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Abstract

A Brain Computer Interface (BCI) is developed to navigate a micro-controller based robot using Emotiv sensors. 
The BCI system has a pipeline of 5 stages- signal acquisition, pre-processing, feature extraction, classification 
and CUDA inter- facing. It shall aid in serving a prototype for physical movement of neurological patients who 
are unable to control or operate on their muscular movements. All stages of the pipeline are designed to process 
bodily actions like eye blinks to command navigation of the robot. This prototype works on features learning 
and classification centric techniques using support vector machine. The suggested pipeline, ensures successful 
navigation of a robot in four directions in real time with accuracy of 93 percent.
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I.	Introduction

Brain computer interfaces are systems which act as a communication 
channel between the human brain and an external device. In the first 

international meeting on Brain Computer Interface (BCI) technology, 
BCIs have been de- fined as an aid to users’ communication and also 
control channels which do not vary on the brain’s normal output of 
peripheral nerves and muscles [1]. Brain Computer Interfaces is a 
growing field which has added a new dimension to Human Computer 
Interaction. BCI development comes mainly from the concern of 
creating a novel interaction channel between users, especially those 
who are unable to control or operate on their muscular movements. 
The motivation for this proposal is to work for people who have 
neurological disorder such as Amyotrophic Lateral Sclerosis (ALS) 
[2], referred to as Lou Gehrig’s disease, Dystonia and Ataxia. Patients 
suffering from such severe disorders are unable to perform any 
muscular movement and in order to help them, we have devised this 
prototype which shall help the patients in physical movements in the 
form of a wheel chair [3]. Brain Computer Interface systems acquire 
signals in the form of energy potential (electroencephalogram signals) 
which are processed and sent to an external device. Previously, non- 
invasive brain computer interfaces’ systems have significantly reduced 
labor and cost, such as in BCI2000 which facilitates applications for 
various domains such as biomedical engineers, computer scientists, 
environment and investigators [4]. Another system has been developed 
which is a software controller that is matched with the individual’s 
residual motor abilities [5]. It was a rehabilitation program carried out 
in a house-like simulation. In current progress, F.Gallan, M. Nuttin and 
E. Lew have developed an asynchronous and non-invasive which tested 
patients through experiments to work on brain computer interface in 

an environment which is complex and aids sound analysis [6]. In a 
recent developed system of brain computer interface in the University 
of Bremen, the makers of the project made a human machine interface 
(HMI)semi-autonomous robot by the name of FRIEND II which was 
executed and compiled by the MASSiVE control architecture [7]. 
Learning from these projects, this paper present a brain computer 
interface system where we are applying machine learning technique, 
support vector machine to the visual patterns of the signals to navigate 
a robot using an Arduino Duemilanove microcontroller [8]. In order 
to extract signals for the brain computer interface, we use an Emotive 
Headset which captures  neuro-signals  [9]. After fetching signals 
from the brain, we  de-noise  or filter the noise and unwanted signal 
interruptions from the input signals. Later we apply Support Vector 
Machine algorithm to classify signals to intents of our choice in 
order to navigate a robot. We used an Arduino Duemilanove micro- 
controller to transfer the output signals in order to control the robot 
using imagined movements.

II.	 Related Work

A brief overview of the work and research done on brain computer 
interface systems helps us gauge the current development.

It has been used in 2003 as a clinical application to study patients 
with motor impairment [10]. Their objective was to see whether 
a patient with a severe cerebral palsy was able to control a brain 
computer interface system. The research concluded with the patients 
being able to produce distinct EEG patterns with an accuracy of 70 
percent. This technique based on EEG biofeedback helped improve 
actual levels of communication ability for patients with physical 
disorders. This application with the use of ’tele monitoring- assisted’ 
BCI facilities served as a motivation to complete this project. In 2000, 
University of California, San Diego conducted a research which 
explored imagination on mu rhythms and readiness potentials which 
yielded to major classification using pattern recognition techniques 
[11].The authors of the research concluded that mu rhythm can not 
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only be changed or modulated by self-generated movement but by 
virtually imagining the movement. The study also concludes that 
self-generated limb actions have distinct properties from single limb 
movements. Such kind of practical BCI systems use identification and 
its classifying with pattern recognition techniques.

In the initial days of brain computer interface, volunteers were 
asked in 2004 to navigate through a 2 dimensional maze using their 
thought processes which was further aided using high field MRI 
scanner [12]. The authors understood real time fMRI to construe the 
spatial distribution of brain functions as commands of brain computer 
interface. With a high field MRI scanner, activities of the brain were 
segregated into 4 distinct functional tasks which were translated 
into commands for four directional cursors. This work helped us in 
understanding how to divide signals in four patterns.

