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Abstract

This paper outlines a testing procedure for assessing the relative out-of-sample predictive accuracy of multiple condi-
tional distribution models, and surveys existing related methods in the area of predictive density evaluation, including
methods based on the probability integral transform and the Kullback-Leibler Information Criterion. The procedure
is closely related to Andrews’ (1997) conditional Kolmogorov test and to White’s (2000) reality check approach, and

involves comparing square (approximation) errors associated with models %, ¢ = 1, ..., n, by constructing weighted
2
averages over U of I/ ((Fi(u|Zt, 9:) — Fo(u|Zt, 90)) > , where F0(|) and FZ(‘) are true and approximate

distributions, w4 € U, and U is a possibly unbounded set on the real line. Appropriate bootstrap procedures for
obtaining critical values for tests constructed using this measure of loss in conjunction with predictions obtained
via rolling and recursive estimation schemes are developed. We then apply these bootstrap procedures to the case
of obtaining critical values for our predictive accuracy test. A Monte Carlo experiment comparing our bootstrap
methods with methods that do not include location bias adjustment terms is provided, and results indicate coverage
improvement when our proposed bootstrap procedures are used. Finally, an empirical example comparing alternative

predictive densities for U.S. inflation is given.
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1 Introduction

In the management of financial risk in the insurance and banking industries, there is often a need for
examining confidence intervals or entire conditional distributions. One such case is when value at
risk measures are constructed in order to assess the amount of capital at risk from small probability
events, such as catastrophes (in insurance markets) or monetary shocks that have large impact on
interest rates (see Duffie and Pan (1997) for further discussion). These considerations in part
account for the development over the last few years of a new strand of literature addressing the
issue of predictive density evaluation. Some of the important recent papers in this area include
Diebold, Gunther and Tay (DGT: 1998), Christoffersen (1998), Bai (2003), Diebold, Hahn and
Tay (1999), Hong (2001) and Christoffersen, Hahn and Inoue (2001), and Giacomini (2002).! This
paper has two primary objectives. First, we build on the results of Corradi and Swanson (2003a)
by outlining a procedure for assessing the relative out-of-sample predictive accuracy of multiple
conditional distribution models that can be used with rolling and recursive estimation schemes.
Second, we provide a brief survey of related techniques, such as those based on the use of the
probability integral transform and the Kullback-Leibler Information Criterion (KLIC).

The literature on the evaluation of predictive densities is largely concerned with testing the
null of correct dynamic specification of an individual conditional distribution model. However, in
the literature on the evaluation of point forecast models it is acknowledged that all models in a
group that is being evaluated may be misspecified (see e.g. White (2000) and Corradi and Swanson
(2002)). In this paper, we draw on elements of these two literatures in order to provide a test for
choosing among a group of misspecified out-of-sample predictive density models. Reiterating our
above point, the focus of most of the papers cited above is that the density associated with the true
conditional distribution is clearly the best predictive density. Therefore, evaluation of predictive
densities is usually performed via tests for the correct (dynamic) specification of the conditional
distribution. Along these lines, by making use of the probability integral transform, DGT suggest
a simple and effective means by which predictive densities can be evaluated. Using the DGT

terminology, if py(y|Q:—1) is the “true” conditional distribution of y;|€%—1, then p;(y:|%—1) is an

!Ten years ago, when Clive Granger was asked by one of the authors of this paper in an interview what he thought
the most important future areas in time series analysis were, he replied that predictive density construction and

evaluation was one of the most critical areas which needed to be developed.



identically and independently distributed uniform random variable on [0, 1]; so that the difference
between an empirical version of p;(y:|€%—1) constructed using estimated parameters and the 45
degree line can be used as measure of goodness of fit.> A feature common to the papers cited
above is that the null hypothesis is that of (dynamic) correct specification. Our approach differs
from these as we do not assume that any of the competing models (including the benchmark) are
correctly specified.> Thus, we posit that all models should be viewed as approximations of some
true unknown underlying data generating process. For this reason, it is our objective in this paper
to provide a conditional Kolmogorov test, in the spirit of Andrews (1997), that allows for the
joint comparison of multiple misspecified conditional distribution models, for the case of dependent
observations. In particular, assume that the object of interest is the conditional distribution of a
scalar, Y;41, given a (possibly vector valued) conditioning set, Z!, where Z! contains lags of Y1
and/or lags other variables. Now, given a group of (possibly) misspecified conditional distributions,
Fl(u|Zt,91r), ooy Fo(u]Z1,6),), assume that the objective is to compare these models in terms of
their closeness to the true conditional distribution, Fy(u|Zt,60p) = Pr(Yip1 < u|Zb). If m > 2,
we follow White (2000), in the sense that we choose a particular conditional distribution model
as the “benchmark” and test the null hypothesis that no competing model can provide a more
accurate approximation of the “true” conditional distribution, against the alternative that at least
one competitor outperforms the benchmark model. However, unlike White, we evaluate predictive

