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Abstract

We examine how moral hazard impacts risk-sharing when risk-taking can be

part of the mechanism design. In a two-agent model with binary effort, we show

that moral hazard always increases risk-taking (that is the amount of wealth

invested in a risky project) whereas the effect on risk-sharing (the amount of

wealth transferred between agents) is ambiguous. Risk-taking therefore appears

as a useful incentive tool. In particular, in the case of preferences exhibiting

Constant Absolute Risk Aversion (CARA), moral hazard has no impact on risk-

sharing and risk-taking is the unique mechanism used to solve moral hazard.

Thus, risk-taking appears to be the prevailing incentive tool.
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1 Introduction

When investing in a risky project, one should be concerned by two main aspects: what

amount to invest and how to get insured against the risk of failure. If these two

aspects are pretty easy to deal with separately, it appears that there are difficult to

tackle jointly especially in presence of an other key feature of project financing: moral

hazard.

Consider an agent who can invest in a project that increases her expected wealth

but also increases its variance (through the use of new technology or entrepreneur-

ship for instance). Everything equal, this agent will be willing to invest more in this

project if he is insured against the risk of failure. Consider now the easiest way to

get insured: mutual revenue sharing. Agents insure themselves by elaborating bilat-

eral transfers contingent to the state of nature, without relying on a third part, as an

insurance company.1 When agents are equally wealthy and have same risk aversion,

and if individual risks are idiosyncratic, then, under complete information, the optimal

risk-sharing agreement consists in full equal sharing of wealth. By aggregating and

dividing equally, such a contract minimizes risk in the sense of the mean-preserving

spread criterion. Hence, full equal sharing would provide an incentive to take risk.

However, when agents can exert an effort to enhance the probability of success of

their risky project, equal sharing of wealth can be subject to moral hazard if effort is

unobservable. Hence, in the absence of efficient peer monitoring, a mechanism design

should foster incentives to exert effort. Basically, such a contract must be such that

agents’ revenues are more sensitive to their efforts. The traditional tool is the reduction

of transfers. Indeed, by increasing exposure to own risk, the reduction of risk-sharing

should in principle restore incentives to exert effort. In a context of endogeneous risk-

taking decision, a direct consequence of reduced risk-sharing would be the decrease of

risk-taking.

Now, suppose that agents set up risk-sharing contracts and take risk simultaneously. In

that context, risk-taking can itself be used to create incentives to exert effort. Intuition

suggests that to restore incentives, agents should increase risk-taking, because this

increases the impact of their own effort on their revenue. In a word, to increase exposure

1Such mechanisms are often used in village economies where private insurance is not developed,

but also appears among insurers for reinsurance propose.

2



to own risk, taking more risk is a solution. Therefore, the joint use of transfers and

risk-taking as incentive tools induces a priori ambiguous prediction on risk-taking.

This article analyzes optimal risk-taking and risk-sharing decisions in presence of moral

hazard. We consider a two-agent model in which agents can affect their wealth distri-

bution through two decisions: first they decide upon a share of wealth to invest in a

risky projet (that we interpret as the level of risk); second they can exert some costly

effort to increase the probability of success of their project. We show that risk-taking

is indeed an incentive tool: introducing moral hazard always increases the level of risk.

Moreover, it appears that – contrary to cases where risk-taking is exogenous – moral

hazard has an ambiguous effect on (absolute) transfer. In particular, for Constant

Absolute Risk Aversion (CARA) preferences, the level of wealth transferred between

agents does not depend on moral hazard, and risk-taking is the unique tool used to

solve moral hazard problems. Risk-taking appears then to be the prevailing incentive

tool.

We briefly discuss the relationship of this paper with the literature. First, our work fits

into the mechanism design literature. Our paper can indeed by related to works that

analyze the sharing of wealth between a principal and an agent when the aggregate

wealth depends on the effort exerted by the agent. For example, Braveman and Stiglitz

(1982) and Thiele and Wambach (1999) study the mechanism a principal (a landowner

or an entrepreneur) has to design to induce the agent (a tenant or an employee) to

exert the required level of effort. In particular, Braveman and Stiglitz (1982) use such

a model to give a rational to interlinking contracts (that is contracts with interlinkages

among the land, labor, credit, and product markets) in situation where the agent can

choose a level of effort2 Our work differs from this brand literature in the definition

of the contracting parties. Whereas Braveman and Stiglitz (1982) and Thiele and

Wambach (1999) model a risk-neutral profit-maximizer principal that wants to design

an incentive compatible contract, we focus here on the incentive compatible agreement

that can emerge between two risk averse agents who bargain over the sharing of ag-

gregate wealth. Therefore, in opposite to the papers cited above, our work is based on

2In Braveman and Stiglitz (1982) the agent can also choose a risk level, but the analysis of optimal

effort and risk choices are conducted separately.
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the maximization of an ex-ante utilitarist criterion.

