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Abstract 

Groundwater pollution is a major concern as it is related to the health of humans and 

the environment. Groundwater pollution is a major concern, as such pollution reduces 

groundwater quality and increases pollutant migration. In mining areas, groundwater 

may be contaminated by several substances due to the geochemical reactions and acid 

mine drainage typical of abandoned mine sites. Hence, identifying the specific sources 

of specific contaminants is a complex issue. 

The most important first step in the management and remediation of 

contaminated groundwater aquifers is to characterise unknown contaminant sources 

(source identification). Often, the hydrogeological field data available for use in source 

identification is very sparse. In addition, hydrogeological and geochemical parameter 

estimates and field measurements are often uncertain. In complex contaminated sites 

like abandoned mines, the geochemical processes are very complex. Therefore, 

characterizing unknown contamination sources in terms of location, magnitude and 

timing and determining contaminant pathways can be very difficult. The chemically-

reactive nature of contaminant species contributes to the complexity of modelling 

geochemical transport processes. Similarly, source identification inverse problems are 

often non-unique and ill-posed. Unlike conventional groundwater contaminant 

transport simulations, which usually provide stable and well-behaved solutions, 

inverse groundwater contaminant transport problems, such as those involving 

unknown groundwater source identification problems, may result in non-uniqueness, 

non-existence and instability. There may also be increased computational challenges 

due to a paucity of data.  

Another related step is the optimal design of monitoring networks based on 

initial arbitrary well locations to accurately estimate contaminant source 

characteristics. Since the accuracy and reliability of the source characterization process 

largely depends on the use of suitable monitoring locations and spatiotemporal 

groundwater contaminant concentration data, it is essential to implement efficient 

monitoring networks that provide optimal measurements under uncertain conditions. 

This is mostly the case when concentration measurements are sparse and taken at 

arbitrary monitoring locations. When monitoring networks are optimally designed, 
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accurate and reliable groundwater data can be obtained. This improves the 

identification of unknown contaminants in the source characterization process.  

Firstly, this thesis proposes a three-dimensional groundwater flow and reactive 

transport model of a complex, heterogeneous, contaminated, mine site aquifer. 

Equilibrium and kinetic reactions are incorporated into the model to determine the 

ongoing acid mine drainage and geochemical interactions occurring at the site. The 

proposed model has the capability to predict the pathways of contamination by 

multiple species. Comprehensive calibration and validation of this model are 

performed. The model is representative of the current situation at the mine site. The 

proposed model can be applied to other complex contaminated aquifers at a regional 

scale, with transport problems controlled by several reactions, not limited to the 

chemical processes of aqueous complexation, precipitation-dissolution, adsorption-

desorption, ion-exchange, redox and acid-base reactions, and mixed equilibrium and 

kinetic reactions. The numerical results demonstrate the applicability and limitations 

of the proposed model. 

A new optimization formulation for solving the objective functions of several 

individual species from distributed sources is described. Five distinct species 

undergoing geochemical processes are characterised in this thesis. A linked 

simulation-optimization approach is adapted to characterize unknown groundwater 

contaminant sources. Numerical flow and reactive transport models are coupled to an 

optimization model and solved iteratively to obtain optimal source characteristics. The 

complexity of characterizing multiple species from distributed sources is handled 

using a robust optimization algorithm (adaptive simulated annealing, ASA) that 

provides global optimum solutions for the source characterization of individual species 

simultaneously by collectively solving nonlinear objective functions. The ASA 

algorithm deals with the fitting of source parameters and retains the nonlinearities 

inherent in individual species optimization models used to solve complex source 

identification problems.  

Multifractal modelling is employed to examine its scalable ability to model 

groundwater contamination. It provides potential spatial and temporal dependence in 

groundwater monitoring networks. Fractal modelling is used to map the contaminated 

zones in the study area. Fractal mapping provides an adequate description of 

contamination zones, which can be categorized as impacted, mildly impacted and un-
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impacted. Potential locations for monitoring networks suggested by the fractal model 

are used as input for the implementation of monitoring network design. The potential 

locations suggested by fractal modelling and arbitrary monitoring locations are 

optimized. The ASA algorithm is used to solve a multi-objective optimization model 

based on the arbitrary monitoring network and that of monitoring network by the 

fractal model. The influence of fractal modelling is determined by error analysis. 

Concentration data from arbitrary networks and optimal networks are used as inputs 

to identify unknown sources. A multi-objective optimization formulation is utilized to 

determine monitoring networks that are optimal for improving the accuracy of 

contaminant source estimates. Pareto-optimal solutions are obtained, which 

demonstrate enhanced source identification accuracy and reliability when 

concentration data from an optimally-designed monitoring network is used as input for 

unknown groundwater contaminant source identification.  

Finally, the proposed approaches are implemented to solve typical problems in 

contaminant transport. The performance evaluations of the developed methodologies 

is evaluated for several complex groundwater pollution scenarios involving distributed 

mineral waste deposits that are sources of reactive chemical species at a former mine 

site. These methodologies are also applied to a real-life contaminated aquifer to 

demonstrate their potential applicability. The performance of the linked source 

characterization model is also evaluated by applying it to a real case study—a complex, 

abandoned mine site in the Northern Territory, Australia. Extensive performance 

evaluation results demonstrate the accuracy and applicability of the source 

characterization and monitoring network design techniques developed in this thesis. 
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period 
 

Sp1, sp2, sp3, 

sp4 =  

 species numbers one, two , three and four respectively 
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Chapter 1: Introduction 1 

Chapter 1: Introduction 

Groundwater is subject to contamination from a variety of sources. Identifying these 

sources is a critical step in effectively remediating and preserving groundwater. The 

process of identifying contaminant source characteristics is the predominant procedure 

required to implement groundwater management strategies. When pollutant 

concentrations are measured at monitoring locations, the data can be practically and 

effectively used for estimating unknown pollutant source characteristics, namely, their 

location, magnitude and duration of activity. To improve the estimation of pollution 

source characteristics, implementation of a monitoring network that is designed 

according to optimal monitoring locations is necessary.  

The present study discusses two main techniques for determining groundwater 

contaminant characteristics: 1) the linked simulation-optimization approach and 2) 

monitoring network design methodologies. In the linked simulation optimization 

method, an optimization algorithm is used to obtain optimal solutions for source 

characteristics. In the monitoring network design methodology, multifractal modelling 

is used to facilitate optimal monitoring network designs that provide improved,  

efficient, and reliable determination of contaminant source characteristics. 

Performance evaluation of these developed methodologies is conducted for 

groundwater contamination occurring in geochemically reactive aquifer systems. The 

applicability of the developed methodologies is demonstrated using real-life scenarios 

of contaminated aquifers with several distributed contaminant sources. 

Globally, groundwater is the most-extracted natural resource, with a withdrawal 

rate of 982 km3 per year. Many countries depend on withdrawn groundwater for 

domestic supplies. In Australia, groundwater constitutes 30% of overall water usage. 

In regions where evaporation is greater than rainfall, groundwater is the most common 

water supply. Annually, approximately 3500 GL of groundwater is used for various 

purposes. Economic sectors depend heavily on the use of groundwater and have the 

highest usage percentage, while a smaller usage percentage is attributed to domestic 

activities. The agricultural sector accounts for nearly 60% usage, while mining and 

manufacturing industries account for 12% and 17%, respectively. A meagre amount 

of 5% is used for household water supply and 9% is used as injection into portable 
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water supply systems. As a country’s population gradually expands, the demand for 

groundwater also increases. The effects of a growing population and increasing 

anthropogenic activity include increasing demands for groundwater resources. 

Increasing pressures from various manmade activities have led to reductions in and 

mismanagement of groundwater resources; hence, there is a need to protect and 

manage this valuable resource. The map of Australia in Figure 1.1 describes the 

percentages of the populations of various regions that are dependent on groundwater. 

 

 

Figure 1.1: Map of Australia indicating the dependence percentages of regional populations that are 
reliant on groundwater. Credit: NCGRT, 2013. 

 

Unlike surface water, for which obvious measures can be taken to keep people 

from contaminating it, groundwater has no direct preventive measures. Contaminants 
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infiltrate aquifer systems after travelling through layers of soil, sediment and rocks. 

Once groundwater is polluted, the pollution may go unnoticed for years or even 

decades. There are two main causes of groundwater contamination: naturally-

occurring contaminants and anthropogenic contaminants.  

Natural contaminants, by nature, exist in soils and geological formations. These 

include nutrients like phosphate and ammonia, hydrogen sulphide from decomposed 

organic materials, and radionuclides and radioactive emissions from the geological 

matrix. The elements iron and manganese also occur naturally in many groundwaters. 

Anthropogenic contaminants mostly originate from human activities that affect the 

environment. Such contaminants can be either organic, inorganic or radioactive. 

Chemicals used in mining, farming, industrial manufacturing and domestic activities 

have the possibility to contaminate the natural environment by dissolution through the 

aqueous phase. Anthropogenic contaminants can also enter the groundwater system 

through leakage from landfills, tailing storage facility, pipes, mine waste damp, and 

oil pipes.  

In Australia, one of the common modes of anthropogenic contamination is heavy 

metal pollution from waste rock dumps and mining tailings. Australia has a very large 

and diverse mining sector, which contributes to around 8% of the GDP and about 60% 

of exports. The mining sector has been a driving force for much of the exploration and 

extraction of Australia's precious minerals and the development of associated 

industries. With the high amount of mining activity, there is a need to ensure that it 

does not leave a lasting impact on groundwater resources, including contamination. 

This research work focuses on groundwater contamination from mining waste, 

particularly from abandoned mine sites. This category of groundwater contamination 

is generally termed acid mine drainage (AMD) and is a common source of 

contamination at many mine sites across the world. Acid mine drainage is a prominent 

problem with most hard rock and metal sulphide mines. While this research focuses 

on groundwater contamination from distributed sources such as waste rock dumps, 

open mine pit ponds/lakes and mine tailings, even rocks in undisturbed environments 

can cause similar groundwater contamination by acid rock drainage without any 

anthropogenic influence.  

Acid mine drainage is a severe environmental pollution source. It occurs when 

acids and metals leach from waste rock into the environment and pollute the 
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groundwater system. This is a result of the oxidation of pyrite, which is mostly found 

in combination with metal minerals. Since mine tailings and waste rocks have a high 

surface area due to their small grain size, these mine wastes are more prone to 

generating AMD, thereby discharging acids and metals into groundwater systems. 

Metals are dissolved by acid drainage and react with other metals as they move through 

the groundwater system, producing daughter species that can cause complex 

contamination. The processes of AMD in the subsurface are complex and involve 

several geochemical reactive processes. To understand these subsurface processes, the 

application of geochemical reactive modelling can be an important part of 

hydrogeological and geochemical investigations at such mine sites.  

Stopping the ongoing and increasing rates of acid mine drainage generated by 

mine waste is critical in protecting groundwater resources. The principal step 

necessary for protecting and managing contaminated aquifers is identifying the 

contamination source characteristics and predicting current and future groundwater 

flows and contaminant transport. When a contaminant is detected, efforts must be 

made to identify the source and monitor it, then develop a remediation and clean up 

strategy for the groundwater system. Clean-up is capital-intensive and time-consuming 

and may span a lengthy period. Considering how much groundwater is extensively 

polluted, there is an urgent need for efficient procedures for preventing, detecting and 

remediating groundwater contamination. Groundwater pollutants can stay undetected 

for several years after their sources become active. Identification of contaminant 

source characteristics is therefore essential in solving source identification problems 

in complex conditions. This can provide a platform for effective groundwater pollution 

prevention and remediation.  

 

1.1 UNKNOWN GROUNDWATER CONTAMINANT SOURCE 

CHARACTERIZATION 

In solving groundwater contaminant source identification problem, understanding the 

contaminant characteristics is important. Contaminant sources can be characterized in 

terms of source numbers, strengths, locations and release duration. Often, sources 

locations and characteristics are unidentified as released information is non-existent 

and the source may have long ceased to exist. What may be available is information 

on the past distribution of a contaminant at one or more arbitrary locations within a 
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contaminated aquifer. This may be critical when determining the source characteristics 

and plume distribution from limited data. Several challenges impede the source 

identification process, including uncertainties in the prediction of source flux in the 

aquifer, insufficient field concentration data and the aquifer’s responses to hydraulic 

and geochemical stresses (Datta et al., 2013). The process of simulating groundwater 

contaminant transport is done using mathematical models that solve the flow and 

transport processes that constitute advection, dispersion and chemical reaction. The 

process is a forward type of modelling used when hydraulic parameters and source 

flux values are known. Their solutions for the spatial and temporal distributions of 

contaminant concentrations tend to be uniquely and properly constrained. The 

solutions for these simulations can be used to predict the flow and transport of 

contaminants in an aquifer. However, in source identification problems where several 

unknowns need to be identified, groundwater contaminant transport simulations are no 

longer a forward modelling process because a straight-forward solution is impossible. 

 In contrast to stable and definitive models of groundwater contaminant transport 

processes, models of unknown groundwater contaminant problems are more non-

unique, non-existent and unstable (Sun, 1996). The problem of characterizing a 

contaminant source is an inverse problem in groundwater contaminant transport. 

Therefore, when inverse modelling is done, because of insufficient field data and the 

ill-behaved nature of the problem, the process of modelling unknown contaminant 

sources becomes much more challenging and difficult. Various classifications of the 

inverse problem exist in the literature, which include identification of contaminant 

source locations (Gorelick et al., 1983; Wagner, 1992; Mahar et al., 2000; Neupauer 

et al., 2000; Neupauer & Wilson, 2005), estimation of the number of possible pollution 

sources (Ayvaz, 2010), estimation of release history (Skaggs & Kabala, 1994, 1995; 

Alapati & Kabala, 2000; Sidauruk et al., 1998) and reconstruction of the historical 

distribution of a contaminant (Michalak & Kitanidis, 2004; Bagtzoglou & Atmadja, 

2003).  

Many researchers have studied the area of groundwater systems optimization 

over the years (Gorelick, 1983). Most researchers in the field of groundwater 

optimization studies have addressed the issues of remediation design (Mantoglou & 

Kourakos 2007; Zheng & Wang 1999), identification of pollution sources (Aral et al., 

2001; Bagtzoglou et al., 1991, 1992, 2005, 2014; Singh et al., 2004) and saltwater 
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intrusion (Abarca et al., 2006; Bhattacharjya & Datta, 2005, 2009; Cheng et al., 2000). 

The linked simulation-optimization approach used over the years has been practical 

and efficient in solving contaminant source identification problems (Datta et al., 2009, 

2017; Esfahani & Datta, 2015, 2016; Harrouni et al., 1996, 1997; Kitanidis, 2004; 

Katsifarakis et al., 1999; Lesnic et al., 1998; Michalak & Ayvaz, 2010; Prakash & 

Datta, 2014; Singh & Datta, 2004; Wagner, 1992). 

 In the linked simulation-optimization approach, a simulation model 

representing aquifer processes is coupled with an optimization model to solve the 

unknown groundwater identification problem. Early linked simulation-optimization 

approaches solved the inverse problem by utilizing linear programming and response 

matrixes together with forward simulation. In recent times, advanced algorithms such 

as genetic algorithms and adaptive simulated annealing have been incorporated in the 

linked simulation-optimization methodology for solving the inverse problem. These 

emerging evolutionary algorithms are able to solve source characterization problems 

by reaching global optimal solutions, making them convenient and reliable for use with 

the linked simulation-optimization approach. A linked optimization simulation 

approach is typically feasible and effective for solving unknown source identification 

problems. 

 

1.2 MONITORING NETWORK DESIGN DEDICATED TO SOURCE 

CHARACTERIZATION 

Collecting groundwater data from monitoring points is essential to contamination 

assessment and groundwater contamination mitigation. The decision to place 

monitoring wells at the right locations within the right time frame to collect 

groundwater data is important yet a challenging task. This is so because groundwater 

monitoring is an expensive task.  The primary objectives of a monitoring network 

design are: minimizing the contaminated area, minimizing the total cost of the 

monitoring system and maximizing detection probability. When these objectives are 

met, the network has reliable capabilities in detecting contaminant concentrations and 

tracking contaminant movements and plume coverages before they exceed acceptable 

limits. Designed monitoring networks prevent severe groundwater contamination of 

the environment at the same time as optimizing the amount of concentration data 

obtained. When designed monitoring networks are used in source characterization, 
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these concentration data improve the accuracy and efficiency of identifying unknown 

groundwater contamination sources. 

Groundwater data collection from monitoring wells is important for evaluation 

of the impacts of resource development. Knowing the time and location to position 

monitoring wells is important for groundwater administrators, mainly because 

groundwater monitoring is expensive. Numerical modelling can provide predictive 

data regarding possible water quality changes stemming from resource development. 

However, there is often high uncertainty in these predictions, which makes it 

challenging to undertake investment decisions. In this study, we propose a method for 

optimizing monitoring network designs in which many plausible groundwater quality 

outcomes are considered and synthesized to help in the design of the monitoring 

network. 

The most important step in contaminated aquifer remediation and groundwater 

resource management is effective source characterization. Effective source 

characterization requires concentration data to be measured across the contaminated 

site. In real-life situations, several factors, such as incomplete concentration data and 

limited monitoring wells, makes it challenging to obtain enough data to reflect the true 

state of the contaminated site. In view of such constraints and limitations, new 

approaches are needed to optimally design effective monitoring networks that provide 

reliable contaminant concentration measurements that can improve the accuracy of 

source identification (Datta & Dhiman, 1996). Prakash and Datta (2015) implemented 

a sequential monitoring network design that provides better identification of source 

characteristics. One of the important factors associated with the optimal design of a 

monitoring network is the initial arrangement of the potential monitoring well 

locations. In this study, multifractal modelling is utilized to obtain potential well 

locations based on aerial mapping of contaminated and uncontaminated zones. The 

maps delineate the scope of the contamination zones by identifying contamination 

boundaries. With the contamination boundary information obtained from multifractal 

modelling, identification of potential monitoring wells is more achievable. The 

locations of these potential monitoring wells, as well as the concentrations measured 

there, are used as input to an optimal design model. Multi-objective optimization is 

used to solve the optimal monitoring network design model. 
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The proposed methodology solves a two-objective optimal monitoring network 

design model utilizing a C++ based adaptive simulated annealing algorithm. The 

optimization model is linked to a calibrated groundwater simulation model. Even with 

constraints on the number of monitoring locations, the designed monitoring network 

improves the source identification results. The optimal monitoring locations obtained 

decrease the likelihood of missing the effects of potential contaminant sources on 

concentration measurements. A designed monitoring network can reduces the extent 

of non-uniqueness in the measured set of possible aquifer responses to corresponding 

geochemical stresses, i.e contaminant sources. Sequential designed and implemented 

optimal monitoring networks can provide relevant feedback for identifying source 

locations, and therefore, can facilitate efficient characterization of groundwater 

pollution sources. 

 

1.3 RESEARCH OBJECTIVES 

The aim of this research study is to develop methods based on optimization to 

characterise unknown groundwater contamination sources in a hydrogeologically and 

geochemically complex heterogeneous anisotropic aquifer with reactive multiple 

species transport processes.  

In previous studies, researchers have typically studied point or ideal-shaped non-

point contaminant sources in solving source identification problems, especially when 

utilizing the optimization approach. Although many groundwater contamination 

processes can be simulated by considering these kinds of sources, they cannot be used 

to determine the influences of distributed areal groundwater contamination sources in 

real life. This is an important problem, particularly in mining sites where groundwater 

contamination from mining activities affects human health, vegetation and water 

resource systems. Therefore, optimally identifying distributed areal groundwater 

contamination sources and their associated individual multiple reactive species is a 

necessary step before developing a remediation strategy. The objective of this study is 

to propose a linked simulation-optimization approach to solve groundwater 

contamination source identification problems involving distributed sources and 

consideration of individual contaminants. 
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Contaminant source characterization/identification in complex contaminated 

sites, like operational or former mine sites, is made even more complex by the 

distributed nature of the sources, the presence of multiple reactive chemical species, 

and varying acidity in the environment caused by acid mine drainage. Due to the scale 

of these studies, the sparsity of available field measurement data and uncertainties 

related to the nature of chemical reactions and hydrogeological parameter estimates, 

the source characterization problem is even more complex in highly contaminated 

mine sites.  

When there is little or no information available regarding source locations and 

pollution magnitudes, characterizing sources becomes very difficult. Having 

insufficient or limited field data on contaminant concentrations measured at arbitrary 

monitoring locations increases the difficulty. In the case of real-life source 

identification problems, where distributed sources are present, there may be multiple 

sources of distinct contaminant species with different points of entry into the aquifer 

system and unique species movements. The key aims of this study are to develop 

methodologies to optimally characterize unknown contaminants from spatially and 

temporally distributed sources of multiple reactive species, and to improve 

contaminant source identification using an optimally designed monitoring network in 

a contaminated mine site aquifer. The performance of the developed methods is 

evaluated by using a contaminated aquifer site of an abandoned uranium mine site in 

the Northern Territory of Australia. 

 

1.3.1  Specific objectives  

The specific objectives of this work are: 

• To calibrate and validate a subsurface, multicomponent, three-dimensional 

flow and multiple reactive chemical species simulation model of a 

contaminated aquifer. 

• To develop a methodology for characterising unknown reactive species 

from distributed sources using a linked simulation-optimization approach.  

• To design and implement a dedicated monitoring network that enhances the 

accuracy and efficiency of the characterization of distributed contamination 

sources. 
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• To apply the developed methodologies to a real site contaminated by 

previous mining activities and affected by acid mine drainage . 

• To evaluate the performance and practicability of the developed 

methodology by applying it to a real-life contaminated mine site aquifer 

controlled by complex geochemical reactions. 

 

1.4 ORGANIZATION OF THE THESIS  

 The organization of the thesis and an outline of its chapters are presented below: 

Chapter 1 provides a brief introduction and background to the problem, and the 

main objectives of this research. 

Chapter 2 presents a detailed review of literature related to source identification 

problems and monitoring network designs. This chapter distinguishes between the 

multiple types of source identification problems and presents approaches to solving 

them. A comprehensive review of the different tools used in such studies is also made. 

More focused literature reviews relevant to each chapter are also provided at the 

beginnings of the other chapters. 

Chapter 3 presents the development of a three-dimensional multispecies reactive 

flow and transport model of a geochemically-complex abandoned mine site 

contaminated by acid mine drainage. The proposed model details all the possible 

geochemical reactions occurring and how they affect groundwater quality. Details of 

the calibration and validation procedures, as well as the daughter products of multiple 

contaminant species, are addressed. 

Chapter 4 deals with the design and implementation of efficient source 

characterisation methodologies that are suitable for use at a complex contaminated 

mine site. A calibrated flow and transport simulation model that addresses multiple 

species reactive transport processes for the aquifer site is integrated with a source 

characterization optimization model. The optimization model consists of an 

optimization algorithm that seeks to determine a set of source characteristics based on 

contaminant concentrations simulated (estimated) by the flow and transport simulation 

model and comparison of these with concentrations measured in the field. In this 

chapter, a new optimization formulation is used to characterise individual reactive 
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species undergoing geochemical reactions based on the locations of distributed 

sources. The performance of the proposed optimization formulation is evaluated using 

a real contaminated mine site in the Northern Territory, Australia. 

Chapter 5 develops a monitoring network design that improves the 

characterisation of unknown groundwater contaminant sources. This chapter presents 

a multi-objective optimization method for designing groundwater concentration 

monitoring networks. The method is useful in designing new optimal monitoring 

networks, redesigning existing ones, and increasing the extent of existing monitoring 

networks. Multifractal modelling is used to define potential well locations and 

contaminant plume boundaries. Combining the results of the multifractal modelling 

and multi-objective optimization processes yields a Pareto-optimal design for a 

monitoring network that achieves accurate groundwater contaminant source 

characterization and cost-effectiveness. The developed methodology is evaluated 

using contaminant concentration data obtained from the designed network (for 

performance evaluation purposes only, the concentration data are estimates 

(simulated)  of the calibrated and validated simulation models solved for the source 

identification optimization model). This procedure is utilized to test the performance 

of the source identification model and the monitoring network design. It compares 

source identification results based on measurements from the designed monitoring 

network, with those based on concentration measurements obtained from an existing 

arbitrary monitoring network.  

Chapter 6 provides a concluding discussion of this study and makes 

recommendations for further research in this area.  

The main literature review for this study is presented in the following chapter. 
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Chapter 2: Literature Review 

This chapter briefly discusses the body of literature relevant to characterising 

groundwater contaminant sources. The first section of this chapter describes the 

various approaches that have been used to solve these problems. Additional variations 

of these problems, involving unknown pollutant source characteristics and source 

identification, are reviewed. The second section in this chapter recounts the numerous 

methodologies developed for designing monitoring networks, particularly in the 

context of pollutant source identification. The final section provides an overview of 

literature related to the various tools and techniques used for numerical simulation of 

groundwater flow and transport and for optimization. 

 

2.1 POLLUTANT SOURCE IDENTIFICATION BACKGROUND 

In the past two decades, researchers have developed a keen interest in solving the 

problem of identifying groundwater pollutant sources. Most of these pollutants are 

noticed at the early stages or even after they cease activity. Pollutant source 

identification is viewed as an inverse problem. To solve it, questions such as: When 

was the pollutant released from the source? (release history); Where is the pollutant’s 

source? (source location); and How much pollutant flux was released from the source? 

(source magnitude) need to be answered. These questions are mostly addressed as 

estimation functions of the history of contamination. Identification of pollutant source 

characteristics in terms of magnitude, location and activity duration is described as an 

inverse problem which is generally ill-posed (Yeh, 1986; Datta, 2002). Several 

approaches to solving it have been documented (Atmadja & Bagtzoglou, 2001b; 

Michalak & Kitanidis, 2004a, b; Neupauer et al., 2000; Sun et al., 2006a, b). These 

methods can be categorized as follows: heat transport inversion, contaminant transport 

inversion consisting of optimization approaches, probabilistic and geostatistical, 

analytical solutions, and regression and direct methods (Bagtzoglou &Atmadja, 2005). 

Comprehensive reviews of these methods are discussed in Atmadja and Bagtzoglou 

(2001b); Michalak and Kitanidis (2004a, b); Neupauer et al., (2000); and Sun et al. 

(2006a, b). In general, an inverse problem is considered well-posed if the following 
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conditions are satisfied: a solution exists, the solution is unique and the solution is 

stable (Datta, 2002). Additional methods developed over the years can be accessed in 

Morrison et al. (2000), Chadalavada et al. (2007) and Amirabdollahian and Datta 

(2013), which contain extensive literature reviews of methods that focus on 

groundwater contaminant source identification. 

2.1.1 Solving the Source Identification Problem 

Two different methodologies exist for solving source identification problems. 

