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ABSTRACT

The aim of the Ph.D. thesis is twofold. First, we investigate possible stock market
mispricing to eventually build profitable investment strategies. Second, we analyze how
the microscopic interactions among agents influence trading conditions thereby leading
to market instabilities.

As regards the study of possible mispricing, we identify via the vector autoregressive
approach revenues as the primary driver process of firm growth. To do so, we employ
the recent Independent Component Analysis (ICA) technique which allows us to identify
contemporaneous causal relations among the considered variables. In particular, the first
original contribution of the thesis is to extend the ICA methodology for singular and
noisy structural vector autoregressive models; see Chapter 2.

As a second original contribution, starting from the revenues, we propose a firm valua-
tion framework incorporating the associated intrinsic uncertainty. We derive a probability
distribution of fair values, we construct a market factor capturing misvaluation comove-
ments and we propose two stock recommendation systems that hinge on the fair value
distribution; see Chapters 3, 4 and 5.

Finally, in the last contribution, we analyze asymptotically market stability as the
number of assets and traders increase. Market instability is defined as a result of oscillat-
ing equilibrium strategies of optimal execution problems in market impact games, where
the dynamical equilibrium between the activity of simultaneously trading agents gener-
ates the price dynamics. One of the main results is the connection of market instability
to the market cross-impact structure when portfolios execution orders are considered; see
Chapter 7, 8 and 9.

i





TABLE OF CONTENTS

INTRODUCTION 1

I Causal Inference and Firm Valuation 11

1 The Valuation of a Firm 13

1.1 The Discounted Cash Flow model . . . . . . . . . . . . . . . . . . . . . . . 13

1.1.1 The discounting rate . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2 What is the driver process behind firm growth? . . . . . . . . . . . . . . . 18

1.2.1 The SVAR framework . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2.2 The Independent Component Analysis . . . . . . . . . . . . . . . . 19

1.2.3 ICA approach to SVAR: the PML estimator . . . . . . . . . . . . . 22

1.2.4 A causality exercise for firm growth . . . . . . . . . . . . . . . . . . 24

2 Identification of Singular and Noisy Structural VAR Models 29

2.1 Extensions of the ICA approach to SVAR models . . . . . . . . . . . . . . 30

2.1.1 Singular ICA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.1.2 Noisy ICA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 The Collapsing-ICA procedure . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2.1 Identification results . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2.2 The noiseless case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2.3 The noisy case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3 Empirical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Appendix A Appendix of Chapter 2 51

A.1 A DFM-ICA procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

A.2 Simulation analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

iii



A.3 Estimated matrices of Section 2.3 . . . . . . . . . . . . . . . . . . . . . . . 57

3 Uncertainty in Firm Valuation 61

3.1 The Stochastic Discounted Cash Flow model . . . . . . . . . . . . . . . . . 61

3.1.1 Cash flows and revenues . . . . . . . . . . . . . . . . . . . . . . . . 62

3.1.2 The revenues’ process . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.1.3 The discounting and perpetual growth rate . . . . . . . . . . . . . . 65

3.1.4 The stochastic valuation framework . . . . . . . . . . . . . . . . . . 66

3.2 Data and sample selection criteria . . . . . . . . . . . . . . . . . . . . . . . 66

3.3 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.3.1 Statistical validation of cash flows model . . . . . . . . . . . . . . . 69

3.3.2 Goodness of fit of revenues models . . . . . . . . . . . . . . . . . . . 70

4 A Cross-Sectional Misvaluation Measure and the Valuation Factor 75

4.1 Firm misvaluation z-score . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.1.1 Analysis on the cross-section of individual stock returns . . . . . . . 76

4.1.2 Analysis at portfolio level . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2 The valuation factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2.1 Comparing LSV with other market factors . . . . . . . . . . . . . . 79

4.2.2 The LSV beta and the Cross-Section of Portfolio (Abnormal) Returns 81

4.2.3 The LSV beta and the Cross-Section of Individual Stock Returns . 85

Appendix B In-sample analysis of LSV beta and excess returns 89

5 Stock Recommendations from Stochastic Discounted Cash Flows 91

5.1 Recommendations from fair-value distributions . . . . . . . . . . . . . . . . 91

5.1.1 Single-Stock Quantile recommendations system . . . . . . . . . . . 91

5.1.2 Cross-Sectional Quantile recommendations system . . . . . . . . . . 92

5.2 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2.1 Building z-scores from the analysts’ recommendations . . . . . . . . 97

II Market Stability in Market Impact Games 101

6 Market Impact Games 105

iv



6.1 The Schied and Zhang framework . . . . . . . . . . . . . . . . . . . . . . . 105

6.2 The Luo and Schied multi-agent market impact model . . . . . . . . . . . 108

7 Multi-Asset Market Impact Games 113

7.1 Nash equilibrium for the linear cross impact model . . . . . . . . . . . . . 116

8 Trading Strategies in Market Impact Games 123

8.1 Cross-Impact effect and liquidity strategies . . . . . . . . . . . . . . . . . . 123

8.2 Do arbitrageurs act as market makers at equilibrium? . . . . . . . . . . . . 126

9 Instability in Market Impact Games 129

9.1 Market stability and cross impact structure . . . . . . . . . . . . . . . . . 130

9.1.1 One factor matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

9.1.2 Block matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

9.2 Market stability in multi-agent and multi-asset market impact games . . . 137

9.2.1 Characterization of the fundamental solutions . . . . . . . . . . . . 137

9.2.2 Numerical analysis of stability . . . . . . . . . . . . . . . . . . . . . 138

9.2.3 Possible policy recommendations . . . . . . . . . . . . . . . . . . . . 142

Appendix C Instability and heterogeneity of agents’ trading skills 143

CONCLUSION 151

REFERENCES 155

v



vi



INTRODUCTION

The value of a company can be obtained by looking either at the market or at the
intrinsic value. There is a significant difference between these two quantities. The former
is a measure set by the market of how much it would cost to buy the company, i.e., it
reflects the company market price. On the other hand, the firm’s actual value can be also
estimated by considering its fundamental data, e.g., cash flows, which define the company
intrinsic (or fundamental) value.

If we denote the market price function at time t as the function which relates a stock
in X to its market price, i.e.,

pt : X → R+

x 7→ pt(x),

we can define, for each t, an equivalence relation between assets by A ∼ B ⇐⇒ pt(A) =

pt(B). In other words, if two assets have the same market price, then they are essentially
indistinguishable from each other from a market perspective. However, the intrinsic value
defines another equivalence relation, A ∼v B ⇐⇒ vt(A) = vt(B), where vt(·) is the
function which relates a stock with its intrinsic value. Typically, the value of publicly
traded companies is related to the intrinsic value derived by fundamental data, such
as income statement, balance sheet and statement of cash flows. The sticking point is
that while pt is directly observed on the market, the intrinsic value is a latent quantity.
However, the underlying pragmatic assumption of financial analysts and practitioners is
that the difference between the value and price will become negligible, i.e.,

lim
t→∞

pt(x)− vt(x) = 0 ∀x ∈ X, (0.1)

which represents a some degree of market efficiency1. Under this hypothesis, undervalued
assets should recover, at least in part, their true value and thus, their prices are expected

1We adopt the point of view of Black (1986): “The noise that noise traders put into stock prices will
be cumulative, in the same sense that a drunk tends to wander farther and farther from his starting
point. Offsetting this, though, will be the research and actions taken by the information traders. The
farther the price of a stock gets from its value, the more aggressive the information traders will become.
More of them will come in, and they will take larger positions. They may even initiate mergers, leveraged
buyouts, and other restructurings. Thus the price of a stock will tend to move back toward its value
over time”, (p. 533).
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to increase2. Since the seminal work of Shiller (1981), many researchers have focused
on how rational assumptions related to market efficiency, like rational expectation hy-
pothesis, cannot explain the substantial difference between market price and its related
fundamental value, the so called excess volatility puzzle.

One of the most fundamental direct valuation method is the discounted cash flows
(DCF) approach. It is widely employed by sell-side financial analyst and practitioners
(see e.g. Brown et al., 2015). In DCF valuation, one starts by determining the stream
of future cash flows of a company and then computes their present value through an
appropriately defined discount rate. We first have to determine the stream of future
cash flows, so to reduce them to present value through the discount rate and, finally,
to compare the result with today’s price. This approach attempts to capture with one
single number, the discount rate, two different effects: the time value of money and the
uncertainty of future cash flows. Although, it is a well established fact that the market
price nature of a stock follows a stochastic process, the same assumption is not widely
accepted for the fundamental value in a simple framework like the DCF approach. Indeed,
most of applications of the DCF are regarding the computation of the so called expected
future cash flows, from which one can recover a point fair value estimate.

However, noise and uncertainty play a major role in valuation: all estimates of value
are noisy, so we can never know by how much market price has deviated from value,
(Black, 1986, p. 533). Noise and uncertainty limit the extent to which an analysis of
cash flows can provide useful and accurate information about the value of an asset, and
they both affect the determination of target prices and the bottoms-up construction
of portfolios. These limitations have been evident since the early history of financial
analysis: in their foundational study on security analysis, (Graham and Dodd, 1934,
p. 18) state: “The essential point is that security analysis does not seek to determine
exactly what is the intrinsic value of a given security. It needs only to establish either
that the value is adequate - e.g., to protect a bond or to justify a stock purchase - or
else that the value is considerably higher or considerably lower than the market price.
For such purposes, an indefinite and approximate measure of the intrinsic value may be
sufficient.” Therefore, primarily due to the intrinsic difficulty of estimating the future cash
flows of a company, the value provided by DCF is likely to be affected by a considerable
amount of uncertainty. Starting from this consideration, existing works have highlighted
the necessity of developing probabilistic and statistical tools to extend the conventional
DCF method to include some measure of uncertainty associated with the estimated value
(Casey, 2001). However, to the best of our knowledge, despite its practical relevance,
this problem has been the subject of surprisingly few academics studies. The general

2Even if the fundamental value may vary on time, it is conventional wisdom that the velocity of its
change is smaller than those of market price. This is also related to the frequency with the balance sheet
data are released (typically quarterly).
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suggestion has been to perform Monte Carlo simulations of the underlying (accounting)
variables starting from historically estimated correlation matrices (see Damodaran, 2007,
French and Gabrielli, 2005). This is similar to Monte Carlo procedures commonly used
by analysts in investment banking studies (see e.g Koller et al., 2010). For instance, in
Ali et al. (2010), Gimpelevich (2011), and Samis and Davis (2014) both scenario-based
and simulation-based analyses are used, together with the DCF, for investment decisions
in real-estate projects or for evaluating a specific market sector. Interestingly, in Viebig
et al. (2008) the authors acknowledge that “Being intellectually honest, financial analysts
can at best determine ranges or distribution of possible fundamental financial values but
not exact price targets for stocks as future revenue growth rates, future operating margins
and other inputs which go into DCF models cannot be predicted with certainty.”

We propose a simple, general and theoretically grounded method, the Stochastic Dis-
counted Cash Flow (SDCF) approach, to replace the point estimate of the conventional
DCF method with a proper random variable. The basic idea of the SDCF is to consider
a suitably defined probability space that is able to describe the future cash flow dynam-
ics of a company. Should the true cash flow process be known, the value computed by
the standard DCF would be exactly the expectation of the SDCF random variable. In
general, the reliability of the method depends on the goodness of the data generating
process describing future cash flows. Therefore, before presenting the stochastic frame-
work to DCF approach, we have to select a well-defined process on which we may define
a suitable probability space. Thus, to pursue this scope we study the causal structure
of firm growth. We employ a Vector Autoregressive (VAR) model approach, a statistical
model which describes the joint evolution of N observed variables with their past values.
Since the seminal paper of Sims (1980), Structural Vector Autoregressive (SVAR) mod-
els are employed to study theoretical economic models and policies, such as the effect
of a monetary intervention. They are one of the most prevalent tools in empirical eco-
nomics to study dynamic systems of selected variables from which the causal relationships
among the selected variables may be recovered. The success of the VAR approach can
be attributed to its simplicity and independence from structural underlying (economic)
model. Traditionally, the structural counterpart can not be identified without imposing
(economic) restrictions, which are often derived by an underlying (economic) theory and
thus they invalid the data-driven feature of the reduced VAR model.

However, recent works shown that this problem may be overcame without any restric-
tions exploiting the non-gaussianity of data via the Independent Component Analysis
(ICA), Moneta et al. (2013), Lanne et al. (2017), Gouriéroux et al. (2017), a machine
learning technique which allows to recover the causal properties employing only the fea-
tures of the data. Even if the classical application of the SVAR approach is related to
macroeconomics studies, following Coad and Rao (2010) and Moneta et al. (2013), we
employ the ICA technique and a SVAR analysis to show how revenues constitute the main
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driving factor of the company growth and so they may be selected as the process on which
to build our stochastic valuation approach. So far, however, applications of ICA in the
economic literature have been limited only to the determined case, i.e., when the number
of the unobserved structural shocks R is equal to the number of observed variables N .
We propose generalizations of the ICA identification technique for SVAR models in two
directions: (i) to the singular case, i.e., when the number of variables is larger than the
number of the structural shocks, N > R, and (ii) to the noisy case, i.e., when the system
is contaminated with noise in the VAR residuals. The basic idea is to combine methods
for the estimation of factor models together with ICA approach. In particular, we propose
a combination of the collapsing procedure of Jungbacker and Koopman (2008) together
with the recent ICA estimator introduced by Gouriéroux et al. (2017) allowing to achieve
identification also in the singular and noisy case. We study the singular and noisy ICA
formulation employing the Pseudo Maximum Likelihood (PML) estimator of Gouriéroux
et al. (2017) and we show the consistency of the proposed combined procedure. A simi-
lar problem has been analyzed in the ICA literature but, in contrast to our work, these
works have focused on the algorithmic performances and techniques rather than on the
formal analysis of the statistical properties of the procedures, see e.g., Moulines et al.
(1997), Hyvärinen (1999), Attias (1999), Joho et al. (2000). As customary with VAR
analysis we apply the new identification method to U.S. macroeconomic data. Thanks
to the proposed procedure we employ the entire set of information contained in all the
observed macro-variables available to consistently identify the lower dimensional system
of the structural shocks driving the U.S. economy.

Then, we turn to our primary task, and we propose our SDCF approach by relying on
the revenues process as the main driving factor for firm growth and cash flow dynamics.
In order to build a satisfactory prediction of future cash flows we rely upon two empirical
observations. The first observation is that the basic source of company’s cash flow,
the revenues, is characterized by a substantially volatile idiosyncratic component. The
second observation is that even if, from an accounting point of view, the cash flow is a
reconstructed variable that depends on a set of other, more fundamental, variables (e.g.
amortization, cost of debts and taxes), all interacting and affecting the final realized cash
flow in different degrees, the structural relationship among these variables results stable
in time.

The main methodological novelty of our approach is merging these two observations
in a three steps procedure to derive a prediction model for future cash flows. First,
a set of econometric models are estimated at firm level, their efficiency is individually
and independently compared, and the best model of each firm is used in a Monte Carlo
procedure to obtain the distribution of future revenues. Second, all the other accounting
variables that enters into the final definition of company’s cash flow are estimated as
“margins” on the revenues by using historical data. Finally, the obtained data generating
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process is used in a controlled Monte Carlo simulation to derive a probability distribution
for the company’s fair value, the fair value distribution, which may be used to obtain both
an estimate of the expected fair value of the company and of its degree of uncertainty.

To explore the information content of the fair value distribution, we build a volatility-
adjusted mispricing indicator, defined as the difference between the market price of the
company and its expected fair value divided by the fair value distribution standard devi-
ation. Under the assumption that company’s future market prices will eventually adjust
to re-absorb company’s present misvaluation, we run a series of empirical exercises to
investigate the relation between our misvaluation indicator and market returns. We start
with a firm-level investigation. We find that the misvaluation indicator possess a sig-
nificant predictive power for one-quarter ahead excess returns when used to augment
linear factor model routinely used in financial applications (see e.g. the Fama-French
three-factor model, Fama and French, 1993, 2015) and other control variables. To fur-
ther assess the reliability of our misvaluation indicator, we sort stocks into (appropriately
defined) quantiles based on the empirical distribution function of the individual firm in-
dicator and we construct “Buy”, “Hold” and “Sell” portfolios according to this quantile
splitting. By comparing the equally weighted daily returns of these portfolios we observe
that the “Buy” portfolio earns a gross return that is consistently and significantly higher
than that of the “Sell” portfolio. Motivated by the evidence at firm level, we explore if,
and to what extent, our misvaluation index has some predictive power when augment-
ing traditional market factor models. We form a long-short valuation factor (LSV ) by
measuring the returns on a factor-mimicking portfolio that goes long on the most rec-
ommended (undervalued) stocks and short in the less recommended (overvalued) stocks.
In this respect, this study is related to the works of Hirshleifer and Jiang (2010) for the
UMO factor and by Chang et al. (2013) for the MSV factor. The LSV factor, when
added to the Fama French five-factors model (Fama and French, 2015) augmented by
the momentum factor introduced in Carhart (1997), as well as by the UMO factor of
Hirshleifer and Jiang (2010), is not redundant in describing average returns, both on the
cross-section of portfolio and individual stock returns. This confirms the ability of our
indicator of capturing a previously unexplained contribution to company’s mispricing.

Then, we investigate whether investors can profit from two stock recommendation
systems constructed using the information provided by the stochastic discounted cash
flow analysis. The recommendation systems we introduce, based on the SCDF method,
compare the fair value distributions with market prices to detect mispriced assets. The
prices of undervalued assets are expected to increase. As such, they are good candidates
for buy portfolios. Conversely, overvalued assets are expected to see a decrease in price
and are good candidates for sell portfolios. The misvaluation assessment is run differently
in our two recommendation systems. The first system is called single-stock quantile and
the degree and direction of mispricing for a company are derived from the likelihood of
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obtaining the observed market price from the fair value distribution of that company.
In the second proposed system, the cross-sectional quantile, mispricing information is
derived comparatively, jointly using the fair value distributions of all considered compa-
nies. In this approach, the mispricing indicator is the previously defined z-score index.
The advantage of the former method is that it uses all information available from the
fair value distribution, while the latter derives its robustness with respect to possible fair
value estimation biases. The performance analysis of the two systems is carried out using
an intercept test of excess portfolio returns, built using the Fama-French three-factor
model (Fama and French, 1993) augmented with the momentum factor (Carhart, 1997).
We show that equally weighted portfolios composed of the most highly recommended
stocks consistently earn positive abnormal gross returns. The comparison with the much
weaker results obtained using similar portfolios built from analyst recommendations from
the Thomson Reuters Institutional Brokers’ Estimate System (I/B/E/S) database further
emphasizes the advantage of our methodology. Moreover, our recommendation systems
remain profitable even when a high level of turnover costs is included. We believe that
this study complements the literature that highlights the necessity for developing proba-
bilistic and statistical tools to extend the conventional DCF approach by including some
measure of uncertainty associated with the estimated value, Casey (2001), Bradshaw
(2004), Brown et al. (2015), Baule and Wilke (2016). Finally, as a robustness check of
the cross-sectional quantile methodology, we built an analogues system based on analysts
recommendations and we find that it improves the original analysts’ indications.

In the first part of the thesis some market efficiency hypothesis is assumed to be valid.
One of the first attempts whereby market efficiency was rationalized is the introduction
of the rational expectation hypothesis, where agents are assumed to be rational and
perfectly informed, O’Hara (1997), Guéant (2016), Vodret et al. (2020). A particular class
which incorporates these assumptions are the information-based models, where market
participants are divided in two main categories, noise traders and informed traders, Kyle
(1985). In particular, a noise trader is an agent which trades on the basis of exogenous
(w.r.t. market) information, while an informed trader is essentially an arbitrageur, which
wants to try to profit from a private information. Usually, the trading mechanisms is
organized with market makers (dealers) which actually provide liquidity and make market
more transparent. They display “bid” and “ask” price at which they willing to buy and
sell a stock, respectively. However, both informed and noisy traders typically fragment
their orders in small pieces so as to hide their private informations, e.g., using metaorders
Bouchaud et al. (2009). This generates a correlation in order flows and a subsequent price
impact. Market impact is the relation between orders and price changes. A popular model
which describes how past orders influence the price is the transient impact model, where
the market impact is modeled by a specific decay kernel function, also called propagator,
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see for instance Bouchaud et al. (2004) Bouchaud et al. (2009) Guéant (2016). Even if
we have profitable portfolios strategy, the execution in real market of large orders (like a
rebalancing in a portfolio) it is not trivial, and a bad orders scheduling can deteriorate
the profitability of the all investment strategy. Thus, in the second part of the thesis, we
focus on the optimal schedule problem of an agent which trades many assets in a market
with many competitors.

However, a non-trivial impact function is introduced to preserve the statistically ef-
ficiency of markets, which might trigger market instabilities and flash crashes, Vodret
et al. (2020). Instabilities in financial markets have always attracted the attention of
researchers, policy makers and practitioners in the financial industry because of the role
that financial crises have on the real economy. Despite this, a clear understanding of the
sources of financial instabilities is still missing, in part probably because several origins
exist and they are different at different time scales. The recent automation of the trading
activity has raised many concerns about market instabilities occurring at short time scales
(e.g. intraday), in part because of the attention triggered by the Flash Crash of May 6th,
2010 (Kirilenko et al., 2017) and the numerous other similar intraday instabilities ob-
served in more recent years (Brogaard et al., 2018, Calcagnile et al., 2018, Golub et al.,
2012, Johnson et al., 2013), such as the Treasury bond flash crash of October 15th, 2014.
The role of High Frequency Traders (HFTs), Algo Trading, and market fragmentation
in causing these events has been vigorously debated, both theoretically and empirically
(Brogaard et al., 2018, Golub et al., 2012).

One of the puzzling characteristics of market instabilities is that a large fraction of
them appear to be endogenously generated, i.e., it is very difficult to find an exogenous
event (e.g. a news) which can be considered at the origin of the instability (Cutler et al.,
1989, Fair, 2002, Joulin et al., 2008). Liquidity plays a crucial role in explaining these
events. Markets are, in fact, far from being perfectly elastic and any order or trade
causes prices to move, which in turn leads to a cost (termed slippage) for the investor.
As mentioned above, in order to minimize market impact cost, when executing a large
volume it is optimal for the investor to split the order in smaller parts which are executed
incrementally over the day or even across multiple days. One of the origin of the market
impact cost is predatory trading (Brunnermeier and Pedersen, 2005, Carlin et al., 2007):
the knowledge that a trader is purchasing progressively a certain amount of assets can
be used to make profit by buying at the beginning and selling at the end of the trader’s
execution. Part of the core strategy of HFTs is exactly predatory trading. Now, the
combined effect on price of the trading of the predator and of the prey can lead to large
price oscillations and market instabilities. In any case, it is clear that the price dynamics
is the result of the (dynamical) equilibrium between the activity of two or more agents
simultaneously trading.

This equilibrium can be studied by modeling the above setting as a market impact
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game (Carlin et al., 2007, Lachapelle et al., 2016, Moallemi et al., 2012, Schied and Zhang,
2018, Schöneborn, 2008, Strehle, 2017a,b). In a nutshell, in a market impact game, two
traders want to trade the same asset in the same time interval. While trading, each agent
modifies the price because of market impact, thus when two (or more) traders are simul-
taneously present, the optimal execution schedule of a trader should take into account
the simultaneous presence of the other trader(s). As customary in these situations, the
approach is to find the Nash equilibrium, which in general depends on the market impact
model.

Market impact games are a perfect modeling setting to study endogenously generated
market instabilities. A major step in this direction has been recently made by Schied and
Zhang (2018). By using the transient impact model of Bouchaud et al. (2004, 2009) plus
a quadratic temporary impact cost (which can alternatively be interpreted as a quadratic
transaction cost, see below), they have recently considered a simple setting with two
identical agents liquidating a single asset and derived the Nash equilibrium. Interestingly,
they also derived analytically the conditions on the parameters of the impact model under
which the Nash equilibrium displays huge oscillations of the trading volume and, as a
consequence, of the price, thus leading to market instabilities3. Specifically, they proved
the existence of a sharp transition between stable and unstable markets at specific values
of the market impact parameters.

Although the paper of Schied and Zhang highlights a key mechanism leading to mar-
ket instability, several important aspects are left unanswered. First, market instabilities
rarely involve only one asset and, as observed for example during the Flash Crash, a cas-
cade of instabilities affects very rapidly a large set of assets or the entire market (CFTC-
SEC, 2010). This is due to the fact that optimal execution strategies often involve a
portfolio of assets rather than a single one (see, e.g. Tsoukalas et al., 2019). Moreover,
commonality of liquidity across assets (Chordia et al. (2000) and cross-impact effects, (Al-
fonsi et al., 2016, Schneider and Lillo, 2019), make the trading on one asset triggers price
changes on other assets. Thus, it is natural to ask: is a large market more or less prone
to market instabilities? How does the structure of cross-impact and therefore of liquidity
commonality affect the market stability? A second class of open questions regards instead
the market participants. Do the presence of more agents simultaneously trading one asset
tends to stabilize the market? While the solution of Schied and Zhang considers only two
traders, it is important to know whether having more agents is beneficial or detrimental
to market stability. For example, regulators and exchanges could implement mechanisms
to favor or disincentive participation during turbulent periods. Answering this question
requires solving the impact game with a generic number of agents and it is discussed in

3In their paper, Schied and Zhang interpret the large alternations of buying and selling activity
observed at instability as the ”hot potato game” among HFTs empirically observed during the Flash
Crash (CFTC-SEC, 2010, Kirilenko et al., 2017).
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the recent work of Luo and Schied (2020). Furthermore, they also extended the original
framework by considering the agents’ risk aversion and the related mean-variance and
CARA optimization problems. In particular, they derived explicit solutions for the cor-
responding Nash equilibria and they studied numerically how the stability is influenced
by the presence of many agents. We extend considerably the setting of Schied and Zhang
by answering the above research questions. Specifically, starting from Luo and Schied
(2020), we consider (i) the case when agents trade multiple assets simultaneously and
cross market impact is present and we provide explicit representations of related Nash
equilibria; (ii) after studying how trading conditions may be affected by the cross impact
we derive theoretical results on market stability for the J = 2 agents by showing how
it is related to the cross-impact effect; (iii) we study numerically market stability in the
general case and we extend a previous result of Luo and Schied (2020) in the multi-asset
case. The different ’paths’ leading to market instability are therefore highlighted, find-
ing, surprisingly, that larger and more competitive markets are more prone to market
instability. Moreover, we also exhibit a possible way to reduce these instabilities which a
policy regulator would like to prevent.

The thesis is organized as follows. In Chapter 1 we quickly recall the standard DCF
setting and we present the causal analysis to firm growth using SVAR-ICA approach. In
Chapter 2 we extend the ICA technique in the SVAR context and we discuss under which
assumptions the proposed procedure is consistent and feasible. In Chapter 3 we discuss
the details of the proposed SDCF model. In Chapter 4 we introduce our misvaluation
measure and we investigates the relation between stock misvaluation and future stock
returns by constructing a misvaluation factor. In Chapter 5 we analyze the performance
of the two proposed stocks recommendations systems. Then, in Chapter 6 we recall some
notation of the market impact games framework and the Luo and Schied (2020) model.
We extend the basic model of Luo and Schied (2020) to the multi-asset case in Chapter
7, where we find the corresponding Nash equilibria for different objective functions. We
analyze how trading strategies are influenced by trading conditions in Chapter 8. Finally,
in Chapter 9 we study market stability.
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Part I

Causal Inference and Firm Valuation





CHAPTER 1

The Valuation of a Firm

Valuation is the process from which the fair value of a company is recovered. The price
of an asset refers to the consensus of agents about the amount of money that they
are willing to pay to buy that asset. On the other hand, in the “valuation process”
of a firm we are interested to determine the value of a company characterized by its
intrinsic properties. The literature on company valuation encompasses three estimation
approaches of the shareholder value. The first “direct valuation” approach estimates the
value of a firm directly from its expected future cash flows, without any reference to the
current price of other firms in the market. Common examples of this approach are the
dividend discount model, the residual income model and the discounted cash flow model.
The second “relative valuation” approach estimates firm value by examining the market
pricing of assets comparable to those composing the company under valuation, typically
in relation to some accounting variable. The third, less common, approach is constituted
by the “contingent claim valuation”, which derives company’s value starting from the
prices of related options (see Damodaran (2012) for further details). In this Chapter we
are going to review some techniques related to the standard DCF model and we identify,
via structural analysis, the main driver process of firm growth which is at the basis of
the proposed stochastic DCF model in Chapter 3.

1.1 The Discounted Cash Flow model

In the DCF model the firm fair value is defined by discounting expected future cash
flows. Therefore, the definition of cash flows is a crucial step for the DCF method.
Essentially, the cash flows should represent the amount of excess cash generated by a
company, which may be used to invest for the business and enrich shareholders. For this
reason, in order to distinguish them to the standard operating cash flows1, they are often
referred to as free cash flows. Broadly speaking, they are obtained by the difference of the
capital expenditures to the net cash flows from operating activities and they constitute a
measure of liquidity. For the sake of simplicity we denote by CFt the free cash flow of a
company at time t. The DCF method is founded in the present value approach and the

1 Which are a measure of the amount of cash generated by standard business operations of a company.
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value of a firm, v0, is essentially given by the present value of the expected future cash
flows appropriately discounted,

v0 =
∞∑
t=1

E[CFt]∏t
s=1(1 + ks)

, (1.1)

where E[·] denotes the expected value operator and ks, 1 ≤ s ≤ t, denotes the appropriate
discount factor at time s. The main difference among various DCF models are regarding
the growth and the definition of cash flows.

If we assume that the cash flows have a constant growth rate, then we obtain the so
called one-stage model, where the value of a firm is essentially given by expected cash flow
in the next period over the difference between the discount rate and the stable growth
rate of cash flows, g, i.e.,

v0 =
E[CF1]

k− g
,

which is related to the famous Gordon growth model, Gordon (1962). In a two-stage
model it is assumed a faster firm growth in an initial period subsequently followed by a
stable phase, while in the three-stage model, there are an initial phase of high growth, a
transitional period in which the growth rate tend towards a steady-state phase in which
the firm growth is stable. The choice of the growth rates, which are typically selected from
historical data, is a crucial step for a DCF model, which turns out to be very sensitive to
a small variation of these rates. However, we discuss in Chapter 3 how we can overcome
these difficulties when, once identified a suitable driver process for cash flows dynamics,
we select a suitable structural model for this kind of process. Even if there is no a universal
model for company valuation, we will focus on the two-stage framework which represents
a good trade-off between the simple Gordon and the three-stage models2. Then it is
assumed, see e.g., Damodaran (2007), Steiger (2010), that

Assumption 1. The discount factor is constant in time and it is denoted by k.

Assumption 2. There exist a date T > 0 and a rate g, where 0 < g < k and k as in
Assumption 1, called “perpetual growth rate” such that

CFt+1 = CFt · (1 + g), ∀ t ≥ T .

Under Assumption 1 and 2 the infinite summation in Eq. (1.1) can be rewritten as:

v0 =
T∑
t=1

E [CFt]

(1 + k)t
+

E [CFT ] (1 + g)

(1 + k)T (k− g)
, (1.2)

where the second term multiplied by (1 + k)T is the so called terminal value (TV ).
2Moreover, it appears to be one of the most employed model by analysts and it is the standard

procedure adopted also by our data provider, Eikon/Datastream.
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Another classification between DCF models is due the definition of free cash flows.
In DCF, the cash flow is distinguished between Unlevered Free Cash Flow (UFCF) and
Levered Free Cash Flow (LCFC)3. The main difference between the two are expenses.
Precisely, UFCF represents the cash flow available to the debt and equity holders after
all expenses are paid off and reinvestments are made; LFCF, instead, represents the cash
flow employed to pay out dividend and financial expansion investments. Specifically,
for each time t the UFCF is define as the difference between the sum of Net Operating
Profit After Tax (NOPAT ) and Depreciation and Amortization (D&A) and the sum of
Capital Expenditure (CAPEX) and Change in the Working Capital (WC), (see, e.g.,
Damodaran, 2007, 2012, Steiger, 2010):

UFCFt := NOPATt +D&At −CAPEXt − ∆WCt, (1.3)

where ∆WCt = WCt −WCt−1, NOPATt = (EBITDA−D&A) · (1− τ ), EBITDA
represents Earning Before Interest, Taxes, Depreciation, and Amortization and τ rep-
resents the marginal tax rate. A detailed description of these accounting variables is
reported in Table 1.1. Then, the LFCF is defined by adding the net debt issued to the
UFCF.

Therefore, by discounting the UFCF we can recover the firm enterprise value, while
the DCF model with LCFC provides directly the equity value. Even if, we are interested
in the equity valuation of a firm, we will use the UFCF as a proxy for cash flows, since their
definition is less prone to arbitrary decisions, see Damodaran (2007, 2012), Steiger (2010),
and moreover the UCFC DCF model is in line with the one used by our data provider
Eikon/Datastream as a standard industry valuation method. Therefore, in a UFCF DCF
model once obtained the enterprise value v0 we have to remove, i.e., subtract, the current
value of “debt”. More precisely, the equity fair value vEq0 is defined as:

vEq0 = v0 − (TD−CsI +MI + PS), (1.4)

where TD represents the Total Debt, used as a proxy for the market value of debt (a
proxy suggested also by Damodaran (2007) and Steiger (2010)), CsI the Cash and Short-
term Investments, MI the Minority Interest and PS denotes the Preferred Stock; The
accounting variables used in the UFCF DCF model are all described in Table 1.1.

What we are going to present in Chapter 3 is an extended valuation framework which
turns out to be very flexible to the particular selections that analysts can make.

3The former is also known as Free Cash Flow to Firm and the latter as Free Cash Flow to Equity.
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Table 1.1 Description of some accounting variables employed in the UFCF DCF method.

Variable Description
EBIT Earning Before Interest and Taxes (known also as Operating

profit) which represents total revenues from all of a company
operating activities, after deducting any sales adjustments, ex-
cise taxes and other expenses incurred from operating activi-
ties.

D&A Depreciation and Amortization which refers to the amount of
expense charged by a company to cancel the cost of a plant or
machinery over its useful life, giving consideration to wear and
tear, obsolescence and salvage value together with a non-cash
expense incurred due to the amortization of intangible fixed
assets and goodwill.

EBITDA Earning Before Interest, Taxes, Depreciation, and Amortiza-
tion.

Marginal Tax Rate It represents the amount of tax which we have to deduct from
earnings. For sake of simplicity, it is denoted by τ .

NOPAT Net Operating Profit After Tax, which is defined, at each time
instant, as the difference between EBITDA and D&A, mul-
tiplied by (1− τ ).

WC Working Capital which is defined as the difference between
current assets and current liabilities of a company so that it
represents a measure of liquidity and efficiency. We will denote
by ∆WCt = WCt −WCt−1 the Change in the WC.

CAPEX Capital Expenditure which includes all expenditures that are
not treated as an expense on the income statement when they
are incurred, such as the costs for the development of soft-
ware which are capitalized at the time of development, and
amortized later, when such software is actually implemented
for production.

TD Total Debt Outstanding which represents the total interest-
bearing debt outstanding.

CsI Cash and Short-term Investments which represents short-term,
highly liquid investments that are both readily convertible to
known amounts of cash together with cash on hand and any
investments in debt and equity securities with maturity of one
year or less.

MI Minority Interest which represents accumulated interest for
minority shareholders in subsidiaries that are less than 100
percent owned by the reporting parent company.

PS Preferred Stock which represents the value of preferred shares.

1.1.1 The discounting rate

Let us briefly discussing some issues regarding the discounting rates of a DCF model.
The choice is closely related to the type of cash flows employed. However, the main idea
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is founded in actualization principles, which are the elementary financial mathematics
notions related to the concept of time value. For instance, if at a future time t we are
going to receive a certain quantity of money, then to evaluate that money today we
have to discount it using the riskless interest rate r. However, future cash flows of a
firm are not a certain quantity, so a widespread technique is to raise the riskless rate
r with a risk premium z, so that we also discount for the intrinsic uncertainty inside
the cash flows. Therefore, the choice of the discounting rate is related to the intrinsic
uncertainty incorporated in the expected future cash flows which are discounted to to
present, see Kruschwitz and Löffler (2006) for a complete dissertation. We will discuss
this issue on Section 3.1.3 after introducing the stochastic discounted cash flow model.
The appropriate discount rates for the LFCF is constituted by the Cost of Equity (ke),
which is often derived under the Capital Asset Pricing Model, see Kruschwitz and Löffler
(2006), Steiger (2010), Damodaran (2012), so that ke := rf + β(rM − rf ), where rf is
the risk free rate, β incorporates the risk of holding the firm stock that must be added
to the investor’s portfolio and rM is the market return. An usual procedure is to replace
β with the so called levered beta, βL := β[1 + (1− τ )(Debt/Equity)], where τ is the
marginal tax rate and Equity is market value of equity.

If UFCFs are employed then we have to combine the risk related to equity holder with
that of debt. Then, the resulting discount rate is the Weighted Average Cost of Capital
(WACC),

k = kewe + kdwd + kpwp, we +wd +wp = 1,

where kd represents the cost of debt, kp is the costs of preferred stocks and we, wd, wp
are the related weights4. The cost of debt measures the current cost to the firm to pay
on its outstanding debt. A common procedure is to compute the pre-tax cost of debt
kpre,d by adding the riskless rate to the default spread, obtained using the company’s
credit rating and since interest rate costs are tax deductable, kd := kpre,d · (1− τeff )
where τeff represents the effective tax rate payed by the company. The preferred stocks
constitute an hybrid financing instrument which presents a combination of equity and
debt features. Their associated costs can be computed, see Damodaran (2012), as the
ratio of the preferred dividend per share over the market price per preferred stocks. For
the empirical application illustrated in the next chapters, see Chapters 3, 4 and 5, these
values are provided directly from Thomson Reuters Eikon, Datastream database and we
refer to Damodaran (2007, 2012) for a detailed description of their computation. Finally,
as usual, the proxy of the perpetual growth rate g is the riskless T -bond rate.

4e.g., we = Equity/Assets, wd = Debt/Assets, and wp = Preferred Stocks/Assets.
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1.2 What is the driver process behind firm growth?

In order to select an appropriate driver process for cash flows, we test the conventional
wisdom to consider the revenues as the driver process of firm growth. Even if, it seems
unnecessary to test this claim, we analyze the causal structure of accounting variables
employing a SVAR technique. Moneta et al. (2013) show that sales constitute the driving
factor for firm growth. In this section, we replicated their study on our data. Then,
following their analysis and Coad and Rao (2010), we first select one sector from our
universe of S&P500 stocks, i.e., Technology Firms (ICB 9000), which is the sector with
the greatest average market capitalization in our selected universe of stocks5. Thus,
we first recall the general methodology of SVAR analysis and its related identification
problem.

