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Abstract — Implementation of a neuron like information 
processing structure at hardware level is a burning research 
problem. In this article, we analyze the modified hybrid spiking 
neuron model (the MHSN model) in distributed delay framework 
(DDF) for hardware level implementation point of view. We 
investigate its temporal information processing capability in 
term of inter-spike-interval (ISI) distribution. We also perform 
the stability analysis of the MHSN model, in which, we compute 
nullclines, steady state solution, eigenvalues corresponding 
the MHSN model. During phase plane analysis, we notice that 
the MHSN model generates limit cycle oscillations which is an 
important phenomenon in many biological processes. Qualitative 
behavior of these limit cycle does not changes due to the variation 
in applied input stimulus, however, delay effect the spiking activity 
and duration of cycle get altered. 
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I. InTRoducTIon

The human brain is the most complex dynamical system with 11th 
order of neuron and 15th order of total synaptic connections among 

themselves [1, 2, 3, 4]. Researchers are involve in understanding the 
biophysical dynamics and information processing functionality of the 
brain since last six decades, so that an artificial brain like structure can 
be implemented at software as well as at hardware level [5, 6, 7, 8, 9, 
10, 11, 12]. Hardware level implementation of the artificial brain lies 
in the domain of Neuromorphic engineering in which one implements 
few functionality of a real neuron on a chip [9, 13].  Integrate-and-
fire (IF), leaky integrate-and-fire (LIF) and hybrid spiking neuron 
models are suitable choice for chip level implementation due to their 
simple mathematical treatment [3, 9, 13, 14]. These neuron models are 
threshold based models [8, 15, 16]. For hardware level implementation 
of a threshold based neuron model, one has to focus on two prime 
issues, namely, (i) How to implement the reset condition of membrane 
potential after spiking activity? (ii) How to maintain the threshold 
value and control the variability of threshold value due to the rise in 
temperature of the chip [3, 5, 9, 17]. Izhikevich two dimensional hybrid 
spiking neuron model has the mechanism to overcome the first issue 
at its hardware level implementation [3].  But it is still a challenging 
problem to fix the variability in threshold value at implementation 
level, which generates a large variation in spiking pattern.

A varying time delay occurs in neuronal information processing 
system due to the varying length of axons, structure of neurons and flow 
of neurotransmitters form one region to another region into the nervous 
system [10, 18, 19]. Distributed delay framework suggested by Mar at. 
al. [6] has the virtue to incorporate the varying time delay in a neuron 
model in terms of distributed delay kernel functions. Karmeshu et. al. 

[20, 21] has investigated the LIF model with stochastic input stimulus 
in DDF and has explained many interesting neurological phenomenon 
such as transient bimodality in spiking activity of a neuron. 

Bhati et. al. [22] has calculated the analytical explicit expressions 
for membrane potential and recovery variable in hybrid spiking neuron 
model with constant input stimulus in DDF with minor modification. 
Choudhary et. al. [23] has investigated the spiking activity of the 
modified hybrid spiking neuron model in DDF (MHSN model) with 
four different kinds of input stimulus in DDF and noticed very small 
variability in its spiking pattern against large variation in input stimulus. 

In this article, we perform the stability analysis and temporal 
information processing capability of hybrid spiking neuron model in 
DDF. The article is organized into five sections. Section II describes 
the MHSN model in detail. Section III investigates the temporal 
information processing of the MHSN model. Section IV is devoted in 
stability analysis of the MHSN model.  In this section, we also perform 
the phase analysis of the model. Last section V contains the conclusion 
and scope for the future research work.  

I. The ModIfIed hybRId sPIkIng neuRon Model In ddf

Izhikevich [3] has suggested a family of threshold based neuron 
models governed by two state variables, namely membrane potential 

(V ) and recovery variable (U ), in term of a system of coupled 
differential equations.

( ) ( )dV f V U E V I
dt

= − − +  (1)

( )dU a bV U
dt

= −  (2)

with after spiking reset condition (threshold  constraint): if TV V≥
then RV V← and IU U U← + .

Here, ( )f V is membrane potential-current relationship function. 

I , E , TV  and RV   are input stimulus, reversal potential, membrane 

potential threshold and resting potential, respectively. a and b  are 
model parameters.