densities rather than point forecasts. Needless to say, pairwise comparison of alternative models,

2Using the same approach, Bai (2003) proposes a Kolmogorov type test based on the comparison of p; (y:|Q:—1, é\T)
with the CDF of a uniform on [0,1]. As a consequence of using estimated parameters, the limiting distribution of
his test reflects the contribution of parameter estimation error and is not nuisance parameter free. To overcome this
problem, Bai (2003) uses a novel device based on a martingalization argument to construct a modified Kolmogorov
test which has a nuisance parameter free limiting distribution. His test has power against violations of uniformity but
not against violations of independence. Hong (2001) proposes an interesting test, based on the generalized spectrum,
which has power against both uniformity and independence violations, for the case in which the contribution of
parameter estimation error vanishes asymptotically. For the case where the null is rejected, Hong (2001) also proposes
a test for uniformity that is based on a comparison between a kernel density estimator and the uniform density,
and that is robust to non independence (see also Hong and Li (2003)). Diebold, Hahn and Tay (1999) propose a
nonparametric correction for improving the density forecast when the uniform (but not the independence) assumption
is violated. Finally, Bontemps and Meddahi (2003a,b) suggest a GMM type approach for testing normality and various
distributional assumptions.

3Corradi and Swanson (2003c) allow for dynamic misspecification under both hypotheses.



in which no benchmark need be specified, follows from our results as a special case. In our context,
accuracy is measured using a distributional analog of mean square error. More precisely, the squared
(approximation) error associated with model 7, i = 1, ..., m, is measured in terms of the average over
Uof E ((Fi(u\Zt“, 03) — Fo(u| 2t 60)>2> , where u € U, and U is a possibly unbounded set on
the real line.* Tt should be pointed out that one well known measure of distributional accuracy is
the Kullback-Leibler Information Criterion (KLIC), in the sense that the “most accurate” model
can shown to be that which minimizes the KLIC (see Section 2 for a more precise discussion).
Using the KLIC approach, Giacomini (2002) suggests a weighted version of the Vuong (1989)
likelihood ratio test for the case of dependent observations, while Kitamura (2002) employs a
KLIC based approach to select among misspecified conditional models that satisfy given moment
conditions.® Furthermore, the KLIC approach has been recently employed for the evaluation of
dynamic stochastic general equilibrium models (see e.g. Schorfheide (2000), Fernandez-Villaverde
and Rubio-Ramirez (2001), and Chang, Gomes and Schérfheide (2002)). For example, Fernandez-
Villaverde and Rubio-Ramirez (2001) show that the KLIC-best model is also the model with the
highest posterior probability. In general, there is no reason why our measure of accuracy is more
“natural” than the KLIC, or vice-versa. However, in the next section we outline how certain
problems (such as comparing conditional confidence intervals) that are difficult to address using
the KLIC can be handled quite easily using our measure of distributional accuracy.

The limiting distribution of the suggested statistic turns out to be a functional of a Gaussian
process with a covariance kernel reflecting both (dynamic) misspecification and parameter estima-
tion error (PEE). The limiting distribution is not nuisance parameter free and critical values cannot
be directly tabulated. Valid asymptotic critical values can be obtained via an empirical version of
the block bootstrap which properly takes into account PEE, however. The PEE contribution is
summarized by the limiting distribution of P~1/2 ZtT;b% (@ — 9T> , where R denotes the length of
the estimation period, P the number of recursively estimated parameters, @t is either a recursive
m—estimator constructed using the first ¢ observations or a rolling m—estimator constructed using

observations from t — R + 1 to t, and @ is its probability limit. Intuitively, in the recursive case,