1.2.1 The SVAR framework

A VAR model is a statistical model who describes the joint evolution of multivariate
time series with their past values. In particular, a VAR(p) model is given by the following
equation:

yt = v +A1yt−1 + · · ·+Apyt−p + ut, (1.5)

where yt ∈ RN is the vector of the observable time series of interest, v ∈ RN is the
intercept, A1,A2, . . . ,Ap ∈ RN×N are parameter matrices and ut ∈ RN are the residuals
which are serially uncorrelated with mean zero and covariance matrix Σu. We denote
with Σx the variance-covariance matrix of a vector xt. The previous form is also named
reduced form of a VAR(p) model, which is actually what one can estimate from the
empirical data and it is widely used to forecast the selected variables. Then, vector ut
corresponds to the so called reduced shocks. Since the seminal paper of Sims (1980), the
VAR approach is employed to analyze causal properties with the so named structural
representation. Therefore, let αt ∈ RN be the vector of structural shocks, which are
temporally uncorrelated, strictly stationary, with zero mean, uncorrelated Cov(αt) =

Σα = IN and such that ut = Zαt, where Z ∈ RN×N is nonsingular and it is called
mixing matrix which satisfies Σu = ZZ ′. In other words, the observable reduced shocks
are a mixture of the respective structural shocks, which characterize the structural VAR
model. Once we have estimated the reduced form, if we multiply Eq. (1.5) by the inverse
of Z we obtain the structural VAR formulation, SV AR(p):

A0yt = v∗ +A∗1yt−1 + · · ·+A∗pyt−p +αt, (1.6)

5We postpone to Section 3.2 the accurate description of our universe of stocks, after presenting the
employed econometric models for the empirical analysis of the SDCF method.
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where A0 = Z−1, v∗ = A0v and A∗j = A0Aj , j = 1, 2, . . . , p. Using this representation
it is possible to recover the causal dependencies among each variable. However, without
additional restrictions Z cannot be identified, since we can trivially replace Z by ZC,
where C is an orthogonal matrix, and obtain a different structural representation starting
from the same reduced form. Indeed, from Eq. (1.5) we can estimate the covariance
matrix Σu and since we are looking for a matrix such that ut = Zαt where Σα = IN ,
for any orthogonal matrix C,

ut = ZC︸︷︷︸
Z̃

C ′αt︸ ︷︷ ︸
α̃t

,

so that we can obtain another structural representation, which is driven by different struc-
tural shocks α̃t. This problem is termed identification problem of SVAR model, and it
arises since the reduced form does not provide enough observations to identify the mixing
matrix Z, e.g., the observed covariance matrix Σu provided only N · (N + 1)/2 condi-
tions, since it is symmetric, while Z has N2 unknowns. Therefore, typical approaches are
to impose restrictions on the mixing matrix in order to obtain the same number of condi-
tions, e.g., short-run (as Cholesky), long-run, signs restrictions, which are often derived
by an underlying economic theory. However, a characteristic which contributes to the
success of the VAR approach is its independence from structural economic model and im-
posing economic restrictions may invalid the data-driven feature of the VAR model. On
the other hand, more recent works have shown that it is possible to identify the structural
form without imposing any type of economic restrictions, exploiting either heteroskedas-
ticity, see e.g. Sentana and Fiorentini (2001), Rigobon (2003), Lütkepohl and Netšunajev
(2017), or non-gaussianity via the Independent Component Analysis approach, see e.g.
Moneta et al. (2013), Lanne et al. (2017), Gouriéroux et al. (2017), Gouriéroux et al.
(2019), Gagliardini and Gouriéroux (2019). We will follow the ICA approach and we
recall this general methodology in the next section. As usual, only stationary time series
are considered, i.e.,

detA(z) := det(IN −A1z − · · · −Apzp) 6= 0, |z| ≤ 1, z ∈ C.

1.2.2 The Independent Component Analysis

The ICA is part of a rich machine learning literature concerning the more general
Blind Source Separation (BSS) Problem, defined as follows. Let consider N observed
variables u ∈ RN which are linear combination of N unobserved sources α ∈ RN :

u = Zα, Z ∈ RN×N ,

where Z ∈ RN×N det(Z) 6= 0. As usual in this context, u are called sensors, Z is called
mixing matrix and α are called sources. Starting from a set of mixed signals, the aim
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of BSS problem is to isolate the source signals without the aid of information about the
mixing process.

One of the technique used for solving the BSS problem is ICA. Given a large number
of T observations u1, . . . ,uT of u, ICA identifies Z and (the distribution) of α, where

ut = Zαt, ∀t = 1, . . . T , ut ∈ RN , αt ∈ RN , Z ∈ RN×N .

The identification is guaranteed by the following Theorem of Eriksson and Koivunen
(2004), (see also Theorem 11 of Comon, 1994), which is based on nice probabilistic results
on the characterization of Gaussian random variables, see Darmois (1953), Skitovitch
(1953), Comon (1994), Cramér (2004), Gouriéroux et al. (2017) for further details, which
we report for completeness6.

Lemma 1.1 (Cramér). If X1,X2, . . . ,XN are independent random variables and if Y =∑N
i=1 aiXi is Gaussian, then all the random variables Xi for which ai 6= 0 are Gaussian.

Theorem 1.2 (Darmois (1953),Skitovitch (1953)). If X1,X2, . . . ,XN are independent
random variables, let us define the two random variables Y1 and Y2 as

Y1 =
N∑
i=1

aiXi, Y2 =
N∑
i=1

biXi,

where ai 6= 0 and bi 6= 0 for i = 1, 2, . . . ,N . Then, if Y1 and Y2 are independent, all
variables Xi are Gaussian.

Therefore, Y1 and Y2 can not be independent as soon as one of the Xi is non-Gaussian.

Theorem 1.3 (Comon (1994) Th. 11, Eriksson and Koivunen (2004) Th. 3). Let
u,α ∈ RN and Z ∈ RN×N and consider the model u = Zα, where:

• Z is invertible;

• α1,α2, . . . ,αN are independent, with at most one Gaussian distribution.

Then, the matrix Z is identifiable up to the post multiplication by DP , where D is a
diagonal matrix with non-zero elements and P is a permutation matrix.

A widely employed preprocessing step is the so called whitening process, which is used
before applying ICA.
Remark 1.4 (Whitening). Given ut = Zαt, we observe that Σu = ZΣαZ ′. Then, by
computing a Cholesky decomposition of Σu = SS′ we can consider the standardized
sensors (ũt) and sources (α̃t) such that: ut = Sũt; αt = Σ1/2

α α̃t. Thus, by construction,

Σũ = (S−1ZΣ1/2
α ) · (S−1ZΣ1/2

α )′ = IN , Σα̃ = IN ,
6For consistency with standard literature notation, we denote random variables with capital letters

in Lemma 1.1 and Theorem 1.2.
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and if we denote with Z̃ = S−1ZΣ1/2
α , we can reformulate the BSS problem as

ũt = Z̃α̃t, Z̃Z̃ ′ = Z̃ ′Z̃ = IN .

Actually, a ICA problem is often formulated directly with the standardized sources and
an orthogonal mixing matrix. So, if not clearly specified and for the sake of simplicity,
we denote in the following with αt the standardized sources.

The whitening is essentially a pre-processing step and it is helpful for simplifying
the ICA problem since the observed mixture variables are sphered with uncorrelated
components and unit variance, i.e., they are whitened, see Hyvärinen et al. (2001) for
further details.

The assumptions of independent sources is quite natural on BSS, while the assump-
tions of non-Gaussian distribution seems to be complicated and unnatural. So, why are
Gaussian variables forbidden? Let us consider a simple example. If we assume that the
joint distribution of two sources, α1 and α2, is Gaussian,

p(α1,α2) =
1

2π exp
(
−||α||

2

2

)
,

then, the joint density of the mixture u = Zα, where Z is orthogonal, is given by:

p(u1,u2) =
1

2π exp
(
−||Z

′u||2

2

)
| det(Z ′)| = 1

2π exp
(
−||u||

2

2

)
.

In other words, the orthogonal mixing matrix does not modify the density function and we
have no further information about the independence sources, i.e., the original and mixed
signals are identical. Therefore, since the spherical symmetry of the Gaussian distribution
all we can do with Gaussian sources is actually whitening, see Hyvärinen et al. (2001)
and for instance the illustrative example of Moneta et al. (2013). What happens if we try
to use ICA and some of the components are Gaussian and some non-Gaussian? In this
case we can estimate all the non-Gaussian components without separating the Gaussian
ones, i.e., we can identify only the space of Gaussian sources. In other words, some of
the estimated components will be arbitrary linear combinations of the original sources.

There are many numerical methods for ICA, e.g., one of the most famous is the
Fast-ICA of Hyvärinen (1999). Recently method which used the Joint Approximation
Diagonalization of Eigen-matrices Cardoso (1999), Bonhomme and Robin (2009) are also
widely employed. For the VAR identification problem one of the most used is the VAR-
LINGAM, see Shimizu et al. (2006) and Moneta et al. (2013), however, we focus on the
more recent PML approach of Gouriéroux et al. (2017) which we briefly recall in the
following section. We show how to extent this kind of approach to the more general
problem of singular and noisy VAR model in Chapter 2.
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1.2.3 ICA approach to SVAR: the PML estimator

As pointed out by Moneta et al. (2013), Lanne et al. (2017), Gouriéroux et al. (2017)
the SVAR identification can be formulated as a BSS problem, where the reduced shocks
are interpreted as the sensors, which are the mixed signals of unobserved sources, i.e., the
structural shocks. More precisely, starting from the reduced form a VAR model (1.5),
the mixed signal is given by the reduced shocks, ut and the sources are the structural
shocks αt and we have to identify the mixing matrix Z such that:

ut = Zαt.

As remarked before, a whitening preprocessing is applied to the sensors, so that the
problem can be reformulated as u = SCα, where C ∈ RN×N is orthogonal and S ∈
RN×N is such that Σu = SS′, so that Σα = IN . In other words, we decompose the
mixing matrix Z as the product of S and C. The matrix S can be directly estimated by
Σu, e.g., using the Cholesky decomposition. Thus, the actual problem is to estimate the
orthogonal matrix C. The main assumptions for the PML approach are:

Assumptions 1.1.

i) the error process αt is i.i.d. with E[αt] = 0, V ar[αt] = IN and

ii) the components of αt = (α1,t,α2,t, . . . ,αN ,t) are mutually independent with at
most one Gaussian (marginal) distribution.

In particular the true probability density functions (p.d.f.) fi(αi) of the latent com-
ponents of αt are unknowns. So, Gouriéroux et al. (2017) introduce a set of p.d.f gi(αi),
which are not necessarily the true ones, and they consider the pseudo log-likelihood esti-
mator:

ĈT = arg max
Z

T∑
t=1

N∑
i=1

log gi(c′iut), s.t. CC ′ = IN ,

where c′i correspond to the i-th column of C. Then, under other technical assumptions
which are omitted for the sake of simplicity7, it is possible to identify the matrix C

without using any type of restrictions8. Moreover, it is possible to fully characterize the
asymptotic properties of the PML estimator ĈT .

Theorem 1.5 (Consistency of PML estimator Gouriéroux et al. (2017)). Under assump-
tions A.1-A.5 of Gouriéroux et al. (2017), the PML estimator of C exists asymptotically
and is a consistent estimator of C.

7See Gouriéroux et al. (2017) for a complete discussion.
8For a possible way to relax assumption i) see Appendix A of Lanne et al. (2017).
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Theorem 1.6 (Asymptotic Distribution of PML estimator Gouriéroux et al. (2017)).
Under assumptions A.1-A.5 of Gouriéroux et al. (2017) the PML estimator ĈT of Z
is asymptotically normal with speed of convergence 1/

√
T . The asymptotic variance-

covariance of vec(
√
T (ĈT −C) is of the form A−1

Ω 0
0 0

 (A′)−1 where A ∈ RN2×N2

and Ω ∈ RN ·(N−1)/2×N ·(N−1)/2.

See Appendix B of Gouriéroux et al. (2017) for further details. Using the asymp-
totic distribution of the PML estimator we may test standard economic restrictions as
explained by Gouriéroux et al. (2017). The matrix C can be identified up to permu-
tations and scalings. As stressed by Gouriéroux et al. (2017) the possibility of positive
scaling can be avoided by assuming the orthogonality of C, so that only permutations
and change of signs are allowed. In other words, the assumption of CC ′ = I is made
also to avoid a local identification problem, i.e., the possibility of replacing C with CD

where D is a diagonal matrix with strictly positive diagonal element. From the point of
view of impulse responses functions analysis, which we discuss in Chapter 2, this means
that only a problem of labelling and change of sings still remains after the estimation
of C. However, although the identification is up to a permutation and change of signs,
the economic interpretation of the structural shocks αj,t can be based on the shapes of
the ÎRF i,j(k) for each variables, (Gouriéroux et al., 2017). Also, it always possible to
rename −αj,t as αj,t and to change the sign of the j-th column of Z accordingly. Another
crucial feature of the PML estimator is the robustness to the misspecification of p.d.f.,
which has no effect on the consistency.

Remark 1.7. Another way to reformulate the BSS problem is to consider the equivalence
relation w.r.t. permutations and scalings, ∼, in the class of nonsingular matrix. Then,
ICA identifies C in an equivalence class, i.e., ICA estimates the equivalence class of C.
However, it is possible to select a particular representative by using the Identification
Scheme of Lanne et al. (2017), so that if A ∼ B, then ID(A) = ID(B), where ID

denotes the identification scheme operator, see Lanne et al. (2017) for further details.
Therefore, given two representatives A and B of two equivalence classes we want to
verify whether the two equivalence classes are the same, i.e., ID(A) = ID(B). For this
purpose the ID may be applied on A and B.

In Chapter 2, we focus on extensions of the BSS problem in the SVAR context and in
particular to the PML estimator of Gouriéroux et al. (2017). As already mentioned at the
beginning of this section we now exhibit a SVAR exercise to causal identification of the
firm growth process using the ICA approach, so that identification of the mixing matrix
can be obtained without using any type of priori restrictions on the causal structure.
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1.2.4 A causality exercise for firm growth

We are looking at the structural relations among the growth rates of revenues (REV ),
earning before interest, taxes, depreciation and amortization (EBITDA), depreciation
and amortization (D&A) and capital expenditure (CAPEX)9. Following Coad and Rao
(2010) and Moneta et al. (2013) we restrict to a specific sector, Technology following
Industry Classification Benchmark (ICB 9000), of our data sample employed successively
in subsequent chapters10. The selected data sample starts from FQ1 1991 and ends to
FQ1 2009 with a cross-section of 16 firms with a total of 1102 number of observations.
For each variables we compute the growth rates11 and we pooled all firms together in a
panel VAR regression under the standard assumptions that growth process of different
companies display similar structural patterns, see Coad and Rao (2010) and Moneta
et al. (2013). Growth rates tend to exhibit a low degree of persistence in contrast to
the dynamics of firm size levels, which motivates why a VAR model should be used for
growth rates and why structural models, like the local linear trend model, are used to
describes the revenues process and cash flows dynamics, see Moneta et al. (2013) and
reference therein. We estimate a 1-lag12 panel VAR model, i.e., if yi,t ∈ R4 is the vector
which contains the growth rate series for the i-th firm at time t,

yi,t = A1yi,t−1 + ui,t, (1.7)

where A1 ∈ R4×4 and ui,t ∈ R4 is the vector of the reduced shocks, or simply residu-
als. The growth rate series are positive correlated with an exception of the correlation
between (the growth rate of) EBITDA and D&A. As usual, we consider the structural
counterpart of Eq. 1.7 and the ICA technique to identify the mixing matrix Z such that
ui,t = Zαi,t, where αi,t are the structural shocks related to the respective variables.
Therefore, the j-th row in the matrix Z correspond to the contemporaneous effect of a
unitary shocks of the j-th variable on the others. We assume that the causal structure
among the growth rates is invariant with respect to the firm. We test the Gaussianity
of the residuals using the Jarque-Bera test, which reject the Gaussianity assumptions for
all residuals. Although the assumptions of independence of the reduced shocks can not
be tested, we will consider it appropriate, see also Moneta et al. (2013). However, the
residuals do not exhibit particular significantly dependence even temporally. Therefore,
the ICA approach can be employed without any particular objection. So, consistently
with the previous notation, Z is decomposed as the product of the Cholesky matrix S,

9These are the fundamental variables of CF definition, see Section 3.1.1.
10See Section 3.2 for full details about data sample.
11Since some variables, e.g., EBITDA, exhibit both negative and positive values we use the simple

growth rates.
12This choice is motivated since all the growth rates refer to trailing twelve months data and so it may

refers to an annual base variation.
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Table 1.2 Coefficients of the estimated matrix C with their relative asymptotic standard
deviations in parenthesis. The coefficients in bold are significantly at significance level
1%.

Rev.gr EBITDA.gr DA.gr CAPEX.gr
Rev.gr 0.9933 0.0591 -0.0967 -0.0180

(0.0015) (0.0151) (0.0109) (0.0220)
EBITDA.gr -0.0610 0.9979 -0.0230 0.0088

(0.0151) (0.0009) (0.0072) (0.0111)
DA.gr 0.0953 0.0213 0.9951 -0.0043

(0.0109) (0.0072) (0.0011) (0.0092)
CAPEX.gr 0.0263 -0.0074 0.0024 0.9997

(0.0220) (0.0111) (0.0091) (0.0004)

i.e., S is such that the variance-covariance of the reduced shocks is given by SS′, and an
orthogonal matrix C. We report the estimated C matrix, using the PML estimator of
Gouriéroux et al. (2017) in Table 1.2. The matrix Z is rescaled such that the diagonal
elements of A0 = Z−1 are equal to one. Then, we compute the mixing matrix Z, from
which we recover the structural formulation13 of Eq. 1.7,

A0yi,t = A0A1yi,t−1 +αi,t.

and the matrix of contemporaneous effect B, i.e., A0 = I −B, so that

yi,t = Byi,t +A∗1yi,t−1 +αi,t,

where the diagonal elements of B are zero and A∗1 = A0A1.
Table 1.3 and 1.4 display the elements of matrix B and A∗1, respectively, where we

have also computed the related standard errors using 100 bootstrap samples on residuals.
From the elements of the contemporaneous effect matrix B, it is clear how there is no

significant contemporaneous effect on growth revenues and so they can be considered as
the driver process of firm growth. Moreover, it affects positively all the other variables
and if we look the overall picture of causal structure inferred from the previous SVAR
model, it is evident how the leading process of firm growth is actually the revenues. This
is well explained in the causal graph of Fig. 1.1.

In conclusion, the analysis of this chapter empirically motivates the conventional
wisdom that the revenues constitute the driver process of firm growth. Therefore, in
order to construct a stochastic valuation model relying on the revenues dynamics, in
Chapter 3 we will express all the other accounting variables which define the UFCF, see

13We test also the non-Gaussianity for structural shocks and we obtain analogous results of those of
the reduced ones.
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Table 1.3 Coefficients of the instantaneous effects matrix B and standard errors, in
parenthesis, calculated from 100 bootstrap performed on residuals. The coefficients in
bold are significantly different from zero using a t-test at significance level 1%.

Rev.gr EBITDA.gr DA.gr CAPEX.gr
Rev.gr 0 -0.044 0.4846 -2.7421

- (0.1551) (0.4885) (2.519)
EBITDA.gr 0.6511 0 -0.0231 -0.0886

(0.0322) - (0.0094) (0.0403)
DA.gr 0.4567 0.2467 0 0.0236

(0.0841) (0.0719) - (0.0777)
CAPEX.gr 0.525 0.1616 0.1281 0

(0.0173) (0.0203) (0.0052) -

Table 1.4 Coefficients of the lagged effects matrix A∗1 and standard errors, in parenthe-
sis, calculated from 100 bootstrap performed on residuals. The coefficients in bold are
significantly different from zero using a t-test at significance level 1%.

Rev.gr EBITDA.gr DA.gr CAPEX.gr
Rev.gr 0.1135 0.0746 0.0064 -0.1491

(0.0342) (0.0977) (0.008) (0.1286)
EBITDA.gr -0.0184 -0.003 -0.0009 0.004

(0.0066) (0.0035) (0.0012) (0.0047)
DA.gr -0.020 0.0278 -0.0184 -0.0223

(0.0102) (0.0081) (0.0038) (0.0112)
CAPEX.gr 0.0182 -0.0013 0.003 -0.0144

(0.0037) (0.0028) (0.0012) (0.0033)

Eq. (1.3), as margin on sales. However, in the next chapter we focus on the above ICA
methodology employed for the structural analysis, where we present a general setting and
related extensions of this identification approach.
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Revt

EBITDAt

DAt

CAPEXt

Revt−1

EBITDAt−1

DAt−1

CAPEXt−1

Fig. 1.1 Causal graph inferred from the estimated SVAR model. Only significant values
of B and Γ1 are considered. Solid (dashed) arrows indicate positive (negative) effects.
Thick (thin) lines correspond to strong (weak) effects. An effect is classified as strong
when its absolute value is greater to the median of all significative effects (in absolute
value).
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CHAPTER 2

Identification of Singular and Noisy Structural VAR Models

We now introduce extensions of the ICA approach for the SVAR identification problem.
When the number of observed variables is larger than the number of structural shocks
the associated structural VAR system is said to be singular. We propose an identifica-
tion method for singular structural VAR models contaminated by noise that combines a
collapsing procedure with the independent component analysis.

The need to extract information from a large number of macroeconomic series, e.g.
to deal with the invertibility problem, (see Forni et al. (2009) and Stock and Watson
(2016)), leads to singular SVAR systems, i.e., the variance-covariance matrix of the re-
duced shocks is singular. This could emerge also in the context of sign restrictions,
as pointed by Granziera et al. (2018). Moreover, the singular case naturally arises in
the context of Dynamical Factor Models (henceforth DFM), where the structural anal-
ysis can be conducted directly on the common factors, which are driven generally by a
fewer structural shocks. In particular, the DFM residuals achieve the fundamentalness
property, which is not guaranteed to be satisfied by the structural shocks obtained by a
SVAR model, see Forni et al. (2009), but thank to the results of Anderson and Deistler
(2008b), we show that when a SVAR model is singular the structural shocks turn out to
be fundamental and can be identified from the reduced ones.

However, it seems reasonable to assume that the observed signal, the residuals of
the reduced form model, in addition to be a mixing of the unobserved signal given by
the structural shocks, might be contaminated by different types of noises: measurement
errors on the the macro-variables, estimation errors on the parameter of the reduced
form model and model misspecification of the VAR. For instance, Forni et al. (2017)
examine a model of imperfect information where the agents observe a noisy signal and
they propose an identification method based on dynamic rotations where agents learn by
future information the composition of the structural shocks. In contrast to our approach,
they interpret the noise as a source of business cycle fluctuations, while in our framework
the noise shock is interpreted as a measurement error which affects the macroeconomic
variables as in the standard DFM framework, see Forni et al. (2000) and Forni et al.
(2009). Hence, we assume that some noise contaminating the system remains, thus
leading to a problem of noisy ICA. We discuss under which assumptions the combined
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procedure remains feasible when the number of time observations gets large.
We first introduce the extensions of standard ICA problem in the SVAR context, then

we show how to combine the collapsing procedure with the ICA technique discussing un-
der which assumptions the proposed procedure is consistent and feasible. In contrast to
the previous exercise on the microeconomic study for firm growth, we analyze the pro-
posed scheme with an empirical macroeconomic application on U.S. data to study the
effect of monetary policy1. The new identification method allows to employ the entire
set of information contained in all the observed macro-variables available to consistently
identifying the lower dimensional system of the structural shocks driving the U.S. econ-
omy. Finally, in Appendix A.2 we report the sensitivity analysis simulation results of the
method and we also examine its finite sample properties with Monte Carlo simulations.

Let us recall some notation. If yt ∈ RN is the vector of the observable time series of
interest a VAR(p) model is given by the following equation:

yt = v +A1yt−1 + · · ·+Apyt−p + ut, (2.1)

where, v ∈ RN is the intercept, A1,A2, . . . ,Ap ∈ RN×N are parameter matrices and
ut ∈ RN are the residuals which are serially uncorrelated with mean zero and covariance
matrix Σu. Then, let αt ∈ RN be the vector of structural shocks, which are temporally
uncorrelated, strictly stationary, with zero mean, uncorrelated Cov(αt) = Σα = IN and
such that ut = Zαt, where Z ∈ RN×N is nonsingular and it is satisfies Σu = ZZ ′. So,
since stationary time series are considered, i.e., detA(z) := det(IN −A1z−· · ·−Apzp) 6=
0, |z| ≤ 1, z ∈ C, we can obtain the infinite moving average representation of the VAR,

yt = µ+
∞∑
k=0

ΨkZαt−k, Ψ0 = IN ,

where µ is the expectation of yt and A(z)−1 = Ψ(z) =
∑∞
k=0 Ψkz

k. Therefore, the
Impulse Response Function (IRF) of yi,t to a unitary shock on αj,t is given by:

IRFi,j(k) = Ψk(i, :) ·Z(:, j).

Consistently with Section 1.2.3, we refer to the structural, αt, and reduced shocks, ut,
as sources and sensors, respectively.

2.1 Extensions of the ICA approach to SVAR models

So far, the ICA technique has been employed in the SVAR identification problem when
the number of the structural shocks, R, is equal to the number of observed variables, N .
We propose two types of generalizations: the ICA problem is first extended to the singular

1This is the standard application for SVAR analysis since Sims (1980).
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case and then the noisy formulation is introduced. In the ICA literature the singular case
is also named overdetermined or undercomplete, however we use also the denomination
of singular ICA when the associated VAR model is singular.

2.1.1 Singular ICA

Solving a singular (overdetermined) ICA problem amounts in finding the mixing ma-
trix Z and the source α given the observations u, such that:

ut = Zαt, ut ∈ RN , αt ∈ RR, Z ∈ RN×R where N > R.

In other words, we have more observations than sources. Temporarily, we may assume
that the number of sources is known a priori2, nonetheless it can be estimated by using the
consistent estimator for select the number of factors following Bai and Ng (2002), Hallin
and Lǐska (2007), Alessi et al. (2010) and Onatski (2010). In the general ICA context of
blind source separation the overdetermined problem has been investigated in Hyvärinen
et al. (2001), Joho et al. (2000). This problem naturally arises when the associated SVAR
is singular, i.e., the number of reduced shocks is greater than the number of structural
shocks, so that the variance-covariance matrix Σu becomes singular. For instance, when
in a simple VAR framework different macroeconomic variables are employed as measures
of the same economic variable, so that they are concerned to the same structural shock,
the associated SVAR model becomes singular. In Section 2.3 we study an empirical
application where we use two different proxies for the economic activity 3.

2.1.2 Noisy ICA

The presence of parameter and model uncertainty in the VAR setting, imperfect
information and measurement errors in the macroeconomic variables, suggests to assume
that some form of noise remains in the reduced shocks, leading to a noisy ICA problem.
In other words, the VAR can be seen as an imperfect filter on the observed variables
yt, so that it seems realistic to assume that some form of noise remains in the sensors.
The noisy ICA problem can be formulated in two ways. We can either assume that the
noise is generated directly from αt (source noise formulation) or that it is added to the
mixture Zαt (sensor noise formulation). The noisy ICA formulation was studied by
Moulines et al. (1997), Attias (1999), Hyvärinen (1999), Ikeda (2000), Bonhomme and
Robin (2009) as an extension of a standard blind source separation problem.

2In the following we discuss how to derive this number.
3Where we also perform principal component analysis to verify that the associated VAR problem is

effectively singular.
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2.1.2.1 Source noise

If each source generates a noise term, then the noise eαt , is added directly to the
source: βt = αt + eαt . The noise eαt is assumed Gaussian and independent from αt, so
that the sources βt are independent and such that E[eαt e

α′
t ] = σ2IR, consistently with

Assumptions 1.1. However:

ut = Zβt = Zαt + Zeαt = Zαt + et

where ut ∈ RN , αt, eαt ∈ RR, Z ∈ RN×R and et := Zeαt ∈ RN . So, we can identify
Z by considering the overdetermined ICA problem ut = Zβt as for the noiseless case,
since also the components of βt are non-Gaussian and independent. In the following, we
discuss the noiseless case when we describe the Collapsing-ICA procedure and we show
how it is related to the particular case of source noise.

2.1.2.2 Sensor noise

Under the assumption that the noise term is generated by the sensors, the noisy ICA
problem can be formulated as

ut = Zαt + et, (2.2)

where ut ∈ RN is the sensor signal, αt ∈ RR is the source signal, Z ∈ RN×R is the mixing
matrix and et ∈ RN is an error term, the noise. Essentially, the noise term et is added to
the mixture of the sources Zαt. Standard assumptions, see e.g. Hyvärinen et al. (2001),
are: i) the noise is independent from the sources and ii) the noise is mutually independent
and Gaussian with an unknown variance-covariance matrix H. In Section 2.2.3.2 and
Appendix A.1 we discuss how we can relax the assumption of mutually independent
noise and how we can deal with a generic unknown covariance matrix H.

Remark 2.1. As highlighted by Hyvärinen et al. (2001), under suitable assumptions this
two noise formulations are equivalent. Indeed, if Cov(et) = ZH1Z ′ where H1 ∈ RR×R,
let et = Zeαt where eαt ∈ RR, Cov(eαt ) = H1, then

ut = Zαt + Zeαt = Z(αt + e
α
t ) = Zβt, βt = αt + e

α
t ,

where βt denotes the contaminated sources.

The source noise formulation implicitly assumes that a structural shock is composed
by a “true” shock and a noise shock, which is very much in line with what Forni et al.
(2017) assume. Indeed, they consider that the fundamental shock is the sum of a “long-
run” shock and a noise shock, where this noise shock is interpreted as a source of business
cycle fluctuations. Although the source noise formulation can be easily solved by the same
techniques for the noiseless case, it is more reasonable to consider the case in which the
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noise is added to the mixture of the sources instead of assume that each structural shocks
generate a noise term. Indeed, the structural shocks can be viewed as “pure” signals
while their measurement is affected by a noise. Thus, in the following, we consider
the noisy ICA with the second formulation, where the noise should be interpreted as a
measurement error which is present in the macroeconomic variables in addition to the
model and parameter uncertainty of the VAR setting. In other words, we study the
singular VAR model (2.1) where the reduced shocks are described by Eq. (2.2).

The resulting model is related with the Factor Augmented VAR (FAVAR) model con-
sidered in Bernanke et al. (2005) and Factor-Structural Vector Autoregression (FSVAR)
model described in Stock and Watson (2005). However, FAVAR method can be inter-
preted as an extension of the DFM approach where, as observed by Stock and Watson
(2016), restrictions are imposed on the DFM, i.e., that one or more of the factors is treated
as observed without measurement error, while our approach is an extension of the VAR
approach without requiring any type of restrictions on the reduced model. On the other
hand, the FSVAR model imposes a factor structure to the reduced shocks. It is estimated
by Gaussian maximum likehood, but, in contrast to Stock and Watson (2005), we assume
that the structural shocks are non-Gaussian (and independent) so that identification of
the mixing matrix is achieved without any type of economic assumptions/restrictions4

using ICA. Moreover, the assumption of non-Gaussian shocks seems to be much in line
with the statistical proprieties of VAR residuals, as we observe from our empirical results
and as also supported by the evidence of Moneta et al. (2013), Gouriéroux et al. (2017),
Lanne et al. (2017).

In the next section we explore how to combine the collapsing procedure of Jungbacker
and Koopman (2008) and the PML approach to estimate Z. We will discuss the approach
feasibility, the identification and fundamentalness issues together with consistency when
T , the number of time observations, goes to infinity. However, the presented procedure
remains valid for any other consistent ICA approach which can be used alternatively to
the PML estimator.

2.2 The Collapsing-ICA procedure

In this section we illustrate how to exploit the collapsing technique of Jungbacker and
Koopman (2008) for the general singular noisy ICA problem. We assume the same model
of Eq. (2.2) for the residuals of a VAR model: ut = Zαt + et, et ∼ N(0,H), where for
each t, ut ∈ RN are the reduced shocks, αt ∈ RR are the structural shocks, Z ∈ RN×R

is the mixing matrix and et ∈ RN is the noise which affects the mixture of structural
shocks. We want to reduce the dimension of the problem in such a way that also the noise
term is reduced. The collapsing procedure of Jungbacker and Koopman (2008) replaces

4 Stock and Watson (2005) identify the factors by assuming that the second factor has no impact
effect on one of the considered variables.
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ut ∈ RN with the so called “virtual” or collapsed observations u1
t ∈ RR by employing a

projection matrix Π1 ∈ RR×N , which is defined by Π1 = (Z ′H−1Z)−1Z ′H−1 ∈ RR×N .
Then, we also consider Π2 = B(IN −Z ·Π1) ∈ R(N−R)×N , where B is such that Π2 has
full rank of N −R, so that, Π1Z = IR and Π2Z = 0. So, if u1

t = Π1ut, u2
t = Π2ut,

e1
t = Π1et and e2

t = Π2et,

Π∗ut =

u1
t

u2
t

 =

αt
0

+

e1
t

e2
t

 , where Π∗ =

Π1

Π2

 ∈ RN×N ,

e1
t and e2

t are independent, since they are Gaussian and Cov(e1
t , e2

t ) = 0, and their
variance-covariance matrices are given by H1 = Π1HΠ′1 = (Z ′H−1Z)−1 and H2 =

Π2HΠ′2, respectively. Hence, all the information is collapsed in u1
t , to which we can

apply the ICA step directly5 .
The general Collapsing-ICA (C-ICA) procedure is summarized in the following scheme.

Let Z = UΣC ′ be a singular value decomposition (SVD)6 of Z, where U ∈ RN×N and
C ′ ∈ RR×R are orthogonal matrices7 and Σ ∈ RN×R is the matrix with the singular
values of Z. We may consider the product UΣ as an initial estimate for Z and once
obtained U , Σ and H, the collapsing procedure can be applied on ut. Then the ICA is
employed on the collapsed equation in order to estimate C ′, see Algorithm 1. The esti-
mate of U and Σ can be obtained, for instance, by performing a PCA on ut. However,
this initialization step depends on the assumptions of noise and it is discussed together
with the estimate of H in the next sections.

Algorithm 1 The general C-ICA procedure. Let Z = UΣC ′ be a singular value decom-
position of the mixing matrix.

Initialization: Get an estimate† of the system matrices U , Σ and H.

1: Collapsing-Step: Use the collapsing procedure and obtain the collapsed observations,
u1
t = Π1ut.

2: ICA-Step: Perform ICA on u1
t and estimate C ′.

†The estimation of the system matrices is discussed in the following subsections together
with the required assumptions for consistency.

We remark that UΣ can not be used for the computation of the IRFs, since the
5We observe that the two step procedure of Joho et al. (2000) is a particular case of the collapsing

procedure.
6Even if, the standard notation of the SVD of a matrix is Z = UΣV ′, coherently with the SVAR

literature we denote V as C.
7For notational convenience and simplicity, we will denote the orthogonal matrix of the standard

PML-ICA approach with the same notation used for the C-ICA. Thus, the decomposition employed by
the PML-ICA is rewritten as Z = SC ′, where S is the Cholesky decomposition of Σu and C ′ orthogonal.
Since both C ′ matrices of C-ICA and PML-ICA play the same role in describing the mixing process, we
prefer to unify the notations consistently with the presented SVD decomposition.



2.2. The Collapsing-ICA procedure 35

structural shocks are not separated yet. Only after the ICA step we can analyze the
responses of each variable to the respective shock. In other words, the initial estimate of
Z is up to an orthogonal matrix, which is represented by the matrix C ′ when we consider
the singular value decomposition of Z.

2.2.1 Identification results

We now present preliminary results on the identification with the C-ICA procedure
and then we show the consistency of our procedure for the noiseless case and noisy case.
The following lemmas are particular cases of Autonne’s uniqueness Theorem, see Theorem
2.5.6 of Horn and Johnson (1990) for a complete discussion. Let us consider a SVD of
Z ∈ RN×R, Z = UΣC ′. The matrix of the singular values is uniquely identify by Z,
while the orthogonal matrix U and C are not. However, we can find a relation between
different pairs of U and C. We first analyze the particular case of N = R.

Lemma 2.2. Let Z ∈ RN×N and let us consider a singular value decomposition of Z,
Z = U1ΣC ′1 where U1,C1 are N ×N orthogonal matrices and Σ is the diagonal matrix
which contains the singular values of Z. If the singular values of Z are distinct then,
given two singular value decompositions

Z = U1ΣC ′1 = U2ΣC ′2,

the matrices U1 and C1 are identified up to a multiplication by the same orthogonal
diagonal matrix B, i.e.,

U2 = U1B, C2 = C1B.

Proof of Lemma 2.2. Starting from, Z ′Z = C1Σ′ΣC ′1 = C2Σ′ΣC ′2 if we multiply both
sides for C ′1 and C2, left and right respectively, we obtain Σ′Σ ·C ′1C2 = C ′1C2 ·Σ′Σ. Then,
if we denote by A = Σ′Σ and B = C ′1C2 we observe that A and B are simultaneously
diagonalizable, since they commute and they are both diagonalizable. Furthermore, A
is a diagonal matrix with distinct elements which implies that also B is diagonal. More
precisely, B is an orthogonal diagonal matrix and we have that C2 = C1B. Using this
relation on the original SVD, we get Z = U1ΣC ′1 = U2Σ(C1B)′ = U2ΣB′C ′1 = U2B′ΣC ′1
and since Σ is squared we have also that U2 = U1B.

Remark 2.3. The diagonal elements of B can only be±1, since B is an orthogonal diagonal
matrix. Then, the identification of U and C is up to change of signs.
Let us now consider the general case where N > R.

Proposition 2.4. Let Z ∈ RN×R, which has full rank R, and let us consider a singular
value decomposition of Z, Z = U1ΣC ′1 where U1 ∈ RN×N , C1 ∈ RR×R are orthogonal

matrices and Σ =

Σ+

0

 ∈ RN×R where Σ+ is the R×R diagonal matrix which contains
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the singular values of Z. If the singular values of Z are distinct then, given two singular
value decompositions

Z = U1ΣC ′1 = U2ΣC ′2,

the first R columns of U1 and the matrix C1 are identified up to a multiplication by the
same orthogonal diagonal matrix B, i.e.,

U2R = U1RB, C2 = C1B,

where U1R and U2R are the first R columns of U1 and U2, respectively.

Proof of Proposition 2.4. Let us start again by considering, Z ′Z = C1Σ′ΣC ′1 = C2Σ′ΣC ′2.
We observe that A = Σ′Σ ∈ RR×R is a diagonal matrix and we can use the same argument
as for the proof of Lemma 2.2 to obtain that C2 = C1B, where B ∈ RR×R is an orthogonal
diagonal matrix. Then,

Z = U1ΣC ′1 = U2Σ(C1B)
′

= U2ΣB′C ′1

= U2

B′
0

Σ+C
′
1,

(2.3)

where we use that ΣB′ =

Σ+

0

B′ =
Σ+B

′

0

 =

B′Σ+

0

 =

B′
0

Σ+, since B′ and Σ+

are diagonal matrices. Then, if we multiply both right sides of Eq. (2.3) by C1Σ−1
+ , we

obtain

U1

IR
0

 = U2

B′
0

 ,

and if UiR ∈ RN×R denotes the first R columns of Ui for i = 1, 2, we finally obtain that
U2R = U1RB.

We conclude by considering the particular case when Σ+ = σIR.

Lemma 2.5. Let Z ∈ RN×R, which has full rank R, and given a singular value decom-
position of Z, Z = UΣC ′ where U ∈ RN×N , C ′ ∈ RR×R are orthogonal matrices and

Σ =

σIR
0

 ∈ RN×R. Given the first R columns of U , denoted by UR, then C is uniquely

identified.

Proof of Lemma 2.5. If there exists C2, an orthogonal matrix such that, Z = σURC
′
1 =

σURC
′
2, then UR = URC

′
2C1, but UR ∈ RN×R and it satisfies U ′RUR = IR, so IR = C ′2C1

which implies C2 = C1.
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In the following, we discuss under which assumptions the C-ICA approach is consis-
tent.