Following Bharti et. al. [22], the MHSN model takes the form

0

( ) ( )
tdV K t V d U I

dt
τ τ τ= − − +∫

 
(3)
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( )dU a bV U
dt

= −
 (4)

Here, ( )K t is the distributed delay kernel function. There may be 

a number of choices of ( )K t , but Bharti et. al. [22] has studied the 
MHSN with exponential distributed delay kernel function, which is 
also known as weak delay. In presence of exponential distributed delay 
kernel function MHSN model becomes

( )

0

( )
t

tdV e V d U I
dt

η τη τ τ− −= − +∫
 (5)

( )dU a bV U
dt

= −
 (6)

with initial condition: 0V V= and 0U U= at 0t = . Here η
is the delay parameter. Eqns. (5) and (6) make a system of coupled 
integro-differential equations. Its investigation is a complex task due 
to the presence of integro-differential term. By applying Laplace 
transform and inverse Laplace transform, Bharti et. al. [22] has 

calculated the explicit expression for V and U  with constant I
which given as below. 

Case: [1] when 4a b≥ , the membrane potential and recovery 
variable takes the form

1 1
1 1 1( ) t tV t A B e C eα β= + +

 (7)
where 

1
1 1

aIA
α β

=
,

1 1 0 0 0
1

1 1 1

( )
( )

V aV U I aIB α α η
α α β

+ − + + +
=

− ,
1 1 0 0 0

1
1 1 1

( )
( )

V aV U I aIC β β η
β α β

+ − + + +
= −

−
and 

2 2
2 2 2 2( ) t ttU t A B e C e D eα βη−= + + +

 (8)

where 

0
2

2 2

( )ab V IA
α β

+
=

,  
2

2 2( )( )
abIB

α η β η
=

+ + , 
2
2 0 0 0 2 0

2
2 2 2 2

[ ( ) ] ( )
( )( )

U ab V I U ab V IC α η η α η
α α η α β

+ + + + + +
=

+ −

2
3 0 0 0 3 0

3
3 3 3 3

[ ( ) ] ( )
( )( )

U ab V I U ab V ID β η η α η
β β η α β

+ + + + + +
= −

+ −

Case: [2] when 4a b< , the membrane potential and recovery 
variable takes the form

3
3 3 3

3 3 3 3

( ) [ cos
( )sin ]

tV t A e B t
B C t

α β
α β

= + +
+  (9)

where 

3 2 2
3 3

aIA
α β

=
+ , 

2 2
3 3 0

3 2 2
3 3

( )V aIB α β
α β
+ +

=
+ , 

2 2
3 3 0 0 3

3 2 2
3 3

( )( ) 2aV U I a IC α β η α
α β

+ − + + +
=

+
and

4
4 4 4 4

4 4 4 4

( ) [ cos
( )sin ]

ttU t A B e e C t
C D t

αη β
α β

−= + +
+ +  (10)

where 

2 2
4 0 0 0 4 4

4 2 2 2 2 2
4 4 4 4 3 4 4

( 2 )[ ( ) ] ( )
( )[ (2 2 ) 2( 2 )]

ab V I U UA η α η η α β
α α β α η α β η ηα

+ + + + + +
= −

+ − − + + + ,

0 0
4 2 2

4 4
2 2 2
4 4 0 0 0 4 4

2 2 2 2 2
4 4 4 4 4 4

( )
( )

( 2 )[( 2 ){ ( ) } ( )]
( )[ (2 2 ) 2( 2 )]

ab V I UB

ab V I U U

η η
α β

α η η α η η α β
α β α η α β η ηα

+ + +
=

+

− + + + + + +
+

+ − − + + +
, 

2
0 0 4 4

4 2 2 2 2 2
4 4 4 4 4

2 2
4 0 0 0 4 4

2 2 2
4 3 4 4

( ) (2 )
( ) ( )

[( 2 ){ ( ) } ( )]
[ (2 2 ) 2( 2 )]

ab V I UC

ab V I U U

η η α β
α β α α β

η α η η α β
α η α β η ηα

+ + + +
= − +

+ +

+ + + + + +
− − + + + ,

2
4 4

4 0 2 2
4 4 4

2 2
0 0 0 4 4

2 2 2
4 3 4 4

[( 2 )( )
( )