4To the best of our knowledge, the only other papers in which this measure is considered are Corradi and Swanson

(2003a,b).
0Of note is that White (1982) shows that quasi maximum likelihood estimators (QMLEs) minimize the KLIC,

under mild conditions.



earlier observations are used more frequently than temporally subsequent observations, while in
the rolling case, observations in the center of the sample are used more frequently than observa-
tions either at the beginning or at the end of the sample. This introduces a location bias to the
usual block bootstrap, as under standard resampling with replacement schemes, any block from
the original sample has the same probability of being selected.® We consider two solutions to this
problem. First, we modify the usual resampling scheme and add an adjustment term which corrects
for the bootstrap location bias. Second, we retain the usual resampling scheme, but add additional
adjustment terms to those needed when our modified resampling scheme is used. Additionally, we
consider cases in which all parameters are jointly estimated as well as cases where the conditional
mean parameters are first estimated via OLS or NLS, and the error variance is subsequently es-
timated using the residuals from the conditional mean model.” In order to assess the usefulness
of our bootstrap procedures, we carry out a series of Monte Carlo experiments evaluating finite
sample coverage probabilities of our “PEE” bootstraps for rolling and recursive estimation schemes
with analogous bootstrap methods that do not include our “adjustment” terms. Results indicate
that the adjustment terms lead to improved coverage probabilities. Thus, our procedures should
prove useful for constructing critical values for our predictive density accuracy tests.

The rest of the paper is organized as follows. Section 2 outlines the setup, presents the predictive
density accuracy test, and states the asymptotic properties of the test statistic for both the case
of recursive and rolling parameter estimation schemes. Section 3 is broken into four subsections.
The first two subsections outline bootstrap procedures for mimicking the limiting distribution of
parameter estimation error in rolling estimation schemes, while the third subsection summarizes
the results of Corradi and Swanson (2003a) for recursive estimation schemes. Finally, the fourth
subsection applies the results of the previous two subsections in order to obtain asymptotically

valid critical values for the predictive density accuracy test. Section 4 contains the results of a

5Note that in the fixed sampling scheme, we just need to take into account the contribution of VR ({/9\3 - HT),
whose limiting distribution is properly captured by “standard” block bootstrap techniques, using for example the
results of Goncalves and White (2003). This case has been considered by Corradi and Swanson (2003b), within the

context of in sample evaluation of conditional misspecified distribution models.
"From a theoretical perspective, it should be noted that all of our rolling estimation scheme results are new

to this paper. Additionally, our recursive estimation scheme results for the case where parameters are estimated
sequentially are new, while those for the joint estimation case summarize previous results reported in Corradi and

Swanson (2003a).



small Monte Carlo study of the bootstrap procedures developed in the paper, in particular (i) we
compare the relative coverage probabilities for recursive and rolling schemes, and (ii) we evaluate
the importance of the adjustment term in our bootstrap. In Section 5, an empirical example based
on predicting U.S. inflation is presented. Finally, concluding remarks are gathered in Section 6.
All proofs are in an appendix. Hereafter, P* denotes the probability law governing the resampled
series, conditional on the sample, E* and Var* the mean and variance operators associated with P*,
0p(1) Pr —P denotes a term converging to zero in P*—probability, conditional on the sample except
a subset of probability measure approaching zero, and finally O} (1) Pr —P denotes a term which
is bounded in P*—probability, conditional on the sample except a subset of probability measure

approaching zero.

2 Predictive Density Evaluation

Our objective is to “choose” a conditional distribution model that provides the most accurate out-
of-sample approximation of the true conditional distribution, given multiple predictive densities,
and allowing for misspecification under both the null and the alternative hypotheses. One strategy
that yields tests of the null of correct specification that are equally as useful as those discussed above
is the conditional Kolmogorov test approach of Andrews (1997), which is based on a direct compar-
ison of empirical joint distributions with the product of parametric conditional and nonparametric
marginal distributions. Corradi and Swanson (2003c) extend Andrews (1997) in order to allow for
the in-sample comparison of multiple misspecified models. As discussed above, one of our main
objectives in this paper is the extension of those results to out-of-sample predictive density eval-
uation in the context of various different estimation schemes. From the perspective of prediction,
we assume that the objective is to form parametric conditional distributions for a scalar random
variable, y;11, given Z!, and to select among these, where Z! = (yi, ..., Yt—s;+1, Xt -y Xt—s941),
t=s,..,T,..T +s, with s = max{sy, s2}, and T+s=T, with T = (s + R) + P. Assume that
i = 1,...,n different models are estimated. In order to examine rolling estimation schemes, define

