ′)
∣∣ (46)

+ sup
r≤k+1

|Wr| sup
θ

sup
θ′∈S(ε)

∣∣σ(fr(θ), θ)− σ(fr(θ′), θ′)
∣∣ ,

where supr≤k+1 |Wr|
d= |Wk+1| is bounded in probability (see e.g. Karatzas & Shreve, 1988, Ch.8),

and d= denotes equality in distribution. Then, given A6, part (1a), the right hand side of (46),

approaches zero in probability, as ε → 0.

The second term on the right hand side of (45), is op(1), uniformly in θ, by an analogous

argument. By the same argument as in e.g. Davidson (1994, Ch.21.3), pointwise convergence plus

stochastic equicontinuity implies uniform convergence. !
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A.6 Proof of Theorem 2

We begin by analyzing the behavior of the statistic under the null hypothesis. By a similar argument

as in the proof of Theorem 1, we have that

√
T

(
g∗T,M − gS,N

(
θ̂T,S,M,N

))

=
[
I−∇θ

(
g∗T,M − gS,N

(
θT,S,M,N

)) (
∇θ

(
g∗T,M − gS,N

(
θ̂T,S,M,N

))′
W−1

T,M

×∇θ

(
g∗T,M − gS,N

(
θT,S,M,N

)))−1

∇θ

(
g∗T,M − gS,N

(
θT,S,M,N

))′W−1
T,M

]√
T

(
g∗T,M − gS,N (θ∗)

)
.

Now by Lemma 3,
√

T
(
g∗T,M − gS,N (θ∗)

) d−→ N(0,W∞),

and by Lemma 2, part (i) and Lemma 4, W−1
T,M

p−→W−1
∞ , θ̂T,S,M,N

p−→ θ∗ and θT,S,M,N
p−→ θ∗.

We now need to show that

∇θ

(
g∗T,M − gS,N

(
θT,S,M,N

)) p−→ d∞, and ∇θ

(
g∗T,M − gS,N

(
θ̂T,S,M,N

))
p−→ d∞,

where d∞ = E (∇θgvT (θ∗)) , and gvT (θ∗) is defined in (33).

Given A6 and A8,
1
S

S∑

i=1

∇θgi,N (θ) =
1
S

S∑

i=1

∇θgi (θ) + op(1),

and

1
S

S∑

i=1

|∇θgi (θ)− E (∇θg1 (θ))| = op(1),

uniformly in θ, by the uniform law of large numbers. Now, E(∇θg1 (θ)) is equal to the vector

of derivatives of mean, variance and autocovariances of daily volatility under the null hypothesis.

Therefore, by noting that g∗T,M does not depend on θ,

∇θ

(
g∗T,M − gS,N

(
θ̂T,S,M,N

))
= ∇θ

(
g∗T,M − gS,N (θ∗)

)
+ op(1),

and the first term on the right hand side above converges in probability to d0.

Finally, divergence under the alternative can be shown along the same lines as in the proof of

Theorem 1. !

A.7 Proof of Proposition 1

Let N t,M =
∑M

j=1 Nt−1+j/M , where, from Proposition 2.1 in Meddahi (2001),

Nt−1+j/M =(m/M)2 + 2m

∫ t−1+j/M

t−1+(j−1)/M
σs (θ) dWs
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+ 2
∫ t−1+j/M

t−1+(j−1)/M

(∫ u

t−1+(j−1)/M
σu (θ) dWu

)
σs (θ) dWs,

and Ws =
√

1− ρ2W1,s +ρW2,s. Therefore, E(Nt,M ) =
∑M

j=1 E(Nt−1+j/M ) = m2/M. This satisfies

A1 part(i).

Also, given that

∫ t−1+j/M

t−1+(j−1)/M
σs (θ) dWs and

∫ t−1+j/M

t−1+(j−1)/M

(∫ u

t−1+(j−1)/M
σu (θ) dWu

)
σs (θ) dWs

are martingale difference series, then Nt−1+j/M is uncorrelated with its past. Thus E (Nt,MNt,s) = 0

for all t $= s. This satisfies A1(iv-b).