{ ( ) } ( )]
[ (2 2 ) 2( 2 )]

D ab V I

ab V I U U

β η α
α α β

η η α β
α η α β η ηα

+
= + +

+

+ + + + +
− − + + +

It is a too complex to further investigate the MHSN model with 
integro-differential equation term. In presence of intego-differential 

term, the membrane potential evolution process ( )V t becomes a 

non-Markovian process. In order to transform ( )V t into a Markovian 
process, the MHSN model can be extended in infinite dimensional 
space [20, 24]. Following Choudhary et. al. [23], substitution of 

( )

0

( )
t

te V dη τη τ τ− −∫
by 0 ( )X t in the MHSN model and after some 

simplification, the three dimensional MHSN model with exponential 
distributed delay kernel function in extended space takes the form:

0
dV X U I
dt

= − +
  (11)

( )dU a bV U
dt

= −
 (12)

0
0( )dX V X

dt
η= −

 (13)
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Eqns. (11), (12) and (13) make a system of coupled linear differential 
equation. Its analytical as well as simulation based investigation is an 
easier task. We consider the above stated three dimensional MHSN 
model in our investigation. We perform the simulation based study 
to investigate the temporal information processing capability of the 
MHSN model in the next section.

II. TeMPoRAl InfoRMATIon PRocessIng

Spiking activity is an essential feature in neuronal information 
processing [14, 25]. A neuron encodes processes and transmits 
information in the term of epoch of membrane potential (spike) [4, 14, 
25, 26]. Rate coding and temporal coding are two important encoding 
strategies in neuronal information processing [11, 14, 16, 25].  Time 
interval between two consecutive spikes, which is also known as 
inter-spike-interval (ISI), is the important parameter for temporal 
coding scheme [1, 14, 25]. Here, ISI distribution becomes a prominent 
statistical measure to quantify the encoded temporal information. 
Mathematically, the investigation of ISI distribution becomes the first-
passage-time (FPT) problem, i.e. the study of time interval distribution 
of first occurrence of the membrane potential epoch [11, 20, 21, 26].  
The analytical study of the FPT problem associated with the neuron 
model is a difficult task. Explicit expression of solution for the FPT 
problem is available only for the IF model and in some special cases 
for the LIF model [20, 21]. To this end, simulation based investigation 
technique becomes an important tool for obtaining the approximate 
ISI distribution and for investigating other related neuronal dynamical 
features.

We investigate the ISI distribution for the MHSN model with four 
different kinds of input stimuli, namely, constant input, Gaussian 
distributed input, uniformly distributed input and stochastic input 
stimuli. We apply the Monte-Carlo simulation technique to yield 
the approximate solution of the ISI distribution. There are many 
simulation techniques suggested in literature, we use the following 
Euler-Maruyama simulation strategy to simulate the three dimensional 
MHSN model [27, 28]. 

The total simulation time T Time is divided into n  equal 

subintervals 0 1 20 .... nt t t t T= < < < < =  with size /h T n=
. In each subinterval, a discrete value of the membrane potential is 

calculated at the upper time limit. Let 0V , 0U
 
 and 0X

 
be the initial 

values of the variablesV , U and X then in subinterval 1[ , ]i it t−  
these variables attains the following value. 

0

0 0 0

( ) ( 1) ( ( 1) ( 1)) ( )
( ) ( 1) ( ( 1) ( 1))
( ) ( 1) ( ( 1) ( 1))

iV i V i X i U i h I t
U i U i a bV i U i h
X i X i V i X i hη

= − + − − − +
= − + − − −
= − + − − −  (14)

for 1, 2,...,i n= . Here ( )iI t  is the value of applied input 

stimulus thi  discrete time point. Following Izhikevich [3], we use

0.02a = , 0.2b = , 0 65V = − , 0 0 13U bV= = − , 0 0X =

, 8IU =  and 30TV =  in our investigation. Fig. 1 illustrates the 

ISI distribution for the MHSN model with delay parameter 0.1η = −
. Here, subfigure (a) depicts the ISI distribution for constant input 
stimulus of intensity 0.1. Subfigures (b) and (c) are the ISI distribution 
obtained for standard Gaussian distributed input stimulus and uniformly 

distributed input stimulus in range [0,1], respectively. Qualitative 
behavior of these three ISI distributions is identical. As shown in Fig. 
1, they are triangular distributed.