2.2.2 The noiseless case

We first describe the C-ICA procedure in the particular case when the VAR is only
singular, i.e., when in Eq. (2.2) there is no noise. Let Z = UΣC ′ be a SVD of Z. We
assume that the matrix Z is of full rank, i.e., its singular values are different from zero.
Therefore, when T →∞, the variance-covariance of ut, Σu = UΣΣ′U ′, is singular and the
number of structural shocks R can be obtained by computing its rank. The initialization
step of C-ICA procedure consists in the computation of the first R columns of U , UR, and
the singular values Σ+ = diag(σ1,σ2, . . . ,σR) by using a spectral decomposition on Σu.
Then, the projection matrix, of the collapsing step, is defined as Π1 = Σ−1

+ U ′R ∈ RR×N ,
and it is straightforward that u1

t = Π1ut = C ′αt. Thus, any consistent ICA technique
can be applied to u1

t to obtain a consistent estimator of C ′ and by Proposition 2.4, and
Lemma 2.5, we known that UR and C ′ are identified up to an orthogonal diagonal matrix.
We summarize the previous results in the following Proposition, where the PML estimator
of Gouriéroux et al. (2017) is used in the ICA-step. Since we employ the PML estimator,
the technical Assumptions A.2-A.5 of Gouriéroux et al. (2017) are necessary in order to
obtain consistency of their estimator. These assumptions ensure that the pseudo-density
functions of the estimator are sufficiently regular and they are distinct and asymmetric
as well as the true distributions of αt. We refer to Section 2.3 of Gouriéroux et al. (2017)
for a complete discussion.

Proposition 2.6. Given ut = Zαt, where Z ∈ RN×R has full rank R,ut ∈ RN ,α ∈
RR. If the singular values of Z are distinct, or they are all equal, and αt satisfies As-
sumptions 1.1, then, under Assumptions A.2-A.5 of Gouriéroux et al. (2017), the C-ICA
procedure, where the PML estimator of Gouriéroux et al. (2017) is employed in the ICA-
step, is consistent.

Proof of Proposition 2.6. Let us consider the variance-covariance matrix of ut, E[utu′t] =

Σu. By the SVD of Z = UΣC ′ we obtain when T → ∞ that Σu = UΣC ′ΣαCΣ′U ′ =
UΣΣ′U ′, since Σα = IR, then

Σu = U

Σ2
+ 0
0 0

U ′.
If we denote with UR ∈ RN×R the first R columns of U and we observe that UR′UR = IR.
Then, using a spectral decomposition on Σu we can compute UR and Σ+. So, the collaps-
ing procedure, where Π1 = Σ−1

+ UR
′ ∈ RR×N , leads to u1

t = Π1ut = Σ−1
+ U ′RUΣC ′αt =

Σ−1
+

[
IR | 0

]
ΣC ′αt = C ′αt. Then, the PML estimator employed on u1

t results to be a
consistent estimator of C ′, where the consistency follows from the same argument of
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Gouriéroux et al. (2017). The identifiability of UR and C ′ is guaranteed by Proposition
2.4 and Lemma 2.5.

The assumptions on the singular values are necessary for the identification, see Propo-
sition 2.4 and Lemma 2.5. The procedure is consistent in the sense that C ′ is consistently
estimated up to permutation and change of signs, which means that the structural analy-
sis can be conducted on αt. In addition, the estimator of C ′ has the asymptotic properties
described in Gouriéroux et al. (2017). In the following we refer to Σ+ as the amplification
matrix and C ′ as the collapsed mixing matrix.

2.2.2.1 The Fundamentalness of Structural Shocks in Singular VAR Models

In the general setting the structural shocks of a non-singular VAR model are non
fundamental. Gouriéroux et al. (2019) have shown that this problem is strictly related to
the Gaussian assumption of the structural shocks and that if Assumptions 1.1 holds this
difficulty is overcome. However, if the VAR is singular the fundamentalness property is
guaranteed without any further assumption thank to the results of Anderson and Deistler
(2008a,b).

We recall the definition of fundamental shock. The fundamentalness is a generic
property in the sense of Forni et al. (2009), which we refer for further details.

Definition 2.7. The vector of shocks αt is fundamental for yt if

• there exists a moving average representation yt = B(L)αt and

• αt ∈ Span(yt,yt−1, . . .).

Proposition 2.8. Let us consider the reduced form of a VAR model A(L)yt = ut,
yt ∈ RN ,ut ∈ RN , where L is the lag operator. Let yt satisfies Assumptions 1-5 of
Anderson and Deistler (2008a). If we assume that the (S)VAR is singular, i.e., ut =
Zαt, αt ∈ RR, Z ∈ RN×R, N > R, where Z has full rank R and αt is the vector of
uncorrelated structural shocks, then αt is fundamental. Moreover, αt can be identified
from the observed reduced shocks ut.

Proof of Proposition 2.8. From the observed residuals ut we recover the associated un-
correlated fundamental shocks βt ∈ RR, which are not generically the structural ones,
by using the relation ut = Wβt, for a certain full-rank matrix W ∈ RN×R. βt is fun-
damental, since ut is by construction fundamental. Then, we may recover the moving
average representation

yt = B(L)Wβt. (2.4)

On the other hand, if we consider the structural representation of the reduced VAR model

yt = C(L)Zαt, (2.5)
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we observe that since the VAR is singular, from the results of Anderson and Deistler
(2008b) and Theorem 3 of Anderson and Deistler (2008a) αt is generically fundamental.
In particular, since αt and βt are both fundamental shocks, from Eq. (2.4) and (2.5) we
obtain that βt and αt are the same up to an orthogonal matrix, (see Proposition 2 of
Forni et al. (2009)), which means that we can identity αt from the observed ut.

Assumptions 1-5 of Anderson and Deistler (2008a) ensure the equivalence of having a
generic zeroless MA representation of yt to the singular case, see Anderson and Deistler
(2008a) for technical details.

In particular, the (fundamental) shocks that we can recover from the observed ut
shocks differ from the structural ones αt only for an orthogonal transformation Q. This
means that under the assumptions of Proposition 2.6 we can identify from the reduced
observed shocks ut the structural ones which are fundamental, i.e., Q is a permutation
and change of signs.

2.2.3 The noisy case

We now deal with the noisy case. When the noise is such that H = Σe = E[ete′t] =

σ2
eIN we refer to it as homoskedastic noise and otherwise as heteroskedastic.

2.2.3.1 The homoskedastic noise case

We first consider the homoskedastic noise case. We note that this assumption is also
adopted by Stock and Watson (2005). We first assume that the amplification matrix is
homogeneous and then we discussed the consequences of relaxing the adopted assump-
tions.

Proposition 2.9. Given

ut = Zαt + et, where Z ∈ RN×R and rank(Z) = R, ut, et ∈ RN ,α ∈ RR.

Let Z = UΣC ′ be a singular value decomposition of Z, where U ∈ RN×N ,C ′ ∈ RR×R

are orthogonal matrices and Σ =

Σ+

0

. Let us suppose:

• et ∼ N(0,H), H = σ2
eIN where et is independent from αt,

• Σ+ = σIR (Homogeneous amplification),

• αt satisfies Assumptions 1.1,

then under Assumptions A.2-A.5 of Gouriéroux et al. (2017), the C-ICA procedure, where
the PML estimator of Gouriéroux et al. (2017) is employed in the ICA-step, is consistent.
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Proof of Proposition 2.9. Let us consider the variance-covariance matrix of ut, when T →
∞:

Σu = ZZ ′ +H = (UΣΣ′U ′ + σ2
eIN ) = UDU ′, where D = ΣΣ′ + σ2

eIN .

We compute U by a spectral decomposition on Σu and we select the first R eigenvectors
UR ∈ RN×R. We observe that

D =

 (σ2 + σ2
e)IR 0

0 σ2
eIN−R

 ,

so we can estimate σ2
e consistently in T by considering the last N −R eigenvalues and we

denote with Ĥ = σ̂2
eIN the estimate of the noise covariance matrix. Then, we estimate the

amplification matrix with Σ̂2
+ = D̂R − σ̂2

eIR, where DR contains the first R eigenvalues
of D, and it holds that: Σ̂2

+
P−→ Σ2

+ as T →∞. Let SS′ = DR and Π1 = S−1U ′R, so:

u1
t = Π1ut = S−1U ′R(UΣC ′αt + et)

= S−1(Σ+C
′αt + U ′Ret) = C ′S−1(Σ+αt + e

1
t ) = C ′βt,

where e1
t = CU ′Ret ∈ RR and βt = S−1(Σ+αt + e1

t ). Since S−1 and Σ+ are multiple
of the identity, C ′ commutes with them. The noise term e1

t is Gaussian with variance-
covariance matrix σ2

eIR. Then, cov(βt) = S−1(σ2IR + σ2
eIR)S

′−1 = IR. This means
that βt are i.i.d. with mutually independent components with at most one Gaussian
component. Therefore, since βt satisfies Assumptions 1.1, we can estimate the collapsed
mixing matrix C ′ using standard ICA techniques. Moreover, since e1

t is a Gaussian
independent additive noise and independent from αt, βt satisfies Assumptions A.2-A.5 of
Gouriéroux et al. (2017). Then, C ′ is estimated by considering the collapsed observations
equation: u1

t = C ′βt. Finally we obtain an estimate of the mixing matrix with Ẑ =

ÛRΣ̂+Ĉ
′, which is consistent since:

• Σ̂+
P−→ Σ+ as T →∞,

• Ĉ ′
P−→ C ′ as T →∞ by Gouriéroux et al. (2017),

and the product of consistent estimators is consistent, then Ẑ
P−→ Z as T → ∞. The

identifiability of U and C ′ is guaranteed by Lemma 2.5, indeed once we have obtained
the first R columns of U the matrix C ′ is uniquely identified.

Using PCA, when T → ∞ the eigenvalues matrix of Σu will converge to a diagonal
matrix, where exactly the first R eigenvalues will be equal to σ2 + σ2

e and the remaining
N −R to σ2

e and the associated eigenvectors matrix is given by U . Therefore, asymp-
totically we can select R by analyzing the spectrum of Σu. In our application we select
R using PCA so that the cumulative percentage of variance of the first R components is
greater than 85%.
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Then, the first R eigenvectors UR can be also conveniently used for the initialization
step of Algorithm 1. Thus, from the last N −R eigenvalues of Σu we estimate σ2

e, and
let DR be the diagonal matrix with the first R eigenvalues, the matrix Σ2

+ = σ2IR

is estimated by considering DR − σ2
eIR. Therefore, the projection matrix is given by

Π1 = S−1U ′R, where S is the square root of DR, i.e., SS′ = DR. Finally, once obtained
Ĉ ′ from the ICA-step, the matrix Z is estimated by Ẑ = ÛRΣ̂+Ĉ

′.
In other words, when the amplification matrix is homogeneous, i.e., Σ+ = σIR, the

sensor noise formulation is equivalent to the source noise one and the collapsed mixing
matrix C ′ can be estimated directly from the virtual sensors.

Remark 2.10. The projection matrix Π1 is related to the PCA estimates of the mixing
matrix and the variance-covariance matrix of the noise. Indeed, when we select the first
R eigenvalues and the associated eigenvectors of D, Ẑ = URS, and Ĥ = σ̃2

eIN ,
and using the collapsing procedure we obtain that Π1 = S−1U ′R, which is exactly the
projection matrix used by the C-ICA procedure.

Remark 2.11. Once we have collapsed the signal we have not to standardize the virtual
sensors u1

t . Indeed,

E[u1
tu

1′
t] = Π1E[utu

′
t]Π
′
1 = S−1U ′RUDU

′URS
′−1

= S−1[ IR 0 ]D

 IR

0

S−1 = S−1DRS
′−1 = IR.

Remark 2.12. We now discuss the implication of relaxing the assumption of homoge-
neous amplification, i.e., Σ+ = σIR. If we assume an inhomogeneous amplification,
Σ+ = diag(σ1,σ2, . . . ,σR), which can be consistently estimated with (the square root of)
Σ̂2
+ = D̂R − σ̂2

eIR, then, the collapsed observations are given by u1
t = S−1(Σ+C

′αt +

U ′Ret). Contrary to the homogeneous case Σ+ does not commute with C ′. Moreover, let
us denote with e1

t = CΣ−1
+ U ′Ret so that u1

t = S−1Σ+C
′(αt + e1

t ), where Cov(e1
t ) =

C ′Σ−1
+ U ′RURΣ−1

+ C = C ′Σ−2
+ C. Without imposing other restrictions on C ′, this variance-

covariance matrix is not diagonal. Then, since e1
t is Gaussian, there is a dependence

among the contaminated shocks (αt + e1
t ) and Assumptions 1.1 are violated. So, we

can not directly estimate C ′ using standard ICA techniques. However, we may still con-
sider u1

t as collapsed observations and implicitly assume that the problem u1
t = Gβt,

is well posed for some orthogonal matrix G ∈ RR×R and βt ∈ RR such that Σβ = IR.
The components of βt are contaminated shocks since the collapsing procedure does not
completely remove the noise from the structural shocks. So, we can identify the mixing
matrix G by employing a standard ICA technique to the collapsed observations, which
leads to the separation of the contaminated shocks β (not the pure one α), see Joho et al.
(2000).

Summarizing, when the noise is Gaussian, independent and homoskedastic, we can
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estimate Z even if N is bounded. Indeed, by collapsing all the information in R collapsed
observations, we can employ classical ICA techniques on these observations to get a T

consistent estimator of C, under the assumption of homogeneous amplification. Moreover,
the inhomogeneous amplification case is closely related to the heteroskedastic noise, i.e.,
when the noise is not homoskedastic. If Σ+ = diag(σ1,σ2, . . . ,σR) and H = σ2

eIN , then,
by employing the previous collapsing procedure, we obtain u1

t = S−1(Σ+C
′αt+U ′Ret) =

S−1Σ+(C ′αt + Σ−1
+ U ′Ret), so that

Σ−1
+ Su1

t = C ′αt + e
1
t , (2.6)

where e1
t = Σ−1

+ U ′Ret with variance-covariance Σe1 = σ2
e · (Σ+Σ+)−1. Thus, the inho-

mogeneous amplification implies an heteroskedastic noise in the collapsed equation (2.6).
Since, problem (2.6) is now a non-singular square problem one could use the algorithm
of Hyvärinen (1999) without the need to (“quasi”) whitening the data, Hyvärinen et al.
(2001).

2.2.3.2 The heteroskedastic noise case

In the most general case we have ut = Zαt + et, where ut, et ∈ RN , αt ∈ RR, Z ∈
RN×R and H = Cov(et) can be a diagonal matrix with different elements or a generic
matrix with non-zero covariance elements. Unfortunately in this case we can not disen-
tangle the noise from the structural shocks mix Zαt without require that both N and T
go to infinity. Therefore, this case would pose a problem to the standard VAR approach
(where N should be bounded). However, for completeness, we propose a general approach
which combines both DFM approach and ICA technique, where the noisy case is reduced
to the noiseless one discussed in Section 2.2.2.

Let us consider the static representation of a DFM,

yt = Λf t + et, (2.7)
f t = B(L)vt, (2.8)

where yt ∈ RM are the observed macroeconomic variables, et ∈ RM are the idiosyncratic
noise, e.g. the measurement errors of yt, f t ∈ RN are the common static factors,
Λ ∈ RM×N are the factor loadings, vt ∈ RR, B(L) ∈ RN×R is a matrix polynomial,
L is the lag operator and generally M > N ≥ R. Anderson and Deistler (2008b) have
shown that in the singular case when N > R the polynomial B(L) is invertible, so vt
are fundamental shocks, and the inverse is a finite polynomial, see Anderson and Deistler
(2008a,b), and Forni et al. (2009) for a complete discussion. This implies that there exists
an equivalent finite (singular) VAR representation for the common factor Eq. (2.8), i.e.,
A(L)f t = B(0)vt, where ut = B(0)vt ∈ RN are the reduced shocks of the above VAR
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which are related to corresponding structural shocks αt ∈ RR as ut = Zαt, where
Z ∈ RN×R. Then, thanks to the DFM approach, we have reduced the most generic
(heteroskedastic) noisy case to the noiseless case, indeed, when M goes to infinity the
idiosyncratic component can be separated from the common factors, which leads to the
standard noiseless case discussed in Section 2.2.2.

In this case we may employ a combination of the recent approach of Doz et al. (2012)
for the estimation of (dynamic) factor models, together with the C-ICA procedure directly
on the reduced shocks. However, the resulting procedure is not feasible for the VAR
approach, since it requires that both and N and T must go to infinity. For completeness,
we report in Appendix A.1 this approach.

2.3 Empirical analysis

In our empirical analysis we follow Gouriéroux et al. (2017) considering a VAR model
with the following four macroeconomic variables: inflation, π, unemployment gap, Ug,
output gap, Og, and the nominal short-term interest rate, r. The sample period con-
sidered is 1959:Q1−2015:Q1. All data are collected from the Federal Reserve Economic
Database (FRED) at quarterly frequency. Inflation is computed as the change in the
logarithm of the GDP deflator. The unemployment gap is obtained as the difference
between the observed unemployment rate (FRED mnemonic UNRATE) and the natural
rate of unemployment (FRED mnemonic NROU). The output gap is calculated as the
variation of the natural logarithm of real GDP (FRED mnemonic GDPC1) from the log
potential GDP (FRED mnemonic GDPPOT). The nominal short-term interest rate is
given by the federal funds rate (FRED mnemonic FEDFUNDS).

Both unemployment and output gap are proxies for the economic activity. Gouriéroux
et al. (2017) have found that the scheme [π,Ug, r] for the short-run (Cholesky) restric-
tions has to be preferred to the one containing the output gap, as it is not rejected by
their test. However, our aim is to combine the information coming from both variables
in the identification of the economic activity shocks and in the construction of the corre-
sponding IRFs. This goal can be achieved by considering a singular SVAR having more
macroeconomic series than structural shocks. Then, contrary to Gouriéroux et al. (2017)
we consider the following scheme: [π,Ug,Og, r]. So, we have N = 4 and T = 224 number
of observations. We estimate a 6-lag VAR with intercept term and an exogenous variable
given by the variation in the logarithm of oil prices8. Performing a principal component
analysis on the residual of the VAR, we found that the three principal components ex-
plain about 88% of the total variance (where each of the first three principal components
explain more than the 20% of the total variance). Accordingly, we set the number of the
structural shocks equal to R = 3, which is in agreement with Gouriéroux et al. (2017),

8In order to replicate the results of Gouriéroux et al. (2017) we estimate exactly the same VAR model.
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where they consider only three macroeconomic variables for estimating three structural
shocks.

We account for possible parameter and model uncertainty in the reduced form VAR
by allowing the presence of noise in the observations. In particular, we assume that
the variance-covariance matrix of the noise H is homoskedastic and an homogeneous
amplification for the mixing matrix. Then, different IRFs are computed according to the
following identification schemes: i) the PML-ICA on 4 structural shocks, ii) the short-run
restrictions on 4 structural shocks and iii) the C-ICA approach on 3 structural shocks. For
the PML estimator we consider asymmetric mixtures of Gaussian distributions as pseudo
density functions with the same specification9 of Gouriéroux et al. (2017). The short-run
restrictions are obtained using the Cholesky decomposition of the variance-covariance
matrix of the reduced residuals. Then, with the first two approaches we obtain 4 IRFs for
4 structural shocks while for the C-ICA there are 4 IRFs related to 3 structural shocks
(demand, monetary policy and supply shocks).

Before proceeding with the estimation of the IRFs we investigate the statistical prop-
erties of the residuals. We find no evidence of statistically significant dependency on time
and Jarque-Bera tests reject the null hypothesis of Gaussian distribution for all the four
residuals. We also test the autocorrelation and normality for the collapsed observations
which are used for the C-ICA procedure and we find analogous results, i.e., no significant
autocorrelation and clear rejection of gaussianity assumptions.

For the short-run restrictions the confidence interval at 90% level from 100 bootstrap
samples on the residuals is computed and the corresponding median is reported. The
IRFs are interpreted using the same economic indications of Gouriéroux et al. (2017).
According to basic economic theory a shock is labelled as contractionary monetary-policy
shock if it has a short and medium term positive impact on interest rate and a negative
impact on both inflation and economic activity. The supply (demand) shock is expected to
affect in the short and medium term economic activity and inflation with opposite (same)
signs. When the response on output gap is negative (positive) the shock is labelled as
contractionary (expansionary).

Figure 2.1 shows the IRF of a contractionary supply shock, of an expansionary demand
shock and of an contractionary monetary policy shock, respectively. For the C-ICA

9 We select three distinct asymmetric mixtures of Gaussian distributions as pseudo density functions.
Each of the pseudo-density corresponds to the density of a random variable equal to Xi = BiYi,1 +
(1−Bi)Yi,2 where Bi is a Bernoulli random variable of parameter pi, Yi,1 ∼ N(µi,1,σ2

i,1) and Yi,2 ∼
N(µi,2,σ2

i,2). The expectation and variance of each Gaussian mixture Xi are respectively equal to zero
and one. The parameters of the Bernoulli random variables are set to p1 = p2 = p3 = 0.5. The mean
and standard deviation of Yi,1 for i = 1, 2, 3 are set to µ1,1 = µ2,1 = µ3,1 = 0.1 and σ1,1 = 0.5, σ2,1 = 0.7
and σ3,1 = 1.3, so that µ1,2 = µ2,2 = µ3,2 = −0.1 and σ1,2 = 1.32, σ2,2 = 1.22 and σ3,2 = 0.54. For
further details see footnote 23 of Gouriéroux et al. (2017). For the case i) the fourth Gaussian mixture
has p4 = 0.5 for the Bernoulli parameter and µ4,1 = 0, σ4,1 = 0.9, µ4,2 = 0 and σ4,2 = 1.08 for the
expectation and standard deviation of Y4,1 and Y4,2, respectively.
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procedure the 90% level bootstrap confidence interval (from 100 bootstrap samples) is
also reported10 (dotted red lines). We note that the IRFs obtained with the C-ICA
approach are in line with those of the short-run and PML.

Principal component analysis and the evidence in Gouriéroux et al. (2017) suggest
that the system is most likely driven by only 3 structural shocks and thanks to the
C-ICA procedure, we can use the entire set of information contained in both the unem-
ployment and output gap to identify the structural shocks related to economic activity.
The standard methods, however, by implicitly assuming 4 structural shocks would likely
be misspecified. Figure 2.2 illustrates the IRF for the 4th shock obtained with the short-
run restrictions and the PML approach. The economic interpretation of the reported
IRF turns out to be difficult. Indeed, even if there is a negative impact on the interest
rate, the effect on real activity and inflation are also negative, which means that we can
not interpret this shock as a expansionary monetary policy shock. Moreover, the impact
on inflation does not seem to be significantly different from zero, so that it is not clear
whether this shock is related to supply or demand. In Appendix A.3 we report the esti-
mated mixing matrices Ẑ, the estimated orthogonal matrix Ĉ ′ and the related statistics.
The matrix C ′ estimated with the C-ICA procedure has almost all statistically significant
coefficients, in contrast to that obtained with the standard PML-ICA.

In this last part of the empirical analysis we compare the IRFs obtained with the
C-ICA approach on the scheme [π,Ug,Og, r] with those obtained by Gouriéroux et al.
(2017) on the scheme [π,Ug, r]. Then, the same 6-lag VAR is estimated as before and the
IRFs are obtained with the short-run restrictions and PML approach. We compare these
IRFs with those obtained by using the C-ICA method in Figure 2.3. Again, Jarque-
Bera tests reject the normal assumptions of the residuals and we find no evidence of
statistically significant autocorrelation. The IRFs of C-ICA seem to be in line with those
obtained with the PML approach, especially for the demand and monetary policy shocks.
However, we stress that with the short-run restrictions and the PML approach, we use
only the information of inflation, unemployment gap and interest rate, while the C-ICA
procedure includes also the output gap in the identification of the 3 structural shocks,
thus merging the information from different proxies. This, in turn, should translate in a
more precise estimation of the IRFs. In Appendix A.3 we also report the estimated mixing
matrices obtained when short-run restrictions and PML-ICA approach are employed on
the scheme [π,Ug, r]. Furthermore, thanks to the C-ICA approach, also the IRF of the

10 We use bootstrap on residuals, so that from each bootstrapped trajectory k we re-estimate the
underlying reduced VAR model. Then, we obtain the corresponding Ẑk and we apply the permutation
and change of signs in a such way that the product between the original (obtained with non-bootstrap
data) estimate Ẑ ′ and the permuted Ẑk is proportional to the identity. Althought this product is not
exactly proportional to the identity, we choose the permutation and change of signs so that the leading
terms of columns are in the diagonal and they are positive, like in the identification scheme of Lanne
et al. (2017). Therefore, for each step k the structural shocks have the same labelling and the relative
IRFs may be compared.
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Fig. 2.1 Impulse response functions. This figure exhibits IRFs obtained from a VAR
model on the scheme [π,Ug,Og, r] related to an expansionary demand shock, contrac-
tionary monetary policy shock and contractionary supply shock, respectively. The shocks
are contractionary when the response on output gap is negative and expansionary when
it is positive. The blue and green lines correspond to the IRFs derived by short-run
(Cholesky) restrictions and the PML approach, respectively. Red lines correspond to the
IRFs computed by the C-ICA procedure on an singular SVAR with 3 structural shocks.
Dotted red lines represent the confidence interval at 90% level using the bootstrap method
derived from C-ICA procedure over 100 bootstrap samples.
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Fig. 2.2 Impulse response functions. This figure exhibits IRFs obtained from a VAR
model on the scheme [π,Ug,Og, r] related to a 4th structural shock. The blue and green
lines correspond to the IRFs derived by short-run (Cholesky) restrictions and the PML
approach, respectively. Dotted blue lines represent the confidence interval at 90% level
using the bootstrap method derived from the short-run restrictions over 100 bootstrap
samples.

output gap can be constructed along with the other responses, which allows to obtain a
more complete picture of the effects of the structural shocks on all the macroeconomic
variables.

Finally, we investigate the variance decomposition related to the structural shocks.
We denote with 4SR (3SR) and 4PML-ICA (3PML-ICA) the variance decomposition
obtained by the 4-VAR (3-VAR) model using short-run restrictions and PML-ICA, re-
spectively, and with C-ICA the variance decomposition related to the C-ICA procedure,
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Fig. 2.3 Impulse response functions. This figure exhibits IRFs related to an expansionary
demand shock, contractionary monetary policy shock and contractionary supply shock,
respectively. The shocks are contractionary when the response on output gap is negative
and expansionary when it is positive. The blue and green lines exhibits impulse response
functions obtained from a VAR model on the scheme [π,Ug, r] which are derived by
short-run (Cholesky) restrictions and the PML approach, respectively. The red lines
correspond to the IRFs computed by the C-ICA procedure on a singular SVAR model
with 3 structural shocks on the scheme [π,Ug,Og, r]. Dotted red lines represent the
confidence interval at 90% level using the bootstrap method derived from the C-ICA
procedure over 100 bootstrap samples.

see Table 2.1, 2.2 and 2.3.11 Overall, we observe that the C-ICA exhibits a more uniform
variance decomposition among the variables compared to the other methods. Indeed,
even if the monetary policy long-run effect on the real economy is found by all the identi-
fication techniques, the effect on the inflation is observed only for the C-ICA procedure.
In particular, using the C-ICA procedure we found that after four years the monetary
policy shock explains about 27% of the variance of inflation. Moreover, while for the
standard identification methods monetary policy shock does not seem to explain the in-
flation even in the short-run, this effect is found by the C-ICA procedure. Therefore, in
the C-ICA identification, the variance of inflation is explained by monetary policy shock
both in the long-run and short-run, which can be arguably considered to be more in
accordance with macroeconomic theory.

We conclude that using the C-ICA procedure we are able to conduct a more accurate
IRFs analysis and variance decomposition of the macroeconomic variables in the system..
The IRFs analysis and the variance decomposition confirm that C-ICA correctly merges
the information contained in all the variables thus allowing a more precise and coherent
identification of the low dimensional system of structural shocks driving the economy.

11In Appendix A.3 the variance decomposition of the 4-th structural shocks is reported for complete-
ness.
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Table 2.1 Variance Decomposition related to demand shock. For each VAR model con-
sidered the variance explained by the demand shock relative to each variables is reported
in columns. The lag period after the shock is measured in quarters. Values in parentheses
are the standard deviations computed from 100 bootstrap samples.

Demand Shock
Lag 0 2 4 8 16

4SR
π 0 (0) 0.0354 (0.0290) 0.1136 (0.0522) 0.1900 (0.0841) 0.2165 (0.1054)
Ug 0 (0) 0.1608 (0.0514) 0.2639 (0.0841) 0.2539 (0.1069) 0.2080 (0.0976)
Og 0.7281 (0.0579) 0.6482 (0.0778) 0.6293 (0.0946) 0.5428 (0.1172) 0.4790 (0.1184)
r 0.0004 (0.0087) 0.1377 (0.0542) 0.224 (0.0754) 0.3231 (0.1079) 0.3504 (0.1279)

4PML-ICA
π 0.1267 (0.0383) 0.1951 (0.0398) 0.3315 (0.0425) 0.4841 (0.0541) 0.5640 (0.0924)
Ug 0.0123 (0.0545) 0.2229 (0.0562) 0.3250 (0.0784) 0.3144 (0.1182) 0.2425 (0.1465)
Og 0.7123 (0.0448) 0.7073 (0.0641) 0.6896 (0.0795) 0.5951 (0.1121) 0.5022 (0.1301)
r 0.0055 (0.1312) 0.1543 (0.1248) 0.2792 (0.1092) 0.3932 (0.0991) 0.4839 (0.0864)

C-ICA
π 0.0620 (0.1529) 0.1520 (0.1608) 0.3178 (0.1765) 0.4590 (0.1968) 0.4712 (0.2061)
Ug 0.9619 (0.1628) 0.8731 (0.1857) 0.7924 (0.1988) 0.6951 (0.2030) 0.6061 (0.1855)
Og 0.8600 (0.1977) 0.8051 (0.2085) 0.7630 (0.2112) 0.6970 (0.2071) 0.6508 (0.1959)
r 0.0716 (0.1832) 0.5520 (0.1440) 0.7521 (0.1186) 0.8603 (0.1245) 0.8869 (0.1419)

3SR
π 0 (0) 0.0510 (0.0323) 0.0767 (0.0434) 0.1555 (0.0768) 0.1651 (0.0980)
Ug 0.9810 (0.0224) 0.9846 (0.0222) 0.9542 (0.0405) 0.8683 (0.0870) 0.7490 (0.1294)
r 0.1178 (0.0606) 0.3446 (0.0967) 0.4561 (0.1031) 0.5260 (0.1240) 0.5448 (0.1427)

3PML-ICA
π 0.0735 (0.1644) 0.1692 (0.1716) 0.2192 (0.1813) 0.3342 (0.1938) 0.3599 (0.1984)
Ug 0.9749 (0.1254) 0.9656 (0.1343) 0.9275 (0.1492) 0.8291 (0.1751) 0.7026 (0.1806)
r 0.0830 (0.1316) 0.3390 (0.1658) 0.4788 (0.1708) 0.5550 (0.1784) 0.6053 (0.1842)
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Table 2.2 Variance Decomposition related to monetary policy shock. For each VAR
model considered the variance explained by the monetary policy shock relative to each
variables is reported in columns. The lag period after the shock is measured in quarters.
Values in parentheses are the standard deviations computed from 100 bootstrap samples.

Monetary Policy Shock
Lag 0 2 4 8 16

4SR
π 0 (0) 0.0046 (0.0125) 0.0050 (0.0180) 0.0102 (0.0212) 0.0556 (0.0644)
Ug 0 (0) 0.0121 (0.0114) 0.0497 (0.0353) 0.1317 (0.0817) 0.2064 (0.1260)
Og 0 (0) 0.0341 (0.0217) 0.0643 (0.0419) 0.1328 (0.0847) 0.1721 (0.1131)
r 0.9345 (0.0518) 0.5959 (0.0951) 0.4191 (0.0991) 0.3018 (0.1023) 0.2305 (0.0958)

4PML-ICA
π 0.0044 (0.0383) 0.0090 (0.0398) 0.0084 (0.0425) 0.0091 (0.0541) 0.0356 (0.0924)
Ug 0.1203 (0.0545) 0.1166 (0.0562) 0.1584 (0.0784) 0.2580 (0.1182) 0.3614 (0.1465)
Og 0.0008 (0.0448) 0.0533 (0.0641) 0.0845 (0.0795) 0.1757 (0.1121) 0.2517 (0.1301)
r 0.6235 (0.1312) 0.3692 (0.1248) 0.2437 (0.1092) 0.1748 (0.0991) 0.1245 (0.0864)

C-ICA
π 0.1606 (0.0797) 0.1450 (0.0893) 0.1417 (0.1157) 0.1796 (0.1589) 0.2758 (0.1856)
Ug 0.0039 (0.0968) 0.0297 (0.1527) 0.0744 (0.1825) 0.1305 (0.2018) 0.1611 (0.1901)
Og 0.0259 (0.1636) 0.0890 (0.1963) 0.1154 (0.2049) 0.1525 (0.2086) 0.1638 (0.1975)
r 0.8166 (0.1999) 0.3917 (0.1407) 0.2112 (0.1004) 0.1183 (0.1001) 0.093 (0.1194)

3SR
π 0 (0) 0.0118 (0.0174) 0.0131 (0.0223) 0.0116 (0.0226) 0.0379 (0.0465)
Ug 0 (0) 0.0057 (0.0089) 0.0409 (0.0340) 0.1213 (0.0791) 0.2094 (0.1247)
r 0.8665 (0.0669) 0.5830 (0.1028) 0.4335 (0.1058) 0.3557 (0.1148) 0.2884 (0.1151)

3PML-ICA
π 0.0134 (0.0898) 0.0149 (0.0762) 0.0128 (0.0704) 0.0117 (0.0714) 0.0448 (0.0945)
Ug 0.0098 (0.0500) 0.0041 (0.0490) 0.0150 (0.0650) 0.0632 (0.1010) 0.1282 (0.1271)
r 0.8901 (0.1509) 0.6198 (0.1763) 0.4704 (0.1704) 0.3971 (0.1693) 0.3232 (0.1557)
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Table 2.3 Variance Decomposition related to supply shock. For each VAR model con-
sidered the variance explained by the supply shock relative to each variables is reported
in columns. The lag period after the shock is measured in quarters. Values in parentheses
are the standard deviations computed from 100 bootstrap samples.

Supply Shock
Lag 0 2 4 8 16

4SR
π 1 (0) 0.9435 (0.0317) 0.8598 (0.0548) 0.7705 (0.0865) 0.7004 (0.1120)
Ug 0.0064 (0.0170) 0.0047 (0.0182) 0.0025 (0.0172) 0.0043 (0.0257) 0.0357 (0.0623)
Og 0.0016 (0.0129) 0.0103 (0.0209) 0.0083 (0.0219) 0.0097 (0.0281) 0.0368 (0.0559)
r 0.0128 (0.0198) 0.0662 (0.0436) 0.1181 (0.0607) 0.1408 (0.0775) 0.1938 (0.1073)

4PML-ICA
π 0.8557 (0.0383) 0.7594 (0.0398) 0.6159 (0.0425) 0.4645 (0.0541) 0.3689 (0.0924)
Ug 0.0080 (0.0545) 0.0533 (0.0562) 0.0849 (0.0784) 0.1118 (0.1182) 0.1437 (0.1465)
Og 0.1080 (0.0448) 0.0815 (0.0641) 0.0920 (0.0795) 0.1100 (0.1121) 0.1334 (0.1301)
r 0.0208 (0.1312) 0.0149 (0.1248) 0.0162 (0.1092) 0.0147 (0.0991) 0.0250 (0.0864)

C-ICA
π 0.7774 (0.1614) 0.7030 (0.1611) 0.5406 (0.1521) 0.3614 (0.1442) 0.2530 (0.1490)
Ug 0.0342 (0.1168) 0.0972 (0.1323) 0.1332 (0.1418) 0.1745 (0.1494) 0.2327 (0.1363)
Og 0.1141 (0.1399) 0.1059 (0.1354) 0.1216 (0.1406) 0.1505 (0.1432) 0.1854 (0.1342)
r 0.1118 (0.0856) 0.0563 (0.0710) 0.0367 (0.0739) 0.0214 (0.0777) 0.0201 (0.0968)

3SR
π 1 (0) 0.9372 (0.0313) 0.9102 (0.0456) 0.8329 (0.0788) 0.7970 (0.1021)
Ug 0.0190 (0.0224) 0.0097 (0.0204) 0.0049 (0.0196) 0.0105 (0.0346) 0.0417 (0.0695)
r 0.0158 (0.0222) 0.0723 (0.0465) 0.1104 (0.0631) 0.1183 (0.0770) 0.1667 (0.1158)

3PML-ICA
π 0.9130 (0.1714) 0.8159 (0.1774) 0.7681 (0.1877) 0.6540 (0.1979) 0.5953 (0.1967)
Ug 0.0153 (0.1114) 0.0303 (0.1228) 0.0574 (0.1425) 0.1077 (0.1644) 0.1692 (0.1622)
r 0.0269 (0.0820) 0.0412 (0.1122) 0.0508 (0.1337) 0.0479 (0.1428) 0.0715 (0.1647)
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Appendix of Chapter 2

A.1 A DFM-ICA procedure

We consider the quasi-maximum likelihood estimator of Doz et al. (2012) which guar-
anteed consistency of the estimator of the sources even in presence of misspecification of
the true distribution. In the first step, we assume a misspecification of the true sources
and we can employ the EM-procedure using the Kalman algorithm. Then, being R < N ,
the Kalman smoother step can be improved using the collapsing procedure, as it is ob-
served by Doz et al. (2012). Finally, by exploiting the asymptotic results of Doz et al.
(2012) we can obtain a consistent estimator of the sources, α̂t. In particular, the bias
induced by the assumed misspecification tends to zero as both N and T go to infinity.
However, the sources remain identified only up to a rotation which can be estimated with
ICA on the estimated sources, i.e, we separate the sources by employing ICA directly on
α̂t, so that we obtain the QML-Collapsing-ICA approach. We observe that in this case
the collapsing procedure acts as a computational tool to improve the efficiency of the
numerical computations of the Kalman smoother, (see Jungbacker and Koopman, 2008,
for further details). We will then refer to the previous method as the Q-CICA procedure,
see Algorithm 2.

Algorithm 2 The Q-CICA procedure.
Assuming a misspecification of the true sources:

1: QML step: Perform the EM-procedure recursively using Kalman algorithm and get
an estimate of the system matrices Z and H. Improve the Kalman smoother step
with the collapsing procedure and obtain the estimate of the sources.

2: ICA-Step: Separate the sources employing the ICA directly on α̂t.

Use the identified mixing matrix Z for the IRF analysis.

Proposition A.1. Given

ut = Zαt + et, where Z ∈ RN×R and rank(Z) = R, ut, et ∈ RN ,α ∈ RR.
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Let Z = UΣC ′ a singular value decomposition of Z, where U ∈ RN×N ,C ′ ∈ RR×R are

orthogonal matrices and Σ =

Σ+

0

. Let us suppose the assumptions of Doz et al. (2012)

are satisfied and:

• et ∼ N(0,H), H where et is independent from αt and H is a generic variance-
covariance matrix with possible cross covariance terms (i.e. as for an approximate
factor model),

• αt satisfies Assumptions 1.1,

then the Q-CICA procedure is consistent for the identification of the sources when N and
T go to infinity.

Proof. By Doz et al. (2012) we obtain an estimate of the sources. We remark that we
can estimate the space of the common factors (sources), i.e., if Ẑ, α̂t denote the estimate
of Z and αt, then

Ẑα̂t
P−→ Zαt as N ,T →∞,

by Doz et al. (2012). In other words, we can disentangle the noise from the sources, but

Ẑ
P−→ Z ·C, α̂t

P−→ C ′ ·αt, as N ,T →∞,

where CC ′ = C ′C = IR. This mean that α̂t is a rotation of the consistent estimator of
the true sources. However, we can estimate C using ICA on the estimated sources and
we obtain Ĉ

P−→ C, as T →∞. Finally we get an estimate of Z by considering

ẐĈ ′
P−→ Z as N ,T →∞.