This notion of risk-sharing has been first developed by Borch (1960) who modeled risk-

sharing agreements as a two-person cooperative agreement similar to ours. His main

point was then to state (Borch 1962) the mutualization principle: under complete

information, the optimal agreement makes individual wealth only depend on state of

nature insofar as the aggregate wealth in that state is concerned. However, full equal

sharing is not often observed (Townsend 1994). Enforceability is a standard economic

rationale to explain limited commitment (Coate and Ravaillon 1993, Ligon, Thomas

and Worrall 2002, Dubois, Jullien and Magnac 2008). Alternatively, recent work on

risk-sharing under asymmetric information (Bourlès and Henriet, 2010) however shows

that the mutualization principle no longer holds when agents have private information

on their individual distribution of wealth (i.e. their risk type) if heterogeneity is high

and risk aversion is low. Regarding moral hazard, works by Laffont and Martimort

(2002) or Demange (2008) have also pointed out that consistent with the intuition

developed above, moral hazard reduces risk-sharing, in the sense that it decreases the

amount of transfers among agents for each given state of nature. Our paper shows that

the introduction of risk-taking in the mechanism design changes this pattern.

Our work is also related to the literature addressing group incentives. Analyzing moral

hazard in teams or clubs, Holmstrom (1982) and Prescott and Townsend (2006) model

situations where agents work on a joint project, whose outcome depend on joint efforts.

Used to analyze how firms emerge and operate, these works differ from ours in a key

aspect. In the literature on group incentives, the efforts of all agents determine the

distribution of the aggregate outcome that has to be split among them. In our model,

the effort of each agent determines the distribution of its own outcome from which she

can transfer wealth to others. Therefore, in contrast with the (benevolent) principal

of our model, in a model of group incentive, the principal is unable to infer from the

outcome the contribution of each agents.

Moreover, our work contributes to the literature on risk-taking and more precisely on

the standard portfolio problem. In this widely used model, agents choose to allocate

their available wealth between a safe (i.e. with constant return) project and a risky

project (whose return is stochastic). Our main contribution to this literature is the

modeling of moral hazard and risk-sharing in the standard portfolio problem. We first

allow agents to enhance the probability of success of the risky project (whose return

4



is supposed to be binomial). Our paper is therefore related to Fishburn and Porter

(1976) or Hadar and Seo (1990), who study the effect of a shift of distribution of

return. They show that a stochastic dominating shift in the return of the risky asset

does not necessarily increase investment in that asset.3 To tackle this issue, Fishburn

and Porter (1976) and Hadar and Seo (1990) provide some conditions on the investor’s

utility function for a dominating shift not to decrease the investment in the risky asset.

Taking another approach, Landsberger and Meilijson (1990) conclude that stochastic

dominance is not a good measure of risk in this case. They show that a shift in the

distribution of returns of the risky asset in the sense of likelihood ratio leads to an

increase in demand for this asset by all investors with nondecreasing utilities. Our

work contributes to this discussion by stating that the inclusion of moral hazard on an

effort that increases the expected return of the risky asset always leads to an increase

in the demand for this asset.

To our knowledge, only few papers analyze risk-taking and risk-sharing simultaneously.

One exception is Pratt and Zeckhauser (1989) that look at group decision on risk-

taking. In their paper, the group has to choose among monetary risks and payoff-

sharing rules. Their main result is then to show that under HARA (harmonic absolute

risk aversion) preferences, the efficient group choices are independent of payoff sharing.

Our paper seems to indicate that when moral hazard is modeled this is no longer the

case. Still regarding this relationship between risk-sharing and risk taking, a recent

work by Belhaj and Deröıan (2009) shows that when agents share risk through an

exogenous risk-sharing network, an increase of risk-sharing does not necessarily lead to

an increase of risk taking. By adding to the purpose moral hazard and by endogeneizing

risk sharing, we support this conclusion in a two-agent model as we show that moral

hazard can increase risk-taking and decrease risk sharing.

The rest of this paper is structured as follows. Section 2 introduces the two-agent

model of risk-taking and discusses the benchmark case of complete information. In

Section 3, we incorporate moral hazard to the model and characterize the optimal

incentive-compatible sharing rule and level of risk taking. Our concluding remarks and

3Fishburn and Porter focus on first order stochastic dominance and on the case of only one risky

asset, whereas Hadar and Seo generalize this conclusion to second and third order stochastic dominance

and to the case of more than one risky asset
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suggestions for future research are in Section 4.