(a)

(b)

(c)

Fig. 1. ISI Distribution for the MHSN Model with (a) Constant Input.  
(b) Gaussian Distributed Input (c) Uniformly Distributed Input

The ISI distribution for the considered model with stochastic input 

stimulus having meanµ  and noise intensity σ is shown in Fig. 2. 
It has three subfigures corresponding to three different combination 

of parameter valuesη , µ andσ . Subfigure (a) depicts the ISI 
distribution for (η ,µ ,σ ) = (−0.1,1,0.1). It has the qualitatively 
behavior similar to the Fig. 1. In subfigure (b) and (c), we use (η
,µ ,σ ) = (−1,1,0.1) and (η ,µ ,σ ) = (−1,0.5,0.5) parameter 
values, respectively, and notice the similar qualitative behavior but 
quantitatively changed behavior in ISI distribution patterns. As shown 
in subfigure (b) and (c), we notice the shift in ISI distribution towards 
its origin which indicates that the spiking activity of the MHSN model 
increases due the increase in negative value of delay parameter. This 
increase in delay parameter works as a memory element so that the 
membrane potential of the neuron reaches to its firing threshold in 
comparatively less time.
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(a)

(b)

(c)

Fig. 2. ISI Distribution for the MHSN Model with stochastic input and 
(a) 0.1η = −  (b) 1η = −  (c) 1η = −

In order to perform stability in next section, we compute the 
eigenvalues and steady state solution of the three dimensional MHSN 
model. Here, we also complete the phase plane analysis of the MHSN 
model.

III. sTAbIlITy AnAlysIs

Investigation for the evolution of the behavior of state variables is 
studied under sensitivity analysis [13, 19, 24]. The MHSN model in 
extended space is a system of three coupled differential equations. It 
includes two important tasks. In first task, we compute the nullclines 
and steady state solution for the dynamical system where as second task 
deals with the phase plane analysis [13, 24]. In phase plane analysis, 
one analyzes the evolution of temporal behavior of state variables 
in phase space. In our study, we compute the nullclines, steady state 
solution, eigenvalues for the dynamical system and perform the phase 
plane analysis.

The MHSN model given as in Eqns. (11), (12) and (13), is a 
system of three coupled linear differential equations. Their matrix 
representation become [13]

.
Y AY B= +  (15)

where 0( , , )TY V U X= , 

0 1 1
1 0

0
A ab

η η

− 
 = − 
 − 

 and

( ,0,0)TB I= .

Nullclines and Steady State Solution:
Nullclines are the trajectories in phase space along which the 

behavior of the state variable changes [13, 24]. Intersection point of 
these trajectories yields the steady state solution [13]. Nullclines for the 
dynamical system can be computed by substituting the first derivative 

term equal to 0 [24]. Substitution of 
.

0Y = in the dynamical system 

defined in Eq. (15) results the required nullclines as 0 0X U I− + =

, 0bV U− =  and 0 0X V− = . Nullclines for the investigated 
dynamical model result a system of three linear simultaneous equations.  
On solving these simultaneous equations, we get steady state solution

0( , , ) , ,S S S I bI IV U X
b I b I b I

 =  − − −  , provided b I≠ . Here, we 
obtain a single steady state which can be a state or an unstable state 
which is investigated in next subsection phase plane analysis.  Here, 

we further notice that the model parameter a   and delay parameter η  
don’t affect the steady state solution of the model.

Computation for the Eigenvalues:

Let λ be an eigenvalue of the dynamical model (15), and then it 

can be computed by solving the equation | | 0A Iλ− =  [9, 22]. Its 
simplification results a cubic polynomial

3 2(1 ) ( 1) 0ab abλ η λ λ η+ + + + + =  (16)

Following the Cardano’s method for solving a cubic polynomial, 

substitution of 1
3

Z ηλ + = + − 
 

 into Eq. (16) and after some

simplification results [29]

3
1 2 0Z K Z K+ + =  (17)

where 
2

1
(1 )

3
K ab η+

= −  and 
3

2
2(1 ) 3(1 ) 9( 1)

9
ab abK η η+ − + + +

= .