In 2003, Georgia State university brainLab validated brain computer 
interface interactions with respect to real life ap- plications such as in 
communication, creative expression and environment [13]. The authors 
used methods of Human Com- puter Interaction to train brain computer 
interface systems to real world scenarios wherein they also discuss 
challenges of having cumulative BCI outputs with human computer 
interface paradigms to achieve best interaction. This research used 
and tested various domains to validate interactions completed by BCI 
systems. This paper motivated us to improve and enhance the quality 
of life for those with neurological disorders such as ALS.

BCI2000 was a system developed in 2004 which could conduct 
multiple applications using one system [4]. Such an application varies 
on comparisons of different brain signals, algorithms and its output 
formats. BCI2000 can successfully aid biomedical engineers, computer 
scientists and people from various professions in the practical usage 
of an online operation of brain computer interface. Its documentation 
helped us understand the multi-domain  features of existing brain 
computer interface.

Initially, two macaque monkeys were trained to perform movements 
related to limbs [14]. Using bilateral electromyography, the authors 
concluded the presence of a neural representation which can be 
successfully out in a brain-machine interface. Monkeys have been used 
in other projects too where they have completed tasks successfully 
using Brain computer interface systems [15].

In the review of the first international meeting on brain computer 
interface technology, the members discussed that the pivotal element 
in every brain computer interface system is the algorithm which 
converts or translates electro physiological input from a given set of 
users to control external devices. Existing BCI systems work on the 
transformation rate of 10- 25 b/min [1] and such achievement can be 
enhanced using only improved signal processing, user training and 
more efficient algorithms.

III.	Tools and Technology Used

1.	 Emotiv headset [16]: A sensor headset by Emotiv is used for 
practical and commercial usage in research applications for brain 
computer interface. Emotiv heaset in our project is used to detect 
libraries such as mental commands, and facial expressions. The 14 
EEG channel locations are AF3, F7, F3, FC5, T7, P7, O1, O2, P8, 
T8, FC6, F4, F8, AF4. In our project we used Emotiv headset to 
measure facial expression in the form of eye blinks.

2.	 Emotiv control panel: The Headset Setup panel is dis- played by 
default when starting Emotiv Control Panel. The main function 
of this panel is to display contact quality feedback for the 
neuroheadsets EEG sensors and provide guidance to the user in 
fitting the neuroheadset correctly. It is extremely important for the 
user to achieve the best possible contact quality before proceeding 

to the other Emotiv Control Panel tabs. Poor contact quality will 
result in poor quality EEG signals

3.	 Emotiv test bench:  Real-time  display of the Emotiv head- set 
data stream, including EEG, contact quality, FFT, gyro (if fitted 
custom option), wireless packet acquisition/loss display, marker 
events, headset battery level Record and replay files in binary 
EEGLAB format. Command line file converter included to 
produce .csv format. Define and insert timed markers into the 
data stream, including on- screen buttons and defined serial port 
events. Markers are stored in EEG data file. It is used to check 
EEG quality by verifying eye blinks and alpha rhythms.

4.	 Open ViBe [17]: The signals acquired from the sensors are then 
filtered in Open ViBe scenarios which helps in processing of 
the input. Open ViBe acts as a base for signal processing of the 
fetched input.

5.	 MATLAB [18]: After processing signals we used support vector 
machine algorithm using LIBSVM library to pro- cess the input 
signals to intents of our choice. The intents were classified to 
numerals which help in providing input to Arduino micr-controller.

6.	 LIBSVM [19]: LIBSVM is an open source machine learning 
library which is written in C++, and it implements SMO algorithm 
for kernelised support vector machines for use of classification and 
regression. An SVM also uses a discriminant hyperplane to identify 
classes. However, concerning SVM, the selected hyperplane is the 
one that maximizes the margins, i.e., the distance from the nearest 
training points (see Figure 1). Maximizing the margins is known 
to increase the generalization capabilities. As RFLDA, an SVM 
uses a regularization parameter C that enables accommodation 
to outliers and allows errors on the training set. Such an SVM 
enables classification using linear decision boundaries, and is 
known as linear SVM. This classifier has been applied, always 
with success, to a relatively large number of synchronous BCI 
problems. However, it is possible to create nonlinear decision 
boundaries, with only a low increase of the classifiers complexity, 
by using the kernel trick. It consists in implicitly mapping the data 
to another space, generally of much higher dimensionality, using a 
kernel function K(x, y). The kernel generally used in BCI research 
is the Gaussian or Radial Basis Function (RBF) kernel.

