
The development of a sustainability assessment indicator and its
response to management changes as derived from salmon lice
dispersal modelling

Anne D. Sandvik *, Samantha Bui , Mats Huserbråten, Ørjan Karlsen, Mari S. Myksvoll,
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Aquaculture is providing an increasingly larger proportion of the world’s protein for human consumption; however, its environmental impact
is a bottleneck for sustainable expansion. In Norway, the government has enacted a framework where salmon lice-induced mortality in wild
salmonid populations is used for assessing the environmental sustainability in production zones. Direct measurements of the level of lice-in-
duced mortality on wild salmonids are difficult to acquire, thus comprehensive sustainability assessments are based on a set of evidence-based
proxies. One such proxy is the infestation pressure from a bio-hydrodynamic model, from which we develop an index that summarize the
sustainability of aquaculture in terms of lice infestation. This index is based on the proportion of areas with elevated lice loads, and is a novel
approach used to investigate how sustainability could be achieved through scenario testing of different management strategies. The analyses
identified a mismatch between legal and sustainable lice levels, but also a beneficial effect of reducing lice levels on farms. This study’s
approach demonstrated how bio-hydrodynamic models might be used to assess sustainability and to predict the necessary reduction of lice
larvae from farms to classify the entire Norwegian aquaculture industry as environmentally sustainable.
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Introduction
Aquaculture of finfish is an increasingly important source of pro-

tein for human consumption, however there is a sharp focus on

the environmental impact and sustainability of the industry. In

Norway, conventional aquaculture of salmonid fish in fjords and

along the coast uses open net-pens that allow the transfer of

pathogens and parasites between wild and farmed fish (Fjørtoft

et al., 2017, 2019). Existing in parallel with the aquaculture indus-

try, Norway has approximately one third of world’s population of

wild Atlantic salmon (Salmo salar, consisting of more than 400

local stocks), and numerous anadromous local populations of sea

trout (Salmo trutta) and Arctic char (Salvelinus alpinus). Thus,

Norway has an international responsibility of preserving wild

salmon stocks (Hindar et al., 2010; Forseth et al., 2019) while si-

multaneously carrying a political ambition of sustainable growth

in aquaculture production. The balance in achieving both goals is

challenging (Liu et al., 2011; Johnsen et al., 2021), and the prior-

ity of conservation creates a conflict with the objective of industry

growth.

The salmon louse (Lepeophtheirus salmonis) is a naturally oc-

curring ectoparasite on salmonids in the northern hemisphere,

and infects both farmed and wild salmonids. However, as the

number of hosts for salmon lice has increased dramatically

in parallel with the expansion of Atlantic salmon farming (Barrett
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et al., 2020), an imbalance has developed between lice abundance

and susceptible wild hosts (Penston et al., 2011; Skilbrei et al.,

2013; Serra-Llinares et al., 2014, 2018; Vollset et al., 2014;

Thorstad et al., 2015; Fjørtoft et al., 2017, 2019; Serra-Llinares,

2020).

Salmon lice begin life with larval stages hatched directly into

the water masses and dispersed by local ocean currents. They

have three planktonic stages, with development rate as a function

of the ambient water temperature (Hamre et al., 2013, 2019;

Samsing et al., 2016). Thus, the lice larvae can potentially drift far

away (100 km) from the hatching source (Johnsen et al., 2014;

Samsing et al., 2015), and therefore contribute to an elevated in-

festation pressure over a large geographic area.

Salmon lice have been identified as one of the main risk factors

of further growth of salmon farming (Taranger et al., 2015;

Forseth et al., 2017). In Norway, the coast is divided into 13 pro-

duction zones (PZs; Figure 1; Ådlandsvik, 2015), and the sustain-

ability status within each zone is evaluated separately every year

in the popularly named “traffic light system” (Anon 2020). From

the recent evaluation, based on data from 2018 and 2019, the en-

vironmental impact of salmon lice on wild salmon stocks was

classed as low (green) in nine PZs, medium (yellow) in two and

high (red) in two (Vollset et al., 2019).

As farmed salmon is Norway’s second largest export industry

(next to oil and gas), the outcome from this management evalua-

tion scheme has a potentially huge economic impact. Thus, the

fish-farmers, as well as the conservation stakeholders and the

management authorities, have high motivation to find solutions

that can ensure environmentally sustainable growth.

Direct measurements of lice infestation and the corresponding

lice-induced mortality on wild salmonids is difficult to achieve

over large geographical areas. Therefore, the traffic light system

has adopted a set of high quality and well-documented datasets

to serve as proxies for the impact of lice on wild salmonid sur-

vival. Information from a dispersion model (Sandvik et al.,

2020a) provides input data for one of the proxies (ROC, relative

operating characteristic; Sandvik et al., 2016, 2020b), whereby the

lice density in the water masses (infestation pressure) and the

number of lice on wild salmonids is estimated through a calibra-

tion against the observed number of lice on salmonid fish kept in

small sentinel cages. Thus, the model product (ROC) can be

interpreted as the result from numerous simulated sentinel cages

in a fine mesh network along the entire coast. In accordance with

the results from the real sentinel cages, these “virtual” smolt cages

can be used both to estimate the mortality on wild salmonids and

to test scenarios of mitigation strategies before new management

plans are implemented.