2 The model

Two identical risk-averse agents can make transfers to cope with volatile revenue. They

can affect the distribution of their revenue through two decisions. First, agents face the

standard portfolio choice problem, that is, they have to allocate their wealth between

two investments, one risk-free and the other risky. Second, agents choose a level of

effort that affects the probability of success of their risky investment.

More precisely, each agent is endowed with wealth ω, and can invest a share α ≤ 1 of

this wealth in the risky project. We interpret α as the level of risk taken by the agents.

The remaining part is invested in the risk-free project whose gross return is normalized

to 1. The risky project gives a return µ with probability p (in case of success) and 0

otherwise. For the risky project to be profitable, we assume that the expected gross

return on investment is higher than the cost: pαωµ > αω, i.e. pµ > 1. In the absence

of risk-sharing, a single agent chooses α in order to maximize his expected utility:

max
α

{
(1− p)u

(
ω(1− α)

)
+ pu

(
ω(1 + α(µ− 1))

)}
(1)

whose solution is given by α0 such that:

u′
(
ω(1− α0)

)
u′
(
ω(1 + α0(µ− 1))

) =
p

1− p
(µ− 1) (2)

The LHS of equation (2) is increasing in α0 for all µ > 1. The condition pµ > 1 implies
1−p
p

< µ − 1. Therefore, the solution of problem (1) is unique. Note that, since the

LHS of (2) is decreasing in ω if −u
′′
(ω(1−α))

u′(ω(1−α))
> −u

′′
(ω(1+α(µ−1)))

u′(ω(1+α(µ−1)))
, the amount invested in

the risky project is increasing with wealth ω if the utility function exhibit decreasing

absolute risk aversion (DARA) (see Pratt [1961]).

Now consider two identical individuals that face this basic investment problem and

can share risk through monetary transfers. We assume that agents can observe both

the levels of risk and transfers. They can therefore set up contract on risk levels and
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transfers4. Formally, if agents choose different risk levels four net transfers would be

designed. Here, we only focus on the symmetric equilibrium (that is an equilibrium

where both agents choose the same risk level α). This corresponds to a utilitarian

criterion proposed by a benevolent principal that weights equally both agents.5 From

symmetry, no net transfers optimally take place when the two risky projects succeeds

or fail. We denote by t the transfer from the successful agent to the one that failed.

The maximization problem of utilitarian criterion writes:

max
α,t

(1− p)2u
(
ω(1− α)

)
+ p(1− p)

(
u
(
ω(1− α) + t

)
+ u
(
ω(1 + α(µ− 1))− t

))
+p2u

(
ω(1 + α(µ− 1))

)
(3)

We then find: 
t∗ = α∗ωµ

2

pu
′
(
ω+

α∗ω(µ−2)
2

)
+(1−p)u′ (ω−α∗ω)

pu′ (ω+α∗ω(µ−1))+(1−p)u′
(
ω+

α∗ω(µ−2)
2

) = p
1−p(µ− 1)

(4)

Result 1 The optimal transfer is such that agents share their revenue equally. Fur-

thermore, risk-sharing enhances risk-taking with respect to the no sharing case.

Not surprisingly, risk mutualization entails that agents share wealth equally.

3 Risk taking, risk-sharing and moral hazard

We incorporate moral hazard in the analysis. We model a situation in which each agent

can exert a costly effort that increases the probability of success of her risky project.

The traditional tool to induce effort is to reduce transfer. The economic intuition

behind this mechanism is that reducing transfer increases the exposure of each agent

toward her own risk. Moreover, if we allowed risk-taking to be used as an incentive tool,

economic intuition would suggest that, for a given level of transfer, an increase in risk-

taking would induce effort. Since risk-taking and risk-sharing are complementary, in

4We assume in the following that contracts are enforceable. For a discussion on enforceability see

Coate and Ravaillon 1993, Ligon, Thomas and Worrall 2002 or Dubois, Jullien and Magnac 2008

5The solution can be interpreted as the outcome of a bargaining Nash solution with equal outside

option and equal bargaining power.
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the sense that more risk-sharing enhances risk taking, the optimal mechanism remains

unclear: reducing insurance shall decrease risk-taking by complementarity, reducing

thus the impact of risk-taking on efforts’ incentives; conversely increasing risk-taking

shall induce more insurance, thus limiting its impact on efforts incentives. How do

agents, investing in a risky project and building up optimal transfers, use jointly these

tools to enhance incentives to exert effort?