From Proposition 4.2 in Meddahi (2002a), var(Nt,M ) = M−1 ∑p
i=1 a2

i + op(1/M) uniformly in

t. This proves that A1(ii) is satisfied.

Finally, note that b2
MN4

t,M = Op(1), since b1/2
M Nt,M converges in distribution. Then, A1(iii) is

satisfied. !
The proof Proposition 2 requires the following two Lemmas. Hereafter, let X̃t denote the log price

process after the jump component has been removed. Correspondingly, B̃V t,M denotes the bipower

variation process in the case of no jumps. For notational simplicity, hereafter we omit the scaling

factor M/(M − 1), used in the definition of (8). Also, Lemma 6 and Proposition 2 are first proved

assuming zero drift, i.e. m = 0. We then show that the contribution of the drift component is

negligible.

Lemma 5. Given A2-A3, as T, M →∞

1√
T

T∑

t=1

BVt,M =
1√
T

T∑

t=1

B̃V t,M + op(1), (47)

1√
T

T∑

t=1

BV 2
t,M =

1√
T

T∑

t=1

B̃V
2
t,M + op(1). (48)

A.8 Proof of Lemma 5

We start from proving (47). We can expand

1√
T

T∑

t=1

M−1∑

j=1

∣∣Xt−1+(j+1)/M −Xt−1+j/M

∣∣ ∣∣Xt−1+j/M −Xt−1+(j−1)/M

∣∣

=
1√
T

T∑

t=1

M−1∑

j=1

(
X̃t−1+(j+1)/M − X̃t−1+j/M + cj+1,tδj+1,t

)
sgn

(
Xt−1+(j+1)/M −Xt−1+j/M

)

×
(
X̃t−1+j/M − X̃t−1+(j−1)/M + cj,tδj,t

)
sgn

(
Xt−1+j/M −Xt−1+(j−1)/M

)
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=
1√
T

T∑

t=1

M−1∑

j=1

((
X̃t−1+(j+1)/M − X̃t−1+j/M

)
sgn

(
Xt−1+(j+1)/M −Xt−1+j/M

)

×
(
X̃t−1+j/M − X̃t−1+(j−1)/M

)
sgn

(
Xt−1+j/M −Xt−1+(j−1)/M

))

+
1√
T

T∑

t=1

M−1∑

j=1

cj,tδj,t

(
X̃t−1+(j+1)/M − X̃t−1+j/M

)
sgn

(
Xt−1+(j+1)/M −Xt−1+j/M

)

×sgn
(
Xt−1+j/M −Xt−1+(j−1)/M

)

+
1√
T

T∑

t=1

M−1∑

j=1

cj+1,tδj+1,t

(
X̃t−1+j/M − X̃t−1+(j−1)/M

)

×sgn
(
Xt−1+(j+1)/M −Xt−1+j/M

)
sgn

(
Xt−1+j/M −Xt−1+(j−1)/M

)
(49)

+
1√
T

T∑

t=1

M−1∑

j=1

cj+1,tδj+1,tcj,tδj,tsgn
(
Xt−1+(j+1)/M −Xt−1+j/M

)
sgn

(
Xt−1+j/M −Xt−1+(j−1)/M

)
,

where δj,t = 1 if there is at least a jump in the interval [t − 1 + (j − 1)/M, t − 1 + j/M ] and 0

otherwise.

We have to show that:

(a)

1√
T

T∑

t=1

M−1∑

j=1

cj+1,tcj,tδj+1,tδj,tsgn
(
Xt−1+(j+1)/M −Xt−1+j/M

)

× sgn
(
Xt−1+j/M −Xt−1+(j−1)/M

)
= op(1),

(b)

1√
T

T∑

t=1

M−1∑

j=1

cj+1,tδj+1,t

(
X̃t−1+j/M − X̃t−1+(j−1)/M

)
sgn

(
Xt−1+(j+1)/M −Xt−1+j/M

)

× sgn
(
Xt−1+j/M −Xt+(j−1)/M

)
= op(1).

