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Introduction. 

 

Multiple sclerosis and the need of biomarkers.  

Multiple sclerosis (MS) is a chronic autoimmune and inflammatory disease of the central nervous system 

(CNS), affecting more than 2 million people worldwide and being a leading cause of disability in young 

adults (Reich et al. 2018).  

MS diagnosis is based on neurological symptoms and signs, alongside evidence of dissemination of CNS 

lesions in space and time according to the 2017 McDonald criteria (Thompson et al. 2018). Magnetic 

resonance imaging (MRI) is often sufficient to confirm the diagnosis when characteristic lesions 

accompany a typical clinical syndrome. Although, “no better explanation” is required to exclude 

misdiagnosis, and in some cases, supportive information is obtained from cerebrospinal fluid (CSF) 

analysis and neurophysiological testing (Brownlee et al. 2017). 

MS is characterized by the heterogeneity in symptoms, disease course, and outcomes. Typical presenting 

syndromes vary from, but are not limited to, monocular visual loss due to optic neuritis, limb weakness or 

sensory loss due to spinal cord lesions, double vision due to brainstem dysfunction, or ataxia due to a 

cerebellar lesion. Onset symptoms progressively subside completely or not. Sometimes, a first clinical event 

highly suggestive of demyelinating CNS disease could not meet the criteria of dissemination in time for the 

diagnosis of MS: this situation is defined clinical isolated syndrome (CIS) and up to 80% convert to MS in 

20 years (Miller et al. 2012). A more undetermined condition is the radiologically isolated syndrome (RIS), 

where incidental imaging suggests demyelination in the absence of clinical signs or symptoms. RIS may 

raise the suspicion of MS, and there is a 34% risk of first acute or progressive clinical event within 5 years 

(Okuda et al. 2014). However, after a first clinical event, MS clinical course is characterized by alternating 

periods of neurological dysfunction, named relapses, lasting at least 24 hours in the absence of infection, 

and periods of relative clinical stability, named remissions. The frequency of relapses is highly variable but 

generally does not exceed 1.5 per year. Relapses result in residual deficits in almost half of episodes, leading 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6120692/#A028928C22
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to stepwise accrual of impairment. This relapsing remitting (RR) phenotype affects about the 85% of MS 

patients (Lublin et al. 2014). The majority of untreated RRMS patients do eventually evolve into a 

secondary progressive (SP) phase about 20 years after the onset. Phenotypically, SPMS consists of periods 

of progression with possible superimposed relapses or periods of relatively stable disability. On an 

individual level, it is difficult to determine when exactly the transition to SP starts. Few predictors of earlier 

progression are higher age at RRMS onset, male gender, spinal cord symptoms and incomplete relapse 

recovery (Rovaris et al. 2006). Lastly, about 10%–20% of MS patients present a primary progressive (PP) 

course, characterized by ongoing progression from the disease onset (Ransohoff et al. 2015). In the past 

years, these clinical phenotypes resulted limited in the individual description of disease course, and some 

information of “activity and progression over time” were added to enhance the characterization of an 

ongoing disease. Actually, there are no definitive biomarkers to determine these two entities that remain 

clinically and radiologically defined. In fact, disease activity is decided upon the presence of clinical or 

radiological relapses, being this latter at least a gad-enhancing lesion or new/enlarging T2 lesions. On the 

other hand, progression is estimated by sustained worsening over time, yearly assessed according to the 

Expanded Disability Status Scale (EDSS) score (Lublin et al. 2014). Still, much has to be discovered in 

detecting activity and progression toward a more individualized patient care. 

Clinical management is challenging since disease onset because of the uncertain long-term prognosis. 

Studies on MS natural history indicated several clinical factors as predictors of disability (Ebers. 2001) and 

clearly that early treatment reduced disability accumulation (Cerqueira et al. 2018). The initiation of a 

disease-modifying therapy (DMT) early improves MS prognosis and the occurrence of neurological 

damage. In fact, DMT reduces the relapse rate, the appearance of MRI activity, and slows the course of 

disability progression. It is widely believed that disability results from a series of successive exacerbations, 

each adding to a growing accumulation of deficits. The impact of treatment may decrease as the disease 

unfolds in line with the natural history of MS (Tremlett et al. 2004). There is a highly significant association 

between relapses in the first two years and shortened time to walking aids (Ebers. 2001). Nevertheless, 

brain atrophy, which accompanies axonal damage and loss, can be observed early in MS disease course, 

even in patients with CIS. Neurodegeneration continues to progress in all MS patients. Delays in the 
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diagnosis and treatment relate to severe and irreversible neurological disability (Scalfari et al. 2010). Here 

comes the need for biomarkers in MS diagnosis, monitoring and prognosis. Early diagnosis and treatment 

MS can alter disease course and slow disability progression. The search for a reliable biomarker to predict 

disease progression and monitor response to therapy remains a challenge. Besides, the concept of “no 

evidence of disease activity” (NEDA) has been introduced as the main therapeutic goal in patients with 

MS: the more stable the disease is the better in an ongoing process that is requiring more precise outcome 

measures. Yet, NEDA definition itself is evolving over time: NEDA-3 was defined as no relapses, no 

disability progression and no MRI activity; NEDA-4 as NEDA-3 plus brain volume loss; and finally, the 

use of biomarkers is debated as NEDA-5, being the CSF neurofilament light chains the candidate to be 

included as a measure of neurodegeneration (Giovannoni et al. 2015, Håkansson et al. 2018).  

Nonetheless, individual outcomes are still debated as well as a lack of biomarkers that would distinguish 

MS phenotypes and prognosticate the disease course on an individual patient’s level. There is a pressing 

need, using large datasets of clinically and radiologically well-characterized patients, to explore the 

potentials of biological markers in supporting (and refining) MS courses since the early phases.  

Out of the purpose of this thesis, several instrumental markers have been used to characterize MS 

diagnosis/prognosis. While T2 and gadolinium-enhancing MRI lesions are common measures of disease 

activity, the assessment of brain volume loss is ongoing both “directly” with imaging techniques and 

“indirectly” with optical coherence tomography for with retinal nerve fiber thickness. Further information 

about their roles as potential markers remains a research priority. There is also a potential value of 

electrophysiology studies to define MS phenotypes. However, there is considerable interlaboratory 

variability in those measures. Molecular biomarkers are easily quantifiable and can be complement of MRI 

and clinical characteristics. 

The value of a biomarker is in its ability to predict or be a surrogate for a clinical state of a patient. A 

biomarker is defined as a characteristic that can be objectively measured, and serves as an indicator of 

normal biological processes, pathological processes or reactions to therapy. Ideally, if the disease worsens 

or improves, the concentration of the biomarker should increase or decrease accordingly (Biomarkers 

Definitions Working Group. 2011). Furthermore, ideal biomarkers are safe for the patient, and easy to 
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detect with non-invasive methods. The measure should be highly accurate and reproducible, fast and cost-

effective (Teunissen et al. 2014). In MS, blood and CSF are particularly suitable. Although the importance 

of biomarkers has been increasingly recognized, their validation is a lengthy process, so that only a few 

biomarkers have so far been routinely used in clinical practice. We are focus on biomarkers that are reliable 

tools for diagnosis and monitoring patients with MS in clinical practice using serum and CSF.  

 

 

Expected cerebrospinal fluid changes in multiple sclerosis. 

For both anatomical and physiological reasons, CSF represents the main source of potential biomarkers for 

MS among body fluids. The hallmark of CSF changes in MS is the increased production of intrathecal 

immunoglobulins (Ig) (Link, 1967). The qualitative evaluation of increased intrathecal IgG synthesis is 

reported as the presence of oligoclonal bands (OB). Two or more OB detected by separation of CSF 

proteins, not demonstrable in corresponding serum, reflect a local B-cell response present in more than 95% 

of patients with MS. To date, several studies have attempted to identify the target of the OB, and there has 

been no definite association with any consistent antigen in MS (Freedman et al. 2005). Once present, CSF 

OB persists in the individual patient irrespective of MS course. With nearly 86% specificity and more than 

95% sensitivity, examination of CSF for OB is strongly recommended to support the diagnosis of RRMS 

(Link, 2006), and the presence of CSF OB is one of the required criteria for PPMS. Furthermore, to improve 

early diagnosis, the 2017 McDonald criteria introduced the use of CSF analysis to anticipate MS diagnosis 

in CIS. In fact, in patients with a typical CIS and clinical or MRI demonstration of dissemination in space, 

the presence of OB allows MS diagnosis (Thompson et al. 2018). This has been a great example of the re-

introduction of a well-established biomarker in MS.  

Standardized “gold standard” methodology for detecting is isoelectric focusing (IEF) on agarose gels 

followed by immunoblotting (Freedman et at. 2005). As a qualitative assessment, CSF OB detection is 

actually considered a more reliable test than any quantitative assessments of intrathecal synthesis. Using 

IEF requires a certain level of technical expertise: each gel run requires the presence of controls. Similarly, 
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the result interpretation necessitates some experience. For this reason, quantitative analysis could give 

complementary information. The 2017 criteria mention “other tests, such as the IgG index” indicating 

intrathecal antibody synthesis recommending that positive results on these other tests should be “interpreted 

with caution” when testing for OB (Thompson et al. 2018). 

One of the main purposes of our work was to evaluate the use of complementary quantitative tests to detect 

intrathecal synthesis in MS.  