Following Lal [29], here two cases exist.

Case 1: If 1 0K =  i.e. 1 3abη = − ±
Then eigenvalues for the investigated dynamical system become α , 

 αω  and 2αω , where 
1

3
2( )Kα = and ω  is the cube root of unity.
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Case 2: Otherwise, 1( 0)K ≠  

Then eigenvalues takes the form as 1 2( )P P+ , 2
1 2( )P Pω ω+  

and 2
1 2( )P Pω ω+ , where 

3 2
2 1 2

1
4 27

2 108
K K KP − −

= − +  and 

3 2
2 1 2

2
4 27

2 108
K K KP − −

= − − .

Phase Plane Analysis: 
Phase space is a multidimensional space whose coordinates are 

the system variables [2, 13, 24]. It clearly depicts the dynamical 
behavior of the state variables [2, 13]. Dynamical system given in Eq. 

(15) has three state variablesV , U and 0X , thus we obtain a three 
dimensional phase space. We simulate this dynamical system same 
parameter values and simulation strategy as given in Section III. 

In Fig. (3), subfigure (a), (b) and (c) show the temporal evolution 
of state variable with constant input, Gaussian distributed input and 
uniformly distributed input stimuli, respectively. Here, we observe the 
limit cycle oscillations generating a spiral structure due to the threshold 
constraint. This limit cycle oscillation is an important aspect in many 
biological processes [2]. 

(a)

(b)

(c)

Fig. 3. Phase Plane Analysis for the MHSN Model with 
(a) Constant Input (b) Gaussian Distributed Input 
(c)    Uniformly Distributed Input

Fig. 4 shows the mutual behavior of state variables in the MHSN 
model with stochastic input stimulus. Here subfigure (a) reflects the 
evolution of state variables with small magnitude of delay parameter

0.1η = − and it qualitatively similar with the trajectories obtained 

in Fig. 3. We increase the magnitude of η  to -1 and maintain the rest 
parameter values same as taken for Fig. (2). Here, once again, we obtain 
limit cycle oscillation but time duration of the cycle reduces. This 
finding suggests that the development of values in state variables occur 
in quicker time so that the spiking activity of the neuron increases.  
From Figs. 3 and 4, it is evident that the phase plane dynamics of 
the model does not alter due to the different kinds of input stimulus; 

however parameter η  reduces the time duration of cycle.
(a)

(b)

(c)

Fig. 4. Phase Plane Analysis for the MHSN Model  with stochastic input. 
(a) 0.1η = −  (b) 1η = −  (c) 1η = −

IV. conclusIon And fuTuRe woRk

The detailed investigation of the MHSN model in term of 
information processing capability reveals that the spiking activity of 
the considered neuron model is invariant under the influence of a large 

fluctuation of applied input stimulus. The state variable 0X of the 

model in extended space along with the delay parameter η  curtails the 
variation in spiking activity. However, increase in the negative value of 

η  increases the spiking of the neuron. This delay parameter works as 
a memory element and helps the membrane potential to reach its firing 
value in quicker time so that the ISI reduces and the ISI distribution 
gets scaled with minus values as depicted in Fig. 2. We notice a single 
unstable steady state solution of the model during stability analysis 
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which is independent of delay parameter. Choudhary et. al. [30] has 
shown that “the distributed delay has no effect on stationary state 
membrane potential distribution of a LIF neuron”. In addition, we say 
that the distributed delay has no effect on steady state solution of the 
threshold based linear neuron models. 

Being the extension of Izhikevich neuron model [3], the MHSN 
model has the inherited property related to the implementation of after 
spiking reset condition at hardware level. Invariant spiking activity 
of the MHSN model reveals that the model is capable to handle the 
threshold variability and other noisy parameters like temperature 
increment in the chip. Lim et. al. [9] has implemented the neuristor-
based leaky integrate-and-fire neuron model with aforementioned 
two critical issues to form an artificial neural network at hardware 
level. As the MHSN model is free from above stated prime issues, we 
recommend that the MHSN model should be a better choice for chip 
level implementation.
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