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Abstract Parametric and nonparametric pattern recognition have been stud-
ied for almost a century based on a Bayesian paradigm, which is, in turn,
founded on the principles of Bayes theorem. It is well-known that the accu-
racy of the Bayes classifier cannot be exceeded. Typically, this reduces to com-
paring the testing sample to mean or median of the respective distributions.
Recently, Oommen and his co-authors have presented a pioneering and non-
intuitive paradigm, namely, that of achieving the classification by comparing
the testing sample with another descriptor, which could also be quite distant
from the mean. This paradigm has been termed as being “Anti-Bayesian”,
and it essentially uses the quantiles of the distributions to achieve the pattern
recognition. Such classifiers attain the optimal Bayesian accuracy for symmet-
ric distributions even though they operate with a non-intuitive philosophy.
While this paradigm has been applied in a number of domains (briefly ex-
plained in the body of this paper), its application for nonparametric domains
has been limited. This paper explains, in detail, how such quantile-based clas-
sification can be extended to the nonparametric world, both using traditional
and kernel-based strategies. The paper analyzes the methodology of such non-
parametric schemes and their robustness. From a fundamental perspective, the
paper utilizes the so-called “Large Sample” theory to derive strong asymptotic
results that pertain to the equivalence between the parametric and nonpara-
metric schemes for large samples. Apart from the new theoretical results, the
paper also presents experimental results demonstrating their power. These re-
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sults pertain to artificial data sets, and also involves a real-life breast cancer
data set obtained from the University Hospital Centre of Coimbra. The ex-
perimental results clearly confirm the power of the proposed “Anti-Bayesian”
procedure, especially when approached from a nonparametric perspective.

Keywords “Anti-Bayesian” classification · Nonparametric quantile-based
method · Mixture model · Sample quantile · Kernel density estimation ·
Robust classification

1 Introduction

Many scholars have investigated the problem of recognizing or classifying of
patterns in data, as it is a fundamental problem boasting a long history. The
process of Pattern Recognition (PR) (or synonymously, classification) includes
two stages. In the first stage, the classifier is “trained” using a set of samples
whose class identifications are known. In the second phase, known as the “test-
ing” phase, one encounters an unknown sample which has to be assigned to
one of the groups or classes [10]. The random variable representing the class is
referred to by C, and the value of the class by c. The classification discussed
in this paper is binary, and hence c can assume one of only two values, i.e.,
‘+’ (the positive class) or ‘-’ (the negative class). A classifier is a function that
assigns the label of a class to a test sample so as to optimize some criterion,
for example, the classification accuracy. Bayesian classification is one of the
traditional classification methods. Its competitive performance and optimality
have made it a standard benchmark against other classifiers evaluated in terms
of their optimality. The decision rule of a Bayesian approach classifies a test
sample E using the equation:

p(c|E) =
p(E|c)p(c)

p(E)
,

where p(·) and p(· | ·) stand for probability and conditional probability of
occurring events. In fact, E is assigned to class ‘+’ iff

fb(E) =
p(c = +|E)

p(c = −|E)
≥1,

where fb(E) is a function which is synonymously referred to as the “Bayesian
classifier”1 [9].

Recently, an innovative method, which is surprisingly unprecedented in its
nature, was proposed by Oommen and Thomas [30,31]. The method, explained
in more detail in the next section, is counter-intuitive in that it is based on
testing the samples against non-central quantities of the various distributions.

1 Over the last century, there are, indeed, tens of thousands of papers describing the art
and science of Bayesian classification – for a myriad of distributions and applications. In
this paper, we do not attempt a survey of the field.
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It is, thus, aptly termed as being “Anti-Bayesian” (AB). The astonishing fea-
ture of this novel method is that in spite of its counter-intuitive strategy,
it is as optimal as Bayesian classification for symmetric distributions such
as the Normal distribution, and near-optimal for asymmetric distributions,
such as the Gamma and Rayleigh distributions. When it was first discovered,
it was expressed as being based on the order statistics of the distributions.
However, subsequently, with a deeper insight, the authors demonstrated that
the method was based on the distributions’ quantiles rather than their order
statistics [33]. Thereafter, it was referred to as “Classification by Moments of
Quantile Statistics (CMQS)” [22].

Although CMQS and Bayesian classification attain an equivalent accuracy
in symmetric distributions, they are different in terms of their respective proce-
dures for classification. If the classes have equal a priori probabilities, in order
to decide the class that the testing sample points should belong to, the process
of Bayesian classification boils down to computing a distance (for example, the
Mahalanobis distance) between the test instance and the means of the classes
for symmetric distributions [31]. In a contrasting procedure, CMQS is based
on the (Mahalanobis) distances of every test sample to the corresponding sym-
metric quantiles of the distributions. The amazing thing is that these quantile
points can be quite distant from the mean points. To date, the formal prop-
erties of this method have been only proven in a parametric set-up, in which
the classes are assumed to follow a known distribution, such as the Gaussian,
Exponential etc. [32]. However, as explained presently, the experiments that
have been done have validated some of the claims for nonparametric settings
where there are no restrictions on the distributions of the data set.

Despite the fact that there are many advantages to parametric methods,
there are still a number of situations in which nonparametric methods can
act as a potential substitute technique to the family of parametric methods,
especially when the distribution is unknown. Our position is the following: In
parametric methods, one must assume the distributional form of the features’
classes, which is what makes these schemes less desirable than the nonpara-
metric ones, where one works with data whose distributions are badly skewed.
In such situations, the distributional assumptions, for example, of normality, is
doubtful, and consequently, parametric methods yield a poor accuracy or are
not applicable at all [17]. On the other hand, when there are some outliers in
the data set (i.e., when distribution is a mixture of two or more different dis-
tributions), one can safely assert that parametric statistics are not accurately
robust in their nature [14,18]. The above-mentioned facts motivate us to de-
velop nonparametric quantile-based classification strategies, which we believe,
fundamentally expand the horizon of the published CMQS-based results.