the rolling m-estimator for the parameter vector associated with model i as:

t
~ 1 )
0+ = arg max — §  Infi(y;, Z77N0;), R+s<t<T-1i=1..n (1)
R |



and
0] = arg max E(In fi(y;, 2, 6:)), @)
i €0

where f;(:|-,6;) is the conditional density associated with F;(-|-), i = 1,...,n, so that 93 is the
probability limit of a quasi maximum likelihood estimator (QMLE). If model i is correctly specified,
then 93 = p. We compute a sequence a P estimators, first using observations from s+ 1 to R + s,
then from to s + 2 to R+ s+ 1, and so on until we use the last R observations, that is from P + s
to T'— 1. These estimators are then used to construct sequences of P 1-step ahead forecasts and
associated forecast errors, for example. In the context of such rolling estimators, it is necessary
to distinguish between the cases of P < R and P > R, as we shall see below. The rolling and
recursive estimation schemes defined above are commonly used in out of sample forecast evaluation
(see e.g. West (1996), West and McCracken (1998), Clark and McCracken (2001 and 2003)).
Notably exceptions are Giacomini and White (2003), who propose to use a rolling scheme with
a fixed window, not increasing with the sample size, so that estimated parameters are treated as
mixing variables, and Pesaran and Timmerman (2003), who, in order to take account possible
structure breaks, suggest an adaptive manner for choosing the window of observations.

We also consider recursive estimation schemes, for which we define the recursive m-estimator
for the parameter vector associated with model i as:

00 = =371 Zi71 ), R4s<t<T—1,i=1,.. 3
¢ = arg max g anzyy, 0), Res<t<T—1i=1..n (3)

and 9}; defined as in (2). Again following standard practice, this estimator is first computed using
observations from s + 1 to R + s observations, and then from s+ 1 to R+ 1 + 1 observations, and
so on until the last estimator is constructed using T — 1 — s observations. As previously, these
estimators are then used to construct sequences of P 1-step ahead forecasts and associated forecast
errors.

Now, define the group of conditional distribution models from which we want to make a selec-
tion as Fy(u|Zt, 61), .., Fo(u|Z,6)), and define the true conditional distribution as Fy(u|Z?,6y) =
Pr(yr41 < ulZt). In the sequel, Fiy(-|-, HI) is taken as the benchmark model, and the objective is to
test whether some competitor model can provide a more accurate approximation of Fy(:|-,6y) than

the benchmark.®

81n this test, the competing models are known. This is different than the probability integral transform approach



Following Corradi and Swanson (2003a), we begin by assuming that accuracy is measured
using a distributional analog of mean square error. More precisely, the squared (approxima-
tion) error associated with model i, i = 1,...,n, is measured in terms of the average over U of
E ((Fi(u]Zt,QiT) - Fg(u]Zt,00)>2) , where u € U, and U is a possibly unbounded set on the real
line.

In particular, we say that model 1 is more accurate than model 2, if
2 2
/ E ((Fl(u|zt,9{) - Fo(u|Zt790)) - (Fz(u|zt,9;) - Fg(u|Zt,90)> > é(u)du < 0,
U

where [; ¢(u)du =1 and ¢(u) > 0, for all u € U C R. For any given evaluation point, this measure
defines a norm and it implies a standard goodness of fit measure.

As mentioned above, another measure of distributional accuracy available in the literature is the
KLIC (see e.g. White (1982), Vuong (1989), Giacomini (2002), and Kitamura (2002)), according
to which we should choose Model 1 over Model 2 if

E(log f1(Y:| 2", 61) — log fo(Y;|Z¢,65)) > 0.