For the sake of simplicity, we consider two effort levels e and e, with e < e, that

lead respectively to probabilities of success p and p such that p− p > 0. The cost for

providing high effort e (rather than e) is denoted ψ, and C = ψ
p−p . This fits for instance

with informational cost.6

The timing of the game is as follows (see figure 1). First, agents agree on a level of

investment (which is assumed to be observable) and contract upon transfers. Second

agents choose an unobservable level of effort. Third nature generates realizations (given

levels of investment and efforts). Last agents proceed to transfers. Let πi(ei, ej, α, t) by

Figure 1: Timing of the game with moral hazard

the utility of agent i when agent i (resp. j) exert effort ei (resp. ej), under symmetric

6The analysis is extended locally to affine cost of effort, i.e. to C = C0 + αC1, with C1 small

enough.
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risk level α and symmetric transfer t. Let also α(e) (resp. t(e)) represents a symmetric

risk level (resp. transfer) under symmetric effort e. To make the problem non-trivial,

we make the following two assumptions (the first imposes C to be low enough, the

second to be high enough):

Assumption 1 An isolated agent is always interested in undertaking effort. This im-

plies that the optimal incentive compatible transfer is nonnegative. Indeed, by concavity

of utility functions, negative transfers are dominated by null transfer, which is the au-

tarky case.

Assumption 2 The first best equilibrium is not incentive compatible:

π(e, e, x∗(e), t∗(e)) < π(e, e, x∗(e), t∗(e))

That is, given that investments and transfers are observable, defecting upon effort from

the first-best equilibrium is individually beneficial.

We focus, in the following, on the incentive compatible (second-best) optimum

which represents the overall optimum if it provides the agents with higher expected

utility than when they both agents exert low effort and share wealth equally. This

again corresponds to an upward bound for C.

The following lemma is useful to describe the maximization program of agents.

Lemma 1 In the case of symmetric behavior, the only incentive compatibility con-

straint that has to be checked is the one when the other agent exerts high effort e.

The intuition behind Lemma 1 is the following. The incentive to free ride on effort is

higher when the opportunity of receiving a transfer is high. As an agent will receive a

transfer only if the other agent succeeds, the probability of getting a transfer increases

with the effort of the other agent. Therefore the incentive to shirk is higher when the

other agent exerts effort.

Let πf (resp. πs) represent the agent’s expected payoff in case of failure (resp. success):

πf (α, t) = (1− p)u(ω(1− α)) + pu(ω(1− α) + t)

πs(α, t) = (1− p)u(ω(1 + α(µ− 1))− t) + pu(ω(1 + α(µ− 1)))

9



By lemma 1, the maximization program becomes:

maxα,t (1− p)πf (α, t) + pπs(α, t)

s.t. πs(α, t)− πf (α, t) ≥ C

Hence, agents want to maximize their overall expected payoffs, under the condition of

maintaining a minimal difference C between expected payoffs in case of success and

failure. As mentioned before, the optimal contract involving both transfer and risk level

is not trivial. Indeed, let us examine how individual profit varies along the incentive

constraint (see figure 2).

Figure 2: The FOCs and IC in the plan (α, t)

The curves (I) and (II) depicted in the plan (α, t) on figure 2 represent the FOCs (4)

of the system without moral hazard. Their intersection corresponds to the first-best

optimum (α∗, t∗). The curve (IC) is given by the equation IC(α, t) = 0 that repre-

sents the binding incentive constraint. First, it can be easily shown that the implicit

relationship between risk and transfers on the curve IC(α, t) is positive. Second, by

assumption 2, (IC) is below (I) at α∗. Third, the intersection between curve (II) and

α-axis, α0, is below the curve (IC) since producing high effort in autarky is optimal.

10



The Lagrangian, that takes into account the incentive constraint, is maximized when

the curve (V ), given by the equation V (α, t) = 0, intersects the curve (IC). 7

From the first-best equilibrium (α∗, t∗), let us modify transfers, without modifying

risk, in order to restore incentive compatibility. This corresponds to the point (α∗, t̃)

on curve (IC). Basically, t̃ < t∗, since restoring efforts’ incentives requires to lower

insurance. Now, from this point, how does profit vary on curve (IC) locally? Noticing

that curve (IC) is increasing, should the agents both increase transfer and risk, or both

decrease transfer and risk? Increasing (resp. decreasing) both risk and transfer, both

πf and πs are affected ambiguously. Indeed, increasing risk level α is detrimental to πf

and beneficial to πs. Conversely, increasing transfer t is detrimental to πs and beneficial

to πf . Simple local analysis indicates that profit locally increases on curve IC from

the point (α∗, t̃) if risk and transfer are increased. Then, locally, risk-taking should be

increased. Next theorem, that delivers the main message of the paper, expresses that

this result is not only local, but also global:

Theorem 1 The optimal incentive compatible contract involves an increase in risk-

taking with respect to the first-best equilibrium, i.e. α∗∗ > α∗.