Based on the ROC-method, described in Sandvik et al. (2016,

2020b), we define the proportion of the PZ with elevated lice

loads through an index, which is further used to give a quantita-

tive assessment of the effect of different management strategies.

The method is novel in its approach and act as a straightforward

and objective way for assessment of salmon lice management

effectiveness. The main objective of this work is to use the

suggested ROC-indexes to find a sustainable level of salmon lice

larvae originating from farmed fish in Norwegian fjords and

coastal waters, in terms of their projected impact on wild salmo-

nid populations.

The ROC-index is estimated for all 13 PZs covering the

Norwegian coast, and scenarios are tested in those where the

ROC-index shows unacceptable impact (PZs 2–5, and 10).

To find the management approach that would achieve a low

environmental impact classification in the target PZs, seven sce-

narios were tested to determine when the mortality-related effect

of aquaculture would be acceptable.

Material and methods
Study area and PZs
More than 1000 locations are approved for aquaculture produc-

tion along the Norwegian coast and fjords. The production cycle

is generally 15–18 months, and the locations must be fallowed be-

tween cycles. Thus, not all farms are active and simultaneously in

production. The locations are distributed in 13 PZs (Figure 1),

defined based on an analysis of the dispersion of lice between the

aquaculture sites, and the boundaries between the zones were

drawn where there was minimum cross-dispersion (Ådlandsvik,

2015). This zoning approach using connectivity implies that lice

released from farms within one PZ are less likely to infest

farms in another PZ, making it beneficial to consider each zone

as independent management units.

The salmon lice model
The density of infective salmon lice was computed with a bio-hy-

drodynamic lice dispersion model system (Johnsen et al., 2014,

2016; Sandvik et al., 2016, 2020b; Myksvoll et al., 2018;

Ådlandsvik, 2019), where an individual-based model with known

behaviour and life development for salmon louse is implemented

in the Norwegian Coastal Current model (NorKyst800, Albretsen

et al., 2011, Asplin et al., 2020; Dalsøren et al., 2020). The results

from the lice dispersion model are publicly available weekly

(www.lakselus.no) and as an archive from 2012 to 2020, on the

800� 800 m horizontally resolved NorKyst800 grid (Sandvik

et al., 2020a). Similar approaches to predict salmon lice density in

the water masses have been widely used in the scientific commu-

nity (Adams et al., 2012, 2015, 2016; Salama et al., 2013, 2016,

Figure 1. The 13 aquaculture PZs along the Norwegian coast, with
PZ3 and Hardangerfjord highlighted. PZs evaluated in this article are
marked with black numbers (others with grey), and blue dots mark
the aquaculture locations.
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2018; Kough et al., 2015; Samsing et al., 2017; Cantrell et al.,

2018; Kragesteen et al., 2018; Kristoffersen et al., 2018).

Relative operating characteristic
The ROC is a graph of the hit rate, H, against the false alarm rate,

F, for different decision thresholds (Mason 2003). Assuming a bi-

nary forecast system, the ROC becomes a pure indicator of accu-

racy that gives quantitative estimates of the probabilities of

forecast outcomes for any decision threshold that the system

might use, and the trade-offs between these probabilities as the

decision threshold varies. An empirical ROC can be plotted from

forecasts of salmon lice density by stepping through different

forecast systems, each system generating a 2 � 2 contingency ta-

ble and values of H and F (Mason 1982). For a forecast system

with zero skill, H¼ F, while in a perfect system, H¼ 1 and F¼ 0.

Based on the recorded mean number of lice on hatchery-reared

Atlantic salmon smolts held in sentinel cages for the years 2012–

2017, a ROC was developed to predict salmon lice infestation

pressure (Sandvik et al., 2016, 2020b). The ROC-method uses

three categorical events (high, medium, and low) for a potential

lice infestation pressure, and is at present in use as one of the

proxies for the sustainability indicator in the Norwegian traffic

light system.

ROC-index and subjective assessment
The results from the ROC-method can most easily be interpreted

as the predicted infestation pressure from numerous “virtual”

smolt cages in a high-density mesh (here on the 800� 800 m

NorKyst800 grid) along the Norwegian coastline and fjords. The

ROC-products constitute a combination of (i) salmon lice infes-

tation maps in three colours (hereinafter named ROC-maps),

where the colours indicate the local severity of salmon lice-in-

duced mortality on wild salmonids, and where a subjective assess-

ment is performed based on overlap between areas with elevated

salmon lice pressure and assumed salmon post-smolt migration

routes; and (ii) a time series of an index (hereinafter named

ROC-index) showing the relative size of the affected area (within

PZs), where the fish would most likely be infected by a salmon

lice dose above the given threshold. The deployment time for the

virtual cages can be any period of interest. Here we have used

30 days during spring in accordance with how it is used in the

traffic light assessment.