The KLIC is a sensible measure of accuracy, as it chooses the model which on average gives
higher probability to events which have actually occurred. Also, it leads to simple likelihood ratio
type tests. Interestingly, Fernandez-Villaverde and Rubio-Ramirez (2001) have shown that the
best model under the KLIC is also the model with the highest posterior probability. Although
our approach and the KLIC approach should perhaps be viewed as alternatives, and as such one
might want to implement both tests in some contexts, it should be noted that if we are interested
in measuring accuracy over a specific region, or in measuring accuracy for a given conditional
confidence interval, say, this cannot be done in a straightforward manner using the KLIC, while it
can easily be done using our measure. For example, if we want to evaluate the accuracy of different
models for approximating the probability that the rate of inflation tomorrow, given the rate of
inflation today, will be between 0.5% and 1.5%, say, we can do so quite easily using the square
error criterion, but not using the KLIC.

The hypotheses of interest are:

Ho : ki%??‘,n/UE <(F1(UIZt79D - FO(U|Zt,90)>2 ~ (Fiulz",6)) - Fo(u|Zt,eo))2> (u)du < (04)

where only the null model is explicitly stated.



w)du > 0,
(5)

max

Hy
k=2,....n

Versus
i t 2 T t
[ £ ((Rtizs) - iz o) - (RGiz' o) - Flz'60)") o)
U
¢(u) =
u, we compare conditional distributions in terms of their (mean square) distance from the true

1
where ¢(u) > 0 and [, =1, u € U C R, U possibly unbounded. Note that for a given

distribution. We then average over U.? The statistic is

/U Zpo (1, K)p(u)du, j =1,2

Zpj = kn%ax

where for j =1 (rolling estimation scheme)
. A 2 2
Z (1{yt+1 <u}— F(ulZ 791,t,R)) - <1{yt+1 <u}— F(ulZ 9ktR)>
(7)

Zpua(1,k)
and for j = 2 (recursive estimation scheme)
Zpus(1,k) \Fz <<1{yt+1 <) — Fy(ulZt, elt)) (1{yt+1 <u) — Fu(u|Z akt)) )
(8)
If interest focuses on predictive conditional confidence intervals (see e.g. Christoffersen (1998)), so that the
objective is to “approximate” Pr(u < yi4+1 < @|Z"), then the null and alternative hypotheses can be stated as:
Hy: max B (((Fi(@|z',0]) ~ R 2", 0])) — (Fo(a|2",00) — Fo(ulZ",0 )))2
0 - k=2 " 1 1 s V1 0 s V0 o\w s V0
2
((Fk(u|Z 0f) — Fy(ulZ 9;)) — (Fo(@|Z",00) — Fo(ulZ 90))) ) <0
versus
Hy: max E (((Fl(mzt ) Fl(u\zf,ei)) — (Fo(@|Z*,00) — Fo(ulZ 90)))
2
((Fk(u|Z 1) — F(ulZ ef)) — (Fo(@l 2", 00) — Fo(ulZ 90))) ) > 0.

— t
yYk) T
Analogously, if interest focuses on testing the null of equal accuracy of only two predictive conditional distribution
models, say F1 and F, Diebold-Mariano (1995) type test, we can simply state the hypotheses as
t

HY /UE<(F1(u\Zt 0) — Fo(ul 2", 600)) — (Fu(ul2",0]) - Fo(ulZ",00)) )¢(“)

versus

HY /UE ((Fl(u|zt o1) — Fo(ul2",00)) " — (Fi(u|2,6}) — Fo(ulZ",00)) )¢( )b # 0



where é\i,t,R and (/9\“ are defined as in (1) and in (3).

In Corradi and Swanson (2003b), we show how the hypotheses above can be restated as

Ho: max | () = i) dlu)du < 0
=2,..n Ju

versus

Hy: nax / (u%(u) - u%(u)) ¢(u)du > 0,
=2,..,n Ju

where p?(u) = E <(1{yt <u} — F;(u|Zt, 03)>2> . In the sequel, we require the following assump-
tions.
Assumption Al: (y;, X;), with y; scalar and X; an RS—valued (0 < ¢ < 00) vector, is a strictly
stationary and absolutely regular f—mixing process with size —4(4 + )/, ¢ > 0.
Assumption A2: (i) 93 is uniquely identified (i.e. E(In fi(y:, Z871,60;)) < E(In fi(ys, 2071, 03)) for
any 60; # (9:-[); (ii) In f; is twice continuously differentiable on the interior of ©;, for i = 1,...,n, and
for ©; a compact subset of Re(); (iii) the elements of Vy, In f; and Vgi In f; are p—dominated on
©;, with p > 2(2 + ), where 1 is the same positive constant as defined in Assumption Al; and
(i) E (—V3,In fi(6;)) is positive definite uniformly on ©;.1?
Assumption A3: T=R+ P,and as T — oo, P/R — m, with 0 < 7 < o0.
Assumption A4: (i) F;(u|Zt,0;) is continuously differentiable on the interior of ©; and Vy, F;(u| Z?, 92)
is 2r-dominated on ©;, uniformly in u, r > 2,3 = 1,...,n;'! and (ii) let vpr(u) =plimy_o
Var (G S (1 <0 = Az o))’ = i) = (1 <) = Azt o) - i3w) ) ).
k = 2,...,n, define analogous covariance terms, v;(u), j,k = 2,...,n, and assume that [v;;(u)] is
positive semi-definite, uniformly in w.