Now, as for (a),
∣∣∣∣∣∣

1√
T

T∑

t=1

M−1∑

j=1

cj+1,tcj,tδj+1,tδj,tsgn
(
Xt−1+(j+1)/M −Xt−1+j/M

)
sgn

(
Xt−1+j/M −Xt−1+(j−1)/M

)
∣∣∣∣∣∣

≤ 1√
T

T∑

t=1

M−1∑

j=1

|cj+1,t||cj,t|δj+1,tδj,t = op(1).

In fact

E



 1√
T

T∑

t=1

M−1∑

j=1

|cj+1,t||cj,t|δj+1,tδj,t




2
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=
1
T

T∑

t=1

M−1∑

j=1

E
(
|cj+1,t|2

)
E

(
|cj,t|2

)
E(δj+1,t)E(δj,t) = O(M−1) (50)

since E(δj,t) = O(1/M), given that in any unit span of time we have only a finite number of jumps.

Now, to prove (b), it suffices to show that

1√
T

T∑

t=1

M−1∑

j=1

|cj+1,t|δj+1,t

∣∣∣X̃t−1+j/M − X̃t−1+(j−1)/M

∣∣∣ = op(1).

Since the jumps are independent of the randomness driving the volatility,

E
(
δj+1,t

∣∣∣X̃t−1+j/M − X̃t−1+(j−1)/M

∣∣∣
)

= E(δi+1,s) E
(∣∣∣X̃t−1+j/M − X̃t−1+(j−1)/M

∣∣∣
)

for all t, s, i, j. Also, since cj,t is i.i.d. and independent of δi,t, for all i, j

E



 1√
T

T∑

t=1

M−1∑

j=1

|cj+1,t|δj+1,t

∣∣∣X̃t−1+j/M − X̃t−1+(j−1)/M

∣∣∣




2

=
1
T

T∑

t=1

M−1∑

j=1

E (δi+1,s) E
(
|cj+1,t|2

)
E

(∣∣∣X̃t−1+j/M − X̃t−1+(j−1)/M

∣∣∣
2
)

= O(M−1).

Finally, given that the number of jumps per day is finite,

=
1√
T

T∑

t=1

M−1∑

j=1

[(
X̃t−1+(j+1)/M − X̃t−1+j/M

)
sgn

(
Xt−1+(j+1)/M −Xt−1+j/M

)

×
(
X̃t−1+j/M − X̃t−1+(j−1)/M

)
sgn

(
Xt−1+j/M −Xt−1+(j−1)/M

))

=
1√
T

T∑

t=1

M−1∑

j=1

∣∣∣X̃t−1+(j+1)/M − X̃t−1+j/M

∣∣∣
∣∣∣X̃t−1+j/M − X̃t−1+(j−1)/M

∣∣∣ + Op(T 1/2M−1).

This concludes the proof of (47); (48) follows by the same argument. !

Lemma 6. Given A2-A3, as T, M →∞,

(i) 1
T

∑T
t=1 E (BVt,M ) = µ2

1E (IV1) + o(T 1/2M−1)

(ii) 1
T

∑T
t=1 E

(
BV 2

t,M

)
= µ4

1E
(
IV 2

1

)
+ o(T 1/2M−1).

A.9 Proof of Lemma 6

Given Lemma 5, it suffices to show the statement replacing BVt,M with B̃V t,M .

(i) We can express

1
T

T∑

t=1

E
(
B̃V t,M

)
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=
1
T

T∑

t=1

M−1∑

j=1

E
(∣∣∣X̃t−1+(j+1)/M − X̃t−1+j/M

∣∣∣
∣∣∣X̃t−1+j/M − X̃t−1+(j−1)/M

∣∣∣
)

=
1
T

T∑

t=1

M−1∑

j=1

E

(∣∣∣∣∣

∫ t−1+(j+1)/M

t−1+j/M
σsdW1,s

∣∣∣∣∣

∣∣∣∣∣

∫ t−1+j/M

t−1+(j−1)/M
σsdW1,s

∣∣∣∣∣

)