The tolerance of the wild post-smolts to infection is depen-

dent on the size of the fish, where 100% mortality is assumed if

there are >0.3 lice/g fish and no mortality is assumed when

there are <0.1 lice/g fish (Taranger et al., 2015). In the traffic

light assessment, it is assumed that a wild Atlantic salmon post-

smolt is 20 g, thus 2 and 6 lice per fish becomes the class limits

for low, moderate and high infestation pressure, and these lev-

els of salmon lice on the smolts in the sentinel cages were fur-

ther used to develop the present ROC-method. As such, the

colours in the ROC-maps should be interpreted as: wild fish

staying in red areas for 30 days will likely be infected with more

than 6 lice (i.e. 100% mortality expected), while those staying

in green areas most likely will be infected with less than 2 lice

(0% mortality expected) and in yellow areas with between 2

and 6 lice (50% mortality expected).

To have an objective measure of the salmon lice impact on

wild salmonids within each of the 13 PZs, the ROC-index (infes-

tation indicator) is defined as:

I ¼ R þ 0:5 Y

ðR þ Y þ GÞ � 100;

where R, Y, and G is the size of the red, yellow, and green areas

inside the respective PZ, when the number of infective copepods

in the virtual smolt cages have been summed over a 30-day pe-

riod. The whole potential habitat for wild fish is defined as the

area within a PZ extending out 9.6 km (12 � 800 m) from land,

as seen in Figures 3 and 6.

In the present work, the greatest emphasis has been placed on

the value of the index from the estimated date that 50% of

salmon post-smolts would have started their migration (PZ2:

18/5, PZ3: 21/5, PZ4: 23/5, PZ5: 24/5, and PZ10: 22/6), and

30 days thereafter (Figure 2, right panel). This period is termed

the ROC-index period, covering a large part of the smolt migra-

tion period and the early feeding period for trout and char.

Figure 2. Left: Hourly number of nauplii released from salmon farms in PZ5 during 2018 and 2019. The green-shaded areas indicate the post-
smolt migration period. Right: Time series of ROC-indexes during 2019 in PZ3. The green-shaded areas indicate the post-smolt migration
period from rivers in PZ3 and the green vertical line indicates the date when it is assumed that 50% of the Atlantic salmon post-smolt has
started their migration from rivers in PZ3.
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The index is generally lower before this period and higher later

(Figure 2). At the PZ level, the ROC-index is defined to be low

(I< 10), moderate (10< I< 30) and high (I> 30). Thus, if only

a small area within the PZ has elevated salmon lice pressure

(i.e. I< 10), this method will suggest that the PZ should be cat-

egorized as having a low risk for salmon lice-induced mortality

on the wild fish population (green colour), while if there is a

large portion of the area with elevated/increased salmon lice

pressure (i.e. I> 30%) the indicator will suggest that the PZ

should be categorized as having a high risk of mortality in the

wild fish population (red colour). However, the distribution of

salmon lice is uneven within each PZ, thus a full assessment

also has to include ROC-maps to consider where in the PZs the

elevated lice pressure is located, and if it is likely that there will

be an overlap with wild fish populations. In the traffic light

assessments, the geographic location of the red areas and varia-

tion in the ROC-index around the selected date is used to assess

the uncertainties in the estimates.

Release of salmon lice from fish farms
In the period from 1 April to 1 August 2018 and 2019, there

were 648 and 688 active salmon farms in Norwegian waters re-

spectively, with a total of 400–500 million Atlantic salmon in

open net-pens. By legislation, all active farm sites must submit

weekly reports on the average number of adult female lice

on their fish and the temperature in 3-m depth, and the total

number of fish on the site every month, to the management

authorities.

Mature adult female lice extrude a pair of egg-strings, which

hatch directly into the water column as planktonic nauplii. Based

Figure 3. ROC-maps for PZ3 that display areas where wild salmonids, occupying the area for the given time period, are expected to be
infected by >6 lice (red colour), between 2 and 6 lice (yellow colour), and < 2 lice (green colour). Shown are outcomes for S0 in 2018 and
2019 (upper and lower left panels), and S1 in 2018 and 2019 (upper and lower right panels).
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on the reported numbers of adult female lice per fish (APF), the

number of fish and the water temperature, the number of nauplii

released into the water masses from each farm was calculated us-

ing a published formula (Stien et al., 2005). More details on this

calculation can be found in Myksvoll et al. (2018).