Fig. 1. Support Vector Machine Hyperplane.

7.	 Arduino Duemilanove [8]: The Arduino Duemilanove is a micro-
controller  which is powered by any USB connection or with 
external supply. These kits help in developing digital devices for 
the physical world. In our project we have developed the micro-
controller  to build a robot for its navigation using imagined 
movements.
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Fig. 2. Arduino micro-controller.

8.	 CUDA (Compute Unified Device Architecture)[20]: We used a dll 
file of CUDA where the code was imported. The CUDA platform 
was used to enhance the efficacy of the system while using in real 
time and remove time lag. Our project of a BCI system followed 
the given chronology for execution:
•	 Fetching of signals from Emotiv Epoch sensors: 

Here we use sensors to acquire brain signals (in the form of 
EEG) which also includes articulates, noise and unwanted 
elements [21].

•	 Filtering and signal processing:
In order to utilise data received from brain, it is imperative that 
we remove all noise from the signals which may have come 
possibly due to sweat, heart beats or hair on the scalp. This 
achieved using filters in the Open ViBe platform [22].

•	 Extraction of significant features:
This allows significant parts of signals acquired to be 
discriminated and differentiated from others as features in our 
Brain Computer Interface system [23].

•	 Classification of signals:
In this process a set of features are assigned classes which can 
be in correspondence to the navigation required from brain 
signals.

•	 CUDA processing and interfacing:
In this step we interface all platforms to get the application 
working, and enhance the speed of the application by 
interfacing the final end user application on a CUDA platform 
[20].

Various challenges were faced by us in developing an application 
based on Brain Computer Interface system such as:

•	 Acquisition of brain signals from the sensor device Emotiv 
Epoch requires an expert who has used such sensors before. 
A key challenge for us was to set up the device in order to get 
valuable output [9].

•	 The delay in transmission of messages after classifying was 
more than 2 seconds (before applying CUDA) which made 
it difficult for us to read the final output since they were not 
corresponding to the input we were giving in a real time 
scenario [24].

IV.	Brain Computer Interface System Processing Steps to 
End User Application

In this section, the paper discusses various steps of a brain computer 
interface pipeline.

We discuss fetching and acquisition of brain signals in sub-section IV-
A, followed by de-noising methods in sub- section IV-B, extraction of 
valuable features and its classification in sub-section IV-C, subsequent 
classification of signals in sub-section IV-D.

A.	EEG Signal Acquisition Paradigm
Signals are fetched by an Emotiv EPOC [25] which is a wireless 

and multiple channeled neuro-head-gear which has 14 sensors to detect 
electric signals detected from brain. It is used to acquire EEG signals. 
The Emotiv headset follows International10-20 locations: AF3, F7, F3, 
FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4 [26]. A BCI simulator 
is configured to present the visual stimulus to the user while the EEG 
data is being collected. The simulator specified the number classes and 
trials for each class, along with the limits for the duration of trials. For 
training the classifier, eye movements were defined as the classes and 
30 trials were conducted for each class in a random sequence, with 
each trial lasting from  1.5-3.5  seconds. For collecting labelled EEG 
data Graz motor Imagery BCI simulator is used which displays certain 
arrows according to the number of classes defined and on each arrow 
an intent has to be performed. The acquisition client collected the EEG 
data while the stimulus was presented to the user using the simulator. 
Event markers indicate the time instants to mark the beginning and end 
of trials. The data acquired was passed to a visualizer and also written 
into a generic stream writer module that dumped the OpenVibe stream 
to a binary file, with markers indicating the start and end of a trial, the 
appearance of the arrow and the fixation cross.

B.	Pre-processing
For  de-noising  of data, the emotiv provides software which 

completes basic signal processing at a threshold frequency of 85Hz, 
which is then continued by applying a high pass filter with a threshold 
value of 0.15 Hz. For pre- processing the EEG signals, the Emotiv 
headset provides basic signal processing which includes low pass 
filtering of the EEG data with a cut-off frequency at 85 Hz, followed 
by a high pass filter with a cut-off at 0.16 Hz. Finally, a notch filter 
is applied at 50-60 Hz is applied to remove the noise due to supply 
lines interference. Further, our application involves identification of 
the following intents: eye blinks, right eye wink and left eye wink. 
These intents are identified by EEG activity in the alpha frequency 
band, hence we perform band-pass filtering of the EEG signals in the 
range of 1 to 4 Hz.

In our application, butterworth filter is used for band- passing the 
signals generated.

A Butterworth filter of order n at threshold frequency D0 has the 
frequency as depicted in Equation 1.