The most known quantitative evaluation of intrathecal synthesis is the IgG or Link index (Link, 1967). It is 

calculated as the ratio between IgG quotient (the ratio of IgG in CSF to serum) and albumin quotient. This 

latter value considers the integrity of the blood-CSF barrier, and is calculated as ratio of albumin in CSF to 

serum. This is crucial, since the increased concentration of a substance in CSF can be the result of either 

intrathecal synthesis or increased permeability of the blood-CSF barrier. Regarding the IgG index, a value 

greater than 0.70 is universally considered suggestive of pathological intrathecal synthesis. With a cut-off 

value of 0.7, the positive predictive value is 60% for the diagnosis of MS (Mayringer et al. 2005).  

Not only Ig are produced in their assembly. Ig are formed by two heavy chains, which determine their class 

(IgG, IgM, IgE, IgD and IgA) and by two free light chains (FLC), either kappa or lambda. FLC are produced 

in excess of Ig in the CSF of MS patients from intrathecal humoral activity of plasma cells. In MS they 

result in particular of kappa subtype (KFLC). Similarly to the Link index, we could calculated a kappa 

index as the ratio between the CSF/serum KFLC and albumin quotients. During the last years, the kappa 

index has been explored as a diagnostic biomarker for MS, despite the lack of an unequivocal cut-off value. 

It gained increasing interest as a possibly more sensitive, less costly and less time-consuming, quantitative 

marker of intrathecal immunoglobulin synthesis compared to OCB detection. The intrathecal KFLC 

synthesis can be calculated using different metrics: the linear kappa index (CSF/serum KFLC quotient 

divided by CSF/serum albumin quotient), the KFLC intrathecal fraction (KFLC IF, which takes into 

account the non-linear relationship of the blood-to-CSF transfer between albumin and KFLC), or other 

mathematical models to calculate indexes named Tourtellotte’s or Reiber’s (Reiber et al. 2019, Kaplan et 

al. 2013).  
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Conversely, lambda FLC has not resulted as a reliable marker for MS intrathecal synthesis (Desplat-Jégo at 

al. 2005). 

Despite Ig and FLC can be detected by ELISA, Western blotting or nephelometry, this latter technique is 

the most used (Freedman et al. 2006).  

Our analysis concentrated on the role of kappa index in MS diagnosis.  

 

 

Prognostic value of intrathecal synthesis. 

Since CSF analysis has then entered back in the diagnostic work-up again, the presence of intrathecal 

synthesis has been discussed as a useful tool in MS prognosis.  

OB are the hallmarks of definite MS, but some conditions suggesting for demyelination could not fulfil the 

2017 McDonald criteria are not fulfilled for MS despite CSF intrathecal synthesis (Thompson et al. 2018). 

In those case OB are a prognostic marker. Approximately half of the individuals with RIS experiences a 

first clinical event within 10 years, and OB are a risk factor for clinical manifestations (Lebrun-Frenay et 

al. 2020, Boyko at al. 2020). In addition, OB also have a predictive role for conversion to MS in those cases 

remaining CIS according to the 2017 McDonald criteria. Indeed, most publications on the prognostic role 

of OB considered CIS according to the previous McDonald criteria 2010 (Polman et al. 2010), and brought 

to the new 2017 version.  

Some data have been presented on the prognostic role of intrathecal IgG synthesis in disease course. For 

example, a low number or no OB at diagnosis resulted predictive for a better prognosis (Avasarala et al. 

2001), and patients with no OB had milder disability and less progression in SPMS (Rojas et al.2012). Not 

conclusive results have been published for IgM (Frau et al. 2018). Looking at quantitative measures, the 

IgG index has been also related to a major disability progression with greater values in SPMS (Izquierdo et 

al. 2002). Moreover, a recent retrospective study involving 149 MS and CIS patients related CSF and MRI 

activity: the IgG index resulted highly correlated with new cerebral lesions as independent predictor.  
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Data on KFCL are not available so far (Klein et al. 2019), and in our project we searched for any prognostic 

role for KFLC in early MS.  

 

 

Aims.  

To evaluate the role of KFLC towards MS diagnosis in a large cohort of Italian patients.  

To analyse whether the same markers are related to MS prognosis. 
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Chapter 1: kappa free light chains in multiple sclerosis diagnosis. 

 

Kappa index and isoelectrofocusing in cerebrospinal fluid analysis. 

This section is a modified version of an article by Crespi et al. 2017 

 

Introduction. 

CSF analysis is a key diagnostic approach in several inflammatory neurological disorders, and the gold 

standard in suspected MS patients is CSF protein IEF and immunoblotting to detect OB. This procedure is 

predominantly manual, and the results need trained personnel to be interpreted properly. On the other hand, 

during Ig assembly, B-lymphocytes and plasma cells synthesize not only Ig but also large amounts of kappa 

and lambda FLC. In the presence of intrathecal synthesis, an increased CSF/serum Ig or FLC quotients 

could be evidenced. Since an altered barrier permeability may cause a transfer from plasma to CSF, giving 

a false increase of the Ig or FLC quotients, they could be corrected by albumin quotient to calculate an 

index (Reiber et al. 2009, Mayringer et al. 2005). When considering FLC, these measures are called kappa 

or lambda indexes (Kaplan et al. 2013, Arneth et al.  2009). Few data were available on the combined or 

sequential use of the indexes and OB detection in the MS work-up. Our aim was to focus on the possible 

use of both parameters, considering performances and costs, to ameliorate the diagnostic approach of 

central nervous system inflammatory disorders. 

Patients. 

Our exploratory cohort included 150 patients (74 females) who underwent CSF study for OB detection. 

Mean age was 51 years (standard deviation or SD ± 19years). Diagnosis was prospectively collected by a 

blinded neurologist and compared to the initial suspicion for which the CSF request was sent for. Of the 

entire cohort 48 (32%) patients were diagnosed with MS according McDonald criteria 2010 (Polman et al. 

2010), 32 (21%) of other neurological inflammatory diseases (ID: 12 inflammatory neuropathies, 3 acute 
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demyelinating encephalomyelitis, 9 systemic autoimmune disorders with CNS involvement, 8 others), 62 

(41%) of not inflammatory neurological diseases (NID: 17 amyotrophic lateral sclerosis, 11 dementia, 12 

non inflammatory neuropathies, 8 tumors, 14 others), and 8 (5%) had no evidence of neurological diseases. 

Patients signed an informed consent form for both diagnostic and research purposes. 

Studies on FLC were approved by the ethical committee of University Hospital of Novara (reference no. 

CE1804). 

Methods. 

The OB detection was achieved by isoelectric focusing and immunofixation (Hydragel 9 CSF Isofocusing; 

Sebia, Bagno a Ripoli, FI, Italy) on an agarose electrophoresis system (Sebia Hydrasys). The gels were 

evaluated for the presence of OB by two independent operators. They were classified according the 

Consensus Report of the Committee of the European Concerted Action for Multiple Sclerosis (Andersson 

et al. 1994). The results were classified with the attribution of one of the five patterns according to Freedman 

(Freedman et al. 2005), as follows: (I) normal CSF; (II) CSF-restricted oligoclonal bands: local synthesis; 

(III) CSF-restricted oligoclonal bands with additional, identical bands in CSF and serum: local synthesis; 

(IV) identical oligoclonal bands in CSF and serum: not local synthesis; (V) monoclonal bands in CSF and 

serum: not local synthesis.  

Serum and CSF albumin concentration was measured by nephelometric assays using N Antiserum to human 

albumin and a BN II System (Siemens Healthcare Diagnostics Products GmbH, Marburg, Germany). Lower 

limit of the reference curve was 0.017 mg/ml and the total coefficient of variability (CV) of 3.6% and 2.6% 

for serum and CSF, respectively. 

Serum and CSF IgG concentrations were measured by nephelometric assays using N Antiserum to human 

immunoglobulins and a BN II System (Siemens Healthcare Diagnostics Products GmbH, Marburg, 

Germany). Lower limit of the reference curve was 0.0034 mg/ml and the total CV of 2.1% for both serum 

and CSF. 

Kappa and lambda FLC (KFLC and LFLC) were measured with the N Latex FLC kappa/lambda Kit and 

BN II System (Siemens Healthcare Diagnostics Products GmbH, Marburg, Germany) based on monoclonal 
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antibodies that recognize hidden epitopes in intact Ig. Lower limit of the reference curve was 0.000035 

mg/ml and 0.000097 mg/ml for KFLC and LFLC. The total CV was 2.9% and 3.4% for serum and CSF 

KFLC, respectively and 3.5% and 3.6% for serum and CSF KFLC, respectively. 

Calibrators and controls were obtained from the manufacturer and consisted of stabilized human sera 

containing polyclonal KFLC, diluted to the appropriate concentrations. All sample were immediately 

processed.  

Indexes were calculated as follows: IgG or Link index: (CSF IgG/serum IgG)/(CSF albumin/serum 

albumin), normal ranges ≤ 0.7; kappa index:(CSF KFLC/serum KFLC)/(CSF albumin/serum albumin), 

normal ranges determined in this study as ≤ 5.0. 

Statistics. 

Sensitivity (%), Specificity (%), Likelihood ratio for positive test, Likelihood ratio for negative test, 

Positive Predictive Value (%), Negative Predictive Value (%), Efficiency (%), Pre test probability 

(prevalence) (%), Pre test odds, Post test odds, Post test probability, and Number Needed to Diagnosis 

(NID) were measured using the Bayesian calculator developed by SIPMEL (Società Italiana di Patologia 

Clinica e Medicina di Laboratorio: http://www.sipmel.it/it/). 