Regulations of salmon lice in fish farms
Currently, the aquaculture industry in Norway is strictly regu-

lated and must maintain low lice levels on the farmed fish in

open cages. Legislation limits up to 0.5 APF on farmed salmon

before triggering delousing action, but to protect the salmon, sea

trout and Arctic charr post-smolts when they migrate from the

rivers, more stringent regulations have been applied to minimize

the number of lice on farmed fish during this spring migration

(Norwegian Ministry of Fisheries and Coastal Affairs, 2017).

Since 2017, this has been achieved by reducing the permitted

number of lice per fish from 0.5 to 0.2 over a 6-week period from

spring to early summer. With the present regulation the limit is

0.2 APF in PZ1–PZ7 from weeks 16 to 21, while in northern

Norway, including PZ10, the limit is 0.2 APF from weeks 21 to

26. These region-dependent periods are expected to continue to

apply in future years, being independent of the traffic light

system.

Due to a combination of seasonality in water temperature and

the low permitted lice levels during spring, the number of nauplii

hatched into the water masses thus also exhibit strong seasonality.

Minimum numbers are estimated in spring (before the peak

salmon smolt migration) and maximum numbers in early au-

tumn (when the water temperature is at its yearly maximum);

however, the interannual variability can be large, e.g. as seen PZ5

in 2019 (Figure 2, left panel).

Testing of release scenarios of salmon lice from fish
farms
The environmental impact of aquaculture was assessed for seven

different nauplii release scenarios (S1–S7) and discussed relative

to a reference scenario where weekly reported lice levels were

used under the concurrent management regime (S0). Three of

the tested scenarios (S1–S3) were generated by modifying the

reported levels of APF in the fish farms in 2018 and 2019. In S1,

the reported APF were uniformly reduced by a percentage in all

farms, whereas in S2 and S3 the APF was reduced to meet the le-

gal limit in farms reporting higher values. Scenarios S4–S7 were

generated independently of the reported lice levels, using uniform

lice levels throughout the season at all farm locations. The tested

scenarios were:

S0—Reference simulation using reported lice levels.

S1—Stepwise (10%) reduction of reported APF in all farms

until ROC-Index < 10.

S2—Extending the low-limit period (of 0.2 APF) to match

the end of the ROC-index period.

S3—As S2, but in addition the lowered statutory lice limit

is reduced to 0.1 APF.

S4—Lice level fixed at 0.2 APF for all fish in all farm sites.

S5—Lice level fixed at 0.1 APF for all fish in all farm sites.

S6—Lice level fixed at 0.05 APF for all fish in all farm sites.

S7—Lice level fixed at 0.03 APF for all fish in all farm sites.

In S2 and S3, PZ10 was not considered, as the regulation in

northern Norway is in another period (from weeks 21 to 26) than

the other considered PZs.

Results
The results from the reference run are taken from the traffic light

system report 2018–2019 (Vollset et al., 2019), which showed a

highly variable ROC-index among the 13 PZs. In the five targeted

PZs (2, 3, 4, 5, and 10) the ROC-index was high in PZ2 and mod-

erate in PZ3 and PZ4 in 2018, whereas in 2019 the estimated en-

vironmental impact was higher, with a high value in PZ5 and

moderate values in PZ2, 3, 4, and 10 (Table 1, IS0). In the remain-

ing PZs, the index was low (I< 10).

Scenario 1: flat percentage reduction
In S1, a flat reduction of the APF level was applied to deter-

mine how much the lice pressure would have to be reduced

before the red and yellow PZs (IS0 > 10) became green (using

the ROC-index). The reduction was applied in 10% step reduc-

tions across all farms, and thus the relative contributions

from the different farms were not changed. To obtain a ROC-

index below 10 (low impact, green), the number of released

nauplii had to be reduced by 30–70%. The required reduction

varied between the PZs and years (detail provided in Table 1

under IS1).

When taking into consideration ROC-map results, the

scenarios became slightly more complex. In PZ3 e.g. the ROC-

index did not fall below 10 until the APF was reduced by 60%

in 2018. Even with this reduction, the outer part of the main

fjord (Hardangerfjord) in the PZ was yellow and red (Figure 3,

upper right panel). This is an area where the salmon post-

smolt from all the rivers in the fjord system must migrate

through on their route towards open ocean (Halttunen et al.,

2018). Taking this into consideration, the reduction in APF

would have to be even higher to acquire low impact status

through the ROC-method. In 2019, the spatial distribution

of salmon lice in the PZ was different to 2018, and the

Hardangerfjord became completely green after a 70% flat reduc-

tion (Figure 3, lower right panel). In this year, the area with ele-

vated lice pressure was found north of the Hardangerfjord, where

far fewer wild salmon smolt would be exposed during their mi-

gration route.

Table 1. ROC-index values used in the traffic light management
system (IS0, 2018/2019), estimated required reduction in infective
copepods (in steps of 10%) until IS1 < 10, and ROC-index after the
reduction (IS1, 2018/2019), for the tested PZs.