=
1
T

T∑

t=1

M−1∑

j=1

E

(
E

((∣∣∣∣∣

∫ t−1+(j+1)/M

t−1+j/M
σsdW1,s

∣∣∣∣∣

∣∣∣∣∣

∫ t−1+j/M

t−1+(j−1)/M
σsdW1,s

∣∣∣∣∣

)

∣∣∣∣∣

∫ t−1+(j+1)/M

t−1+j/M
σ2

sds,

∫ t−1+j/M

t−1+(j−1)/M
σ2

sds

))

=
1
T

T∑

t=1

M−1∑

j=1

E
(

E
((∣∣∣∣W∫ t−1+(j+1)/M

t−1+j/M σ2
sds

∣∣∣∣

∣∣∣∣W∫ t−1+j/M
t−1+(j−1)/M σ2

sds

∣∣∣∣

)

∣∣∣∣∣

∫ t−1+(j+1)/M

t−1+j/M
σ2

sds,

∫ t−1+j/M

t−1+(j−1)/M
σ2

sds

))

=
1
T

T∑

t=1

M−1∑

j=1

E

(√∫ t−1+(j+1)/M

t−1+j/M
σ2

sds

√∫ t−1+j/M

t−1+(j−1)/M
σ2

sds

)
(E (|W1|))2

= µ2
1
1
T

T∑

t=1

E




M−1∑

j=1

∫ t−1+(j+1)/M

t−1+j/M
σ2

sds



 + o(T 1/2M−1)

= µ2
1E (IV1) + o(T 1/2M−1), (51)

where the fourth and fifth equality in (51) come from the Dambis and Dubins-Schwartz theorem

(see e.g. Karatzas & Shreve, 1988, p.174), which applies given the assumption of no leverage. The

sixth equality in (51) follows instead from equation (13) in Barndorff-Nielsen & Shephard (2004c).8

(ii) By the same argument as in (i). !

A.10 Proof of Proposition 2

Given the two Lemmas above, A1(i) and A1(ii) are satisfied for bM = M1/2. We now show that

A1(iv-b) holds. Define the information set

Ft = σ

(∫ s+(j+1)/M

s+j/M
σ(u)dWu,

∫ s+(j+1)/M

s+j/M
σ2(u)du, s ≤ t, j = 1, . . . , M − 1

)
.

Then

|E ((BVt,M − IVt) (BVt−k,M − IVt−k))|

= |E ((BVt−k,M − IVt−k) E ((BVt,M − IVt) |Ft−k))|
8Equation (13) in Barndorff-Nielsen & Shephard (2004c) states an Op(M−1) error. However, Barndorff-Nielsen

& Shephard consider a fixed time span, say T and so can assume that supt≤T IVt ≤ ∆ <∞. In our case, we instead

assume that supt≤T (IVt/
√

T )
p−→ 0.
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≤ |E (BVt−k,M − IVt−k) E (BVt,M − IVt)|

+ |E ((BVt−k,M − IVt−k) E ((BVt,M − IVt)− E (BVt,M − IVt) |Ft−k))| ,

where the first term of the right hand side of the inequality above is O(M−1) by Lemma 5. As for

the second term, by standard mixing inequalities, we have that

|E ((BVt−k,M − IVt−k) E ((BVt,M − IVt)− E (BVt,M − IVt) |Ft−k))|

<
(
E

(
(BVt−k,M − IVt−k)2

))1/2

×



E



E




M−1∑

j=1

(√∫ t−1+(j+1)/M

t−1+j/M
σsdWs

√∫ t−1+j/M

t−1+(j−1)/M
σsdWs

−
∫ t−1+j/M

t−1+(j−1)/M
σ2
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))2
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






1/2

≤
(
E

(
(BVt−k,M − IVt−k)2

))1/2

×



E




M−1∑

j=1

(√∫ t−1+(j+1)/M

t−1+j/M
σsdWs
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t−1+(j−1)/M
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−
∫ t−1+j/M

t−1+(j−1)/M
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))2



1/2

αk,

where αk approaches zero at a geometric rate as k → ∞, given that measurable functions of

geometrically mixing sequence are also geometrically mixing. Thus, A1(iv-b) is satisfied for bM =

M1/2. Finally, A1(iii) is satisfied by the same argument as the one used in the proof of Proposition 1.