Statistical analyses were performed using STATISTICA. The Mann-Whitney-U or Kruskal-Wallis test was 

used for group comparisons of non-parametric values. Qualitative variables were compared with Chi-

squared test. Spearman’s coefficient was used for correlation analysis. Receiver Operating Characteristic 

(ROC) curve analysis was performed using XLSTAT statistical package. 

Results.  

CSF KFLC were significantly higher in MS versus other patients (p <0.001), and no differences were 

observed in serum KFLC, serum and CSF LFLC, serum and CSF IgG levels (Table 1). These data 

confirmed an increased concentration of KFLC as a hallmark of MS, as previously suggested (Kaplan et al. 

2013). We subsequently compared all the biochemical markers among each group (ID and NID) and MS. 
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CSF KFLC in MS patients were higher than ID (0.058) and NID (p<0.001) patients (Tables 2-3). Regarding 

kappa index, MS patients differed significantly from other diseases (p<0.001 among all comparisons).  

 

Table 1. Serum and CSF biochemical markers in MS (N = 48) versus not-MS (N = 102) patients.  

 MS Not-MS p-value 

Serum KFLC: mean±SD (mg/dl) 1.57±0.76 2.22±3.12 0.172 

Serum LFLC: mean±SD (mg/dl) 1.82±0.85 3.00±5.15 0.138 

CSF KFLC: mean±SD (mg/dl) 0.52±0.57 0.16±0.46 <0.001 

CSF LFLC: mean±SD (mg/dl) 0.17±0.24 0.16±0.53 0.924 

Serum IgG: mean±SD (mg/dl) 1107.46±179.43 1032.83±298.35 0.149 

CSF IgG: mean±SD (mg/dl) 4.94±3.48 6.40±12.72 0.424 

Kappa index: mean±SD 74.08±92.12 6.05±13.15 <0.001 

 

Table 2. Serum and CSF biochemical markers in MS (N = 48) versus ID (N = 32) patients.  

 MS ID p-value 

Serum KFLC: mean±SD (mg/dl) 1.57±0.76 2.30±2.73 0.111 

Serum LFLC: mean±SD (mg/dl) 1.82±0.85 2.91±4.93 0.173 

CSF KFLC: mean±SD (mg/dl) 0.52±0.57 0.25±0.56 0.058 

CSF LFLC: mean±SD (mg/dl) 0.17±0.24 0.29±0.78 0.356 

Serum IgG: mean±SD (mg/dl) 1107.46±179.43 1044.00±347.48 0.326 

CSF IgG: mean±SD (mg/dl) 4.94±3.48 11.05±21.32 0.076 

Kappa index: mean±SD 77.54±93.00 10.03±19.58 <0.001 
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Table 3. Serum and CSF biochemical markers in MS (N = 48) versus NID (N =62) patients. 

 MS NID p-value 

Serum KFLC: mean±SD (mg/dl) 1.57±0.76 1.83±0.92 0.139 

Serum LFLC: mean±SD (mg/dl) 1.82±0.85 2.43±1.53 0.024 

CSF KFLC: mean±SD (mg/dl) 0.52±0.57 0.12±0.43 <0.001 

CSF LFLC: mean±SD (mg/dl) 0.17±0.24 0.12±0.39 0.525 

Serum IgG: mean±SD (mg/dl) 1107.46±179.43 1027.81±276.40 0.109 

CSF IgG: mean±SD (mg/dl) 4.94±3.48 4.42±5.24 0.581 

Kappa index: mean±SD 77.54±93.00 4.57±9.04 <0.001 

 

 

As a second step we performed the identification of a cut-off of 5 for kappa index in the ROC analysis 

(AUC = 0.948) in our cohort. Then we compared kappa index to OB determined by IEF, that resulted 

similarly efficient (Table 4).  

 

Table 4. Test performances of kappa index versus OB by IEF.  

 Kappa index OB 

Sensitivity (%) 100 97.9 

Specificity (%) 86.3 85.3 

Likelihood ratio for positive test 7.3 6.7 

Likelihood ratio for negative test 0 0.02 

Positive Predictive Value (%) 77.4 75.8 



13 

 

Negative Predictive Value (%) 100 98.8 

Efficiency (%) 90.7 89.3 

Pre test probability (prevalence) (%) 32.0 32.0 

Pre test odds 0.5 0.5 

Post test odds 3.4 3.1 

Post test probability 77.4 75.8 

Number Needed to Diagnosis (NID) 1.16 1.20 

 

Finally, we addressed laboratory costs of MS diagnosis. We proposed 4 scenarios: A) exclusively IEF in 

all patients: the estimated cost for 150 patients amounted to 6072 euros. B) only kappa index: cost decreased 

to 2277 euros (-62%). C) both IEF and kappa index contemporarily in all patients: raised costs to 8349 

(+37.5%). D) sequential approach with kappa index as first test, followed by IEF as confirmatory test in 

patients with elevated index: this would lead to an overall cost of 4790 euros (-21.1% compared to A).  

Discussion and conclusions.  

We evidenced that KFLC are easily determined with high performances and low costs. Kappa index could 

therefore become a first-line test in MS work-up. Even though IEF for OB has been considered the gold 

standard, elevated KFLC and kappa index could quantify precisely a certain level of intrathecal synthesis 

(Zeman et al. 2015). When we planned this study, it was not yet defined whether the use of this index should 

be preferred to OB detection or performed in combination with IEF to increase both sensitivity and 

specificity (Senel et al. 2014). Moreover, no analysis on the costs of this procedure was performed. In this 

study, we primarily looked at the great performance of kappa index as a first-line biochemical approach in 

MS diagnosis, not excluding IEF, but introducing a potential sequential approach. We propose to use kappa 

index as a screening test, followed, when abnormal, by OB detection. Nonetheless, from the laboratory 

point of view, kappa index can be evaluated on automated analytical platforms and the assay gives 

quantitative results with relatively low inter- and intra-assay variability. In addition, it does not need trained 
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and independent technicians for performing as compared to OB detection, results are automatically 

generated and easily interpreted. The sequent use of OB detection for confirming positive results is 

supported by the established role of this technique in MS diagnostic algorithm. Then the contemporary 

positivity provided by two different biochemical methods, which are based on completely different 

principles, could definitively reinforce MS diagnosis. Moreover, our financial evaluation was extremely 

encouraging. The sequential use of kappa index and IEF if needed was definitely less expensive. 

Another important implication was the improvement of diagnostic specificity. As pointed out by Bourahoui 

et al., OB can be detected in several inflammatory and infective CNS disorders, such as HIV infection, 

Lyme disease or Sjogern’s syndrome. A high number of bands (10 or more) were more frequently found in 

MS rather than in other ID (Bourahoui et al. 2004). We evidenced that kappa index is significantly higher 

in MS in comparison to ID, thus suggesting a potential role in further discriminating between these 

conditions. We found a wide range for kappa index values in MS, from 5.1 to more than 300: this finding 

could reflect different clinical MS forms or sequential steps in the evolution of the immune response and 

hence the progression of the disease.  

 

 

Kappa index versus Link index. 

This section is a modified version of an article by Crespi et al. 2019 

 

Introduction. 

The gold standard for CSF analysis is IEF to detect CSF specific IgG as OB. Intrathecal synthesis 

determined with OB detection has been compared historically to elevated IgG (or Link) index. This 

biomarker is calculated as ratio of CSF/serum IgG to CSF/serum albumin (Link. 1976). Recently, measures 

of KFLC by nephelometry have been proposed as an alternative method not only to IgG index, but also to 

OB detection by IEF (Bayart et al. 2018). A sequential method in CSF analysis, using an index and not 
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excluding IEF, has been considered reasonable (Schwenkenbecher et al. 2018). Our aims were to confirm 

the role of kappa index in the CSF screening for MS and to compare its performances to that IgG Index and 

OB in a large cohort of Italian patients. 

Patients. 

We consecutively enrolled 385 patients who underwent lumbar puncture in their diagnostic work-up for 

CSF biochemistry and IEF (according to the requesting neurologist), and included those 150 patients 

described in the previous paragraph. Mean age was 48 years (±SD 18 years). Diagnosis was prospectively 

collected by a blind neurologist, and compared with the initial clinical suspicion: 127 patients (33%) were 

diagnosed of MS according to the 2017 McDonald criteria (Thompson et al. 2018); 117 (30%) of other 

neurological ID (inflammatory neuropathies, acute demyelinating encephalomyelitis, systemic 

autoimmune disorders with CNS involvement), 141 (37%) of NID (amyotrophic lateral sclerosis, dementia, 

non-inflammatory neuropathies, tumors). Patients signed an informed consent form for both diagnostic and 

research purposes at the time of the lumbar puncture.  

Methods/Statistics.  

See previous paragraphs. Statistical analyses were performed using VassarStats (http://vassarstats.net/). T 

test for two independent samples was used for group comparison, calculated for either equal and/or unequal 

sample variances. The difference between three or more samples was calculated using one-way ANOVA. 

Qualitative variables were compared with Chi-Squared test. Spearman’s coefficient was used for 

correlation analysis. ROC curve analysis was performed using XLSTAT statistical package. 

Results. 