IS0,
2018 S1 %

IS1,

2018
IS0,
2019 S1, %

IS1,

2019

PZ2 32 250% 9 24 260% 9
PZ3 27 260 % 7 23 270% 8
PZ4 17 240 % 9 24 260% 8
PZ5 31 270% 5
PZ10 15 230% 7

Bold text was selected to make it easier to read.

Assessing salmon lice management strategies 5

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/advance-article/doi/10.1093/icesjm
s/fsab077/6277122 by Institute of M

arine R
esearch user on 01 June 2021



Scenarios 2 and 3: extending and lowering the spring
statutory lice limit
In S2 and S3, first evaluated was the direct effect on the number

of hatched eggs by extending the period of lower statutory lice

limit (S2) and in addition lowering the limit to 0.1 APF (S3).

Both scenarios were further analysed by evaluating the extent

of the influenced area in the PZs, using the ROC-maps and

ROC-index.

Reported number of APF per PZ in 2018 and 2019 showed

that nearly all farms in these zones were able to keep the APF be-

low the legal limit of 0.2 APF (data not shown). The number of

farms with more than 0.2 APF began to increase in most PZs

from week 21 (when the period of lower statutory lice limit

ended) both in 2018 and 2019; however, most farms remained

well below 0.2 APF (data not shown). Thus, an extension of the

0.2 APF threshold only influenced the release abundance of lice

from a small number of farms. Further, the delay in the steep gra-

dient, which normally occurs just after the middle of the esti-

mated post-smolt migration period (green-shaded areas in

Figure 2), was not as pronounced as expected (Figure 4). The re-

duction in number of hatched eggs was highly variable between

weeks, years, and PZs; Figure 4 exhibits the weekly effects of S2

and S3 for PZ3 and PZ5, in 2019.

In S3, where the statutory lice limit was reduced to 0.1 APF

from week 16, the impact was more pronounced than in S2.

However, as many farms reported continual lice levels well below

0.1 during this period, the reduction in number of hatched eggs

for this scenario was also a result of modifications from only a

proportion of the farms. When compared with S0, releases of

hatched eggs were reduced by 20–30% in week 16 and 50–60% at

the end of the ROC-index period (Figure 4). In S2 the estimated

salmon lice pressure was reduced in PZ2—PZ5, but not suffi-

ciently to bring the ROC-index below 10. In PZ2, the ROC-index

was reduced from > 30 to between 10 and 30 in 2018, while the

classification was not altered for any PZ in 2019 (Table 2). The ef-

fect was more pronounced in S3 where the ROC-index was esti-

mated to below 10 for PZ2 and PZ4 in 2018, but not for PZ3. In

2019, S3 did not lower the ROC-index below 10 for any of the

PZs 2–5. The largest effect of applying such a reduction was ob-

served in PZ2 in 2018 and PZ5 in 2019, whereas the effect was

lowest in PZ3 in 2019. The ROC-maps showed smaller red and

yellow areas in both S2 and S3 compared with S0, but the effect

was rather local, owing to the location of the modified farms and

the hydrodynamic circulation patterns in the area.

Scenarios 4–7: theoretical uniform lice levels on all
farmed fish
Although S1–S3 investigated the effect of different management

strategies based on the reported lice levels from the salmon farms,

S4–S7 evaluated the effect of uniform theoretical levels of lice, set

to 0.2, 0.1, 0.05, and 0.03 APF, respectively.

The time series of hatched eggs for S4–S7 in 2019 are shown in

Figure 5 for PZ3 and PZ4, together with the number of hatched

eggs from S0 (blue line).

A theoretical fixed number of 0.2 APF (S4) in all farms over

the year gave a substantial increase in the number of hatched eggs

in all PZs in 2018 and 2019, whereas the theoretical fixed number

of 0.1 APF (S5) subtly increased the number of released eggs in

some PZs, except for some weeks (Figure 5). A further decreased

level of 0.05 APF (S6) generally reduced the number of released

eggs, whereas the lowest tested fixed number of 0.03 APF (S7)

Figure 4. Number of hatched eggs in PZ3 (left) and PZ5 (right) if the limit is set to 0.2 (S2) and 0.1 (S3) APF, and the period with lowered
APF limit is extended. The shaded area shows the period when the lower statutory lice limit (LSLL) is set to 0.2 in 2019 (15 April as the first
day in week 16 and 27 May). The blue-shaded area shows the ROC-index period (from the estimated date of 50% salmon post-smolt
migration completed, and 30 days ahead).