The first approach involves solving differential equations backwards in time (inverse 

problem) by using techniques that overcome the problems of non-uniqueness and 

instability. These techniques include the random walk particle method (Bagtzoglou et 

al., 1991, 1992), the Tikhonov regularization method (Skaggs & Kabala, 1994), the 

quasi-reversibility technique (Skaggs & Kabala, 1995), the minimum relative entropy 

method (Woodbury & Ulrych, 1996), Bayesian theory and geostatistical techniques 

(Snodgrass & Kitanidis, 1997), the adjoint method (Neupauer & Wilson, 1999, Li et 

al., 2007), the non-linear least-squares method (Alapati & Kabala, 2000), the 

marching-jury backward beam equation method (Atmadja & Bagtzoglou, 2001) and 

genetic algorithms (Aral et al., 2001; Mahinthakumar & Sayeed, 2005). 

The second approach to solving source identification problems involves a 

simulation-optimization approach consisting of a forward-time contaminant transport 

simulation model with an optimization algorithm. The optimization techniques in this 

category are linear programming and least-squares regression analysis (Gorelick et al., 

1983), statistical pattern recognition (Datta et al., 1989) and non-linear maximum-

likelihood estimation (Wagner, 1992). This approach avoids the problems of non-

uniqueness and stability associated with formally solving inverse problems, but the 

iterative nature of the simulation models usually requires high computational effort. 

Mahar and Datta (1997, 2000) used non-linear programming with an embedding 

method that eliminates the necessity for external simulation since the governing 

equations of flow and solute transport are directly incorporated in the optimization 

model as binding constraints. Artificial neural networks (Singh et al., 2004) offer an 

alternative method of simulation that is computationally effective. Mirghani et al. 

(2006) proposed a grid-enabled simulation-optimization approach to solving problems 

that require a large number of model simulations. 
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2.1.2 Linked Simulation-Optimization Approach to Source Characterization  

The evolution of the linked simulation-optimization approach to source 

characterization began with Datta et al. (1989), who developed an expert-system 

embedding pattern-recognition technique for pollution-source characterization. The 

pattern recognition technique was based on stochastic dynamic programming, which 

minimized losses due to recognition errors. This pattern recognition model was utilized 

as a screening model for optimization-based source characterization models. 

Wagner (1992) developed an optimization-based methodology for simultaneous 

estimation of model parameters and source characterization. In his work, Wagner used 

an inverse model as a non-linear maximum-likelihood estimation problem. Estimates 

of hydrogeological and source parameters were based on measurements of hydraulic 

head and pollutant concentration. 

Mahar and Datta (1997, 2001) were the first to combine optimal source 

characterization with the design of a groundwater quality monitoring network to 

improve the efficiency of the source characterization process. An embedding 

technique was used in which the simulation model was embedded as a binding 

constraint in the optimization model. They applied their method to a hypothetical 2-D, 

homogeneous, isotropic and saturated aquifer with a conservative pollutant plume in a 

two-step process. In the first step, an optimization model was used to identify an 

unknown pollution source based on observation data. In the second step, different 

pollutant plumes were simulated using perturbed sources. These realizations of 

pollutant plumes were used within an integer programming model to determine the 

optimal locations of monitoring wells. Pollutant concentration measurements from 

these monitoring wells were used in a non-linear optimization model to obtain more 

accurate estimates of sources. Mahar and Datta (2000) were also able to estimate the 

magnitude, location and duration of pollutant sources using a non-linear optimization 

technique. Datta et al. (2009a) used an optimal dynamic monitoring network design to 

identify groundwater pollution sources. 

Aral et al. (2001) formulated the pollutant source characterization problem as a 

nonlinear optimization model, in which pollutant source locations and release histories 

are defined as explicit unknown variables. The optimization model minimizes the 

residual errors between observed and simulated pollutant concentrations at observation 

locations. Simulated concentrations are implicitly embedded in the formulation 
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through the simulation models. Repeatedly solving these models is computationally 

intensive but is a necessary feature of the optimization process. A progressive genetic 

algorithm (PGA) was applied to solve the optimization problem. 

Singh et al. (2004) and Singh and Datta (2007) used a trained, multilayer, feed-

forward artificial neural network (ANN) for the simultaneous estimation of pollution 

source characteristics and hydrogeological parameters. The universal function 

approximation capability of the ANN was utilized to estimate the source 

characteristics and flow and transport parameters. The ANN was trained on data 

patterns that consisted of a set of source fluxes and corresponding temporally-varying 

simulated concentration measurements. The methodology was evaluated with varying 

degrees of concentration measurement error. 

Mahinthakumar and Sayeed (2005) investigated and compared several hybrid 

optimization approaches that combine genetic algorithms with a number of local 

search approaches for reconstructing the release histories of pollutant sources. The 

methodology was evaluated for a three-dimensional, heterogeneous flow field 

considering multiple sources. The results indicate that hybrid optimization methods, 

which combine an initial global heuristic approach (for example, a genetic algorithm) 

with a gradient-based local search approach (for example, conjugate gradients), are 

very effective in estimating flux release histories. 

Singh and Datta (2006) used a simulation-optimization approach for 

characterising unknown groundwater pollution sources. Its performance was evaluated 

with combinations of source characteristics, data availability conditions and 

concentration measurement error levels. The main advantage of this method is that the 

numerical simulation model can be externally linked to the optimization model. This 

approach solves source characterization problems involving complex aquifers with 

multiple pollution sources. 

Yeh et al. (2006) proposed an approach called SATS-GWT that combines 

simulated annealing (SA), Tabu Search (TS) and the three-dimensional groundwater 

flow and solute transport model (MODFLOW-GWT) to estimate the source location, 

release concentration and release period. The source location is selected by TS within 

a suspected source area. Then, SA is used to optimally estimate the release 

concentration and release period. The search for an optimal estimate of these unknown 

source characteristics is terminated based on the best objective function value. The 
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performance of this method was evaluated for homogeneous and heterogeneous 

aquifers with transient flow conditions. 

He et al. (2009) presented a coupled simulation-optimization approach for the 

optimal design of petroleum-contaminated groundwater remediation strategies 

involving uncertainty. This approach has several advantages as it (1) addresses 

stochasticity in the modelling parameters used to simulate the flow and transport of 

non-aqueous phase liquids (NAPLs) in groundwater, (2) provides a direct and rapid -

response bridge between remediation strategies (pumping rates) and remediation 

performance (pollutant concentrations) via proxy models, (3) alleviates the 

computational cost of searching for optimal solutions, and (4) gives confidence levels 

for the optimal remediation strategies obtained. 

Datta et al. (2009b) developed a methodology for simultaneous source 

identification and parameter estimation in groundwater systems in which a simulation 

model is externally linked to a nonlinear optimization model. The simulator defines 

the flow and transport processes and serves as a binding equality constraint. The search 

direction is determined by a Jacobian matrix in the nonlinear optimization model, 

which links the groundwater flow-transport simulator and the optimization method. 

This method addresses the limitations in embedding discretised flow and transport 

equations as equality constraints in the optimization process. 

Ayvaz (2010) developed a linked simulation-optimization model in which the 

locations and release histories of pollution sources are treated as explicit decision 

variables. The MODFLOW and MT3DMS software packages are used to simulate the 

flow and transport processes in the groundwater system. These models are then 

integrated with an optimization model based on the heuristic Harmony Search (HS) 

algorithm. 

Datta et al. (2011) developed a methodology for linking a classical nonlinear 

optimization model to a flow and transport simulation model. The essential link 

between the simulator and the optimization method is the derivatives or gradient 

information required for the optimization algorithm. This methodology lacks some of 

the computational limitations of some earlier developed methodologies. It uses 

nonlinear programming with flow and transport process governing equations 

embedded as equality constraints within the optimization model. 
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Jha and Datta (2011) presented a linked simulation-optimization method for 

solving source characterization problems. An adaptive simulated annealing (ASA) 

optimization algorithm provided superior performance compared with similar methods 

that use GAs. Jha and Datta (2012b) demonstrated the superior performance of ASA 

over GA in solving groundwater source characterization problems. An overview of 

different optimization-based methodologies for characterizing unknown groundwater 

pollution sources is given in Chadalavada et al. (2011b). 

Jha and Datta (2013) designed an ASA algorithm-based solution. This method 

proved to be computationally efficient in the optimal identification of source 

characteristics, in terms of execution time and accuracy. Although moderate levels of 

error were found in the estimated parameters and concentration measurements, the 

method is computationally efficient. 

Prakash and Datta (2013) developed a technique that uses a dedicated monitoring 

network design and implementation process to screen and identify possible source 

locations. This procedure combines spatial interpolation of contaminant concentration 

measurements with a simulated annealing optimization algorithm to design an optimal 

monitoring network. This method has advantages when used as a screening model for 

subsequent accurate identification of pollution sources in terms of location, magnitude 

and activity duration. 

Prakash and Datta (2013) developed an approach for estimating groundwater 

pollution concentrations and identifying their sources. This approach combines the 

spatial interpolation of concentrations with a simulated annealing optimization 

algorithm to optimally design a monitoring network. The approach also provides 

information on plausible source locations that can be used in an optimal source 

characterization model to accurately estimate the locations, magnitudes and durations 

of pollution activity. This idea can be applied to various groundwater pollution 

scenarios where pollutants have been detected. The method performs well with very 

small amounts of initial pollution concentration data. This capability of identifying 

pollution source locations with very limited data is significant in improving the 

accuracy of source characterization using a formal approach. 

Datta, Prakash, Campbell and Escalada (2013) presented a methodology for 

improving the accuracy of groundwater pollution source identification using 

concentration measurements from a heuristically designed optimal monitoring 
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network. This type of network is constrained by a maximum number of monitoring 

locations. This methodology uses genetic programming (GP) and linked simulation-

optimization to reconstruct the flux histories of unknown conservative pollutant 

sources based on limited amounts of spatiotemporal pollution concentration data. The 

significance of this approach was demonstrated by evaluating its performance in an 

illustrative study area. The results demonstrated its efficiency in source identification 

when concentration measurements from a monitoring network were used. 

Prakash and Datta (2014) used a simulation-optimization model for efficient 

source identification. This model incorporated a GP-based impact factor that was used 

to design an optimal monitoring network. Concentration data from the network is then 

used in an SA-based model. 

Prakash and Datta (2014) proposed an alternative optimization-based source 

identification model to simultaneously estimate source flux release histories and 

initiation times. These were used as explicit decision variables that were optimally 

estimated by a decision model. 

Amirabdollahian and Datta (2014) proposed an optimal source identification 

model that incorporates an ASA optimization algorithm with numerical flow and 

transport simulation models to identify contaminant source characteristics. The fuzzy 

logic concept was used to identify the effect of hydrogeological parameter uncertainty 

on groundwater flow and transport simulation. The fuzzy membership values 

incorporate parameter reliability into the optimization model. The potential 

applicability of this method was demonstrated by applying it to an illustrative study 

area. Incorporation of a fuzzy model within a source identification model increased 

the applicability of the contaminant source detection models in real-life contaminated 

aquifers. 

Jha and Datta (2015b) utilized ASA as an optimization algorithm for distributed 

source characterization in complex study areas. The optimal solutions obtained show 

that the linked simulation-optimization-based methodology is potentially applicable to 

the characterization of spatially-distributed pollutant sources, such as those typically 

present at abandoned mine sites. 

Esfahani and Datta (2016) used GP models as surrogates for reactive species 

transport in groundwater to achieve optimal reactive contaminant source 
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characterization. This design reduces the computational stress of running a numerical 

simulation several times. 

Datta et al. (2017) designed a linked simulation-optimization method comprising 

a reactive transport simulation model (PHT3D) linked to an SA-based optimum 

decision model. It was used to address difficulties in identifying the potential sources 

and pathways of multiple species of chemically-reactive contaminants, which can 

make the source characterization process more challenging. 

 

2.2 MONITORING NETWORK DESIGN FOR UNKNOWN 

GROUNDWATER CONTAMINANT SOURCE CHARACTERISATION 

Monitoring networks are integral to groundwater management. Monitoring network 

designs may have different objectives, according to the aquifer properties and 

budgetary constraints. Monitoring networks are essentially installed for extracting 

information that achieves the underlying monitoring objectives. A large body of 

literature exists that deals with the design of monitoring networks for different 

groundwater quality management objectives. 

Designing an optimal monitoring network is dependent on various factors such 

as aquifer parameters, management objectives, and specific constraints and 

limitations. Some of the objectives of monitoring networks that have been proposed 

over the last two decades include detection of contamination (Loaiciga et al., 1992; 

Loaiciga & Hudak, 1993), reducing the cost of groundwater quality monitoring 

(Loaiciga, 1989; Fethi et al., 1994), multiple objective groundwater monitoring 

network design (Reed & Minsker, 2004) and source identification and redundancy 

reduction using feedback information (Dhar & Datta, 2007; Datta et al., 2009). The 

methods used include sampling strategy in space and time using a Kalman filter (Kollat 

et al., 2011; Reed & Kollat, 2013), long-term monitoring using a multi-objective 

simulation-optimization model with uncertainties (Luoa et al., 2016), and optimal 

contaminant source characterization by integrating sequential-monitoring-network 

design and source identification (Prakash & Datta, 2015). 

Meyer and Brill Jr (1988) presented a methodology for designing an optimal 

monitoring network that incorporates contaminant movement simulation under 

uncertain conditions. The Monte Carlo technique was used to apply uncertainty in 
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transport parameters in the contaminant concentration distribution. In addition, Meyer 

et al. (1994) developed a method that incorporates conditions of uncertainty in a 

monitoring network design. They illustrated three objectives: i) minimizing the 

number of observation wells in the monitoring network, ii) maximizing the probability 

of detecting a pollutant leak and iii) minimizing the expected area of pollution at the 

time of detection. 

Chandalavada and Datta (2007) extended the optimal monitoring network design 

methodology to include uncertainty in both source and aquifer parameters. A genetic 

algorithm and a geostatistical tool, kriging, are used for solving the optimization model 

and for computing the variances of estimated concentrations at potential monitoring 

locations, respectively. Their study applied the following two objective functions to 

obtain an optimal design of monitoring locations: i) minimization of the summation of 

unmonitored pollutant concentrations at potential locations where the probable 

concentrations are high and ii) minimization of estimated concentration variances at 

potential locations. 

Dhar and Datta (2007) also developed a method for the optimal design of well 

locations using optimization models. Based on a transient pollutant transport process, 

an optimal design of a monitoring network was obtained using dynamic well locations 

in different time stages. This time-varying network design is less costly than designing 

all well locations at a single stage. Dhar and Datta (2010) presented a method for 

optimally minimizing the number of monitoring wells using an inverse distance 

weighting method and linear optimization model. Chandalavada et al. (2011b) 

developed a methodology to track pollutant plumes with minimum integrate 

monitoring wells. This optimized monitoring network design incorporated uncertainty 

in pollutant concentration estimates. The developed methodology was applied to a 

polluted defence site in Australia. 

Chandalavada et al. (2011) designed an optimal monitoring network to delineate 

pollutant plumes using a minimum number of monitoring wells. Monitoring wells 

were installed at locations with minimum measurement uncertainty. The uncertainty 

in the study area was quantified by analysing variances in concentration estimates at 

all potential monitoring locations. Jha and Datta (2012) used a dynamic time warping 

system to estimate the starting time of source activity. This was used to compare 

observed and simulated pollutant concentrations over time in a linked simulation-
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optimization model. An ASA algorithm was used to solve the optimization problem. 

Prakash and Datta (2015) proposed a new feedback-based method for the efficient 

identification of unknown pollutant-source characteristics. It integrates a sequential-

monitoring-network design and source identification processes. They evaluated the 

performance of the method in a polluted aquifer in New South Wales, Australia. 

Esfahani and Datta (2018) used fractal singularity-based multi-objective 

monitoring networks for reactive species contaminant source characterization. The 

method uses a multi-objective optimization algorithm to solve a two-objective optimal 

monitoring network design model. The optimization model is linked to a numerical 

simulation model that simulates the flow and transport processes in the aquifer. While 

constraining the maximum number of monitoring locations, the optimised monitoring 

network improves the accuracy of contaminant source characterization. The designed 

monitoring network can decrease the degree of non-uniqueness in a measured set of 

possible aquifer responses to geochemical stresses. 

 

2.3 TOOLS AND TECHNIQUES 

This section reviews the literature on tools for modelling groundwater flow and 

transport processes, data interpolation techniques, optimization algorithms and 

regression modelling. These techniques are used at different stages throughout this 

study. 

2.3.1 Flow and Transport Modelling with Reactive Contaminant Transport 

The development of mechanistic reactive chemical transport models has been in 

the ascendance for the past two decades (e.g. Yeh & Tripathi, 1990; Nienhuis et al., 

1991; Engesgaard & Kipp, 1992; Parkhurst & Appelo, 1999; Bacon et al., 2000; 

Steefel, 2001; Yeh et al., 2001, 2004b; Xu et al., 2003; Yang et al., 2008). These 

numerical reactive transport models have been diverse in scope. Many models have 

coupled transport simulations with equilibrium geochemistry (Yeh & Tripathi, 1991; 

Cheng, 1995; Parkhurst, 1995). Some models couple transport simulations with kinetic 

geochemistry to describe certain geochemical processes, like precipitation-dissolution 

(e.g. Lichtner, 1996; Steefel & Yabusaki, 1996; Suarez & Šimunnek, 1996) and redox 

reactions (Lensing et al., 1994). 
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More effective general reactive transport models have emerged since the late 

1990s and early 2000s. These models are capable of handling a complete suite of 

geochemical reaction processes (aqueous complexation, adsorption, precipitation-

dissolution, acid-base, and reduction-oxidation phenomena). The models also allow 

individual reactions within any of these geochemical processes to be handled as either 

equilibrium or kinetic reactions, as appropriate for the system being considered (e.g., 

Yeh et al., 1996; Bacon et al., 2000; Steefel, 2001; Yeh et al., 2001; Xu et al., 2003, 

Yeh et. al., 2004). Work in reactive transport modelling has incorporated coupled 

microbial-mediated processes and some purely geochemical transport processes., 

Some recent models are able to handle reactive geochemical and microbial types of 

reactions. Models that can simulate any number of reactions, both geochemical and 

biological, have gained popularity and have been implemented in a number of codes 

(e.g., Yeh et al., 2004a, b; Zhang et al., 2007). 

HYDROGEOCHEM was among the first comprehensive simulators of 

hydrologic transport and geochemical reactions in saturated-unsaturated media. This 

simulator is able to simulate all the hydrogeochemical processes involved in the 

subsurface. The software code iteratively solves three-dimensional transport and 

geochemical equilibrium equations (Yeh et al., 1990).The code provides these 

numerical options for solving reactive geochemical, biochemical transport and heat 

transfer equations. These are the conventional finite element method (FEM) and hybrid 

Lagrangian-Eulerian FEM The most recent versions are based on the concept of 

defining reaction rates, which makes the modelling of mixed fast/equilibrium and 

slow/kinetic reactions consistent. This thesis utilizes HYDROGEOCHEM 5.0 as a 

numerical model for simulating the transport of reactive chemical species in a 

contaminated aquifer. 

 

2.4 DATA INTERPOLATION 

Interpolation techniques are used when analysing groundwater flow and transport 

processes. In order to select an optimal interpolation method to describe the spatial 

distribution of groundwater parameters, the spatial correlations of parameters such as 

groundwater level and contaminant species concentrations are interpolated based the 

inverse distance weighting and kriging interpolation methods. The inverse distance 
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weighting method is more suitable for data with weak spatial correlation. For 

parameters that have high spatial correlation, kriging is a reliable method for 

interpolation. In this work both inverse distance weighting and kriging interpolation 

methods were used for the various spatial distribution of groundwater data.   

 

2.5 OPTIMIZATION ALGORITHM: ADAPTIVE SIMULATED 

ANNEALING 

Identifying the source of unknown groundwater pollution is a management issue. 

Groundwater management problems of this kind should be viewed in terms of 

optimization. Optimization problems include representations of the groundwater 

system being managed and the management goals and constraints. To solve an 

unknown groundwater pollution source problem, different optimization algorithms can 

be applied. The choice of optimization algorithm depends largely on the kind of 

problem to be solved. In the present study, ADAPTIVE SIMMULATED 

ANNEALING is used to solve the optimization problem. 

Objective functions suitable for identifying pollution sources are complex multi-

variate optimization problems. Such formulations are highly non-linear, containing 

several local and global optima. The ease of implementing complex objective 

functions and their convergence to a global optimal solution make them suitable for 

solving ill-posed inverse problems, as is the case with groundwater pollution source 

characterization. 

2.5.1 Adaptive Simulated Annealing (ASA) 

Simulated annealing (SA) is a global stochastic optimization algorithm that 

mimics the metallurgical annealing process (Kirkpatrick, 1983). The objective 

function is often called the energy E, and is assumed to be related to the state, popularly 

known as temperature T, by a probability distribution. During the course of 

optimization, new points are sampled and accepted using a probabilistic criterion, such 

that inferior points also have non-zero probability of being accepted. The temperature 

is also updated as the algorithm progresses. The search terminates when the 

temperature has fallen substantially. The original SA algorithm allowed for a very slow 

rate of decrease in temperature and, hence, a very high cost solution, as compared to 

ASA. Ingber (1989) developed a version of SA that has complex modifications of the 
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sampling method, which enables the use of very high cooling rates and, hence, reduced 

simulation cost. Non-uniform sampling rates for the variables and different cooling 

rates in the variable and function spaces are used. A concept called reannealing 

updates the cooling rate associated with each parameter by accounting for the 

sensitivities of the objective function. 

Simulated annealing, first introduced by Kirkpatrick et al. (1983), is an extension 

of the metropolis algorithm (Metropolis et al., 1953). The basic concept of SA is 

derived from thermodynamics. Each step of the SA algorithm replaces the current 

solution with a random nearby solution, chosen according to a probability that depends 

on the difference between the corresponding function values and algorithm control 

parameters that are gradually decreased during the process. SIMANN is a FORTRAN 

code for SA developed by Goffe (1996) that has been publicly available since 1996. 

Ingber (1993) developed an SA computer code in the C-language program called 

adaptive simulated annealing (ASA). It is a version of the SA algorithm in which the 

parameters are automatically adjusted as the algorithm progresses. These parameters 

control the temperature, schedule and random step selection. Thus, the main advantage 

of the ASA algorithm is that it is more efficient and less sensitive to user-defined 

parameters.  

 

2.6 FRACTAL / MULTIFRACTAL MODELLING 

The evaluation and remediation of contaminated aquifers require accurate 

delineation of contamination plumes. Ideally, a large number of concentration 

observations are required to achieve accurate delineation of a contamination plume. 

However, in practice, due to budgetary constraints, contamination in groundwater 

resources is detected by a limited number of arbitrarily located or predesigned 

contamination monitoring wells. Therefore, a technique is required to estimate the 

boundaries of the plume using the available sparse observation data. The local 

singularity mapping technique can be used for plume delineation. This technique is 

based on the multifractal concept. In fractal geometry, a local feature is similar to the 

whole in terms of shape and structure. Generalized self-similarity is characterized by 

a power-law relationship. A detailed review of this technique can be found in Zuo and 

Wang (2016). 
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Mandelbrot (1967, 1972) introduced the concept of fractals in the last century. 

Fractal and multifractal analysis has quickly developed into an important branch of 

non-linear science.  It has had significant impacts in many areas of natural science, 

including the study of earthquakes (Turcotte, 2002), floods (Cheng, 2008), geoscience 

(Chen et al., 2015) and groundwater studies (Sivakumar et al., 2004).  

Fractal behaviour in subsurface solute transport phenomena has been addressed 

in a number of studies (e.g. Hewett, 1986; Wheatcraft & Tyler, 1988; Benson et al., 

2001; Berkowitz & Scher, 2001; Puente et al., 2001a, b). Differences in opinion exist 

as to the type of fractal behaviour (mono- or multi-fractal) occurring in transport 

phenomena, the underlying mechanisms involved, and the appropriate predictive 

methods. For instance, Datta et al. (2016) used local singularity mapping to delineate 

groundwater contamination plumes. Benson et al. (2001) suggested that a mono-

fractional derivative in the advection-dispersion equation may be adequate for solute 

transport predictions. Puente et al. (2001) investigated the possibility of modelling the 

dynamics of groundwater contamination plumes using a deterministic fractal-

multifractal (FM) approach, via projections of fractal interpolation functions while 

Esfhani et al. (2017) developed and implemented a fractal singularity based monitoring 

network design.  

Fractal models such as the number-size model (N-S), concentration-area model 

(C-A; Cheng et al., 1994), spectrum-area model (S-A; Cheng et al., 1999, 2000), 

simulated size-number (SS–N) model (Sadeghi et al., 2015), singularity index (Chen 

et al., 2015), and concentration-volume model (C-V; Afzal et al., 2011) have been 

developed for geochemical data analysis. 

 In the past two decades, various power law models have been developed based 

on fractal analysis in mineral exploration, such as the density-area model (Cheng, 

Agterberg, & Ballantyne, 1994), singularity index (Cheng, 1997), spectrum-area 

model (Cheng, 1999b), density-distance model (Li, Ma, & Shi, 2003), multifractal 

singularity decomposition model (Li & Cheng, 2004), and density-volume model 

(Afzal et al., 2011). The GeoDAS GIS system (Cheng, 2000) for processing non-linear 

spatial geoscience information, which is based on these multifractal models, has 

played an important role in identifying geochemical anomalies and modelling the 

spatial distributions of mineral deposits (Cheng et al., 2001; Ko & Cheng, 2004; Xie 

and Bao, 2004; Chen et al., 2007; Zuo et al., 2009).  
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Cheng and his colleagues proposed the singularity theory (Cheng et al., 2010; 

Cheng, 2012b) based on the C–A fractal model to quantify geo-anomalies according 

to the invariant properties between fractal measure and scale. A number of case studies 

have demonstrated that the singularity index is a powerful tool for identifying 

geochemical anomalies, processing remote sensing information, and analysing the 

spatial distributions of mineral deposits (Chen et al., 2007; Cheng, 2007; Wang, Zhao, 

& Cheng, 2011; Zuo, 2011).  

The main attraction of fractal/multifractal theory lies in its ability to quantify 

irregular and complex phenomena or processes that exhibit similarity over a wide 

range of scales, which is termed self-similarity (Mandelbrot, 1983). Several years of 

fractal application has proven its ability to effectively characterize spatial distributions 

in concentrations and relationships between the tonnage and grade of deposits (e.g., 

Cheng et al., 1994, 2000; Lavallee et al., 1993; Mandelbrot, 1983; Turcotte, 1986, 

1997, 2002). 

2.6.1 Motivation for this Study  

The research has been driven by the substantial challenges associated with the 

prediction and remediation of contaminant plumes in the environment. Most of these 

challenges are due to uncertainties associated with contaminant sources (e.g. source 

locations, strengths, activity times, concentrations) as well as contaminant migration 

(e.g., velocity, dispersivity,) related to aquifer and contaminant transport properties. 

Determining the number of contaminant sources, their locations and physical 

properties is an important task that yields information valuable in predicting the fate 

and transport of contaminants, making hazard and risk assessments, and remediation. 

Most often, information about contamination sources and contaminant migration in an 

aquifer is limited or unavailable, which explains the increasing use of complex 

numerical inverse models.  