The 127 MS patients had a median kappa index of 72.9 (± SD 87.9) that resulted significantly higher than 

other 258 patients who had a median value of 12.7 (± 48.9) (p<0.0001) including both ID (23.5 ±70.7; 

p<0.0001) and NID (3.8 ± 8.4; p<0.0001). Kappa index resulted higher, than the cut-off of 5, in 96.1% MS, 

19.4% not-MS, 33.3% ID, and 7.8% NID. IgG index resulted more elevated in MS (0.86 ± 0.5) then other 

patients (0.50 ± 0.23; p<0.0001), and above the cut-off value of 0.7 in 59.1% MS, 15.1% non-MS, 17.9% 
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ID, and 12.8% NID. OB type 2 and 3 were found in 123 (96.8%) MS patients and in 44 (17%) with other 

neurological disorders (35 ID and 9 NID). Data are reported in Table 1. 

 

Table 1: Markers of intrathecal synthesis among patients with multiple sclerosis (MS: N=127), 

inflammatory diseases (ID: N=117) and non-inflammatory diseases (NID: N=141). 

 
MS Not-MS ID NID 

IgG index >0.7: N (%) 75 (59.1%) 39 (15.1%) 21 (17.9%) 18 (12.8%) 

Kappa index >5: N (%) 122 (96.1%) 50 (19.4%) 39 (33.3%) 11 (7.8%) 

OB: N (%) 123 (96.8%) 44 (17%) 35 (29.9%) 9 (6.4%) 

 

 

When dividing not-MS patients into ID and NID: kappa index differed among the three groups (ANOVA: 

p<0.001), whereas IgG index was not able to differentiate ID from NID. We also confirmed a correlation 

between IgG and kappa indexes in all patients (N=385: r=0.75, r2=0.55, p<0.0001), and in each group. 

To compare the kappa and IgG indexes ability to predict intrathecal synthesis, we analysed their correlation 

with OB and with MS diagnosis by ROC analysis. Kappa index showed a better AUC (0.981) than IgG 

index (0.778) to predict OB (Figure 1A). Similar results were in diagnosing MS: AUC for kappa index was 

0.949 versus AUC for IgG index was 0.789 (Figure 1B). In panel A, ROC analysis was performed for OB 

(type 2 and 3 by IEF) versus absence of OB (type 1, 4 and 5). AUC was 0.778 for IgG (open symbols) and 

0.981 for kappa index (closed symbols). In panel B, ROC analysis was performed for MS patients versus 

not-MS patients AUC was 0.789 for IgG (open symbols) and 0.949 for kappa index (closed symbols). 
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Figure 1. ROC analysis for kappa and IgG indexes in predicting OB detection and diagnosing MS. 

 

 

We then looked at the diagnostic parameters of both indexes in predicting OB and in diagnosing MS. First 

in detecting OB, kappa index showed a significantly better sensitivity, likelihood ratio for a positive test, 

positive and negative predictive values and efficacy than IgG index. By contrast, the specificity was similar 

for both indexes. Secondly, kappa index had higher sensitivity, negative predictive value and efficiency in 

diagnosing MS (Table 2). 
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Table 2: Diagnostic performances of IgG and kappa indexes for OB detection by IEF and MS 

diagnosis. The analysis was performed for OB (type 2 and 3 by IEF) versus absence of OB (type 1, 4 and 

5 by IEF); data are reported with their 95 % confidence intervals.  

 OB detection 

 

MS diagnosis 

 

IgG index Kappa index IgG index Kappa index 

Sensitivity (%) 48.0  

(41.2 – 54.9) 

96.5  

(93.0 – 98.3) 

49.6  

(42.5 – 56.7) 

96.1  

(90.8 – 98.5) 

Specificity (%) 93.8  

(90.3 – 96.1) 

89.8  

(85.7 – 92.9) 

88.5  

(84.2 – 92.7)  

77.9  

(72.0 – 83.7) 

Likelihood Ratio  

for a positive test  

7.8  

(4.8 – 12.6) 

9.48  

(6.7 – 13.5) 

4.3  

(3.1 – 7.0) 

4.4 

(3.1 – 5.9) 

Likelihood Ratio  

for a negative test  

0.6 

 (0.5 – 0.6) 

0.04  

(0.02 – 0.08) 

0.6 

(0.5 – 0.7) 

0.05  

(0.02 – 0.11) 

Positive Predictive Value (%) 85.1  

(77.4 – 90.5) 

87.4  

(82.5 – 91.2) 

67.7  

(58.2 – 76.9) 

68.2  

(60.9 – 75.4) 

Negative Predictive Value (%) 71.1  

(66.2 – 75.5) 

97.2 

(94.4 – 98.7) 

78.4  

(73.3 – 82.9) 

97.6  

(94.5 – 98.8) 

Efficiency (%) 74.4  

(70.3 – 78.1) 

92.7  

(89.9 – 94.7) 

75.8  

(70.1 – 80.7) 

83.9  

(80.7 – 87.5) 

Pre test Probability  

(prevalence) (%) 

42.3  

(37.9 – 46.8) 

42.3  

(37.9 – 48.8) 

32.6  

(28.0 – 37.2) 

33.0  

(28.5 – 38.3) 

Pre Test odds 0.7  

(0.6 – 0.9) 

0.7 

 (0.6 – 0.9) 

0.5 

 (0.4 – 0.6) 

0.5  

(0.4 – 0.6) 

Post Test odds 5.7  

(2.9 – 11.1) 

6.9  

(4.1 – 11.9) 

2.1  

(1.2 – 3.4) 

2.1  

(1.5 – 3.7) 

Post test Probability (%) 85.1  

(74.6 – 91.7) 

87.4  

(80.3 – 92.2) 

67.7  

(57.9 – 76.8) 

68.2  

(58.0 - 67.3) 

Number Needed to Diagnose (NND) 2.4  

(3.2 – 2.0.) 

1.2  

(1.3 – 1.1) 

2.6  

(3.75 – 2.1) 

1.45  

(1.5– 1.2) 
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Discussion. 

This study extends our previous analysis on a larger cohort of patients and compares the diagnostic 

performances of kappa and IgG indexes in detecting intrathecal synthesis and diagnosing MS. It is widely 

accepted that intrathecal synthesis of IgG is mirrored by the detection of OB bands in CSF analysed by IEF 

followed by immunoblotting. These qualitative findings are generally associated with an IgG index above 

0.7 and an elevated kappa index (above 5 with our laboratory setting). Since IEF for OB detection is the 

gold standard approach in MS diagnosis, we compared the “ability” of IgG and kappa indexes both in 

detecting OB and diagnosing MS. Despite the two markers correlated both in MS and non-MS patients, 

they showed different diagnostic performances according to ROC analyses. In fact, kappa index presented 

better AUC not only in predicting OB but also in diagnosing MS. Consequently, we evaluated the 

performances of a sequential test to detect intrathecal synthesis in MS using a quantitative marker followed 

by IEF when elevated. Kappa index showed higher sensitivities in predicting OB and diagnosing MS. 

Kappa index identified the 96.1% of the MS patients whereas IgG index only the 59.1%. Specificity was 

comparable for the two indexes. We concluded that kappa index resulted most efficient than IgG (Link) 

index as a quantitative test for intrathecal synthesis. 

Conclusions. 

These results confirm our previous proposal to use kappa index as a highly sensitive and easy-detectable 

first-line marker in CSF analysis for intrathecal synthesis. This first approach could be followed by IEF if 

elevated. IgG index showed lower diagnostic performances to be chosen for this role. The “sequential 

testing” was an optimal procedure with accurate performance in MS diagnosis. Of note we have been using 

this sequential testing in our clinical practice since then and according to other recent evidences (Emersic 

et al. 2019).  
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Different approaches to calculate kappa free light chain intrathecal fraction. 

This section is derived from a modified version of two articles by Crespi et al. 2019 and Vecchio et al. 2020 

 

Introduction.  

Some approaches have been studied to calculate the intrathecal fraction of KFLC including different cut-

offs of the index, Reiber's diagram, Presslauer's exponential curve, and Senel's linear curve. The calculation 

of IgG and kappa indexes is based on an equivalent linear relationship between albumin and IgG or KFLC. 

Consequently, this method is irrespective of the difference in size of the molecules whereas albumin is 69 

KDa, IgG 155 KDa, and KFLC 22 KDa. On the contrary, the Reiber’s formula employs a hyperbolic 

relationship to correct for the size (Reiber et al. 2019). In fact, among the different methods to calculate an 

intrathecal KFLC production, Reiber´s KFLC diagram was recently addressed as the one showing the 

greater sensitivity in previous studies (Schwenkenbecher et al. 2019). According to these observations, we 

repeated our analyses and compared the performances of our kappa index cut-off to other methods. 

Patients. 

See previous paragraphs. This analysis included the above enrolled 385 patients. 

Methods.  

Intrathecally synthesized KFLC can also be calculated by a non-linear function called “KFLCLim” by 

Presslauer et al. (2008). This measure relates each KFLC ratio (CSF/serum KFLC) to its corresponding 

albumin quotient (QAlb) -dependent upper normal limit by the following formula: KFLCLim= 0.9358 x 

QAlb0.6687 = (3.27 × (QAlb + 33) − 8.2) × 103. 