Table 2. ROC-indexes for 2018 and 2019, estimated with adult
female per fish as reported by farmers (IS0), when the applied lice
limit is kept below 0.2 for Scenario 2 (IS2), and when the limit is kept
below 0.1 for Scenario 3 (IS3) from week 16 to end of ROC-period
(blue-shaded areas in Figure 4)

2018 2019

IS0 IS2 IS3 IS0 IS2 IS3

PZ2 32 20 9 24 19 15
PZ3 27 23 15 23 22 17
PZ4 17 12 7 24 20 13
PZ5 31 21 12

Bold text was selected to make it easier to read.
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Figure 5. Number of hatched eggs in PZ3 (left) and PZ4 (right) in 2019. Blue lines show the egg releases estimated from reported values
from the farms (S0). Red, yellow, purple, and green lines show number of released eggs in S4–S7, respectively. The green-shaded area shows
the period when the LSLL is set to 0.2 in 2019. The shaded blue area shows the ROC-index period (from the estimated date for 50% salmon
post-smolt migration completed, and 30 days ahead).

Figure 6. ROC-maps for PZ3 that display areas where wild salmonids, occupying the area for the given time period, are expected to be
infected by >6 lice (red colour), between 2 and 6 lice (yellow colour), and <2 lice (green colour). Shown are outcomes for S4 in 2018 and
2019 (upper and lower left panels), and S7 in 2018 and 2019 (upper and lower right panels).
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gave the lowest number in all PZs except PZ10 in 2018, and in all

PZs in 2019.

A fixed lice level of 0.2 APF (S4) at all farms gave a ROC-index

between 18 and 57 in 2018, and between 37 and 50 in 2019

(Table 3). Even though the ROC-index was lowered in S5–S7,

only S7 produced a ROC-index < 10 for all PZs in both 2018 and

2019 (Figure 6 and Table 3). The increase from S0 to S4 was sub-

stantial in all areas, with a maximum in PZ10 and a minimum in

PZ5. The lice infestation pressure was generally lower in 2018

than in 2019, as only PZ3 was still elevated for S6 in 2018, while

three PZs (2–4) were high in 2019. ROC-maps from S4 showed

substantial areas with elevated salmon lice pressure in PZ3, 2018

and 2019, and low salmon lice pressure in S7 (Figure 6).

Discussion
In this study, we defined a sustainability index and used it to as-

sess how various management strategies could contribute to im-

prove the environmental sustainability in the Norwegian

aquaculture industry. The analyses revealed that for the reference

run (S0) the level remained well below the statutory lice limit in

the majority of the salmon farms both in 2018 and 2019.

Nevertheless, the environment was still classified as highly and

moderately affected by salmon lice in some PZs, demonstrating

that even though many individual farms keep their lice level be-

low the legal limit, this is not necessarily sufficient to reach the

sustainability goal on a regional scale.

A flat percentage reduction of the number of hatched eggs (S1)

was shown to improve environmental sustainability status

through a gradually decreasing ROC-index. However, a substan-

tial reduction (30–70%) had to take place before all PZs were

classified as having a low environmental impact from salmon lice.

A similar approach was recently used in PZ7, to evaluate a possi-

ble increase in lice releases in a PZ that was categorized as green

in 2017 and 2019 (Myksvoll et al., 2020). Their study found that

in years when the estimated mortality was well below 10%, a sub-

stantial flat increase in released lice was tolerated before the PZ

turned into yellow, but they also concluded that the effect of this

increase was of the same order as the impact from the inter an-

nual variability in the ocean physics.

An extension of the lowered statutory lice limit period (S2)

appeared to have a relatively small effect compared with the refer-

ence scenario (S0), though local effect was apparent. This was

likely because only a small proportion of the salmon farms had

reported more than 0.2 APF. Further, a lowering of the lice limit

to 0.1 APF throughout the weeks 16–26 (S3) resulted in a stron-

ger reduction in the releases, but similarly, as many farms already

had very low lice levels during the period of interest, this

management strategy had less significance than expected. In fact,

applying a new fixed APF level to all farms (S4–S7) indicated that

a level of only 0.03 APF was required to make all PZs classified as

green (low environmental impact).

Even so, an extension of the lower-limit period (from 6 to

11 weeks) would have a beneficial effect on the environmental as-

sessment for the area. In addition to the results presented herein,

a lower lice limit will also lead to more and/or earlier delousing in

a larger proportion of the farms, which will give a positive retro-

active effect of lower emissions and less infection between farms.

Therefore, any reduction of lice pressure will influence the farm

lice levels in general, leading to a positive feedback loop with an

even lower number of lice on farmed and wild fish as the infec-

tion pressure decreases.

The effect of delousing events has not been implemented in

the bio-hydrodynamic model system and would require an addi-

tional model branch with interplay between copepodids in the

water masses and a salmon lice population dynamics model. If S2

(or S3) is introduced as the new regulation (management plan), a

delousing event will be the consequence of exceeding the limit.