The message of the theorem is simple. To increase incentive to exert effort, the contract

must increase the dependence of the revenue to effort. Under exogenous risk taking, this

appropriate mechanism is to reduce transfers. However, when risk is endogenous, the

appropriate mechanism consists in both increasing risk and reducing relative transfers

(with respect to full equal sharing).

If the impact of moral hazard on risk-taking entails a clear-cut result, its impact

on absolute transfer is ambiguous. Indeed, as can be seen in figure 2, if the curve (V)

is decreasing with the level of risk (for α > α∗), then t∗∗ < t∗. This point is related

to the convexity of the index of absolute risk aversion; however there does not seem to

have a simple condition (parameter-free).8 Simuations indicate that t∗∗ < t∗ in most

7Function V is defined in the proof of the theorem - equation (16) -, it is a combination of first

derivatives of the Lagrangien with respect to risk and transfer.

8This feature seems to be linked with the work of Eeckhoudt et al. (1996) that look at the effect

of a zero-mean background risk (that is a risk uncorrelated with the return of the risky asset) in the

basic standard portfolio problem (with is without risk-sharing). risk-sharing can be understood as an
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of the cases, but the following example illustrates that t∗∗ > t∗ is a possible outcome.

Example 1 Consider u(ω) = − 1
a
exp(−a.ω) + k.ω4, with k = 0.00005, a = 0.1. Then

u is concave for ω < 8. We find t∗∗ > t∗ for C = 1.9, ω = 5, µ = 2.2, p = 0.455 (the

participation constraint is effective in this example).

The next illustration focuses on CARA utility functions. It is shown that the presence

of moral hazard does not affect transfers; i.e. only risk-taking is used as an incentive

tool.

Example 2 (CARA utilities) In the case of CARA utilities, the absolute transfer

is not impacted by the presence of moral hazard (proof in the appendix). For u(ω) =
−1
ρ
exp(−ρω), where ρ is the index of absolute risk aversion, t∗ = t∗∗ = 1

ρ
ln
[
(µ−1) p

1−p

]
.

The optimal transfer is thus increasing in the level of risk aversion ρ, the probability of

success p and the return on the risky technology µ.

It appears for this last example that, when risk-taking decision is endogeneous

and part of the mechanism design, (absolute) transfer may not be used to provide an

incentive to exert effort. As we have shown in theorem 1 that risk-taking is always

an effective tool to provide this incentive, it therefore seems that risk-taking is the

prevailing incentive mechanism in presence of moral hazard and risk sharing.

Moreover, example 1 illustrate the fact that allowing for risk-taking to be endoge-

neous change a lot the story. Indeed, when risk-taking is not part of the mechanism

design, to provide the agents an incentive to exert the effort, the principal necessarily

decreases transfer (with respect to first). This would in turn reduce risk-taking (as it

reduces the insurance provided to the agents). In example 1 both variables go in the

opposite direction. When allowing for risk-taking to be part of the mechanism design,

in this example, the contract provides an incentive to exert effort by increasing both

risk-taking and absolute transfer (with respect to the first-best situation).

additional risk, that corresponds to the risk of having to transfer (or receiving) some wealth. However,

this additional risk is clearly negatively correlated with the return of the risky asset as optimally, the

probability of having to transfer wealth is higher when the realized return on the risk asset/project is

high (and the probability of receiving wealth is higher when realized return on the risk asset/project

is high). Eeckhoudt et al. (1996) show that a zero-mean background risk reduces the demand for the

risky asset if absolute risk aversion is decreasing and convex (for a discussion on this last condition

see Gollier and Scarmure 1994 or Hatchondo 2008).
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4 Conclusion

We have considered a two-agent model in which agents invest in a risky and specific

project, and set up optimal transfers simultaneously in the presence of moral hazard.

We have shown that for all increasing concave utilities, risk-taking is always enhanced

while (absolute) transfers are not always decreased. Further, for CARA utilities, moral

hazard has no impact on transfers, it only increases risk. Hence, risk-taking is a

prevailing incentive tool.