A.2 Simulation analysis

In the following simulation analysis we will investigate the convergence and the finite
sample properties of the proposed C-ICA procedure. The simulation setting will assume
standardized sources and homoskedastic noise with an homogeneous amplification matrix,
σ2
α = 1, H = σ2

eIN , Σ+ = IR and R = 3 structural shocks. The sources α are drawn
from a Student t-distribution, with different degrees of freedom ν = 10, 15, 5. At each
step of the simulation we generate the noise term et from a Gaussian distribution, as
assumed so far, and we recover the related observations ut with a fixed mixing matrix
Z. We analyze the finite sample properties of the collapsing procedure in separating the
sources in a realistic parameters setting, i.e., with a number of observations and variables
close to those encounter in the empirical applications. For the ICA step we employ the
same specification of Gouriéroux et al. (2017) for their PML estimator.
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Thus, for each simulation k we compute ÛR,k and the amplification matrix Σ̂+,k.
We estimate the collapsed mixing matrix Ĉ ′k using the ICA technique, so that for each
simulated path we obtain an estimate of the mixing matrix Ẑk = ÛR,kΣ̂+,kĈ

′
k.

We report both numerical and graphical results of the finite sample procedure in
separating the shocks. We perform a sensitivity analysis by varying noise variance σ2

e =

0.10, 0.25, 0.50, the sample size T = 100, 200, 2000 and the number of variables N =

5, 10, 20. For each parameter setting Nsim = 100 simulations are performed. We refer to
α̂t,k = Ẑ ′k ·Zαt as the unmixed shocks and to βt,k = Ẑ ′ku

1
t,k as the contaminated shocks.

For each simulation the signal-to-noise ratio (SNR) is computed. For a general signal xt
we denote by SNRx the SNR of x over the noise, which is defined as the ratio between
the variance of the signal xt and that of the noise term et. We denote by syst the signal
provided by the theoretical signal αt + et. In Tables A.1 and A.2 we report the average
SNR (among the simulations) of the observations ut, of the collapsed observations u1

t

and of β together with the average estimates of σ and σ2
e.

Regardless of parameter settings, it is clear that the shocks signal on the original
observations is very poor, being essentially masked by the noise. In contrast, by looking
at the SNR on the collapsed observations, it appears that the collapsing step is able to
reduce the noise, allowing the ICA procedure to separate the structural shocks even if
it is applied on the collapsed variables. Indeed, a marked improvement of the SNR is
observed after the application of collapsing procedure. In particular, even when N = 5,
i.e. N is close to the number of structural shocks, the collapsing procedure provides
the same SNR improvement observed for N = 10. The SNRu1

t
becomes close to the

theoretical one, SNRsys, indicating that applying the ICA on the collapsed observations
considerably enhances the accuracy of the separation of the shocks. Hence, these results
show that applying the collapsing procedure has a powerful denoising effect. Moreover,
the estimates of σ and σ2

e turn out to be T -consistent regardless of N .
We investigate the convergence of the C-ICA procedure by computing the identifica-

tion scheme of Lanne et al. (2017) on Ẑ ′kZ to obtain Âk = ID(Ẑ ′kZ), where ID denotes
the identification scheme operator. Indeed, under general assumptions ICA identifies Z
in an equivalence class in the set of nonsingular matrices. If ∼ is the equivalence rela-
tion w.r.t. permutations and scalings, then ICA estimates the equivalence class of Z.
However, it is possible to select a particular representative by using the identification
scheme of Lanne et al. (2017), so that if A ∼ B, then ID(A) = ID(B), see Lanne et al.
(2017) for further details. We use this result for our simulations analysis. Therefore,
given two representatives A and B of two equivalence classes we want to verify whether
the two equivalence classes are the same, i.e., ID(A) = ID(B). For this purpose we
apply ID on A and B. If the mixing matrix were correctly estimated we should observe
ID(Ẑ ′kZ) = Âk = IR. Thus, we consider as penalizing function the mean squared error
w.r.t. the Frobenius norm, i.e., MSE1 = 1

Nsim

∑Nsim
i=1 ||Âk − IR||2F . Furthermore, we com-
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Table A.1 The average SNR of the observations ut, u1
t and of the contaminated shocks

among the simulations, the average estimates of σ and σ2
e and the MSE1 and MSE2 mea-

sures computed for Nsim = 100 simulations for σ2
e = 0.10, 0.25, 0.50, T = 100, 200, 2000

and N = 5, 10. The SNR of αt and the SNR of the theoretical signal is also reported.
Values in parentheses are the standard deviations.

σ2
e = 0.10; SNRα = 10; SNRsys = 11

N 5 10
T 100 200 2,000 100 200 2,000

SNRu 7.110 (.521) 7.039 (.349) 6.990 (.085) 4.065 (.215) 4.018 (.137) 4.000 (.039)
SNRu1 11.183 (.920) 11.006 (.614) 10.991 (.162) 11.189 (.957) 10.950 (.633) 10.969 (.196)
SNRβ 11.184 (.923) 11.011 (.628) 10.990 (.161) 11.180 (.917) 10.952 (.631) 10.969 (.195)
σ 1.000 (.018) 1.001 (.014) 1.000 (.004) 1.004 (.017) 1.003 (.013) 1.000 (.004)
σ2
e 0.099 (.011) 0.099 (.007) 0.100 (.002) 0.098 (.005) 0.099 (.004) 0.100 (.001)

MSE1 0.801 0.271 0.145 0.809 0.263 0.147
MSE2 0.009 0.009 0.001 0.010 0.006 0.003

σ2
e = 0.25; SNRα = 4; SNRsys = 5

N 5 10
T 100 200 2,000 100 200 2,000

SNRu 3.441 (.227) 3.416 (.158) 3.395 (.039) 2.227 (.105) 2.208 (.067) 2.200 (.019)
SNRu1 5.044 (.398) 4.993 (.273) 4.994 (.070) 5.008 (.417) 4.952 (.282) 4.985 (.089)
SNRβ 5.037 (.403) 4.990 (.281) 4.994 (.070) 5.009 (.413) 4.952 (.285) 4.985 (.089)
σ 1.000 (.031) 1.003 (.024) 1.000 (.007) 1.011 (.028) 1.008 (.021) 1.001 (.006)
σ2
e 0.247 (.026) 0.246 (.018) 0.250 (.006) 0.243 (.012) 0.246 (.009) 0.250 (.003)

MSE1 0.922 0.391 0.229 0.846 0.339 0.190
MSE2 0.005 0.005 0.002 0.002 0.009 0.003

σ2
e = 0.50; SNRα = 2; SNRsys = 3

N 5 10
T 100 200 2,000 100 200 2,000

SNRu 2.219 (.129) 2.208 (.093) 2.197 (.023) 1.614 (.064) 1.605 (.042) 1.600 (.012)
SNRu1 2.995 (.223) 2.986 (.158) 2.995 (.040) 2.935 (.237) 2.945 (.162) 2.990 (.052)
SNRβ 2.989 (.230) 2.982 (.161) 2.995 (.040) 2.931 (.234) 2.945 (.164) 2.989 (.052)
σ 1.004 (.051) 1.008 (.037) 1.000 (.012) 1.028 (.041) 1.019 (.031) 1.003 (.009)
σ2
e 0.489 (.053) 0.489 (.036) 0.500 (.011) 0.483 (.024) 0.490 (.018) 0.499 (.006)

MSE1 1.115 0.783 0.429 0.991 0.643 0.283
MSE2 0.004 0.003 1E-04 0.005 0.003 0.001

pute MSE2 = ||Â− IR||2F , where Â is the average of Âk among simulations. In Tables A.1
and A.2 are reported the MSE1 and MSE2 measures for the various parameter settings
considered. Overall we may appreciate the consistency of the procedure when T becomes
large regardless σ2

e and N .
We then graphically check the quality of the identification procedure obtained by
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Table A.2 The average SNR of the observations ut, u1
t and of the contaminated shocks

among the simulations, the average estimates of σ and σ2
e and the MSE1 and MSE2 mea-

sures computed for Nsim = 100 simulations for σ2
e = 0.10, 0.25, 0.50, T = 100, 200, 2000

and N = 20. The SNR of αt and the SNR of the theoretical signal is also reported.
Values in parentheses are the standard deviations.

σ2
e = 0.10; SNRα = 10; SNRsys = 11

N 20
T 100 200 2000

SNRu 2.529 (.076) 2.502 (.052) 2.500 (.019)
SNRu1 10.948 (.908) 10.904 (.634) 10.950 (.175)
SNRβ 10.958 (.928) 10.899 (.646) 10.948 (.175)
σ 1.014 (.020) 1.002 (.012) 1.001 (.005)
σ2
e 0.097 (.003) 0.099 (.002) 0.100 (.001)

MSE1 0.700 0.305 0.176
MSE2 0.003 0.002 4E-04

σ2
e = 0.25; SNRα = 4; SNRsys = 5

N 20
T 100 200 2000

SNRu 1.614 (.041) 1.599 (.028) 1.600 (.010)
SNRu1 4.833 (.372) 4.876 (.274) 4.972 (.080)
SNRβ 4.829 (.377) 4.871 (.280) 4.971 (.079)
σ 1.035 (.033) 1.009 (.020) 1.002 (.007)
σ2
e 0.242 (.008) 0.246 (.006) 0.250 (.002)

MSE1 0.852 0.418 0.166
MSE2 0.003 2E-04 0.003

σ2
e = 0.50; SNRα = 2; SNRsys = 3

N 20
T 100 200 2000

SNRu 1.309 (.027) 1.298 (.018) 1.300 (.006)
SNRu1 2.771 (.198) 2.856 (.151) 2.978 (.047)
SNRβ 2.763 (.200) 2.852 (.153) 2.977 (.047)
σ 1.077 (.047) 1.027 (.030) 1.004 (.011)
σ2
e 0.479 (.015) 0.490 (.011) 0.499 (.004)

MSE1 1.062 0.674 0.304
MSE2 0.012 0.019 0.003

using the estimated mixing matrix Ẑk on the contaminated shocks βt. In particular,
for each simulation path, we compute the identification on the contaminated shocks. we
compare the average unmixed signals across simulations with the true sources αt using
ID, see Figure A.1. On average, we observe that the separation of the sources is well
performed also for the contaminated ones, since we can clearly distinguish the sources
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Fig. A.1 Scatter plots of shocks and contaminated shocks (average). This figure com-
pares the shocks with the contaminated ones, which are obtained by the average of the
contaminated shocks among the simulations. For each simulation path the identification
scheme is applied to the obtained contaminated shocks. The scatter plot is expected to
look like a straight line (along the bisector of the first-third quadrant) when the signal of
the shock αi is the same as that of βj .

among the contaminated source signals1.
By selecting one particular simulation, when σ2

e = 0.5, T = 200 and N = 10, we
report the SNR of the sensors, virtual (collapsed) sensors and of the contaminated sources,
see Figure A.2. Again, it is clear that the collapsing step can reduce the noise on the
virtual (collapsed) sensors, whereas the source signal on the original sensors is weak. We
report the plots of the shocks against the collapsed observations and the contaminated
shocks, respectively. Figure A.3, panel (a), shows that the collapsed observations signal
is basically a mixed signal of the original shocks, where all the information provided by
the shocks is included. However, the collapsed observations are still an unknown linear
combination of the original structural shocks so that the latter can not be identified yet.
For instance, from the scatter plots on the right of panel (a) we observe that the signal
of the collapsed observation u1

3 is a combination of α2 and −α3. So, we can identify
each shock only after the identification process performed with the ICA on the collapsed
observations, as it is exhibited in Figure A.3, panel (b). Indeed, from left to right,

1We also verify the goodness of the unmixing process for the unmixed source signals α̂ and we obtain
similar results, even better due the absence of noise.
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Fig. A.2 SNRs of one simulation for the original sensors, virtual sensors and for the
unmixed contaminated sources. The collapsing procedure reduces the amplitude of the
noise which is contained in the mixed sources signal.

we observe that signals in β1, β2 and β3 almost perfectly coincide to −α3, α1 and α2,
respectively.

The ICA allows to separate the sources even when some noise remains in the mixed
signal, since the ICA unmixing on the virtual sensors is sufficiently good to distinguish
the sources making unnecessary a denoising step. Summarizing, the good accuracy of
this identification process is achieved thanks to the preliminary collapsing step, which
allows to considerably reduce the amplitude of the noise contained in the mixed shocks
signal, and to the robustness of the ICA identification step to the remaining noise.

A.3 Estimated matrices of Section 2.3

We report the three mixing matrices estimated in the empirical analysis when all
macroeconomic variables are considered. They are obtained from the short-run restric-
tions, PML-ICA and C-ICA approach. For the first two method we obtain a 4× 4 matrix
while for the C-ICA approach we estimate a rectangular 4× 3 matrix. Table A.3 exhibits
the structure of the obtained mixing matrices. For completeness, we report in Table A.4
the estimated mixing matrix Ĉ ′ by the PML-ICA with the related statistic. We also
perform the test of Gouriéroux et al. (2017) for testing whether the estimated Ĉ ′ is in
the equivalence class of the identity. The test rejects the null hypothesis with at any
conventional confidence levels (p-value= 3.80e-05), i.e., Ĉ ′ /∈P(I4). Furthermore, Table
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Fig. A.3 Scatter plots of shocks and collapsed observations, panel (a), and scatter plots of
shocks and contaminated shocks, panel (b), respectively. This figure compares the shocks
with the collapsed observations and contaminated shocks for one particular simulation
when σ2

e = 0.5, T = 200 and N = 10. The scatter plot is expected to look like a straight
line (along the bisector of the first-third quadrant) when the signal of the shock αi is the
same as that of u1

j and βj , respectively for panel (a) and (b).
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Table A.3 Estimated mixing matrix Ẑ when short-run (Cholesky), PML-ICA and C-ICA
are employed. We remark that for the short-run and PML-ICA the number of structural
shocks is set equal to the number of the sensors, i.e., 4, while for the C-ICA procedure
we set the number of the structural shocks equal to 3.

Short-Run PML-ICA


0.8679 0 0 0
−0.0211 0.2441 0 0
0.0307 −0.3472 0.5764 0
0.1015 −0.2218 −0.0167 0.8685




0.8026 −0.0998 0.3088 −0.0573
0.0219 0.2273 −0.0272 0.0850
−0.2224 −0.2862 0.5711 −0.0192
0.1303 −0.5345 −0.0670 0.7132


C-ICA


−0.6981 −0.3173 −0.1972
−0.0293 −0.0099 0.1553
0.2624 −0.1251 −0.7205
−0.2644 0.7145 −0.2116



Table A.4 Estimated matrix Ĉ ′ using the PML-ICA approach. Asymptotic standard
deviations of the parameters are reported between parentheses and they are obtained
using the asymptotic results of Gouriéroux et al. (2017).

Ĉ ′ =



0.9248 −0.1150 0.3558 −0.0661
(0.0374) (0.1227) (0.0873) (0.1289)
0.1699 0.9212 −0.0805 0.3426
(0.1247) (0.0591) (0.1023) (0.1494)
−0.3329 0.0645 0.9235 0.1766
(0.0899) (0.1072) (0.0370) (0.1060)
0.0790 −0.3655 −0.1216 0.9198
(0.1306) (0.1477) (0.1028) (0.0604)



A.5 reports the estimated collapsed mixing matrix Ĉ ′ by the PML-ICA approach on the
collapsed observations obtained by the collapsing step of the C-ICA approach. Even in
this case the test of Gouriéroux et al. (2017) rejects the null hypothesis at any conven-
tional confidence levels (p-value= 5e-16). We observe that in contrast to the previous
case, almost all the elements of Ĉ ′ are statistically significantly different from zero. Table
A.6 exhibits the mixing matrix obtained when the short-run (Cholesky) restrictions and
PML-ICA are used for the scheme [π,Ug, r]. For this scheme, the matrix C ′ obtained
with the PML-ICA is exactly the same estimated by Gouriéroux et al. (2017), since we
have replicated the same exercise. We refer to their work for the statistics and related
test.
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Table A.5 Estimated matrix Ĉ ′ using the PML-ICA approach on the virtual sensors
provided by the collapsing step in the C-ICA procedure. Asymptotic standard deviations
of the parameters are reported between parentheses and they are obtained using the
asymptotic results of Gouriéroux et al. (2017).

Ĉ ′ =



0.6924 −0.4856 0.5337
(0.0635) (0.0720) 0.0768
0.5825 0.8126 −0.0164
(0.0657) (0.0471) (0.0879)
−0.4257 0.3222 0.8455
(0.0832) (0.0795) (0.0483)



Table A.6 Estimated mixing matrix Ẑ when short-run (Cholesky), PML-ICA are em-
ployed on the scheme [π,Ug, r].

Short-Run PML-ICA

 0.8993 0 0
−0.0388 0.2788 0
0.1209 −0.3302 0.8958


 0.8593 −0.2439 −0.1042

0.0349 0.2779 −0.0278
0.1580 −0.2772 0.9079



Table A.7 Variance Decomposition related to the 4-th structural shock. For each VAR
model considered we report in columns the variance explained by the 4-th structural
shock relative to each variables. The lag period after the shock is measured in quarters.
Values in parentheses are the standard deviations computed from 100 bootstrap samples.

Lag 0 2 4 8 16

4SR
π 0 (0) 0.0166 (0.0148) 0.0217 (0.0186) 0.0293 (0.0292) 0.0275 (0.0427)
Ug 0.9936 (0.0170) 0.8223 (0.0570) 0.6839 (0.0910) 0.6101 (0.1202) 0.5499 (0.1339)
Og 0.2703 (0.0567) 0.3074 (0.0778) 0.2982 (0.0914) 0.3147 (0.1178) 0.3122 (0.1248)
r 0.0523 (0.0447) 0.2002 (0.0801) 0.2388 (0.0884) 0.2342 (0.0994) 0.2254 (0.1073)

4PML-ICA
π 0.0132 (0.0383) 0.0365 (0.0398) 0.0443 (0.0425) 0.0422 (0.0541) 0.0314 (0.0924)
Ug 0.8594 (0.0545) 0.6073 (0.0562) 0.4317 (0.0784) 0.3158 (0.1182) 0.2524 (0.1465)
Og 0.1789 (0.0448) 0.1579 (0.0641) 0.1339 (0.0795) 0.1193 (0.1121) 0.1127 (0.1301)
r 0.3502 (0.1312) 0.4617 (0.1248) 0.4609 (0.1092) 0.4173 (0.0991) 0.3666 (0.0864)

Finally, Table A.7 reports the variance decomposition related to the 4-th structural
shock for the 4-VAR model using short-run restrictions and PML-ICA approach.



CHAPTER 3

Uncertainty in Firm Valuation

In valuation analysis, the degree of uncertainty associated with the value of a company is
as important as the value itself. We propose an original and robust methodology for com-
pany market valuation which replaces the traditional point estimate of the conventional
Discounted Cash Flow model with a probability distribution of fair values that conveys
information about both the expected value of the company and its intrinsic uncertainty.
The methodology hinges on two main ingredients: an econometric model for the com-
pany revenues and a set of firm-specific balance sheet relations that are estimated using
historical data. In following chapters, Chapters 4 and 5, we explore the effectiveness and
scope of our methodology through a series of statistical exercises on publicly traded U.S.
companies. In this Chapter, we describe the proposed method by presenting the main
assumptions and its main building blocks.

3.1 The Stochastic Discounted Cash Flow model

The Stochastic Discounted Cash Flow model generalizes the two-stage UFCF DCF
model presented in Chapter 1. In what follows, we assume that all the random quantities
are defined on a filtered probability space (Ω,F , (Ft),P). In addition, we denote with
small (resp. capital) letters all the deterministic (resp. random) quantities. In the
standard DCF method, the (present) value v0 of a firm is defined by the sum of the
expected discounted cash flows, see Eq. (1.2), and it is a single point estimate. The
uncertainty associated to the future firms’ performance and to the evaluation process
itself is summarized by the expected value of future cash flows. In SDCF, the single point
estimate v0 is replaced by the realization of a random variable V0 such that E[V0] = v0.
In particular, in this framework, Eq. (1.2) can be rewritten ∀ω ∈ Ω as,

V0(ω) =
T∑
t=1

CFt(ω)

(1 + k)t
+
CFT (ω)(1 + g)

(1 + k)T (k− g)
(3.1)

and the corresponding equity fair value, V Eq
0 is obtained by replacing v0 by V0 in Eq. (1.4).

The distribution of the equity fair value divided by the number of company’s outstanding
shares is called fair value distribution, which can be compared with the corresponding
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stock price1.
The previous equation implies that the main building block in the definition of V0 is

a reliable description of the future cash flow generating process CFt. However, the cash
flow is on its own a reconstructed accounting variable, which depends on a set of other
more fundamental variables. We recall that our measure of cash flows is constituted by
the UFCF defined in Eq. (1.3) and in the following, for the sake of simplicity, we will
denote it with CF .

The interaction between the accounting variables and the cash flow is manifold and
so, in order to obtain a manageable model, we employ the following two-steps procedure.
First, all the relevant accounting variables are expressed as margins with respect to the
revenues. These margins are estimated in a firm-specific regression framework. Second,
an econometric model for the revenues’ dynamic is proposed. This model is calibrated at
the single firm level and is used in a Monte Carlo exercise in order to obtain a statistical
description of the future revenues (and therefore of the future cash flow). The rationale
behind this approach is that on the one hand, the relation between the relevant accounting
variables and revenues constitutes a structural relationship that is likely to remain stable
across time. On the other hand, the revenues are an important idiosyncratic component
at the single firm level, besides being an important driver of the growth of a firm. Indeed,
this is exactly what we observe from the study of Section 1.2, when we analyze the causal
properties using the SVAR approach, which is also consistent with the results of Coad
and Rao (2010), Moneta et al. (2013).

We now first construct a reliable relation between the cash flow and the revenues,
then we focus on the econometric model for the latter quantity. Discounting rates are
discussed at the end of this chapter.

3.1.1 Cash flows and revenues

From Eq. (1.3), we define for each time t, CF t as the sum between NOPATt and
D&At less CAPEXt, i.e., CF t = NOPATt +D&At − CAPEXt. Therefore, CFt =

CF t−∆WCt and we express each accounting variable in function of revenues. Nonethe-
less, NOPATt, D&At, CAPEXt and WCt are customarily expressed as marginal quan-
tities upon the revenues REVt, i.e.,

CF t = α ·REVt, WCt = β ·REVt

so that
CFt := (α− β) ·REVt + β ·REVt−1.

1 Since, this distribution is estimated by a Monte Carlo procedure, in the following we will consider
the empirical fair value distribution instead of the true one. However, we will not make this distinction
for the sake of simplicity.
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We model CF t and WCt with two separate margins, since a distinguishing difference
between CF t and ∆WCt is the frequency at which they are updated. Precisely, the
former is updated every quarter by using trailing twelve months data, while the latter
refers to annual variables. Then, we estimate α and β in the previous equations through
two different steps. First, we estimate α with the following regression of CF t on REVt:CF t = αREVt + ut

ut = εt −
∑q
i=1 θiεt−i, εt

d∼ N (0,σ2),
(3.2)

where N (µ,σ2) denotes a Gaussian random variable with mean µ and variance σ2. The
number of lags q is fixed by using standard information criteria (e.g., the Akaike Infor-
mation Criterion (AIC)). In the empirical analysis, see Chapter 4 and 5, regression in
Eq. (3.2) is first estimated over the time period FQ4 1992-FQ1 2009 and subsequently
over the remaining periods by shifting the initial estimation window of one fiscal quarter.
Second, following our data provider Thomson Reuters Eikon, Datastream database, we
set the operating margin of WCt on revenues equal to the annual sample average of the
historical working capital margin rate computed initially over the period 2006–2009, i.e.,
over the last three years and subsequently by shifting the initial window of one year.

Hereafter, for sake of presentation, the description of the procedure is related to a
specific period only. Letting α̂ and β̂ be these estimates, then our measure of cash flow
is given by

CFt = (α̂− β̂)REVt + β̂ REVt−1, (3.3)

i.e., the cash flows are characterized in terms of revenues’ dynamic. The coefficient of
determination of the previous regressions is on average greater than 0.9. More details on
model checking assessing the reliability of the previous relations is reported in Section
3.3.1. However, analysts might be used their best model to forecast future cash flows,
and we remark that the proposed framework is invariant from this choice. This point
it will be discussed in Chapter 5, where we argument that what is really important to
issue sell-side recommendations is to have a good tool to evaluate at the same level the
different companies using a sort of relative comparison in the selected stocks universe.

3.1.2 The revenues’ process

The revenues dynamics of each company is described by comparing three alternative
econometric model. It is important to stress that we are not searching for a revenues’
common-structure to be identified in a cross-sectional fashion. Rather, we estimate the
three models on each company separately and then, independently for each firm, we select
the best model. Indeed, we are interested in a firm-specific model for the revenues. This
kind of way of thinking is standard in the DCF valuation model, since it is implicitly
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assumed that the value of a firm is fully characterized by their fundamentals. However,
in the proposed SDCF model is highlighted how it is actually important to have a good
model of the driver process. Thus, the best model, with the best out-of sample perfor-
mance, should be employed. However, this research can be very challenging and it is
beyond the scope of this thesis. Therefore, we focus on simple models which outperform,
for instance, the simple AR(1) model.

Because trailing twelve-months data are used, we neglect seasonal characteristics. The
three alternative models are the following. Let yt = log(REVt) be the logarithm of the
revenues,

a) Model 1 or stationary model:
1−

p∑
k=1

akL
k

 (1−L)yt = εt, εt
d∼ N (0,σ2

ε),

where L is the usual lag operator, i.e. Lyt = yt−1.

b) Model 2 or local level model:

(Observation equation) yt = µt + εt, εt
d∼ N (0,σ2

ε)

(Local level) µt+1 = µt + ηt, ηt
d∼ N (0,σ2

η),

where the shocks εt and ηt are independent.

c) Model 3 or local linear trend model:

(Observation equation) yt = µt + εt, εt
d∼ N (0,σ2

ε)

(Local trend) µt+1 = µt + νt + ηt, ηt
d∼ N (0,σ2

η)

(Time-varying slope) νt+1 = νt + ζt, ζt
d∼ N (0,σ2

ζ ),

where the three innovations εt, ηt and ζt are independent.

Model 1 assumes that the first difference of log-revenues are stationary and described
by an AR(p) model, with the lag p selected (again) according to AIC. Model 2 and
Model 3 assume that the log-revenues yt depend upon non observable state variables, the
local trend µt and the time varying slope νt, and they represent two alternative models
when the differenced time-series of revenues, ∆yt, is not stationary. These models are
estimated in their state-space form using the Kalman filter, which is used to estimate the
parameters of the models and the time series of the unobservable state variables (see, e.g.,
Harvey (1990) and Durbin and Koopman (2012) for further details). The model selection
procedure is made of two steps. First, we check if the time series of the log-revenues’
increments is stationary. If it is the case, we select Model 1. If it is not the case, we



3.1. The Stochastic Discounted Cash Flow model 65

estimate both Model 2 and Model 3. Then, since Model 2 is nested in Model 3, we use
the likelihood ratio test to select the best between the two. Once one model among the
three has been selected, we compute a forecast of future log-revenues, and therefore of
future cash-flow, by employing a bootstrap procedure. Section 3.3.2 reports analysis on
the goodness of fit of the three models together with a performance comparison against
the AR(1) model.

3.1.3 The discounting and perpetual growth rate

Let us clarify the non trivial issue concerning the choice of the discount rate of Eq. (3.1)
when CFt is a stochastic process. In the conventional DCF model the expected future
cash flows are discounted back using the cost of capital rate, which incorporates the
intrinsic uncertainty of the (future) cash flows. Therefore, should the model for the CFt
account in full for the intrinsic uncertainty of the latter, the discount rate would be the
riskless rate (see, e.g., Casey, 2001). However, this is true only when the specified cash
flows model has been chosen in such a way that all the intrinsic uncertainty is considered
in all its components, i.e., the cash flows are risk-neutral. In other words, one have to
discount all the uncertainty which is not explained by the CFt process. In the particular
case of the presented SDCF model, the cash flows of a specific firm are driven only by
the idiosyncratic shocks of the revenues process2, which is related only to the specific
dynamic involved by the selected firm, without accounting, for instance, any possible
co-integration with other firms. In particular, since the CFt model is calibrated at level
of the single firm with univariate time series models, we do not to consider any other
form of risk, such as the systematic one, and we have not eliminate all the risk related to
the company’s business life. Then, we continue to use the same discount rate employed
in the conventional DCF in Eq. (1.2) also in Eq. (3.1)3. Moreover, from mathematical
point of view this implies a nice property which relates the SDCF to the pointwise DCF,
i.e., the E[V0] is exactly the value obtained by the pointwise DCF v0, which means that
with the SDCF the analyst is able to obtain a confidence interval of v0.

In conclusion, if one selects the “true” cash flows model which incorporates all the
uncertainty, then one have to use the riskless rate as discount rate. If the model does not
incorporate all the uncertainty, then the analyst have to discount that uncertainty which
is not included in such cash flow model.

2More precisely, the cash flows are driven by the revenues process which in turn is driven by idiosyn-
cratic shocks.

3 We also observe that this choice agrees with that made in Ali et al. (2010), Razgaitis (2009) chapter
8; French and Gabrielli (2005) Dayananda et al. (2002) where the use of Monte Carlo simulation in DCF
is discussed.
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3.1.4 The stochastic valuation framework

The general framework which we proposed for firm valuations using a SDCF approach
is characterized by the following three step.

a) Determine the most appropriate model for cash flows.

b) Compute each future trajectory of CFt(ω), ω ∈ Ω.

c) Discount back these trajectories with the appropriate discount rates and compute
the aggregate fair value distribution.

In particular, in our specific SDCF methodology the key steps a) and b) are substituted
by the following points:

i) Estimate the slope α̂ through the time-series regression (3.2) and the operating
margin β̂ of WCt upon the revenues.

ii) Determine the most reliable model for the log-revenues, selecting one among Model
1, Model 2 and Model 3.

iii) Compute each future trajectory of CFt(ω), ω ∈ Ω in Eq. (3.3) by replacing the tra-
jectory for the revenues process, with the bootstrapped value REVt(ω) determined
by either Model 1, Model 2 or Model 3.

Figure 3.1 shows two examples of the logarithm of the fair value distribution for Book-
ing Holdings Inc. (ticker BKNG) and McCormick & Company (ticker MKC) computed
at different dates; the red dotted lines indicate the market price at the evaluation date.

3.2 Data and sample selection criteria

While the SDCF model relies upon general considerations, many details of its im-
plementation and validation depend on specific company level data. In this Section we
review the different data sources we use to develop and test our methodology. All the
data in the subsequent description are taken at a quarterly frequency.

The required equity prices, along with the corresponding fundamental data are col-
lected from Thomson Reuters Eikon, Datastream database. Our initial sample comprises
all non-financial firms included in the S&P 500 over the entire period January 2009-
December 2017, without missing data, and with sufficient observations of the revenues
before January 2009 to estimate our model4 In this sample of 182 firms, we discard 32

4We exclude financial companies as they are subject to industry-specific regulations and present a
peculiar capital structure which makes very difficult, if not meaningless, the estimation of cash flows.
In general, missing data for company fundamentals (e.g., EBITDA and CAPEX) complicates the recon-
struction of the past free cash flow and/or the computation of the present value.
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Fig. 3.1 Examples of the fair value distribution (labelled FV) for Booking Holdings
Inc. (ticker BKNG) and McCormick & Company (ticker MKC) computed at different
dates. The red dotted lines indicate the market price at the evaluation date. For Booking
Holdings Inc. the logarithm of the fair value distribution is displayed.

firms for which the coefficient of determination (R2) of the regression of CF t on REVt

results to be less than 10% and another 10 firms for which we observe that for specific
quarters, immediately after the financial crisis of 2008-2009, their estimated fair value
distribution is negative.5 All together, these modifications leave us with a sample of 140
firms.6

As regards the heterogeneity, among the 140 firms we have7: 17 firms in both the
Oil & Gas (ICB 1) and the Basic Material (ICB 1000) sector, 44 Industrial firms (ICB
2000), 22 Consumer Good firms (ICB 3000), 19 Healthcare firms (ICB 4000), 12 firms
in the Consumer Service sector (ICB 5000), 3 firms in the Telecommunication sector
(ICB 6000), 7 Utilities firms (ICB 7000) and 16 Technology Firms (ICB 9000). Table 3.1

5This is attributed to the bad performance during the crisis which affect the correct estimation of the
true latent driver process on the next quarter.

6Since we are interested in the comparison of companies within our selected sample of stocks, the sur-
vivorship bias which may be induced by the sample selection criteria does not compromise our analyses.

7We use the Industry Classification Benchmark (ICB) as industry classification taxonomy.
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Table 3.1 Percentage of the stocks of our universe relatively to the S&P500 for each ICB
sector.

ICB sector (%) ICB sector (%)
1 and 1000 36.17 5000 16.90
2000 49.44 6000 100.00
3000 37.93 7000 25.00
4000 36.54 9000 30.19

Table 3.2 Proportion of stocks in each ICB sector relative to both our universe (first
and second column) and the S&P500 (third and fourth column).

Our Universe S&P 500
ICB sector (%) ICB sector (%) ICB sector (%) ICB sector (%)
1 and 1000 12.14 5000 8.57 1 and 1000 11.72 5000 17.71
2000 31.43 6000 2.14 2000 22.19 6000 0.75
3000 15.72 7000 5.00 3000 14.46 7000 6.98
4000 13.57 9000 11.43 4000 12.97 9000 13.22

Table 3.3 Summary statistics for the 140 firms in our sample, grouped by ICB code.
Two “snapshots” are reported: one referring to January 2009, and one to December 2017
(between brackets), which correspond to the beginning and the end date of the period
under investigation. For each sector firm is reported the average and the median values
of market capitalization, revenues and net income.

Oil & Gas and Industrial Consumer Goods Healthcare Consumer Service Telecom. and Technology All
Basic Materials Utilities

ICB codes 1 and 1000 2000 3000 4000 5000 6000 and 7000 9000

Number of firms 17 44 22 19 12 10 16 140
Market cap. ($B)

Mean 47.9 (62.7) 13.5 (35.9) 26.0 (53.2) 34.8 (87.0) 17.3 (104.1) 34.1 (59.2) 51.8 (165.8) 28.7 (71.1)
Median 11.1 (27.4) 5.9 (22.4) 6.0 (19.2) 16.4 (54.4) 7.0 (25.8) 5.6 (18.7) 36.4 (70.2) 7.7 (25.6)

Revenues ($B)
Mean 69.8 (38.6) 15.5 (16.2) 16.5 (18.6) 17.1 (28.5) 21.3 (50.3) 28.9 (39.1) 28.3 (41.8) 25.4 (28.4)
Median 17.8 (15.9) 6.3 (9.8) 7.2 (13.3) 6.7 (13.0) 16.3 (19.1) 9.1 (13.3) 9.6 (18.4) 7.8 (12.4)

Net Income ($B)
Mean 3.0 (1.8) 1.3 (1.2) 1.6 (2.5) 2.3 (3.1) 1.2 (2.9) 1.9 (2.6) 4.3 (8.1) 2.1 (2.8)
Median 0.4 (0.9) 0.4 (0.7) 0.5 (1.0) 1.1 (1.3) 0.6 (1.2) 0.5 (1.0) 2.1 (2.5) 0.5 (1.0)

reports for each ICB sector the percentage of stocks of our universe relative to the number
of firms of the same sector in the S&P 500 index. To check for possible sample distortion
introduced by our selection criteria, Table 3.2 displays the percentage of stocks in each
ICB sector relative to both our universe (first two columns) and the S&P 500 (second
two columns). Together, Tables 3.1 and 3.2 show that the final sample presents a great
heterogeneity in terms of industry sectors and, importantly, reflects the composition of
the index.
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Table 3.3 presents summary statistics for our sample. Two “snapshots” are considered:
one referring to the beginning of the period, i.e. January 2009, and one to the end, i.e.
December 2017. Data relative to December 2017 are reported between brackets. The
table shows average and median values across the firms within the same sector of market
capitalization, revenues and net income.

The data employed in the analysis of the returns of different portfolios within standard
multi-factor models (e.g., the market excess return and the momentum factor) are taken
from the Kenneth R. French Data Library8. In addition, since we set the terminal year T
to 5, the perpetual growth rate g is determined by the 5-year T -bond rate obtained from
the FRED (Federal Reserve Bank in St. Louis) database. Finally, the corporate tax rate
for United States firms is provided by KPMG.

Remark 3.1. Let us clarify a technical issue regarding the discounting rate of the terminal
value. Following an industry standard, e.g., the Thomson Reuters Eikon methodology,
the discount rate for the cash flow terminal value is computed by considering the fixed
corporate tax rate instead of the individual tax rate, albeit the difference is minimal for
all firms and all years considered. For the sake of completeness, if the discounting rate
related to the terminal value is denoted by kTV , then TV = CFT (1+g)

(kT V −g)
and it is discounted

by (1 + kTV )
T . For the reader convenience, Table 3.4 reports summary statistics of the

WACC for each quarter, as well as of the perpetual growth rate.

3.3 Model validation

The SDCF model is based on the UFCF DCF model employed by the data provider
Thomson Reuters Eikon, Datastream, which is considered as a benchmark. However, we
test the reliability of the choices made in the model trhough statistical and econometric
analysis.

3.3.1 Statistical validation of cash flows model

The coefficient of determination of regression Eq. (3.2) is on average greater than
0.90, which assesses the goodness of fit of the linear regression of CF t on REVt. As
regards the model misspecification, we check the normality and the autocorrelation of
the standardized residuals. The Kolmogorov-Smirnov test fails to reject the assumption
of normality of the standardized residuals for about the 56% of the firms in our universe
at 0.01 level. Also, there is no evidence of serial correlations for about 72% of the firms
using the Ljung-Box statistic.

8 https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html.
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Table 3.4 Summary statistics of the WACC, k, for each quarter, as well as of the
perpetual growth rate, g. Standard deviation of k are reported in parenthesis.

2009-03-30 2009-06-30 2009-09-30 2009-12-30 2010-03-30
Average WACC 7.53 7.85 7.89 8.01 6.17

(1.80) (1.82) (1.84) (1.83) (1.28)
g 2.23 2.47 2.3 2.42 2.25

2010-06-30 2010-09-30 2010-12-30 2011-03-30 2011-06-30
Average WACC 5.53 5.52 6.08 6.67 6.07

(1.19) (1.19) (1.23) (1.51) (1.47)
g 1.55 1.49 2.12 1.86 1.15

2011-09-30 2011-12-30 2012-03-30 2012-06-30 2012-09-30
Average WACC 5.81 5.81 6.44 6.29 6.34

(1.44) (1.46) (1.75) (1.70) (1.74)
g 0.95 0.9 0.79 0.67 0.69

2012-12-30 2013-03-30 2013-06-30 2013-09-30 2013-12-30
Average WACC 6.48 6.31 6.81 6.78 6.81

(1.81) (1.79) (1.81) (1.80) (1.66)
g 0.83 0.92 1.51 1.44 1.6

2014-03-30 2014-06-30 2014-09-30 2014-12-30 2015-03-30
Average WACC 6.16 6.2 6.09 5.97 6.68

(1.44) (1.36) (1.32) (1.34) (1.52)
g 1.66 1.7 1.6 1.45 1.52

2015-06-30 2015-09-30 2015-12-30 2016-03-30 2016-06-30
Average WACC 6.72 6.57 6.44 6.51 6.45

(1.55) (1.40) (1.44) (1.51) (1.53)
g 1.55 1.59 1.37 1.24 1.13

2016-09-30 2016-12-30 2017-03-30 2017-06-30 2017-09-30
Average WACC 6.82 7.1 6.62 6.65 6.88

(1.43) (1.47) (1.34) (1.36) (1.40)
g 1.61 1.94 1.81 1.82 2.07

2017-12-31
Average WACC 7.26

(1.42)
g 2.54

3.3.2 Goodness of fit of revenues models

We report an analysis on the goodness of fit of the models proposed for the log-
revenues (Model 1, Model 2 and Model 3), see Section 3.1.2, and a comparison against
the simple autoregressive model of order one AR(1). In order to do so, we proceed as
follows, where we also quickly recall the model selection:

i) If the time series of the log-revenues’ increments is stationary we use Model 1
and the performance of ARIMA-based models is assessed by looking at the usual
coefficient of the determination.
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Fig. 3.2 Examples of the dynamic of the Revenues well fitted by Model 1 (Left Panel)
and Model 3 (Right Panel). Model 1: Disney (ticker DIS). Model 3: Amazon (ticker
AMZN).

ii) On the contrary, in case of non-stationarity, i.e., either Model 2 or Model 3 is
selected, we proceed in the following way. Let ȳ be the sample average of the log-
revenues computed over a predetermined time period, and µt|pred = E[µt|Ft−1] be
the Kalman filter prediction of the state variable µ at time t. If T is the length
of the considered time-series and K the number of explanatory variables, then we
define the adjusted coefficient of determination R2

adj as:

R2
adj := 1− (1−R2)

T − 1
T −K − 1, where R2 := 1− SSres

SStot
,

and SSres =
∑T
t=1(yt − µt|pred)2 and SStot =

∑T
t=1(yt − ȳ)2.