Changes of KFLC concentration in CSF, called “KFLCLoc”, ware calculated as the difference between 

KFLCratio (CSF KFLC/serum KFLC) and KFLCLim, finally corrected for absolute KFLC serum 

concentration by the following formula: KFLCLoc = (KFLCratio – KFLCLim) x serum KFLC. Finally, the 
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relative KFLC intrathecal fraction “KFLCIF” or Presslauer exponential curve was displayed as a percentage 

according to the following formula: KFLCIF = (KFLCLov / CSF KFLC) x 100. 

Finally, Reiber’s diagram is defined by the formula: KFLCIF = KFLCLoc/ CSF KFLC × 100 or (1 − 

KFLCLim/KFLCratio) × 100 (Schwenkenbecher et al. 2019). 

Statistics.  

See previous paragraphs. 

Results.   

KFLCLoc did not exhibit a better ROC curve neither for OB (AUC for KFLCLoc versus kappa index: 0.978 

versus 0.981) nor MS diagnosis (AUC for KFLCLoc versus kappa index: 0.921 versus 0.949). No significant 

differences were also observed according to the other performance parameters (Table 1). 

 

Table 1: Diagnostic performances of kappa index and KFLCLoc for OB detection by IEF and MS 

diagnosis.  

The analysis was performed for OB (type 2 and 3 by IEF) versus absence of OB (type 1, 4 and 5 by IEF); 

data are reported with their 95 % confidence intervals. 

 
OB detection 

 

MS diagnosis 

  

Kappa index KFLCLoc Kappa index KFLCLoc 

Sensitivity (%) 96.5  

(93.0 – 98.3) 

95.8  

(91.8 – 97.8) 

96.1  

(90.8 – 98.5) 

95.8  

(90.5 – 98.2) 

Specificity (%) 89.8  

(85.7 – 92.9) 

93.3  

(89.4 – 95.8) 

77.9  

(72.0 – 83.7) 

80.7  

(75.5 – 85.0) 

Likelihood Ratio  

for a positive test  

9.48  

(6.7 – 13.5) 

14.2  

(8.8 – 22.9) 

4.4 

(3.1 – 5.9) 

5.0  

(3.9 – 6.4) 

Likelihood Ratio 

for a negative test  

0.04  

(0.02 – 0.08) 

0.04  

(0.02 – 0.09) 

0.05  

(0.02 – 0.11) 

0.05  

(0.02 – 0.12) 
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Positive Predictive Value (%) 87.4  

(82.5 – 91.2) 

91.9  

(87.2 – 94.9) 

68.2  

(60.9 – 75.4) 

69.5  

(62.1 – 76.0) 

Negative Predictive Value (%) 97.2  

(94.4 – 98.7) 

96.5  

(93.3 – 98.2) 

97.6  

(94.5 – 98.8) 

97.6  

(94.6 -98.9) 

Efficiency (%) 92.7  

(89.9 – 94.7) 

94.4  

(91.8 – 96.2) 

83.9  

(80.7 – 87.5) 

85.4  

(81.5 – 88.6) 

Pre test Probability (prevalence) (%) 42.3  

(37.9 – 48.8) 

44.3  

(39.6 – 49.0) 

33.0  

(28.5 – 38.3) 

31.5  

(27.0 – 36.3) 

Pre Test odds 0.7  

(0.6 – 0.9) 

0.8 

(0.7 – 0.96) 

0.5 

 (0.4 – 0.6) 

0.5 

 (0.4 – 0.6) 

Post Test odds 6.9 

 (4.1 – 11.9) 

11.3  

(5.8 – 22.0.) 

2.1  

(1.5 – 3.7) 

2.1  

(1.5 – 3.6) 

Post test Probability (%) 87.4  

(80.3 – 92.2) 

91.9  

(85.3 – 95.7) 

68.2  

(58.0 - 67.3) 

69.5  

(58.8 – 78.5) 

Number Needed to Diagnose (NND) 1.2  

(1.3 – 1.1) 

1.1  

(1.2 – 1.1) 

1.45 

(1.5– 1.2) 

1.47  

(1.5 – 1.2) 

 

In conclusion, we have not been able to demonstrate that the correction of kappa index according to other 

methods could ameliorate the diagnostic power instead of using our cut-off of 5.  

Comparisons to Reiber’s diagram are mentioned in the next paragraph.  
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Kappa index confirmed: better to include the blood-CSF barrier permeability. 

This section is a modified version of an article by Vecchio et al. 2020 

 

Introduction.  

Recently, the great sensitivity of intrathecal KFLC fraction towards MS diagnosis has been confirmed even 

using different approaches (Schwenkenbecher et al. 2019). Other parameters with diagnostic role toward 

MS were: OB detection, IgG (or Link) index and LFLC index. All these markers are corrected for blood-

CSF barrier permeability: by comparison to serum for OB and by albumin ratio (serum/CSF albumin) for 

indexes (Presslauer et al. 2016).  In this study we also considered measures for the excess of kappa and 

lambda FLC only in the CSF, called CSF ratios, that are not albumin and serum-corrected. 

Patients.  

We finally enrolled 406 consecutive patients who underwent a spinal tap during their diagnostic work-up 

for a neurological disorder between January 2015 and December 2019. We included in the present analysis 

373 patients: 133 (88 females) MS according to McDonald criteria 2017 (Thompson et al. 2018), 93 (50 

females) with other neurological ID of the peripheral/CNS, and 147 (72 females) patients with NID. MS 

patients at diagnosis were classified as: 118 RR, 12 SP and 3 PP. ID included: RIS-CIS (N=18 patients) 

according to McDonald criteria 2017 (Thompson et al. 2018), isolated myelitis (N=8 patients), acute 

demyelinating encephalomyelitis (N=3), neuromyelitis optica spectrum disorders (N=5), systemic 

autoimmune disorders with CNS involvement (N=14), autoimmune encephalitis (N=8), inflammatory 

neuropathies (N=33 that were classified as acute/chronic inflammatory demyelinating polyneuropathies in 

13 cases, antibody-mediated or in systemic autoimmune disorders in 20), acute cerebellitis (N=3), Behcet 

syndrome (N=1). NID were: amyotrophic lateral sclerosis, dementia, non-inflammatory neuropathies, 

tumors. We excluded: 5 cerebral lymphomas, 16 CNS infectious diseases, 12 with no evidence of 

neurological disease at the end of the diagnostic work-up. Mean age of the included subjects was: 39.6 

years (± SD 12.9) in MS, 51.1 (±19.7) in ID and 57.2 (±16.7) in NID.  
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Methods.  

We calculated two groups of markers: a) indexes (corrected for blood-CSF barrier permeability) that were 

IgG, KFLC (both employing our cut-off of 5.0 and Reiber´s KFLC diagram), and LFLC indexes (Reiber et 

al. 2018). b) CSF ratios (not albumin and serum-corrected): CSF KFLC/LFLC, CSF KFLC/IgG, CSF 

LFLC/IgG. Thirdly, OB were detected according to standard methods (previously described).  

Statistical analysis.  

Continuous variables were expressed with mean and SD. Their distributions were checked with Shapiro-

Wilk test and resulted not normally distributed. To compare data of multiple groups (MS, ID and NID 

patients), a non-parametric ANOVA (Kruskal-Wallis analysis) was applied with Bonferroni correction for 

multiple comparisons (p-values below 0.005 were considered to be significant). Sensitivity was calculated 

as “true-positive/(true-positive+false-negative)”, specificity as “true-negative/(true-negative+false-

positive)”. Area under curve (AUC), sensitivity and specificity were performed on ROC using a VassarStat 

software and with a Bayesian calculator made available by The Italian Society of Laboratory Medicine 

(SIPMEL). 

Results.  

We included 373 patients for KFLC and OB evaluation, 223 of them were tested also for LFLC. 

 

Table 1.  Absolute concentrations of kappa (K) and lambda (L) free light chains (FLC), CSF ratios 

and indexes were determined in multiple sclerosis (MS), inflammatory neurological diseases other 

than MS (ID), and non-ID (NID).  

Legend: Values are expressed in mean ± SD.  “*” means significantly different in MS from ID and NID 

(p<0.005 was considered significant according to Bonferroni correction for multiple comparisons). “#” 

means significantly different among three groups (MS versus ID versus NID, p<0.05). OB yes/no: “yes” 

was intended for types II and III  
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MS  

(n =133) 

ID  

(n= 93) 

NID  

(n = 147) 

Sensitivity 

(%) 

Specificity 

(%) 

CSF markers (not albumin or serum-corrected): mean ± SD 

KFLC (mg/dl) 0.48±0.56*# 0.20±0.53 0.03 

±0.13 

78.9 97.5 

LFLC (mg/dl) 0.13±0.16 0.05±056 0.06±0.22 56.3 81.8 

IgG (mg/dl) 4.90±3.24 6.64±12.71 3.91±6.28 60.9 62.1 

KFLC/LFLC ratio 16.24±40.47 8.31±33.37 0.98±0.53 77.8 77.5 

KFLC/IgG ratio 85.44±66.67*# 33.36±57.08 9.20±7.49 86.5 87.9 

LFLC/IgG ratio 2.81±2.86* 1.17±0.99 1.17±0.83 51.3 88.1 

Markers corrected for blood-CSF barrier permeability 

IgG index: mean ± SD 0.85±0.46* 0.56±0.22 0.50±0.13 70.5 68.8 

KFLC index: mean ± SD 70.84±86.70*# 26.38±77.25 3.08±6.21 93.2 85.4 

LFLC index: mean ± SD 17.07±23.00* 3.93±6.88 3.76±8.43 80.3 80.3 

Reiber´s KFLC diagram: 

mean ± SD 

88.2±18.2*# 34.5±22.10 16.4±22.6 98.1 53.2 

OB: yes/no 127/6 28/65 7/140 95.5 85.2 
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KFLC differentiated MS patients from those with ID and NID (p<0.005). In fact, KFLC index and CSF 

KFLC/IgG ratio were significantly higher in MS than in other neurological conditions. Similarly, MS 

patients presented increased absolute concentrations of KFLC (mean value was 0.48 mg/dl) compared to 

both ID (0.20 mg/dl) and NID patients (0.03). The KFLC, despite considering different interpretation 

approaches, permitted also to distinguish among the three groups (MS versus ID versus NID). Conversely, 

LFLC were not relevant in MS diagnosis (223 patients of the 373 included were tested for LFLC). LFLC 

index and CSF LFLC/IgG ratio resulted greater in MS then in other neurological conditions, but did not 

differ significantly among the three groups. 