Assumptions Al and A2 are standard memory, moment, smoothness and identifiability condi-
tions. Al requires (y:, X¢) to be strictly stationary and absolutely regular. The memory condition
is stronger than a—mixing, but weaker than (uniform) ¢—mixing. Assumption A3 requires that R
and P grow at the same rate. Of course, if R grows faster than P, then Vg p; and Or p;, 1 =1,2,3
(as defined below) vanish in probability, and there is no need to capture the contribution of param-

eter estimation error when constructing bootstrap critical values for predictive accuracy tests such

YWe say that Vo, In f;(y:, Z°71,0;) is 2r—dominated on ©; if its j — th element, 5 = 1,..., 0(4), is such that
|V9i In f;(ye, 2" 1, 9i)|]. < Dy, and E(|D:|?") < oo. For more details on domination conditions, see Gallant and White
(1988, pp. 33).

1\We require that for j =1, ...,p;, (E (VgFi(u|Zt,€}))7_ < Dy(u), with sup, sup, cq E(Dq(u)?") < occ.



as those discussed in the sequel. Assumptions A4(i) states standard smoothness and domination
conditions imposed on the conditional distributions of the models, and assumption A4(ii) states
that at least one of the competing models, Fy(-|-, 9]{), vy B0 (4], 911), has to be nonnested with (and
non nesting) the benchmark.

Proposition 1: Let Assumptions Al-A4 hold. Then,

max / <Zp,u7j(1, k) —VP (13 (w) — ,ui(u))) ou(u)du < max / Z1 . j(u) oy (u)du,
U U

k=2,..n =2,..,n

where Z; 1, j(u) is a zero mean Gaussian process with covariance Cj, j(u,u’), j = 1 corresponding to

the rolling and 7 = 2 to the recursive estimation scheme, equal to:

E i ((1{ys+1é up = Fy (ulZ7, 91))2 - /ﬁ(u)) ((1{ys+jﬂg u'} - Fl(u’\ZSJrj,HJ{))Z - ,ﬁ(u'))
Pl
+E _i <<1{ys+1§ ut — Fk(“‘Zsﬁ;i))Z - Mi(@) ((1{ys+j+1§ u't - Fk(U,’Zsﬂa@;t)y - M%(Ul)>
28 (3 (Mo w - Fi2D)" = 1300) ( (Mo ot - 120D = i)
j=—00

+4Hjm91(u)/A(9DE > Vo In fi(y, 125,00V, In fi(y, ;1257700 A(@Dmei(u/)

j==o0

ATy () A@)E | Y Vo, I fi(011 2% 00) Vo, I filyey 421 2, 0L)" | A} )my; (o)

j=—o0

o0

ATy (Y AGDE [ 37 Vo In fily,112°, 009, 10 iy 0125, 61)" | ALy ()

j=—o00

00 . 2
40Ty AODE | 3 Vo1 0,012 0]) (Mg ) = Fr(ul270D) - s

j=—o0

00 . 2
Ty () AGDE (3 Tor 1 sl 260 ( (M= 0 = Fy(ulz8])” = o))

j=—o0

10



0 . 2
—4C’Hjm9£ (u)’A(G,L)E Z Vg, In fk(ys+1|st 911)/ ((1{ys+j+1§ uf — Fk(U|ZS+]791Tc)> - N%

j=—o00

w)

00 . 2
Ty (Y AGDE | 3 Vo, a1 200 ( (Mo ub = Fitulz6D) = o)

j=—o0

with my ()’ = B (Vo Fi(ulZ%,0])' (a1 < u} — Fi(u|2t,6]))) and

A0 = Al = (E (—vgi lnfi(yt+1|Zt,0iT)>)il, and for j =1 and P < R, TI; = (w . 7;—2) ,CTI, =
5,and for P > R, II; = (1 — 3%) and CTI; = (1 — %) , finally for j = 2, Iy = 2 (1 — 7 In(1 + 71'))
and CTIy = 0.5115.