Groundwater researchers and modellers are often required to answer questions 

about unknown groundwater source identification and management of contaminated 

aquifers. Providing answers to these seemingly straightforward questions requires 

considerable specific hydrogeochemical information and analyses, as well as general 

hydrogeologic knowledge, insight and objective functioning. Even relatively simple 

groundwater problems require knowledge of basic aquifer parameters and hydrologic 

stresses, such as pumping and recharge rates.  
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Based on the available methodologies covered in the literature review, there is 

scope of further developing computationally efficient methodologies for unknown 

groundwater contaminant characterization in highly geochemically-complex aquifer 

areas such as mine sites. Reactive transport of chemical species in contaminated 

groundwater systems, especially with multiple species, is a complex and non-linear 

process. To increase modelling reliability with real-life field data, uncertainties in 

hydrogeological parameters and boundary conditions need to be considered as well. 

Modelling and characterising such complex geochemical processes using efficient 

numerical models is generally a challenge. In this study, flow and chemically-reactive 

transport processes are numerically simulated in complex contaminant aquifers by 

considering the various chemical reactions taking place in the subsurface system.  

The source characterization methodology proposed in this study uses 

groundwater numerical simulation models in a linked simulation-optimization 

approach. The efficiency and computational feasibility of source characterization are 

evaluated for complex study areas. A new optimization equation is formulated to solve 

the characterization of individual reactive species in distributed sources. 

The next chapter (Chapter 3) discusses the implementation of a three-

dimensional numerical flow and contaminant simulation model of a contaminated 

aquifer at a former mine site that contains multiple reactive chemical species.
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Chapter 3: Calibration and validation of a 

three-dimensional flow and multicomponent 

reactive transport model of an abandoned 

mine site in the Northern Territory, 

Australia  

This chapter describes a three-dimensional finite element-based numerical model of 

multispecies reactive transport in an aquifer at an abandoned uranium mine in the 

Northern Territory, Australia. The flow and transport simulation model is based on the 

geochemical reactions of multiple species in an acidic environment. The numerical 

groundwater model incorporates kinetic and equilibrium reactions to study the 

underlying contaminant transport processes in an aquifer at an abandoned uranium 

mine site. A reasonably accurate calibrated flow and transport simulation model is an 

essential first step in the process of characterizing unknown sources of contamination. 

Therefore, the flow and transport model’s implementation is described here. 

 

3.1 BACKGROUND TO THE PROBLEM 

Predicting the fate and transport of dissolved metals and radionuclides in groundwater 

systems is important in assessing environmental impacts and developing operational 

remediation approaches. Contaminants change in terms of concentration and species 

formation due to physical, chemical and biological processes as they move through an 

aqueous environment. Hence, the ability to understand and model these processes is 

fundamental in assessing the efficacy of contaminated aquifer remediation strategies. 

This chapter describes the set-up, calibration and validation of a three-dimensional 

multiple species reactive transport model of contaminant transport in an aquifer 

Calibration and validation of the developed model is performed using very limited 

field-measured data. The developed simulation model incorporates geochemical 

reactive processes. The flow and, especially, the multispecies reactive transport model 

are not based on a simplistic assumption of conservative pollutants, which is an 
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assumption made in models previously developed by the Northern Territory 

Department of Mines and Energy (RGC, 2012). 

The generation of acidic wastewater at the waste rock dumps and open mining 

pits of former mine sites in Australia constitutes a matter of great environmental and 

economic concern. Such  acidic waters can transport potentially toxic dissolved metals, 

which may contaminate groundwater. Over 4000 decommissioned or abandoned mine 

sites  occur in Australia alone (Unger, C., 2020). Many of these abandoned mine sites 

contain reactive sulfide minerals which cause sulfide to be acidified by oxidation 

reactions. These reactions can persist for several hundreds of years if not controlled 

and monitored. At waste rock piles or tailing impoundment locations close to aquifers, 

it is possible for dissolved metals to move away from mining waste locations and 

degrade nearby groundwater and surface water bodies. Thus, an understanding of the 

geochemical interactions between acid mine drainage (AMD) and aquifers is critical 

in assessing impacts on the quality of water resources. This also provides a basis for 

the appropriate management and remediation of sites similarly affected by AMD 

contamination. 

The study site used for this investigation is illustrative of mine sites undergoing 

complications in rehabilitation related to the acid rock drainage (ARD) of metals, 

including uranium. Such acid rock drainage has serious environmental impacts on 

groundwater at the mine site and in a nearby river. The acid rock drainage of metals 

from mining waste is a source of groundwater contamination, including that of copper, 

iron, manganese, zinc and sulfate. The geochemical processes considered in this study 

include both kinetic and equilibrium reactions. Uranium and its daughter products have 

not been emphasized enough in the past and, therefore, contamination due to uranium 

has not been adequately modelled at this site. This study also developed a simulation 

model that incorporates the geochemical processes of uranium and its interactions with 

other chemical species present in the site.  

At this site, nonradioactive uranium isotopes are prevalent; therefore, they were 

incorporated in this study. In addition, the interactions of uranium with other chemical 

species present at this aquifer site are also modelled.  

Substantial modelling of the flow and transport processes was carried out for this 

site as part of a rehabilitation plan. However, these models consider the chemical 

species as conservative and only representative of a single species (RGC, 2012). A 
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well-defined reactive transport model incorporating a wide range of reaction types and 

rates has not been implemented before. Hence, there was a need to model the 

geochemical reactive transport process, including that of multiple chemical 

contaminant species, at this abandoned uranium mining site. This study highlights the 

geochemical reactions likely to occur based on contaminant concentrations at 

monitoring points and our understanding of the complex mineralogical and 

geochemical processes at the site. These reaction types include, but are not limited to, 

precipitation-dissolution, acid-base, aqueous complexation, ion-exchange, adsorption-

desorption, and oxidation-reduction. The objective of the groundwater modelling was 

to achieve results representative of the current understanding of the interactions 

between reactive species or metals at waste dumps, open-cut pits and aquifer systems. 

The design, development and calibration of the model were all adapted to achieve these 

objectives and provide a framework for its potential use as new information on reactive 

processes becomes available. The objective was to implement a flow and transport 

simulation model based on very limited measurement data that describes the complex 

hydrogeological and geochemical processes associated with acid mine drainage  and 

metalliferous drainage in the contaminated aquifer underlying the former mine.  

Acid metal drainage (AMD), also known as acid mine drainage or acid rock 

drainage (ARD), happens when sulphidic rocks, for example arsenopyrite, 

chalcopyrite and pyrite, are exposed to oxygen and water. Although AMD occurs 

naturally, most are humanly induced and originate from reactive sulfide mineral 

deposits in tailings dams, waste rock dumps (WRDs), mine pits,  and leach pads (Claire 

et al., 2012). 

At most mine sites, the main sources of pollutants are open pits, WRDs and 

tailing dams. The WRDs and tailing dams most often consist of several minerals and 

geological matrices, which are exposed to weathering conditions. Pyrite oxidation is 

the fundamental reaction in the leaching of metals and radionuclides into the 

environment. Leaching of metals and radionuclides from waste rock piles and tailing 

dams is estimated to last for hundreds to thousands of years (Öhlander et al., 2012). 

Accurate prediction of the release rates of metals and radionuclides from these sources 

and their transport into the subsurface environment is critical in the assessment of 

environmental impacts and the development of effective remediation strategies. To 
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produce a realistic representation of the system under study and its complex problems, 

sophisticated models are required.  

The development of reactive chemical transport models has progressed in the 

last three decades (Yeh & Tripathi, 1990; Pruess, 1991; Zyvoloski et al., 1994; 

Lichtner, 1996; Steefel & Yabusaki, 1996; William Maxwell Aitken et al., 2000; Fang 

et al., 2003; Yeh et al., 2004; Zhang et al., 2007, Datta et al., 2016, Esfahani & Datta, 

2015; Xiao et al., 2018; Druhan & Tournassat, 2019). These numerical reactive 

transport models have had various scope, and different competencies and accuracies. 

This chapter describes the development and application of the current advancement in 

mechanistic based numerical models for simulating fluid flow, thermal transport and 

reactive transport in variably saturated porous and fractured media. These are amongst 

the most practical models that can be employed to study the geochemical processes 

involved in groundwater flow and transport processes  under variably saturated 

conditions. 

The HYDROGEOCHEM (Yeh & Tripathi, 1991) flow and transport simulator 

was the first all-inclusive simulator of hydrological transport and geochemical 

reactions in saturated-unsaturated media. It solves iteratively two-dimensional 

transport and geochemical balanced equations. The hybrid Lagrangian-Eulerian finite 

element model (LEHGC) was developed by Yeh et al . ( 1995) to simulate transport 

through saturated-unsaturated medium. The LEHGC model is an improved 

HYDROGEOCHEM version, which uses only an Eulerian system. This hybrid 

modification increases the solution's efficiency and allows for greater time steps to be 

used. HYDROGEOCHEM 2.0 was introduced by Yeh and Salvage (1997) with an 

extended LEHGC 1.1 model (Yeh et al., 1995) capable of handling varied balance and 

geochemical kinetic reactions. The updated LEHGC 1.1 model is a more powerful 

LEHGC version and is more stable as it can use more grid nodes. Version 4.0 (Li, 

2003),of the HYDROGEOCHEM is limited to two dimensional simulations. This 

simulator incorporates heat transfer with reactive geochemical and biochemical 

transport modelling. HYDROGEOCHEM 5.0 (HGCH; Yeh et al . , 2004; Sun, 2004) 

is the new version and can be modelled in three dimensions. In addition, this simulator 

provides three options for numerical calculations of reactive geochemical and 

biochemical transport and heat transfer equations: 1) conventional finite-element 

methods (FEM), 2) hybrid Lagrangian-Eulerian FEM, and 3) hybrid Lagrangian-
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Eulerian FEM for interior nodes plus FEM for boundary nodes. However, 

HYDROGEOCHEM 5.0 has certain limits: 1) only one phase of fluid is applicable, 

and 2) double porous media cannot be used effectively (Yeh et al., 2004). This study 

simulates the transport of reactive chemical species in a contaminated aquifer using 

HYDROGEOCHEM 5.0. 

The use of a reactive transport model to simulate the transport of reactive multi-

species contaminants in a heterogeneous, anisotropic, saturated-unsaturated porous 

medium at a former uranium mining site in Australia is described here. The mining 

site contains a number of sources of potential reactive chemical species, such as waste 

rock dumps and open pits. This chapter outlines the validation of flow modelling, and, 

to a limited extent, the transport process at the abandoned Rum Jungle uranium mining 

site. It also discusses the calibration and validation of the flow and transport simulation 

model.  

 

3.2 METHODOLOGY 

In this section, the processes of solving the unsaturated-saturated flow and contaminant 

reactive transport are described. The governing equations of flow and reactive 

geochemical transport are solved using numerical approximation based on finite 

element methods and other numerical schemes. The finite element method is used 

because of its function-approximation capability and because it produces spatially-

continuous solutions. The complexity of the study area also influenced the choice of 

numerical approximation method. The finite element method has the ability to handle 

anisotropy and heterogeneity in aquifer systems. Other reasons that influenced the 

choice of the finite element method are as follows: 

• It does not require special formulae to incorporate irregular boundaries,  

• the computational effort required may be less than that required by other 

methods, as fewer nodal points are required to represent the region of 

interest with similar accuracy,  

• unstructured meshes can be incorporated to handle different levels of spatial 

discretization in different sections of the region of interest  
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3.2.1 Modelling of groundwater flow and contaminant transport 

The 3-D finite element-based reactive transport simulator HYDROGEOCHEM 

5.0 was utilized in this study to model the aquifer flow and transport processes. The 

flow and reactive transport models are described in the following sections. 

3.2.2 Governing flow equations 

The general equations for flow through saturated-unsaturated media are based 

on: 1) fluid continuity, 2) solid continuity, 3) fluid movement (Darcy’s law), 4) 

stabilization of media, and 5) water compressibility (Chen et al., 1998):  
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and V = Darcy’s velocity (L/T), described as: 
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where   is the fluid density [M/L3], o  is the reference fluid density at zero chemical 

concentration and at the reference temperature [M/L3], F is the generalized storage 

coefficient [1/L], h is the pressure head [L], t is time [T], * is the fluid density of 

either injection )( *  =  or withdrawal (= 𝜌) [M/L3], q is a source or sink 

representing artificial injection or withdrawal of fluid [(L3/L3)/T], V is the specific 

discharge or Darcy’s velocity [L/T], K is the hydraulic conductivity tensor [L/T], z is 

the potential head [L],   is the modified compressibility of the media [1/L],   is the 

effective moisture content [L3/L3], ne is the effective porosity [L3/L3],   is the 

modified compressibility of the liquid [1/L], S is the degree of saturation of water, g is 

acceleration due to gravity (L/T2), o is the fluid dynamic viscosity at zero chemical 
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concentration and at the reference temperature M/(L/T),   is the fluid dynamic 

viscosity M/(L/T), Kso is the reference saturated hydraulic conductivity tensor [L/T], 

and kr is the relative permeability or relative hydraulic conductivity (dimensionless).  

The finite element method is used to solve Equations (3.1), (3.2), (3.3) and (3.4), 

and the constitutive relationships between pressure heads, hydraulic conductivity 

tensor, and degree of saturation along with the appropriate initial and boundary 

conditions. The initial conditions for this study were obtained from field 

measurements. In the case of transient simulation, the initial conditions must be 

realistic and consistent. Initial conditions that are not appropriate are likely to 

introduce either non-convergence or non-realistic solutions, and therefore these 

conditions need to be specified as close to the actual situation. In a number of 

situations, it may be impossible to measure the initial pressure field across an entire 

study domain. In such situations, an alternative way of setting the initial conditions is 

to assume that, in general, steady state flow conditions may have existed. Therefore, 

the simulation results from of a steady-state simulation with steady-state specified 

boundary conditions are used. 

For the modelling purposes of this study, three main boundary conditions were 

assigned. These are the Dirichlet, Cauchy and variable boundary conditions (Yeh et 

al., 2004). In the Dirichlet boundary conditions, the pressure head is set as a function 

of time. In the Cauchy boundary conditions, the volumetric flux is set as a function of 

time. For variable boundary conditions, either the flux or Dirichlet boundary 

conditions can be given, depending on the infiltration capacity and the rainfall intensity 

during precipitation periods, or based on the evaporative capacity of the media and the 

evaporation potential of the atmosphere during non-precipitation periods. Using the 

HYDROGEOCHEM 5.0 code, the temporal-spatial distributions of the hydrological 

variables were simulated, including total head, Darcy’s velocity, pressure head, and 

moisture content. 

3.2.3 Governing Reactive Transport equations 

The governing equations for the reactive transport of the reactive 

biogeochemical system are discussed below. The governing equations for transport 

were derived based on the continuity of mass and Fick’s flux laws (Yeh et al., 2000). 

The main transport processes are advection, dispersion & diffusion, source & sink and 
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biogeochemical reactions (including radioactive decay). The general transport 

equation governing the temporal-spatial distribution of any biogeochemical species in 

a reactive system is described below. Let Ci be the concentration of the ith species; 

then, the governing equation for Ci is obtained by applying the principle of mass 

balance in integral form, as follows (Yeh et al., 2000): 

𝜕𝜃𝐶𝑖

𝜕𝑡
+ 𝜃𝛼 ′ 𝜕ℎ

𝜕𝑡
𝐶𝑖 = 𝐿(𝐶𝑖) + 𝜃𝑟𝑖 + 𝑀𝑖 , 𝑖 ∈ {𝑀}   (3.5) 

 
Where L is the transport operator denoting: 

𝐿(𝐶𝑖) = −𝛻 • (𝑉𝐶𝑖) + 𝛻 • [𝜃𝐷 • 𝛻𝐶𝑖]   (3.6) 
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where Ci is the concentration of the ith species in moles per unit volume [M/L3]; ν is 

the material volume containing a constant amount of media (L3); Γ is the surface 

enclosing the material volume ν (L2); n is the outward unit vector normal to the surface 

Γ; ri is the production rate of the ith species due to biogeochemical reactions, in 

chemical mass per water volume per unit time [M/L3/T]; {M} = {1,2,…,M}, in which 

M is the number of biogeochemical species; D is the dispersion coefficient tensor 

[L2/T]; and Mi is the source/sink of the ith species in chemical mass per unit volume of 

media [M/L3/T]; M is the number of biogeochemical species; vi is the transporting 

velocity relative to the solid of the ith biogeochemical species (L/T); θri is the 

production rate of the ith species per unit medium volume due to all biogeochemical 

reactions [(M/L3)/T], Ji is the surface flux of the ith species due to dispersion and 

diffusion with respect to the relative fluid velocity [(M/T)/L2] and Vi is the transporting 

velocity relative to the solid of the ith biogeochemical species (L/T).  

As in the flow model , in order to simulate reactive transport across a wide range 

of problems, appropriate transport boundary conditions were applied in the model. The 

physical definitions and mathematical descriptions of these boundary conditions are 

comparable to those of the flow model (Yeh et al., 2004). 
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Equations for geochemical processes 

The production of a species along its transport path is governed by a number of 

biogeochemical processes. One of the difficult aspects of geochemical modelling is 

the formulation of a governing rate equation to represent the chemical processes 

governing the rate of production of any species (ri in equation 3.5) and its associated 

parameters. The formulation of rate equations related to all N reactions is a critical 

issue in the modelling of mixed equilibrium and geochemical kinetic reactions. A rate 

equation is essential for the quantitative description of a general geochemical reaction 

that is written as follows (Fang et al., 2003): 
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where iĈ  is the chemical formula of the ith species; μik is the reaction stoichiometry of 

the ith species in the kth reaction associated with the reactants; νik is the reaction 

stoichiometry of the ith species in the kth reaction associated with the products; and {N} 

= {1, 2, …, N}, in which N is the number of reactions. 

For all geochemical reactions, two categories of reactions exist: kinetic and 

equilibrium. Assuming that there are NE fast/equilibrium reactions (all of which must 

be independent) and NK slow/kinetic reactions (Yeh et al., 2010), then the number of 

reactions will be: N = NE + NK. 

Kinetic Reactions  

For a fundamental kinetic reaction, the rate law is given by collision theory as: 
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where Rk is the rate of the kth kinetic reaction, Ai is the activity of the ith species, 
f

KK  

and 
b

KK  are the activity-based forward and backward rate constants of the kth kinetic 

reaction, respectively, and NK is the number of kinetic reactions. The forward and 

backward rate constants cannot be determined sequentially from the concentration-

time curves of all species because the NK equations in Equation (3.8) are coupled 

regarding the forward and backward rate constants. 
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Equilibrium reactions 

If the reaction is an equilibrium reaction, the reaction rate is infinity, which 

results in the law of mass action as: 
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Where RE is the rate of the kth equilibrium reaction, 
e

KK  is the equilibrium 

constant of the kth reaction, Ai is the activity of the ith species, and NE is the number of 

linearly-independent equilibrium reactions. The equilibrium constants may be 

determined sequentially by the measurement of the activities of all species. 

Due to the nature of the study area and its complexities, a reaction-based 

formulation was chosen to represent all the geochemical processes in the aquifer site. 

In a reaction based formulation, all biogeochemical processes are conceptualized and 

transformed into a reaction network (Fang et al., 2003). This is to consider the 

contributions of the individual process reaction interplays in the aquifer system and 

avoid the possibility of the production rate being represented as a lumped rate of all 

reactions of a particular process which, in this specific instance, will not identify 

individual reaction rates. 

The difficulty in applying the reactive transport model to real-world problems is 

in transforming the understanding of biogeochemical processes into reaction networks 

with a rate equation for each reaction. The transformation is a complex task without 

which our understanding of the aquifer system will be incomplete or inadequate. 

3.2.4 Solution technique 

Equations 3.1 to 3.10 are a set of partial differential equations that require 

solving and coupling through flow and transport solutions. The linearized matrix 

equations can be solved by using the finite element method by applying a number of 

numerical schemes. A two-step method was used to solve the chemical transport 

equations and chemical equilibrium equations. Once the solutions for a specific time-

step converges, the calculation continues to the next time step.  

Finite element methods were used for temporal discretization of the governing 

partial differential equations in the flow model and reactive transport model. The 
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Galerkin finite element method was used for spatial discretization of the modified 

Richards equation. Meanwhile, scalar reactive transport equations were solved using 

both conventional finite element methods and hybrid Lagrangian-Eulerian finite 

element methods for spatial discretization. The solutions to the chemical equilibrium 

equations were obtained using the Newton-Raphson or Picard methods. Three 

numerical schemes (iteration approach, operator splitting approach, and predictor-

corrector approach) were used to couple the hydrological transport and geochemical 

reactions. Since this study involves a complex three-dimensional model containing 

more than 6000 elements, 4000 nodes and 33 species, it was more efficient to solve it 

using the operator splitting approach. Hence, coupling of the transport and 

geochemical reactions was achieved using the operator splitting approach. 

   

3.3 STUDY SITE 

3.3.1 Overview 

The study area is the former site of one of Australia’s first major uranium mines, 

Rum Jungle (Figure 2.1). The site is located approximately 105 km south of Darwin 

in the headwaters of the East Branch of the Finniss River, near Batchelor in the 

Northern Territory, Australia. The site was proclaimed a Restricted Use Area in 1989 

under the Soil Conservation and Land Utilisation Act of the Northern Territory and is 

closed to public access. The mine was in operation from 1954 to 1971. Uranium (U) 

and Copper (Cu) were the major minerals mined. Although the last uranium ore was 

extracted in 1963, the processing of U and Cu continued from the ore stock until April 

1971. A total of 863,000 tonnes of uranium ore were processed. Its average grade was 

0.28–0.41% and 3,520 tonnes of U3O8 were produced from different deposits in the 

Rum Jungle. Between 1954 to 1958, uranium was mined from the White and Dyson 

open pits from while copper was extracted from the intermediate pit. Within the 

intermediate waste rock dumps (WRDs), quartz is the dominant constituent and pyrite 

is a minor component. Twenty percent of Dyson's WRDs consist of pyritic black shale 

with an average content of pyrite. The WRD of the White Pit is a combination of 

minerals from carbonaceous slates, visual schists, phosphate, sulphate, and sulfide. At 

Rum Jungle all three WRDs were coated in clay and gravel. The clay caps have 

cracked, and water can now enter during the wet season, which has led to acidic mine 
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drainage (Mudd & Patterson, 2010). Acid mine drainage (AMD) and heavy metal 

mobilization at the site have resulted in significant environmental impacts on local 

groundwater and the East Branch of the Finniss River, with radioactive tailings 

remaining in some areas (Kraatz, 2004). The site was rehabilitated from 1983 to 1986  

at a total cost of A$ 18.6 million. Several rehabilitation works have been carried out 

since 1986 and rehabilitation is still ongoing. 

Figure 3.1 (a) shows the mine site’s layout during its operational years, while 

Figures 3.1 (b) provides a closer look at the open pits and waste rock damps (WRDs) 

afters years of ongoing contamination. 

 

 

 

Figure 3.1 (a): Satellite image of the Rum Jungle mine site. Google Earth Imagery © 2019. Insets 
show its location in the Northern Territory (lower right) and Australia (upper left). 
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Figure 3.1 (b): Aerial view of the study site, showing the Intermediate Pit, Overburden Heap, White’s 
Pit, and Dyson’s Overburden Heap. Photo: NT Government Department of Primary Industry and 

Resources.  

 

Geological and hydrogeological characterization 

The geology and hydrology of the Rum Jungle area are complex. Detailed 

descriptions are given in Mudd and Petterson (2010), McKay and Miezitis (2001) and 

CR (2005), and are summarised herein. 

3.3.2 Hydrology 

The Rum Jungle field consists of the Finniss River Eastern Branch (EBFR), 

which is situated approximately 8.5 km upstream of its confluence with the Western 

Branch. From the east, surface water reaches the mine site via the Finniss River's upper 

east branch and via Fitch Creek, from the southeast. Both creeks met near the 

northeastern corner of the Main WRD before mining, and eventually flowed eastward 

into the natural course of the river. The river was redirected during mining to the 

Eastern Finnish Diversion Channel (EFDC) to allow access to the main and 

intermediate ores (Figure 3.1A). Through a canal near the former acid dam, the upper 

east branch of the Finniss River and Fitch Creek flows directly into the east Finniss 

drainage channel and, during heavy flows, to the Main Pit. Water then flows through 
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a channel from the Main Pit to the Intermediate Pit, which roughly follows the course 

of the pre-mining river. Outflow from the Intermediate Pit to the east Finnish diversion 

channel occurs near the mine site 's western boundary and combined flows from the 

Main and Intermediate Pits and east Finnish diversion channel continue north into the 

Finnish River's Eastern Branch natural course. River flows vary predictably in 

response to intra-annual rainfall variability and typically vary by several orders of 

magnitude over the course of a year. Early wet season flows in the river are usually 

observed at the beginning of December or January in response to high rainfall. 

3.3.3 Geology 

The mine area mineral field contains numerous polymetallic ore deposits, such 

as the Ranger and Woodcutters ore deposits and the ore deposits associated with the 

Rum Jungle Mine (i.e. the Main, Intermediate, Dyson’s, and Brown’s Oxide ore 

deposits). The Rum Jungle Mine Site is located in a triangular area of the Rum Jungle 

mineral field bounded to the south by the Giant's Reef Fault, and a series of northward 

east-trending ridges. This triangular area is known as "The Embayment" and is situated 

on the shallow-dipping limb of a northeast-trending, south-westerly plunging 

asymmetric syncline formed by northerly dipping faults. The primary lithological units 

in The Embayment are the Mount Partridge Group's Rum Jungle Formation, and meta-

sedimentary and subordinate meta-volcanic rocks. The Rum Jungle Complex is made 

up primarily of granites and occurs mostly on the southeastern side of the Giant's Reef 

Fault, while the Mount Partridge Group occurs north of the fault and consists of the 

following sedimentary units (from younger to older): the Geolsec Formation, Whites 

Formation, the Coomalie Dolostone and the Crater Formation. The Crater Formation 

comprises coarse- and medium-grained siliciclastic, whereas the Coomalie Formations 

comprise magnesite and dolomite with minor chert lenses (McCready et al., 2001). In 

contrast, Whites Formation (which hosts uranium and polymetallic mineralisation) 

comprises graphitic, calcareous, slate-phyllite-schist, sericitic, and chloritic. Hence, 

Whites Formation marks a distinct change in the sedimentary and environmental 

conditions that occurred in the early Proterozoic. 
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3.3.4 Aquifer Characterization 

The Rum Jungle mine site features a shallow porous aquifer unit and a deeper 

fractured aquifer unit. These units are hydraulically connected and, hence, it appears 

that the aquifer may reasonably be regarded as a single aquifer with two units rather 

than separate shallow and deep aquifers. The shallow unit consists of mixed deposits 

of in-situ weathered bedrock and soil material with a colluvium-alluvium mix. There 

are zones of permeable clayey-sand that are interspersed with mottled zones of 

ferruginous sandy clays. In proximity to the East Finnis River and its tributaries, the 

shallow soils are predominantly comprised of riverine sands. The deeper unit consists 

of several lithologies, including granite, dolostone, shale and schist. Investigation by 

Water Studies (2000) showed that karstic zones with high groundwater inflows may 

be found in the dolostone, and some aquifer testing results could indicate the presence 

of permeable karstic features within the fresh to slightly weathered Coomalie 

Dolostone. In general, groundwater flow in the shallow aquifer unit is controlled by 

the primary permeability of unconsolidated overburden soils or highly weathered 

bedrock, whereas groundwater flow in the deeper aquifer unit is controlled by 

secondary permeability (faults, fractures and/or karstic features). The major fault 

intersecting the Browns Oxide project is believed to be very transmissive (Water 

Studies, 2002). In contrast, the Giant’s Reef Fault has been inferred to be a hydraulic 

barrier due to the presence of granitic material on its southeastern flank (Water Studies, 

2002; Coffey, 2006). 