The following results are obtained by the average on the whole sample considered (FQ4
2008- FQ4 2017). For the 71% of the firms in the sample Model 1 is the model that
present the best goodness of fit. Of the remaining, only the 1.5% of firms have a log-
revenues process that is well fitted by Model 2. Regardless the model selection we found
that the coefficient of determination is greater than 0.90 on average among the sample
period and the firm cross-section.

The plots in Figure 3.2 report the typical dynamics of the revenues process in Model
1 (left panel) and Model 2-3 (right panel). Examples of firms for which the latter models
have been selected are Amazon (ticker AMZN) and Booking (ticker BKNG).

Models 2 and 3 assume that shocks are i.i.d. with a zero-mean Gaussian distribution.
Following Durbin and Koopman (2012) we check for a possible misspecification of these
models by looking at the time series of the standardized one-step ahead forecast errors
η̂ and we refer to Durbin and Koopman (2012) for further details on this definition.
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In case of correct specification of the models, the latter should be i.i.d. and normally
distributed. In detail, the 74% of the firms in the sample exhibit η̂t with a distribution
that is not statistically different from the Gaussian at the 0.01 confidence level according
to the Kolmogorov-Smirnov test. Also, the η̂t of the 76% (resp. 78%) of the firms does
not exhibit significant serial autocorrelation at the 0.01 confidence level according to the
Ljung-Box test performed at lag 1 (resp. 10). We argue that the proposed framework
represents an optimal trade-off between a model with a perfect statistical fit of the data
and a model that have clear advantages in terms of practical implementability.

Finally, we present results on the predictive ability of Model 1, Model 2 and Model 3
for our sample firms by comparing it with that of a simple autoregressive model of order
one AR(1), which is described by the following dynamic: yt = αyt−1 + εt where |α| ≤ 1
and εt

d∼ N (0,σ2
ε). We start by estimating all models over the period December 1992

– March 2009 and by making predictions for the next 20 quarters (i.e. for the next 5
years). We then add the most recent observation, we shift the estimation period by one
quarter and we make predictions for the next 20 quarters, and so on and so forth till the
first quarter of 2013.9 We compute the following (relative) error metric for each firm j

and each estimation period e:

RMSQe
j :=

MSEj,our
MSEj,AR(1)

,

where MSE stands for Mean Square Error and our is either Model 1, Model 2 or Model 3,
depending on the selected model. The mean square error is defined in the natural way as
MSE := 1

H

∑H
h=1(yt+h − ŷt+h)2, where H = 20 and y and ŷ denotes the actual and the

predicted value, respectively. For conciseness, for each estimation period e we compute
the average across-firms of the RMSQe

j . In addition, we test whether our models perform
better than the AR(1): a negative average of log(RMSQj) means that our models have a
MSE smaller than the that of the AR(1). Table 3.5 reports the average of the logarithm of
RMSQj among the quarters. We observe that the average log(RMSQe

j) is always negative
and statistically significant for all quarters, with an exception of the last quarters of 2009
and the first of 2010, thus confirming that a more complex dynamics than the simple
AR(1) one is necessary. Also, for each quarter, we compute the percentage of firms for
which RMSQj < 1 and the results are reported in Table 3.6. On average, for 65% of
companies our models perform better than the AR(1).

We have presented a generalization of the traditional DCF model of firm valuation,
in which the point estimate is replaced with an estimated probability distribution of fair
values. Therefore, we can derive both an estimate of the fair value of a company and a
measure of the degree of uncertainty associated with it. The statistical analysis shows the

9We remind that the data sample for the revenues end in the first quarter of 2018.
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Table 3.5 Average log(RMSQj) computed across firms for all the quarters. Values that
result to be significant at 10%, 5%, 1% and 0.1% level are marked with ‘◦’, ‘∗’, ‘∗∗’ and
‘∗ ∗ ∗’ respectively.

2009-03-31 2009-06-30 2009-09-30 2009-12-31 2010-03-31 2010-06-30
-0.61 *** -0.33 * 0.31 * 0.43 ** 0.14 -0.72 ***
2010-09-30 2010-12-31 2011-03-31 2011-06-30 2011-09-30 2011-12-31
-0.81 *** -0.89 *** -0.84 *** -0.82 *** -0.87 *** -0.78 ***
2012-03-31 2012-06-30 2012-09-30 2012-12-31 2013-03-31
-0.59 *** -0.54 ** -0.66 *** -0.59 *** -0.68 ***

Table 3.6 Percentage of firms j such that RMSQj < 1 among the all quarters. On
average 65% companies have a RMSQ which is smaller than 1.

2009-03-31 2009-06-30 2009-09-30 2009-12-31 2010-03-31 2010-06-30
65 % 58.57 % 45.71 % 44.29 % 48.57% 70.00 %
2010-09-30 2010-12-31 2011-03-31 2011-06-30 2011-09-30 2011-12-31
74.29 % 72.14 % 75.71 % 72.14 % 74.29 % 68.57 %
2012-03-31 2012-06-30 2012-09-30 2012-12-31 2013-03-31
63.57 % 65.71 % 67.86 % 64.29 % 68.57%

performance of the considered econometric approaches and how they are well-specified
among the selected universe of stocks. However, in the following chapters we will inves-
tigate the effectiveness of our methodology and show the importance of a distributional
approach to valuation through different exercises. We will explore the misvaluation effect
in Chapter 4 and in Chapter 5 we will propose two recommendation systems based on the
comparison of observed market prices with the fair value distributions obtained through
the introduced SDCF method.
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CHAPTER 4

A Cross-Sectional Misvaluation Measure and the Valuation
Factor

We now introduce a measure of misvaluation based on the fair value distribution infor-
mation. Precisely, at firm level, we show that the fair value distribution derived with
SDCF constitutes a reliable predictor of company’s future abnormal returns. At market
level, we show that a long-short valuation (LSV) factor, built using buy-sell recommen-
dations1 based on the fair value distribution, contains information not accessible through
traditional market factors. The LSV factor increases significantly the explanatory and
predictive power of factor models estimated on portfolios and individual stocks returns.

4.1 Firm misvaluation z-score

Let µi
t and σi

t be the empirical mean and standard deviation of the log-fair value
distribution of stock i, obtained from the bootstrapping procedure based on our SDCF
method, at some time t, and let pit be the closing log-price at day t of the same company.
As mispricing indicator of company i at time t we take

zit :=
pit − µit
σit

i ∈ {1, . . . ,N} , (4.1)

that is the log-difference of the company’s expected fair value and its price, divided by the
standard deviation of the log-fair value distribution. In our indicator, the absolute level of
of misvaluation, |pit− µit| = |p

j
t − µ

j
t |, is amplified when the uncertainty associated to the

valuation procedure is less uncertain. Indeed, the uncertainty of the evaluation procedure,
captured by the standard deviation σit, is used to modify the observed difference (in log)
between the market price and the expected present value.

We expect an appropriate mispricing indicator to be related with future market ad-
justments, as prices of undervalued companies growth more than those of overvalued
ones. With this hypothesis, we test the predictability power of our indicator with respect
to observed future price returns.

1In Chapter 5 we will analyze how to build stock recommendation systems more specifically.
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4.1.1 Analysis on the cross-section of individual stock returns

First, we assess whether the individual mispricing indicator zit possesses significant
predictability power for the one-quarter ahead excess return when used to augment factor
models.

To this end, we perform panel fixed-effects regressions where all the cross-section of
stocks excess returns are regressed on the z-scores and a set of control variables. For each
month t, let REX

i,t be the monthly excess return of the firm i over the risk-free rate RF ,t,
we consider the following model:

REX
i,t = αi + βMi (RM ,t −RF ,t) + βSMB

i SMBt + βHML
i HMLt

+ γ1 z
i
t−3 + γ2R

i
t−1 + γ3R

i
t−12,t−2 + γ4 log(MEit)

+ γ5 log(BM i
t ) + γ6ACC

i
t + γ7AG

i
t + γ8DE

i
t + ei,t , i ∈ {1, . . . ,N},

(4.2)

where RM ,t−RF ,t, SMBt and HMLt are respectively the market factor, the size factor
and the book-to-market factor of Fama-French three factor model; zit−3 is the z-score of
the firm i computed averaging the daily z-scores in the previous quarter; Rt−1, Rt−12,t−2

are the past one-month return and the return from month t− 12 to t− 2; ME is the mar-
ket equity; BM is the book-to-market ratio; ACC are the operating accruals; AG is the
asset growth; DE is the leverage ratio and ei,t an idiosyncratic error term. Results are re-
ported in Table 4.1 for seven different models with an increasing number of controls. The
estimated γ’s, i.e., the common effect of the mispricing score, are statistically significant
and with a negative sign, irrespective of the number and type of control variables consid-
ered. In other terms, undervalued (resp. overvalued) stocks are, on average, consistently
characterized by higher (resp. lower) future excess returns. This observation confirms
the idea that our z-score represents a measure of misvaluation which is reabsorbed by the
market over time, while price gradually converges to the company’s fundamental value.
Notice that each explanatory variable in (4.2) is cross-sectional normalized to have mean
0 and standard deviation 1. With some precautions due to to possible cross-correlation
effects which might be neglected, this allows for a direct comparison of the regression
coefficients. The picture that emerges from Table 4.1 is that, among all the considered
regressors, the three main effects which seem to be more persistent are those of the
z-score, the past one-month return and the book-to-market ratio.

4.1.2 Analysis at portfolio level

To further validate the capability of the z-score indicator to anticipate future market
performances, we sort stocks into quantiles based on the z-score empirical distribution
function at the beginning of each semester and then construct “Buy”, “Hold” and “Sell”
portfolios according to this quantile-based splitting. Specifically, let ρ(α) be the quantile
function at level α of the empirical distribution of the z-scores zi, i ∈ {1, . . . ,N}. If
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Table 4.1 Results for the monthly fixed-effect time series regressions in (4.2). Coefficients
resulting to be significant at 10%, 5%, 1% and 0.1% level are marked with ‘◦’, ‘∗’, ‘∗∗’
and ‘∗ ∗ ∗’ respectively. T-ratio based on HAC robust standard errors are reported in
parentheses. All the control variables are provided by the Eikon database The sample
period is April, 2009 to June, 2018. The regressors are (cross-sectional) centered to have
mean 0 and (cross-sectional) scaled to have standard deviation 1.

(1) (2) (3) (4) (5) (6) (7)

z-score -0.280 *** -0.331 *** -0.500 *** -0.485 *** -0.503 *** -0.475 *** -0.473 ***
[-3.318] [-3.892] [-6.134] [-5.979] [-6.159] [-5.836] [-5.797]

Rt−1 -0.460 *** -0.500 *** -0.524 *** -0.500 *** -0.519 *** -0.518 ***
[-3.539] [-3.849] [-4.006] [-3.849] [-3.915] [-3.910]

Rt−12,t−2 -0.184 -0.200 -0.199 -0.200 -0.212 -0.207
[-1.368] [-1.486] [-1.470] [-1.488] [-1.554] [-1.518]

log(ME) -0.693 * -0.730 * -0.670 * -0.764 ** -0.784 **
[-2.523] [-2.544] [-2.438] [-2.854] [-2.777]

log(BM ) 1.174 *** 1.157 *** 1.163 *** 1.198 *** 1.207 ***
[8.853] [8.802] [8.743] [8.232] [8.269]

ACC 0.176 0.203
[1.248] [1.444]

AG -0.032 -0.027
[-0.592] [-0.506]

DE -0.126 ** -0.129 **
[-3.028] [-3.112]

Adj. R2(%) 34.157 34.586 34.897 35.177 34.894 35.464 35.350
No. obs. 15540 15540 15429 15207 15429 14652 14541

zi < ρ(0.4) firm i is assigned to the Buy portfolio, if zi ≥ ρ(0.6) firm i is assigned to the
Sell portfolio and if ρ(0.4) < zi < ρ(0.6) it is assigned to the Hold portfolio. Notice that
the Buy and Sell portfolios contain the same number of firms, while the Hold portfolios
contains half that number of firms. For each portfolio we compute the equally weighted
daily return and we compare its performance with the Our universe portfolio, defined as
the equally weighted portfolio of all the stocks in our universe. Results are reported in
Table 4.2. The Sharpe (Sharpe, 1994) and the Sortino (Sortino and Price, 1994) ratios
associated with the Buy portfolio are 1.43 and 1.87 respectively, which are higher than
those of the Sell, Hold and Our universe portfolios. The same conclusions hold for the
average annual return. Using the test discussed in Ledoit and Wolf (2008) and Ardia
and Boudt (2018), we found a significant difference between the Sharpe ratios of the
Buy and the Our universe portfolios, with a t-Statistic of 2.98 and a p-value of 3e− 03.
This cross-sectional investigation confirms the explanatory power of our misvaluation
measure, as portfolios built using undervalued firms perform better than portfolios made
of overvalued firms or made of all the firms in our reference universe.

In summary, the statistical analysis performed in this section reveal the capability
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Table 4.2 Descriptive Statistics of Portfolios based on the z-scores measure. For each
columns is reported the average number of firms, the average percentage of market cap-
italization respect to the our universe, the average annual log return, the annualized
Sharpe and Sortino ratio, respectively.

Sell Hold Buy Our Universe
Avg. Number of Firms 56 28 56 140
Avg. Market Cap. (%) 34 16 50 100
Avg. Annual Return(%) 17.63 18.07 20.83 19.04
Sharpe Ratio 1.05 1.15 1.43 1.24
Sortino Ratio 1.36 1.48 1.87 1.59

of our misvaluation indicator of explaining a significant portion of the company future
excess returns. A relevant question as this point in to understand how much of its
predictive power our indicator retains when confronted with other possible sources of
excess returns, as identified by the literature. We need to investigate if, and to what
extent, the information revealed by our indicator represents a genuinely new contribution
to the analysis of market dynamics which is not already contained in other variables
the literature advanced as possible explanatory factors of stocks performances. This
investigation is the focus of the next Section.

4.2 The valuation factor

To asses the predictive power of our misvaluation indicator with respect to future
stocks performances we revert to the most traditional factor model analysis. We define
a misvaluation factor LSV (Long Short Valuation) whose value at each day t is given
by the difference between the equal-weighted return of a portfolio that goes long on
the undervalued stocks and short on the overvalued ones. Therefore, the LSV factor is
computed as the difference between the Buy and Sell portfolios discussed in Section 4.1.2.
Over the sample period April 1, 2009 to September 28, 2018, this factor earns a mildly
significantly positive average return of 2.7% (t-Statistic = 1.49 and p-value = 0.14) and
has an annual Sharpe ratio of 0.48.

In the next section we compare LSV with other commonly considered factors affecting
stocks return, namely the market factor, defined as the difference between the market
return RM and the risk-free interest rate RF , the size factor (SMB), the book-to-market
factor (HML), the momentum factor (MOM ), the profitability (robust minus weak) factor
(RMW ) and the investment factor (CMA). See Fama and French (2015) and Carhart
(1997) for a discussion on how these factor are built. In addition, we will investigate
the relation of the LSV with the UMO factor, recently proposed in Hirshleifer and Jiang
(2010) as a possible way of capturing the presence of a persistent, long-term, company
misvaluation.
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Table 4.3 Pearson correlation between the misvaluation factor LSV and other market
factors. RM −RF is the market factor, SMB the size factor , HML the book-to-market
factor , MOM the momentum factor, RMW the profitability factor and CMA the invest-
ment factor and UMO is the financing-based misvaluation factor of Hirshleifer and Jiang
(2010). The sample size is 2392 (reduced to 1953 for the UMO factro).

LSV RM −RF SMB HML MOM RMW CMA UMO

LSV - -0.405 -0.338 -0.035 -0.226 0.229 0.042 0.094
RM −RF - 0.386 0.230 -0.120 -0.461 -0.038 -0.263
SMB - 0.103 -0.099 -0.358 0.025 -0.320
HML - -0.421 -0.298 0.477 0.149
MOM - 0.092 -0.069 0.039
RMW - -0.050 0.461
CMA - 0.288
UMO -

In Section 4.2.2 we will use the LSV to augment standard factor models and explore
its relative merits using the Fama-MacBeth regression framework (Fama and French,
1992, Fama and MacBeth, 1973).

4.2.1 Comparing LSV with other market factors

We start with a simple bivariate analysis. Table 4.3 reports the Pearson correlation
coefficient between LSV and the other considered factors over the sample period com-
puted using daily returns. Our factor clearly shares some information content with the
RM −RF , SMB, MOM and RMW factors. Conversely, its correlation with the UMO
factor, over the entire period of analysis, does not seem significant. A visual inspection
of the scatter plots, reported in Figure 4.1, confirms the apparent lack of correlation
between LSV and UMO and a strong correlation of LSV with both RM −RF and SMB.
At this stage, the correlation with MOM seems instead due to few extreme observations
(like the one with RMW, which is not reported for brevity).

The orthogonality of the UMO and LSV factors, emerging from Table 4.3 and con-
firmed in Figure 4.1, seems peculiar due to their shared claim of capturing the presence
of market misvaluation. To qualify this finding, it is useful to compare the time profile of
the two factors. In Figure 4.2 we plot the daily absolute value of the logarithmic return of
the UMO and LSV factor rescaled by their mean and standard deviation. The absolute
variation of the factor can be interpreted as a measure of its contribution in explaining
market dynamics (Chang et al., 2013). As can be seen, the UMO factor identifies a high
value of market misvaluation in the period between 2015 and 2016 while, according to
the LSV factor, it is the window between 2010 and 2011 that display the most misvalued
market prices. The two misvaluation factors are in some sense complementary and they
seem to capture different phenomena. In fact, the presence of this difference in the time



80 4. A Cross-Sectional Misvaluation Measure and the Valuation Factor

−2 0 2

LSVt

−6

−4

−2

0

2

4

R
M
t
−
R
F
t

−2 0 2

LSVt

−2

−1

0

1

2

3

S
M
B
t

−2 0 2

LSVt

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

M
O
M

t

−2 0 2

LSVt

−3

−2

−1

0

1

2

3

U
M
O
t

Fig. 4.1 Scatter plot between LSVt and a selection of other factors.

structure of the two factors is not surprising if one looks at their definitions. The UMO
factor is market-oriented and is based on stocks classification that looks to market opera-
tions (equity and debt offerings and buy-backs) in the previous two years, see Hirshleifer
and Jiang (2010) for further details. Conversely, the LSV factor, based on the cross-
section misvaluation indicators derived by the SDCF method, is more oriented toward
company’s operating performances and it is built starting from individual balance sheet
data and revenues forecast. In the eve of the 2008 financial crisis, the scope of market
operations was dramatically reduced, and the variability of the UMO factor consequently
reduced. At the same time, the liquidity crises, especially in some sectors, induced sig-
nificant misvaluation, whence the higher observed turbulence of the LSV factor in the
years 2009-2010.

Next we move to a multivariate analysis regressing the LSV over the other considered
factors. Consider the general model

LSVt =β0 + βM(RM ,t −RF ,t) + βSMBSMBt + βHMLHMLt + βMOMMOMt

+βRMWRMWt + βCMACMAt + βUMOUMOt + et,
(4.3)

where et is a zero-mean residual. The regressions results, in various model configurations,
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Fig. 4.2 Daily absolute value of the logarithmic return of the UMO and LSV factor
rescaled by their mean and standard deviation. The dark solid lines are the moving
averages over the past 20 days.

are displayed in Table 4.4. Both the value of the intercept, significantly different from
zero at any conventional level in any setting, and the relatively small adjusted R2, which
is merely between 0.20 and 0.30 in all models, suggest that the LSV factor captures
yet another anomaly which is hardly explained by well-accepted risk factors. The multi-
variate analysis confirms the correlation of LSV with the market, SMB and MOM factors.
Conversely, RMW, HML and CMA results orthogonal to LSV. Notice that, when the
interaction of different factors is taken into account, the correlation between LSV and
UMO results negative and statistically significant at any conventional level. This is a
further evidence of the different nature of the two factors.

4.2.2 The LSV beta and the Cross-Section of Portfolio (Abnormal) Returns

We now turn to our primary task in this section, testing, through factor model analy-
sis, how well LSV explains average abnormal returns on the cross-section of portfolios. As
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Table 4.4 Summary of the daily regressions of LSV on the factors RM −RF , SMB,
HML, MOM , RMW , CMA and UMO. T-ratio based on HAC robust standard errors
are reported in parentheses. Coefficients resulting to be significant at 10%, 5%, 1% and
0.1% level are marked with ‘◦’, ‘∗’, ‘∗∗’ and ‘∗ ∗ ∗’ respectively. The sample is from April
1, 2009 to September 28, 2018. When UMO factor is considered the data sample is from
April 1, 2009 to December 30, 2016.

(1) (2) (3) (4) (5) (6) (7)

Intercept 0.021 ** 0.020 ** 0.021 ** 0.021 ** 0.020 ** 0.025 *** 0.022 **
[3.160] [3.269] [3.115] [3.168] [3.242] [3.303] [3.240]

RM −RF -0.125 *** -0.122 *** -0.122 *** -0.126 *** -0.117 *** -0.132 *** -0.120 ***
[-8.286] [-10.043] [-7.843] [-8.087] [-9.316] [-9.040] [-9.082]

SMB -0.141 *** -0.155 *** -0.137 *** -0.141 *** -0.156 *** -0.178 *** -0.187 ***
[-6.716] [-8.927] [-6.572] [-6.795] [-8.941] [-7.912] [-9.604]

HML 0.059 * -0.025 0.062 * 0.063 ◦ -0.042 0.075 ** -0.020
[2.376] [-1.213] [2.368] [1.955] [-1.636] [2.704] [-0.602]

MOM -0.135 *** -0.138 *** -0.134 ***
[-7.935] [-8.045] [-7.380]

RMW 0.026 0.005 0.070 ◦
[0.933] [0.214] [1.934]

CMA -0.015 0.056 0.058
[-0.303] [1.462] [1.274]

UMO -0.069 *** -0.072 ***
[-3.656] [-3.679]

Adj. R2(%) 20.912 28.561 20.928 20.890 28.655 23.661 31.192
No. obs. 2392 2392 2392 2392 2392 1953 1953

observed by Hirshleifer and Jiang (2010) for the UMO factors, we expect to obtain more
stable loadings on portfolios that are formed based on possible measures of mispricing.
Therefore, we select the Fama-French 25 portfolios formed on size and book-to-market
and we examine the effect of LSV factor and other market factors by computing the
average premium using Fama-MacBeth regression framework, see, e.g., Fama and Mac-
Beth (1973), Fama and French (1992). A positive relation between abnormal returns and
factor loadings suggests the existence of a systematic stock misvaluation positively cap-
tured by the LSV factor. In other terms, a positive (negative) loading on LSV indicates
a systematic undervaluation (overvaluation) (Chang et al., 2013, Hirshleifer and Jiang,
2010).

We want to analyze both the explanatory and predictive power of LSV loadings on
the cross-section of portfolios abnormal returns and therefore we investigate this relation
in an in-sample and out-of-sample setting,2. Table 4.5 exhibits in-sample Fama-MacBeth

2We also perform the following analysis using directly the portfolios excess returns. We find similar
results for the in-sample setting, which are reported in Appendix B, even if the statistics are slightly
deteriorated, while for the out-of sample case we did not find a sufficient statistical evidence for all factors
premia and they are available upon request.
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Table 4.5 Fama-MacBeth monthly regressions on the cross-section of portfolio abnormal
returns. The dependent variables are the monthly abnormal returns of 25 portfolios based
on size and book-to-market, which are computed using Fama and French three-factor
model on equally-weighted excess returns of portfolios. The independent variables are
the loadings on the factors LSV , LSV ⊥ RM −RF , SMB, HML, MOM , RMW , CMA
and UMO. T-ratio based on robust standard errors to HAC are reported in parentheses.
Coefficients resulting to be significant at 10%, 5%, 1% and 0.1% level are marked with
‘◦’, ‘∗’, ‘∗∗’ and ‘∗ ∗ ∗’ respectively. The sample is from April 2009 to September 2018.
When UMO factor is considered the data sample is from April 2009 to December 2016.

(1) (2) (3) (4) (5) (6) (7)

Intercept 0.330 1.132 * 1.765 *** 1.838 *** 1.863 *** 2.228 *** 2.241 ***
[1.510] [2.683] [5.035] [5.385] [4.862] [6.262] [6.270]

LSV 0.313 0.492 * 0.747 ** 0.762 **
[1.608] [2.273] [3.346] [3.729]

LSV ⊥ 0.543 *
[2.812]

RM −RF -1.015 * -1.812 *** -1.750 *** -1.897 *** -2.180 *** -2.193 ***
[-2.618] [-5.435] [-5.362] [-5.081] [-6.466] [-6.479]

SMB -0.153 -0.062 -0.001 -0.033 -0.037 -0.036
[-1.331] [-0.704] [-0.014] [-0.333] [-0.441] [-0.424]

HML 0.136 -0.001 -0.026 0.056 -0.002 -0.001
[1.221] [-0.009] [-0.274] [0.543] [-0.018] [-0.006]

MOM -0.536 -0.618 -0.449 -0.446
[-1.135] [-1.246] [-1.046] [-1.037]

RMW 0.808 *** 0.568 ** 0.611 *** 0.606 ***
[5.427] [3.281] [4.091] [4.069]

CMA -0.640 ** -0.345 -0.355 * -0.353 ◦
[-3.096] [-1.593] [-1.911] [-1.904]

UMO 1.423 *** 1.104 *** 1.315 *** 1.319 ***
[6.397] [4.537] [5.895] [5.903]

Adj. R2(%) 6.203 25.957 65.719 65.219 63.382 73.090 73.116

results based on monthly abnormal return, computed using the Fama and French three-
factor model, of the 25 size-BM portfolios. In addition to the LSV, we consider the
five traditional Fama and French, the momentum and the UMO factors as potential
confounding explanatory variables. The results of the in-sample analysis are reported in
Table 4.5. As expected, from the nature of the considered portfolios, the SMB and HML
factors are constantly not-significant. The monthly average premium of the LSV factor
is always positive and significantly different from zero when all factors are considered,
see Columns (3) - (6). Remarkably, this remains true also for the model in Column (7),
where we consider an orthogonalized misvaluation factor, LSV ⊥, defined as the sum of the
intercept and residuals extracted from the regression in (4.3), i.e., LSV ⊥ := β0 + et. By
construction, the orthogonalized misvaluation factor has zero correlation with the Fama-
French, MOM and UMO factors. Notice that the loadings of the UMO are concordant
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Table 4.6 Out of sample Fama-MacBeth daily regressions on the cross-section of portfolio
abnormal returns. The dependent variables are the abnormal returns of 25 portfolios
based on size and book-to-market, which are computed using Fama and French three-
factor model on equally-weighted excess returns of portfolios. The independent variables
are the loadings on the factors LSV , LSV ⊥ RM −RF , SMB, HML, MOM , RMW ,
CMA and UMO. The time-series averages of the cross-sectional regression coefficients
are reported. The Avg. R2’s are the time series averages of the adjusted R2 across the
full sample period. T-ratio based on robust standard errors to HAC are reported in
parentheses. Coefficients resulting to be significant at 10%, 5%, 1% and 0.1% level are
marked with ‘◦’, ‘∗’, ‘∗∗’ and ‘∗ ∗ ∗’ respectively. The sample is from April 1, 2009 to
September 28, 2018. When UMO factor is considered the data sample is from April 1,
2009 to December 30, 2016.

(1) (2) (3) (4) (5) (6) (7)

Intercept 0.027 ** 0.083 *** 0.077 *** 0.094 *** 0.084 *** 0.079 *** 0.079 ***
[2.968] [4.446] [4.440] [4.603] [4.217] [3.916] [3.916]

LSV 0.011 ◦ 0.017 ◦ 0.014 0.028 *
[1.857] [1.711] [1.481] [2.537]

LSV ⊥ 0.016
[1.394]

RM −RF -0.080 *** -0.078 *** -0.091 *** -0.085 *** -0.080 *** -0.080 ***
[-4.350] [-4.487] [-4.436] [-4.159] [-3.903] [-3.903]

SMB -0.001 0.004 -0.001 0.004 0.004 0.004
[-0.317] [1.317] [-0.204] [0.832] [0.982] [0.982]

HML 0.005 0.001 0.003 0.006 0.003 0.003
[1.256] [0.364] [0.581] [1.262] [0.744] [0.744]

MOM -0.014 -0.020 -0.019 -0.019
[-0.779] [-1.059] [-0.920] [-0.920]

RMW 0.014 ◦ 0.010 0.012 0.012
[1.938] [1.108] [1.190] [1.190]

CMA 0.011 0.021 * 0.024 ** 0.024 **
[1.437] [2.279] [2.667] [2.667]

UMO 0.023 * 0.024 ◦ 0.026 ◦ 0.026 ◦
[2.118] [1.820] [1.885] [1.885]

Avg. R2(%) 4.807 16.568 29.480 28.953 32.993 34.273 34.273

with the loadings of the LSV and LSV ⊥ factors. The asset “misvaluation” the two
factors are built to capture, while different in nature, is still consistent in predicting
higher (lower) returns for undervalued (overvalues) stocks.

Then we move to an out-of-sample analysis using a 60 days rolling window updated
every 30 days: for each portfolio at each date, the loadings on the considered factors are
estimated from a time-series regression using daily excess returns over the previous 60
days. Then, the future abnormal returns of each portfolio are computed by regressing
the equally-weighted excess returns on the Fama and French three-factor model over the
following 30 days. The estimated abnormal returns and factor loadings are then used
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as dependent and independent variables, respectively, in the cross-sectional regressions.
Table 4.6 reports the average premia of the out-of-sample analysis and the related statis-
tics. The market factor of Fama and French is the only factor which possess a strongly
significant premium for all model specifications. However, we find that the LSV premium
is always positive and it results significant when all other factor are considered, column
(6).

4.2.3 The LSV beta and the Cross-Section of Individual Stock Returns

As highlighted by Hirshleifer and Jiang (2010) and Chang et al. (2013) factor loadings
on individual stocks tends to be unstable. Therefore, the analysis of a possible relation
between LSV loadings on individual stocks can be “challenging”, Hirshleifer and Jiang
(2010). We follow their approach to test for stability, but in contrast to them, we examine
the LSV ⊥ loadings (instead of those of LSV ) in order to study the unique information
contained in the LSV factor, since it is obtained by removing all possible collinear infor-
mation of all other market factors. We estimate LSV ⊥ betas from daily excess returns
using the following model over 100 days for each firm i of the S&P500:

Ri,t −RF ,t = αi + βMi (RM ,t −RF ,t) + βSMB
i SMBt + βHML

i HMLt+

+ βUMO
i UMOt + βLSVi LSV ⊥t .

(4.4)

We then use deciles based on βLSV to sort firms and for each decile we evaluate the perfor-
mance on the succeeding 30 days. Table 4.7 reports the annual average equally-weighted
decile returns together with the related abnormal returns computed using CAPM , Fama
and French three-factor model and Carhart four-factor model where each model is aug-
mented with UMO factor, respectively.

We also report the corresponding performance of the returns of all equally-weighted
stocks, i.e., when there is no sorting, which is used as benchmark. We denote this class as
All. We observe that decile returns tend to increase with the ranking based on βLSV . In
particular, the statistical significance seems to be an increasing function of decile ranking
class, which suggests that the high ranking classes are less volatile and then with a more
robust performance, e.g., the Higher (H) and Lower (L) classes have a annual returns
equal to 15.796% (t-stat =2.583) and 14.615% (t-stat =1.798), respectively3. This is
more evident when we consider the corresponding abnormal returns. Indeed, only the
high three classes earn a statistically positive abnormal return, which are also greater
than the benchmark abnormal return of all equally-weighted stocks, e.g., the annual
percentage abnormal return computed using Carhart four-factor model augmented with

3Even if, some lower classes earn average returns which seem to be greater than that of the corre-
sponding higher classes, by performing a one-way ANOVA we find no statistical evidence (F-stat=0.02)
among average returns, which points out how the difference between the deciles is in terms of more
robust performance, i.e., more robust t-statistics.
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Table 4.7 Performance of deciles based on LSV ⊥ loadings. This table reports the average
percentage annual equally-weighted returns and the corresponding average percentage
annual abnormal returns for each decile based on the LSV ⊥. The loadings are computed
over 100 days and firms are sorted in deciles for the next 30 days. The post-ranking
βLSVpost loadings are estimated using all the full sample decile returns. Abnormal returns
are computed using CAPM model, Fama and French three-factor model and Carhart
four-factor model augmented with UMO factor, respectively. The H-L row corresponds
to a portfolio which is long on the higher (H) ranking and short to the lower (L) one based
on βLSVpre loadings. The last row (All) is the performance when all deciles are merged.
T-ratio based on robust standard errors to HAC are reported in parentheses. Coefficients
resulting to be significant at 10%, 5%, 1% and 0.1% level are marked with ‘◦’, ‘∗’, ‘∗∗’
and ‘∗ ∗ ∗’ respectively. The data sample is constituted by the S&P500 firms (at April
2009) and start from April 1, 2009 to 30 December 2016.

βLSVpre Ret βLSVpost αCAPM+UMO αFF3+UMO αFF3+MOM+UMO

L -1.436 14.615 ◦ -0.666 -0.698 -0.643 -0.562
[1.798] [-0.253] [-0.247] [-0.216]

2 -0.759 17.296 * -0.406 2.166 2.284 2.310
[2.377] [1.158] [1.290] [1.299]

3 -0.475 15.578 * -0.252 0.743 0.845 0.869
[2.289] [0.507] [0.570] [0.585]

4 -0.268 14.332 * -0.086 0.296 0.223 0.211
[2.251] [0.207] [0.157] [0.148]

5 -0.100 14.769 * -0.030 0.938 1.022 1.027
[2.425] [0.692] [0.763] [0.769]

6 0.053 15.443 ** 0.021 2.316 2.331 2.315
[2.643] [1.625] [1.624] [1.618]

7 0.209 14.352 * 0.066 1.456 1.436 1.401
[2.567] [1.078] [1.059] [1.039]

8 0.380 15.378 ** 0.122 2.876 ◦ 2.884 ◦ 2.840 ◦
[2.852] [1.862] [1.857] [1.848]

9 0.601 15.679 ** 0.206 3.850 * 3.861 * 3.791 *
[2.940] [2.044] [2.043] [2.017]

H 1.155 15.796 ** 0.412 4.246 ◦ 4.436 ◦ 4.493 ◦
[2.583] [1.656] [1.682] [1.693]

H-L 2.591 1.181 1.082 6.605 ◦ 6.738 ◦ 6.715 ◦
[0.256] [1.653] [1.648] [1.697]

All -0.062 15.327 * -0.061 1.708 * 1.757 * 1.758 *
[2.511] [2.104] [2.242] [2.215]

UMO is 4.493% and 1.758% for H and All classes, respectively. Moreover, we observe
that abnormal returns remain stable and statistically significant among the CAPM ,
Fama and French three-factor and Carhart four-factor model (augmented with UMO).
In Table 4.7 it is also reported, for each decile, the post ranking LSV ⊥ loadings, which
are computed using the same model (4.4) over the full sample decile returns. We denote
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as βLSVpre and βLSVpost the initial and post ranking LSV ⊥ loadings, respectively. The βLSVpost

loadings increase with the corresponding βLSVpre , which suggests that there is a persistence
among the LSV ⊥ loadings over a 30 days window. Furthermore, in Table 4.8 we also
replicate the previous analysis excluding the firms of our Universe, which are employed
for the construction of the LSV factor, and we observe similar results which confirms the
significant role of LSV loadings on individual stocks returns.

In conclusion, the analyses of this Chapter reveal the presence of relevant information
captured by the LSV factor which is complementary with respect to the information
made available by other market factors. This is more evident at firm level than in the
portfolio aggregate, even if we find a significant positive explanatory relation between
LSV loadings and portfolio abnormal returns. These results confirm the relevance of
the misvaluation indicator derived via the SDCF method starting from individual firm
balance sheet data, both as a genuinely new explanatory variable of contemporaneous
price movements, and as a potential predictor of future market performances.
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Table 4.8 Performance of deciles based on LSV ⊥ loadings when “Our universe” of stocks
is excluded. This table reports the average percentage annual equally-weighted returns
and the corresponding average percentage annual abnormal returns for each decile based
on the LSV ⊥. The loadings are computed over 100 days and firms are sorted in deciles
for the next 30 days. The post-ranking βLSVpost loadings are estimated using all the full
sample decile returns. Abnormal returns are computed using CAPM model, Fama and
French three-factor model and Carhart four-factor model augmented with UMO factor,
respectively. The H-L row corresponds to a portfolio which is long on the higher (H)
ranking and short to the lower (L) one based on βLSVpre loadings. The last row (All) is
the performance when all deciles are merged. T-ratio based on robust standard errors to
HAC are reported in parentheses. Coefficients resulting to be significant at 10%, 5%, 1%
and 0.1% level are marked with ‘◦’, ‘∗’, ‘∗∗’ and ‘∗ ∗ ∗’ respectively. The data sample is
constituted by the S&P500 firms (at April 2009), when all firms employed for the LSV
construction are removed, and start from April 1, 2009 to 30 December 2016.

βLSVpre Ret βLSVpost αCAPM+UMO αFF3+UMO αFF3+MOM+UMO

L -1.388 16.204 ◦ -0.564 1.161 1.380 1.480
[1.948] [0.373] [0.467] [0.502]

2 -0.721 17.770 * -0.310 2.563 2.896 2.935
[2.403] [1.201] [1.449] [1.461]

3 -0.448 15.168 * -0.164 0.362 0.663 0.678
[2.186] [0.200] [0.373] [0.378]

4 -0.252 14.270 * -0.059 0.186 0.271 0.254
[2.195] [0.109] [0.159] [0.149]

5 -0.089 15.724 * -0.019 1.871 2.043 2.035
[2.498] [1.219] [1.344] [1.339]

6 0.055 14.026 * 0.014 0.760 1.024 0.996
[2.313] [0.442] [0.598] [0.583]

7 0.204 14.267 * 0.044 1.117 1.212 1.166
[2.499] [0.697] [0.754] [0.732]

8 0.373 14.061 * 0.071 1.417 1.567 1.506
[2.484] [0.756] [0.827] [0.804]

9 0.595 16.743 ** 0.150 4.705 * 4.904 * 4.817 *
[3.002] [2.170] [2.256] [2.236]

H 1.112 17.703 ** 0.277 5.985 * 6.105 * 6.116 *
[2.727] [2.073] [2.075] [2.072]

H-L 2.499 1.499 0.845 6.463 6.363 6.274
[0.312] [1.520] [1.506] [1.491]

All -0.056 15.593 * -0.056 1.870 ◦ 2.064 * 2.056 *
[2.488] [1.913] [2.207] [2.184]



Appendix B

In-sample analysis of LSV beta and excess returns

In Table B.1 we report the in-sample results on the cros-section of portfolio returns,
discussed in Section 4.2.2, to test the explanatory power on the excess returns. The ana-
logues columns of (1) and (2) of Table 4.5 are omitted since all premia are not significant
for all factors.
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Table B.1 Fama-MacBeth monthly regressions on the cross-section of portfolio returns.
The dependent variables are the monthly excess returns of 25 portfolios based on size
and book-to-market. The independent variables are the loadings on the factors LSV ,
LSV ⊥ RM − RF , SMB, HML, MOM , RMW , CMA and UMO. T-ratio based on
robust standard errors to HAC are reported in parentheses. Coefficients resulting to
be significant at 10%, 5%, 1% and 0.1% level are marked with ‘◦’, ‘∗’, ‘∗∗’ and ‘∗ ∗ ∗’
respectively. The sample is from April 2009 to September 2018. When UMO factor is
considered the data sample is from April 2009 to December 2016.