Thus, depending on the efficacy of the delousing, the lice levels

will most likely become well below the legal limit afterwards. The

efficacy of delousing is typically not 100% and will depend on the

type treatment used; the variability in reducing lice levels can

however be large, unpredictable, and vary between louse stages

(Gismervik et al., 2017). Thus, more knowledge about the efficacy

of delousing is needed before it can be realistically incorporated

in our model tool. Nevertheless, it is worth noting that when the

water temperature is 6–9�C (typical values during the smolt mi-

gration period), the time it takes a louse to develop, from first at-

tachment to a host salmon to an adult female, is 40–60 days

(Brooks 2005; Hamre et al., 2019). It takes a further few days to

develop egg strings and hatch nauplii into the water masses.

Thus, if delousing-efficiency is 100% on all lice stages in week 16,

the first adult female should not appear on farmed fish before

weeks 23–24 (beginning of June) at the earliest, which would

have reduced the infestation risk on out-migrating smolt, and sea

trout and Arctic char residing in the area.

The different proxies used to assess the environmental impact

of salmon lice represent comprehensive and complementary in-

formation. Due to limited knowledge about crucial variables (e.g.

temporal-spatial representativity), each of the proxy methods

used to calculate the salmon lice-induced mortality in wild sal-

monids have one or more assumptions. These assumptions are

carefully considered and based on the best available knowledge,

but the uncertainty will affect the results. For the ROC-method,

these will be:

(i) The assumed limit value for high/medium/low infestation

pressure on smolt in the sentinel cages (Bjørn et al., 2011;

Pert et al., 2014), with subsequent threshold values that

come from the ROC-method.

(ii) The duration and time defined as the ROC-index period.

(iii) The seaward extent of the area considered.

(iv) Definition of threshold values to define when the ROC-in-

dex is high, medium or low.

A higher threshold value for what is assumed to be high infesta-

tion pressure in the sentinel cages (i), and a shorter or earlier

ROC-index period (ii) will generally give a lower index, while an

Table 3. ROC-indexes for 2018 and 2019, estimated from an overall
uniform lice limit of 0.2, 0.10, 0.05, or 0.03 APF (Scenarios 4–7) for allfarms

2018 2019

IS0 IS4 IS5 IS6 IS7 IS0 IS4 IS5 IS6 IS7

PZ2 32 45 21 3 0 24 38 26 14 7
PZ3 27 57 36 17 6 23 45 34 19 8
PZ4 17 29 13 4 1 24 39 23 10 4
PZ5 7 18 4 1 0 31 37 16 4 2
PZ10 3 43 23 8 3 15 50 26 9 2

Bold text was selected to make it easier to read.
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assumed habitat that does not extend as far seaward (iii) will give

a higher index. Finally, it is (iv) the limit value for what is consid-

ered a high, medium or low ROC-index that determines the

outcome of this method. We have used parameters equal to those

used in the traffic light assessments 2019. High and low ROC-in-

dex is mainly in accordance with high and low lice loads on

observed fish (Myksvoll et al., 2018). However, by adhering to a

fixed set of parameters, we have an objective method that remains

consistent between years and between the different PZs, which in

addition is very well suited to easily conduct sensitivity experi-

ments. It should also be noted that for most PZs and years, the

assessments made with the ROC-method agree well with the

other proxies in the traffic light system, as well as the final sci-

ence-based advice delivered by the expert group (Vollset et al.,

2019). Time series of the ROC-index for all PZs might be found

in Sandvik and Myksvoll (2020).

Similar to the indirect observations of salmon lice on hatch-

ery-reared Atlantic post-smolt in sentinel cages (Bjørn et al.,

2011; Pert et al., 2014), the ROC-maps and index are not directly

related to mortality of wild fish. Although there exists some infor-

mation on the behavior of wild salmonids, information on fish

density within the PZ it is still a knowledge gap and thus not in-

cluded in the ROC-method. However, the model exhibited high

skill in predicting areas with elevated salmon lice infestation in

the Hardangerfjord 2012–2017 (Sandvik et al., 2020b). Thus, it is

likely that the wild fish remaining in red areas during the defined

time period will be infected with a dose, which is deadly for a 20 g

fish. As the water temperature, salinity and current conditions

can vary considerably between years, the ROC-index will accord-

ingly have an interannual variability due to varying environmen-

tal conditions (Myksvoll et al., 2020), in addition it will naturally

change if the number of fish in the PZs changes.

A complementary method to model infection pressure (which

is also another proxy in the traffic light system) is the virtual

smolt model where the whole migration from river to ocean is

simulated (Johnsen et al., 2021). Salmon usually enter the sea in

spring and need to swim from their river of origin through the

fjords toward the open ocean. The distance and route they swim

will affect their risk of being infected, particularly with the patchi-

ness in density of salmon lice larvae along the route. As the release

of salmon lice usually increases during spring and summer due to

temperature and farming practices (Figure 2), a later migratory

departure from the fjords results in a higher risk of exposure to a

higher infestation pressure.