 

3.4 CONCEPTUAL AND NUMERICAL DEVELOPMENT 

3.4.1 Conceptual Approach Overview 

The primary purpose of a conceptual model is to formulate a simplification of the 

groundwater field problem and collate corresponding field data to visualize and 

analyse the aquifer system. The conceptualization includes synthesis and framing-up 

of data relating to, hydrology, geology, and geochemistry. A numerical groundwater 

flow model was constructed to simulate variations in the groundwater flow system at 

the Rum Jungle Mine site from 2010 to 2012. This numerical flow model is a 

mathematical representation of a conceptual model that enables a quantitative 

representation of real field features. The numerical representation is based on the 
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assumption that the aquifer system at the mine site is subdivided into hydro-

stratigraphic units that represent the waste rock dumps and naturally occurring bedrock 

aquifers. Each hydro-stratigraphic unit is characterized as a single model layer with 

representative hydraulic properties. Recharge is estimated as a percentage of incident 

rainfall assigned to infiltration sections at the site based on elevation. The waste rock 

dumps and open pits represent a single top layer of variable thickness. The other 

geological aquifer units are represented as model layers with constant thickness across 

the model domain. The flooded open pit is represented by specified head boundary 

conditions that are equivalent to the water levels observed in the pits during the 

simulation period. Groundwater  movement in the hydro-stratigraphic units follows 

Darcy’s law.  

 

3.5 NUMERICAL MODEL SETUP 

3.5.1 Flow Model 

The finite element method was used for temporal discretization of the underlying 

partial differential equations in the flow model. The finite element mesh generated for 

the numerical model consists of 6,587 nodes and 10,704 elements. The Galerkin finite 

element method was used for spatial discretization of the modified Richards equation 

governing the pressure fields. The numerical model starts at year 2010 because this is 

when data became available and ends in 2012. Therefore, the numerical model covers 

a period of about 730 days. For time discretization, time steps of 30 days were set. 

This time discretization criterion resulted in a total of 24 time steps. 

The numerical model domain was spatially discretised into a 3-dimensional 

mesh with a triangular wedge mesh. In planar view, each element is represented 

triangularly, whereas the thickness of the elements depends on the number of layers 

used to vertically discretise the model domain. For this model, the elements in layers 

were assigned a set of hydraulic properties based on different material types to 

represent the complex heterogeneity of the aquifer. The thickness of the elements 

varies according to lithology. The model is made up of six layers and covers a 

maximum elevation of approximately 110 m. Surface topography elevation values 

obtained from a digital elevation model (DEM) were used to define the top of Layer 

1. Figure 3.2(a) shows an aerial view of the current ground elevations across most of 
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the model domain. The remaining discretization and resulting finite-element mesh are 

shown in Figure 3.2(b), which shows details of the spatial discretization process 

performed for the numerical model. Layer thicknesses are vertical in depth, with an 

overall model thickness of 150 m. Layer thicknesses were assigned as follows. Layer 

1, which mainly consists of waste rock dumps and tailings, was assigned variable 

thickness. Layer 2 thickness = 0–7.5 m, Layer 3 = 7.5–15 m, Layer 4 = 15–45 m, Layer 

5 = 45–105 m, and Layer 6 = 105–150 m. The tops and bottoms of Layers 3 to 6 were 

set to the thickness values listed above and were fixed throughout the modelling 

process. 

 

Figure 3.2 (a): Aerial view of the study site with the model domain highlighted in red 
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Figure 3.2 (b): Three-dimensional mesh representation of the model domain and study site  

 

Boundary conditions 

Every model needs an appropriate set of boundary conditions that represent the 

system’s relation with the surrounding region. Several boundary conditions were set 

for modelling the flow and transport processes of this study area. Specified heads were 

set to element nodes that interconnect the perimeters of the flooded pits in Layers 2 

and 3. Elements and nodes surrounding the pits representing the bedrock aquifer in 

contact with water inside the pits were set to head values equal to the measured 

groundwater level in the pits. The model does not simulate flows within the flooded 

open pits themselves, so elements within the head boundary are not active. Pit water 

levels and groundwater levels at monitoring points nearby are adapted to represent the 

open pit as a head boundary condition derived from the groundwater levels measured 

in monitoring points situated nearer to this boundary. The northern boundary where 

the Finnish River is located was assigned a constant head boundary condition, as were 

the creeks alongside the Finnish River’s east side and the creeks at the southern 

boundaries of the model. For these boundaries, river-bed elevations, and temporally 

varying river head values, obtained through  field observations, were assigned. A 

transient constant head boundary was set that simulates groundwater water level 

changes in the main, intermediate and brown pits, and the river. The finite element 
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method provided ease of using variable meshes, ease of incorporating all the boundary 

conditions and accurate geometric representations of the aquifer system. The 

discretization of the study area and model boundary conditions is shown in Figure 3.3. 

 

Figure 3.3: Three-dimensional representation of the model’s boundary conditions  

 

Model input parameters 

Several input parameters for aquifer properties and boundary conditions were 

used to broadly describe characteristics of the aquifer. Aquifer properties defines the 

geological medium through which groundwater flows in terms of porosity, hydraulic 

conductivity, bulk density, and moisture content, while groundwater boundary 

conditions describe the water flux between aquifer layers and surface features such as 

groundwater recharge rate and well pumping schedule. The hydraulic conductivity 

values and specific yield/specific storage values used for the model’s hydro-

stratigraphic units were estimated from pumping tests described in previous studies 

(RGC, 2010).  
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The initial hydraulic head  for the model was based on groundwater level data 

measured at 22 monitoring wells in August 2010. The initial hydraulic head ranged 

from 50 to 71 m Australia height datum (mAHD). Groundwater recharge was 

estimated from annual rainfall data recorded at the site. It was assumed that net 

recharge by rainfall and flows from the flooded open pits were the only sources of 

water input to the groundwater system within the model domain. The aquifer is 

recharged largely by rainfall and sources of surface water bodies. The rainfall 

distribution acrosss the study area was estimated from annual rainfall records for the 

study area, which was 2372 mm per year. Based on calibration and validation of the 

flow models, the vertical annual recharge was assumed to be 25% of the average gross 

rainfall over the study area. Groundwater flow processes were simulated using the 

hydrogeological parameters listed in Table 3.1. The vertical and horizontal hydraulic 

conductivities (Kx and Kz, respectively) are shown in Table 3.1 (a) for the different 

geological layers of the study area. The hydraulic conductivity in the other horizontal 

direction, Ky, was assumed to be same as the horizontal hydraulic conductivity Kx. 

Table 3.1(a): Hydraulic conductivity and layer thickness values of Aquifer  

Model layer 

Hydraulic conductivity  

Thickness (m) Kx (m/day)  Kz (m/day) 

Layer 1 0.13 0.12 3 

Layer 2 1.21 1.21 7.5 

Layer 3 0.44 0.44 7.5 

Layer 4 0.65 0.65 30 

Layer 5 0.11 0.11 60 

Layer 6 0.04 0.04 45 

 

Table 3.1(b): The Study Aquifer’s Physical and Hydrogeological Properties 

Parameter Value 

Number of nodes 6587 

Number of elements 10,704 

Effective porosity, θ 0.28 

Longitudinal dispersivity, αL 10 m/d 

Transverse dispersivity, αT 0.1 m/d 

Vertical dispersivity, αV 0.01 

Average rainfall 2372 mm/year 
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3.5.2 Reactive Transport Model 

To represent the reactive geochemical processes that occur at the study site, a set 

of reaction networks consisting of equilibrium and kinetic reactions that describe the 

aquifer’s geochemical processes was formulated, based on contamination and 

groundwater quality data. HYDROGEOCHEM 5.0 was used to simulate reactive 

chemical transport and the long-term behaviour of contaminant movement in the 

aquifer. This study considered the hydrogeochemical transport of six components—

OH-, Cu2+, Fe2+, Fe3+, Mn2+ and UO2 2+—and an aqueous complexation of 17 species 

and three minerals (pyrite, uranite and chalcopyrite). Geochemical reactions of 

precipitation and dissolution aqueous complexation, mineral dissolution were also 

incorporated into the transport model.  

Since the actual fluxes of the six assumed sources of contamination (four waste 

rock dumps and two pits) are not known, the groundwater contaminant concentrations 

measured at several monitoring locations were used as initial concentration data. The 

first step of contaminant transport modelling is to observe how the contaminant 

spreads over the field with varying groundwater heads. The groundwater contaminant 

concentrations measured at some monitoring locations were used in the reactive 

transport modelling. These concentrations were constant at selected monitoring points 

on specific days. Also, some of these contaminant concentrations were quite low and 

tended to decrease very quickly or even almost disappear after a few days, probably 

due to nominal immediate dilution, which is not realistic. To properly model and 

achieve realistic modelling, it was necessary to interpolate the known concentration 

data for the whole study area before using them in transport modelling. Hence, an 

interpolation of the concentrations was performed for the model domain area before 

conducting the contaminant transport modelling. Only a few points, which were 

unevenly scattered across the site, were available for the interpolation, but this is quite 

typical in hydrogeological studies. 

The reason for interpolating contaminant concentrations is to provide a more 

realistic contaminant distribution as compared to a concentration values scattered even 

in a non-contaminated area whereas addressing the problem of concentration dilution. 

Furthermore, there was only one concentration measurement available for each 

location and each contaminant. Even if this value was entered as a transient 

contaminant concentration, it would be interpreted as a constant concentration and 
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cause the modelling of the contaminant process to be insignificant. Thus, even in a 

large time-scale simulation, such as that used in this study, contaminant transport 

would not be detectable. The contaminant concentration data obtained from 

interpolation were used only in the contaminant transport model as starting 

concentrations. Thus, the interpolated concentration data were used as initial 

concentrations. The reactive transport model was simulated (run) for a period of two 

years (from 2012 to 2014) due to the availability of data. Assumed initial conditions 

for contaminant concentrations were specified in the simulation model based on 

groundwater quality data from 2011. Copper (Cu2+), sulfate (SO4
2-), manganese 

(Mn2+), uranium (UO2
2+) and iron (Fe2+) were introduced as initial contaminants in 

this study.  

Conceptual reactive transport modelling  

The reactive transport model for the study area was built upon the flow model 

by implementing the necessary transport conditions. These include the transport 

boundary conditions, the total number of components and the species to be simulated. 

The assumption is that the transport of contaminants is based solely on the simulated 

flow fields, which may involve waste rock interactions at the four waste rock dumps 

(Figure 3.1a) or mineral interactions with the aquifer rock bed and formation of 

daughter products or additional metal species.  

The conceptual model for the reactive geochemical system is based on 

equilibrium and kinetic reactions. The reactive system is entirely described by 

identifying chemical reactions and the total number of chemical species involved in 

them. The standard equilibrium reactions with appropriate equilibrium constant is used 

to represent all the fast reactions, like aqueous complexation reactions and the 

precipitation of secondary phases. Slow reactions are represented by kinetic reactions 

and associated rate constants. This addresses the dissolution reactions involving the 

major minerals occurring in the waste rock dumps and pits. The reaction network 

describing the geochemical system of the study area, and the associated rate constants 

obtained by modifying Yeh et al.’s (2004) equations, are shown in Table 3.2. 
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Table 3.2: Proposed Chemical Reactions During Contaminant Transport (Yeh et al., 2004) 

All equations specified in Table 3.2 were derived by modifying equations from Yeh et 

al. (2004). 

 

3.6 MODEL CALIBRATION  

The groundwater model was calibrated by iterative adjustment of aquifer parameters 

and stresses to achieve the best match between the observed and simulated water 

Chemical reaction Constant rate (log K) 

H2O(aq) → H+ + OH-  -13.99 

H+ + SO4 → HSO4
- 1.99 

Cu2+ + H2O → Cu(OH)+ + H+ -9.19 

Cu2+ + SO4
2- → CuSO4 2.36 

Cu2+ + 2H2O → Cu(OH)2 + 2H+ -16.19 

Cu2+ + 3H2O→ Cu(OH)3
- + 3H+ -26.9 

Fe2+ + H2O → H+ + FeOH+ -9.50 

Fe2+ + SO4
2- → FeSO4 2.20 

Fe2+ + 2H2O → 2H+ + Fe(OH)2 (aq) -20.57 

Fe2+ + 3H2O → 3H+ + Fe(OH)3
- -31.00 

Fe2+ + 4H2O → 4H+ + Fe(OH)4
2- -46.00 

Mn2+ + SO4 2- → MnSO4 2.26 

Mn2+ + H2O→ MnOH+ + H -10.59 

Mn2+ + 3H2O→ Mn(OH)3
- + 3H -34.08 

UO2
2+ + SO4

2- → UO2SO4  3.15 

UO2
2+ + SO4

2- → UO2(SO4)2
2-  4.14 

UO2
2+ + 2H2O ↔ UO2(OH)2 aq + 2H+ 12.15 

Fe(OH)3(s) +3H + ↔ Fe3+ + 3H2O Kf = 0.05 

FeOOH(S) + 3H+ ↔ Fe3+ + 3H2O Kf = 0.07 

FeOOH(S) ↔ FeOH Kf = 0.05 
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levels. A well-calibrated model accurately replicates hydrogeological conditions of 

real-world, which is the first goal of modelling. Therefore, the calibrated model can 

provide confidence in the predicted changes to the groundwater regime due to mining.  

 

3.7 VALIDATION OF FLOW MODEL 

To verify the performance of the groundwater flow and transport models, the transient 

groundwater model was run for an extended two-year simulation period to replicate 

groundwater levels from 2012 to 2014/2015. The developed flow model’s outputs 

(hydraulic heads) were verified against field data from 2014/2015. The model was 

validated by comparing the solutions of the calibration simulation with a separate set 

of field measurements not utilized for calibration. It was not possible to calibrate the 

contaminant transport model as the contaminant source magnitudes, timings and 

locations could not be specified accurately. The results obtained for this validation 

exercise are presented in Figure 3.7; they match satisfactorily with field measurements 

and thereby demonstrate good predictive ability. 

 

3.8 RESULTS AND DISCUSSION  

3.8.1 Calibration of the Flow Model 

For a model to be able to adequately and accurately simulate field parameters, it needs 

proper calibration. The aim of calibrating a model is to tune the hydrogeological 

parameters until the model approximates field measurements such as hydraulic heads 

and concentrations. The idea is to simulate the physical processes in the aquifer 

accurately. The flow model was calibrated for hydrogeological parameters and 

boundary conditions by running the forward simulation repeatedly and manually 

adjusting the input parameters selected for calibration, including boundary conditions, 

within their allowable ranges in each run until a satisfactory match between the 

modelled and field results was achieved. In this study, a trial-and-error procedure was 

used. It is worthwhile noting that the numerical simulation codes utilized in this study 

do not follow an automated calibration procedure such as PEST (Doherty, 2015). 

Manual trial-and-error calibration runs are conceptually straightforward and require 

intuitive judgment of the results obtained from multiple forward simulation runs. This 
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process is flexible, allowing logical adjustments of parameter values and structures, 

including changes in mesh designs and the representation of the geological framework. 

For this study, the purpose of calibration was to obtain hydraulic conductivity and 

recharge estimates for the modelled aquifer based on limited field measurements. 

Calibration was attempted without changing the hydrogeological zones defined by the 

distribution of hydrogeological units present at the site. Calibration was attained 

through refinement of the model parameters and features, including hydraulic 

conductivity in the horizontal and vertical dimensions, and recharge and hydraulic 

conductivity assigned to the sections used to replicate the influence of the fault. 

Since the flow model simulation started in December 2010, groundwater head 

data measured from 20 monitoring locations in December 2010 were used to calibrate 

it. Throughout the calibration process, the hydraulic conductivity values of the 

different soil materials and rock types were varied within the acceptable range of field-

measured hydraulic conductivity values in Table 3.1.  Simulation runs were repeated 

until a reasonable match between the observed and estimated hydraulic head values 

was reached under the transient-state simulation conditions. Different values of 

hydraulic conductivity were obtained after calibration. The hydraulic conductivity 

values differed from layer to layer based on the varying material properties of each 

layer. Each layer had specific hydraulic conductivity values. The hydraulic 

conductivity values ranged from 0.1–5 m/day with the exception of the fault zone that 

cuts through the east side of the model, which had values as high as 75 m/day.  

Hydraulic head measurements from 22 observation locations were used to 

calibrate the simulation model. Data from 2010 to 2012 were used to calibrate the flow 

model, while data from 2012 to 2014 were used to validate it. For the purposes of 

calibration, a percentage of annual rainfall was defined as a recharge value in the 

model. The calibration targets for the developed model were set to be within 2 m of 

the hydraulic head values observed at the observation locations. 

Determining the exact boundary conditions of a model domain is a difficult task 

when measurement data are limited. Without exact or characteristic boundary 

conditions, a model may not accurately represent a field process. It is therefore 

necessary to implement realistic boundary conditions in a model that reflects the 

conditions of the site. One of the most difficult tasks in the calibration process is to 

properly assign the correct boundary conditions. The boundary conditions must 
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therefore also be determined on the basis of the preliminary results of the calibration. 

The boundary conditions of the model are manually adjusted to achieve the calibration 

targets. In this study, simulated hydraulic heads were compared with field-measured 

hydraulic heads at monitoring points. Groundwater generally flows from the higher 

elevations of the study area towards the central area, towards the East Branch of the 

Finniss River northwards.  

The hydraulic head calibration results are illustrated by the bar graphs in Figure 

3.4 (a), which compare the simulated and measured values. The same comparison is 

presented in Figure 3.4 (b) but as a line graph. A graph of the simulated and observed 

groundwater levels at selected monitoring locations after calibration is given in Figure 

3.4. This figure shows the monitoring location of wells on the x-axis and the head 

values in metres on the y-axis. Figures 3.4a and 3.4b compare the observed and 

simulated heads for the two-year period of 2010–2012. Figures 3.4a and 3b show that 

there is an acceptable match between the field-measured and simulated heads. There 

is a small difference between the measured and simulated heads, which may be due to 

various errors and uncertainties in measurement, measurement/estimation of 

parameters, and boundary conditions. Variations within the model elements due to 

minor deviations in the hydraulic parameters, as is commonly found in groundwater 

modelling investigations, may be an additional cause. The deviation between the 

simulated and measured hydraulic heads does not exceed 5% of the field-measured 

values, so the calibration process can be said to have made the model reasonably 

approximate the observed groundwater head values. The calibration results, as a 

comparison between observed and simulated groundwater levels, are shown in Figure 

3.5. 
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Figure 3.4 (a): Comparison of hydraulic heads observed in 2012 with those estimated by the calibrated 
model 
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Figure 3.4 (b): Calibrated results of hydraulic heads for 2012 

 

A scatterplot of simulated vs. observed values can be considered as a calibration 

graph. A plot for the calibration period (2010-2012) is shown in Figure 3.5. Statistical 

analysis of the calibrated model results shows that the residual mean (RM) 

groundwater levels at the monitoring locations during the calibration period ranged 

from 0.01 m to 2.97 m. The mean absolute error (MAE) was calculated as 0.82 m, and 

the standard deviation is 0.77 m. The normalized root mean squared (NRMS) was 0.09 

and the root mean square error is 1.10. The correlation coefficient (R) is 0.90. From 

the scatterplot in Figure 3.5 and the comparison of observed and simulated hydraulic 

heads, we can see that the simulated head levels were within an acceptable range of 

the measured heads. Figure 3.6 shows the correlation between the measured and 

simulated heads with 95% confidence intervals on the mean observed and measured 

values.  
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Figure 3.5: Correlation between simulated and observed groundwater heads 
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Figure 3.6. Linear relationship between measured and simulated hydraulic heads with 95% confidence 
intervals for the mean of the observed values and the observed values  

 

The results of calibrating the simulated heads is presented in Table 3.3. The 

calibration of a numerical model is typically considered good if the NRMS  error is < 

5%. The computed NRMS values for the simulated heads are well below the target of 

5%, suggesting good calibration to head targets and simulated hydraulic parameters. 

The residual average error for the total head data sampled at the 22 monitoring wells 

in 2010 is 1.0168. The heads range in value from 50 m to 70 m. The simulated heads 

at the monitoring points were then compared with the observed heads. Figure 3.4 

shows bar charts that indicate a close relationship in the hydraulic heads. A Pearson 

correlation coefficient test was applied to the calibration results of the total heads. The 
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correlation coefficient (r) of 0.918 shows a close linear relationship between the 

observed and simulated heads. 

Field data approximately corresponding to the first 738 days were used to 

calibrate the numerical model at all monitoring points. Field data from after this period 

were reserved for validating the numerical model. Figure 3.7 shows the evaluation of 

the numerical model’s performance in the calibration period. The simulated 

groundwater heads predict the field-measured data reasonably well for the validation 

stage. Residuals between simulated and measured groundwater heads were also 

calculated by means of mean absolute error (MAE), NRMSE and RMSE. Table 3.5 

shows the statistics for the calibration and validation periods. Both Figures 3.7 and 3.8 

show that the numerical model maintains its calibrated accuracy throughout the 

validation period. 
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Table 3.3: Calibration Results for the Two-year Simulation Period (m AHD) 

Monitoring well Observed head (m) Simulated head (m) Residual (m) 

PMB1a 61.44 62.48 -1.04 

PMB1b 62.65 63.65 -1 

PMB2 63.27 63.12 0.15 

PMB3 60.29 64.9 -0.11 

PMB4 60.41 60.86 -0.45 

PMB5 57 57.14 -0.14 

PMB6 58.33 59.09 -0.76 

PMB7 56.39 59.05 -2.66 

PMB8D 53.96 54.68 -0.72 

PMB9D 56.57 56.69 -0.12 

PMB10 57.63 58.03 -0.4 

PMB11 57.16 57.87 -0.71 

PMB12 56.44 56.91 -0.47 

PMB13 56.89 56.9 -0.01 

PMB14 57.06 57.55 -0.49 

PMB16 56.27 57.16 -0.89 

PMB17 56.45 57.29 -0.84 

PMB18 57.28 58.27 -0.99 

PMB19 57.35 58.23 -0.88 

PMB20 51.01 51.69 -0.68 

PMB22 56.85 59.82 -2.97 

PMB23 57.06 58.75 -1.69 

 

3.8.2 Validation of the Flow Model 

The validation results for the validation period of 2012–2014 are shown in 

Figure 3.7. Table 3.4 presents the validation results in terms of hydraulic heads.  

The availability of hydraulic head field measurements from 2012 to 2014 

allowed the model to be validated over this period, using the 2012 measured head 

distribution as the initial condition. Simulation was carried out until 2014 using a time 

step period of 30 days. Figure 3.7 compares the hydraulic heads observed and 

simulated for this period, illustrating a wide correspondence. Thus, after transient-state 
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validation, the model is shown to simulate groundwater levels with a reasonable level 

of accuracy. Total groundwater head contours and direction of flow are shown in 

Figure 3.9. 

 

Table 3.4: Validation of Hydraulic Head Values for 2015 (values in m AHD) 

Monitoring well Observed head (m) Simulated head (m) Residual (m) 

PMB1a 63.42 63.01 0.41 

PMB1b 63.86 62.91 0.95 

PMB4 62.44 63.03 -0.59 

PMB5 58.26 59.13 -0.87 

PMB6 58.76 58.59 0.17 

PMB7 58.55 58.48 0.07 

PMB8D 59.48 59.24 0.24 

PMB10 59.62 59.81 -0.19 

PMB11 59.14 59.66 -0.52 

PMB12 59.76 60.04 -0.28 

PMB13 60.21 60.04 0.17 

PMB14 61.35 60.47 0.88 

PMB17 60.65 60.02 0.63 

PMB23 58.76 59.16 -0.4 

RN22039 61.57 60.8 0.77 

RN22081 60.98 61.23 -0.25 

RN22085 65.12 64.49 0.63 

RN22543 58.5 59.18 -0.68 

RN23051 63.16 63.55 -0.39 

RN23413 63.42 62.96 0.46 

RN23419 63.37 63.59 -0.22 

RN29993 62.88 63.36 -0.48 
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Figure 3.7: Correlation between observed and simulated groundwater levels during the validation 
period 

 

The validation residual results between the observed and simulated groundwater 

levels are given in Figure 3.8. This graph shows that the residuals were typically less 

than 1 m (with the average depth of the aquifer being approximately 150 m) throughout 

the majority of the model domain, except in four monitoring well locations: PMB2, 

PMB9D, PMB16 and PMB 18. These had larger head residuals and tended to be in 

areas with a higher topographic relief and/or deeper water table, factors that tend to 

cause high seasonal fluctuations in groundwater levels. In general, these areas were 

more difficult to calibrate. Nevertheless, the spatial bias in head residuals was 

considered acceptable for the purposes of this study. 

A summary and comparison of the calibration and validation results are given in 

Table 3.5. The maximum deviations in the predicted and measured hydraulic heads are 

0.07 m and 0.95 m, respectively. Table 3.5 also shows that the deviations between the 

measured and predicted heads are more or less of the same order for both the 
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R² = 0.8434
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calibration and validation results. Therefore, given the situation of having limited 

measured data and a large and hydrogeologically complex study area with a multilayer 

aquifer, these validation results show that the calibrated model can be utilized for the 

prediction of hydraulic head under different input scenarios. 

 

Figure 3.8: Errors between observed and simulated hydraulic heads during the validation period 
(2014) 

 

Table 3.5: Statistics of the residuals for the calibration and validation periods 

Statistic Calibrated period Validation period 

Simulation period (days) 730 730 

MAE (m) 0.82 0.72 

Standard deviation (m) 0.77 0.91 

NRMSE (m) 0.09 0.10 

RMSE (m) 1.10 0.91 

 

The numerical flow model for the Rum Jungle Mine Site was calibrated using 

annual groundwater level data measured at a selection of bores since August 2010. 
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Moreover, the validation process suggests that the current calibration provides a 

reasonable approximation of current flow conditions at the Rum Jungle Mine Site and 

can be used to predict the response of the groundwater system for rehabilitation 

planning. 