The model may be extended in several direction, like increasing the number of al-

ternatives of the lotterie, or considering cases where effort affects realizations. Also,

our results apply when the cost of effort is independent of the level of risk, like infor-

mational costs; the study does not cover situations where the cost of effort varies with

the risk level. Further, it could be interesting to extend this analysis to applications

in which our three ingredients (risk taking, risk-sharing and moral hazard) apply, like

microcredit or reinsurance markets.

5 Proofs

Proof of result 1. The first order conditions are:


−(1− p)2u

′
(ω − αω) + p(1− p)

(
−u′(ω − αω + t) + (µ− 1)u

′
(ω + αω(µ− 1)− t)

)
+p2(µ− 1)u

′
(ω + αω(µ− 1)) = 0

u′(ω − αω + t) = u′(ω + αω(µ− 1)− t)
(5)

From the second equation it is therefore optimal to state t∗ = αωµ
2

(that is equal sharing

of wealth) and the first FOC becomes:

−(1−p)2u
′
(ω−α∗ω)+p(1−p)(µ−2)u

′
(ω+α∗ω(µ−2)

2
)+p2(µ−1)u

′
(ω+α∗ω(µ−1)) = 0 (6)

That is:
(1− p)u′(ω − α∗ω)

pu′(ω + α∗ω(µ− 1))
= (µ− 2)u

′
(ω + α∗ω(µ−2)

2
) + p

1−p(µ− 1) (7)

Let us note α0 and α∗ the respective solution of equations (2) and (7). Note first that

(6) defines a function f(α) decreasing in α such that f(α∗) = 0. Moreover, (6) can be
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written as

p(µ− 1)
[
pu
′
(ω + α∗ω(µ− 1)) + (1− p)u′(ω + α∗ω(µ−2)

2
)
]

−(1− p)
[
(1− p)u′(ω − α∗ω) + pu

′
(ω + α∗ω(µ−2)

2
)
]

= 0

(8)

That is, defining function g such that

g(α) =
pu
′
(ω + αω(µ−2)

2
) + (1− p)u′(ω − αω)

pu′(ω + αω(µ− 1)) + (1− p)u′(ω + αω(µ−2)
2

)
(9)

we have g(α∗) = p
1−p(µ− 1). Conversely, (2) gives

u′(ω − α0ω)

u′(ω + α0ω(µ− 1))
=

p

1− p
(µ− 1) (10)

Now as u is concave, we have:{
u′(ω − α∗ω) ≥ (1− p)u′(ω − α∗ω) + pu

′
(ω + α∗ω(µ−2)

2
)

u′(ω + α∗ω(µ− 1)) ≤ pu
′
(ω + αω(µ− 1)) + (1− p)u′(ω + αω(µ−2)

2
)

Therefore

u′(ω − α∗ω)

u′(ω + α∗ω(µ− 1))
≥

pu
′
(ω + α∗ω(µ−2)

2
) + (1− p)u′(ω − α∗ω)

pu′(ω + α∗ω(µ− 1)) + (1− p)u′(ω + α∗ω(µ−2)
2

)
(11)

This gives g(α0) <
p

1−p(µ−1) that is f(α0) > 0 = f(α∗). Therefore, as f is decreasing,

x∗ > x0. �

Proof of lemma 1. To be incentive compatible, the agreement has to give the agent an

incentive to exert the high level of effort e whatever the level of effort of her opponent.

Formally this give:

(1− p)2u(ω − αω) + p(1− p) (u(ω − αω + t) + u(ω + αω(µ− 1)− t)) + p2u(ω + αω(µ− 1))− ψ
≥ (1− p)(1− p)u(ω − αω) + p(1− p)u(ω + αω(µ− 1)− t)

+(1− p)pu(ω − αω + t) + ppu(ω + αω(µ− 1))

(1− p)(1− p)u(ω − αω) + (1− p)pu(ω − αω + t)

+p(1− p)u(ω + αω(µ− 1)− t) + ppu(ω + αω(µ− 1))− ψ
≥ (1− p)2u(ω − αω) + p(1− p) (u(ω − αω + t) + u(ω + αω(µ− 1)− t)) + p2u(ω + αω(µ− 1))
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That is:

−(p− p)(1− p)u(ω − αω)− (p− p)pu(ω − αω + t)

+(p− p)(1− p)u(ω + αω(µ− 1)− t) + ((p− p))pu(ω + αω(µ− 1)) ≥ ψ

−(p− p)p(1− p)u(ω − αω)− (p− p)pu(ω − αω + t)