It remains to show that the contribution of the drift term is negligible. Now, by the same

argument as in Proposition 2 of Barndorff-Nielsen & Shephard (2004c)

1√
T

T∑

t=1

M−1∑

j=1

E
(∣∣∣X̃t−1+(j+1)/M − X̃t−1+j/M + mh

∣∣∣
∣∣∣X̃t−1+j/M − X̃t−1+(j−1)/M + mh

∣∣∣
)

− 1√
T

T∑

t=1

M−1∑

j=1

E
(∣∣∣X̃t−1+(j+1)/M − X̃t−1+j/M

∣∣∣
∣∣∣X̃t−1+j/M − X̃t−1+(j−1)/M

∣∣∣
)

= op
(
TM−1

)
= op(Tb−2

M ),

for bM = M1/2. The same holds for the second moment and the covariance term, by an analogous

argument. !

A.11 Proof of Proposition 3

The error term can be rearranged as

Nt,M =
(
R̂V

u
t,l,M −RV u

t,l,M

)
+

(
RV u

t,l,M −RV ∗,avg
t,l,M

)
+

(
RV ∗,avg

t,l,M − IVt

)
,
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where

RV u
t,l,M = RV avg

t,l,M − 2lν,

with RV avg
t,l,M defined as in (10), and

RV ∗,avg
t,l,M =

1
B

B−1∑

b=0

RV ∗,b
t,l,M =

1
B
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M−(B−b−1)∑
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E
(
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)2
,

Now

E
(
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u
t,l,M −RV u
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)

= E(l (ν̂t,M − ν)) = lE



 1
2M
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= lE
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1
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
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 1
2M
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(
Yt+(j+1)/M−Y t+j/M

)2



 = O
(
lM−1

)
.

Also,

E
(
RV u

t,l,M −RV ∗,avg
t,l,M

)
=

1
B

B∑

b=0

M−(B−b−1)∑

j=b+1

E
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1
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= 0 (52)

and

E
(
RV ∗,avg

t,l,M − IVt

)
= m2l−1,

by the same argument used in the proof of Proposition 1 and by noting that the discrete interval

is l−1 in the present context. Thus, when l = O(M1/3), A1(i) holds with bM = M1/3.

As for the variance of the error term,

var(Nt,M ) = var
(
R̂V

u
t,l,M −RV u
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)
+ var
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RV u
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)(
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u
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)(
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+2cov
((

RV u
t,l,M −RV ∗,avg

t,l,M

) (
RV ∗,avg

t,l,M − IVt

))
. (53)

The first term of the right hand side of (53) can be rearranged as

var
((

R̂V
u
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))
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Similarly, the second term
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+
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Also note that
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and the covariance term obtained expanding (54) are of a smaller order than the variance term in

(55). Finally

var
(
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)
= O(l−1),
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by the same argument used in the proof of Proposition 1 and noting that the discrete interval in

the present contex is l−1. The covariance terms in (53) are of smaller order given that the noise is

independent of the price process. Thus, A1(ii) is satisfied for bM = M1/3, given l = O
(
M1/3

)
and

B = O
(
M2/3

)
.

As for A1(iv-b), for all t $= s

E
((

R̂V
u
t,l,M −RV u

t,l,M

)(
R̂V

u
s,l,M −RV u

s,l,M

))
= 0

E
((

RV u
t,l,M −RV ∗,avg

t,l,M

)(
RV u

s,l,M −RV ∗,avg
s,l,M

))
= 0

given that εt+i/M is i.i.d. and is independent of the price process, and

E
((

RV ∗,avg
t,l,M − IVt

)(
RV ∗,avg

s,l,M − IVs

))
= 0

by the same argument used in the proof of Proposition 1. Thus, A1(iv-b) is satisfied.

Finally, M4/6N4
t,M = Op(1), given that M1/6Nt,M converges in distribution (see Theorem 4 in

Zhang, Mykland & Aı̈t Sahalia, 2003), and so A1(iii) holds for bM = M1/3. !
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