Concerning the calibration process, it is worth noting that the calibrated values 

of hydraulic conductivity lie within the range of uncertainty in the values obtained by 

means of hydrogeological characterization. Average hydraulic conductivity values 

were used due to the complexity of the aquifer system. The nature of the aquifer 

requires that a layer has about five different conductivity values, which causes 

convergence issues. The model encountered challenges in converging when 14 distinct 

hydraulic conductivity values were applied, as average values were used to represent 

the heterogenous and anisotropic nature of the site as much as possible and to achieve 

model convergence.  
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Figure 3.9: Three-dimensional model showing total head contours and the various material layers of the study area 
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Reactive Transport Modelling 

Contrary to the groundwater flow numerical model, almost no calibration was 

possible for the reactive transport model as the contaminant sources were unknown. 

Monitoring locations were selected to compare measured and numerically-computed 

concentrations. The selected monitoring points correspond to all the available 

boreholes, with the concentration values being of the same magnitude as the 

groundwater contaminant concentration measurements made in the study area. 

In most cases of reactive transport in contaminated aquifers at abandoned mine 

sites, transport of dissolved contaminants are transported in the liquid phase. These 

contaminants in the nature of chemical species  can undergo chemical interactions with 

other existing dissolved chemical species. The solid species mostly include mineral 

phases (precipitates), exchanged species (from the change complex) and absorbed 

species. These species undergo transportation through the porous medium, and also 

undergo geochemical processes. A set of equilibrium and kinetic reactions are used to 

represent the geochemical processes listed in Table 3. The species of focus in this 

abandoned uranium mining site are Cu, SO4, Fe, Mn and U, which are considered 

reactive species in the transport process. Essentially, the contaminant transport model 

cannot be calibrated, as that would require accurate information on contaminant 

sources (magnitude, location and duration). Due to the complex hydrogeology of the 

site, reasonable assumptions regarding recharges, boundary conditions, and initial 

head and concentration values were used iteratively to obtain an acceptable calibrated 

flow and transport model. The results obtained from reactive transport simulation of a 

two-year period reveal the presence of geochemical reactions in this aquifer.  

 

It is worth to note that the numerical model relied on previous work by RGC 

(2012, 2013, 2014, 2016), which was used to create the model domain and define the 

initial conditions. The dimensions and geometry of the different hydrogeological zones 

used in this study are different from those of previous works, which considered a grid 

type of discretization; finite difference method while the present study triangular 

wedge discretization; employed finite element method. The recharge rates of the model 

were defined according to the work of Ferguson et al. (2011) and the groundwater 

chemical composition and hydraulic parameters were obtained from RGC (2016). The 

opinions expressed in this chapter have been based on information contained in the 



 

68 Chapter 3:  

RGC reports made by the Northern Territory Department of Resources (DOR). The 

opinions in this work are provided in response to the objectives of this study. The 

author has exercised all due care in reviewing the information in the RGC reports. 

Whilst this research has compared key supplied data with estimated values, the 

accuracy of the results and conclusions from this work are entirely reliant on the 

accuracy and completeness of the data used.  

 

3.9 CONCLUSIONS 

This study outlined the development and calibration of a transient groundwater flow 

model for a contaminated aquifer underlying an abandoned uranium mine in the 

Northern Territory of Australia. This work was initiated as a fundamental step to 

understand the flow of the aquifer system and to establish a multiple species reactive 

transport model for a hydrogeologically-complex contaminated aquifer. The outcome 

of the model is the basis for a transient flow model and for reactive transport and 

predictive modelling. The implementation of this model was based on subjective 

judgment of the selection of appropriate data, due to its sparseness and reliability. The 

numerical flow model was calibrated a two-year period of 2010 to 2012. The calibrated 

model was also validated according to selected hydrogeological parameters with data 

from 2012 to 2014. The calibrated flow model and transport model were used to 

simulate the heads and concentrations at various points in the study area. Overall, the 

calibrated model provided a reasonable match with field observations, demonstrating 

strong hydraulic connection to the materials at each layer. This validation process 

suggests that the current calibrated model is a reasonable approximation of the current 

flow conditions at the Rum Jungle Mine Site and can be used to predict the responses 

of the groundwater system.  

The challenge in using reactive transport models for modelling real-life 

scenarios is in selecting the geochemical reactions that best describe the geochemical 

processes occurring at the study site and transforming them into transport equations of 

1) kinetic variables, 2) components and 3) equilibrium variables. These can then be 

used for the computation of equilibrium and kinetic rates to facilitate numerical 

contaminant transport simulations. 
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There was an acceptable level of agreement between the observed and simulated 

hydraulic heads. Transient simulation of the groundwater hydraulic heads and 

movement of reactive contaminants was accomplished with the developed simulation 

model. The concentrations predicted for the species in the reaction network are of the 

same order of magnitude as those of available measurements. Quantification of the 

contaminant sources in terms of magnitude, location and duration of activity was not 

possible. Therefore, the contaminant transport simulation calibration is, at best, 

subjective in this scenario. Hence, the simulation models, once reasonably calibrated 

to site conditions, are potentially good approximations, and similar approaches can be 

used for similar sites with similar complex challenges.  

The next chapter presents the design and implementation of a contaminant 

source identification methodology. This has the potential to increase the accuracy of 

characterizing distributed sources in a complex contaminated aquifer. 
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Chapter 4: Application of Contaminant 

Source Identification Methodology to a 

Mine Site 

This chapter discusses the application of a source identification method for 

characterizing contaminant sources at a contaminated mine site aquifer containing 

complex multiple reactive species. The performance evaluation of the method is 

assessed using synthetic data and limited field data. 

 

4.1 BACKGROUND TO THE PROBLEM 

The remediation of contaminated aquifers is a challenge task in groundwater resource 

management. Effective and reliable management of groundwater resources first 

requires the identification of the contaminant sources (Datta & Kourakos, 2015). 

Numerous problem-solving approaches have been proposed in recent decades to 

address contaminant source problems (Atmadja & Bagtzoglou, 2001; Amirabdollahian 

& Datta, 2013). Among these approaches, linked simulation-optimization models have 

been progressively applied to identify groundwater contaminant source characteristics 

in contaminated aquifers. However, over the years, most researchers studied point 

sources or ideally shaped non-point pollution sources. More so, such studies 

considered the contaminants in the transport model as non-reactive in a homogeneous 

geological media whiles solving the unknown source identification optimization 

problem. Even though such models can be simulated by considering ideally-shaped or 

point sources, they cannot be used to determine the characteristics of distributed 

groundwater contaminant sources with reactive contaminants. Furthermore, in highly 

heterogeneous geological media involving geochemical reactions (both kinetic and 

equilibrium reactions) of reactive contaminant species, the simulation of the transport 

process becomes more complex and difficult.  

The optimal characterization of the contaminant sources requires accurate 

simulation of the flow and transport processes occurring in the contaminated aquifer. 

The contamination scenario at an operational or abandoned mine site is generally very 
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complex due to geological heterogeneity, distributed sources and the presence of 

multiple reactive species in the mined mineral ores. In addition, at abandoned mine 

sites, monitoring of spatially- and temporarily-varying hydraulic heads and 

concentrations is usually very sparse and inadequate. Optimal characterization of 

contaminant sources also requires the use of an accurate flow and transport simulation 

model. Accurate and reliable identification of contaminant sources at an abandoned 

mine site is, therefore, especially complex and difficult. Source characterization is the 

first step towards reliable and sustainable contamination remediation. The issue of 

accurately characterizing contaminant sources at poorly monitored abandoned mining 

sites is crucial since the soil matrix and groundwater contamination have important 

influences on human health, vegetation and ecological systems. Thus, solving 

contaminant source problems in complex aquifers characterized by many aquifer 

parameter dissimilarities requires methods that are robust, efficient and able to handle 

data uncertainty.  

To optimally identify spatially-distributed groundwater contamination sources, 

the source flux, activity, duration and time of initiation need to be determined. 

However, when multiple reactive chemical species are present as contaminants, 

identification of the sources in terms of the individual species involved is required 

before developing a remediation strategy.  

Previous distributed contamination source characterization models for typical 

mine sites were reported in Jha and Datta (2015a). They developed a linked simulation-

optimization-based methodology for estimating the release histories of spatially-

distributed fixed pollution sources at an illustrative abandoned mine site, but the 

pollution sources were considered as conservative. In their method, adaptive simulated 

annealing (ASA) was used as an optimization algorithm to determine source 

concentrations at the pit. Similarly, Ayvaz (2015) developed a genetic algorithm-based 

simulation-optimization model to determine the spatial distributions and source fluxes 

of  areal groundwater pollution sources. This model was evaluated on a simple 

hypothetical aquifer model under ideal conditions. Eshafani and Datta (2016) 

developed genetic programming models as surrogate models for the characterization 

of distributed contaminant sources at a contaminated mine site. Genetic programming-

based trained surrogate models were used to approximate complex transport processes 
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involving reactive species. However, this study did not individually characterize the 

constituents of multiple contaminant species.  

The objective of the present research was to develop a linked simulation-

optimization approach to solving distributed groundwater pollution source 

identification problems in a complex groundwater system with emphasis on multiple 

reactive species. To the best of our knowledge, the potential of this approach for 

addressing multiple reactive species contaminant sources is still unexplored.  

For this work, it was assumed that the observed concentrations are measured at 

several monitoring locations, dispersed in space, and monitoring contaminant 

transients over a period. If there are multiple contamination sources in an aquifer, each 

monitoring location detects a mixture of contamination fields (plumes) originating 

from different locations. It is assumed that each contaminant source releases a different 

geochemical constituent that is mixed in the aquifer, and that the resultant mixture is 

detected at the observation locations. Also, the geochemical constituents are reactive, 

and their transport is impacted by geochemical reactions or other fluid/solid 

interactions in the porous media where the flow occurs. The aim is to identify the 

number, locations and activity times of contamination sources. 

The scenario of having very limited flow and concentration measurement data 

was incorporated to represent the typical situations of contaminated sites. The effective 

integration of a source identification optimization modelling technique with an 

accurate simulation of contaminant transport from distributed sources with complex 

pollutant geochemistry is addressed. The proposed approach is then evaluated for 

efficiency, accuracy and applicability. In the proposed approach, the groundwater flow 

and reactive transport processes are simulated by modelling the aquifer system of an 

abandoned uranium mine located in the Northern Territory of Australia. The three-

dimensional coupled physical and chemical transport process simulator 

HYDROGEOCHEM 5.0 (HGCH; Yeh et al., 2004) is used to numerically simulate 

the flow and reactive chemical transport processes.  

An initial attempt to optimally identify groundwater contamination sources was 

made by Gorelick (1983) using a combination of linear response matrixes and linear 

programming. This was followed by an innovative approach of using statistical pattern 

recognition (Datta et al., 1989) to characterize sources in space and time. These source 

identification methods were extended to incorporate different scenarios and to estimate 
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flow and transport model parameters. Statistical methods were also proposed to solve 

the unknown source characterization problem; i.e., use of nonlinear maximum 

likelihood estimation to solve the inverse problem of estimating contaminant sources 

in groundwater aquifers. (Wagner, 1992). Source identification using embedded 

nonlinear optimization techniques was proposed by Mahar and Datta (1997, 2000, 

2001). Other researchers proposed genetic algorithm (GA)-based optimization 

algorithms (Aral et al., 2001). Singh and Datta (2006) proposed use of an artificial 

neural network (ANN) approach. Use of classical optimization for solving optimal 

source identification problems was proposed by Datta et al. (2009). Source 

identification based on heuristic harmony was proposed by Ayvaz (2010). Also, 

simulated annealing (SA)-based linked optimization algorithms for source 

identification were proposed by Jha and Datta (2011), Chandalavada et al. (2012) and 

Prakash and Datta (2014a, 2015); and a differential evolution algorithm for 

groundwater source identification was proposed by Ayvaz (2014) and Gurarslan and 

Karahan (2015). A linked simulated annealing-based optimization model with a 

PHT3D simulation model for chemically reactive transport processes was proposed by 

Datta et al., (2017). Self-organizing map-based surrogate models was proposed by 

Hazrati & Datta, (2017); GP surrogate models for source identification in chemically 

reactive medium was proposedby Esfahani & Datta (2017). Reviews of optimization 

techniques for solving source identification problems are presented in Chandalavada 

et al. (2011), Amirabdollahian and Datta (2013), Ketabchi and Ataie-Ashtiani (2015) 

and Sreekanth and Datta (2015). 

In this chapter, the objectives are three-fold. The first objective is to evaluate the 

performance of an inverse source identification problem formulation to identify 

contaminant source characteristics based on a synthetic case study with highly 

complex hydrogeological and aquifer properties. This is important because, despite the 

advantages of using a simulation-optimization formulation to solve an inverse 

unknown groundwater problem, this approach has largely been applied to statistical 

type heterogeneities, knowing well how the type of heterogeneities largely influence 

mass transport.  

The second objective is to test the efficiency and advantages of using an adaptive 

simulated annealing optimization algorithm to demonstrate the feasibility of 

characterising multiple species concentrations from distributed sources. ASA is a 
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global optimization algorithm that depends on randomly sampling important 

parameter space. In contrast to the deterministic approaches, the exponential annealing 

schedules in the ASA allow resources to be used adaptively on re-annealing and 

convergence in all dimensions, guaranteeing extensive  global search in the first phases 

of the search and quick convergence in the final phases of the projected stopping 

criteria in the formulated problem of source identification. While ASA optimization 

has been applied to a variety of optimization problems, we believe that this is the first 

time it has been applied to the characterisation of multiple species concentrations in a 

contaminant source identification problem. 

The third objective is to provide an optimization benchmark case that allows 

optimization strategies on objective functions defined over a discrete domain and 

inspired by real applications, which are not commonly available in the optimization 

community. The performance of the developed method is evaluated using a real 

complex aquifer system. It initially uses synthetic data (to be able to evaluate the 

performance for different variations of the scenarios in the field) on the multiple 

species concentration identification at the distributed sources. The performance 

evaluation is carried out using limited concentration data obtained at the study site to 

characterise the contaminant sources. The developed method is applied to an 

abandoned uranium mining site in the Northern Territory, Australia, and an associated 

contaminated groundwater system. 

 

4.2 METHODOLOGY  

In this section, a general mathematical formulation of the source identification problem 

and its notation are presented. The proposed linked simulation-optimization method of 

source characterization has a two-phase structure of numerical simulation and 

optimization.  

4.2.1 Groundwater Flow and Transport Simulation 

The governing equations for groundwater flow and reactive transport are 

extensively detailed in Chapter 3, Section 3.2. 

The first phase consists of a numerical simulation of the physical processes of 

flow and reactive transport in the groundwater system. To solve the source 
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identification problem, the governing equations of groundwater flow and transport are 

solved to accurately represent the flow and transport processes occurring in the 

contaminated aquifer system. The simulation of these processes requires data on the 

hvydraulic head fields and contaminant concentrations so that the governing 

groundwater flow and transport equations, respectively, can be solved. Multiple 

reactive transport and mixtures of contaminant plumes in an aquifer present an intricate 

problem likely influenced by, but not limited to, complexation, precipitation-

dissolution, adsorption-desorption, advection, dispersion and diffusion, and the 

chemical processes of aqueous, ion-exchange, redox and acid-base reactions. 

This study used contaminant concentration measurements for the mine site that 

were obtained by a previous study (RGC, 2012, 2016). These data are very limited in 

number and only cover two years of monitoring. The concentration calibration results 

of the present study were compared with these limited measurement data. No other 

concentration data was available. This study illustrates the limitations in modelling 

flow and transport processes at such a site with very limited field measurements. The 

limitations in concentration data, and the very limited knowledge on aquifer parameter 

values, were a challenge to the development of a well-calibrated simulation model. 

Such a challenge is common in this area of research. This is also one of the reasons 

why a large number of modelling iterations with different assumptions of recharge, 

boundary conditions, and initial head and concentration values was needed to achieve 

an acceptably calibrated model. The implementation of flow and transport simulation 

models should be considered in light of such limitations and the challenges common 

to contaminated aquifer sites such as the current one. 

 

4.2.2 Adaptive Simulated Annealing Optimisation Algorithm (ASA) 

The second step involves using an optimization algorithm to find optimal 

candidate solutions. The present study uses an ASA optimization algorithm in the 

optimal source characterization model. This algorithm is preferred for its comparative 

efficiency in reaching a global optimal solution. The optimization algorithm is used 

hereafter to minimize the objective function formulation. 

The ASA global optimization algorithm relies on random importance-sampling 

of parameter space (Ingber, 1993a). It was created with the objective of speeding up 



  

Chapter 4: Application of Contaminant Source Identification Methodology to a Mine Site 77 

the convergence of standard SA methods (Ingber, 1989, 1993, 2017; Chen & Luk, 

1999). The basic structure of the ASA algorithm is the same as that of classical SA. 

There are, nevertheless, some key differences. It has new distributions for the 

acceptance and state functions and a new annealing schedule. It uses independent 

temperature scales for each fitted parameter and for the acceptance function. It also 

performs reannealing at specific intervals. The ASA algorithm maintains the 

advantages of SA but converges faster. Hence, the ASA algorithm is a powerful global 

optimization tool for solving complex parameter estimation problems. 

The major advantage of ASA is that the algorithm parameters are modified in an 

adaptive way and that the solutions do not differ greatly if the parameters are updated 

within acceptable limits. This contrasts with other optimization algorithms, where only 

small variations in parameters, such as mutation probability, crossover probability, or 

population size, cause major differences in solutions. Additional benefit of ASA over 

SA is that it overcomes the speed issue of traditional SA approaches and ensures fast 

convergence towards a global minimum solution. A comprehensive discussion of the 

ASA formulation is provided in the literature review chapter (Chapter 2). 

Based on the principles of ASA, the following set of instructions were set and 

performed repeatedly until the stopping criterion was met. 

Set iterative criteria: Criteria are set to decide whether to accept the new state 

when a new current is selected. The objective function value of the original state and 

the new state are determined and the new state is judged according to the above criteria. 

Initial temperature T0: The appropriate initial temperature is selected by 

attempt. 

Termination temperature TE: A smaller value is selected as the end 

temperature. 

Cooling rate: The temperature from a certain state Tk to the next state Tk + 1 

should satisfy: Tk + 1 = αTk, where α ϵ (0,1). Cooling is slow when α is large. 

Selection of neighbour state: A new solution is generated by random variation 

within a certain neighbourhood.  

The whole simulated annealing process outlined above is summarised in the flow 

diagram in Figure 4.1. 
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Figure 4.1: Flow diagram illustrating the operations involved in the simulated annealing (SA) process 
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4.2.3 Source Identification Using Simulation-Optimization 

The simulation-optimization model simulates the physical processes of flow and 

reactive transport within an optimization model. The flow and reactive transport 

simulation models are considered as important binding constraints for the optimization 

model. Therefore, any feasible solution of the optimization model needs to satisfy the 

flow and transport simulation models. The advantage of this approach is that it is 

possible to connect any complex numerical model to the optimization model. In this 

identification model, the flow and transport simulation models are linked to the 

optimization model using the ASA algorithm to find the solution.  

In simulation-optimization models, the groundwater contaminant source 

identification problem is formulated as a forward-time simulation in combination with 

an optimization model. The simulation-optimization model simulates the physical 

processes of flow and reactive transport within the optimization model. The flow and 

reactive transport simulation models are treated as important binding constraints for 

the optimization model to ensure that the simulated source responses fare properly 

simulated. Therefore, any feasible solution of the optimization model is expected to 

satisfy and based on the implemented flow and transport simulation models. In this 

approach, several forward-time simulations of the groundwater reactive transport 

equation are solved with different sets of potential sources and their respective 

strengths. The solutions of these forward runs are compared to measured spatial and 

temporal concentrations of the contaminant species. The optimization model solution 

selects a set of sources(strength, location etc.), which results in the simulated 

concentrations closely matching the species concentration measurements. The 

advantage of this approach is that it becomes possible to incorporate any complex 

numerical simulation model to the optimization model. In the source identification 

model, the flow and transport simulation models are linked to the optimization model 

using the ASA algorithm to find a solution. Figure 4.2 shows a flowchart of the 

simulation optimization and program execution sequence for groundwater 

contaminant source identification. 
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Figure 4.2: Schematic illustration of the linked simulation-optimization model using adaptive 
simulated annealing 
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4.2.4 Mathematical Formulation of Simulation-Optimization Models 

The main goal of the contaminant source identification model is to characterise 

each source according to the geochemically-reactive species that are reacting in the 

aquifer. The source characteristics of interest include location and release duration and 

magnitude. The source identification model uses the optimization approach to provide 

candidate solutions for a set of source characteristics. It minimizes a weighted 

objective function of the differences between the simulated and observed species 

concentrations at monitoring locations within the model domain.  

The optimization model generates candidate concentrations of species associated 

with each potential distributed source location. In this case, five candidate solutions of 

species concentrations are generated by the optimization algorithm at six separate 

potential distributed source locations. These candidate concentration solutions 

generated by the optimization algorithm are utilized to estimate spatial and temporal 

contaminant species concentrations in different time periods for monitoring locations 

at which field concentrations have been measured. Appropriate constraint conditions 

can be imposed on the parameters of the model. The optimization algorithm then 

evaluates the objective function. The objective function value is defined as a function 

of the differences between the observed and simulated concentrations of different 

reactive species at monitoring locations in different time periods. Optimal source 

characterization is obtained by solving the optimization model to minimize the 

objective function. The objective function of the simulation-optimization model used 

for source characterization was formulated as follows: 
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Where 
k

obssp iob
C  is the observed concentration of a species at monitoring location iob 

in the kth time period; 

k

simsp iob
C  is the concentration of a species estimated by the source identification model 

at monitoring location iob in the kth time period; 

sp1, sp2, sp3, sp4 are species numbers one, two, three and four, respectively, involved 

in the chemical reaction; 

nob is the total number of concentration-observation locations; 

nk is the total number of concentration observation time periods; 

nspe is the total number of species involved; 

f (x, y, z, Csim) represents the concentration simulation results at location coordinates 

defined by x, y, z obtained from the transport simulation model. 

k
iobw is an assigned weight corresponding to observation location iob and time period 

k; and 

 is an appropriate constant that is the average of the highest and lowest concentrations 

of each species. This ensures that errors at low concentrations do not dominate the 

solution. 

 

4.2.5 Development of a Linked Simulation-Optimization Model for Source 

Characterization based on Multiple Species of Contaminants 

A finite element-based three-dimensional numerical simulator 

(HYDROGEOCHEM 5.0) was used to simulate the flow and transport processes in 

the study area aquifer. Hydrological variables, including Darcy's velocity and moisture 

content, are necessary in determining the transport of contaminants through saturated-

unsaturated subsurface systems. These variables need to be specified to solve the basic 

governing equations in a simulation model. These variables can be iteratively 

estimated by calibration of a simulation model.  

A linked simulation-optimization approach linking the groundwater numerical 

simulation model with an optimization model that incorporates an ASA algorithm was 

implemented. Integrating a numerical simulation model with an optimization 



  

Chapter 4: Application of Contaminant Source Identification Methodology to a Mine Site 83 

algorithm results in significant performance improvement over source identification 

results obtained through conventional standalone simulation or optimization methods. 

In the linked simulation-optimization methodology, the first step is to develop a 

groundwater simulation model that computes head and species concentration values at 

different monitoring locations in different time steps. In the second step, the simulation 

model is externally linked with the optimization model. Whenever the optimization 

procedure requires the objective function and/or constraint evaluation, it calls the 

simulation model while passing the candidate solutions to the simulator. Then the 

simulation model executes and returns the resulting concentrations. An ASA algorithm 

acts as a driver model that calls the simulation model by passing variables and gets 

back the corresponding objective function value. The ASA then adjusts the variables 

to compute a new objective function and continues for several iterations until there is 

no further improvement or the stopping criteria are satisfied. The ASA used as the 

optimization routine calls the calibrated simulation model during each iteration. 

 A computer code was written in C++ language to interface the ASA and 

calibrated groundwater simulation model, thus facilitating communication between the 

simulation and optimization models. The C++ based code acts as a subroutine that has 

a set of instructions designed to communicate between the FORTRAN-based 

numerical simulation program and the C-language-based optimization program of 

ASA to perform frequently used operations within the linked simulation-optimization 

methodology.  

For the simulation and optimization models to work efficiently together to 

optimally solve the source identification problem, they must be interfaced. This 

requires the design and implementation of a linking script that facilitates 

communication (recursive calls) between each module, hence the C++ code. Each time 

an optimization model requires a function evaluation or constraint evaluation, it calls 

the simulation model. Figure 4.1 shows the program’s execution sequence. The ASA 

algorithm starts from an initial guessed solution given by the user. Candidate source 

concentrations are generated randomly by the ASA algorithm as possible solutions. 

For each species’ set of source concentration values, the numerical simulation is 

executed once to update the concentration in response to the source concentrations. 

The output of the simulation consists of concentration values for all nodal points in the 

simulation domain. The concentration values for the selected observation locations are 
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forwarded to the optimization module. The optimization algorithm evaluates the 

constraints and checks for termination. If the constraints are not satisfied, then it 

computes new source concentrations based on the ASA model and passes them to the 

numerical simulation model. Based on the HYDROGEOCHEM results, a new set of 

source concentrations is formed and HYDROGEOCHEM is called again to compute 

the concentrations. This process is continued until an optimal solution is reached based 

on the objective function and the constraints. The time period for optimization is given 

by the user. The numerical model will start running from the initial time period, 

irrespective of the optimization time period and, through this, the numerical model will 

take care of the time relationship. HYDROGEOCHEM 5.0 uses many input files, but 

during optimization, only the candidate source concentrations of individual 

contaminants change. All other parameters do not change; hence, only the source 

concentration files are modified using the linking C++ code during each iteration. The 

idea here is to introduce new candidate solutions through the source concentration files 

and then run the whole optimization model. The file containing the concentrations of 

individual contaminant species at different time steps and different observation 

locations is checked by solving the objective function, whether the constraints are 

satisfied or not. 

 

4.3 PERFORMANCE EVALUATION 

To evaluate the performance of the proposed optimal contaminant source 

characterization methodology, concentration measurements taken at monitoring 

locations in different time steps were utilized as a part of the real-life illustrative 

scenario. To test the reliability and robustness of the proposed methodology in real 

scenarios, concentration measurement errors were incorporated by introducing various 

amounts of synthetically-generated, normally-distributed error in the simulated 

concentration values (Singh & Datta, 2006). The perturbed simulated concentrations 

represent erroneous measurements, and are defined as follows: 

k

sim

k

sim

k

sim iobiobiob
CaCpertC ••+=       (4.4) 

Where: 
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 k

simiob
pertC  is a perturbed simulated concentration; 

k

simiob
C  is a simulated concentration; 

  is a normally-distributed error term with a zero mean and standard deviation of one; 

𝑎 is a fraction, such that 0 < a < 1. For example; 𝑎 is varied from 0.05 to 0.2. a < 0.10 

corresponds to a low noise level, 0.10 < a < 0.15 corresponds to a moderate noise level, 

and a. 0.15 corresponds to high noise level (Singh & Datta, 2006). 