The objectives of this paper are four-fold:

1. Firstly, we construct a nonparametric version of the CMQS method uti-
lizing two different approaches. In the first, through a simple and easy-to-
understand procedure, one obtains sample quantiles of the two classes, and
an improved schema of CMQS is performed using these quantiles. In the
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second approach, a unique distribution is fitted on the available data set
using a Kernel Density Estimation (KDE) scheme.

2. Thereafter, the symmetric quantiles of the corresponding distributions are
utilized to determine the classification boundary.

3. Apart from the latter aspects, we also demonstrate an intriguing phe-
nomenon of nonparametric CMQS in dealing with outliers and skewed
distributions. The contribution of this part of the paper is to focus on the
high potency of nonparametric CMQS in classifying data sets containing
outliers, and in explaining the logical rationale behind this performance.

4. Most importantly, from a foundational and theoretical perspective, this pa-
per uses the so-called “Large Sample” theory as a premise to derive strong
asymptotic results that pertain to the equivalence between the parametric
and nonparametric paradigms for large samples. This, in one sense, closes
the loop. In other words, although the basis of the paper is the parametric
CMQS scheme used to motivate the nonparametric paradigm, the large
sample analysis demonstrates that both the paradigms are identical when
the number of samples is large. In other words, it provides the necessary
theoretical foundations for further research in both the parametric and
nonparametric worlds.

The rest of the paper is structured as follows. First of all, in Section 2, we
present a relatively brief overview of the state-of-the-art of the “Anti-Bayesian”
paradigm for classification. Thereafter, in Section 3, we present some prelimi-
naries to provide a groundwork for presenting the nonparametric procedures.
Section 4 clarifies the newly-proposed methodology for nonparametric classi-
fication. Some theoretical analysis of the proposed scheme builds Section 5.
The main results for the nonparametric paradigm are given in Section 6. The
robustness of this nonparametric approach against outliers is considered in
Section 7. Apart from the simulations done using artificial data sets (to ex-
plain the procedure proposed in the paper), the paper’s formal results have
been confirmed by testing them on a real-life data set2, obtained from the
University Hospital Centre of Coimbra. These results are found in Section 8.
Section 9 concludes the paper.

2 The “Anti-Bayesian” paradigm

This section is intended to lay a foundation for the rest of the paper. It presents,
relatively chronologically, how the “Anti-Bayesian” paradigm works, explains
its foundations, and records the results that are available for the exponential
family and for multi-dimensional features. We shall also mention how it has
been used in border identification, prototype reduction, text classification and
clustering.

The “Anti-Bayesian” paradigm works by performing all the comparisons
for a testing sample with samples that could be distant from the distributions’

2 We are very grateful to the anonymous Referee of the previous version of the paper,
who requested this.
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means or some other central statistics, such as medians or quantiles. This is
the precise reason why CMQS is referred to as being “Anti-Bayesian” classi-
fication. By way of example, consider Figure 1, where the two classes ω1 and
ω2, have density functions given in “solid” and “dashed” lines, respectively, in
a uni-dimensional space.

Q11 Q12 Q21 Q22

Fig. 1 This figure explain how the “Anti-Bayesian” paradigm works. The Quantile-based
points Q11 and Q12 are computed for ω1, and Q21 and Q22 are computed for ω2. The
classification is based on comparisons with regard to these Quantile-based points and not
with regard to the means. Additional details are in the text.

The “Anti-Bayesian” paradigm first determines two points3 Q11 and Q12

for the first class, ω1, and two points Q21 and Q22 for the second class, ω2.
These points are typically distant from the mean, and could even lie towards
the extreme boundaries of the domain of the feature space. Indeed, they are
determined by certain well-defined quantiles which are also symmetric with
respect to the median of each class; they are referred to as the “Quantile
Statistics” (QS) points of the two classes. The classification is now achieved
by comparing the testing sample, x∗, with Q12 for ω1, and Q21 for ω2. The
reader should observe that although the classification is achieved in a counter-
intuitive manner, the accuracy is exactly or close to the optimal Bayesian
accuracy. Indeed, the testing is done as follows:

– If x∗ < Q12, then x∗ ∈ ω1;
– If x∗ > Q21, then x∗ ∈ ω2;
– If Q12 < x∗ < Q21, the decision is based on D(x∗, Q12) and D(x∗, Q21),

where D(a, b) stands for the distance between the points a and b.

The pioneering and fundamental results of the “Anti-Bayesian” paradigm
published in [31]. These authors provided a theoretical framework for ade-
quately responding to the question of why the border points are more in-
formative for the task of classification. To justify these claims, the authors

3 Initially, the authors of [31] stated that the classification was based on the Order Statis-
tics of the distribution, and this was later rectified [33].
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submitted a formal analysis and the results of various experiments which were
performed for many distributions. The results were clearly conclusive. The
results presented in [31], were then extended in [21] for members of the ex-
ponential family. They theoretically proved that the proposed approach could
attain the optimal bound for symmetric distributions like the Doubly Ex-
ponential, Gaussian, and symmetric Beta. However, the proposed approach
could attain a near-optimal bound for non-symmetric distributions such as
the Rayleigh. Analogous results are derived by Thomas and Oommen [32] for
the multidimensional features.

All of the above results operated with a parametric setting. The results as-
sumed the distributional form for the class-conditional distributions. The de-
parture from the parametric to a nonparametric model (which only assumed
the existence of the training/testing data) were the results that related to
Prototype Reduction Schemes (PRSs), Border Identification (BI), text classi-
fication and clustering. These are briefly stated below.

“Anti-Bayesian” prototype reduction schemes: The objective of PRSs
is to reduce the number of training vectors, while simultaneously attempting
to guarantee that the classifier built on the reduced design set performs as
well, or nearly as well, as the classifier built on the original design set. Some
initial results involving the development of PRSs using an “Anti-Bayesian”
paradigm are found in [34].