KFLC index emerged as the most sensitive marker corrected for blood-CSF barrier permeability in 

diagnosing MS. Its sensitivity of 93% overtook that of IgG index (70.5%), and was only slightly lower than 

of OB (95.5%). Accordingly, we confirmed the greater accuracy of OB in MS diagnosis, according to 

McDonald criteria 2017 (Thompson et al. 2018). Of note, in our study the specificity of OB was similar to 

that of KFLC index (85%). If comparing different approaches to calculate KFLC intrathecal fraction in our 

cohort, sensitivity towards MS diagnosis was 98% for Reiber´s KFLC diagram (Reiber et al. 2019), in face 

of 53% specificity. Thus, concerning MS diagnosis, KFCL index performances resulted more similar to 

that of OB in our population. Among CSF markers, only KFLC/IgG ratio resulted a sensitive marker of 

intrathecal IgG synthesis (sensitivity 86.5%).  

Conclusions.  

Our study confirmed the role of KFLC in the diagnostic work-up for MS. Both KFLC index (corrected for 

blood-CSF barrier permeability) and KFLC/IgG ratio (evaluating the overproduction of KFLC in CSF only) 

showed a high sensitivity and decent specificity towards MS diagnosis. Overall, OB remained the gold 

standard for CSF analysis in MS.  

 

 

 



27 

 

Future perspectives: any influence by demographic features  

Some demographic features have been associated to changes in the blood-CSF barrier permeability, that 

seems to increase with age and being higher in men (Castellazzi et al. 2020; Parrado-Fernandez et al. 2018). 

Since this measure was included in the formula of kappa index, we evaluated if gender and age could affect 

our data.  

 

Regarding gender, we first looked if there was any association to the KFLC intrathecal fraction. Secondly, 

we checked if the albumin quotient, quantifying the blood-CSF barrier permeability, differed between 

males and females. We included 373 patients (as in previous paragraphs): 133 (88 females) MS, 93 (50 

females) with other neurological ID of the peripheral/CNS, and 147 (72 females) patients with NID. 

Continuous variables (reported as means ±SD) were analysed with a one-way ANOVA, and categorical 

variables (reported as count and percentage) with Fisher’s exact test (for data not normally distributed 

according to Shapiro-Wilk test).  

Mean values of KFLC according to gender are presented in Table 2.  
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Table 2.  Kappa (K) free light chain (FLC) intrathecal fraction and albumin quotient according to 

gender.  

Legend: Values are expressed in mean ± SD.   

 
Males 

(n =166) 

Females 

(n= 207) 

p-value 

 

CSF KFLC (mg/dl) 0.20±0.44 0.27±0.50 0.21 

KFLC quotient 0.16±0.39 0.20±0.39 0.36 

Kappa index 24.89±64.45 39.69±74.60 0.05 

Albumin quotient 0.014±0.08 0.006±0.008 0.15 

 

 

We did not find any significant difference between males and females. Although, when considering those 

patients with kappa index above 5 (intrathecal synthesis), 108/169 (64%) were females (p=0.003). This 

result is probably biased by the higher incidence of MS in females (65% of MS cases were women). 

Moreover, there was no gender difference in the blood-CSF barrier permeability in the overall population 

(Table 2). Subsequently, we identified those patients with dysfunctions in the blood-CSF barrier. To 

categorize these patients, we considered normal values of the albumin quotient among ages as follows: 

 < 6.5 for 15–40 years, < 8.0 for 41–60 years and < 9.0 for over 60 years (Castellazzi et al. 2020). One 

hundred-one (29%) patients presented blood-CSF barrier’s dysfunction. About 39% (64/166) male patients 

had an altered blood-CSF barrier compared to 18% (37/207) females (Chi square: p<0.0001).  

 

Concerning age-dependant changes in CSF proteins (Parrado-Fernandez et al. 2018), we explored 

differences in the KFLC intrathecal fraction and in the albumin quotient in 367 patients (Table 3). Those 
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cases below 15 years old were excluded, and others were divided into three subgroups aged: 15–40, 41–

60 and above 60 years old (Castellazzi et al. 2020).  

 

Table 3.  Kappa (K) free light chain (FLC) intrathecal fraction and albumin quotient according to 

age.  

Legend: Values are expressed in mean ± SD.   

 
15-40 years 

(n =166) 

41-60 years 

(n= 207) 

>60 years 

(n= 

p-value 

 

CSF KFLC (mg/dl) 0.40±0.64 0.23±0.43 0.08±0.19 <0.001 

KFLC quotient 0.32±0.53 0.17±0.33 0.05±0.14 <0.001 

Kappa index 56.52±84.93 33.75±66.67 5.59±12.95 <0.001 

Albumin quotient 0.006±0.055 0.007±0.009 0.018±0.096 0.16 

 

 

KFLC intrathecal fraction resulted higher in younger patients, and regardless albumin correction. Yet, this 

data probably reflects the higher incidence of MS in these subgroups (mostly patients aged 15-40 years 

old).  Looking at age-related changes, the albumin quotient was more elevated in elderly, despite our 

analysis did not result significant among age subgroups.  

 

In conclusion, we confirmed that dysfunctions in the blood-CSF barrier are more frequent in men, and 

excluded gender-related differences in the KFLC intrathecal fraction. Data on age-related changes in CSF 

proteins need further discussion.  
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Chapter 2: kappa free light chains in multiple sclerosis prognosis. 

 

Radiological and clinical isolated syndrome.  

This section is a modified version of an article by Vecchio et al. 2020 

 
Introduction.  

Kappa index has been described as a reliable marker of intrathecal IgG synthesis in MS being quantitative 

biomarker that could be easily measure to select which cases should have CSF IEF. The presence of OB 

during the early MS phases have been discussed also as a negative prognostic indicator for disease outcome 

(Avasala et al. 2001. Amato et al. 2001), and robust data have been published on the role of OB in predicting 

CIS conversion to MS (Kuhle et a. 2015).  

We aimed to evaluate whether the markers of intrathecal synthesis in MS that consider KFLC could have 

prognostic value in radiologically and clinically isolated syndromes (RIS-CIS) to identify which patients 

were at higher risk of conversion to MS.  

Patients.  

See previous paragraphs. This analysis included the 18 RIS-CIS patients according to McDonald criteria 

2017 (Thompson et al. 2018) from the above-mentioned cohort of 373. We included 3 patients with RIS 

and 15 with CIS. Mean age of the 18 subjects (11 females) was: 36.3 years (± SD 8.5). CIS presentations 

included: unilateral optic neuritis (6 patients), focal supratentorial syndrome (4), and partial myelopathy 

(5). Brain and spinal magnetic resonance (performed at the time of diagnostic work-up) did not fulfilled 

criteria for dissemination in space in 12 cases, and for dissemination in time in the remaining 6.  
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Methods.  

See previous paragraphs. We included: a) IgG, KFLC and LFLC indexes (corrected for blood-CSF barrier 

permeability) b) CSF ratios (not albumin and serum-corrected): CSF KFLC/LFLC, CSF KFLC/IgG, CSF 

LFLC/IgG. c) OB were detected by isoelectrofocusing and immunoblotting.  

Statistical analysis.  

See previous paragraphs. Differences between patients with RIS-CIS, that converted to MS, and those who 

did not covert were explored by Mann-Whitney test. The prognostic value of KFLC was determined by 

comparing converters versus non-converters by binary logistic regression analyses. P-values below 0.05 

were considered to be significant. 

Results.  

Six (33%) patients converted to MS during the follow up (that lasted at least one year), developing new 

lesions over time. Mean follow up of this subgroup of 18 subjects was 3.6 years (± SD 3.6). All the subjects 

that converted to MS presented OB and significantly higher KFLC then those who remained RIS-CIS 

(Figure 1). Mean values were: CSF KFLC/IgG ratio 71.5 (± SD 45.9) in RIS-CIS converted to MS versus 

26.0 (±28.8) in non-converted (p=0.003); KFLC index 38.2 (±63.5) versus 5.9 (±10.8) (p=0.03). No 

difference in LFLC was found between RIS-CIS patients with and without conversion to MS. CSF 

KFLC/IgG ratio resulted more informative in detecting whose patients were at risk of convert to MS. In 

fact, RIS-CIS patients with elevated CSF KFLC/IgG ratio had a higher risk to convert to MS (hazard ratio, 

HR=1.05; 95% CI=1.01–1,10; p=0.02). Conversely, regression was not significant for KFLC index 

(HR=1.07; 95% CI=0.99–1,16; p=0.09). 