Model for Erroneous Concentration Measurement Values 

For evaluation purposes, simulated concentration values were perturbed to 

represent measurement errors. Adding randomly-generated random errors to the 

simulated concentrations perturbed these simulated values. The normally-distributed 

random error terms are used to simulate the errors that generally occur in field 

measurements. The perturbed concentration values were computed as follows 

(Prakash & Datta, 2013): 

Cobs (ML , t) = Csim (ML , t) + ε r       (4.5) 

Where:  

Cobs (ML, t) is the measured or observed concentration of a species at monitoring 

location ML at time t;  

Csim (ML, t) is the simulated concentration at location ML and time t from the numerical 

simulation model; and  

ε r = is a random error term.  

Here, the random variable ε r is assumed to follow a normal distribution with mean 

= 0 and standard deviation = a.Csim (ML, t). Furthermore, the error term is defined 

as: 

ε r = e. a. Csim (ML, t)       (4.6) 

where a = a fraction (0 ≤ a ≤ 1.0) and e = normal deviates. 
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For this study, MATLAB (R2017a) software was used to generate standard normal 

deviates (e). The value of a was varied from 0.05 to 0.2, where higher values indicate 

a higher level of noise in the data. It was assumed that values of a < 0.10 correspond 

to a low noise level, 0.1 ≤ a ≤ 0.15 corresponds to a moderate noise level, and a > 0.15 

corresponds to a high noise level (Singh et al., 2004; Prakash & Datta 2013). Also, for 

performance evaluation purposes a normal distribution of errors is assumed. Any other 

suitable distribution function may be incorporated. The value of Cobs (ML, t) can be 

negative if e is negative, a is large and Csim (ML , t) is small. Generally, such a situation 

is less probable if a is small and e is also small. Otherwise, a truncated normal 

distribution may be used. 

 

4.4 OPTIMAL SOURCE CHARACTERIZATION 

The numerical simulation model used to solve the three-dimensional flow and reactive 

biogeochemical transport processes was utilized in the linked simulation-optimization 

model for optimal source characterization of different distributed sources in the 

contaminated mine site area. For evaluation purposes only, concentration 

measurements at specified monitoring locations were simulated (synthetic 

measurements) by the calibrated numerical flow and transport simulation model. 

These concentration data were generated for specified source characteristics. Then, 

they were used with the linked simulation-optimization models to evaluate the 

potential applicability, accuracy and feasibility of the developed methodology. After 

evaluating the performance utilizing synthetic simulated measurement data, the 

developed methodology was applied to characterize sources based on contamination 

measurements obtained in the study area.    

However, as is generally the case for such large-scale, complex, contaminated 

aquifer sites, the contaminant sources are unknown. Hence, the source concentration 

magnitudes or source activity starting times cannot be validated. Hence, synthetic 

concentration values were utilized with the calibrated flow model to evaluate the 

performance of the source characterization methodology. Concentrations of 

contaminants measured in the field in 2011 and 2012 (Ferguson et al., 2012) were used 

in the source characterisation process. 
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4.5 RESULTS AND DISCUSSION 

The aim of the performance evaluation process was to evaluate whether the source 

characterization model can recover the actual source characteristics based on synthetic 

concentration values. Hence, in the linked simulation-optimization model for source 

characterization, the calibrated numerical simulation models were used to generate 

synthetic (simulated) concentration data. The reason for using synthetic data for 

performance evaluation was to ensure that unknown errors in the actual measurements 

did not distort the performance evaluation results. Also, by using synthetic 

concentration data, it is possible to test the performance with different scenarios of 

measurement error. Furthermore, the actual sources may not be known, so the 

performance is evaluated with synthetic concentrations generated for specified 

contaminant sources. This is to ensure that the estimation results can be verified. 

Therefore, the source characteristics recovered can be verified from the specified 

sources used to generate the synthetic data. If the performance is satisfactory, the 

methodology should be useful for recovering the actual source characteristics. 

 

4.6 CASE STUDIES FOR MODEL DEMONSTRATION 

In the following sections, the model for identification of groundwater contaminant 

sources is demonstrated using two case studies involving a mining area; (i) with 

simulated (synthetic) measurements for testing (where the sources are known); and (ii) 

same study area with observed concentrations to demonstrate practical applicability. 

 

4.6.1  Calibrated model testing with simulated data 

This section focuses on a contaminated aquifer site (Figure 4.3) with six distributed 

sources of contamination consisting of four waste rock dumps and two open mine pits 

filled with water. The boundary conditions for flow are represented by the red border 

lines shown in Figure 4.3. This case study involves a calibrated model of a real mine 

site in the Northern Territory, Australia. It is adapted in this study to test the 

performance of the multiple species source identification model, where individual 

contaminant species from distributed sources are examined. There were six possible 

sources: four waste rock dump sites, D1 (Main WRD), D2 (Intermediate WRD), D3 



 

88 Chapter 4:  

(Dyson Backfilled Pits), D4 (Dyson WRD) and two open pits, P1 (Main Pit) and P2 

(Intermediate Pit; Figure 4.2). There were nine observation wells (W1, W2, W3, W4, 

W5, W6, W7, W8 and W9) at the study site (Figure 4.2), which recorded 

concentrations of six contaminant species over a two-year period. The thickness of the 

aquifer is 150 m. The aquifer is presumed to be anisotropic. The effective porosity is 

taken to be 0.3. Table 4.1 shows the schedule of release of contaminant species, with 

locations and magnitudes (contaminant concentrations). The releases were assumed to 

occur over a two-year period and to be continuous thereafter. 

 

Figure 4.3 Mine site aquifer with four contaminated waste rock disposal sites and nine observation 
wells  
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Table 4:1 Contamination Release Schedule from Distributed Sources –Simulated Measurements for 

Testing (As Sources are Known) 

Site Contaminant concentration (mg/L) 

 Cu2+ SO4 
2- UO2

2+ Fe2+ 

Main WRD 4.19 3430 0.568 0 

Intermediate WRD 34.9 13800 1.840 349 

Dyson Backfilled Pits 30.0 2500 1.590 4.865 

Dyson WRD 4.63 579 0.155 2.74 

Main Pit 55.0 8200 0.000 430 

Intermediate Pit 60.0 3100 0.000 2.00 

 

A groundwater flow and transport model was run in HYDROGEOCHEM 5.0 to 

simulate the flow and transport processes and generate synthetic concentrations at 

specified observation wells. The simulation was carried out for a two-year period with 

a time-step of 30 days. The concentrations at the selected observation wells estimated 

by the simulation are shown in Figure 4.3, which compares actual and predicted 

concentrations for species at specific observation wells. These concentrations 

estimated by the simulation model were treated as input observed concentration data 

for the source identification model. The observed concentration data was fed to the 

source identification model for characterization of the sources. The optimization 

algorithm used for this problem was ASA, which tries to find a set of candidate source 

concentrations of individual contaminants by minimizing the objective function 

defined in Equation 4.1 
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4.7 RESULTS AND DISCUSSION 

This section discusses the evaluation results obtained from the source identification 

model using a calibrated model with simulated measurements for testing (as sources 

are known) the performance. The source identification model was able to identify 

separate contaminants concentrations. Six sources were used in the characterization. It 

is important to note that, for this study, the contaminant sources (waste rock dumps) 

were characterised in terms of concentrations rather than fluxes. This is so because 

species concentrations are expressed in terms of moles per litre in the software used; 

hence, concentration multiplied by volume flux gives the mass flux. Also, in the case 

of pits, it was assigned as a boundary condition and hence expressed in terms of 

concentration. 

The results of the source characterisation evaluation are presented in Figures 4.4 

to 4.7. Table 4.2 summarizes the error statistics related to the source characterization 

using error-free concentration measurement data. Figures 4.4 to 4.7 compare the actual 

concentrations with those estimated by the optimization model of specific contaminant 

species at the six sources.  

Figure 4.4 is a graph showing the concentration of the contaminant copper, 

where the source concentrations are compared with the concentration solutions 

obtained from the optimization model. The concentrations compared very well at all 

source locations when error-free data was utilized. 
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Figure 4.4: Comparison of Cu2+ species concentrations (mg/L) estimated by the ASA-linked 
optimization model and  actual data 

Figure 4.5 shows sulfate concentrations, where the source concentrations are 

compared with the estimates of the optimization model. The concentrations compared 

very well at all source locations when error-free data was utilized as synthetic 

concentration measurements. 
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Figure 4.5: Comparison of SO4
2+ species concentrations (mg/L) from the ASA-linked optimization 

model and synthetic data 

 

Figure 4.6 shows the concentrations of the contaminant uranium (in the form of 

UO2
2+), where the source concentrations are compared with the concentration 

solutions obtained from the optimization model. The actual and estimated 

concentrations compared very well at all source locations when error-free data was 

utilized. The Main Pit and Intermediate Pit sources did not show any bars since the 

source concentration of uranium was near zero at these points. Hence, the optimization 

model was able to provide same value. 
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Figure 4.6: Comparison of UO2
2+ species concentrations (mg/L) from the ASA-linked optimization 

model and  actual data 

 

Figure 4.7 shows the concentrations of the contaminant iron (in the form of Fe2), 

where the source concentrations are compared with the concentration solutions 

obtained from the optimization model. The concentrations compared very well at all 

locations when error-free synthetic data were used. Source locations at the Main WRD 

did not peak up, which reflects the same results for the optimization model. At the 

Intermediate Pit, the concentration of iron was low, so does not show on the figure. 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Main WRD Intermediate
WRD

Dyson
Backfilled

Pit

Dyson WRD Main Pit Intermediate
Pit

C
on

ce
nt

ra
tio

n 
m

g/
L

UO2
2+

Actual ASA



 

94 Chapter 4:  

 

Figure 4.7: Comparison of Fe2+ species concentrations (mg/L) from the ASA-linked optimization 
model and the actual data 

 

The performance of the linked simulation-optimization source characterization 

model using an ASA optimization algorithm was evaluated in terms of percent average 

contaminant source estimation error (PAEE). PAEE was used to compare the input 

concentrations of the generated and actual source locations. Mahar and Datta (2001) 

performed such a comparison in terms of PAEE; the formula is:  

PAEE (%) = 100~

~


−

o

oo

C

CC
      (4.5) 

Where oC is the actual input observed species concentration and oC~  is the species 

concentration generated by the optimization model.  
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Using measured concentration data in the optimal source identification model, 

the actual and optimization-generated species concentrations were accurately 

estimated within a 10% average estimation error value. This is except for iron, which 

had a PAEE value of 6.5% at the Intermediate WRD. It can be seen that the PAEE 

value tends toward zero when the generated concentrations approach the actual ones. 

Table 4.2 compares the calculated PAEE values for the species at different source 

locations. 

 

Table 4.2: Comparison of percent average estimation error (PAEE, %) obtained for species at 

distributed source locations using error-free data 

 Source PAEE (%) 

  Cu SO4
2- U Fe 

Main WRD 0.1 3.8 4.3 0.0 

Intermediate WRD 2.3 1.10 1.55 6.5 

Dyson Backfilled Pit 3.32 2.35 0.26 5.35 

Dyson WRD 0.33 1.99 5.5 5.22 

Main Pit 1.30 0.11 0 0.50 

Intermediate Pit 1.82 1.35 0 4.0 

 

4.8 SOURCE IDENTIFICATION FOR A FIELD PROBLEM 

This case study considers the transport of reactive contaminant species through an 

aquifer system. The contamination came from acid mine drainage from waste rock 

dumps and open mine pits that occurred continuously over a long time. The aquifer 

shown below was described in Chapter 3. It is associated with an abandoned uranium 

mine in Australia. The modelled area is approximately 12 km2. It is bounded by the 

upper east branch of the Finniss River on the left side and a specified transient head 

boundary condition to the borders of the Main and Intermediate Open Pits. The water 

levels in the open pits were used as the constant head values at the boundaries of the 

pit. Groundwater contaminant concentrations measured at several monitoring 

locations were used as specified concentrations in the reactive transport model. These 

concentrations were estimated as constant values for species at selected monitoring 

points at specific time intervals. There were six potential sources, consisting of two 
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open pits and four waste rock dumps: OP1, OP2, MWRD, IWRD, DBP and DWRD. 

These released reactive species contaminants associated with AMD via a reactive 

transport process over a period of two years. It is assumed that after two years of 

release, the contaminants stopped being released at the study site. Nine observation 

wells, labelled OB1, OB2, OB3, OB4, OB5, OB6, OB7, OB8 and OB9, recorded 

contaminant concentrations over a two-year simulation period. 

 

4.9 RESULTS AND DISCUSSION  

Based on the concentrations measured at the monitoring wells, source identification 

was attempted using the optimization formulation in Equation (4.1). This equation 

provided optimal source concentrations that matched the field measurements. 

Corresponding measured concentrations were used to formulate the optimization 

model used in this study. The concentrations of the species considered were used for 

optimal source characterisation of the distributed sources.  

The optimal source characteristics of the species concentrations obtained from 

the optimization model were then utilized as input source concentration parameters to 

model and simulate the concentration plumes from the sources in this study area.  

The use of concentrations measured at monitoring locations to identify sources 

is discussed. The contours of simulated plumes of different species at different source 

locations are shown in Figures 4.8 to 4.12.  

Figure 4.8 shows a simulated contour map of Cu concentration plumes based on 

field-measured concentrations. Figures 4.9 and 4.10 are simulated contour maps of 

SO4
2+ concentration plumes represented in Layers 1 and 2, respectively. Comparing 

Figures 4.9 and 4.10, it can be seen that as the SO4
2+ moves from one layer to the other, 

the concentrations at the sources also change. These contour maps show variations in 

concentrations as the plumes move through different layers of the model. Figures 4.11 

and 4.12 show simulated contour maps of UO2
2+ concentration plumes as characterized 

in Layers 1 and 2, respectively. These contour maps show some variation in the 

concentrations as the plumes move through different layers of the model.  
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Figures 4.8 to 4.11 represent the concentration plumes of species at different 

layer resulting from characterized sources. 

 

Figure 4.8: Concentration plumes resulting from characterized sources for Species 1: Cu Layer 1 
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Figure 4.9: Concentration plumes resulting from characterized sources for Species 2: SO4 Layer 1 
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Figure 4.10: Concentration plumes resulting from characterized sources for Species 2: SO4 Layer 2 
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Figure 4.11: Concentration plumes resulting from characterized sources for Species 3: UO2 Layer 1 
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Figure 4.12: Concentration plumes resulting from characterized sources for Species 3: UO2 Layer 2 
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 These contours can be used to compare point measurements of concentrations 

with concentration estimates based on the contours. However, such comparisons are 

possible only when the actual sources in the field are the same as those identified by 

the source characterization inverse model, which is not possible in this case. However, 

few pointwise concentration values seem to be of the same order as those in the field. 

This may help in an intuitive validation of the source characterization process, as the 

physical conditions assumed for the performance evaluations resemble the field 

conditions to a certain extent. Selected points in specific areas in the point 

concentration comparison and the source identification intuitive validation are 

discussed below. 

The following monitoring bores were used for point concentration comparisons. 

Two monitoring bores, MB10-10 and MB10-11, were positioned below the former 

copper extraction pad. Monitoring bores MB 10-3 and MB 10-4 were located near the 

East Finniss Diversion Channel. Monitoring bores PMB 10-5 and PMB 10-6 were 

situated near the intermediate waste rock dump (IWRD). Monitoring bores MB 10-7, 

MB 10-12, MB 10-13 and MB 10-16 were located in the central mining area. 

Monitoring bores PMB 10-9S and PMB 10-9D were sited near the east branch of the 

Finnish River and the intermediate pit. Monitoring bores PMB 10-20 and PMB 10-21 

were also positioned downstream of the mine site. The simulated (sim) and field-

observed (obs) concentrations of sulfate, copper, uranium and iron at the monitoring 

bores are compared in Table 4.3. 
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Table 4.3: Comparison of observed (Obs) and simulated (Sim) contaminant concentrations (mg/L) at monitoring locations based on final optimal sources from the source 

characterisation model 

 
Sulphate (SO4

2+) Iron (Fe2+) Copper (Cu2+) Magnesium (Mn2+) Uranium (UO2
2+) 

Bore Obs Sim Obs Sim Obs Sim Obs Sim Obs Sim 

PMB 10-3 493 500 0.542 0.55 2.41 3 1.81 1.79 0.073 0.07134 

PMB 10-4 1250 1511 0.336 0.4 0.015 0.019 0.117 0.115 0.012 0.009117 

PMB 10-5 212 200 0.054 0.06 0.001 0 0.084 0.09 0.003 0 

PMB 10-6 1090 1050 0.03 0.04 0 0 0.649 0.7127 0.002 0 

PMB 10-10 756 650 1.8 1.6 0.006 0.001112 0.22 0.21 0.085 0.0964 

PMB 10-11 5180 5170 1.49 1.55 77.2 80 144 150 0.024 0.035 

PMB10-22 3810 3800 37.4 37.1 561 590 124 140 0.109 0.1763 

PMB10-24 1050 1000 0.56 0.61 52.6 55 18.3 20 0.162 0.113 

RN022543 1340 1200 0 0 0.008 0.009 0.081 0.089 0.003 0.00354 

RN022543 1140 1020 0.014 0.017 0.018 0.015 0.069 0.075 0.003 0.003 

PMB10-7 1450 1400 0.002 0.002113 0.003 0.002 0.002 0.01 0.006 0.005126 

PMB10-9S 350 285 0.22 0.33 0.003 0.002 0.474 0.5 0.009 0.008 

PMB10-9D 3270 3300 2.35 2.4 0.040 0.03 5.42 5.66 0.316 0.611 
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4.9.1 Results for Erroneous Concentration Measurement Values 

Figures 4.12 to 4.27 compare the ASA-generated species concentrations at the 

distributed sources with error perturbation values of 0.05, 0.10, 0.15 and 0.2. Each of 

the unknown species’ source concentrations is marked on the y-axes. The x-axes have 

three bars for each potential source location corresponding to concentration of a 

species at the source. The first bar is the actual value, the second represents estimated 

values based on error-free concentration measurements, and the third bar represents 

estimated values based on concentration measurements with perturbed erroneous 

measurement data. 

The results of source concentration identification using error-free data closely 

match those using the actual source concentration values for all species and source 

areas, as displayed in Figures 4.12 to 4.27. 

 

Figure 4.12: Comparison of Cu2+ species concentrations at sources with a perturbed error of 0.1 
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Figure 4.13: Comparison of SO4
2+ species concentrations at sources with a perturbed error of 0.1 

 

Figure 4.14: Comparison of UO2
2- species concentrations at sources with a perturbed error of 0.1 
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Figure 4.15: Comparison of Fe2+ species concentrations at sources with a perturbed error of 0.1 

 

Figure 4.16: Comparison of Cu2+ species concentrations at sources with a perturbed error of 0.05 
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Figure 4.17: Comparison of SO4
2+ species concentrations at sources with a perturbation error of 0.05 

 

Figure 4.18: Comparison of UO2
2- species concentrations at sources with a perturbation error of 0.05 
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Figure 4.19: Comparison of Fe2+ species concentrations at sources with a perturbation error of 0.05 
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Figure 4.20: Comparison of Cu2+ species concentrations at sources with a perturbation error of 0.15 

 

 

Figure 4.21: Comparison of SO4
2- species concentrations at sources with a perturbation error of 0.15 
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Figure 4.22: Comparison of UO22- species concentrations at sources with a perturbation error of 0.15 

 

Figure 4.23: Comparison of Fe2+ species concentrations at sources with a perturbation error of 0.15 
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Figure 4.24: Comparison of Cu2+- species concentrations at sources with a perturbation error of 0.2 

 

Figure 4.25: Comparison of SO4
2- species concentrations at sources with a perturbation error of 0.2 
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Figure 4.26: Comparison of UO2
2species concentrations at sources with a perturbation error of 0.2 

 

 

Figure 4.27: Comparison of Fe2+species concentrations at sources with a perturbation error of 0.2 
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Figures 4.28 to 4.31 show the errors in source estimation for different scenarios. 

The figures compare the errors in a linear format with four error perturbation values 

of 0.1, 0.2, 0.15 and 0.05. The error graph justifies the fact that when concentrations 

are perturbed, as in the case of field measurements where uncertainties in measurement 

or recording are likely, the optimization model shows that it is robust and capable of 

handling any form of data and, at the same time, providing an optimal solution of 

source characteristics with a realistic margin of error. Figures 4.30 to 4.31 show how 

minimal errors are observed when erroneous data (randomly perturbed) are used as 

input for source characterization. In Figures 4.30 to 4.31, the y-axis represents source 

estimation errors. The x-axis depicts the different source locations, where 1 = Main 

WRD, 2 = Intermediate WRD, 3 = Dyson Backfilled, 4 = Dyson WRD, 5 = Main Pit, 

6 = Intermediate Pit. 

 

Figure 4.28: Comparison of the errors obtained using different amounts of error  
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Figure 4.29: Comparison of the source identification of sulfate  errors  obtained using different 
erroneous measurement data   

 

 

Figure 4.30: Comparison of the errors obtained using different amounts of error Comparison of the 
source identification errors  obtained using different erroneous measurement data  
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Figure 4.31: Comparison of the errors obtained using different amounts of error  
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and erroneous cases. For example between 4% and 16% etc. Also mention may be 

erroneous measurements are actually randomly perturbed concentration measurements 

This proposed methodology can overcome some of the shortcomings of some of 

the  currently available methods applied to optimal characterization of unknown 

contaminant sources, particularly at very complex contaminated aquifer sites like 

abandoned mines that contain multiple species of reactive chemical contaminants. 

Such characterization is an essential initial step for solving critical environmental 

problem and to design effective contamination remediation strategies. This study also 

highlights limitations in utilizing and implementing calibrated flow and transport 

simulation models calibrated with very limited available site measurements, 

particularly in hydrogeologically- and geochemically-complex contaminated aquifer 

sites. 

The next chapter (Chapter 5) presents the development and application of a 

fractal/multifractal modelling approach to the design of optimal monitoring networks. 

The performance of such a network at a contaminated aquifer site is evaluated in terms 

of contaminant  source characterization accuracy and efficiency. 
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Chapter 5: Integrated Monitoring Network 

Design for Improved 

Contamination Source 

Characterization at a Mine Site 

In this chapter, multifractal modelling is used to determine monitoring well locations 

that are optimal for assessing the spread of contaminants. The fractal mapping process 

provides input data for the design of a network of optimal monitoring locations. Multi-

objective optimization is performed to target potential relevant locations in the study 

area and to eliminate locations that will not aid source identification, with 

consideration of uncertainty in hydrogeological conditions. A performance evaluation 

shows that source identification efficiency is improved when concentration 

measurements from an optimally-designed monitoring network are used. 

 

5.1 BACKGROUND TO THE PROBLEM 

Characterizing unknown contamination sources is the first step in groundwater 

remediation and management strategies. At abandoned mine sites, long-term pollution 

can cause long-term environmental impacts due to contamination from waste rock 

dumps, tailing dams and open pits exposed to oxygen and rainfall, which leads to acid 

mine drainage (AMD). To be able to efficiently monitor and detect contamination in 

groundwater due to persistent and undetected AMD, more groundwater quality 

measurements are needed. However, data availability is often unsatisfactory for 

efficiently solving groundwater problems. Unrelated, inadequate or inefficient data 

collected at less relevant monitoring locations or at the wrong time can constrain the 

quality of groundwater contaminant data. Hence, it is necessary to implement an 

optimally-designed monitoring network that can collect data relevant and adequate to 

source characterization. Also, such water quality monitoring data are essential for 

assessing the spatial and temporal distributions of contaminants in a groundwater 

system. Furthermore, contaminant concentration monitoring is essential for 
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contaminant plume detection and the effective management of contaminated aquifers. 

The uncertainties associated with the mapping of contaminant plumes, and the 

financial limitations related to installation of monitoring wells, require the design of 

an optimal monitoring network, as defined by the objectives.  

Monitoring networks are integral part of  efficient, effective, and economical 

management of the groundwater. Since the remediation of contaminated groundwater 

is prolonged and cost-intensive, detailed information concerning the contamination 

source characteristics is critical. Hence, an optimal monitoring network that can gather 

reliable and efficient data is essential for the identification of groundwater contaminant 

sources and to inform models that accurately describe groundwater flow and 

contamination transport.  

One of the fundamental aspects of appropriate monitoring network design is to 

identify potential bore/well locations. These must be carefully selected according to 

the contamination situation. One effective way to determine potential bore/well 

locations is to map the boundaries of contaminant plumes so that all locations are 

marked within the boundaries. In this study, fractal modelling (Wang & Zuo, 2015; 

Datta et al., 2016; Esfahani & Datta, 2018) is applied to map contaminant plume 

boundaries in contaminated aquifers. This is used as initial input data for the 

monitoring network’s design. 

Groundwater contaminant concentrations obtained at multiple locations are 

useful for estimating source characteristics such as magnitude, spatial distribution, and 

activity duration. However, it is challenging to identify the optimal locations for 

monitoring unknown contaminant sources, particularly when the sources are 

distributed and data are scarce. Moreover, uncertainties related to source flux 

distribution predictions, hydrogeochemical parameters and field-measured 

concentrations make accurate source characterization even more challenging. The aim 

of this study was to develop a method for designing a monitoring network that is 

optimal for detecting groundwater contamination and assessing its spread at an 

abandoned mine site. 

In real-world groundwater remediation problems, competing objectives must be 

considered simultaneously. When multiple objectives compete, it can lead to a 

sequence of solutions recognized as Pareto-optimal or non-dominated solutions 

(Qiankun et al., 2016). This study develops a multiple objective optimization model 
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coupled with a flow and transport simulation model to search for Pareto-optimal 

solutions to a multi-objective optimization problem associated with groundwater 

monitoring network design (Esfahani & Datta, 2018). The multi-objective design is 

based on Pareto-optimal solutions with two objectives 1) minimize the maximum 

normalized error between contaminant concentrations estimated via interpolation of 

measurements from designed monitoring network locations,  and actual measurements 

from potential monitoring well locations, and 2) maximize the summation of the 

product of estimated concentration gradients and the simulated (or measured) 

concentrations at the selected monitoring locations. 

There is a considerable volume of literature relating to the design of optimal 

monitoring networks. These designs have used heuristic optimization tools like genetic 

algorithms (GA; Cieniawski et al., 1995; Wu et al., 2005; Yeh et al., 2006; 

Chadalavada et al., 2011), simulated annealing (SA; Prakash & Datta, 2012, 2015) and 

genetic programming (GP; Prakash & Datta, 2013; Datta et al., 2013, 2014). Datta and 

Dhiman (1996) designed a monitoring network using an optimization algorithm 

known as MIP. Chance constraints were used to define the reliability of the proposed 

network. Data interpolation techniques like geostatistical kriging have been used in 

groundwater monitoring network design (Yeh et al., 2006; Feng-guang et al., 2008; 

Chadalavada et al., 2011; Prakash & Datta, 2012). Chadalavada and Datta (2007) 

proposed models for determining optimal and efficient sampling locations for 

contamination plume detection. Dhar and Datta (2010) developed an optimization-

based solution for reducing redundancy in a groundwater quality monitoring network. 

Bashi-Azghadi and Kerachian (2010) developed a new methodology for optimally 

locating monitoring wells using a Monte Carlo technique. The main aims of all these 

methods have been to reduce the cost of monitoring by reducing redundancy, and to 

improve pollutant detection in uncertain dynamic scenarios.  