“Anti-Bayesian” border identification algorithms: The BI algorithms,
a subset of PRSs, aim to reduce the number of training vectors so that the
reduced set (the border set) contains only those patterns that lie near the bor-
der of the classes, and yet have sufficient information to perform a meaningful
classification. The only-reported results pertaining to “Anti-Bayesian” BI are
found in [35].

“Anti-Bayesian” text classification and clustering: In all the prior recorded
Text Classification (TC) papers reported in the literature, the schemes worked
using the fundamental principle that once the statistical features are inferred
from the syntactic/semantic indicators, the classifiers themselves are the well-
established statistical ones. The pioneering application of “Anti-Bayesian”
principles in TC and clustering were pioneered by two teams, and these results
are contained in [22] and [12], respectively.

The reader will observe that such “Anti-Bayesian” quantile-based PR has
been applied to the above domains, where the data is assumed to follow an
exact distribution. It has also been used for some nonparametric domains, as
explained above. In fact, since the exact distributions of real-world data sets
are usually not known, in working with parametric methods, one often encoun-
ters problems that arise due to distribution-based assumptions, implying that
its application for nonparametric models has been limited. This is the primary
intent of this paper. This paper explains, in detail, how such quantile-based
PR can be extended to the nonparametric world, using both traditional and
kernel-based strategies. The paper analyzes the methodology of such nonpara-
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metric schemes and their robustness, and also presents experimental results
demonstrating their power.

3 Preliminaries of Nonparametric Classification

Suppose the random variables X1, . . . , Xn are arranged in an ascending order.
Let the kth smallest one be denoted by X(k), 1 ≤ k ≤ n. Then, X(1) < · · · <
X(n) are called the order statistics of the random data set. One of the most
important characteristics of the order statistics is that they can be used to
summarize the data set. Indeed, there are situations in which the minimum,
maximum or just the kth data point is of great importance. These statistics
have had a number of applications in inferential topics such as estimation,
sufficiency, normality testing and statistical quality control. For more details
about the properties and applications of order statistics, we refer the reader
to [5,11].

Assume X1, . . . , Xn are independent and identically distributed (iid) ran-
dom variables having the cumulative distribution function (cdf) F (·), and the
probability density function (pdf) f(·). Then, the pdf of X(k) is given by

f(k)(x) = k

(

n

k

)

f(x)F k−1(x)F̄n−k(x)

where F̄ (·) = 1− F (·) and
(

n
k

)

= n!
k!(n−k)! .

In parametric methods, the distribution of the data set is considered to be
known. More precisely, a complete knowledge of the underlying distribution
for the real data set is a prerequisite to pursue the parametric procedure. How-
ever, there are well-established elegant nonparametric techniques to resolve the
problem of estimating the cdf when one is disinclined to assume a distribution,
or when there are situations in which parametric methods possess infirmities
and thus yield weak accuracies. In such cases, one can utilize the methods
which have the potential to estimate a distribution rather than considering a
distribution for the data sets. Two common approaches for the estimation of
the distribution function are the methods that use the empirical distribution
function, and those that use kernel-based schemes, briefly described below.

Let X1, . . . , Xn be iid random variables that come from an unknown cdf
F (·). The empirical distribution function is then defined as

Fn(x) =
1

n

n
∑

i=1

I(Xi ≤ x), (1)

where I(A) is the indicator function on the event A. In other words, for a given
x, it represents the ratio of the random variables among X1, . . . , Xn which are
less than or equal to x. Since the mathematical expectation of Fn(x) is the true
cdf F (x), it is straightforward to show that this estimator is unbiased. More-
over, nFn(x) has binomial distribution with parameters n and F (x); hence, it
can be shown that Fn(x) is a consistent estimator of F (x).
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On the other hand, Rosenblatt [24] pioneered and proposed kernel-based
function estimation in order to estimate the distribution function. The kernel
density estimator (KDE) of the univariate pdf f(·) is given by

f̂(x) =
1

nh

n
∑

i=1

k(
x−Xi

h
),

where h is an scale parameter referred to as the smoothing parameter or band-
width, and k(·) is a kernel function satisfying the following conditions:

– k(·) is a continuous and symmetric function,
–
∫∞
−∞ k(u)du = 1.

Further, the cdf may be estimated by integrating the kernel estimator of
the corresponding pdf. More precisely, based on a sample of size n, the kernel
estimator of the cdf F (·) can be represented as below:

F̂ (x) =
1

n

n
∑

i=1

K(
x−Xi

h
), (2)

where K(u) =
∫ u

−∞ k(t)dt. Altman and Léger [4] studied the problem of band-
width selection for the kernel-based estimation of distribution functions. When
there is no a priori knowledge, the Gaussian kernel is the most widely-used
kernel function, and this is defined as:

k(x) = (2π)−1/2e−x2/2. (3)

In this study, we use the kernel presented in Eq. (3) in all our experiments.
The optimal choice for bandwidth that minimizes the mean integrated squared
error is given by:

h ≈ 1.06σ̂n−1/5, (4)

where σ̂ represents the sample standard deviation and n is the size of training
data set. We refer the interested reader to [26] for applications of this method
in classification.

This study deals with univariate kernel-based density estimation. We refer
the reader to [26] for more information about multivariate kernel-based density
estimation.

4 Proposed Methodology for Nonparametric Classification

Before we proceed to the nonparametric formulation, it is pertinent to highlight
that the parametric CMQS works with the symmetric (n−k+1

n+1 )th and ( k
n+1 )

th

quantiles, which attains the optimal and near-optimal classification accuracy
in symmetric and asymmetric distributions, respectively. In fact, every test
instance is compared to the symmetric quantiles of the classes. Since the form
of the distribution is of primary importance, and since this is what yields the
population’s quantiles, this assumption is a cornerstone requirement.
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Let the random variableX have an univariate cdf F (·), then, the population
quantile of order p, (0 < p < 1) is defined as

ξp = inf{x : F (x) ≥ p}, (5)

which is also referred to as quantile function. Assuming X is a continuous
random variable, the ξp satisfies F (ξp) = p. Additional details of such a method
of approximation is found in [28], and we encourage the interested reader to
this reference for further details.