(1) (2) (3) (4) (5)
Intercept 1.765 *** 1.700 *** 1.806 *** 2.136 *** 2.150 ***

[5.035] [4.916] [4.882] [6.055] [6.076]
LSV 0.280 0.491 * 0.506 *

[1.295] [2.168] [2.499]
LSV ⊥ 0.417 *

[2.180]
MKT -0.430 -0.280 -0.510 -0.765 * -0.779 *

[-1.289] [-0.847] [-1.414] [-2.289] [-2.325]
SMB 0.106 0.190 ◦ 0.155 0.151 ◦ 0.152 ◦

[1.202] [1.968] [1.631] [1.804] [1.824]
HML -0.060 -0.082 0.003 -0.049 -0.048

[-0.642] [-0.855] [0.034] [-0.540] [-0.534]
MOM -0.834 ◦ -0.954 -0.802 ◦ -0.798 ◦

[-1.768] [-1.993] [-1.883] [-1.877]
RMW 0.665 *** 0.341 0.380 * 0.376 *

[4.466] [2.040] [2.565] [2.548]
CMA -0.701 ** -0.419 -0.427 * -0.426 *

[-3.389] [-2.003] [-2.322] [-2.320]
UMO 0.918 *** 0.654 * 0.844 ** 0.849 **

[4.071] [2.783] [3.819] [3.840]

Adj. R2(%) 50.216 41.510 44.131 56.689 56.894



CHAPTER 5

Stock Recommendations from Stochastic Discounted Cash
Flows

We present two stock recommendation systems based on stochastic characterization of
the firm present value. The single-stock quantile recommendation system compares the
market price of a company’s stocks with the estimated distribution of the company’s
fair value to obtain an individual measure of mispricing, while the cross-sectional quan-
tile system builds a relative measure of mispricing using the fair-value distribution of all
firms. Both systems use mispricing information to build sell side and buy side portfolios.
Statistical tests show that these portfolios consistently deliver significant excess returns
even when rebalancing costs are accounted for. Moreover, we show how analysts’ indica-
tions can be improved by using the first two moments of their recommendations following
the same procedure of the cross-sectional quantile system.

5.1 Recommendations from fair-value distributions

The fair value distribution defined in the Chapter 3 can be straightforwardly used
to obtain portfolio recommendations for company stocks. The basic idea is to use the
valuation model to identify mispriced companies. Under the hypothesis that mispriced
companies will revert to their correct price, undervalued firms represent prospective buys
and overvalued firms represent prospective sells. Following standard practice, stocks are
classified as strong buy (SB), buy (B), hold (H), sell (S) and strong sell (SS).

5.1.1 Single-Stock Quantile recommendations system

Let FV i
t be the distribution function of the fair value of company i at time t and

P it be its market price. The quantity qit = FV i
t (P

i
t ) represents the probability that the

company’s fair value is less than or equal to the observed price. In general, if qit is near
0.5, the market price is near the median of the fair value distribution and we can conclude
that, the company is fairly priced. However, if the value assigned by our valuation model
to the company is higher (lower) than the market price, then the company is undervalued
(overvalued) and qit is close to zero (one). Based on this consideration, the classification
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of stocks is performed in the following way1:

• if qit < 0.125, the company i is classified SB;

• if 0.125 ≤ qit < 0.25 it is classified B;

• if 0.25 ≤ qit < 0.75 it is classified H;

• if 0.75 ≤ qit < 1 it is classified S;

• and SS if 1 ≤ qit.

This classification system, denoted as Single-Stock Quantile (SSQ), has the advantage
of using all the information provided by the distribution of the company’s fair value.
The recommendation for each firm is obtained using only its own fair value distribution,
without referring to the valuation of other firms. Thus, it is possible that some of the
recommendation buckets remain empty; for example, that no stock is labeled SB or SS.

5.1.2 Cross-Sectional Quantile recommendations system

A second approach is to use the fair value distribution of all firms at the same time.
For this, we introduce a second recommendation system based on the definition of the
company specific mispricing indicator z-score introduced in Section 4.1. Now, consider
the empirical distribution function of all mispricing indicators zit, ∀i = 1, . . . ,N and let
ρt(α) be its α-quantile:

• The sock of company i is classified SB if zit < ρt(0.1);

• B, if ρt(0.1) ≤ zit < ρt(0.4);

• H, if ρt(0.4) ≤ zit < ρt(0.6)

• S, if ρt(0.6) ≤ zit < ρt(0.9);

• and SS if ρt(0.9) ≤ zit.

Firms with a misvaluation indicator near the median of the empirical distribution of all
indicators are assigned to the hold class. Firms with a high mispricing with respect to
the median are assigned to the sell class and become a strong sell if they are in the top
decile. Conversely, firms with a low misvaluation with respect to the median are a buy
and a strong buy if they are in the bottom decile. We term this system Cross-Sectional
Quantile (CSQ). The advantage of this system is that an overall shift in market prices
that has no effect on the relative rankings of different companies has no effect on their

1The class assignment is broadly in line with the values adopted by the Morningstarr equity research
methodology, see MorningstarEquityResearchMethodology.pdf for further details.

https://s21.q4cdn.com/198919461/files/doc_downloads/governance_documents/MorningstarEquityResearch_Methodology-(2).pdf
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classification. This system is also insensitive to the presence of a common bias affecting
the valuation procedure of different companies.

To test the performance of the SSQ and CSQ systems, we consider 19 non-overlapping
periods of six months, from FQ1 2009 to FQ1 20182. At the beginning of each period, we
classify the firms using both systems. We use the first available closing price for computing
the mispricing indicator. In the case of SSQ, both the number of firms in each class and
the associated market capitalization, with respect to our universe of stocks, can vary
from period to period, while for CSQ, the number of stocks in each class is constant in
all periods. On average, in the SSQ system, the SB class has 31 stocks (28% market
capitalization), B has 25 (18%), H has 62 (40%), S has 18 (11%) and SS has 3 (3%);
while in the CSQ system, SB class has 14 stocks (13% market capitalization), B has 42
(37%), H has 28 (16%), S has 42 (25%) and SS has 14 (9%).

For each recommendation system, we build equally weighted portfolios with all com-
panies in a given rating class at the beginning of each semester and compute the daily
returns of these portfolios Rpt , with p taking values SS,S,H,B,SB, on each day t of the
semester3.

5.2 Performance evaluation

We begin with a simple calculation, over the entire period considered, of the annualized
log-returns (as percentages) for each of our constructed portfolios. In Figure 5.1 they are
compared with the annualized log-returns of a benchmark equally weighted portfolio
that goes long in all the stocks of our universe, labeled Our universe. As can be seen,
undervalued assets tend to grow significantly faster than overvalued ones. For instance,
the annualized log-return of the SB portfolio built following the SSQ system is 22.00%
while that of the SS portfolio is 15.20%. This also holds true if we consider a more
coarse grained classification, merging portfolios in the buy and sell sides. The use of just
two broad classes seems to enhance the performance of the CSQ system. The enhanced
performance of the portfolios obtained with the two recommendation systems is also
confirmed when a measure of risk is included. The Sharpe Ratio (Sharpe, 1994) of the
Buy Side portfolios is 1.43 for the CSQ system and 1.40 for the SSQ system. They are
both significantly higher, according to the Ledoit and Wolf (2008) and Ardia and Boudt
(2018) tests (p-value around 0.003), than the Sharpe Ratio of the Our universe portfolio,
which is 1.24. In turn, the two sell side portfolios have values that are significantly lower

2The period of six months was chosen because it is long enough for the calibration of the cash flow
model to be reliable but short enough to give us a sufficient number of data points to analyze. In any
case, it is broadly consistent with several portfolio strategies discussed in (Li et al., 2019).

3In Barber et al. (2001), market-weighted rather than equally weighted portfolios are considered.
Their choice is consistent with the use of daily rebalancing and the size of their sample. However, the
authors warn about the possibility that using market-weighted returns could bias against finding evidence
of abnormal returns, so we opt for a more conservative choice.
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Fig. 5.1 Annualized log-returns in percentage for each of the constructed portfolio ac-
cording to CSQ and to the SSQ recommendation. Our universe is the return of an
equally-weighted portfolio that goes long in all the stocks of our universe. The sample
period is April 1, 2009 to September 28, 2018.

than the Our Universe portfolio (1.05 for the CSQ system and 0.97 for the SSQ system)4.
Figure 5.2 represents the cumulative sum of daily returns when investing $100 in the Buy
Side, H and Sell Side portfolios constructed with the CSQ (left panel) and SSQ (right
panel) methodologies, compared with the Our universe portfolio.

To obtain a more precise estimate of portfolio performances, we employ an intercept
test using the Fama-French three-factor model (Fama and French, 1993), augmented
with the momentum factor (Carhart, 1997). We estimate the following daily time-series
regression:

Rp,t −RF ,t = αp + βMp (RM ,t −RF ,t)

+ βSMB
p SMBt + βHML

p HMLt + βMOM
p MOMt + ep,t ,

(5.1)

where Rp,t − RF ,t denotes the excess return of the selected portfolio over the risk-free
rate RF ,t for period t, RM ,t is the return of the value-weighted market portfolio, SMBt is
the difference between the daily returns of a value-weighted portfolio of small stocks and
one of large stocks, HMLt is the difference between the daily returns of a value-weighted
portfolio of high book-to-market stocks, MOMt is the momentum factor and ep,t is the
error term. The regression yields parameter estimates of αp, βMp , βSMB

p , βHML
p and

βMOM
p but the relevant parameter here is intercept αp, as it captures the presence of

4 The Sharpe ratio is computed by setting the benchmark return to zero. We compared the portfolios
performances using the Sortino ratio (Sortino and Price, 1994) also, obtaining identical results.
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Fig. 5.2 Cumulative sum of daily returns when investing $100 in the Buy Side, H and
Sell Side portfolio constructed with the CSQ (left panel) and SSQ (right panel) method-
ologies. The grey line is the cumulative sum of daily returns of Our universe. The sample
period is from April 1, 2009 to September 28, 2018.

Table 5.1 Estimated gross annual abnormal returns earned by portfolios constructed
with our CSQ and SSQ systems, and using the analysts’ recommendation from the
I/B/E/S database. The coefficients significant at 10%, 5%, 1% and 0.1% level are marked
with ‘◦’, ‘∗’, ‘∗∗’ and ‘∗ ∗ ∗’ respectively. The SS portfolios in the case of SSQ system and
both the SS and BB portfolios in the case of analysts are empty for a few rebalancing
dates. In such cases, the corresponding returns are set to zero.

αp SS S H B SB Sell Side Buy Side
CSQ 1.5733 0.8190 2.4977 5.7706 *** 7.0838 *** 1.0076 6.0989 ***
SSQ 1.4665 1.2052 2.0189 3.3869 * 7.9444 *** 1.4182 5.8442 ***
Analysts 11.0480 ** 5.0222 ** 2.4576 * 2.1187 1.9982 5.795 *** 2.0579

abnormal returns. The results are reported in Table 5.1. The most highly recommended
stocks (B, SB, and Buy Side) earn positive abnormal gross returns, whereas the least
recommended ones do not. In addition, the abnormal gross excess returns of these port-
folios are greater than that of Our Universe, which has a gross annual excess return of
3.34% with a p-value of 3.16e− 04. These results suggest that investors following our
SDCF based recommendations and building concentrated portfolios could obtain returns
that beat the market.

As a further check, we repeat the same analysis using expert recommendations from
the I/B/E/S database. Let Ait be the average analysts rating for firm i on date t. We
follow Barber et al. (2001) and if 1 ≤ A

i
t ≤ 1.5 we classify company i as SB; if 1.5 < A

i
t ≤ 2
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Table 5.2 This table reports the Sharpe and the Sortino ratios, in parenthesis, for the
H, Sell Side and Buy Side portfolios constructed according to Analysts, Cross-Sectional
Quantile and Single-Stock Quantile. Sharpe and the Sortino ratios for Our universe is
also reported.

Sharpe-ratio (Sortino-ratio) Analysts CSQ SSQ Our universe

Sell Side 1.31 (1.72) 1.05 (1.36) 0.97 (1.28)
H 1.18 (1.52) 1.15 (1.48) 1.11 (1.45)
Buy Side 1.16 (1.51) 1.43 (1.87) 1.40 (1.83) 1.24 (1.59)

Table 5.3 Annualized percentage turnover of the Cross-Sectional Quantile and Single-
Stock Quantile portfolios.

SS S H B SB Sell-Side Buy-Side
CSQ 136.51 158.20 245.24 148.15 142.86 102.38 98.016
SSQ 164.51 236.37 149.70 241.56 167.48 200.81 136.16

as B; if 2 < A
i
t ≤ 2.5 as H ; if 2.5 < A

i
t ≤ 3 as S ; and a SS whenever A

i
t > 3.

The downward shift accounts for the observed over optimistic recommendation scores
provided by experts (see Barber et al. (2001) and the references therein). Using the
expert recommendation system, we build six-month rebalanced portfolios exactly as we
did for our systems and perform the regression in (5.1). The results in Table 5.1 show that
the experts’ Buy Side does not provide significant abnormal returns. In fact, abnormal
returns are observed for the experts’ Sell Side portfolio. Moreover, if the Sharpe and
Sortino ratio of the Sell Side, Hold and Buy Side are considered, it turns out to be more
clear, see Table 5.2, how Analysts does not provide a consistent recommendation system,
i.e., a system where the more profitable portfolios are those with higher recommendations.

The previous calculated returns are the gross of all trading costs. To assess the size
of these costs, we calculate a measure of annual turnover. Let th with h = 1, . . . , 19 be
the rebalancing dates, Np

h be the number of companies in portfolio p at date th and δpi,th
be equal to 1 if company i is in portfolio p at date th and zero otherwise. Turnover at
date th+1 is calculated as

TOp
th+1 :=

∑
i

∣∣∣∣∣∣δ
p
i,th
Np
h

−
δpi,th+1

Np
h+1

∣∣∣∣∣∣
where the sum is for all companies composing our universe. Annualized total turnover
TOp is twice the average of the previous quantity across the entire period. The values
are reported in Table 5.3.
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Table 5.4 The annualized abnormal returns and adjusted annualized percentage Sharpe
ratios for the Buy Side portfolios as a function of RTCp(%) for both CSQ and SSQ
systems. The Sharpe ratios that are significantly different from that of Our Universe,
according to the Ledoit and Wolf (2008) and Ardia and Boudt (2018) tests, at 10%, 5%,
1% and 0.1% level are marked with ‘◦’, ‘∗’, ‘∗∗’ and ‘∗ ∗ ∗’ respectively.

CSQ SSQ

RTCp(%)
Ann. Abn.
Return (%)

Ann. Sharpe
Ratio (%)

Ann. Abn.
Return (%)

Ann. Sharpe
Ratio (%)

0.00 6.10 1.43 ** 5.84 1.40 *
0.31 5.79 1.41 ** 5.42 1.37 ◦
0.63 5.49 1.39 * 4.99 1.34
0.94 5.18 1.37 * 4.57 1.31
1.25 4.87 1.35 ◦ 4.14 1.28
1.31 4.81 1.34 4.06 1.28
1.38 4.75 1.34 3.97 1.27
1.56 4.57 1.32 3.72 1.25
1.88 4.26 1.30 3.29 1.22
2.19 3.95 1.28 2.87 1.20
2.50 3.65 1.26 2.44 1.17
2.81 3.34 1.24 2.01 1.14

The transaction cost of portfolio p is computed as the product of the annualized
turnover and the round-trip cost (RTC) (see e.g., Baule and Wilke, 2016, and refer-
ences therein) and the “critical” round-trip cost, RTCp

crit, which is the rebalancing cost
that makes the net abnormal return of the portfolio equal to that of the Our universe
benchmark:

αp −RTCp
crit ·TOp = αOur universe.

The critical round-trip cost is equal to 2.81% for the buy side CSQ and 1.84% for the buy
side SSQ portfolios, the only ones with an abnormal return above that of the benchmark.
Table 5.4 displays the adjusted (for transaction costs) annualized abnormal returns and
the adjusted Sharpe ratio (i.e., computed using the adjusted returns, defined as the dif-
ference between the actual returns and transaction costs) for different levels of round-trip
costs. As can be seen, the considered portfolios remain profitable even when transaction
costs are fairly high. The buy side CSQ, with the lowest turnover, is less sensitive to
transaction costs.

5.2.1 Building z-scores from the analysts’ recommendations

How are affected the results in the previous analysis if we replace in the definition of
the z-score the mean and the standard deviation of the fair-value distribution with the
average and the standard deviation of the price targets given by the I/B/E/S database?
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Table 5.5 This table reports the Sharpe and the Sortino ratios for the H, Sell Side
and Buy Side portfolios constructed according to Cross-Sectional-IBES, Cross-Sectional
Quantile and Single-Stock Quantile. Sharpe and the Sortino ratios for Our universe is
also reported.

Sharpe-ratio (Sortino-ratio) CS-IBES CSQ SSQ Our universe

Sell Side 1.19 (1.53) 1.05 (1.36) 0.97 (1.28)
H 1.10 (1.43) 1.15 (1.48) 1.11 (1.45)
Buy Side 1.30 (1.70) 1.43 (1.87) 1.40 (1.83) 1.24 (1.59)

We denote this recommendation approach Cross-Sectional-IBES (CS-IBES)5. Table
5.5 summarizes the results. Taking Our-universe as baseline, the buy-side of CSQ and
SSQ present the higher Sharpe Ratio and Sortino gains. We emphasize that also CS-
IBES provides coherent results for Buy Side and Sell Side portfolios, in contrast with
the methodology employed by Barber et al. (2001). Remarkably, the difference between
the Sharpe Ratio of the CS-IBES and CSQ buy-side is statistically significant at the
5% level, whereas it is not significant the difference between the CS-IBES and Our-
universe buy-side, again according to the test of Ledoit and Wolf (2008) and Ardia and
Boudt (2018). The investigation carried out in this section shows that we can improve
the research design of Barber et al. (2001) using the information provided by the average
and standard deviation of I/B/E/S’s price targets with the methodology of the cross-
sectional z-score recommendations. We have shown how to use the uncertainty provided
by analysts and thus how to improve their recommendations, by relying on the CSQ
methodology. In particular, this exhibits the robustness of the cross-sectional approach
to issue consistent recommendation system.

We have concluded the first part of the thesis by proposing two recommendation sys-
tems based on the comparison of observed market prices with the fair value distributions
derived by the SDCF approach presented in Chapter 3. For each recommendation sys-
tem, we build buy and sell side portfolios and estimate the abnormal returns, both gross
and net trading costs, earned from diverse investment strategies. Over all, the analyses
show how the above proposed recommendations systems are able to provide profitable
portfolio strategies. However, the execution and liquidation of several positions at the
same time, e.g., the rebalancing of a portfolio which ensures a minimum exposition and
high protection against high trading costs and arbitrageur, may involve sophisticated
trading techniques. Therefore, the last part of the thesis is dedicated to the study of

5It is worth noting that one of the nice features of this method is that it cannot happen that for some
rebalancing date portfolios with the most/least favorably recommended companies are empty, as it may
be the case with the rescaling proposed by Barber et al. (2001).
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optimal execution problems of asset portfolios in a market with many competitors. In
particular, we show how to exploit the market impact due the agents trading activities
to derive optimal liquidation strategies in the so called market impact games framework.
Part of the following chapters is also dedicated to the analysis of some trading conditions
which lead to instability, see Chapter 9.
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Part II

Market Stability in Market Impact
Games
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We now consider the general problem of a set of agents trading a portfolio of assets
in the presence of transient price impact and additional quadratic transaction costs and
we study, with analytical and numerical methods, the resulting Nash equilibria. Extend-
ing significantly the framework of Schied and Zhang (2018) and Luo and Schied (2020),
who considered the one asset case, we focus our attention on the conditions on the value
of transaction cost making the trading profile of the agents, and as a consequence the
price trajectory, wildly oscillating and the market unstable. We prove the existence and
uniqueness of the corresponding Nash equilibria for the related mean-variance optimiza-
tion problem. We find that the presence of more assets and a large number of agents
make the market more prone to large oscillations and instability. When the number of
assets is fixed, a more complex structure of the cross-impact matrix, i.e. the existence of
multiple factors for liquidity, makes the market less stable compared to the case when a
single liquidity factor exists.
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CHAPTER 6

Market Impact Games

Let us consider two traders who want to trade simultaneously a certain number of shares,
minimizing the trading costs. Since the trading of one agent affects the price, the other
agent must take into account the presence of the former in optimizing her execution.
This problem is termed market impact game and has received considerable attention in
recent years (Carlin et al. (2007),Schöneborn (2008),Moallemi et al. (2012), Lachapelle
et al. (2016),Strehle (2017a,b), Schied and Zhang (2018)). The seminal paper by Schied
and Zhang, (Schied and Zhang (2018)), considers a market impact game between two
identical agents trading the same asset in a given time period.

6.1 The Schied and Zhang framework

When none of the two agents trade, the price dynamics is described by the so called
unaffected price process S0

t which is a right-continuous martingale defined on a given
probability space (Ω, (Ft)t≥0, F , P). A trader wants to unwind a given initial position
with inventory Z, where a positive (negative) inventory means a short (long) position,
during a given trading time grid T = {t0, t1, . . . , tN}, where 0 = t0 < t1 < · · · < tN = T

and following an admissible strategy, which is defined as follows:

Definition 6.1 (Admissible Strategy). Given T and Z, an admissible trading strategy
for T and Z ∈ R is a vector ζ = (ζ0, ζ1, . . . , ζN ) of random variables such that:

• ζk ∈ Ftk and bounded, ∀k = 0, 1, . . . ,N .

• ζ0 + ζ1 + · · ·+ ζN = Z.

The random variable ζk represents the order flow at trading time tk where positive
(negative) flow corresponds to a sell (buy) trade of volume |ζk|. We denote with X1

and X2 the initial inventories of the two considered agents playing the game and with
Ξ = (ξi,k) ∈ R2×(N+1) the matrix of the respective strategies, where ξ1,· = {ξ1,k}k∈T

and ξ2,· = {ξ2,k}k∈T are the strategies of trader 1 and 2, respectively. Traders are subject
to fees and transaction costs and their objective is to minimize them by optimizing the
execution. As customary in the literature, the costs are modeled by two components.
The first one is a temporary impact component modeled by a quadratic term θξ2

j,k,
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respectively for trader j, which does not affect the price dynamics. This is sometimes
called slippage and depends on the immediate liquidity present in the order book. Notice
that, as discussed in Schied and Zhang (2018), this term can also be interpreted as a
quadratic transaction fee. Here we do not specify exactly what this term represents,
sticking to the mathematical modeling approach of Schied and Zhang.

The second component is related to permanent impact and affects future price dy-
namics. Following Schied and Zhang (2018), we consider the celebrated transient impact
model of Bouchaud et al. (2004, 2009), which describes the price process SΞ

t affected by
the strategies Ξ of the two traders, i.e.,

SΞ
t = S0

t −
∑
tk<t

G(t− tk)(ξ1,k + ξ2,k), ∀ t ∈ T,

where G : R+ → R+ is the so called decay kernel, which describes the lagged price
impact of a unit buy or sell order over time. Usual assumptions on G are satisfied, i.e.,
it is convex, nonincreasing, nonconstant so that t 7→ G(|t|) is strictly positive definite
in the sense of Bochner, see Alfonsi et al. (2012) and Schied and Zhang (2018). Notice
that by choosing a constant kernel G, one recovers the celebrated Almgren-Chriss model
(Almgren and Chriss (2001)).

The cost faced by each agent is the sum of the two components above. Specifically, let
us denote with X (X, T) the set of admissible strategies for the initial inventory X on a
specified time grid T, the cost functions are defined following Schied and Zhang (2018):

Definition 6.2. Given T = {t0, t1, . . . , tN}, X1 and X2. Let (εi)i=0,1,...N be an i.i.d. se-
quence of Bernoulli

(
1
2

)
-distributed random variables that are independent of σ(⋃t≥0 Ft).

Then the cost of ξ1,· ∈X (X1, T) given ξ2,· ∈X (X2, T) is defined as

CT(ξ1,·|ξ2,·) =
N∑
k=0

(
G(0)

2 ξ2
1,k − S

ξ,η
tk
ξ1,k + εkG(0)ξ1,kξ2,k + θξ2

1,k

)
+X1S

0
0

and the costs of ξ2,· given ξ1,· are

CT(ξ2,·|ξ1,·) =
N∑
k=0

(
G(0)

2 ξ2
2,k − S

ξ,η
tk
ξ2,k + (1− εk)G(0)ξ1,kξ2,k + θξ2

2,k

)
+X2S

0
0 .

Thus the execution priority at time tk is given to the agent who wins an indepen-
dent coin toss game, represented by a Bernoulli variable εk, which is a fair game in the
framework of Schied and Zhang (2018).

Given the time grid T = {t0, t1, . . . , tN} and the initial values X1,X2 ∈ R, we define
the Nash Equilibrium as a pair (ξ∗1,·, ξ∗2,·) of strategies in X (X1, T)×X (X2, T) such
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that

E[CT(ξ
∗
1,·|ξ∗2,·)] = min

ξ1,·∈X (X1,T)
E[CT(ξ1,·|ξ∗2,·)] and

E[CT(ξ
∗
2,·|ξ∗1,·)] = min

ξ2,·∈X (X2,T)
E[CT(ξ2,·|ξ∗1,·)].

One of main results of Schied and Zhang (2018) is the proof, under general assumptions,
of the existence and uniqueness of the Nash equilibrium. Moreover, they showed that
this equilibrium is deterministically given by a linear combination of two constant vectors,
namely fundamental solutions v and w which are defined as

v =
1

eT (Γθ + Γ̃)−1e
(Γθ + Γ̃)−1e

w =
1

eT (Γθ − Γ̃)−1e
(Γθ − Γ̃)−1e.

and e = (1, . . . , 1)T ∈ RN+1. The kernel matrix Γ ∈ R(N+1)×(N+1) is given by

Γij = G(|ti−1 − tj−1|), i, j = 1, 2, . . . ,N + 1,

and for θ ≥ 0 it is Γθ := Γ + 2θI, and the matrix Γ̃ is given by

Γ̃ij =


Γij if i > j

1
2G(0) if i = j,

0 otherwise.

As showed by Schied and Zhang (2018) all these matrices are definite positive.

Theorem 6.3 (Nash Equilibrium for Market Impact Games, Schied and Zhang (2018)).
For any strictly positive definite decay kernel G, time grid T, parameter θ ≥ 0, and
initial values X1,X2 ∈ R, there exists a unique Nash equilibrium (ξ∗,η∗) ∈X (X1, T)×
X (X2, T). The optimal strategies ξ∗ and η∗ are deterministic and given by

ξ∗ =
1
2(X1 +X2)v +

1
2(X1 −X2)w (6.1)

η∗ =
1
2(X1 +X2)v−

1
2(X1 −X2)w, (6.2)

An interesting result of Schied and Zhang (2018) concerns the stability of the Nash
equilibrium related to the transaction costs parameter θ and the decay kernel G. Gener-
ically, following Schied and Zhang (2018), we say that a market is unstable if the trading
strategies at the Nash equilibrium exhibit spurious oscillations, i.e., if there exists a se-
quence of trading times such that the orders are consecutively composed by buy and
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sell trades, for all initial inventories X1 and Y2. In the optimal execution literature such
behavior is termed transaction triggered price manipulation, see Alfonsi et al. (2012).
Figure 6.1 shows the simulation of the price process under the Schied and Zhang model
when both investors have an inventory equal to 1 for two values of θ. The unaffected price
process is a simple random walk with zero drift and constant volatility and the trading
of the two agents, according to the Nash equilibrium, modifies the price path. For small
θ (top panel) the affected price process exhibits wild oscillations, while when θ is large
(bottom panel) the irregular behavior disappears1.

Thus, Schied and Zhang (2018) showed, when the trading time grid is equispaced,
TN , and under general assumptions on G, the existence of a critical value θ∗ = G(0)/4
such that for θ < θ∗ the equilibrium strategies exhibit oscillations of buy and sell orders
for both traders. Hence, the behavior at zero of the kernel function plays a relevant role
for the equilibrium stability.

Proposition 6.4 (Instability in Market Impact Games, Schied and Zhang (2018)). Sup-
pose that G is a continuous, positive definite, strictly positive, log-convex decay kernel and
that TN = { kN |k = 0, 1, . . . ,N} denotes the equidistant time grid. Then, the following
conditions are equivalent:

i) For every N ∈N and T > 0, all components of w are nonnegative.

ii) θ ≥ θ∗ = G(0)/4.

If, moreover, G is an exponential decay kernel, i.e., G(t) = λe−ρt + γ for λ, ρ > 0
and γ ≥ 0, then conditions i) and ii) are equivalent to:

iii) For every N ∈N and T > 0, all components of v are nonnegative.

As mentioned in the introduction, this result has been proved for a market with only
M = 1 asset, two (J = 2) risk-neutral traders. Now, we recall the extension of this
framework in a multi-agent market (J > 2) of Luo and Schied (2020). Then, we first
extend their framework in the multi-asset (M > 1) case, where we show the existence
and uniqueness of the related Nash equilibrium, and finally we generalize the stability
result of Schied and Zhang (2018) in the multi-asset case.

6.2 The Luo and Schied multi-agent market impact model

The Luo and Schied (2020) model is an extension of the Schied and Zhang (2018)
model where J risk-averse traders want to trade the same asset. The unaffected price

1Moreover, we observe that the presence of spurious oscillations in the price dynamics may affect the
consistency of the spot volatility estimation. Indeed, these oscillations act as a market microstructure
noise, even if this noise is caused by the oscillations of a deterministic trend, while usually it is char-
acterized by some additive noise term. In particular, we find that when θ is close to zero the noise is
amplified by spurious oscillations, while for sufficiently large θ these oscillations do not compromise the
consistency of the spot volatility.
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Fig. 6.1 Blue lines exhibit the price process when both agents have inventory equals to
1. The top (bottom) panel shows the dynamics when θ = 0.01 (θ = 1.5). The trading
time grid has N + 1 = 51 points, G(t) = exp(−t), the volatility of the unaffected price
process is fixed to 1 and S0 = 100. The vertical grey dotted lines delineates the trading
session. The red lines shows the drift dynamics due to trading.

process S0
t is always assumed to be a right continuous martingale in a suitable filtered

probability space (Ω, F , (Ft)t≥0, P) and it is also required that S0
· is a square-integrable

process. As before, let T = {t0, t1, . . . , tN} be the trading time grid. Consistently with
the previous notation, we denote with Ξ = (ξj,k) ∈ RJ×(N+1) the matrix of all strategies,
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where ξj,k is the order flow of agent j at time tk, so that the affected price process is
defined as

SΞ
t := S0

t −
∑
tk<t

G(t− tk) ·
J∑
j=1

ξj,k,

where G is the decay kernel. The generalization of admissible strategy is straightforward,
indeed if Xj denotes the inventory of the j-th agent, Ξ is admissible for X ∈ RJ and T,
if ξj,· is admissible for Xj and T for each j according to definition 6.1, i.e., it is adapted
to the filtration, bounded and ∑N

k=0 ξj,k = Xj . The set of admissible strategy is denoted
as X (X, T). Then, if we consider all the possible time priorities among the J traders
at each time step, i.e., all the possible permutations that determine the time priority for
each trading time tk which we may assume to be equiprobable, it is possible to generalize
the previous definition of liquidation cost for a trader strategy, see Luo and Schied (2020)
for further details. We denote Ξ−j,· the matrix Ξ where the j-th row is eliminated.

Definition 6.5 (Luo and Schied (2020)). Given a time grid T, the execution costs of a
strategy ξj,· given all other strategies ξl,· where l 6= j is defined as

CT(ξj,·|Ξ−j,·) =
N∑
k=0

(
G(0)

2 ξ2
j,k − SΞ

tk
ξj,k +

G(0)
2

∑
l 6=j

ξj,kξl,k + θ ξ2
j,k

)
,

where θ ≥ 0.

In the framework of Schied and Zhang (2018) we have two risk-neutral agents which
want to minimize the expected costs of a strategy, i.e., implementation shortfall orders.
Now, following Luo and Schied (2020), we consider the agents’ risk aversion by introducing
the mean-variance and expected utility functionals, respectively

MVγ(ξj,·|Ξ−j,·) := E[CT(ξj,·|Ξ−j,·)] +
γ

2 Var[CT(ξj,·|Ξ−j,·)], (6.3)

Uγ(ξj,·|Ξ−j,·) := E[uγ(−CT(ξj,·|Ξ−j,·))], (6.4)

where γ is the risk-aversion parameter and uγ(x) is the CARA utility function,

uγ(x) =


1
γ (1− e

−γx) if γ > 0,

−x if γ = 0.

As usual, see e.g. Almgren and Chriss (2001), the minimization of the mean-variance func-
tional is restricted to deterministic admissible strategies, which is denoted as Xdet(X, T).
All agents are assumed to have the same risk-aversion γ ≥ 0, see Luo and Schied (2020)
for further details. Moreover, they introduced the corresponding Nash equilibrium for
the previously defined functionals.



6.2. The Luo and Schied multi-agent market impact model 111

Definition 6.6 (Luo and Schied (2020)). Given the time grid T and initial inventories
X ∈ RJ for J traders with risk aversion parameter γ 6= 0, then:

• a Nash Equilibrium for mean-variance optimization is a matrix of strategies Ξ∗ ∈
Xdet(X, T) such that each row ξ∗j,· minimizes the mean-variance functional

MVγ(ξj,·|Ξ∗−j,·) over ξj,· ∈Xdet(Xj , T);

• a Nash Equilibrium for CARA expected utility maximization is a matrix of strategies
Ξ∗ ∈ X (X, T) such that each row ξ∗j,· maximizes the CARA expected utility
functional Uγ(ξj,·|Ξ∗−j,·) over ξj,· ∈X (Xj , T).

In particular, Luo and Schied (2020) have shown that when the decay kernel is strictly
positive definite and for any T, parameters θ, γ ≥ 0 and initial inventories X ∈ RJ , there
exists a unique Nash equilibrium for the mean-variance optimization. In particular, let
v, w be the fundamental solutions defined as

v =
1

eT [Γγ,θ + (J − 1)Γ̃]−1e
[Γγ,θ + (J − 1)Γ̃]−1e

w =
1

eT [Γγ,θ − Γ̃]−1e
[Γγ,θ − Γ̃]−1e,

where, if ϕ(t) := Var(S0
t ), for t ≥ 0, the matrix Γγ,θ is defined for θ, γ ≥ 0 as

Γγ,θ
i,j := (Γθ)i,j + γϕ(ti−1 ∧ tj−1), i, j = 1, 2, . . . ,N + 1,

where Γθ is the previously defined kernel matrix. We recall that S0 is a Bachelier model,
if S0

t = S0 + σBt, for t ≥ 0, where S0,σ > 0 are constants and Bt is a standard Brownian
motion, Then, the following result holds, see Luo and Schied (2020) for further details.

Theorem 6.7 (Nash Equilibrium for Multi-Agents Market Impact Games, Luo and
Schied (2020)). If the decay kernel is strictly positive definite, then, for any time grid T,
parameters θ, γ ≥ 0, initial inventories X1,X2 . . . ,XJ ∈ R, and X = 1

J

∑J
j=1Xj, the

strategies
ξ∗j,· = Xv + (Xj −X)w, j = 1, 2, . . . , J , (6.5)

form the unique Nash equilibrium for mean-variance optimization. If, moreover, S0 is a
Bachelier model, then the strategies (6.5) also form a Nash equilibrium for CARA expected
utility maximization and it is unique if we restrict all trader strategies to be deterministic.
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CHAPTER 7

Multi-Asset Market Impact Games

We now extend the previous framework allowing the J agents to trade a portfolio of
M > 1 assets. Indeed, agents often liquidate portfolio positions, which accounts in
trading simultaneously many assets. In general, the optimal execution of a portfolio
is different from many individual asset optimal executions, because of (i) correlation in
asset prices, (ii) commonality in liquidity across assets (Chordia et al. (2000)), and (iii)
cross-impact effects. In the following we will focus mainly on the third effect, even if
disentangling them is a challenging statistical problem and we will discuss its relations
with the correlation in asset prices which ensure the existence of Nash equilibrium.

To proceed, we first extend the notion of admissible strategy to the multi-asset case.
A strategy for J traders during the trading time interval T for M assets is a multidimen-
sional array Ξ = (ξi,j,k) ∈ RM×J×(N+1), where ξi,j,k is the strategy for the j-th trader
in the i-th asset at time step k. Straightforwardly, given a fixed time grid T and initial
inventory X ∈ RM×J , where each column j contains the inventories of trader j for the
M assets, a strategy Ξ of random variables is admissible for X if i) for all time step k,
Ξ·,·,k is Ftk-measurable and bounded and ii) ∑N

k=0 ξ·,j,k = Xj ∈ RM for each j, where
Xj is the j-th column of X.

The second important point is that the trading of one asset modifies also the price
of the other asset(s). This effect is termed cross-impact. While self-impact may be at-
tributed to a mechanical and induced consequence of the order book, the cross-impact may
be understood as an effect related to mispricing in correlated assets which are exploited
by arbitrageurs betting on a reversion to normality, see Almgren and Chriss (2001) and
Schneider and Lillo (2019) for further details. Cross-impact has been empirically studied
recently, see e.g. Mastromatteo et al. (2017), Schneider and Lillo (2019) and its role in
optimal execution has been highlighted in Tsoukalas et al. (2019).

Mathematically cross-impact is modeled by introducing a function Q : R+ ×RM →
RM describing how the trading of the M assets affect their prices at a certain future
time. Schneider and Lillo (2019) have discussed necessary conditions for the absence of
price manipulation for multi-asset transient impact models. They have shown that the
cross-impact function need to be symmetric and linear in order to avoid arbitrage and
manipulations. Moreover, following example 3.1 of Alfonsi et al. (2016) and as empirically
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observed by Mastromatteo et al. (2017), we assume the same temporal dependence of G
among the assets. Then, we assume that Q = Q ·G(t) where Q is linear and symmetric,
i.e., Q ∈ RM×M and Q = QT and G : R+ → R+. Also, we assume that Q is a
nonsingular matrix. Therefore, the price process during order execution is defined as

SΞ
t = S0

t −
∑
tk<t

G(t− tk) ·Q ·
J∑
j=1

ξ·,j,k

where we refer to Q ∈ RM×M as the cross-impact matrix, S0
t ∈ RM is the unaffected

price process which is assumed to be a right-continuous martingale defined on a suitable
filtered probability space and it is a square-integrable process.