+(p− p)(1− p)u(ω + αω(µ− 1)− t) + (p− p)pu(ω + αω(µ− 1)) ≥ ψ

Recalling that C = ψ
p−p , this amounts to{

i(p) ≥ C

i(p) ≥ C

with i(p) ≡ −(1−p)u(ω−αω)−pu(ω−αω+t)+(1−p)u(ω+αω(µ−1)−t)+pu(ω+αω(µ−
1)). As i′(p) = [u(ω − αω)− u(ω − αω + t)]−[u(ω + αω(µ− 1)− t)− u(ω + αω(µ− 1))] ≤
0 because of the concavity of u, if t ≥ 0, i(p) ≥ i(p) and the first condition leads to the

second. �

Proof of theorem 1. The Langrangian is written

(1− p)πf + pπs + λ(πs − πf − C) (12)

with λ the Lagrange multiplier of the incentive constraint. The maximization program

entails respectively ∂L
∂t

= 0, ∂L
∂α

= 0, ∂L
∂λ

= 0, that is,
pu′(ω − αω + t)

(1− p)u′(ω + αω(µ− 1)− t)
=

p+ λ

(1− p)− λ
1

µ− 1

(1− p)u′(ω − αω) + pu′(ω − αω + t)

(1− p)u′(ω + αω(µ− 1)− t) + pu′(ω + αω(µ− 1))
=

p+ λ

(1− p)− λ
(1− p)u(ω + αω(µ− 1)− t) + pu(ω + αω(µ− 1))− (1− p)u(ω − αω)− pu(ω − αω + t) = C

(13)

This gives:
1− p
p

u′(ω − αω)

u′(ω − αω + t)
+ 1 = (µ− 1)

[
p

(1− p)
u′(ω + αω(µ− 1))

u′(ω + αω(µ− 1)− t)
+ 1

]
−(1− p)u(ω − αω)− pu(ω − αω + t) + (1− p)u(ω + αω(µ− 1)− t) + pu(ω + αω(µ− 1)) = C

(14)

The incentive constraint defines an implicit relationship between t and α with:( ∂t
∂α

)
IC

= ω · A+B

E +D
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with 
A = (1− p)u′(ω − αω) + pu′(ω − αω + t)

B = (µ− 1)
[
(1− p)u′(ω + (µ− 1)αω − t) + pu′(ω + (µ− 1)αω)

]
E = pu′(ω − αω + t)

D = (1− p)u′(ω + (µ− 1)αω − t)

(15)

Note that this ratio is positive. The first equation in system (14), that takes into

account the first derivatives of the Lagrangian with respect to t and α, writes as A
E

= B
D

.

Therefore, in the plan (α, t), the optima are achieved when the curves IC(α, t) = 0

(denoted curve (IC)) and V (α, t) = 0 (denoted curve (V)) cross, with
V (α, t) = A

E
− B

D

IC(α, t) = (1− p)u(ω + (µ− 1)αω − t) + pu(ω + (µ− 1)αω

−(1− p)u(ω − αω)− pu(ω − αω + t)− C
(16)

� Curve (V) is not in-between curves (I) and (II). The first-best solution is the

solution of E
D
− p

1−p = 0 (curve (I), crossing (0, 0)) and A
B
− p

1−p = 0 (curve (II), crossing

(α0, 0)). Then it intersects the curve (V) in the plan (α, t)). Notice that both curves

(I) and (II) are increasing in the plan (α, t). The areas of the plan in-between the two

curves (I) and (II) are such that A
B
− p

1−p < 0 and E
D
− p

1−p > 0. It follows directly that
A
B
6= E

D
in-between curves (I) and (II); equivalently, A

E
6= B

D
in-between curves (I) and

(II), and then function V (α, t) = 0 cannot pass in-between curves (I) and (II) in the

plan (α, t).

� Curve (V) is above curves (I) and (II) when α ∈ [0, α∗]. We observe that

function V (α, t) is increasing in t the plan (α, t). Indeed, function V (α, t) is written:

V (α, t) =
1− p
p

u′(ω − αω)

u′(ω − αω + t)
+1−(µ−1)

[
p

(1− p)
u′(ω + αω(µ− 1))

u′(ω + αω(µ− 1)− t)
+ 1

]
(17)

We have:

∂V (α, t)

∂t
=

1

p(1− p) [u′(ω − αω + t)]2 [u′(ω + αω(µ− 1)− t)]2(
− (1− p)2u′(ω − αω)u

′′
(ω − αω + t) [u′(ω + αω(µ− 1)− t)]2

−(µ− 1)p2u′(ω + αω(µ− 1))u
′′
(ω + αω(µ− 1)− t) [u′(ω − αω + t)]