The distributional assumption in parametric methods, imposes a stringent
restriction. Indeed, one has to choose a distribution, which is then assumed
to be fitted to the data set. In this set up, the quantiles of the assumed or
fitted distribution are derived using Eq. (5). As mentioned earlier, if the dis-
tribution is badly skewed, the classification based on a nonparametric scheme
works more efficiently than a parametric CMQS [17] based on a symmetric
distribution, such as normal distribution. To allow this, we mention that sev-
eral nonparametric estimators for quantile functions have been investigated
for the case of unknown distributions, and in what follows, we present two of
these.

4.1 Nonparametric Classification based on Empirical Quantiles

The Empirical Quantile (EQ), which is defined as the inverse of the empirical
cdf, is one of the nonparametric solutions which has the potential of being
exploited to estimate the quantiles without assuming any distributional form.
Consider the case when X(1), . . . , X(n) are the order statistics of a random
sample of size n from the underlying population with unknown cdf F (·). Then,
using Eq. (1) and Eq. (5), it can be shown that the EQ function is

ξ̂p = F−1
n (p) = X([np]), (6)

where [a] stands for the integer part of real number a. One can thus easily
see that the order statistics play an important role in inferences related to the
quantiles4.

Having characterized the concept of EQs and formalized “Anti-Bayesian”
classification, we are now in a position to present our proposed nonparametric
classification method based on EQs, denoted by NCEQ. To explain the details
of this procedure, we assume that the problem involves a binary classification
involving two classes, ω1 and ω2. Additionally, let (Q̂11, Q̂12) and (Q̂21, Q̂22)
be the symmetric EQs of orders

(

k
n+1 ,

n−k+1
n+1

)

, for k < n/2, of classes ω1

and ω2, respectively. Similar to the criteria of classifying testing samples in
CMQS, there are two (Euclidean or Mahalanobis) distances in NCEQ which
must be compared in order to decide on which class the testing sample belongs
to. There are two differences between the criteria by which NCEQ classifies

4 With going into too many details, we refer the reader to [5], which is a key reference in
this field.
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the testing samples in comparison with the criterion of classification based
on CMQS. Firstly, in NCEQ, the empirical quantiles are utilized instead of
quantiles of distributions. Secondly, the distances are not constant values as
they were in CMQS. In fact, they are dependent to the data sets which makes
them random variables. Hence, prior to proceeding further, a criterion by which
random variables can be compared must be defined. In probability theory and
statistics, “Stochastic order” is defined to determine if a random variable is
less than another. Let X and Y be two random variables such that

Pr(X > x) ≤ Pr(Y > x), ∀x ∈ (−∞,∞). (7)

Then X is said to be smaller than Y in the usual stochastic order, denoted
by X ≤st Y [29]. By employing this concept to compare the distances of each
testing sample x to the corresponding EQs, we can now define the rule of
classifying x in NCEQ as follows

D(x, Q̂12) ≤st D(x, Q̂21) ⇒ x ∈ ω1, (8)

otherwise x ∈ ω2, where D(a, b) stands for the distance between a and b. Note
that the classification rule in (8) is true when Q̂12 ≤st Q̂21. Otherwise, the
EQs Q̂11 and Q̂22 are used instead of Q̂12 and Q̂21, respectively. This rule is
referred to as “dual NCEQ”.

It is pertinent to mention that this methodology, the NCEQ strategy, is
akin to the nonparametric schemes invoked for applying the “Anti-Bayesian”
paradigm for obtaining prototypes [34], Border Identification [35], in text clas-
sification [22] and in clustering [12]. In all these cases5, the respective authors
have empirically computed the quantiles sought for (for example, those that
pertain to the 1

3 and 2
3 quantile locations of the respective distributions), and

thereafter achieved the “Anti-Bayesian” classification. The difference here is
that we have formally applied the EQ-based results from Eq. (6) to get these
locations, and then used the corresponding distance comparisons to formulate
the class assignments.

4.2 Nonparametric Classification using Kernel-based Quantile Estimation

The alternate approach is to estimate the quantile function by inverting the
kernel estimate of the cdf in (2). The solution that uses this approach is said to
involve kernel-based quantile (KQ) estimation. The kernel estimation enables
us to fit an unknown distribution to any data set, using which it is feasible
to find the quantiles of the distributions without requiring us to assume a
distributional form. Of course, this requires the second order properties of
the kernel estimators of both the distribution function and the quantiles, as
explained in detail in [7].

5 To be fair to the authors of [12], [22], [34] and [35], one must grant them the credit
that they were able to achieve their nonparametric results by using the “Anti-Bayesian”
paradigm in multidimensions, as opposed to unidimensions, as we have done here!



Nonparametric “Anti-Bayesian” Quantile-Based Pattern Classification 11

Let us denote the nonparametric classification using KQ estimation by
NCKQ. We will presently demonstrate that this method possesses a superior
performance than the parametric CMQS when it concerns classification for
skewed distributions. Towards this end, we assume a Gaussian kernel with the
bandwidth specified in Eq. (4).

Unlike the NCEQ strategy described above, there is no “prior art” when
it concerns the NCKQ. It is completely different from the methods used in
[12], [22], [34] and [35]. Firstly, the approximations to the distributions of
both classes are done in a novel way. Secondly, the quantiles themselves are
computed using the corresponding computations for these kernel-based ap-
proximations. Finally, the classifications are achieved by invoking the distance
computations on these quantiles. In fact, a similar rule of classifying testing
samples to Eq. (8) is performed with a difference which is utilizing the quan-
tiles of KDE instead of EQs. All of these novel elements constitute some of
the fundamental contributions of this paper.