Gender and age at onset did not differ significantly among RIS-CIS patients who converted or not to 

MS.  Those patients who presented with optic neuritis converted less to MS then other types of onset (RIS, 

focal supratentorial syndrome, or partial myelopathy) (p=0.07).  
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Figure 1: KFLC in patients with radiological or clinically isolated syndrome (RIS-CIS) according 

to conversion to multiple sclerosis (MS) after a minimum follow up of one year.  

Legend: Mean values were: CSF KFLC/IgG ratio 71.5 (± SD 45.9) in RIS-CIS converted to MS versus 

26.0 (±28.8) in non-converted (p=0.003); kappa index 38.2 (± 63.5) versus 5.9 (±10.8) (p=0.03).  

 

 

Discussion. 

In this study we included a small group of RIS-CIS patients and evaluated conversion to MS in the short 

term. KFLC through different interpretation approaches resulted higher in those subjects who converted to 

MS during the follow up, being CSF KFLC/IgG ratio more significant than kappa index. A prognostic value 

for KFLC have been discussed in few recent studies (Rinker et al. 2006, Voortman et al. 2016). Villart et 

al. associated high CSF KFLC absolute concentrations (categorized versus less than 0.53 mg/l) to a greater 

probability of conversion to MS in 78 CIS patients (Villar et al. 2012). A similar prognostic role was 

confirmed for KFLC index by Makshakov et al. (Makshakov et al. 2015). There is no prognostic data on 

the excess of KFLC in the CSF (using the ratio that includes CSF IgG as we did). Moreover, in our study, 

the CSF KFLC/IgG ratio better stratified the risk of conversion to MS if compared to KFLC index. LFLC 

did not differ among the groups, as previously described (Voortman et al. 2016).  Early conversion to MS 

was less frequent with optic neuritis onset, whereas other clinical/paraclinical parameters failed to identify 
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converters in our cohort (possibly because of the small sample size). Senel et at. enrolled 77 CIS patients 

according to Mc Donald 2010 criteria (Polman at al. 2011), of whom 38 converted to MS. They showed 

that KFLC are predictors for conversion to MS (almost as sensitive as OB) (Senel et al. 2014). In the present 

study, the application of 2017 McDonald criteria reduced the number of cases that could be classify as RIS-

CIS, and definitely, a prolonged follow up with long-term outcomes could improve the prognostic role of 

KFLC.  

Conclusions.  

We suggested that CSF KFLC/IgG might be employed to find whose RIS-CIS patients will convert to 

MS. Of note, not only this marker could be used to search for intrathecal IgG synthesis in suspect MS if 

serum is not available, but also supported the hypothesis that MS patients have an “excess” of KFLC 

production limited to the CSF.  

 

 

Early multiple sclerosis prognosis.  

This section is a modified version of an article by Vecchio et al. 2019 

 
Introduction.  

Although OB have been related to CIS conversion to MS (Dobson et al. 2013), a role in predicting 

progression is still debated (Becker et al. 2015) especially if unrelated to clinical and radiological data 

(Moroso et al. 2015). Several authors considered not only the presence, but also the number of OB 

(Avasarala et al. 2001) as a marker for MS prognosis. Moreover, not only the presence of IgG but also of 

IgM OB at the time of diagnosis has been related to a worse outcome (Mandrioli et al. 2008).  However, 

OB remain a mainly qualitative measure of intrathecal synthesis whose result could be also influenced by 

operator interpretation.  Despite OB were associated to poor disease prognosis, little is known on FLC in 

predicting MS early progression (Rathbone et al, 2018) and could probably not be related to lesion load 
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(Voortman et al. 2014). Our aim was to evaluate the prognostic value of KFLC in a cohort of Italian MS 

patients who underwent lumbar puncture in their diagnostic MS work-up. 

Patients.  

We recruited 100 patients (64 females) who underwent lumbar puncture in their diagnostic MS work-up 

including who: 1) had a CSF study at the time of their MS work-up including OB and FLC measures. 2) 

had a diagnosis of CIS or MS according to McDonald 2017. 3) had a minimum follow up of 1 year. Control 

population included 97 NID excluding lympho-proliferative disorders. 

Demographic and clinical variables at diagnosis were recorded: gender, age at onset, clinical course, early 

MS treatments (within 1 year), the presence of gadolinium-enhancing (Gd+) lesions. Brain MRI was 

performed on 1.5 T with single dose of gadolinium (Gd) within 3 months from the LP.  

Methods.  

See previous paragraphs.  MS patients were followed up over time to detect their disability according to 

the expanded disability status score (EDSS) (Kurtzke et al). This score has been corrected by time-measure 

using the MS severity score (MSSS) (Roxburgh et al).  

Statistics.  

Data were stored and analysed in SPSS 22.0. Continuous data were presented in mean and standard 

deviation, while categorical data was presented in median and ranges. Comparisons between groups were 

made using the Mann–Whitney test for continuous variables. Correlations were performed with Spearman's 

rank correlation coefficient, and linear regression for significant predictors in the univariate model. P value 

0.05 was considered statistically significant. 

Results.  

Baseline features are summarized in Table 1.  
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Table 1.  General features of 100 patients.  

 N (%) Mean (SD) / Median (range) 

Gender: female 64 (64%) - 

Age at onset (years) - 34.4 (10.7) 

Initial MS course: 

radiological isolated syndrome 

clinical isolated syndrome 

relapsing-remitting 

progressive 

 

2 (2%) 

9 (9%) 

84 (84%) 

5 (5%) 

 

- 

CSF OB 92 (92%) - 

Number of CSF bands  13 (0-42) 

CSF IgG  - 4.7 (3.4) 

Kappa index* - 68.2 (84.4)  

Gadolinium-enhancing lesions at baseline (N=99) 32 (32%)  

Disease modifying treatments within 1 year 50 (50%)  

Time to last follow up (years) - 3.9 (5.0) 

EDSS at last follow up - 4 (0-7) 

MSSS at last follow up - 2.87 (0.05-9.68) 

 

*Of note we considered a cut-off value of 5 ± 0.8 for Kappa index that resulted elevated in 92 cases.  
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Median age at onset was 34.4 years (SD ±10.7). MS course at diagnosis was: 2 RIS, 9 CIS, 84 RR MS, and 

5 progressive MS.  Median time from onset to last follow up was 3.9 years (±5.0).  

Overall, 92 patient had intrathecal synthesis, 5 had no or indistinct bands, and 3 had similar bands both in 

serum and CSF; median number of CSF bands was 13 (range 0-42). Mean kappa index 68.2 (SD± 84.4) 

and CSF IgG 4.7 mg/dl (3.4). Half of our cohort started a DMT within one year after diagnosis (defined as 

early treatment), at last follow up median EDSS was 4 (range: 0-7) and MSSS 2.87 (0.05-9.68). Kappa 

index resulted as significant predictor for disability over time according to MSSS since patients with higher 

CSF KFLC presented a higher risk of poor outcomes in the short term (HR 0.22, 95% IC 0.002-0.011, 

p=0.007). We also confirmed the prognostic role of age at onset for MS disability, but not for other 

clinical/paraclinical factors at diagnosis. According to a univariate model, patients with a lower age at onset 

reached a lower MSSS at their last follow up (rho 0.55, p<0.001). This was also the case of patients with 

an initial diagnosis of RIS/CIS (median MSSS 1.89, range 0.35-5.87) versus MS (3.34, 0.50-9.68) (rho 

0.20, p=0.044). Among CSF markers, lower KFLC index (rho 0.19, p=0.047) and absence of OB (rho 0.36, 

p<0.001) correlated to a better early-outcome. MSSS did not relate to: CSF IgG, number of CSF bands, 

Gd+ lesions and early MS treatment. Consequently, we performed a multivariate analysis using MSSS as 

independent factor and variables that were significant in the univariate model (i.e. age at onset, initial MS 

diagnosis and kappa index) as predictors. Kappa index and age at onset resulted the strongest predictors for 

MSSS in the first years of disease course (df 3, p<0.0001). According to our model, MSSS increased of 

0.06 for each point of kappa index (p=0.007).  Despite PR MS tended to have higher MSSS than RIS/CIS 

and RR, initial MS diagnosis was not significant, possibly due to the small sample size (Table 2). 
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Table 2.  Prognostic factors at MS diagnosis for early disability according to MSSS at last follow up 

(N=100). 

 Multivariate analysis 

Beta 95% CI P value 

Age at onset  0.11 0.07-0.15 <0.0001 

Initial MS course: 

radiological/clinical isolated syndrome 

relapsing-remitting 

progressive  

 

reference 

0.77 

2.15 

 

 

-0.56-2.10 

0.18-4.33 

 

 

0.25 

0.03 

Kappa index 0.006 0.002-0.011 0.007 

 

We then evaluated how KFLC varied according to several patients’ features. Kappa index differed among 

initial MS diagnosis resulting lower in RIS/CIS (N=11: median kappa index 2.9, 25th-75th percentiles 2.1-

45.5) versus MS (N=89: 39.8, 18.1-105.5) (Mann-Whitney, p=0.003), although it was not able to identify 

progressive MS (median kappa index 16.1, 25th-75th 14.5-96.5 versus 36.6, 17.3-74.8 in RR). Patients who 

did not start early MS treatments (N=50/100) had lower Kappa index (29.5, 12.6-65.7) than those who 

commenced DMTs within one year (41.0, 24.3-107.3) (p=0.046). No significant association was found for 

kappa index and gender (p=0.5), age at onset (p=0.7), Gd+ lesions (N=32/99: p=0.7).  