Initial attempts to design optimal sampling networks to improve the accuracy of 

pollutant source identification were made by Mahar and Datta (1997), Datta et al. 

(2009a, b) and Prakash and Datta (2013, 2014). Datta et al. (2013) used GP-based 

monitoring factors in the design of an optimal monitoring network to improve the 

accuracy of pollutant source identification. The potential applicability of GP to 

groundwater management problems was first demonstrated by Sreekanth and Datta 

(2012). These studies used trained GP models to calculate the impact factor of the 



  

Chapter 5: Integrated Monitoring Network Design for Improved Contamination Source Characterization at a 
Mine Site 121 

sources on the candidate monitoring locations. The issue of sequentially designing 

monitoring networks to gather feedback information regarding compliance with 

saltwater intrusion management strategies in coastal aquifers was discussed in 

Sreekanth and Datta (2014, 2015). Datta and Singh (2014) presented a method that 

uses a kriging-linked optimization model incorporating uncertainty to design 

contaminant monitoring networks. Esfahani and Datta (2018) proposed the use of 

fractal singularity and GP surrogate models linked to a multi-objective optimization 

algorithm to solve a two-objective optimal monitoring network design model.  

This chapter presents an optimal monitoring network design methodology that 

uses a linked, adaptive simulated annealing, ASA-based, multi-objective optimization 

model. Fractal/multifractal modelling (Datta et al., 2016) is employed to delineate and 

estimate contaminant plumes and to determine optimal locations for an efficient 

monitoring network. The objective is to determine the best Pareto-optimal solutions 

based on the ASA algorithm. The ASA search algorithm’s candidate population size 

is exploited to construct an estimated Pareto front by gathering non-dominated 

solutions while exploring the feasible domain. Then, different monitoring network 

patterns are evaluated to determine the best compromise between cost and source 

identification accuracy.  

 

5.2 METHODOLOGY 

In this section, a multi-objective simulation-optimization model for optimal 

networking monitoring design based on a two-way approach is discussed. 

 The first step in the approach consists of two parts. The first part is to quantify 

the spatial distributions of contaminants concentrations using the multifractal 

spectrum. The second part identifies the contaminant concentration boundaries using 

fractal/multifractal models. Fractal/multifractal modelling is used to calculate the 

singularity indices of the area of study, making use of measured concentration data. 

Generally, concentrations are interpolated at each node, based on initially available 

concentrations measured at arbitrary locations. Interpolated concentrations are 

obtained by ordinary kriging and generating a gridded content map representative of 

the entire study area. Concentration values, measured or interpolated, are needed at 

every node to calculate the singularity indices. The calculated indices representing 
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mapped areas are categorized into two subsets, namely, contaminated and 

uncontaminated (clean) areas. The regions connecting these two categories are 

identified as the contamination plume border. The singularity indices in multifractal 

modelling are regarded as a structural characterization property (Chen et al., 2007) of 

the contaminant concentration spread in an aquifer. In terms of monitoring network 

design, if the monitoring design model is used only in evaluation mode for unknown 

contaminant source characterization, and the contaminant source characteristics are 

known, these concentration values can be obtained from the groundwater flow and 

transport simulation model using source characterization values as inputs.  

The second step of the method has three main parts: i) groundwater flow and 

transport simulation, ii) interpolation using kriging and iii) optimization using ASA. 

A multi-objective optimization formulation is applied to design a set of monitoring 

networks based on the optimization algorithm (ASA) with a maximum number of 

monitoring locations/wells set as a constraint. The optimization model is a two-

objective formulation (usually conflicting ones) that focuses on minimizing the 

maximum normalized errors between actual (observed) concentrations and those 

estimated (simulated) by the interpolation model based on data from monitoring 

locations, and maximizing the weighted concentration gradients (Prakash & Datta, 

2014; Esfahani & Datta, 2018) at the selected monitoring locations. Pareto-optimum 

monitoring networks are implemented based on the solutions of the two-way objective 

formulation that are considered Pareto-optimal.  

5.2.1 Fractal/Multifractal Modelling  

In this section, fractal/multifractal modelling is described that uses a program 

coded in MATLAB software for processing geochemical data. This MATLAB 

program, known as the Anomaly Identification System (AIS; Zuo et al., 2013; Datta 

et al., 2016) consists of two key procedures. The first function quantifies the spatial 

characteristics of geochemical patterns (in this study, the spatial distribution of 

contaminant concentrations) using the multifractal spectrum. The second function 

classifies geochemical anomalies using singularity index analysis (in this study, 

concentration differences/delineation). The singularity index is used to create a 

singularity distribution map that estimates the expected contamination plume 

boundary and delineates potential areas for monitoring wells from which optimal 

locations are chosen. The main implementation processes of the fractal/multifractal 
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modelling are outlined in the steps below (Zuo et al., 2013). To identify geochemical 

anomalies, the steps below are used. 

1. Grid map generation by interpolation of the original contaminant 

concentration data. 

2. Conversion of the interpolated map from the spatial domain to the Fourier 

domain using fast Fourier transform. 

3. Calculation of the power spectrum of the converted map to form a dataset 

consisting of the power spectrum density (E) and the area with power 

spectrum density values ≥ E. Plotting of these data on a log-log scale. 

4. Find breakpoints to divide the data pairs into several segments with different 

scaling properties, and use these to build up filters. 

5. Apply the filters to the map in the frequency domain and transform the 

filtered map back to the spatial domain using inverse Fourier transform. 

The next stage is to divide the background and anomaly maps, then estimate the 

singularity index from the concentration map. This forms the original singularity 

analysis. The following steps are used (Zuo et al., 2013).  

1. Define a sequence of sliding rectangular windows A(ri) with variable window 

sizes rmin = r 1 < r 2 < … < r n = r max for a location on the concentration map of 

the study area. 

2. Calculate the average element concentration C [A(ri )] for each window size 

(this is equal to the sum of all the cells’ concentrations divided by the total 

number of cells within the window).  

3. Plot C [A(ri)] against r i on a log-log graph to obtain a linear relationship as per 

the equation: 

Log C [A(ri)] = C + (α−2) log ri      (5.1) 

4. Estimate the singularity index (α) at locations of interest as the slope plus 2 

using the linear relationship of Equation 5.1.  

5. Create a singularity distribution map and delineate areas of concentration 

anomalies based on the singularity index (α), where α ≈ 2 indicates a boundary, 

α < 2 indicates the inside and α > 2 indicates the outside of the boundary. 
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The schematic diagram in Figure 5.1 describes the structural and operational 

processes involved in the fractal/multifractal modelling in the MATLAB-based 

AIS program. 

 

Figure 5.1 Flowchart of the structure and operational procedure of AIS (Wang & Zuo, 2015)  

For the purposes of monitoring network design, the approach of applying a 

singularity index to map the boundary of the contaminant contamination plume and 
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characterized as a power-law relationship in subareas in a sampled zone (Datta et al., 

2016a). The singularity mapping technique in fractal/multifractal modelling can be 

useful for detecting the edges and boundaries of different frames. The boundary of a 

groundwater contaminant plume is mapped on the basis of a practical horizontal 

gradient existing close to the plume boundary, which relates to the inflection point of 

an anomaly. The plume boundary also corresponds to the inflection point of the 

anomaly. Therefore, singularity index α < 2 indicates high-density and positive 

singularity, α > 2 indicates low-density and negative singularity, and α = 2 indicates 

non-singularity of linear behaviour and a boundary. 

5.2.2 Formulation of a Multi-objective Optimization Model for Monitoring 

Network Design 

Two objectives were considered to design an optimal monitoring network. Two 

different objectives were defined. These two are: to maximize the estimated weighted 

concentration gradients, and to  improve the accuracy of contaminant plume mass 

estimate. Therefore, these two objectives to be optimized (Prakash & Datta, 2014; 

Esfahani & Datta, 2018) are:   

i. Minimization of  the normalized error between contaminant concentrations 

estimated by interpolating concentrations measured at designed monitoring network 

locations,  and actual contaminant concentration at potential monitoring well locations, 

and  

ii.  Minimization of the summation of the product of estimated 

concentration gradients and the simulated (or measured) concentrations at selected 

monitoring locations.  

The optimal monitoring locations obtained as solutions are a subset of the 

specified potential monitoring locations. As required for multiple objective 

optimization, the two selected  objective functions are conflicting in the sense that the 

objective function for finding the well locations with the weighted maximum 

concentration gradient conflicts with the objective function of finding well locations 

that minimize the normalized error between the simulated and estimated 

concentrations at potential well locations. A trade-off between these conflicting 

objectives exists at the Pareto optimal set of solutions. One of the objectives must be 

compromised in order to improve the other objective and vice versa. As a result, a 

multi-objective optimization model was formulated to design an optimal monitoring 
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network that achieves these two objectives at optimal level. The multi-objective 

optimization model is solved using the constrained method (Datta and Peralta, 1986). 

This method optimizes  one single objective subject to the other objective being 

defined as an implicit constraint to be satisfied (the constrained method). The level of 

the implicit constraint to be satisfied is varied iteratively to obtain the Pareto optimal 

solution set. The upper limit specified for the number of monitoring wells selected 

from the specified set of all potential well locations is essentially governed by 

budgetary constraints. The two objectives of the multi-objective optimization model 

proposed by Prakash and Datta (2014) and Esfahani and Datta (2018) for designing an 

optimal monitoring network that can accurately identify pollution sources are defined 

by Equations (5.2) and (5.3). 

The multi-objective optimization formulae can be mathematically expressed as: 
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Cmax ≥ *
, jiC ≥ Cmin ji,        (5.4) 

int, jiC  = INTRP (f (i,j)*C*(i,j)) ji,       (5.5) 

∑ fi,j ≤ K(upper limit on number of monitoring wells) ji,    (5.6) 

The binary variable (fi,j) represents a “yes or no” decision on selecting a potential 

monitoring location. The constraint formulated in Equation (5.5) describes the 

spatially-interpolated concentrations at all the candidate monitoring locations selected 

for that monitoring network design optimization iteration. INTRP (f (i,j)*C*(i,j)) 

represents the spatially-kriged interpolated concentration values at node i,j, which are 

interpolated based on the designated monitoring locations given by fi.j = 1. 

A value of (fi,j) = 1 represents a decision to install a monitoring well at location 

i, j, while 0 represents a decision to not install a monitoring well. Basically, the optimal 

locations designated by fi,j are the decision variables. Other variables, such as those 

interpolated based on the concentrations, can be designated as decision variables. The 

potential locations coincide with the nodes, and the potential locations are only a subset 
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of the nodes. The constraining method of solving a two-objective optimization model 

is used. This method involves minimizing one of the objective functions (F1), with an 

additional constraint of ensuring a minimum level of satisfaction of the second 

objective function (F2). The constraint solution method is formulated as shown in 

Equation (5.7): 

∑𝑓𝑖,𝑗𝐶𝑖,𝑗
∗ {

|𝐶1−1,𝑗
∗ −𝐶𝑖,𝑗

∗ |+|𝐶1+1,𝑗
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∗ |

𝑑𝑥
+

|𝐶1−1,𝑗
∗ −𝐶𝑖,𝑗

∗ |+|𝐶1+1,𝑗
∗ −𝐶𝑖,𝑗

∗ |

𝑑𝑦
} − 𝛾 ≥ 0   (5.7) 

where γ is the minimum level of satisfaction of the second objective function F2, also 

termed the trade-off constant. Therefore, the resulting model can be solved iteratively 

as a single-objective optimization model for different satisfaction levels of γ; thus, a 

Pareto-optimal solution set is generated. The second objective function is incorporated 

as a new implicit constraint. The upper limit of γ is defined by the maximum value of 

the second objective function F2 when solved as a single-objective optimization with 

constraints (Equation 5.8) defining the lower limit of F2. The limit of γ is the value of 

the second objective function F2 corresponding to the minimum value of the first 

objective function F1, when the optimization model is solved as a single-objective 

model, with F1 as the only objective (Equation 5.9). 

F2 ≥ γ        (5.8) 

F2 ≤ F2MaxF1       (5.9) 

where F2MaxF1 is the maximum feasible value of the objective function F2 

corresponding to the minimum (best) value of the first objective function F1 when 

solved as a single-objective model. All solutions obtained on a Pareto-optimal front 

correspond to a different Pareto-optimal monitoring network. 

5.2.3 Linked Simulation-Optimization Model for Optimal Contaminant Source 

Identification 

One of the intended key benefits of monitoring network design is to improve the 

accuracy of source characterization. Characterising sources based on the magnitude 

and location of contaminant release has, over the past three decades, been done 

successfully using a linked simulation-optimization approach (Datta et al., 2015). A 

linked simulation-optimisation model is made up of two parts: (a) a groundwater 

numerical model that simulates physicochemical processes and (b) an optimization 

model that estimates optimal source characteristics based on an optimization based 
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decision model. The binding constraint in linked simulation-optimization models is 

the groundwater simulation model. Hence, for groundwater source characterisation to 

be feasible, the optimization management model must fulfil the conditions of the flow 

and transport models. The benefit of a linked simulation-optimisation approach is its 

ability to link complex numerical models with real field models in an optimization 

model. In this work, a linked simulation-optimization-based approach is used to 

characterise contaminant sources. It comprises numerical flow and transport models 

that describe the transport of multiple reactive chemical species in an aquifer beneath 

a mine site contaminated by waste rock dumps and mineral waste deposits.  

In this work, a numerical groundwater flow and transport simulation model 

developed based on hydrogeochemical parameters of the study area is used. It is linked 

to an ASA optimization algorithm within a linked simulation-optimization model. It is 

used to characterise the sources of contaminant in terms of location, magnitude and 

timing of activity based on information obtained from a monitoring network. In the 

performance evaluation reported here, the numerical simulation model is a three-

dimensional finite element-based flow and transport model run in 

HYDROGEOCHEM 5.0 software (Yeh et al., 2004; Steefel et al., 2015). 

5.2.4 Groundwater Flow and Transport Simulation Model 

A three-dimensional groundwater simulator was used to simulate the flow and 

transport processes of the study area. The details of the governing equations of the 

flow and transport process are described in Chapter 3, Section 3.3. (Yeh et al., 2004; 

Steefel et al., 2015). 

𝐷

𝐷𝑡
∫ 𝜃 𝐶𝑖𝑣

𝑑𝑣 = − ∫ 𝑛 • (𝜃 𝐶𝑖) 
𝛤

𝑉𝑖𝑑 𝛤 − ∫ 𝐽𝑖𝑑 𝛤 + ∫ 𝜃 𝑟𝑖𝑑𝑣 + ∫ 𝑀𝑖𝑑𝑣,
𝑣𝑣𝛤

 i M              (3.7) 

The general transport equation incorporates advection, dispersion/diffusion, 

source/sink, and biogeochemical reactions. The flow and reactive transport modelling 

with this numerical model were described in Chapter 3. 

5.2.5 Developing a Numerical Simulation Model Linked to a Source 

Identification Model 

This study uses a source identification model that incorporates a numerical 

simulation model with an ASA optimization algorithm. It is used to determine 

groundwater distributed source characteristics in a contaminated former mine site. The 

optimization model solve for candidate solutions of source concentrations based on 
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the concentrations of different chemical species obtained from the numerical 

simulation model. The simulation model is coupled to the ASA algorithm. The 

simulation model uses the source concentration candidate solutions generated by the 

optimization algorithm to estimate contaminant concentrations at monitoring 

locations. Then, the optimization algorithm evaluates the objective function. The 

objective function is a function of the differences between measured concentrations 

and those estimated by the numerical simulation model. Optimal source 

characterization is achieved by solving the optimization model to minimize the 

objective function. Mahar and Datta (2001) defined the objective function of a 

simulation-optimization model for  source characterization as: 

Minimize F1 = ( ) k

iob

k

sim

k

obs

n

iob

n

k
wCC

iobiob

obk

•−
==

2

11
  (5.10) 

Subject to ( )sim
k
sim CzyxfC

iob
,,,=        (5.11) 

The weight 𝑤𝑖𝑜𝑏
𝑘  can be described as 𝑤𝑖𝑜𝑏

𝑘 =
1

(𝐶𝑜𝑏𝑠𝑖𝑜𝑏
𝑘 +𝜂)

2  (5.12) 

The value of 𝜂 is a constant, appropriately large such that errors at low concentrations 

of 𝐶𝑜𝑏𝑠𝑖𝑜𝑏

𝑘  (cobs) do not dominate. This study chose a value of 𝜂 within the range 100–

1000 depending on the concentrations of contaminant species and the source locations. 

The constraints set (Equation 5.11) represent the simulation model for flow and 

transport processes.  

The present study uses the ASA optimization algorithm to solve the optimal 

source characterization model. This algorithm was selected as offers a statistical 

guarantee of global convergence to an optimal point. Additionally, ASA was found to 

regularly attain a global minimum and be efficient in attaining regular minima at each 

comparable number of generated states.  

 

5.3 PERFORMANCE EVALUATION 

The performance of the proposed monitoring network design methodology was 

evaluated for a heterogeneous, anisotropic, complex aquifer system. The evaluation 

determined how the monitoring network design and subsequent concentration 

measurements obtained from it improved the characterization of distributed sources. 
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For the purposes of performance evaluation (to test the robustness and 

dependability of the method), this study used simulated concentrations from the 

groundwater simulation model. In real applications, it is necessary to measure 

concentrations in the field and interpolate them according to each node on a gridded 

map. This is because source concentrations will be unknown and the simulation model 

will not be used for simulating synthetic concentration values. However, for the 

purposes of this performance evaluation, it was important to use synthetic 

measurements acquired by specifying known sources and simulating concentrations 

using the numerical model. These synthetic measurements were used solely to assess 

whether the source characterization method is capable of identifying and recovering 

source characteristics for use in simulating concentration measurements. 

Another important reason to use synthetic concentrations in the evaluation is that 

it avoids unreliable field data and model calibration issues. For the concentrations used 

for performance evaluation, it was assumed that the concentrations from the sources 

were constant over a stress period within a simulation period of 730 days. Six possible 

source concentrations (S1, S2, S3, S4, S5 and S6) were considered as explicit unknown 

variables for identifying sources using the source characterization model. 

Contaminated aquifers where several chemically-reactive species are involved 

in groundwater transport, and where several distributed sources are involved in the 

system, are deemed highly complex. It is, therefore, important to design an effective 

monitoring network for the efficient characterisation of unknown distributed sources, 

as the networks provide effective monitoring of contaminant species. The source 

locations considered were the four main waste rock dumps and two open-pit lakes. The 

physical study area is described in Chapter 3. 

To evaluate the performance of the proposed monitoring network in the 

characterization of distributed pollution sources using linked simulation-optimization, 

an illustrative, heterogeneous, anisotropic aquifer beneath a former uranium mining 

site was used. The Rum Jungle Mine in the Northern Territory, Australia, is a former 

uranium-copper project instigated to mine and export uranium for use in nuclear 

weapons. It made major contributions to the economy of the Northern Territory. The 

mine caused prevalent and ongoing environmental pollution, which reached many 

kilometres downstream. The Rum Jungle Mine site is located in the tropical wet-dry 

climatic region of northern Australia (Figure 5.2). The region is characterized by a 
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tropical savannah-like climate and typically receives about 1500 mm of annual rainfall. 

Most of this rainfall (90% or more) occurs during a wet season that lasts from 

November to April, with no sustained rainfall occurring from May to September. Rum 

Jungle was a major source of pollution of the Finniss river due to tailings and liquid 

waste discharges, and also due to acid mine drainage (AMD) from tailings and, 

especially waste rock dumps.  

The geological zone of the Rum Jungle Mine site is within the Pine Creek 

Geosyncline. The regional geology includes Palaeoproterozoic metasediments 

unconformably overlying the Rum Jungle Complex. The Rum Jungle Complex 

consists mainly of granites and occurs primarily along the south-eastern side of the 

Giant’s Reef Fault, whereas the Mount Partridge Group occurs north of the fault and 

consists of the Crater Formation, Geolsec Formation, Coomalie Dolostone and Whites 

Formation. The Rum Jungle mineral field contains numerous polymetallic ore deposits 

associated with the Rum Jungle Mine. Groundwater flow and solute transport models 

were constructed using the hydrogeological parameters listed in Table 5.1. The 

reaction equations and reaction coefficients incorporated in the reactive transport 

model are defined in Table 5.2. 
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Table 5.1: The Study Aquifer’s Physical and Hydrogeological Properties 

Aquifer parameter Unit Value 

Area of mine site km2 12 

Thickness of mine site m 150 

Number of nodes - 6587 

Number of elements - 10,704 

Horizontal hydraulic conductivity, K   

Layer 1 m/d 0.13 

Layer 2 m/d 1.21 

Layer 3 m/d 0.44 

Layer 4 m/d 0.65 

Layer 5 m/d 0.11 

Layer 6 m/d 0.04 

Vertical hydraulic conductivity, K   

Layer 1 m/d 0.12 

Layer 2 m/d 1.21 

Layer 3 m/d 0.44 

Layer 4 m/d 0.65 

Layer 5 m/d 0.11 

Layer 6 m/d 0.04 

Longitudinal dispersivity, αL m 10 

Transverse dispersivity, αT m 0.1 

Vertical dispersivity (αV): m 0.01 

Average rainfall mm/year 2372 

Effective porosity, θ - 0.28 
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Figure 5.2: Map of the Rum Jungle study area (top) with locations of central mining zones (modified 
from Mudd & Patterson, 2010). Satellite image of the Rum Jungle site showing source locations 

(bottom). 
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The six potential sources are shown in Figure 5.2 (S1, S2, S3, S4, S5 and S6). The 

hydrogeological parameters used in the groundwater flow and solute transport model 

are given in Table 5.1. Similarly, the geochemical reactions and reaction coefficients 

used in the solute transport modelling are listed in Table 5.2. The two open pits (main 

and intermediate) were assumed to be contaminant sources. A boundary condition was 

assigned to the perimeters of the pits as an unknown constant concentration boundary 

condition. The four waste dumps were also considered to be contaminant sources of 

unknown concentration that drive the release and transport of several chemical species. 

Due to the complexities of the study area, when evaluating the performance of the 

proposed method, the unknown source concentrations were considered to be constant 

over the study period at each location. 

 

Table 5.2: Chemical Reactions used in the Contaminant Transport Modelling 

 

5.3.1 Fractal Singularity Mapping of Potential Monitoring Well Locations  

In this section, the application of fractal/multifractal modelling using singularity 

analysis for mapping potential well locations is discussed. The local singularity 

Reaction equation Rate constant (Log K) 

H2O(aq) ↔ H+ + OH- (R1) -13.99 

H+ + SO4 ↔ HSO4
- 1.99 

Cu 2+ + H2O ↔ Cu(OH)+ + H+ -9.19 

Cu2+ + SO4 
2- ↔ CuSO4 2.36 

Cu2+ + 2H2O ↔ Cu(OH)2 + 2H+ -16.19 

Cu2+ + 3H2O↔ Cu(OH)3
- + 3H+ -26.9 

Fe2+ + H2O ↔ H+ + FeOH+ -9.50 

Fe2+ + SO4
2- ↔ FeSO4 2.20 

Fe2+ + 2H2O ↔ 2H+ + Fe(OH)2 (aq) -20.57 

Fe2+ + 3H2O ↔ 3H+ + Fe(OH)3
- -31.00 

Fe2+ + 4H2O ↔ 4H+ + Fe(OH)4
2- -46.00 

Mn2+ + SO4 - ↔ MnSO4 2.26 

Mn2+ + H2O↔ MnOH+ + H -10.59 

Mn2+ + 3H2O↔ Mn(OH)3
- + 3H -34.08 

UO2
2+ + SO4 2- ↔ UO2SO4  3.15 

UO2
2+ + SO4 2- ↔ UO2(SO4)2 2-  4.14 

UO2 +2 +2H2O↔ UO2(OH)2 aq + 2H+ 12.15 
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mapping method was used to delineate the contamination plumes in the groundwater 

aquifer. The modelled groundwater contamination plume movement for this complex 

heterogeneous case study was obtained from flow and transport processes with 

interactions of reactive chemical species. The accuracy of the proposed method is 

evaluated for the case of a complex aquifer in a mine site area. 

Fractal singularity analysis was applied to delineate the contamination plumes 

in the aquifer at a former mine site. For this case study, the contaminant sources were 

assumed to be active and, due to the closeness of the four waste dumps and two open 

pits, cross-sectional mixing or overlapping of contaminant plumes was expected.  

As described in the Methodology section, when calculating the singularity index, 

some parameters are input earlier for the fractal modelling to proceed. Several 

sequences of square windows (representing concentration cells) with half-window 

sizes measuring were used to initiate the singularity analysis. The singularity analysis 

resulting in singularity index (α) values, were α < 2 signifies the inside regions of a 

plume, while α > 2 signifies outside regions. The singularity distribution map based 

on the singularity index illustrates that the contour for α = 2 represents a plume 

boundary. This suggests that the singularity index can categorize potential monitoring 

locations effectively. Figure 5.3(a &a) shows a fractal singularity distribution map 

with estimates of singularity index α. Figure 5.4 shows potential well locations based 

on the singularity index analysis, as well as arbitrary potential well locations for 

comparison with the fractal monitoring network design. The red circles are singularity 

index-based potential well locations and blue circles are the arbitrary well locations.  

It is important to note that, in this study, there were already some existing wells. 

Hence, the main aim was to use the network design to select optimal wells and 

determine optimal locations for new wells that could improve source characterization 

and identification. 

Well locations were determined by 1) singularity distribution maps, 2) a 

monitoring network designed without singularity mapping, and 3) concentration 

measurements at arbitrary well locations. These results were used to assess the 

efficiency of the fractal singularity distribution-based design and to verify if the 

monitoring network design improved the characterization of contaminant sources.  
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Figure 5.3(a): Singularity analysis showing the release of contaminant species 1 from distributed 
sources  

 

Figure 5.3(b): Singularity analysis showing the release of contaminant species 2 from distributed 
sources  
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Figure 5.4: Aerial view of plume boundaries and potential well locations based on fractal singularity 
mapping and arbitrary designation Red circles are singularity index-based potential well locations and 

blue circles are the arbitrary well locations 

 

5.3.2 Comparison of Optimal and Arbitrary Monitoring Networks 

In order to obtain a monitoring network that has well locations suitable for 

improving source identification, optimally-designed and arbitrary monitoring 

networks were produced. Their effectiveness was then tested and compared. The 

optimal monitoring network was designed based on the Pareto-optimal solutions of the 

two objective function formulations F1and F2 (given in Equations 5.2 and 5.3). 

Kriging was applied in the design to spatially interpolate contaminant concentrations. 

The use of kriging is important as the monitoring locations and contaminant 

concentrations measurements were limited and spatially distributed. For the 

performance evaluation, the concentration values used were synthetic estimates 
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(simulation results) of the flow and transport simulation model. Two sets of six unique 

Pareto-optimal solutions were obtained as different sets of values representing F1and 

F2. One set of Pareto-optimal monitoring network solutions (labelled FD1 to FD6) 

was based on fractal singularity mapping and the other set (NFD1 to NFD6) was not. 