5 Equivalence of NCEQ and CMQS for Large Samples

In this section, we utilize the so-called “Large Sample” theory to derive certain
asymptotic results that pertain to the equivalence between NCEQ and CMQS
for large samples. This theory revolves around the asymptotic properties of
sample estimators, which is widely used in statistical problems. Toward this
end, first of all, we recall a main theorem regarding the asymptotic distribution
of EQs from [5], using which we point out the convergence phenomena of the
EQs to the corresponding population quantiles6.

Theorem 1 Let X1, . . . , Xn be iid random variables with a cdf F (·) that
is absolutely continuous and whose corresponding pdf is f(·). Also, let k =
[np] + 1. Then, the kth order statistic converges to N(0, 1) in distribution,
such that

√
nf
(

F−1(p)
) X(k) − F−1(p)

√

p(1− p)
−→ N(0, 1), (9)

where N(0, 1) denotes the standard normal distribution.

From Eq. (9), one can deduce that X(k) converges almost surely to F−1(p),
which means that:

P
(

lim
n→∞

∣

∣X(k) − F−1(p)
∣

∣ > ǫ
)

= 0.

Now, by invoking an insight into the following theorem proposed by Alfred
[3], we are able to show the equivalence between both the classification schemes
NCEQ and CMQS for large samples.

6 The proof of the theorem is omitted, since it is found in the literature. Also, we refer
the interested reader to [6] for more information about the various types of convergence.
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Theorem 2 Let X ∼ N(µ1, σ
2
1) and Y ∼ N(µ2, σ

2
2) be univariate normally

distributed random variables. Then,

X ≤st Y if and only if µ1 ≤ µ2 and σ2
1 = σ2

2 .

This leads us to the main result that we have alluded to. Before we proceed,
let us emphasize that as the authors of [31,21] have discussed in detail, there
are two essential conditions in a binary classification that we work with that
have to be imposed on the distributions of the two classes. The first one is that
the distributions of both classes must be identical. These authors have further
categorized these distributions, which have equal shape and scale parameters,
as being identical distributions. The second basic condition is that the second
class is located at the right of the first class. Based on these assumptions, we
present the main result of this section in the following theorem.

Theorem 3 In a binary classification problem, assuming the scale parame-
ters of respective classes are the same, the NCEQ is equivalent to CMQS for
sufficiently large samples.

Proof. Suppose that classes ω1 and ω2 follow class conditional distributions
F1 and F2, respectively. By examining Eq. (9), one can simply observe that for
large sample sizes, the QSs Q̂12 and Q̂21 have approximate normal distributions
as

N

(

F−1
1

(n− k + 1

n+ 1

)

,

(

(n+ 1)
√
nf1
(

F1

(

n−k+1
n+1

))

√

k(n− k + 1)

)−2
)

(10)

and

N

(

F−1
2

( k

n+ 1

)

,

(

(n+ 1)
√
nf2
(

F2

(

n−k+1
n+1

))

√

k(n− k + 1)

)−2
)

, (11)

respectively. As previously mentioned, in the classification problems that we
work with, the scale parameters of all classes are the same, and the distribu-
tions of respective classes are assumed to be symmetric. This leads us to the
following equation

f1
(

F1

(n− k + 1

n+ 1

))

= f2
(

F2

(n− k + 1

n+ 1

))

which, using Eqs. (10) and (11), is equivalent to the assertion that the variances
of Q̂12 and Q̂21 are the same. Moreover, using Eqs. (10) and (11), we see that
the asymptotic expected values of Q̂12 and Q̂21 are Q12 = F−1

1

(

n−k+1
n+1

)

and

Q21 = F−1
2

(

k
n+1

)

, respectively. Hence, assuming Q12 < Q21, it is deduced

that the asymptotic mean of Q̂12 in (10) is less than that of Q̂21 in (11). By
invoking the above in Theorem 2, we can deduce that Q̂12 ≤st Q̂21. In order
to prove our claim, we now need to demonstrate that

D(x, Q̂12) ≤st D(x, Q̂21) ⇐⇒ D(x,Q12) < D(x,Q21). (12)
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Based on almost surly convergence of Q̂12 and Q̂21 respectively to F−1
1

(

n−k+1
n+1

)

and F−1
2

(

k
n+1

)

, observed from (10) and (11), it is deduced that for sufficiently
large data sets, the LHS of Eq. (12) leads to

D(x, Q̂12) ≤st D(x, Q̂21) ⇐⇒ x− F−1
1

(n− k + 1

n+ 1

)

< F−1
2

( k

n+ 1

)

− x

⇐⇒ x <
F−1
2

(

k
n+1

)

+ F−1
1

(

n−k+1
n+1

)

2

⇐⇒ x <
Q12 +Q21

2
,

which is precisely the criterion that CMQS utilizes for classifying the sample
point x. Otherwise, when Q12 > Q21, the equivalence of the mentioned PRs
can be similarly proved based on using the rules of “dual CMQS” and “dual
NCEQ”. Hence the proof is complete.

6 Comparative Nonparametric Results

In this section, we shall demonstrate the strong performance of the NCEQ
and NCKQ methods when they are compared to the Bayesian and Anti-
Bayesian (or CMQS) parametric methods. Their competitive results are illus-
trated by executing rigorous tests for both symmetric (including normal, logis-
tic and Laplace) and asymmetric (including gamma, log-normal, log-logistic
and rayleigh) distributions. For these experiments, we assume that there are
two classes ω1 and ω2 with pdfs f(x) and f(x − θ), respectively, where the
constant θ represents the location parameter. Setting p(x|ω1) = f(x) and
p(x|ω2) = f(x − θ), the Bayesian discriminant function can be determined
using the following rule

p(x|ω1)p(ω1)≥p(x|ω2)p(ω2), (13)

where p(ω1) and p(ω2) are the a priori distributions of classes ω1 and ω2,
respectively. As presented in [30], we also use here the equal priors for both
classes. Althogh, recently, Meegen et al. [19] have used unequal priors in linear
discriminant analysis. Also, Nguyen-Trang and Vo-Van [20] suggested an algo-
rithm to identify the prior probabilities for classification problem by Bayesian
method. Furthermore, to determine the parametric CMQS method, let us use
the (23 )

rd quantile of the class ω1 and (13 )
rd quantile of of the class ω2, where

based on (5), they are found as

Q12 = ξ 2
3

and Q21 = θ + ξ 1
3
,

respectively, where ξp stands for the pth quantile of the pdf f(·). As previously
mentioned, when Q12 > Q21, according to the dual CMQS, the quantiles

Q11 = ξ 1
3

and Q22 = θ + ξ 2
3

are used instead of Q12 and Q21, respectively.