Discussion.  

Our data suggest a prognostic role of kappa index for developing early disability in MS: this quantitative 

marker of intrathecal synthesis showed a direct correlation with MSSS and could be effective in stratifying 

the risk among those patients who had classically defined OB. In fact, we also confirmed the correlation of 

disability and OB that remains an established but qualitative and frequent marker to intrathecal synthesis. 

Notably, the number of bands or CSF IgG did not relate to MSSS in our cohort. We decided to focus on 
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kappa index since this quantitative measure could be more informative then a categorical binary variable 

and have a great variability among patients with OB.  Thus, we suggest that KFLC could be used both to 

confirm MS diagnosis and to enrich the prognostic evaluation at diagnosis. 

The first potential strength of our results is the use of a biomarker that could be routinely available in the 

clinical practice. In fact, LP regained a role in MS work-up according to 2017 McDonald criteria 

(Thompson et al. 2018), and CSF is a potential source of biomarkers at diagnosis. IgG OB have been in 

fact largely evaluated in relation to CIS/MS prognosis with still unclear conclusions. Moreover, OB are 

present in about 95% of MS patients being poorly sensible to differentiate patients for disease course at 

diagnosis. To overcome this limit, Avasarala et al. associated no or low number of OB to a better prognosis 

in 44 patients according to their EDSS at minimum 10 years (Avasala et al. 2001). We did not confirm the 

association between the number of bands and disability in the short term. Then, some authors focused on 

IgG index (Izquierdo et al. 2002) suggesting a correlation to a measure of disability over time and related 

the progression index (EDSS at last examination divided by the evolution time) to a very high Link index. 

Similarly, we are proposing that the use of this easy-detectable quantitative marker could overcome the 

limit of OB execution and interpretation. Kappa index has been proposed as a prognostic marker because 

of a possible relation between a benign outcome and no CSF humoral immune response. Kappa index 

displayed a higher variability in our cohort, and its value directly correlated to MSSS at minimum one year. 

Similar results had been proposed by Rudick at al. in 36 patients: they showed that CSF KFLC were related 

to disability progression according to EDSS in 36 months (Rudick et al. 1995). Another group confirmed 

in 57 MS patients that higher CSF KFLC predicted the need of ambulatory aids and MSSS at 10 years 

(Rinker et al. 200 ). Results on EDSS progression were not confirmed by Presslauer at al., although this 

study is not comparable to our since only moderately and very high values of kappa index were included 

(and categorized using the cut-off of 100) (Presslauer at al. 2014). We analysed the kappa index as a 

continuous variable including all the results of our MS population.  

Looking at short-term outcome, we decided to evaluate early MS treatment as another paraclinical measure 

of severity at diagnosis. In fact, patients who started early DMTs according to clinical practice, and not 

influenced by CSF analysis, showed higher kappa index then those who remained untreated over the first 
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year after MS diagnosis. Early treatment could be considered a surrogate marker to identify those patients 

who had worse prognostic factors at onset according to clinicians (Comi et al. 2017). Since KFLC could 

differ among MS patients with OB, and intrathecal synthesis is still unclearly related to disability (Frau et 

al. 2017) we could speculate that kappa index represents a more sensible marker of humoral immune 

response that may help in treatment decisions at diagnosis.  

In our study we also confirmed the prognostic role of age at onset for MS disability in the short term, but 

not for other clinical/paraclinical factors at diagnosis. This “age-dependent” disability has already been 

established (Ramachandran et al. 2014), and allows us to hypothesize that the selected population could be 

an adequate MS sample.  

Our study is limited by the short term follow up. We calculated MSSS as a time-related disability measure 

to overcome the limits of reaching EDSS milestones in few years. MSSS has been established as an 

appropriate method for comparing disease progression using a single assessment (Roxburgh  et al. 2016). 

Secondly, we enrolled all the patients presenting to our MS Center, mostly RR cases.  

Conclusions.  

We suggest a prognostic value of intrathecal synthesis using kappa index in terms of disability over time. 

This quantitative marker is not a substitute for OB in MS diagnosis, but could help also in differentiating 

patients with intrathecal synthesis according the risk of severe outcomes. 
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Future perspectives: any role to predict treatment response and long-term 

prognosis.  

No data have been published on KFLC and MS long-term outcome, and two aspects could be proposed as 

future perspectives.  

First, MS treatments could affect B-cells as well as KFLC production. Could intrathecal synthesis predict 

the response to specific DMT or be used as marker of responses at least with repeated measure in serum? 

Few is known also about OB: various immunomodulators and immunosuppressors have not been found to 

modify them, whereas natalizumab (an highly effective DMT) reduced OB to undetectable levels (von 

Glehn et al. 2012). Besides, a single study evaluated the effect of steroids in serum, non in CSF, KFLC. 

They showed a continuous decrease after each administration of methylprednisolone. In contrast, high-dose 

methylprednisolone did not influence immunoglobulin amount or OB (Kohen et al. 2020). No data are 

available on other immune therapies and KFLC concentrations over time.  

Secondly, long-term disability has not been discussed yet in relation to KFLC. A unique paper suggested 

KFLC ratio as an independent predictor of second relapse and disability worsening at 79 months in 28 MS 

patients (Salavisa et al. 2020). We could plan to include other measures of long-term MS outcome in our 

analysis, and disability could be check over time. A limit arises, fortunately, from MS therapy that is largely 

changing natural disease history in terms of disability progression. 

Moreover, it is difficult to plan to serial CSF analyses, so we could discuss if changes in serum or other 

fluids, such as tears, could be used to monitor KFLC intrathecal synthesis with the starting of a DMT. This 

application could be able to define those patients who reply poorly to the current treatments and support a 

personalized therapeutic strategy.  
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Overall discussion and Conclusions.  

 

Diagnosis. 

Kappa index has been described as a reliable marker of intrathecal IgG synthesis in MS resulting even more 

accurate than IgG index to discriminate MS from other neurological diseases. Our study confirmed the role 

of KFLC in the diagnostic work-up for MS. Kappa index (corrected for blood-CSF barrier permeability) 

showed a high sensitivity and decent specificity towards MS diagnosis. Overall, OB remained the gold 

standard for CSF analysis in MS. The high sensitivity and specificity associated with the lower costs of 

kappa index suggested to use this test first, followed by IEF as a confirmative procedure. The sequential 

use of IEF and kappa index showed high diagnostic efficiency with cost reduction of 43 and 21%, if 

compared to the contemporary use of both tests, or the unique use of IEF in all patients.  If compared to by 

IEF and immunoblotting, KFLC can be completely automatized, it is operator-independent in 

interpretation, less time-consuming and less expensive. Enlarging the sample size during these analyses, 

we confirmed this “sequential testing” as an optimal procedure on a larger sample and applied this method 

routinely.  

Recently, the great sensitivity of intrathecal KFLC fraction has been confirmed even using several 

approaches among whom Reiber’s diagram had a greater sensitivity towards intrathecal Ig synthesis. In our 

cohort we confirmed the greatest sensitivity (98%) of Reiber´s KFLC diagram toward MS. Although, this 

measure lacked of specificity in our population, so we confirmed the sequential testing using as first-line 

test kappa index (with cut-off of 5). Moreover, “false positive” values for kappa index were double-check 

for the clinical diagnosis at the end of diagnostic work-up and after a follow up of one year.  

In conclusion, these data confirmed a “kappa-oriented” immune reaction in MS CSF. To our knowledge, 

the KFLC overproduction in MS patients has not been clarified yet. Increased concentrations of serum FLC 

have been described in several autoimmune disorders (and related to disease activity in few) in relation to 
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the phenomenon of “antigen excess”. Although not explaining the “kappa” prevalence, it remains of 

diagnostic utility in MS.   

 

Prognosis.  

MS course presents a high variability among individuals ranging from a minimal disability over time to a 

rapid and severe progression (Tutuncu et al. 2013). DMTs with a different risk to benefit ratios impact on 

disease history, and the possibility of predicting early MS course is crucial. Many clinical and radiological 

factors at MS diagnosis have been related to MS prognosis, such as gender, age of onset, disability, number 

of relapses, MRI measures (Swanton et al. 2014. Wattjes et al. 2015). A similar role has been proposed for 

CSF biomarkers, and our study confirmed that KFLC could be apply in MS prognosis. 

First, CSF KFLC/IgG might be employed to find whose RIS-CIS patients will convert to MS.  

Secondly, kappa index resulted a significant predictor for disability over time being higher in patients who 

developed greater MSSS. Accordingly, kappa index was also significantly increased in patients undergoing 

early versus delayed treatment.  

 

Limits. 

A limit of this study was that our patients underwent a unique lumbar puncture. Consequently, we do not 

have data on any changes of FLC levels over time, despite foregoing reports suggested they remain stable. 

Unfortunately, we were not able to discuss any change within KFLC with treatments. There are few data 

how DMT could able to affect local humoral production. It seems that only natalizumab and cladribine 

affect intrathecal Ig synthesis, ultimately leading to CSF OB disappearance in some cases (Rejdak et al. 

2019, Mancuso et al. 2014). It is questionable whether KFLC could change with treatment particularly 

targeting B-cells (Rudick et al. 1999). 
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