1
 

	 (1)

C.	Feature Extraction and Classification
This section discusses our feature extraction techniques where we 

use band power of signals to differentiate signals from each other. The 
reason why we used band power features and visual patterns against 
traditional features is given in [27].

Logarithmic value of band power features is taken to derive the EEG 
signals as X, the feature matrix vector as FV of a size of [channelsX1] 
is calculated as given in Equation 2.

 	 (2)

The  band-power  of the EEG signal is used as a fea- ture, which 
is simple to compute and computationally inexpensive. Computation 
of band-power as a feature has been previously used in BCI systems. 
We compute the  band-power  features from EEG signals of a trial, 
represented as a matrix X of size [channelsXsamples] (where channels 
represent the number of channels of the recorded EEG data and samples 
is determined by the sampling rate of the EEG acquisition device 
multiplied by the length of the time window in which the trial data 
is taken) After obtaining features we used LIBSVM for classification 
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which is an open-source  implementation of Support Vector Machine 
[28]. There is comparison of classification accuracies using two 
classifiers: LDA and SVM. In case of multi-class LDA the accuracy is 
low and so to improve multi-class classification accuracy SVM is used. 
The trained classifier is used to identify eye blinks in an online session 
for the subject. 

D.	Transferring Signals to a Robot
Once we fetched the signals from an acquisition device, and process 

it on MATLAB, we interface it on a CUDA platform to remove data 
lag and then navigate a simple robot using Arduino, an open source 
development plat- form [29]. We accelerated our C++ code by moving 
the computationally intensive portions of code to an NVIDIA GPU. 
In addition to providing drop-in library acceleration, we were able to 
efficiently access the massive parallel power of a GPU with a some 
syntactic elements and calling functions from the CUDA Runtime 
API such as global kernel function. In this step we also assigned the 
final output of the classifier to control an external device. We sent the 
output to an Arduino which is used to control the movement of a servo 
motor. After obtaining processed signals from Matlab (with the use 
of OpenViBe), we use the data to move a simple robot with the help 
of arduino, an open source development platform . In this project, an 
Arduino Due Milanove was used with two motors, wheels and wires. 
The robot followed the output which was fed through MATLAB into 
the Arduino once a connection was built using a USB cable.

The results and test cases are shown in Table I.

TABLE I 
Results and Accuracy

TESTs MODULE SUCCESS (in %)

0 Acquisition of signals from device 98

1 De-noising and filtering data 100

2 Feature extraction and classification 91

3 Output on Arduino platform through MATLAB 93

5 Overall system 93

Fig. 3. Process implementation and framework.

V.	 Result and Accuracy

In this section, we discuss the tests undertaken at each step of the 
BCI pipeline and detailed summary of test cases:

•	 Acquisition of signals from device- The input signals were fetched 
from Emotiv Epoch sensor by 10 users where each one of them 
took 20 readings each of every intent (left eye blink, right eye 
blink, both eyes blink, neutral state). Out of the 800 recordings, we 
were successfully able to catch 785 recordings, which gives us the 
accuracy of 98 percent.

•	 De-noising  and filtering of data- In this step, we took all 800 
signals received by multiple users and converted into meaningful 
data by applying band pass filter. All signals were successfully de-
noised giving us an accuracy of 100 percent.

•	 Feature extraction and classification- Using band power features, 
we applied support vector machine algorithm using LIBSVM to 
classify intents. out of the 800 signals, we were successfully able to 
classify 730 input signals which gives us an accuracy of 91 percent.

•	 Output on Arduino platform through MATLAB- After processing 
and classification, out of the 730 signals which were given as input 
to the Arduino Due Milanove micro-controller,  only 681 signals 
were converted into successful actions by the robot for navigation. 
The basic challenge in this step was the interfacing with a 
considerable time lag ( 6 seconds) of MATLAB, Arduino platform 
and Open ViBe in a real time system. This challenge was met by 
integrating on a CUDA platform which using parallel processing 
made the system faster by reducing the time lag to 0.5 seconds. The 
accuracy achieved in this step is 93 percent.

•	 Over all accuracy of the system is the sum average of all above 
mentioned accuracies ie. 95 percent. This result is discussed in 
Table 1.

VI.	Conclusion and Future Work

This project provides a  real-time,  easy to use imple- mentation 
of a Brain Computer Interface system which can identify multiple 
states without a time lag of more than 0.5 seconds. This system does 
not require individual training, and has high accuracies in achieving 
classifica- tion. Its future work involves development of medical aid 
for those with neurological diseases based on EEG signals for different 
intents.
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