1
4

F
a
tem

eh
M
a
h
m
o
u
d
i
et

a
l.

Table 1 Summarized results of some distributions including Bayesian discriminant functions and quantiles.

Distribution Notation pdf Bayesian classifier ξ 1
3

ξ 2
3

Normal N(µ, σ2) 1√
2πσ2

e
− (x−µ)2

2σ2 x = µ + θ
2 µ − σΦ−1( 2

3 ) µ + σΦ−1( 2
3 )

Logistic Logis(µ, σ) e
− x−µ

σ

σ
(

1+e
− x−µ

σ
)2

x = µ + θ
2 µ − σ log(2) µ + σ log(2)

Laplace Lap(µ, σ) 1
2σ e−

|x−µ|
σ x = µ + θ

2 µ + σ log( 2
3 ) µ − σ log( 2

3 )

Gamma Γ (α, β) xα−1e−x/β

βαΓ (α)
x = θ

{

1 − e
− θ

β(α−1)
}−1 quantile for Γ (2, 1): quantile for Γ (2, 1):

−ξ 1
3
+ log(ξ 1

3
+ 1) = log( 2

3 ) −ξ 2
3
+ log(ξ 2

3
+ 1) = log( 1

3 )

Log-normal LN(µ, σ2) 1
xσ

√
2π

e
− (log x−µ)2

2σ2 log( x−θ
x ) = exp{µ − σ√

2π
} exp{µ + σ√

2π
}

−(log(x−θ)−µ)2

2σ2 + −(logx−µ)2

2σ2

Log-logistic LL(α,β) (β/α)(x/α)β−1

(1+(x/α)−β)2
(β − 1)log

(

x−θ
x

)

= 4 log
(αβ+(x−θ)β

αβ+xβ

)

α21/β α2−1/β

Rayleigh Ray(σ) x
σ2 e−x2/2σ2

log x
x−θ = −θ2+2θx

2σ2 σ
√

2 log( 3
2 ) σ

√

2 log(3)
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All distributions studied in this section, as well as their pdfs, the Bayesian
discriminant functions and quantiles used in the CMQS mechanism are sum-
marized in Table 1. In this table, the quantile function of the normal distri-
bution is denoted by Φ−1(·). Some of the reported details in this table can be
found in [15,21].

To compare the precision of the different classification methods for a bi-
nary classification problem, we generated two data sets, each of size 800, from
classes ω1 and ω2. The accuracy of each algorithm was obtained by testing
it 10 times, each invoking a 10-fold cross-validation mechanism. The results
obtained are tabulated in Table 2 for both cases of symmetric and asymmetric
distributions. In this table, we present the results for various values of θ which
serve to displace the classes sufficiently for the various different distributional
shapes. By examining the results of these experiments, one will observe that
the accuracies of the proposed schemes are almost as high and efficient as their
parametric versions, even though the distributions of the data are considered
to be unknown.

Table 2 Numerical values of the Precision for different classification methods.

Classification Method

Distribution θ Bayesian CMQS NCEQ NCKQ

N(0, 3) 6 83.62 83.62 83.50 83.50
Logis(0, 1) 2 87.60 87.60 87.50 87.50
Lap(0, 3) 10 90.00 90.12 90.00 90.03
Γ (2, 1) 4.5 95.40 95.06 94.67 94.67
LN(0, 1.5) 7 86.57 88.87 87.50 80.00
LL(0, 1) 3 79.37 72.56 74.45 74.40
Ray(2) 3 88.01 87.06 86.98 86.99

From Table 2, one easily observes that the proposed nonparametric classi-
fication methods perform almost as well as Bayesian classifier, while in some
cases, the parametric CMQS method is unable to attain the optimality or
near-optimality of the Bayesian classifier7. In some cases, such as for the Nor-
mal distribution, the parametric CMQS is more accurate than the NCEQ and
NCKQ, although there is a negligible difference between the accuracies. In
addition, the proposed nonparametric methods, which utilize EQs or KDE,
do not depend on the knowledge of the distribution which makes it easier for
the user to compute the discriminant function without paying attention to the
structure of the distribution.

7 It is pertinent to mention that the accuracy of any classifier can and will never exceed
that of a Bayesian classifier. The amazing thing is that we have been able to attain to
an accuracy quite close to the optimal, even though we have worked in a counter-intuitive
manner, and also made no assumption about the underlying distribution!
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7 The Robustness of Nonparametric Methods against Outliers

In real-world scenarios, sometimes data sets appear to contain “outliers”. Out-
liers have various definitions depending on the structure of the data. One of
the most generalized definitions is based on Hawkins’ perspective [13], when
he states that “an outlier is an observation that deviates so much from other
observations as to arouse suspicion that it was generated by a different mecha-
nism”. Barnett and Lewis [8] have defined the outlier in a set of data to be “an
observation or subset of observations which appears to be inconsistent with
the remainder of the set of data”.

To handle the scenario in which the data contains outliers, we formalize
the above perspectives and model them by considering a mixture probability
model. In general, we assume that X1, . . . , Xn are iid observations from a
population with the pdf

f(x) =

m
∑

i=1

pifi(x),

where m is the number of components in the mixture, fi(·) is the pdf of the
ith component, and the {p1, . . . , pm} are the so-called “mixing” weights, such
that pi ≥ 0 and

∑n
i=0 pi = 1. While outlier detection has been investigated by

many authors, Aitkin and Wilson [2] identified outliers in single sample using
mixture models8.