2

)
> 0

Basically, ∂V (α,t)
∂t

> 0 for all utility satisfying u′ > 0, u” < 0.
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We deduce two points. First, the transfer t0 such that V (0, t0) = 0 is positive. To

see this, note that V (0, 0) = 1−pµ
p(1−p) ; since 1 < pµ, V (0, 0) < 0. Since ∂V (α,t)

∂t
> 0, this

induces that t0 > 0. From this, we know that curve (V) joins (0, t0) to (α∗, t∗), being

above curves (I) and (II). Second, as (V) crosses the first-best, it may be the case that

the curve goes down on the left, passing below curves (I) and (II) for some α < α∗

(see figure 3). But since ∂V (α,t)
∂t

> 0, we have V (α, t) < 0 for all (α, t) below curve (II)

when α ∈ [0, α∗]. Thus, such a configuration cannot happen.

Figure 3: (V) cannot be such; it cannot pass below (I) and (II) before α∗

We conclude that curve (V) is necessarily above (I) and (II) when α ∈ [0, α∗].

� We have α∗∗ > α∗. Notice that, in the plan (α, t), the curve (IC) is below the

first-best solution.

If curve (IC) is below curve (I) when α ∈ [0, α∗], then curve V does not intersect curve

(IC) when α ∈ [0, α∗] and we are done.

If curve (IC) crosses over curve (I), either it does not intersect (V) and we are done, or

it does. Figure 4 illustrates the case. Consider two intersections (V)-(IC), denoted t1

(resp. t2). Basically, utility increases when, fixing α, we pass to t3 on curve (I) (resp.

t4) - full equal sharing is better than even more sharing -. Further, profit increases on

curve (I) before α∗, that is until the second intersection (I)-(IC), denoted t5. Last, it

increases again on (IC): indeed, the next intersection is necessarily for some α > α∗

and profit is locally increasing on (IC) at the point t̃. �

17



Proof of example 2. Define

R(α, t) ≡ (1− p)u′(ω − αω) + pu′(ω − αω + t)

(1− p)u′(ω + αω(µ− 1)− t) + pu′(ω + αω(µ− 1))

We can write the solution of the program without moral hazard (9) as R(α∗, α
∗ωµ
2

) =
p

1−p(µ− 1) whereas
(
∂L
∂α

= 0
)

becomes R(α∗∗, t∗∗) = p+λ
(1−p)−λ(µ− 1)

Suppose t∗∗ ≥ α∗∗ωµ
2

. In this case, u′(ω − αω + t) ≤ u′(ω + αω(µ− 1)− t). Therefore

the RHS of
(
∂L
∂t

= 0
)

is lower than p
1−p and λ ≤ 0. This give R(α∗∗, t∗∗) < R(α∗, α

∗ωµ
2

).

V (α, t) is flat for CARA utilities. Basically,

∂V (α, t)

∂α
=

ω

p(1− p) [u′(ω − αω + t)]2 [u′(ω + αω(µ− 1)− t)]2(
− (1− p)2u

′′
(ω − αω)u

′
(ω − αω + t) [u′(ω + αω(µ− 1)− t)]2

+(1− p)2u′(ω − αω)u
′′
(ω − αω + t) [u′(ω + αω(µ− 1)− t)]2

−(µ− 1)2p2u
′′
(ω + αω(µ− 1))u

′
(ω + αω(µ− 1)− t) [u′(ω − αω + t)]

2

+(µ− 1)2p2u′(ω + αω(µ− 1))u
′′
(ω + αω(µ− 1)− t) [u′(ω − αω + t)]

2

)

Figure 4: case where curve (IC) above curve (I) before α∗
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Hence, ∂V (α,t)
∂α

= 0⇔

(1− p)2 [u′(ω + αω(µ− 1)− t)]2
[
u
′′
(ω − αω)u

′
(ω − αω + t)− u′(ω − αω)u

′′
(ω − αω + t)

]

+(µ− 1)2p2 [u′(ω − αω + t)]
2 ×[

u
′′
(ω + αω(µ− 1))u

′
(ω + αω(µ− 1)− t)− u′(ω + αω(µ− 1))u

′′
(ω + αω(µ− 1)− t)

]
= 0

Since u”(.)
u′(.)

is constant across wealth for CARA utilities, ∂V (α,t)
∂α

= 0 ∀α, t and t∗ = t∗∗

can be inferred by V (0, t) = 0. The result follows directly. �
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