The first monitoring network group (FD1–FD6) showed a satisfactory Pareto-optimal 

value of the second objective F2 varying from a minimum of 2.35 to a maximum of 

3.80. The second group of monitoring networks (NFD1–NFD6) obtained Pareto-

optimal values for objective functions F2 with minimum and maximum values of 2.15 

and 3.71, respectively, using Equations 5.1 and 5.2. Overall, 15 monitoring wells were 

chosen, which constitute the monitoring network for each Pareto-optimal solution. 

 

Table 5.3. Pareto-Optimal Monitoring Network Design Solutions using Fractal Modelling (FD 

denotes a fractal mapping design.) 

Monitoring network Objective function value 

F1 (minimization) 

Objective function value 

F2 (maximization) 

FD1 0.82 2.35 

FD2 0.84 2.83 

FD3 0.89 3.21 

FD4 1.01 3.50 

FD5 1.13 3.70 

FD6 1.215 3.80 

 

Table 5.4. Pareto-Optimal Monitoring Network Design Solutions without Fractal Modelling (NFD 

denotes a non-fractal mapping design). 

Monitoring network Objective function value F1 

(minimization) 

Objective function value F2 

(maximization) 

NFD1 0.83 2.15 

NFD2 0.89 2.57 

NFD3 0.91 3.07 

NFD4 1.019 3.38 

NFD5 1.15 3.55 

NFD6 1.29 3.71 
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5.3.3 A Simulation-Optimization Model for Characterisation of Unknown 

Sources Using Pareto-Optimal and Arbitrary Monitoring Networks 

A linked simulation-optimisation model was used to characterise unknown 

contaminant sources using the objective function formulation in Equation 5.10 and the 

constraint set of Equations 5.11 and 5.12. Concentrations estimated by the simulation-

optimization model were used to evaluate the performance of the Pareto-optimal 

monitoring network design. Two sets of six Pareto-optimal monitoring networks were 

designed; one with potential well locations based on singularity mapping (NFD1–

NFD6) and the other without this basis (NF1–NF6). 

Based on contaminant concentrations obtained from the two Pareto-optimal 

monitoring networks, the contaminant concentrations at different well locations were 

used to estimate source concentrations. These estimated source concentrations were 

based on concentrations obtained from the monitoring network. They were used to 

compare the efficiency of monitoring networks 1) based on singularity mapping 

subject to the two objective functions discussed earlier (Section 5.3), 2) designed 

without singularity mapping and 3) arbitrarily designed.  

For evaluation purposes, a calibrated groundwater flow and transport simulation 

model was used to simulate the aquifer’s responses, in terms of spatial and temporal 

variations in contaminant concentrations, with relevant initial and boundary conditions 

specified. The calibrated simulation model estimates contaminant concentrations at 

monitoring locations and the linked simulation-optimization model minimizes the 

error by computing the difference between observed and simulated values. Then, the 

concentration data observed within a specific monitoring-management period is used 

to evaluate the objective function of the network design optimization model. In real 

situations where a monitoring network is used to monitor contaminant concentrations, 

identifying the contamination sources using the proposed methodology requires field-

measured concentration data. 

In this study, to evaluate the methodology developed for real contamination 

situation, in terms of identifying contaminant sources and improving source 

identification, erroneous concentration measurements are essential for testing 

purposes. Concentration data obtained from the simulation model were perturbed to 

represent the effects of random measurement error and uncertainty. Hence, the 

observed contaminant concentrations were incorporated with randomized 
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measurement errors and used as synthetic concentration data to obtain the source 

characteristics. The perturbed concentrations were obtained from the simulated 

concentrations by using Equation 5.13. A maximum value of 0.1 (10%) was utilized 

for variable a in Equation 5.13.  

k
sim

k
sim

k
sim iobiobiob

CaCpertC ••+= 
      (5.13) 

Where:  

k
simiob

pertC  = perturbed simulated concentration; 

k
simiob

C = simulated concentration; 

ε = error matrix with normally-distributed error terms with mean = 0 and 

standard deviation = 1; and 

a = a fraction such that 0 < a < 1. 

To demonstrate the improvement in source identification efficiency after 

applying fractal singularity mapping, the method was applied to an illustrative study 

area. It considers an optimisation algorithm and three monitoring network scenarios. 

These three network scenarios are i) a fractal singularity mapping-based Pareto-

optimal monitoring network, ii) a network without the influence of fractal singularity 

mapping, and iii) an arbitrary monitoring network. Additionally, contaminant sources 

identified by the three monitoring networks were compared. Then, the linked 

simulation-optimization model identified sources based on concentration 

measurements obtained from networks that were designed by fractal singularity 

mapping or were arbitrary. Two sets of 15 monitoring wells were used in each design, 

which form part of the source identification model. Source characterisations were 

achieved by estimating source concentrations using error-free and erroneous data 

(concentration data perturbed with random errors, as shown in Equation 5.13). 

 

5.4 RESULTS AND DISCUSSION 

Fractal/multifractal modelling using the singularity mapping index technique was used 

to determine the contamination plume boundaries. These guided the selection of 

potential well locations (i.e., the larger set) within the study site. Selection of well 
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locations according to fractal singularity index mapping increases the efficiency of a 

monitoring network, thereby improving the accuracy of source identification, 

particularly with multiple distributed sources. To evaluate the performance of the 

monitoring network based on fractal singularity mapping, sources were characterised 

by the three types of monitoring network design: fractal singularity mapping-based, 

without fractal singularity mapping, and arbitrary networks. 

5.4.1 Pareto-optimal solutions 

The two-objective optimal monitoring network design model was solved and the 

Pareto-optimal solutions for the two objective criteria of F1: minimization, and F2: 

maximization were obtained. Figures 5.5 and 5.6 show the Pareto-optimal front for the 

monitoring network design. Figure 5.5 shows the set of Pareto-optimal solutions for 

the two-objective problem. It is evident, as expected, that due to the conflicting nature 

of the two objectives, there is a trade-off between the two objective functions. Each 

non-dominated solution set represents a Pareto-optimal solution.  
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Figure 5.5: Pareto-optimal monitoring networks based on fractal singularity mapping  

 

 

Figure 5.6: Pareto-optimal monitoring networks with no fractal singularity mapping  
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Two sets of six Pareto-optimal networks were chosen for different values of the 

objective function F2 (Tables 5.3 and 5.4). To design the monitoring networks, fractal 

singularity mapping was used to select potential well locations FD1 to FD6, while 

arbitrary potential well locations (no fractal singularity mapping) were utilized to 

optimally design monitoring locations NFD1–NFD6. The non-inferior solutions show 

the conflicting nature of the two objective functions. Objective function F1 is 

represented by the y-axis in Figure 5.5. Objective function F2 is represented by the x-

axis in the same figure as well as in Figure 5.6. As the value of F2 (the maximization 

objective function) increases, the value of the other objective function F1 (the 

minimization objective function) increases, and vice versa.  

The non-dominated set of solutions obtained by solving the two objective 

problem show that, in order to improve one objective function, the level achieved for 

the other objective function(s) becomes worse. Thus, the objective function value of 

one of the objective functions F1 (to be minimized) improves at the cost of the other 

objective function F2.  F2 is to be maximized. This property shows that the two 

optimization models are suitable for solution using multiple objective optimization 

technique, as the two objective functions are conflicting in nature. There are trade-offs  

(Datta and Peralta, 1986) that exist between the conflicting objectives at the 

noninferior or nondominated (Pareto optimal) solutions. One more observation that 

can be made from these solution results is that the level of one of the objective function 

values, for a given value of the other objective function is comparatively better, when 

using fractal singularity mapping information in the optimization model for the 

monitoring network design.   

It can be also inferred that the possibility of choosing an efficient monitoring 

network which may improve the accuracy of identifying unknown contaminant source 

characteristics. 
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5.4.2 Source Identification Solutions 

This subsection discusses the source identification results obtained using a 

linked optimization-based optimization model to obtain a distributed source 

characterization in terms of magnitudes and locations. The source characterization 

results for all 12 Pareto-optimal monitoring networks using fractal singularity index 

information (FD1 to FD6) or without it (NFD1 to NFD6) were compared. Figures 5.7 

and 5.8 illustrate these comparisons using error-free and erroneous data, respectively, 

for the first set of six monitoring networks (FD1 to FD6) obtained using the fractal 

singularity mapping method. Similarly, comparisons of the results using error-free and 

perturbed data for the second set of six potential well monitoring networks (NFD1 to 

NFD6) are shown in Figures 5.9 and 5.10, respectively. The x-axis shows the unknown 

potential contaminant sources, namely, the Main WRD, Int WRD, Dyson WRD, 

Dyson BF Pit, Main Pit and Int Pit, previously shown in Figure 5.3 as S1, S2, S3, S4, 

S5and S6, respectively. The y-axis shows source concentrations in moles per litre 

(M/L). The bars in Figures 5.7 to 5.10 correspond to source concentrations, both actual 

and those estimated by multi-objective optimal monitoring networks.  

In both Pareto-optimal networks, the source concentration identification results 

for all 12 Pareto-optimal monitoring network designs are very close to the actual 

concentrations when solved using error-free data. However, when the concentration 

data are perturbed with random errors to simulate measurement error, the results  

deviate more from the actual concentrations in all 12 Pareto-optimal monitoring 

networks when compared to the results based on error-free data. 

The average errors for both error-free scenarios of source identification (Figures 

5.7 and 5.9) by networks FD1–FD6 and NFD1–NFD6 were calculated and compared 

to establish the accuracy of the methodology. The average errors with error-free 

measurements for networks FD1, FD2, FD3, FD4, FD5 and FD6 were 0.001522129, 

0.00054828, 0.000330518, 0.00144489, 0.001203354 and 0.001302412, respectively. 

Those for NFD1, NFD2, NFD3, NFD4, NFD5 and NFD6 were 0.002703406, 

0.001938888, 0.002624391, 0.002353263, 0.003324196 and 0.001820891, 

respectively. These error values clearly indicate the closeness of the actual source 

concentration values to those estimated by the multi-objective optimal monitoring 

networks.  



  

Chapter 5: Integrated Monitoring Network Design for Improved Contamination Source Characterization at a 
Mine Site 145 

Similarly, the average errors for both erroneous scenarios of source identification 

(Figures 5.8 and 5.10) of networks FD1–FD6 and NFD1–NFD6 were calculated and 

compared for each network to establish the amount of deviation from the actual 

concentration values in all 12 Pareto-optimal monitoring networks when compared to 

the results with error-free data. The average errors for erroneous measurements for 

networks FD1, FD2, FD3, FD4, FD5 and FD6 were 0.001975668, 0.004062984, 

0.001303269, 0.004318811, 0.002062606 and 0.002371128, respectively. Also, the 

average errors for error-free measurement for NFD1, NFD2, NFD3, NFD4, NFD5 and 

NFD6 were 0.013509675, 0.016350228, 0.009822113, 0.01144313, 0.008843035 and 

0.005469973, respectively. These error values confirm the effect of using 

concentration data that are perturbed with random errors on the results of source 

identification. This shows a greater amount of deviation from the actual concentration 

values due to larger errors in all 12 Pareto-optimal monitoring networks when 

compared to the results based on error-free data. These results show that for the 

efficient determination of source concentrations, it is important to have the right 

balance between monitoring well locations and concentration measurement data.  

Figures  5.7 to 5.8 shows the performance of Pareto optimal network designs 

with fractal singularity mapping 
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Figure 5.7: Source identification results using error-free concentration data from Pareto-optimal 
monitoring networks based on fractal singularity modelling 

 

Figure 5.8: Source identification results using erroneous concentration data from Pareto-optimal 
monitoring networks based on fractal singularity modelling  

 

Figures  5.9 to 5.10 shows the performance of Pareto optimal network designs with   no 

fractal singularity mapping 
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Figure 5.9: Source identification results using error-free concentration data from Pareto-optimal 
monitoring networks with no fractal singularity modelling 

 

 

Figure 5.10: Source identification results using erroneous concentration data from Pareto-optimal 
monitoring networks with no fractal singularity modelling 
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design (NFD). The absolute difference between actual and estimated source 

concentrations for all 12 Pareto-optimal monitoring networks (FD1–FD6 and NFD1–

NFD6) using error-free and perturbed data shows similar trends. 

Figures 5.11 and 5.12 show that monitoring network FD3 recorded the lowest 

average absolute difference between the actual and estimated source concentrations, 

with both error-free and erroneous data. The absolute errors suggest that monitoring 

network FD3 is optimal, based on it having lower errors than the other networks.  

 

Figure 5.11: Absolute differences between actual and estimated source concentrations with error-free 
concentration data 
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Figure 5.12: Absolute difference between actual and estimated source concentrations with erroneous 
concentration data 

  

Figure5.13: Absolute difference between actual and estimated concentrations with error-free 
concentration data 
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Figure 5.14: Absolute difference between actual and estimated source concentrations with erroneous 
concentration data 
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compared to 0.001347 for network NFD6. Although both absolute error values are 

very low, the network based on fractal singularity shows a much lower error value, 

hence, there is a greater possibility that FD3 is the best monitoring network design for 

source identification. 

To evaluate the effects of using fractal singularity mapping, the results of source 

characterisation using concentration data from an arbitrary monitoring network 

(ARBMN) and Pareto-optimal monitoring networks with (FD) and without fractal 

singularity design (NFD) were compared. The comparison results for the arbitrary 

monitoring network, and the Pareto-optimal monitoring networks FD and NFD with 

error-free and perturbed data are shown in Figures 5.15 and 5.16, respectively. The 

comparison of absolute error for arbitrary networks (ARBMN) versus networks FD-3 

and NFD-6 using error-free and erroneous data are shown in Figures 5.17 and 5.18, 

respectively.  

 For all three monitoring networks (ARBMN, FD and NFD), the absolute 

difference between the actual and estimated concentrations obtained using the arbitrary 

network (ARBMN) was larger compared to using the other monitoring networks (FD 

and ND). It is clear from Figure 5.15 that arbitrary monitoring networks had greater 

errors in concentration estimation at sources Main WRD, Int WRD, Dyson WRD and 

Main Pit, than those obtained using formally designed monitoring networks (FD3 and 

NFD6). The source concentration estimates obtained using monitoring network FD3 

were better at all source concentrations when using error-free data. However, arbitrary 

network ARBMN performed better in source identification than NFD6 when error-

free data were used. ARBMN showed a much smaller difference between the actual 

and estimated concentrations at the Dyson BF pit and Int pit sources (with absolute 

error values of 0.001211 and 0.00168, respectively) compared to the Pareto-optimal 

network NFD6 (error values of 0.002691 and 0.002057; Figure 5.17). 

Similarly, in Figure 5.16, when erroneous data were used to estimate source 

concentrations, the absolute difference between the actual and estimated 

concentrations obtained using the arbitrary network ARBMN was larger than when 

using the other monitoring networks (FD and ND). However, ARBMN performed 

better than NFD6 (in terms of a smaller difference between the actual and estimated 

concentrations) when estimates of concentrations at the Int pit source were compared. 
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For the Int pit source, the absolute error obtained by ARBMN was 0.008988, as 

compared to 0.020083 obtained by NFD6, as shown in Figure 5.18. 

Comparison of the source concentration estimates obtained using concentration 

data from optimally-designed and arbitrary networks shows that it is most efficient to 

use an optimally-designed network based on fractal singularity mapping. Comparison 

of the source identification results shows that the use of a fractal singularity-designed 

monitoring network provides good results in terms of source concentration estimation. 

Use of such a monitoring network is critical in scenarios where aquifers are 

contaminated by multiple distributed sources and multiple species. In such situations, 

positioning monitoring wells arbitrarily may produce satisfactory characterisation of 

some sources; however, characterisation may be very poor in complex aquifers with 

overlapping plumes from multiple distributed sources and multiple species. This is 

because the measurement of the concentration of contaminants at arbitrary observation 

locations is not representative of all the sources present in the aquifer system. The 

observed measurements can only representthe effect of a subset of sources. 

 

 

Figure 5.15: Comparison of source identification results using error-free measurement data 
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Figure 5.16: Comparison of source identification results using erroneous measurement data 

  

Figure 5.17: Comparison of absolute error for arbitrary networks (ARBMN) and Pareto-optimal 
monitoring networks FD-3 and NFD-6 using error-free measurement data 
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Figure 5.18: Comparison of absolute error for arbitrary networks (ARBMN) and Pareto-optimal 
monitoring networks FD-3 and NFD-6 using erroneous measurement data 
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optimization formulations provide ways to discover multiple locations and trade-offs 

that may be overlooked using traditional single-objective formulations. 

This chapter used a real case study to provide an illustrative example of how to 

use the multi-objective optimisation methodology to design optimal monitoring 

networks. With this example, 12 monitoring networks from a set of Pareto-optimal 

networks were designed. Out of the 12 Pareto-optimal networks, six sets of networks 

with fractal singularity designs achieved accurate source concentration estimates in 

cases where both error-free and erroneous data were used in the source characterization 

process. In all, network FD3 showed errors of < 5%, providing excellent source 

estimations compared with the other Pareto-optimal monitoring networks. The 

performance of network FD3 was better than those of the non-fractal-designed Pareto-

optimal networks (NFD) and arbitrary networks (ARBMN) because fractal singularity 

mapping improved its design. 

This methodology, once it is fully tested and modified for site-specific 

applications, will play a significant role in the selection of optimal numbers and 

locations of monitoring wells at contaminated sites. Ultimately, this will improve 

aquifer rehabilitation and prevent groundwater contamination. 

The next chapter summarizes various aspects of the research undertaken for this 

thesis. The main conclusions are stated, and limitations and future research directions 

are discussed. 

 

 

 

 

 

 





  

Chapter 6: Summary and Conclusions 157 

Chapter 6: Summary and Conclusions 

This chapter contains summaries of the thesis chapters, conclusions and limitations, 

and makes recommendations for how this field of research may be extended. 

 

6.1 SUMMARY 

The purposes of this study were to 1) develop optimization-based methods to 

characterise unknown groundwater contamination sources in a hydrogeologically- and 

geochemically-complex heterogeneous anisotropic aquifer comprising transport of 

multiple reactive species and 2) develop monitoring network design models that 

improve the efficiency of source characterization. 

The methodologies developed and implemented consist of numerical simulation 

models of three-dimensional flow and transport processes in a complex aquifer that 

address different reaction types that contribute to the reactive transport of multiple 

species. This was a novel attempt to design a model that incorporates both kinetic and 

equilibrium reactions to represent ongoing acid mine drainage issues at a former mine 

site, and to identify the contaminants affecting groundwater quality. 

The developed flow and transport simulation model was linked to an 

optimization algorithm to obtain a management model. The management optimization 

model, referred to as a linked simulation-optimization model, was used to achieve 

optimal source characterization by solving a new optimization formulation proposed 

for individual species from distributed sources using the adaptive simulated annealing 

optimization algorithm. The optimization algorithm improved the search for an 

optimal solution to the problem of source concentration identification for 

contamination by five reactive contaminants originating from several distributed 

sources. 

Additionally, an optimal monitoring network was designed based on a multi-

objective optimisation formulation. This method involves multifractal modelling using 

fractal singularity indices to map the study area and define contaminated and clean 

areas (according to singularity indices greater or less than 2). The singularity mapping 
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results were used as prior information for the selection of potential monitoring 

locations. This approach to monitoring network design with fractal modelling showed 

better source characterization than monitoring networks designed without fractal 

modelling or with an arbitrary design. The Pareto-optimal monitoring networks proved 

to be reliable when spatial and temporal concentration data obtained from these 

networks were used in the source characterization process.  

The performance of the linked simulation model in source characterization was 

evaluated using a real former uranium mine site in the Northern Territory, Australia. 

Limited field concentration measurements were used for the performance evaluation 

of characterization of multiple contaminant sources. In this case, the contaminants 

were assumed to be reactive. 

In all, several methodologies were used in this thesis. The methodology used to 

develop and enhance the efficiency of source characterization comprised numerical 

simulation models, fractal/multi-fractal modelling, adaptive simulated annealing 

(ASA) optimization algorithms and statistical interpolation techniques. 

 

6.2 CONCLUSIONS 

Firstly, this study demonstrated the potential applicability of a numerical simulation 

model that simulates the transport of multiple chemically-reactive species in a complex 

contaminated aquifer. The case study of an abandoned mine site with uncertain input 

data was used. The high complexity of the area and a sparsity of available data were 

the main challenges in calibrating the flow and transport processes within the 

numerical simulation model. The limitations in implementing adequately calibrated 

flow and transport simulation models for such a hydrogeochemically-complex 

contaminated aquifer site with very limited measurement data were also highlighted.  

This study demonstrates that the developed reactive transport modelling 

approach can contribute to a more integrated understanding of geochemical reactions 

and transport controls on contaminants. Hence, it is a step towards more efficient use 

of modelling in water resource management. In addition, the results of this reactive 

modelling approach provide a benchmark for the prediction of contaminant transport 

to assess its effects on groundwater quality. The primary conclusions in regard to the 

numerical simulations of groundwater processes are as follows: 
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1. A three-dimensional flow and reactive transport model was designed and 

implemented. It is primarily based on a calibrated flow model. 

2. The flow and reactive transport model was successfully validated using two 

years of limited data, which is all that was available. However, it was not 

possible to validate or calibrate the transport model as the actual contaminant 

sources were not known. 

3. The developed model increases our understanding of the reaction processes 

and interactions that affect groundwater quality. 

4. Problems of acid mine drainage were addressed by incorporating several 

geochemical reactions to model the transformations of species in the 

subsurface. 

5. The simulation results show that the proposed model can help understand the 

current state of mine rock waste contamination at the Rum Jungle Mine site. 

The model may also be applied to similar complex  real-life sites with reactive 

contaminants.  

6. A case study highlighted the utility of the approach in assessing kinetic and 

equilibrium reaction controls on groundwater contaminants. 

7. The current work provides a basis for supplementary predictive flow and 

reactive transport modelling of the study site to predict the effects of acid mine 

drainage and to provide effective rehabilitation strategies.  

 

Secondly, a multiple species source characterization optimization formulation 

was demonstrated. This optimization formulation was tested to characterise four 

species with distributed sources. Performance evaluations of the developed 

optimization model showed its potential applicability to the characterisation of 

groundwater contaminant sources involving reactive transport of multiple species. One 

of the main advantages of this source characterisation model is its ability to link any 

complex groundwater simulation model to an optimization model. The applicability of 

the source characterisation model was demonstrated using error-free measurements 

and those with random errors. This model showed the capability of simultaneously 

estimating aquifer parameters and characterizing contaminant sources at multiple 
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potential locations. The results show the potential for application of the methodology 

when real field concentration measurements are available. The results also show the 

applicability of this methodology to large, complex heterogeneous systems and real-

life scenarios where multiple reactive species interact. The primary conclusions related 

to source characterization are as follows: 

1. The proposed method of characterizing unknown sources of groundwater 

contamination can successfully identify sources irrespective of the number of 

sources /contaminants existing or where they are located. 

2. The source concentration estimates showed errors of < 10% for individual 

contaminants, regardless of the magnitude of contaminant concentration at 

distributed source locations.  

3. With a percent average estimation error (PAEE) of < 7%, the solutions for the 

multiple contaminant sources case were considered accurate. The PAEE values 

changed little and remained within an acceptable error range when perturbed 

datasets were used.  

 

Thirdly, a multi-objective optimization approach to the design of optimal 

groundwater monitoring networks was presented. The proposed monitoring network 

optimization model is based on two optimization objectives within a Pareto-optimal 

design. These objectives are 1) minimizing the maximum normalized error between 

contaminant concentrations estimated by interpolating concentrations from candidate 

monitoring locations and actual contaminant concentration data at potential 

monitoring well locations, and 2) maximizing the summation of the product of 

estimated concentration gradients and the simulated (or measured) concentrations at 

selected concentration monitoring locations.  

For an optimal monitoring network design to improve source characterisation 

accuracy, it is essential to obtain appropriate concentration measurements from 

relevant monitoring wells. To achieve this, multifractal modelling using the singularity 

index technique was applied to provide prior information for selecting potential 

monitoring locations that will achieve an optimal monitoring network design. The 

results of source characterisation are more accurate when monitoring network designs 

are based on prior information from fractal modelling compared to non-fractal-
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influenced networks and arbitrary networks. With this multi-objective optimization 

methodology, the monitoring network design can be optimized and current strategies 

for monitoring groundwater quality can be improved to reduce redundancies and cost. 

The primary conclusions of the research into multi-objective optimal monitoring 

network design are as follows: 

1. This approach can be used to design a new monitoring network with existing 

monitoring locations and to add additional monitoring locations to design an 

optimal monitoring network.  

2. Source characterization results are more accurate when singularity index 

information is utilised in choosing potential well locations during the optimal 

design of the monitoring network.  

3. Singularity index mapping was shown to be useful and effective in providing 

prior information for selecting potential monitoring network locations.  

4. The outcomes of the developed methodology demonstrate that there is a trade-

off involved in selecting optimal monitoring locations, in terms of minimizing 

the maximum normalized error between assumed and interpolated 

concentration values and maximizing the sum of the estimated concentration 

gradient and concentrations at locations. Hence, the ideal level of trade-off 

needs to be determined and may depend on site-specific conditions and 

stakeholder policies.  

5. The developed methodology produces Pareto-optimal groundwater monitoring 

network designs. The outcomes demonstrate that there is a trade-off in 

selecting optimal monitoring locations in terms of two objective functions. 

Hence, there is a need to perform trade-off studies to determine ideal levels, 

which may depend on site conditions and management policies. 

 

6.3 RECOMMENDATIONS 

Calibration and validation of the flow and reactive transport model according to site 

conditions are essential for strengthening the reliability of source identification. 
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It is recommended that expert knowledge of site scenarios and active site-

specific conditions should be combined with the outcomes of this study to plan 

appropriate monitoring strategies. 

The source characterisation results were attained using a linked simulation-

optimisation approach and limited data. The monitoring network designs were subject 

to a limited number of monitoring wells being available. The source characterisation 

method described in this research has the potential to achieve effective source 

characterisation in study areas with contamination by multiple species and limited 

observational concentration data. The performance evaluation results for all the 

developed methodologies demonstrate their possible applications in field studies, 

particularly with complex aquifer systems and distributed sources. While there may be 

some limitations associated with the methodologies discussed in this research, the 

following limitations can serve as guidelines for future studies. The key limitations 

are: 

1. The availability of adequate field-measured data and consistent monitoring are 

decisive in calibrating a suitable model. 

2. The methods developed are sensitive to uncertainties in hydrogeological 

parameters and random heterogeneity; hence, these must be incorporated into 

the models.  

3. Some of the performance evaluations assume that the calibrated model 

represents actual field conditions as closely as possible. However, the 

performance evaluation will depend on the accuracy of the 

calibration/validation. 

4. Further advancement can be made in fractal modelling to improve monitoring 

network design, especially in situations where network designs are based on 

several contaminant concentrations. 

5. In multi-objective monitoring network design, further studies are required to 

establish guidelines for obtaining ideal trade-offs considering site-specific 

conditions and stakeholder preferences. 
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