In what follows, we consider a two-component mixture model in which
one of the components, with a large mixing weight represents the majority of
the observations, while the other, with a small mixing weight, represents the
minority of the observations. Observe that the second component may have
different parameters from the first. Specifically, we assume that the data comes
from a population with the pdf:

f(x) = pf1(x; θ1) + (1− p)f2(x; θ2), 0 ≤ p ≤ 1, (14)

where θi (i = 1, 2) represents the parameter vector of the ith component.
In parametric CMQS, the data is assumed to follow an exact distribution

which is often chosen to be Normal, because of its generality. In fact, since
the exact pdf for a given real-world data set is not known, in working with
parametric methods such as CMQS, it is usual to assume a Normal distribu-
tion to the data. But, in practice, since the data may not exactly come from a
Normal distribution, the practitioner encounters various problems due to such
an assumption. For instance, since data containing outliers follows a mixture
model, a data set which is suspected to contain outliers does not lend itself
to be compatible with the common methods. Indeed, in such cases, it is im-
possible to fit an appropriate distribution since it is, in actuality, a mixture of
different distributions. Further, on the other hand, there is no consideration to
accommodate the process of classifying outlying data points within the family

8 For more details about outliers in statistical analysis, we refer the reader to [8,16,25,
27].



Nonparametric “Anti-Bayesian” Quantile-Based Pattern Classification 17

of parametric CMQS schemes. This is why proposing methods that are robust
against outliers (specially when one works with real-life data) is essential. In
these scenarios, using a nonparametric method is a safer and more stable way
to resolve the classification problem. This is because of the presence of noise
and outliers in real-world data sets.

With this in mind, we quantify the efficiency and robustness of NCEQ and
NCKQ, and compare them with the parametric CMQS method. Toward this
end, we invoke a binary classification method assuming that the pdf of the
classes ω1 and ω2 are assumed to be:

fω1(x) = pf1(x; θ1) + (1 − p)f2(x; θ2), 0 ≤ p ≤ 1, (15)

and

fω2(x) = pf1(x− γ1; θ1) + (1 − p)f2(x− γ2; θ2), 0 ≤ p ≤ 1, (16)

respectively, where γ1 and γ2 are the constants representing the displacement
of ω2 with respect to ω1.

To test the schemes and to demonstrate the superior performance of NCEQ
and NCKQ in comparison with the parametric versions, we first generated
800 random data points from each mixture pdfs given in Eqs. (15) and (16)
with p = 0.75 and various choices of skew pdfs f1 and f2. We then classified
them using the parametric CMQS and the presently-proposed nonparametric
schemes. In fact, after generating the data, in all the settings, we assumed that
the distributions were unknown, and the data sets were treated in identical
manners as one would do when one encountered real-life data sets in which the
exact distributions were unknown. Thus, the results of the parametric CMQS
were obtained by assuming that the data followed a Normal distribution pos-
sessing the mean and variance of the sample points [32]. Every algorithm was
executed 10 times using a 10-fold cross-validation scheme. The results of the
experiments are presented in Table 4, which is merely a summary of the re-
sults we have obtained for numerous experiments, but where, in the interest
of brevity, we have only cited a few typical examples. In Table 4, Exp(θ) and
Pareto(α, β) respectively stand for the exponential and Pareto distributions
with the pdfs

f(x) = θe−θx, x > 0, θ > 0

and

f(x) =
αβα

xα+1
, β ≤ x < +∞, α > 0, β > 0,

respectively. Note that Exp(θ) is equivalent to Γ (1, θ) distribution.
From the results given in Table 4, we deduce that the proposed nonpara-

metric PR schemes, NCEQ and NCKQ, are more efficient than the paramet-
ric method in classifying data sets which have outlying points. In other words,
when there are outliers in the data, one can safely assume that, as is done in the
literature [2], the data follows a mixture model. In such situations, nonpara-
metric methods are preferable due to the fact that they are distribution-free.
This superiority is demonstrated by the fact that in Table 4, the NCEQ and
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Table 3 Precision of the CMQS, NCEQ and NCKQ approaches in various mixture models.

No. f1 γ1 f2 γ2 CMQS NCEQ NCKQ

1 Exp(1) 3 LL(1, 1) 20 59.62 85.00 90.25
2 Exp(2) 3 LL(1, 1) 20 58.94 90.19 92.81
3 Exp(3) 3 LL(1, 1) 20 58.75 91.81 94.50
4 Pareto(1, 2) 3 LL(1, 1) 20 60.19 86.81 86.83
5 Pareto(2, 3) 3 LL(1, 1) 20 60.81 77.69 78.00
6 Pareto(2, 5) 3 LL(1, 1) 20 61.56 77.81 77.90
7 LN(0, 0.5) 2 LL(1, 1) 3 59.19 89.56 93.44
8 LN(0, 1.5) 2 LL(1, 1) 3 50.56 89.06 89.50
9 LN(0, 2) 2 LL(1, 1) 3 50.00 76.62 76.00
10 Pareto(1, 2) 3 Γ (2, 2) 20 66.81 93.00 95.75
11 Pareto(2, 3) 3 Γ (2, 1) 20 67.37 80.20 83.87
12 Pareto(2, 5) 3 Γ (2, 1) 20 68.44 78.00 84.75

NCKQ yield much more accurate results than the CMQS. For example, for
the experiment No. 11, the NCEQ and NCKQ yield 80.20% and 83.87% accu-
racies, respectively. As opposed to this, the CMQS yields an accuracy of only
67.37%, which is clearly demonstrated that for such outlier-ridden data, the
currently-proposed non-parametric schemes are superior. Indeed, the perfor-
mance of these new methods is clear. Additionally, it is obvious that in most
cases, nonparametric classification by invoking kernel-based quantiles yields
to an even higher efficiency than the NCEQ. The reason behind this result is
because of the inclusion of additional information about the distributions in
NCKQ, while NCEQ works only with the sample points and does not have
any information about the distributions imposed by the kernels.