Information from entire PZs (as the ROC-method) is a valu-

able and necessary assessment tool, particularly as there is large

and inconsistent uncertainty in knowledge of the habitat of the

wild fish between the PZs (Thorstad et al., 2012, 2015; Ounsley

et al., 2019). Although it is likely that the other proxies for the

traffic light system’s key sustainability indicator will change in a

similar way, the results from this study should be used as an indi-

cation, rather than a robust conclusion, on how environmental

sustainability regarding salmon lice could be attained in

Norwegian aquaculture.

Aquaculture management strategies implemented to combat

water-born pathogens (Groner et al., 2016; Kragesteen et al.,

2018; Nekouei et al., 2018; Gallardo-Escárate et al., 2019) can of-

ten be informative and transferred between countries. In particu-

lar, model-based management tools, similar to the one described

in this article, can easily be exchanged among countries running

bio-hydrodynamic model (Adams et al., 2016; Cantrell et al.,

2020; Toorians and Adams 2020; Rabe et al., 2020), and further

be used to test mitigation strategies before management plans are

implemented.

Concluding remarks
A good management plan is necessary to ensure environmental

sustainability and further growth in the Norwegian aquaculture

industry. However, there are many approaches to how this man-

agement plan could be defined. Despite the records that the lice

level on most farmed fish is well below the legal level of 0.2 lice in

weeks 16–21, high lice levels are still found on wild salmonids in

some areas. And several of the proxy sustainability indicators in

the traffic light system, like the ROC-index, indicate that the lice

infection pressure is unacceptably high in the PZs that were clas-

sified as yellow or red.

Although a substantial flat reduction can give a ROC-index be-

low 10, areas of elevated salmon lice pressure can still be found in

the critical smolt migration routes, indicating that a flat reduction

is not an optimal strategy. A lowering and extension of the legal

lice limit will potentially dampen the largest outputs, but since

the regulation is on adult females per fish and not adult females

per farm, this might not necessarily be the case. Nor might this

strategy ensure that the reduction is occurring in the areas critical

for migrating wild salmonids. Scenarios that assessed the theoreti-

cal impact if all farming sites had identical lice levels year-round

(S4–S7) exemplified the severity of the case, whereby lice levels

would have to be all the way down at 0.03 APF before a ROC-in-

dex <10 is ensured with the current farming intensity. Scenarios

that involve all farms having the same lice level on the fish are a

purely theoretical scenario, but it illustrates the difference be-

tween a legal lice level at each farm and a lice level that can be

considered environmentally sustainable on a regional scale.

The scenarios presented here use an universal legislation,

where all farms are restricted by the same rules. A study with an-

other approach for PZ3 is presented by Huserbråten et al. (2020),

where the biomass was removed from locations contributing

most to the export of salmon lice to the other locations and redis-

tributing this biomass to the remaining locations. Thus, decreas-

ing the number of locations while the production in the area was

maintained. This reduced the total infestation pressure among

the farms and in turn could ease operations at the farms with

lower lice abundances. The effect on wild salmonids has not been

investigated, but we argue that relocating farms away from areas

where the expected transmission to migrating post-smolts is high

will significantly reduce mortality on wild salmonid populations

on their way to the ocean. Future studies should also look at the

combined effect of universal legislation and stronger actions for

selected locations.

To mitigate the increasing aquaculture production there is a

need to minimize the release of salmon lice from farmed fish. A

regulation with legal total number of adult females per farm

could be a fair practice to control the salmon lice pressure. A

shorter production cycle at sea and reducing the number of fish

in the sea during the out-migration of salmon post-smolts and

during the sea-feeding period for trout and Arctic char could also

be an efficient approach to protect wild salmonid populations.

Further, closed cages, lice skirts and submerged cages are among

the innovative solutions, which are tested to reduce the encounter

rates between fish and the parasitic salmon lice (Barrett et al.,

2020).

Assessing salmon lice management strategies 9

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/advance-article/doi/10.1093/icesjm
s/fsab077/6277122 by Institute of M

arine R
esearch user on 01 June 2021



Data availability
The data underlying this article will be shared on reasonable re-

quest to the corresponding author.

Funding
This work was financed by the Norwegian Department of Trade,

Industry and Fisheries in its funding to the Institute of Marine

Research (internal project no. 14650). The simulations were per-

formed on resources provided by UNINETT Sigma2—the

National Infrastructure for High Performance Computing and

Data Storage in Norway. The authors thank people from the in-

dustry for constructive comments.

References
Adams, T., Black, K., MacIntyre, C., MacIntyre, I., and Dean, R.

2012. Connectivity modelling and network analysis of sea lice in-
fection in Loch Fyne, west coast of Scotland. Aquaculture
Environment Interactions, 3: 51–63.

Adams, T., Proud, R., and Black, K. 2015. Connected networks of sea
lice populations: dynamics and implications for control.
Aquaculture Environment Interactions, 6: 273–284.

Adams, T. P., Aleynik, D., and Black, K. D. 2016. Temporal variability
in sea lice population connectivity and implications for regional
management protocols. Aquaculture Environment Interactions, 8:
585–596.
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