From this proposition, we see that when all competing models provide an approximation to the
true conditional distribution that is as (mean square) accurate as that provided by the bench-
mark (i.e. when [ (uf(u)— pi(u)) ¢(u)du = 0,Vk), then the limiting distribution is a zero
mean Gaussian process with a covariance kernel which is not nuisance parameters free. Ad-
ditionally, when all competitor models are worse than the benchmark, the statistic diverges to
minus infinity at rate v/P. Finally, when only some competitor models are worse than the bench-
mark, the limiting distribution provides a conservative test, as Zp will always be smaller than
maxXp—2,..n [;; (Zp’u(l, k) —+P (/ﬁ(u) — ui(u))) ¢(u)du, asymptotically. Of course, when H4
holds, the statistic diverges to plus infinity at rate v/P.

3 Bootstrap Critical Values

In this section we begin by outlining bootstrap methods for mimicking the limiting distribution
of # Zf:_l%+s (@-’t,R — 9T> and #Zg;%_w (é\i’t — 9T> where é\i,t,R and (9\1-7,5 are the rolling and
recursive estimators as defined in (1) and (3). For fixed sampling schemes, the properties of the
block bootstrap for m—estimators and /or GMM estimators with dependent observations have been
studied by several authors. For example, Hall and Horowitz (1996) and Andrews (2002a,b) show
that the block bootstrap provides improved critical values, in the sense of asymptotic refinements,
for “studentized” GMM estimators and for tests of overidentifying restrictions, in the case where

the covariance across moment conditions is zero after a given number of lags. In addition, Inoue

and Shintani (2003) show that the block bootstrap provides asymptotic refinements for linear
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overidentified GMM estimators for general mixing processes. A recent contribution which is useful
in our context is that of Goncalves and White (2003), who show that for m—estimators, the limiting
distribution of VT ((/9\fT — @\ZT) provides a valid first order approximation to that of \/T(@\ZT — 03 )
for heterogeneous and near epoch dependent series, where é\ZT is a resampled estimator, and T
denotes the length of the entire sample. Based on the results mentioned above, one might expect
# ZtT:_Rl (A;f R @\t R) to have the same limiting distribution as # ZtT:_]_% (é\t R— 9T> and similarly
for the recursive case. However, in the rolling case, observations in the middle of the sample are
used more frequently than observation at either the beginning or the end of the sample, while
in the recursive case, earlier observations are used more frequently than temporally subsequent
observations. This introduces a location bias to the usual block bootstrap, as under standard
resampling with replacement, any block from the original sample has the same probability of being
selected. Also, the bias term varies across samples and can be either positive or negative, depending
on the specific sample. In both the rolling and recursive scheme, we circumvent the problem of
bootstrap location bias by first slightly modifying the resampling scheme, and then by adding a

proper correction term that offsets the bootstrap bias.

3.1 A Split Sample Block Bootstrap for PEE: Rolling Estimation Scheme

In the rolling estimation scheme, we need to distinguish between the case in which P < R and
P > R. For the time being assume P < R, we then explain how to modify the resampling pro-
cedure for the case of P > R. Let W; = (y, Z'~!), we first draw b; overlapping blocks of length
l1, b1ly = P from observations s + 1, ..., P + s, then we draw by overlapping blocks of length [s,
balso = R 4+ s — P from observations P + s + 1,..., R + s, and finally b3 overlapping blocks of
length I3, bsls = (T'+ s) — (R+ s) — 1 from the last P observations. The first P pseudo observa-
tions, Wi, Wyio, .. Wi, 1,.... Wp, , are equal to W1117W111+17 . W111+l1_1, . W1§1+l1_1, where
Iil, i = 1,...,b1 are independent uniform random draws on the interval s +1,.... P +s — 11 + 1,
the following ((R + s) — (P + s)) observations W ., W5, o, s Wp 1y, Wi, are equal
to W1127WI%+1, - W112+52—17 - WI§2+l2—17 where IZ.Q, 1 = 1,...,by are independent uniform random
draws from data indexed by P+s+1,P+s+2,..., R+s—Ily—1, and finally the last P observations
Wator1 Whisyor o W§+s+l37 s Whi e p_1, are equal to Wlf, Wfi’”rl’ ey W[§+l3_1, s WI§3+Z3—17
where IZ-?’, 1 =1, ..., b3 are independent uniform random draws from data indexed by R+ s+ 1, R+