8 Testing on Real-life Data

Although the results presented in the previous section support a prima facie

case for our analytic results, to further illustrate the procedure proposed in
this paper, we have tested them on a real-life data set involving the breast can-
cer data which was created by the authors of [23], at the Faculty of Medicine
of the University of Coimbra9. The data set had only 116 instances, rendering
it particularly interesting because the sample size was so small. Thus, if one
resorted to a parametric training scheme, we believe that the corresponding
covariance matrices would have been singular. A histogram-based nonpara-
metric scheme would have also yielded most bins to be empty, which is why,
we believe, that our nonparametric AB method is pertinent.

In this data set, there were ten predictors, all of which were quantitative,
and a binary dependent variable, indicating the presence or absence of breast
cancer. In what follows, we explain how we carried out the procedure only for
the predictor Glucose (mg/dL), while the dependent variable was labeled as
“Healthy” or “Cancerous”.

9 The data may be obtained from the UCI Repository of Machine Learning databases at
archive.ics.uci.edu/ml.
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To evaluate the accuracy and precision of the various methods, in all the
experiments we randomly choose 93 instances (approximately 80 percent of
the total data set) and considered them as the “Training” set, while the re-
maining 23 instances were used as the “Testing” set. Based on the Training
set, the quantiles of order 1

3 and 2
3 were then obtained for both the classes by

invoking the three methods mentioned in the previous sections. The quantiles
based on the parametric CMQS method were determined by fitting a normal
distribution on the data elements of each class. On the other hand, the EQs
utilized in the nonparametric NCEQ method, were easily obtained from Eq.
(6). Finally, the quantiles used in the NCKQ method were derived by invert-
ing the kernel estimate of the cdfs of each class. The KDEs of both classes are
presented in Figure 2, from which one observes that the pdf of the Class ω2

can be considered to be a mixture probability model, as in Eq. (14).
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Fig. 2 Estimates of the kernel density functions for Class ω1 and Class ω2.

To appropriately affect the nonparametric computations, we fitted the fol-
lowing mixture model to the data in Class ω2:

f(x) = 0.82φ(x; 95, 10) + 0.18φ(x; 158, 32), (17)

where φ(x;µ, σ) represents the normal distribution with mean µ and standard
deviation σ. The value of the test statistic for the Kolmogorov-Smirnov test
was obtained as 0.0512 with the corresponding p-value to equal 0.999. Based
on these observations, the pdf described by Eq. (17) was suitable to fit the
data in Class ω2.

The quantiles obtained for the various methods are summarized in Table 4.
This table also includes the precision of the methods obtained by classifying
the instances of the Testing set into the “Healthy” or “Cancerous” classes.
From these results, one can observe that the precision of the nonparametric
methods (73.91%) is markedly higher than that of the parametric (69.56%).



20 Fatemeh Mahmoudi et al.

This appears remarkable, but it can, well, be justified. Indeed, this is be-
cause, in the parametric setup, one would assume a Normal distribution for
the data elements of each class, whereas, one sees that a mixture probabil-
ity model is better suited for the data in Class ω2. More precisely, using the
assumption of a Normal distribution for the data in this class, would be er-
roneous, and lead to faulty indicators, inferences and conclusions. As opposed
to this, the nonparametric methods do not rely on any such assumption, and
yields more genuine results than the parametric ones.

Table 4 The quantiles and the corresponding precision values for the CMQS, NCEQ and
NCKQ approaches.

Quantiles of Class ω1 Quantiles of Class ω2

Method 1/3 2/3 1/3 2/3 Precision
NCKQ 82.7505 91.5221 91.9627 104.6955 0.7391
NCEQ 84 90 92 103 0.7391
CMQS 83.1658 92.3691 93.2437 118.3963 0.6956

To demonstrate the key contribution of this paper, the reader must observe
that this classification was done only on the basis of a single feature. It is also
particularly important and pertinent to point out that the pdf of the second
class (i.e., of ω2) in the present data set, emerged as a result of a mixture

model involving Normal distributions, while the data in the first class (i.e., of
ω1) was Normally distributed. Observe that, in practice, other distributions
or mixture models could have been utilized to fit for the data, just as well.

9 Conclusions

For decades, parametric and nonparametric PR have been achieved using a
Bayesian paradigm, which reduces to comparing the testing sample to cen-
tral descriptors of the respective distributions. In this paper, we have pur-
sued a recently-introduced pioneering and non-intuitive paradigm (the “Anti-
Bayesian” paradigm) of achieving the PR by comparing the testing sample
with quantile points, which could also be quite distant from the mean. It es-
sentially uses the quantiles of the distributions to achieve the PR, and they
attain the optimal Bayesian accuracy for symmetric distributions even though
they operate with a non-intuitive philosophy. This paper explained, in detail,
how such quantile-based PR can be extended to the nonparametric world,
using both traditional and kernel-based strategies. From a fundamental per-
spective, the paper has also used the so-called “Large Sample” theory to derive
strong asymptotic results that pertain to the equivalence between the para-
metric and nonparametric paradigms for large samples. Further, the paper
analyzed the methodology of such nonparametric schemes and their robust-
ness in the presence of outliers modeled using a mixture distribution. As far
as we know, these are the first-reported results within such a nonparametric
domain, and which merge the results from both the paradigms.
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Apart from deriving the analytic results, the paper also included simulation
results and the results by testing the methods on a real-life breast cancer data
set gathered at the University Hospital Centre of Coimbra.

Using the schemes described in [32] amd [34], we believe that the results
of this paper can be extended to multidimensional classification problems.
However, this is currently open since it involves all the three nonparametric
estimation strategies that we have proposed here.
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