If for each asset the time priority among the traders is determined by considering all
the possible permutations of agents for each trading time tk, then, following the same
motivation of Schied and Zhang (2018) and Luo and Schied (2020), the definition 6.5 of
liquidation cost is generalized as follows:

Definition 7.1 (Execution Cost). Given a time grid T and θ ≥ 0, the execution cost of
a strategy Ξ·,j,· given all other strategies Ξ·,l,· where l 6= j is defined as

CT(Ξ·,j,·|Ξ·,−j,·) =
N∑
k=0

(
G(0)

2 〈Qξ·,j,k, ξ·,j,k〉 − 〈SΞ
tk

, ξ·,j,k〉+

+
G(0)

2
∑
l 6=j
〈Qξ·,l,k, ξ·,j,k〉+ θ 〈ξ·,j,k, ξ·,j,k〉.

)
.

The previous definition is motivated by the following argument. When only agent j
trades, the prices are moved from SΞ

tk
to SΞ

tk+
= SΞ

tk
−G(0)Qξ·,j,k. However, the order

is executed at the average price and the player incurs in the expenses

−1
2〈(S

Ξ
tk
+SΞ

tk+
), ξ·,j,k〉 =

G(0)
2 〈Qξ·,j,k, ξ·,j,k〉 − 〈SΞ

tk
, ξ·,j,k〉.

Then, suppose that immediately after j the agent l place an order and the prices are
moved linearly from SΞ

tk+
to SΞ

tk+
−G(0)Qξ·,l,k, so the cost for l is given by:

−1
2〈(S

Ξ
tk+

+SΞ
tk+

)−G(0)Qξ·,l,k, ξ·,l,k〉 =
G(0)

2 〈Qξ·,l,k, ξ·,l,k〉 − 〈SΞ
tk

, ξ·,l,k〉

+G(0)〈Qξ·,j,k, ξ·,l,k〉.

The term G(0)〈Qξ·,j,k, ξ·,l,k〉 is the additional cost due to the latency, where on
average for each asset half of the times the order of agent j will be executed before
the one of agent l, so that the latency costs for agent j at time step k is given by
G(0)

2
∑
l 6=j〈Qξ·,l,k, ξ·,j,k〉, see Luo and Schied (2020) for further details.
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The mean-variance and CARA expected utility functionals are straightforwardly gen-
eralized using the previous defined execution cost. Indeed,

MVγ(Ξ·,j,·|Ξ·,−j,·) := E[CT(Ξ·,j,·|Ξ·,−j,·)] +
γ

2 Var[CT(Ξ·,j,·|Ξ·,−j,·)], (7.1)

Uγ(Ξ·,j,·|Ξ·,−j,·) := E[uγ(−CT(Ξ·,j,·|Ξ·,−j,·))]. (7.2)

Therefore, we may define the related Nash equilibria definitions:

Definition 7.2. Given the time grid T and initial inventories X ∈ RM×J for M assets
and J traders with risk aversion parameter γ ≥ 0, then:

• a Nash Equilibrium for mean-variance optimization is a multidimensional array of
strategies Ξ∗ ∈Xdet(X, T) such that Ξ∗·,j,· minimizes the mean-variance functional
MVγ(Ξ·,j,·|Ξ∗·,−j,·) over Ξ·,j,· ∈Xdet(Xj , T);

• a Nash Equilibrium for CARA expected utility maximization is a multidimensional
array of strategies Ξ∗ ∈ X (X, T) such that each row Ξ∗·,j,· maximizes the CARA
expected utility functional Uγ(Ξ·,j,·|Ξ∗·,−j,·) over Ξ·,j,· ∈X (Xj , T).

We recall that S0
t follows a Bachelier model if S0

t = S0 + LBt where S0 is a fixed
vector and Bt is a multivariate (standard) Brownian motion, where its components are
independent with unit variance so that the variance-covariance matrix of S0

t is given by
Σ = LLT .

Remark 7.3. We are implicitly assuming that the strength of the impact of a single trader
is independent from the number of agents simultaneously present. This is not necessarily
true. For example, generalizing Kyle’s model to the case when J ≥ 1 symmetrically
informed agents are simultaneously present, Bagnoli et al. (2001) shows that the Kyle’s
lambda, i.e. the proportionality factor between price impact and aggregated order flow,
scales as J−1/α, where α is the exponent of the stable law describing the price and
uninformed order flow distribution. Moreover if the second moment of both variables
is finite, Bagnoli et al. (2001) shows that the Kyle’s lambda scales as 1/

√
J (see also

Lambert et al. (2018) for the non symmetrical case when distributions are Gaussian).
In our impact model, this property can be modeled by assuming that the decay kernel
depends on J as Gsc(t) := J−β ·G(t) where G(t) is the standard non-scaled decay kernel
and β ≥ 0. The case β = 0 corresponds to the additive case, while for β = 1 the total
instantaneous impact does not depend on the number of agents J . There are also some
recent empirical evidences suggesting that the impact strength depends on the number
of agents simultaneously trading. Figure 3 of Bucci et al. (2020) indicates that market
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impact of a metaorder1 decreases with the number of metaorders simultaneously present.
In the following we first consider G(t) independent from J , while we investigate in detail
how the market stability is affected by the scaling parameter β in Section 9.2.2.

Remark 7.4. In the previous remark we have pointed out that there are some theoretical
arguments suggesting that the kernel might depend and scale with the number of agents
J . Therefore, we may expect an analogous argument for the cross-impact matrix and
the number of assets M . In this merit, we may consider the multivariate Kyle model of
Garcia del Molino et al. (2020), where we denote with Λ the cross-impact Kyle lambda
matrix. In particular, Garcia del Molino et al. (2020) have shown the existence and
uniqueness of the linear equilibrium of the multivariate Kyle model, where by Proposi-
tion 3.4 of Garcia del Molino et al. (2020), Λ satisfies 1

4Σ0 = ΛΩΛ where Σ0 and Ω are
the covariance matrices of the fundamental price and of the bids of the noise trader, re-
spectively. If we assume that these matrices can be decomposed as Σ0 = sdI + snee

T and
Ω = ωdI +ωnee

T , where e is the vector with all components equal to one, then necessar-
ily2 Λ = λdI + λnee

T . However, since 1
4Σ0 = ΛΩΛ, λd =

√
sd

4ωd
which is independent

from M (this was also empirically observed by Benzaquen et al. (2017)) and more inter-
estingly, limM→∞ λn = limM→∞(−λd ±

√
sd

4ωn
) 1
M = 0. It is worth to nothing that even

though ωn = 0, i.e., the order flow of the uninformed trader is uncorrelated, the cross-
impact Kyle lambda, λn, is different from zero and limM→∞ λn = limM→∞

√
sn

4ωdM
= 0.

Thus, the off-diagonal terms of the cross-impact matrix Q might scale as 1/M . There-
fore, asymptotically, when M becomes large, the cross-impact terms would vanish and Q
would converge towards a diagonal matrix. As we will see later, this type of scaling may
act as a stabilization effect. However, we will not further investigate this option in this
thesis.

7.1 Nash equilibrium for the linear cross impact model

We now prove the existence and uniqueness of the Nash equilibrium in this multi-asset
setting. This is achieved by using the spectral decomposition of Q to orthogonalize the
assets, which we call “virtual” assets, so that the impact of the orthogonalized strategies
on the virtual assets is fully characterized by the self-impact, i.e., the transformed cross
impact matrix is diagonal. Thus, the existence and uniqueness of the Nash equilibrium
derives immediately by following the same argument as in Schied and Zhang (2018) and
Luo and Schied (2020).

1A metaorder is a sequence of trades executed in the same direction (either buys or sells) and origi-
nating from the same market participant. Thus in our framework each trader j executes a metaorder of
size Xj .

2If A = aI + beeT is a one-factor matrix, a particular case of rank-one update matrix, where a, b ∈ R,
then A−1 is one-factor and moreover L is also a one-factor matrix where LLT = A. Therefore, by
Theorem 3.5 equation (3.6) of Garcia del Molino et al. (2020) Λ is a one-factor matrix.



7.1. Nash equilibrium for the linear cross impact model 117

Remark 7.5. If we suppose that Q is the identity matrix, then the multi-asset market
impact game is a straightforward generalization of the Luo and Schied (2020) model.
Indeed, each order of the players for the i-th stock does not affect any other asset.

In general, if we assume that S0
t has uncorrelated components, i.e., the variance-

covariance matrix Σ is diagonal, then the following result holds.

Lemma 7.6 (Nash Equilibrium for Diagonal Cross-Impact Matrix). If S0
t has uncorre-

lated components, for any strictly positive definite decay kernel G, time grid T, param-
eters θ, γ ≥ 0, initial inventory X ∈ RM×J and diagonal positive cross impact matrix
D = diag(λ1,λ2, . . . ,λM ), there exists a unique Nash Equilibrium Ξ∗ ∈ Xdet(X, T) for
the mean-variance optimization problem and it is given by

ξ∗i,j,· = Xi,·vi + (Xi,j −Xi,·)wi, j = 1, 2, . . . , J , i = 1, 2, . . . ,M , (7.3)

where Xi,· =
1
J

∑J
j=1Xi,j, vi and wi are the fundamental solutions associated with the

decay kernel Gi(t) = G(t) ·λi and same parameter θ. Moreover, if S0
t follows a Bachelier

model, then (7.3) is also a Nash equilibrium for CARA expected utility maximization.

Proof of Lemma 7.6. Since the cross-impact matrix is diagonal, each asset is not affected
by the orders on other assets, i.e., the impact for each asset is provided only by the
self-impact and there is no cross-impact effect. In particular,

CT(Ξ·,j,·|Ξ·,−j,·) =
M∑
i=1

CT(ξi,j,·|Ξi,−j,·;Gi),

where CT(ξi,j,·|Ξi,−j,·;Gi) is the liquidation cost of Definition 6.5 where the decay kernel
is multiplied by λi. Moreover, the mean-variance functional can be splitted in the sum
of mean-variance functionals of each asset i, i.e.,

MVγ(Ξ·,j,·|Ξ·,−j,·) =
M∑
i=1

MVγ(ξi,j,·|Ξi,−j,·;Gi),

where MVγ(ξi,j,·|Ξi,−j,·;Gi) is the mean-variance functional defined in Eq. (6.3) with
the related CT(ξi,j,·|Ξi,−j,·;Gi). Indeed, MVγ(Ξ·,j,·|Ξ·,−j,·) = E[CT(Ξ·,j,·|Ξ·,−j,·)] +
γ
2 Var[CT(Ξ·,j,·|Ξ·,−j,·)] and since E[·] is a linear operator

E[CT(Ξ·,j,·|Ξ·,−j,·)] =
M∑
i=1

E[CT(ξi,j,·|Ξi,−j,·;Gi)].

On the other hand, Var[CT(Ξ·,j,·|Ξ·,−j,·)] = Var[∑N
k=0〈SΞ

tk
, ξ·,j,k〉] because Ξ is deter-
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ministic. Let us denote Yi =
∑N
k=0 S

Ξ
tk,iξi,j,k, then

Var
[

N∑
k=0
〈SΞ

tk
, ξ·,j,k〉

]
= Var

[
M∑
i=1

Yi

]
=

M∑
i=1

Var(Yi) +
∑
i6=l

Cov(Yi,Yl).

However, if Cov(Yi,Yl) = 0 for i 6= l, then

Var[CT(Ξ·,j,·|Ξ·,−j,·)] =
M∑
i=1

Var[CT(ξi,j,·|Ξi,−j,·;Gi)],

where we used again that Ξ is deterministic. Therefore, the M multi-asset market impact
game with J agents is equivalent to consider M stacked independent one-asset market
impact game with J agents, where the decay kernel for each asset i is scaled by the
corresponding diagonal element of D, λi, which preserves the strictly positive definite
property since λi > 0 ∀i. Thus, for each asset i and agent j the existence, uniqueness
and the closed formula of Nash Equilibrium ξ∗i,j,· for the mean-variance optimization
are straightforward from Theorem 2.4 of Luo and Schied (2020) where the decay kernel
is multiplied by λi, respectively for each asset. Moreover, since MVγ(Ξ·,j,·|Ξ·,−j,·) =∑M
i=1MVγ(ξi,j,·|Ξi,−j,·;Gi) we may conclude. If S0

· follows a Bachelier model and Ξ is
deterministic, then CT(Ξ·,j,·|Ξ·,−j,·) is a Gaussian random variable, so that the mean-
variance optimization and CARA expected utility maximization are equivalent over the
class of deterministic strategies, indeed

Uγ(Ξ·,j,·|Ξ·,−j,·) = uγ(−MVγ(Ξ·,j,·|Ξ·,−j,·)), γ > 0,

and U0(Ξ·,j,·|Ξ·,−j,·) = −E[CT(Ξ·,j,·|Ξ·,−j,·)], γ = 0.

On the other hand, following the same reasoning of the proof of Theorem 2.4 of Luo and
Schied (2020), when Ξ·,−j,· are deterministic, from Theorem 2.1 of Schied et al. (2010) if
there exists a deterministic strategy Ξ∗·,j,· which maximizes the expected utility functional
Uγ(Ξ·,j,·|Ξ·,−j,·), over the class of deterministic strategies, then Ξ∗·,j,· is also a maximizer
for the expected utility functional within the class of all adapted strategies. Then, we may
use the same argument of Corollary 2.3 of Schied and Zhang (2017) to conclude that the
Nash equilibrium for the mean-variance optimization problem form a Nash equilibrium
for CARA expected utility maximization.

So, it remains to show that if S0
· has uncorrelated components, then Cov(Yi,Yl) = 0

for i 6= l, where Yi =
∑N
k=0 S

Ξ
tk,iξi,j,k. However, SΞ

t,i = S0
t,i −

∑
tk<tG(t− tk) ·

∑J
j=1(Q ·
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ξ·,j,k)i, where (Q · ξ·,j,k)i denotes the i-th component of Q · ξ·,j,k, then

Yi =
N∑
k=0

[
S0
tk,iξi,j,k −

( ∑
tk<t

G(t− tk) ·
J∑
j=1

(Q · ξ·,j,k)i
)
ξi,j,k

]

=
N∑
k=0

[
S0
tk,iξi,j,k

]
−

N∑
k=0

[( ∑
tk<t

G(t− tk) ·
J∑
j=1

(Q · ξ·,j,k)i
)
ξi,j,k

]

so since Ξ is deterministic and using the martingale property of S0
· ,

Cov(Yi,Yl) = Cov
(

N∑
k=0

S0
tk,iξi,j,k,

N∑
h=0

S0
th,lξl,j,h

)
=

= E

[
N∑

k,h=0
S0
tk,iS

0
th,lξi,j,kξl,j,h

]
−E

[
N∑
k=0

S0
tk,iξi,j,k

]
E

[
N∑
h=0

S0
th,lξl,j,h

]

=
N∑

h,k=0
ξi,j,kξl,j,hCov(S0

tk,i,S0
th,l) =

N∑
h,k=0

ξi,j,kξl,j,hCov(S0
tk∧th,i,S0

tk∧th,l)

which is zero if the components of S0
· are uncorrelated.

Remark 7.7. We observe that for risk-neutral agents, i.e., γ = 0, the assumptions of
uncorrelated assets is no more necessary to prove Lemma 7.6. Indeed, the mean-variance
functional is restricted only to the expected cost and for linearity MV0(Ξ·,j,·|Ξ·,−j,·) =∑M
i=1MV0(ξi,j,·|Ξi,−j,·;Gi), where MV0(ξi,j,·|Ξi,−j,·;Gi) = E[CT(ξi,j,·|Ξi,−j,·;Gi)] is the

expected costs of Definition 6.5 where the decay kernel is multiplied by λi, and we have
the same conclusion of Lemma 7.6 regardless the covariance matrix of S0

t .

We first introduce some notation and then we state the main results. We say that
assets are orthogonal if the corresponding cross-impact matrix is diagonal. Let us consider
the spectral decomposition of Q, i.e., QV = V D, where V and D are the orthogonal and
diagonal matrices containing the eigenvectors and eigenvalues, respectively. Since we
assume that Q is a non singular symmetric matrix, then D is diagonal with all elements
different from zero. We define the prices of the virtual assets as P t := V TSΞ

t and we
observe that

P t = P 0
t −

∑
tk<t

G(t− tk) ·D · V T ·
(

J∑
j=1

ξ·,j,k

)

= P 0
t −

∑
tk<t

G(t− tk) ·D ·
(

J∑
j=1

ξP·,j,k

)
,

(7.4)

where P 0
t := V TS0

t and ξP·,j,k := V Tξ·,j,k. This last quantity is the strategy of trader
j at time step k in the virtual assets, which is admissible for inventory XP

j = V TXj ,
i.e, ∑N

k=0 ξ
P
·,j,k =

∑N
k=0 V

Tξ·,j,k = V TXj . The virtual assets are mutually orthogonal
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by construction and their corresponding (virtual) decay kernels Gi(t) are obtained as
the product of the original decay kernel G(t) and the corresponding eigenvalues λi of
the cross impact matrix, i.e., the decay kernel associated with the i-th virtual asset is
Gi(t) := G(t) · λi. Indeed, from Eq. (7.4) the decay kernel G(t) is multiplied by the
eigenvalues of the cross impact matrix for each trading time tk,

G(t− tk) ·D =


G(t− tk)λ1

G(t− tk)λ2
. . .

G(t− tk)λM

 .

Then, as observed in Remark 7.5, the multi-asset market impact game where each asset
is orthogonal to others is equivalent to M one-asset market impact games, i.e., Luo and
Schied (2020) models. The (virtual) decay kernels Gi(t) satisfy the assumptions of strictly
positive definite kernels as far as λi > 0 ∀i = 1, 2, . . . ,M , i.e., Q is positive definite (see
also Alfonsi et al. (2016)). If Cov(S0

t ) = Σ, then Cov(P 0
t ) = V TΣV . So, if Q and Σ

are simultaneously diagonalizable then Cov(P 0
t ) is diagonal, i.e., the components of P 0

·
are uncorrelated and by Lemma 7.6 we obtain the associated Nash equilibria Ξ∗,P , whose
components are defined as

ξ∗,Pi,j,· = X
P
i,·vi + (XP

i,j −X
P
i,·)wi, j = 1, 2, . . . , J , i = 1, 2, . . . ,M , (7.5)

where XP
i,· =

1
J

∑J
j=1X

P
i,j is the average inventory on the i-th virtual asset among the

traders and vi and wi are the previously defined fundamental solutions of Luo and
Schied (2020) for the i-th virtual asset P·,i. For them, the decay kernel is given by
Gi(t) = G(t) · λi and the corresponding ϕi(t) is given by Var(P 0

t,i). Since, Q and Σ are
both symmetric, so diagonalizable, Q and Σ are simultaneously diagonalizable if and only
if Q and Σ commute. Therefore, we consider the following assumption.

Assumptions 7.1. The cross-impact matrix, Q, and the covariance matrix of the unaf-
fected price process S0

t , Σ, commute, i.e., QΣ = ΣQ.

This assumption is frequently made in the literature and approximately valid in real
data, e.g., Mastromatteo et al. (2017) makes this assumption on the correlation matrix.
The empirical observation that the matrix Q has a large eigenvalue with a corresponding
eigenvector with almost constant components (as the market factor) and a block structure
with blocks corresponding to economic sectors (as in the correlation matrix) indicates that
the eigenvectors of Q and Σ are the same, i.e. that Q and Σ (approximately) commute.
Notice also that Gârleanu and Pedersen (2013) propose a model of optimal portfolio
execution where the quadratic transaction cost is characterized by a matrix which is



7.1. Nash equilibrium for the linear cross impact model 121

proportional to Σ.
We enunciate the following theorem of existence and uniqueness of Nash equilibrium

which extends Theorem 2.4 of Luo and Schied (2020).

Theorem 7.8 (Nash Equilibrium for Multi-Asset and Multi-Agent Market Impact Games).
For any strictly positive definite decay kernel G, time grid T, parameter θ, γ ≥ 0, initial
inventory X ∈ RM×J and symmetric positive definite cross impact matrix Q such that
Assumption 7.1 holds, there exists a unique Nash Equilibrium Ξ∗ ∈ Xdet(X, T) for the
mean-variance optimization problem and it is given by

Ξ∗·,j,· = V Ξ∗,P·,j,·, j = 1, 2, . . . , J (7.6)

where V is the matrix of eigenvectors of Q and Ξ∗,P ∈ Xdet(X
P , T) is the Nash Equi-

librium (7.5) of the corresponding orthogonalized virtual asset market impact game where
XP = V TX. Moreover, if S0 follows a Bachelier model then (7.6) is also a Nash equi-
librium for CARA expected utility maximization.

Proof of Theorem 7.8. Let Q = V DV T be the spectral decomposition of Q, where, since
Q is symmetric, V is orthogonal and D is the diagonal matrix which contains the eigen-
values of Q. By Assumptions 7.1 Cov(P 0

t ) = V TΣV is diagonal, so by Lemma 7.6
there exists the Nash Equilibrium Ξ∗,P ∈ Xdet(X

P , T), for each inventory XP associ-
ated to the orthogonalized virtual assets P t = V TSt. Moreover, if S0

t follows a Bachelier
model then also P 0

t follows a Bachelier model and Ξ∗,P is also a Nash equilibrium for the
CARA expected utility maximization for Lemma 7.6. Therefore, to proof that Ξ∗, where
Ξ∗·,j,· = V Ξ∗,P·,j,·, is the Nash Equilibrium is sufficient to show that the liquidation cost
CT(Ξ·,j,·|Ξ·,−j,·), when the cross impact matrix is Q, is equivalent to CT(ΞP·,j,·|ΞP·,−j,·),
when the cross impact is D, where the equivalence map is provided by V T . Writing
explicitly for each trading time step k the liquidation cost formula we have, since V is
orthogonal,

CT(Ξ·,j,·|Ξ·,−j,·)] =
N∑
k=0

(
G(0)

2 〈Qξ·,j,k, ξ·,j,k〉 − 〈SΞ
tk

, ξ·,j,k〉+

+
G(0)

2
∑
l 6=j
〈Qξ·,l,k, ξ·,j,k〉+ θ 〈ξ·,j,k, ξ·,j,k〉.

)
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=
N∑
k=0

(
G(0)

2 〈DV Tξ·,j,k,V Tξ·,j,k〉 − 〈V TSΞ
tk

,V Tξ·,j,k〉+

+
G(0)

2
∑
l 6=j
〈DV Tξ·,l,k,V Tξ·,j,k〉+ θ 〈V Tξ·,j,k,V Tξ·,j,k〉.

)

=
N∑
k=0

(
G(0)

2 〈DΞP·,j,k, ΞP·,j,k〉 − 〈P tk , ΞP·,j,k〉+

+
G(0)

2
∑
l 6=j
〈DΞP·,l,k, ΞP·,j,k〉+ θ 〈ΞP·,j,k, ΞP·,j,k〉.

)

= CT(ΞP·,j,·|ΞP·,−j,·).

Finally, in order to obtain that Ξ∗ is admissible for X, it is sufficient to set XP =

V TX.

However, we observe that for risk-neutral agents, i.e., γ = 0, Assumption 7.1 is
unnecessary. We remark this result in the following Corollary.

Corollary 7.9. If the agents are risk-neutral, i.e., γ = 0, then for any strictly positive
definite decay kernel G, time grid T, parameter θ ≥ 0, initial inventories X ∈ RM×J and
symmetric positive definite cross impact matrix Q, there exists a unique Nash Equilibrium
Ξ∗ ∈Xdet(X, T) for the mean-variance optimization problem and it is given by

Ξ∗·,j,· = V Ξ∗,P·,j,·, j = 1, 2, . . . , J (7.7)

where V is the matrix of eigenvectors of Q and Ξ∗,P ∈ Xdet(X
P , T) is the Nash Equi-

librium associated to the corresponding orthogonalized virtual asset market impact game
where XP = V TX . Moreover, if S0

t follows a Bachelier model then (7.7) is also a Nash
equilibrium over the set X (X, T).

Proof of Corollary 7.9. As observed in Remark 7.7 the mean-variance functional is split-
ted as the sum of mean-variance functionals of each asset i, since when γ = 0 the
functional is restricted to the expected cost. Then, the existence of the Nash equilibrium
for the virtual orthogonalized assets follows by Lemma 7.6 without requiring the assump-
tions of uncorrelated assets and the proof follows directly by the same reasoning of the
proof of Theorem 7.8. Moreover by definition, when γ = 0 the CARA utility function
is equal to the mean-variance functional, so that Ξ∗ is a Nash equilibrium over the set
X (X, T).



CHAPTER 8

Trading Strategies in Market Impact Games

Before studying market stability we investigate how the cross-impact effect and the pres-
ence of many competitors may affect trading strategies, in terms of Nash equilibria. To
understand the rich phenomenology that can be observed in a market impact game, we
introduce three types of traders:

• the Directional (Fundamentalist) wants to trade one or more assets in the same
direction (buy or sell). Notice that a Directional can have zero initial inventory for
some assets;

• the Arbitrageur has a zero inventory to trade in each asset and tries to profit from
the market impact payed by the the other agents;

• the Market Neutral has a non zero volume to trade in each asset, but in order to
avoid to be exposed to market index fluctuations, the sum of the volume traded in
all assets is zero1.

We remark that an Arbitrageur is a particular case of a Market Neutral agent in the limit
case when the volume to trade in each asset is zero. Clearly in a single-asset market we
have only two types of the previous agents, since a Market Neutral strategy requires at
least two assets.

8.1 Cross-Impact effect and liquidity strategies

To better understand how cross-impact affects optimal liquidation strategies, we con-
sider the case of two risk-neutrals agents which can (but not necessarily mist) trade M
assets. We show below that the presence of multiple assets and of cross-impact can affect
the trading strategy of an agent interested in liquidating only one asset. In particular,
we find, counterintuitively, that it might be convenient for such an agent to trade (with
zero inventory) the other asset(s) in order to reduce transaction costs.

1Real Market Neutral agents follow signals which are orthogonal to the market factor, thus they
typically are short on approximately half of the assets and long on the other half. The sum of trading
volume is not exactly equal to zero but each trading volume depends on the β of the considered asset
with respect to the market factor. In our stylized market setting, we assume that all assets are equivalent
with respect to the market factor.
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Fig. 8.1 Nash equilibrium ξ∗1 of the Directional and ξ∗2 of the Arbitrageur trading only
one asset. The trading time grid is equidistant with 26 points and θ = 1.5. The expected
costs are equal to E[CT(ξ

∗
1|ξ∗2)] = 0.4882, E[CT(ξ

∗
2|ξ∗1)] = −0.0370.

We focus on the two-asset case, M = 2, and we analyze the Nash equilibrium when the
kernel function has an exponential decay2, G(t) = e−t. The first trader is a Directional
who wants to liquidate the position in the first asset, i.e., X1,1 = 1, while the second
agent is an Arbitrageur, i.e., X1,2 = 0. We set an equidistant trading time grid with 26
points and θ = 1.5. The second asset is available for trading, but let us consider as a
benchmark case when both agents trade only the first asset. This is a standard Schied
and Zhang (2018) game. Figure 8.1 exhibits the Nash Equilibrium for the two players.
We observe that the optimal solution for the Directional is very close to the classical
U-shape derived under the Transient Impact Model (TIM)3, i.e., our model when only
one agent is present. However, the solution is asymmetric and it is more convenient for
the Directional to trade more in the last period of trading. This can be motivated by
observing that at equilibrium the Arbitrageur places buy order at the end of the trading
day, and thus she pushes up the price. Then, the Directional exploits this impact to
liquidate more orders at the end of the trading session. We remark that the Arbitrageur
earns at equilibrium, since her expected cost is negative (see the caption).

Now we examine the previous situation when the two traders solve the optimal execu-
tion problem taking into account the possibility of trading the other asset. We define the

2All our numerical experiments are performed with exponential kernel as in (Obizhaeva and Wang
(2013)). Schied and Zhang shows that the form of the kernel does not play a key role for stability, given
that the conditions of Proposition 6.4 are satisfied.

3Given the initial inventory X, the optimal strategy in the standard TIM is ξ = X
eT Γ−1

θ
e

Γ−1
θ e, see for

further details Schied and Zhang (2018).
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Table 8.1 Payoff matrix of expected costs when the Directional and Arbitrageur inven-
tories are equal to (1 0)T and (0 0)T , respectively. We have highlighted in red the Nash
Equilibrium associated with this payoff matrix. The payoff in the i-th row and j-th col-
umn correspond to the game when the Directional and Arbitrageur decide to trade i and
j assets, respectively, i.e., the element in the first row and second column is the payoff
when the Directional trades only the first asset while the Arbitrageur trades both assets.

Arbitrageur
1 Asset 2 Asset

D
ire

ct
io

na
l

1 Asset (0.4882,−0.0370) (0.4935,−0.0412)
2 Asset (0.4836,−0.0334) (0.4885,−0.0377)

cross impact matrix Q =

1 q

q 1

, where q = 0.6. In Figure 8.2 we report the optimal so-

lution where the inventory of the agents are set to be X1 =
(
1 0

)T
and X2 =

(
0 0

)T
.

The Directional wants to liquidate only one asset, but, as clear from the Nash equilib-
rium, the cross-impact influences the optimal strategies in such a way that it is optimal
for him/her to trade also the other asset. In terms of cost, for the Directional trading the
two assets is worse off than in the benchmark case (see the values of E[CT(Ξ∗·,1,·|Ξ∗·,2,·)]

in captions). However, if the Directional trades only asset 1 and Arbitrageur trades both
assets, the former has a cost of 0.4935 which is greater than the expected costs associated
with Figure 8.2. Thus, the Directional must trade the second asset if the Arbitrageur
does (or can do it).

For completeness in Table 8.1 we compare the expected costs of both Directional and
Arbitrageur when the two agents may decide to trade i) both assets, i.e., they consider
market impact game and cross-impact effect, or ii) one asset, i.e., they only consider the
market impact game. It is clear that both agents prefer to trade both assets. Actually,
the state where both agents trade two assets is the Nash equilibrium of the game where
each agent can choose how many assets to trade.

The solution presented above is generic, but an important role is played by the trans-
action cost modeled by the temporary impact. When the temporary impact parameter
θ increases, the benefit of the cross-impact vanishes, and the optimal strategy of the
Directional tends to the solution provided by the simple TIM with one asset and no
other agent. We find that the difference between these expected costs is negative, i.e. it
is always optimal to trade also the second asset, but converges to zero for large θ, see
Figure 8.3 panel (a). Furthermore, it is worth noting that, if S =

∑
k |ξk,2| denotes the

total absolute volume traded by the Directional on the second asset, then limθ→0 S = 0
and limθ→∞ S = 0 as exhibited from Figure 8.3 panel (b). This means, that when the
cost of trades increases, it is not anymore convenient for both traders to try to exploit
the cross impact effect.
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Fig. 8.2 Optimal strategies for a Directional (Ξ∗·,1,·) and an Arbitrageur (Ξ∗·,2,·), where

their inventories are equal to (1 0)T and (0 0)T , respectively. Q =

[
1 0.6

0.6 1

]
, and the

trading time grid is an equidistant time grid with 26 points. The expected costs are equal
E[CT(Ξ∗·,1,·|Ξ∗·,2,·)] = 0.4885, E[CT(Ξ∗·,2,·|Ξ∗·,1,·)] = −0.0377 when θ = 1.5.

8.2 Do arbitrageurs act as market makers at equilibrium?

We now consider the cases when the agents are of different type. In particular, we
focus on the role of an Arbitrageur as an intermediary between two Fundamental traders
of opposite sign. When a Fundamental seller and a Fundamental buyer trade the same
asset(s), are the Arbitrageurs able to profit, acting as a sort of market maker by buying
from the former and selling to the latter?

To answer this question, we compute the Nash equilibrium of a market impact game
with M = 2 assets and J = 3 agents, namely a Directional seller with inventory (1 0)T ,
a Directional buyer with inventory (−1 0)T , and an Arbitrageur. We assume that agents

are risk-neutrals, γ = 0, and Q =

 1 0.6
0.6 1

. As panels (a) of Figure 8.4 show, the

Arbitrageur does not longer trade and the expected costs are 0.1056 and 0 for the two
Directionals and the Arbitrageur, respectively. This indicates that the two Directionals
are able to reduce significantly their costs with respect to the previous case, increasing
their protection against predatory trading strategies and that the Arbitrageur is unable
to act as a market maker. The previous cases are particular examples of the following
more general result.

Proposition 8.1. Under the assumptions of Theorem 7.8, the following are equivalent:
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Fig. 8.3 Figure (a). The y axis shows the difference between the expected cost of the
Directional when he/she consider the cross-impact effect and the Arbitrageur and the
expected cost when he/she places order following the classical one asset TIM model and
the x axis the cost parameter θ. Figure (b). Cumulative traded volume of the second
asset by the Directional when playing against an Arbitrageur as a function of θ. The
inset shows the same curve in semi-log scale. The setting is the same of Figure 8.2.

a) The aggregate net order flow is zero for each asset, i.e.,

Xi,· =
1
J

J∑
j=1

Xi,j = 0 ∀i = 1, 2, . . . ,M ;

b) The optimal solution for an Arbitrageur is equal to zero for all assets.

Proof of Proposition 8.1. Let the j-th trader be an Arbitrageur, i.e., X ·,j = 0 ∈ RM .
Moreover, his/her inventory for the virtual assets is zero, XP

i,j =
∑M
m=1 V

T
i,mXm,j = 0 for

each i = 1, 2, . . . ,M . Then, since for Theorem 7.8 Eq. (7.5) provides the optimal schedule
on each virtual assets i, the optimal schedule of the Arbitrageur for the i-th virtual asset
is characterized by the corresponding XP

i,·.
a) ⇒ b). If Xi,· = 0, ∀i then

X
P
i,· =

1
J

J∑
j=1

XP
i,j =

1
J

J∑
j=1

M∑
m=1

V T
i,mXm,j =

M∑
m=1

V T
i,mXm,· = 0 ∀i.

So, the solution of the Arbitrageurs for each virtual assets is zero and hence also for the
original assets by Theorem 7.8.

b) ⇒ a). If the optimal solution for an Arbitrageur is zero for all assets, then by
Theorem 7.8 and since V is orthogonal, the optimal solution for the Arbitrageur is zero
also for the virtual assets, so that XP

i,· = 0 ∀i and then Xi,· = 0 ∀i.

In other words, when the aggregate net order flow is zero for each asset then there
are no arbitrageurs in the market, i.e., the Nash equilibrium for Arbitrageurs is zero, so
that the optimal schedule corresponds to place no orders in the market.
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Fig. 8.4 Optimal schedule for market impact game with M = 2 assets and J = 3 risk-
neutral agents. Panels (a) exhibit the optimal schedule for a Directional seller, buyer
(with inventory (1 0)T and (−1 0)T , respectively), and an Arbitrageur. Panels (b)
exhibit the optimal schedule for two identical Directional sellers (with inventories (1 0)T ,
respectively), and an Arbitrageur. Blue and red lines are the Nash equilibrium for the
Directional traders. The black line refers to the equilibrium of the Arbitrageur. The
trading time is equidistant with 26 points, where the cross impact is set to q = 0.6, γ = 0
and θ = 1.5.

As a comparison, we consider two identical Directional sellers (with inventories (1 0)T )
and the other parameters are the same as above. Figure 8.4, panels (b), displays the
equilibrium solution. The solution of the Directionals are identical. While the trading
pattern of the Arbitrageur is qualitatively similar to the one of the two agent case (see
Fig. 8.2), the Directionals trade significantly less toward the end of the day. This is likely
due to the fact that it might be costly to trade for one Directional given the presence
of the other. The expected costs of the two Directionals is equal to 0.8911 (which is
approximately two times of the two players game) and −0.0996 for the Arbitrageur.



CHAPTER 9

Instability in Market Impact Games

We now turn to our attention to the study of market stability. Since the seminal work of
Schied and Zhang (2018) we known that, when two risk-neutral agents trade one asset,
stability is fully determined by the behavior at the origin of the decay kernel, see Theorem
2.7 of Schied and Zhang (2018). Here we extend their results for the multi-asset case
and we derive a general result which involves the spectrum of the cross-impact matrix.
However, the proof of Schied and Zhang (2018) cannot1 be extended to the multi-agent
case with J risk-averse agents, even though in the one asset case, as highlighted by Luo
and Schied (2020). Therefore, we study market stability by using numerical analyses
for the general setting of multi-agent and multi-asset case from which we deduce a new
conjecture which is in line with the analyses carried out by Luo and Schied (2020). We
conclude by presenting some advice to policy regulators which want to prevent market
instability.

To clarify better our results, we introduce two definitions of market stability in a
market with M assets and J traders:

Definition 9.1 (Strong Stability). The market is strongly (uniformly) stable if ∀ θ ≥ 0
the Nash equilibrium ξ∗i,j,· ∈X (Xi,j , T) does not exhibit spurious oscillations ∀ Xi,j ∈ R

initial inventory, for all assets i = 1, 2, . . . ,M and agents j = 1, 2, . . . , J .

Definition 9.2 (Weak Stability). The market is weakly stable if there exists an interval
I ⊂ R+ such that ∀ θ ∈ I the Nash equilibrium ξ∗i,j,· ∈ X (Xi,j , T) does not exhibit
spurious oscillations ∀ Xi,j ∈ R initial inventory, for all assets i = 1, 2, . . . ,M and agents
j = 1, 2, . . . , J

We recall that a spurious oscillations is a sequence of trading times such that the orders
are consecutively composed by buy and sell trades, see Chapter 6. Therefore, Schied and
Zhang (2018) showed that for M = 1 and J = 2 the market is not strongly but only
weakly stable where I, the stability region, is equal to [θ∗,+∞) where θ∗ = G(0)/4.

1The proofs provided of Schied and Zhang (2018) rely on general results of Toeplitz matrix, which
cannot be used in the multi-agent framework, since the involved decay kernel matrices are no longer
Toeplitz.
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9.1 Market stability and cross impact structure

In this Section we consider J = 2 risk-neutral agents which trade M > 1 assets. We
study whether the increase of the number of assets and the structure of cross impact
matrix help avoiding oscillations and market instability at equilibrium according to the
previous definitions. To this end, we consider different structures of the cross-impact
matrix Q describing the complexity of the market for what concerns commonality in
liquidity.

We first show that instabilities are generically observed also in the multi-asset case
and that actually more assets generally make the market less stable. For simplicity let
us consider M = 2 assets and a game between a Directional and an Arbitrageur (similar
results hold for different combinations of agents). We choose G(t) = e−t, the cross

impact matrix equal to Q =

 1 0.9
0.9 1

, and we consider θ = 0.3; remember that for

the one asset case the market is stable for this value of θ. Figure 9.1 shows that for this
value of θ the strategies are oscillating and therefore the market is not strongly stable.
More surprisingly, the fact that oscillations are observed for θ = 0.3 indicates that the
transition between the two stability regimes depends on also on the number of assets and
that more assets require larger values of θ to ensure stability. In the following we prove
that this is the case and we determine the threshold value. Figure 9.1 shows also the case
θ = 0. Notably, in this case the oscillations in the second asset disappear. This is due
to the fact that, since Γ1

0, (Γ2
0), the Γ matrix associated with the first (second) virtual

asset is equal to (1 + q)Γ, ((1− q)Γ), the combination of “fundamental” solutions v and
w are the same for the two virtual assets. Thus, at equilibrium the two solutions for the
second asset are exactly zero.

We have shown in a simple setting that having more than one available asset does
not help improving the strong stability of the market and increases the threshold value
between stable and unstable markets. Now, we show that when the number of assets
tends to infinity the market does not satisfy the weak stability condition. Indeed, in the
one asset setting, if we choose a sufficiently large θ the instability vanishes. Therefore,
this raises the question of whether the equilibrium instability is still present when the
number of assets increases. To this end we introduce the definition of asymptotic stability.

Definition 9.3 (Asymptotically weakly stable). The market is asymptotically weakly
stable if it is weakly stable when M →∞.

Given this definition, we prove the following:
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Fig. 9.1 Nash Equilibrium for a Directional and an Arbitrageur, where their inventories
are equal to (1 0)T and (0 0)T respectively. The blue lines are the optimal solution when

θ = 0 and the red lines when θ = 0.3. The trading time has 51 points and Q =

[
1 0.9

0.9 1

]
.

Theorem 9.4 (Instability in Multi-Asset Market Impact Games). Suppose that G is a
continuous, positive definite, strictly positive, log-convex decay kernel and that the time
grid is equidistant. Let (λi)i=1,..,M be the eigenvalues of the cross-impact matrix Q. If
θ < θ∗ the market is unstable, where

θ∗ = max
i=1,2,...,M

G(0) · λi
4 . (9.1)

Proof of Theorem 9.4. Let X1,X2 be the inventories of trader first and second trader,
respectively. In order to show that market is unstable it is sufficient to exhibit initial
inventories which lead to optimal trading strategies with spurious oscillations. WLOG we
may assume that inventories are normalized to 1, i.e., XT

1X1 = XT
2X2 = 1. Therefore,

let us consider X1 = −X2, so that XP
1 = V TX1 = −V TX2 = −XP

2 and the NE
for the i-th virtual assets is fully characterized by the fundamental solutions wi. So,
for each virtual asset the instability is led by the correspondent virtual kernel, i.e., the
kernel relative to the i-th virtual asset which is given by G · λi, where λi is the related
i-th eigenvalues. Then, for the Schied and Zhang instability result we know that if we
want non oscillatory solutions, θ has to be greater than G(0) · λi/4 for all i. However, if
νi denotes the i-th eigenvector of Q, which may be assumed normalized νTi νi = 1, then
when X1 = νi the virtual inventory XP

1 has 1 in the i-th component and zero otherwise.
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Then, Ξ∗,P is a matrix where the i-th row is equal to wT
i and zero otherwise. Therefore,

Ξ∗ = V · Ξ∗,P =
[
ν1| · · ·νi−1|νi|νi+1| · · · |νM

]
· Ξ∗,P =


ν1,iwT

i
...

νM ,iw
T
i

 = νi ⊗wi,

i.e., the NE for the j-asset is given by vj,iwi, so also the stability for the original asset
St is characterized by wi. Then, if θ < θ∗ = maxi=1,2,...,M

G(0)·λi
4 and imax denotes the

position of the maximum eigenvalue, the NE for inventories X1 = −X2 = νimax exhibits
spurious oscillations.

Moreover, if the largest eigenvalue of the cross-impact matrix diverges for M → ∞,
i.e., limM→+∞ λmax = +∞, then the market is not asymptotically weakly stable. The
theorem tells that the instability of the market is related to the spectral decomposition
of the cross-impact matrix, i.e., to the liquidity factors.

We analyze some realistic cross-impact matrices and their implications for the stability
of the Nash equilibrium. Schneider and Lillo (2019) have derived constraints on the
structure of the cross-impact for the absence of dynamic arbitrage. They showed that
the symmetry of the cross-impact matrix is one of these conditions. Mastromatteo et al.
(2017) estimated the cross-impact matrix on 150 US stocks showing that it is roughly
symmetric and has a block structure with blocks related to economic sectors. Specifically,
we consider the one-factor and block matrices.

9.1.1 One factor matrix

We say that Q is a one factor matrix if Q = (1− q)I+ q ·eeT , where e = (1, . . . , 1)T ∈
RM and q ∈ (0, 1). The bounds on q guarantee the positive definiteness of the cross-
impact matrix. Then it holds:

Corollary 9.5. Under the assumptions of Theorem 9.4, if the cross-impact matrix is a
one factor matrix, then the market is not asymptotically weakly stable.

Proof of Corollary 9.5. The eigenvalues of Q are λ1 = 1− q + qM and λ2:M = 1− q,
where v1 = e, the vector with all 1, is the virtual asset associated with λ1. Then, when
M →∞ the first eigenvalue diverges so for Theorem 9.4 we conclude.

This implies that when M increases the transactions cost θ must raise in order to
prevent market instability, since θ∗ = G(0)λmax/4 ∼ G(0)qM/4, because λmax =

1 + q(M − 1).
Figure 9.2 exhibits the equilibrium for a Directional and an Arbitrageur, when θ = 1.5,

q = 0.2 and M = 2000. The inventory of the Directional is 1 for the first 1000 assets
and zero for the others. The solutions clearly show spurious oscillations of buy and sell
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Fig. 9.2 Nash equilibrium when θ = 1.5 between a Directional with inventory
(1, . . . , 1, 0, . . . , 0)T ∈ RM and an Arbitrageur with inventory (0, . . . , 0)T ∈ RM , where
M = 2, 000. The cross impact matrix is a one factor matrix with q = 0.2. The blue lines
exhibits the volume traded for any of the first 1, 000 assets, while the red ones are those
for any of the last 1, 000 assets. The equidistant time grid has 26 points.

orders. Notice that in the one asset case this value of θ gives a stable market. We observe
that the eigenvector corresponding to λmax is given by e, which represents an equally
weighted portfolio. As a consequence, if we consider a Market Neutral agent against an
Arbitrageur the solution becomes stable ∀ θ > (1− q)/4, since both traders have zero
inventory on the first virtual asset. Thus, oscillations might disappear when the inventory
of the agents in the first virtual asset is zero.

A generalization of the above model considers Q as a rank-one modification matrix,
i.e., Q = D+ ββT , where D = diag(1− β2

1 , . . . , 1− β2
M ) and β ∈ RM is a fixed vector.

In this way the cross impact is not the same across all pairs of stocks. We find again
that the market is not asymptotically stable because the threshold increases with M .
Differently from the previous case this is observed also in the case of a Market Neutral
against an Arbitrageur2.

9.1.2 Block matrix

We now assume that the cross impact matrix has a block structure in such a way
that cross impact between two stocks in the same block i is qi, while when the two stocks

2For the sake of simplicity we omit the figure which exhibits the strategies of the two traders and it
is available upon request.
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are in different blocks the cross impact is q, which we assume to be 0 ≤ q < qi ∀i. As
mentioned above, this is consistent with the empirical evidence in Mastromatteo et al.
(2017).

Let us denote with Mi the number of stocks in block i, (i = 1, . . . K), and let Qi =
(1− qi)I + qi · eieTi ∈ RMi ×RMi with qi ∈ (0, 1) and ei = (1, . . . , 1)T ∈ RMi , where K
is the number of blocks. We define the cross impact matrix as:

Q :=


Q1 qe1eT2 · · · qe1eTK

qe2eT1 Q2 · · · qe2eTK
... . . . ...

qeKe
T
1 · · · qeKe

T
K−1 QK

 ,

If the average number of stocks of a cluster tends to infinity when M goes to infinity, we
prove an analogue result as for the one factor matrix case:

Corollary 9.6. Under the assumptions of Theorem 9.4, if Q is a block matrix, where each
block is a one factor matrix, if limM→+∞

M
K → +∞, then the market is not asymptotically

weakly stable.

Proof of Corollary 9.6. We first note that by Theorem 9.4 it is sufficient to prove that
there exists a cluster which is unbounded. Indeed, we observe that

Q = Q̂+ q


e1

e2
...
eK


[
e1 e2 · · · eK

]

where

Q̂ =


Q1 − qe1eT1 0 · · · 0

0 Q2 − qe2eT2 · · · 0
... . . . ...
0 · · · 0 QK − qeKeTK

 .

Then by Theorem 8.1.8 pag.443 of Golub and Van Loan (2013) λ1(Q) ≥ λ1(Q̂) where
λi(Q) denotes the i-th largest eigenvalue of Q and respectively of Q̂. However, the
eigenvalues of Q̂ are given by the eigenvalues of Qi− qeieiT for i = 1, 2, . . . ,K. For each
i, λ1(Qi − qeieiT ) = 1− qi +Mi(qi − q) and the rests Mi − 1 eigenvalues are equal to
1− qi. So, if there exists a cluster such that Mi is unbounded for any value of θ, then
λ1(Qi− qeieTi ) is unbounded and also the respective eigenvalue of Q, so by Theorem 9.4
we conclude that there is no a finite value for θ such that the market is weakly stable.

So, let us first start by fixing the number of cluster to K <∞. Then, when M tends
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Fig. 9.3 Nash equilibrium when θ = 1.5 with inventories for the Market Neutral X0 =
(1, . . . , 1,−1, . . . ,−1)T ∈ RM and for the Arbitrageur Y0 = (0, . . . , 0)T ∈ RM , where
M = 2000. The cross impact matrix is a block matrix with K = 10. The figure exhibits
the equilibria related to one (the first) asset for each block. The trading time grid is
an equidistant time grid with 26 points. Each block has a cross-impact qi equal to
0.1, 0.2, . . . , 0.9 for i = 1, 2, . . . , 9 and 0.95 for the last one.

to infinity at least one of the cluster will increase to infinity, which means that there
exists a cluster such that λ1(Qi − qeieiT ) → ∞ and also the respective eigenvalue of Q
goes to infinity. Therefore, we conclude for Theorem 9.4.

For the general case we conclude by contradiction. If K(M) is the number of clus-
ter for a fixed M , and K(M) → ∞ when M → ∞ then the set {Mi : i ∈ N} is
unbounded. Indeed, if supi∈N Mi = S < ∞, then the average number of stocks in a

cluster is
∑K(M)

i=1 Mi

K(M) ≤ S for all M and this is in contradiction with the assumptions that
limM→+∞

M
K(M) → +∞. So since {Mi : i ∈ N} is unbounded we conclude that there is

no finite value of θ such that it is greater than all the eigenvalues of Q when M →∞.

As an example, we consider K = 10 equally sized blocks from an universe M =

2, 000 assets and set q = 0.05. With this kind of cross impact matrix, we have K large
eigenvalues whose eigenvectors correspond to virtual assets displaying oscillations. The
optimal trading strategies for stocks belonging to the same block are the same. Thus in
Figure 9.3 we show the Nash equilibrium for the first asset in each of the 10 blocks when
the two agents are a Market Neutral and an Arbitrageur. The oscillations are evident, as
expected, in all traded assets.

We now study how the critical value θ∗ varies when the number of assets increases
for different structures of the cross impact matrix and therefore of the liquidity factors.
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Comparing different matrix structures is not straightforward since the critical value de-
pends on the values of the matrix elements. To this end we consider the set of symmetric
cross impact matrices of M assets having one on the diagonal and fixed sum of the off
diagonal elements. More precisely let h ∈ R, then we introduce for each M the set

AMh := {A ∈ RM×M |AT = A,
N∑
j=1

∑
i>j

aij = h, aii = 1},

One important element of this set is the cross impact matrix Q1fac ∈ RM×M of a one
factor model (see above) with off-diagonal elements equal to 2h/M(M − 1).

Theorem 9.7. For a fixed h ∈ R, let us consider the related one-factor matrix Q1fac ∈
AMh , then

λ1(Q) ≥ λ1(Q1fac), ∀Q ∈ AMh ,

i.e., among all the matrices with one in the diagonal and constant sum of the off-diagonal
terms, the one-factor matrix (i.e., where all the off-diagonal elements are equal) is one
of the matrices with the smallest largest eigenvalue.

Proof of Theorem 9.7. The largest eigenvalue of a symmetric M ×M matrix Q can be
defined as

λ1(Q) = max
x 6=0

xTQx

xTx
.

If we consider the vector e = (1, 1, ..., 1)T , we have the lower bound

λ1(Q) ≥
eTQe

eTe
=

∑
i,j qij
M

.

The largest eigenvalue of a generic matrix Q ∈ AMh is then bounded by

λ1(Q) ≥ 1 + 2h
M

.

But the one-factor matrix Q1fac = (1− q)IM + qeeT , with q = 2h
M(M−1) , belongs to AMh

and has
λ1(Q1fac) = 1 + (M − 1) 2h

M(M − 1) = 1 + 2h
M

,

i.e., the lower bound for the max eigenvalue of matrices in AMh . Therefore, ∀Q ∈ Ah it
holds that

λ1(Q) ≥ λ1(Q1fac).

Moreover, we note that the previous is not a strict inequality. Indeed, both a diagonal
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block matrix, with identical blocks, and the one-factor matrix have the same maximum
eigenvalue. Let consider the block diagonal matrix with K identical clusters

Q :=


Q(ρ) 0 · · · 0

0 Q(ρ) · · · 0
... . . . ...
0 · · · 0 Q(ρ)

 ∈ RM×M ,

where Q(ρ) ∈ RMc is a one-factor matrix and Mc ·K = M . We observe that Q ∈ AMh if
and only if ρ = 2h

(Mc−1)M , therefore

λ1(Q) = 1 + (Mc − 1)ρ = 1 + 2h
M

.

This theorem implies that among all the cross impact matrices belonging to AMh , the
one factor case is among the most stable cross-impact matrices. For example, it is direct
to construct an example of a block diagonal cross impact matrix with non-zero off block
elements (i.e., similar to what observed empirically) and to prove that its critical θ∗ is
larger than the critical value for the one factor matrix having the same value h of total
cross-impact.

In Appendix C we analyze the case of two risk-neutrals agents trading one asset with
different trading skills.

9.2 Market stability in multi-agent and multi-asset market im-
pact games

We now study how the stability of the market depends on the number of agents, J ,
together with the number of assets, M , risk-aversion parameter γ, and number of trading
times N . Specifically, we compute numerically the critical value of θ after which the
market is not stable. However, we first observe that to study the stability it is sufficient
to analyze the fundamental solutions of each virtual assets.

9.2.1 Characterization of the fundamental solutions

If all agents have the same inventory, i.e., X ·,j = Z ∀j where Z ∈ RM is a fixed
inventory, then also the virtual inventories are all equal, since XP

·,j = V TZ ≡ ZP ∀j.
Then, XP

i,· =
1
J

∑J
j=1X

P
i,j = ZPi and by Eq. (7.5) the solution for all agent j in virtual

asset i is given by Ξ∗,Pi,j = ZPi,jvi. So, let V =
[
ν1|ν2| · · · |νM

]
the matrix of eigenvectors

of Q, which we may assume to be normalized, νTi νi = 1, if X ·,j = νm ∀j then the
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optimal schedule on the virtual assets is given

Ξ∗,Pi,j =

vm, i = m

0, ∀ i 6= m
, ∀j

since XP
·,j = V TX ·,j has 1 in the m-th position and zero otherwise, so Ξ∗·,j = V · Ξ∗,P·,j =

νm⊗ vm, ∀j, which means that the strategies for all traders is fully characterized by the
fundamental solution vm.

If Xi,· = 0, ∀i then X
P
i,· = 0 and by Eq. (7.5) the solution for each agent j is given

by Ξ∗,Pi,j = XP
i,jwi, i = 1, 2, . . . ,M .. Thus, as for the previous case, if the inventory of

the j-th trader X ·,j = νm (and if Xi,· = 0 for all i), then his/her optimal schedule on
the virtual assets is given by

Ξ∗,Pi,j =

wm, i = m

0, ∀ i 6= m
,

so that Ξ∗·,j = V · Ξ∗,P·,j = νm ⊗wm,.
We summarize the previous results as follows:

a) If all agents have the same inventories, i.e. X ·,j = νm ∀j, then the Nash equilibrium
for j is proportional to vm, i.e, Ξ∗·,j = νm ⊗ vm.

b) If Xi,· = 0, ∀i and X ·,j = νm, then the Nash equilibrium for j is proportional to
wm, i.e, Ξ∗·,j = νm ⊗wm.

We observe that, respectively, if vm, or wm, exhibits spurious oscillations also Ξ∗·,j is
affected by these oscillations, respectively. We recall that market is unstable if a particular
initial inventory leads to optimal trading strategies with spurious oscillations. So we can
restrict the stability analysis on the fundamental solutions among all assets.

9.2.2 Numerical analysis of stability

From the results of Section 9.1 we known that market stability is affected by the
cross-impact structure in a market with two risk-neutral agents. Thus, in this section we
want to study how the number of agents J , the risk-averse parameter γ together with the
number of assets M might affect the market stability in the multi-agent and multi-asset
case. We also examine the role of number of trading step N , even if we expect to have
no role in stability, as also observed by Luo and Schied (2020) for the one asset case. In
particular, we compute numerically θ∗ such that when θ < θ∗ the market is unstable. As
observed in Section 9.2.1 it is sufficient to examine the oscillations of the fundamental
solutions on the virtual assets.
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We consider the following setting with J risk-averse agents, where γ is the risk-averse
parameter, and M assets:

• The time grid is equidistant TN = {kTN |k = 0, 1, . . . ,N}, where T = 1 and N ∈N;

• The decay kernel is exponential, G(t) = e−t;

• The cross-impact matrix is a one factor matrix, Q = (1 − q)IM + qeeT , where
q = 1/2;

• S0
t follows a Bachelier model where the covariance matrix is equal to Q.

The study of Luo and Schied (2020) points out a conjecture on θ∗ in the one-asset case,
where it comes up that

sup
N ,γ

θ∗(1, J ,N , γ) = G(0) · J − 1
4 ,

therefore, given the results of Section 9, our conjecture is that

sup
N ,γ

θ∗(M , J ,N , γ) = G(0) · (J − 1)λmax
4 , (9.2)

where λmax is the maximum eigenvalue of Q. We recall that in the above setting, λmax =
1 + M−1

2 and G(0) = 1. Thus, in the first analysis we set N = 300, γ = 10 and we
compute θ∗ as a function of M and J . Figure 9.4 exhibits the corresponding level curves.
It is worth noticing that the relation between J and M is very close to that of Equation
9.2. Indeed, the average relative discrepancy on θ∗ is of the order of 10−3. Finally, we
examine how θ∗ depends on N and γ for fixed M and J , which are M = J = 11, see
Figure 9.5 which illustrates the related surface3. Overall, the numerical results suggests
that for fixed M and J the relation (9.2) holds when N is not too small, since for the
chosen parameter Eq. (9.2) predicts θ∗ = 15.

Therefore, under generic assumptions, when either the number of agents J or of assets
M increase, market turns out to be unstable unless the transaction costs parameter θ
increases appropriately. This result depends on the assumption that impact strength
does not depend on the number J of agents. In Remark 7.3 we observed that there are
theoretical arguments suggesting that the kernel depends on J as Gsc(t) := J−β ·G(t),
where β ≥ 0 is the scaling parameter. The question is how the critical value θ∗ depends
on J in this case. We observe that for the existence and uniqueness of Nash equilibria
Theorem 7.8 still holds, i.e., Gsc(t) is a scaled version of G(t) and so it preserves the
same property of strictly positive definiteness of G(t). Furthermore, we observe that

3We also compute the same surface for M = J = 3 and M = J = 5, and we obtain similar results,
available upon request.
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all the previous analyses are performed with β = 0. Therefore, according to relation
(9.2), if we introduce this scaling parameter β, we expect that when M and J are fixed
supN ,γ θ

∗(M , J ,N , γ) decreases with β, since Gsc(0) = J−βG(0). It is therefore expected
that the critical transaction cost level is a decreasing function of β.

We numerically compute the value of θ∗ as a function of β and J by fixing M = 50,
N = 50, and γ = 10, and we plot in Figure 9.6 the contour plot. As expected, for fixed
J the critical transaction cost level is a decreasing function of β. Moreover, replacing G
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Fig. 9.6 Numerical estimates of level curves of θ∗ as a function of β and J for fixed
M = 50, N = 50, and γ = 10. The level curves computed according to relation (9.2) are
very similar, with a relative discrepancy of the order of 2 · 10−2.

with its scaled version Gsc, we compute the average relative error with respect to (9.2),
which we find to be of the order of 2 · 10−2. Again, the numerical results do not reject
the conjecture (9.2). Therefore, according to relation (9.2), when all other parameters
are fixed the critical value is driven by the ratio

J − 1
Jβ

,

and we have three possible scenarios.

• β > 1. Market is more prone to stability. An increasing in competition shall act as
a stabilization effect which will reduce the critical value,

• 0 ≤ β < 1. Market is more prone to instability, since the critical value increases
with J .

• β = 1. This is an uncertain scenario, since we do not known if an increasing in the
number of traders may affect market stability.

We have mentioned in Remark 7.3 that some theoretical arguments suggest β = 1/2,
while empirical studies provide evidence that β > 0. Fig. 9.6 shows that the critical
value θ∗ strongly depends on the scaling exponent β, thus its estimation is determinant
for assessing the stability properties of markets.
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9.2.3 Possible policy recommendations

We conclude by briefly presenting some policy recommendations we draw from the
model when the objective is to avoid the occurrence of instabilities. The conjecture above
indicates that the critical transaction cost level θ below which instabilities are present
grows with the impact coefficient G(0) (or its scaled version), the number of traders
J , and the largest eigenvalue λmax of the cross impact matrix. The latter quantity is
typically an increasing function of the number of assets M , for example when the cross-
impact is described by a one-factor matrix. Thus, to ensure stability, transaction cost
parameter θ should be set taking into account the above variables, and be increased or
decreased when they significantly change4.

Clearly, an increase of the transaction costs might discourage trading activity, there-
fore decreasing overall market participation and possibly price discovery. For example, in
the one period multi-agent Kyle model of Bagnoli et al. (2001) the mean square deviation
of the market price from the fundamental value goes to zero with the number of agents
as (J + 1)−1. Thus regulators should fix transaction costs by balancing the contrasting
objectives of increasing traders participation/price discovery and stabilizing markets.

An important aspect to consider in this trade-off is the way in which market impact
of a single agent depends on the number of agents, i.e., what we modeled with the
scaled impact Gsc, since β affects significantly θ∗. Despite some theoretical and empirical
results are available (see Remark 7.3), this is still an open issue, which is certainly worth
of investigation. A policy regulator may decide to increase or reduce transaction costs to
stabilize market depending on the scaling parameter β.

4In principle, regulators could also act on G(0) by implementing measures making the market more
liquid to individual trades, for example modifying the cost of limit orders.



Appendix C

Instability and heterogeneity of agents’ trading skills

While in the Schied and Zhang framework the two investors are identical, real markets
are characterized by huge heterogeneity in trading skills. For example, some agents (e.g.
HFTs) are much faster than others, some agents use more sophisticated trading strategies
and have smaller trading costs, etc. Is this traders’ heterogeneity beneficial to market
stability? Do HFTs destabilize markets? In this Appendix we study the case of two
risk-neutrals agents trading one asset, but, differently from Schied and Zhang (2018), we
assume that the two agents are different in their trading skills. We consider separately
three sources of heterogeneity: different permanent impact, different temporary impact
(or trading fees), and different trading speed. If not specified we identify traders with
their respective inventory and we denote the first and second trader as agent X and Y ,
respectively.

In the first setting, we study the case when the two agents affect with a different
impact the price process. This might correspond to more sophisticated traders who are
able to trade more efficiently, for example using better algorithms for posting orders in
the market. There is an alternative interpretation, more in line with traditional market
microstructure. Permanent impact is considered a measure of the informativeness of
trades, thus an agent with a very small permanent impact might be interpreted as a
noise trader. In our model the two interpretations are indistinguishable. For analytical
convenience, we assume the kernel G(t) is the same for the two agents and we introduce
two scaling parameters βi (i = 1, 2) such that the price process dynamic affected by
trading becomes1

SΞ
t = S0

t −
N∑
k=0

G(t− tk)(J−β1ξ1,k + J−β2ξ2,k), (C.1)

where J = 2. We observe that when two agents have different β’s this does not compro-

1Note that this is equivalent to saying that the G(t) of the two agents are proportional one to each
other, i.e. the two agents differ in the value of G(0).
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Fig. C.1 Nash equilibrium for two Directional sellers when θ = 1.5. The left (right) figure
is referred to the agent with β1 = 0 (β2 = 1). The trading time grid is an equidistant
grid with 26 points and the decay kernel is G(t) = exp(−t).

mise the market stability. Indeed, the previous equation can be rewritten as

SΞ
t = S0

t −
N∑
k=0

G(t− tk)(ξ̃1,k + ξ̃2,k), (C.2)

where ξ̃1,k, ξ̃2,k are the strategies associated with the transformed inventories X̃1 =

J−β1X1, X̃2 = J−β2X2. Therefore, the Nash equilibrium of Eq. C.1 is related to the
equilibrium of Eq. C.2, i.e., the are equal up to constants, and in particular the sta-
bility is not compromised. We just mention that if, for instance, β1 = 0 and β2 = 1,
i.e. the impact of the second agent is half the one of the first agent, and both agents
are Directional sellers, the sophisticated agent Y has the advantage as if he/she should
trade half of his volume. Figure C.1 exhibits the Nash equilibrium for both traders. As
expected, the optimal trading pattern is different for the two traders. More interestingly,
the trading profile of the agent with small impact resembles the one of an Arbitrageur
(see for comparison Fig. 8.1). Thus, from the point of view of the trading profile, an
Arbitrageur with zero inventory or a Fundamental trader with small impact behaves in
a similar way at equilibrium. Remember that the latter can be seen either as a skilled
trader or as a noise trader. Moreover, the expected cost for the β = 0 and β = 1 sellers
are equal to 0.6521 and 0.2582, respectively. When both agents have β = 0, the costs are
equal to 0.7975, thus the reduction of impact of one agent is indeed beneficial to both
traders.



145

0 5 10 15

k

0

0.05

0.1

0.15

0.2

0.25

0.3

V
o

lu
m

e
 t

ra
d

e
d

Directional X

=1

=1

0 5 10 15

k

0

0.05

0.1

0.15

0.2

0.25

0.3

V
o

lu
m

e
 t

ra
d

e
d

Directional Y

=0.5

=1

Fig. C.2 Red lines are the Nash equilibrium when both traders have θ = 1. Blue lines
are the solution when the first trader has θ = 1 and the second has θ = 0.5. The trading
time grid is an equidistant grid with 16 points and the decay kernel is G(t) = exp(−t).

In the second setting, we consider two agents with different temporary impact pa-
rameter θ. This might correspond again to the case where one of the two agents has
more sophisticated trading strategy or to a market where different class of traders are
allowed to pay different fees. This is indeed quite standard for example in ATS where
liquidity providers have lower fees than liquidity takers. In particular, we want to test
whether only one agent with θ below threshold is sufficient to destabilize the market or
if both agents must have θ < θ∗. We denote with θX and θY the temporary impact
parameter for the two agents. We study the Nash equilibrium by solving numerically the
Schied and Zhang (2018) game in the setting where both agents are Directional seller
with X1 = X2 = 1. When both agents are above threshold (θ∗ < θY < θX = 2θY , see
Figure C.2), we observe that the more significant difference between the two solutions is
in the trading schedule of low θ agent, who trades more at the beginning of the trading
session. It is interesting to consider the changes in cost. When θ = 1 for both agents, the
individual cost is 0.7970. Suppose now that θY is reduced to 0.5 (for example because a
new type of agent enters the market or because the fee schedule changes for some class
of traders). As expected, the expected cost of agent Y is reduced (0.7317), but there is a
negative effect on the other agent X who sees her cost soar to 0.8286. Thus, the decrease
of θ for a class of agents impacts negatively the other market participants.

When we examine the case when one of the agents has a θY smaller than the critical
value θ∗ = 0.25, we find numerical evidences that the equilibrium becomes unstable also
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Table C.1 Expected costs of the two agents X and Y as a function of the trading speed
p (probability of arriving first on the market) of Y . When p = 1 the agent Y places
orders always before of X.

E[CT (ξ1|ξ2)] E[CT (ξ1|ξ2)] p

0.7970 0.7970 1/2
0.8173 0.7765 2/3
0.8274 0.7662 3/4
0.8333 0.7601 4/5
0.8568 0.7360 1

for the Directional agent for which θX > θ∗. This suggests that in a market with few
sophisticated traders with small temporary impact (HFTs) or agents allowed to pay lower
fees, the instability comes up for all the agents in the market, regardless for their own θs.
In other words, market instability is driven by the agent with the smallest θ and having
even few sophisticated traders (in terms of costs or fees) destabilizes the market.

The third and last setting assumes that the two traders are different because one of
the two is faster than the other. A fast trader could represent, for example, an HFT.
In market impact games one has to decides who arrives first in the market at each time
step, because the laggard is going to pay the impact of the trade of the leader. In the
standard setting, this is decided by a fair Bernoulli trial, which means that on average
each trader is the leader half of the times. We modify this and for each trading time tk
the Bernoulli game εk deciding the trading priority, is no longer fair, i.e.,

εk =

1, with probability p

0, with probability 1− p
p ∈ [0, 1]

where εk = 1 means that Y places the k-th order before X, so that X has to take into
account the impact of Y in her cost. Let us denote with ξ1 (ξ2) the Nash equilibrium for
X (Y ), then we observe that E[CT (ξ1|ξ2)] = E[1

2ξ
T
1 Γθξ1 + ξ

T
1 Γpξ2] and E[CT (ξ2|ξ1)] =

E[1
2ξ

T
2 Γθξ2 + ξ

T
2 Γ1−pξ1], since

N∑
k=0

ξ1,k

pξ2,k +
k−1∑
m=0

ξ2,mG(tk − tm)

 = ξT1 Γpξ2 where (Γp)ij =

Γ̃ij , i 6= j

p ·G(0), i = j
.

Figure C.3 exhibits the Nash equilibrium of the two traders for several values of p and
Table C.1 reports the corresponding expected costs. We observe that when p increases,
the optimal solution for the HFT Y is to liquidate slightly faster in the first period
and then sell the remaining part of the inventory with a lower intensity, with respect
to the solution with p = 0.5, at the end of the trading session. For the slow trader X
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Fig. C.3 Nash equilibrium in function of the trading speed p (probability of arriving first
on the market) of Y . The red dotted lines are the Nash equilibrium when both traders
have the same trading speed, i.e., p = 0.5. The time grid has 16 points, θ = 1 and
G(t) = exp(−t).

the behavior is exactly opposite to the one of the fast trader. However the differences
between Nash equilibria for different p are quite small, while the greatest benefit for the
HFT is the smaller trading costs (see Table C.1). Moreover, ask whether the presence of
a fast trader modifies the critical value of θ when the instability starts. Figure C.4 shows
how θ∗ varies as a function of the trading speed p for a games between two Directional
sellers2. Since we compute the critical value using a numerical method there are some
small oscillations. We observe a small but significant trend of θ∗ as a function of p. This
result indicates that the presence of an HFT makes the market more prone to oscillations
and instabilities. However the effect is relatively small compared to the other possible
sources of instabilities studied in the previous sections.

Finally, we analyze the game between a Directional seller X and an Arbitrageur Y ,
when p ∈ [0, 1]. We recall that when p is close to 1 the Arbitrageur Y places orders almost
always before of the Directional. Figure C.5 exhibits how the shape of the equilibrium
varies as a function of p. In particular, the solution of the Arbitrageur is very weakly
affected by p, while for the Directional we observe that when p is close to 0 the optimal
schedule converges to a U-shape form, putting more order at the beginning at the session

2We also repeat the same experiment in the presence of an Arbitrageur against a Directional and we
find analogous results.
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Fig. C.4 Numerical estimates of the critical value θ∗ as a function of the trading speed
p (probability of arriving first on the market) of the HFT. We set N = 6 for the time
grid and G(t) = exp(−t). Both agents are Directional sellers.

compared to the standard solution with p = 0.5. This can be motivated by the fact that
when X always places orders before Y basically there is no game3 for the Directional and
the optimal solution is given by the classical U-shape of the TIM. However, it seems to be
suggestive that the U-shape is the optimal way to exploit the impact of the Arbitrageur
when the Directional is an ultra-fast trader. Vice versa, when p is close to 1, the solution
of the Directional tends to concentrate more order at the end of the trading session
similarly to the standard solution with p = 0.5. So, we may conclude that when the
Arbitrageur is very fast with respect to the Directional, the optimal schedule is provided
by an asymmetric solution where the seller tends to concentrate more orders when the
Arbitrageur puts buy orders.

3Since Y is an Arbitrageur there is no competition to liquidate the asset.
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Fig. C.5 Nash equilibrium as a function of the trading rate p of the Arbitrageur Y . The
red dotted lines are the Nash equilibrium when both traders have the same trading rate,
i.e., p = 0.5. The time grid has 16 points, θ = 1 and G(t) = exp(−t).
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CONCLUSION

In this thesis we started by looking for possible mispricing relations to build profitable
investment strategies and we finally analyzed how the (microscopic) interactions among
traders may affect trading conditions and market instability. We summarize in the fol-
lowing points the main contributions.

• In Chapter 2, we have considered generalizations of the recently proposed ICA iden-
tification approach for SVAR models in two directions: the singular and noisy case.
We have shown how to combine the collapsing procedure, developed in the context
of a state space model, together with the ICA technique, in a new identification
approach that we term Collapsing-ICA. We have discussed in details under which
set of assumptions the proposed methodology remains feasible and the consistency
of the procedure as T goes to infinity. In particular, we have shown that when the
VAR is singular we can identify the structural shocks from the reduced ones thus
preserving the fundamentalness property. Moreover, when the noise is homoskedas-
tic and the system amplification is homogeneous we can consistently estimate the
mixing matrix Z and so we may conduct the IRFs analysis directly on the struc-
tural shocks. In the singular case, standard ICA identification techniques would
recover the IRFs for all the selected variables. However, this could be misleading in
this context as it implicitly assumes more structural shocks than the ones actually
driving the system. On the other hand, the C-ICA procedure is well adapted to
singular cases allowing to use all the information contained in the observed variables
to consistently identifying the lower dimensional system of the structural shocks.
The empirical analysis is in agreement with the theoretical and simulated results.
We have compared the IRFs obtained with the identification scheme of Gouriéroux
et al. (2017) on a system with 3 variables, with that of C-ICA on a system of 4
variables, including the output gap, which was instead discarded by Gouriéroux
et al. (2017) in favor of the unemployment gap. The IRFs analysis and the variance
decomposition confirm that C-ICA correctly merges the information contained in
all the variables thus allowing a more precise and coherent identification of the low
dimensional system of structural shocks driving the economy.

• In Chapter 3, we have proposed a framework that can be viewed as a generalization
of the traditional DCF model of firm valuation, in which the point estimate of the
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traditional approach is replaced with an estimated probability distribution of fair
values. In this way one can derive both an estimate of the fair value of a company
and a measure of the degree of uncertainty associated with it. The proposed val-
uation framework is named Stochastic Discount Cash Flow method, SDCF, which
is rooted in fundamental analysis and based on an econometric forecasting model
of future firm’s cash flow. We have stressed that our approach is invariant to the
considered valuation model.

• In Chapter 4, we have shown the importance of a distributional approach to val-
uation through different exercises to investigate the misvaluation effect. We have
shown that a simple volatility-adjusted misvaluation indicator, derived from the
estimated fair value distribution, possess predictive power with respect to stocks
future returns. Moreover, by longing undervalued stocks and shortening overvalued
stocks, we are able to build a misvaluation factor, the long-short valuation LSV fac-
tor, that captures novel information not accounted for in previously explored factor
models and posses a significant explanatory power of realized abnormal returns of
both portfolios and individual stocks. In this spirit, our analysis is similar to those
performed in Hirshleifer and Jiang (2010) and Chang et al. (2013), but our approach
is different. In Hirshleifer and Jiang (2010), the authors introduce a misvaluation
factor using the special market operations (e.g., repurchase, new issue of equity and
debt) the company underwent in the previous two years. In Chang et al. (2013)
the company misvaluation is captured by the residual of a sector-wise regression of
company’s past returns on a set of market factors and a few key firm-specific finan-
cial indicators. In both cases, the misvaluation indicator is strictly linked to firm
market dynamics and emerges from the comparison of the relative performances, in
the long or short term, of different stocks. Conversely, our indicator is based on the
comparison of firm’s prevailing market prices and the fundamental value estimated
starting from balance sheet data, through a careful estimation of the company’s
future operating performances. The different nature of the misvaluation measure is
apparent in their weak correlation and in the fact that our factor loadings are more
relevant for the firm level analysis.

• In Chapter 5, we have proposed two recommendation systems based on the compar-
ison of observed market prices with the fair value distributions obtained through the
introduced SDCF method. The Single-Stock Quantile system derives recommen-
dations for each company, considering only how far the price of the stock is from
the median of the computed fair value distribution. The Cross-Sectional Quantile
system builds a mispricing indicator for each company and then derives recom-
mendations by comparing the indicators across all companies. While the former
method fully uses all information available from the fair value distribution, the
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latter is more robust with respect to possible fair value estimation biases and also
guarantees a constant number of stocks in each recommendation bucket. For each
recommendation system, we have built buy and sell side portfolios and we have
estimated the abnormal returns, both gross and net trading costs, earned from di-
verse investment strategies. The Buy Sides provides a significant average annual
abnormal gross return of about 6% percent, after controlling for market risk, size,
book-to-market, and price momentum effects, which doubles the market abnormal
gross return (of Our Universe), which is about 3%. Contrary to the portfolios based
on analysts’ stock recommendations (i.e., the I/B/E/S recommendation system),
our investment strategies (portfolios) are always consistent, as buying stocks with
a more favorable recommendation invariably earns a greater annualized log-return
than buying stocks with less favorable recommendation. Finally, we have shown
how to use the uncertainty provided by analysts and thus how to improve their rec-
ommendations, by relying on the CSQ methodology, which exhibits the robustness
of the cross-sectional approach to issue consistent recommendation system.

Overall, the above results confirm the importance of assessing the degree of uncer-
tainty associated with the valuation of a company. Nonetheless, the present study can be
extended in several directions. The univariate models we have adopted in describing the
firm’s log-revenues dynamics can be replaced by multivariate time-series models, possibly
exploiting the cross-sectional information available when explicitly considering the tem-
poral dynamics of different balance-sheet variables. Another relatively straightforward
application of the SDCF methodology is comparing the obtained fair value distribution
with the company’s fair value implied by the price distribution of call/put options, e.g.,
using the principle of maximum entropy of Buchen and Kelly (1996). This compari-
son could shed new light on the process by which the temporary misvaluation that our
indicator seems able to capture is progressively eliminated by market price adjustments.

Then, we have used market impact games to investigate several potential determinants
of market instabilities driven by finite liquidity and simultaneous trade execution of more
agents. Specifically, we have extended the results of Schied and Zhang (2018) and Luo
and Schied (2020) in several directions.

• First, in Chapter 7, we have considered a multi-asset market where we have intro-
duced the cross-impact effect among assets. We have found the Nash equilibrium,
we have analyzed the optimal trading strategies provided by the equilibrium, see
Chapter 8, and we have studied the impact of transaction costs on liquidation
strategies.

• In Chapter 9, we have studied the stability of the market when the number of assets
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increases and we have found that for most realistic cross-impact structures the
market is intrinsically unstable. Even if asymptotically the instability arises in all
cases, we have found that when the structure of the cross-impact matrix is complex,
for example it has a block or multi-factor structure, the instability transition occurs
for higher values of the impact parameter. Thus, all else being equal, the temporary
impact (or the transaction fees) must be larger in order to observe stability. Finally,
we have numerically analyzed market stability in the general model with J risk-
averse agents trading M assets. Our results are in agreement with the study of
Luo and Schied (2020) and we have found clear evidence that more competition in
the market compromises its stability together with an increasing in its complexity
(in terms of cross-impact structure). However, when the impact of single agents is
scaled by an appropriate parameter, the instability seems to be attenuated, thus
leaving an opportunity to policy maker to preserve stability.

An interesting extension of the market impact games framework could be the gener-
alization in a derivative contracts market model, where agents trade derivative contracts
together with the related underlying assets. This generalization could also lead to an
extension of the proposed stability analysis, where we may analyze the impact of deriva-
tive prices on market stability. In particular, we may investigate how oscillations in
derivative prices could trigger instabilities in the underlying asset dynamics. However,
modeling market impact on derivatives is not straightforward and it can be challenging,
even if we consider the one-agent case. A recent contribution in this direction is provided
by Tomas et al. (2021), where a Kyle cross-impact model on derivatives is studied, and
it can be considered as a first starting point.
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