s+2,..,R+ s+ P —1I3— 1. Thus, conditional on the (entire) sample, the pseudo time series W;*,
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t=s,...R+s,R+s+1,.... R+ s+ P, consists of b = b1 4+ by + b3 asymptotically independent,
but non identically distributed blocks of length I1,l> and [3 respectively. More precisely, each block
from R+ s+ 1,...., R+ s+ P — 1 may overlap with any block from say P+ s+ 1,..., R+ s for at
most s observations, where s is finite. The case of P > R can be treated in an analogous way, by
noting that in this case we first draw by overlapping blocks of length [, b1y = R from observations
s+1,..., R+ s, then we draw by overlapping blocks of length ls, boly = (P +s) — (R+ s) from obser-
vations R+ s+1, ..., P+ s, and finally b3 overlapping blocks of length I3, bsls = (T'+s)— (P+s)—1
from the last R observations. Now, define the rolling bootstrap estimator as,

t
1 * *,]— .
R = ATg MAX ;RHlnfi(yj,Z JL 0, R+s<t<T—1,i=1,..,n. (10)
J=t=

0*

Zaty

Further, for P < R, define'?

\Iffé’}»l
1 -
Z ( it R~ ztR) + —vagi In fi(ye, 271, 0;.7)
t R+s t=s
P+s ’ R 1 P+s 4 R
VPR > G =9) | Ve fily;, 277", 0ir) — B > Vo, In fily;, 277 0,r)
Jj=s+1 j=s+1
) T-1 ‘ . 1 -
N Y (P+s—(j—R) | Vo Infily;, 27", 0i7) — Z Vo, In fi(y;, 22 0ix)
j=R+s+1 j =R+s+1

12Note that in the expression below the average score terms involve using all 7' observations in constructing é\,i,T,
but only P observations when forming the average, such as in the terms % Zf:f_i_l Vi, In fi(yj,Zj717§i,T) and
5 E] Rrst1 Vo, 0 fi(y;, AR @T) This is done to ensure the terms are not identically zero. Also note that the
precise sample period used in these terms is not crucial; it is only crucial that the terms are not identically zero.
This is the reason why, here and elsewhere, we sometimes take the sum over the first P observations, sometimes over

the last P obervations, etc. Of course, experimentation may ultimately suggest that certain versions of these terms

involving particular summands perform better in finite samples than others. This is left to future research, however.
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and for P > R, define,

Uik
= 1 T R -1
= 7B ( it R~ Qz,t,R) <—TZV(%i In fz‘(ymZtl,Hi,T))
t=R+s t=s
1 R+s ' R 1 R+s ' N
VPR . G—9)| Ve 1ﬂfi(yj,Z]71,9i,T)—§ > Vo Infi(y;, 277 0ir)
Jj=s+1 j=s+1
1 T-1 N 1 = P
g 2. (Brs—(G-P)|Valnfily;, 2700) — 5 > Vo lnfily;, 27 bir)
j=P+s+1 j=P+s+1

Proposition 2: Let A1-A3 hold.
(i) Assume that as P — oo and l; — oo, I /PY* — 0, and as R — oo and I3 — oo, l3/PY* — 0,

and finally as R — P — oo and Iy — o0, ly/(R — P)"/* — 0. Then, as P — oo and R — oo, for

P <R,
€>—>O.

(ii) Assume that as R — oo and l; — oo, that I;/RY* — 0, and as P — oo and I3 — oo,

I3/RY* — 0, and finally as P — R — oo and ly — oo, ly/(P — R)Y/* — 0. Then, as P and R — oo,

for P > R,
Plw: sup e —0,
veRe®@)

where PE p denotes the probability law of the resampled series, conditional on the (entire) sample.

e (Uit <0) -2 (s 5 (Bun-) <o)

Plw: sup
veRe() t=R+s

Pop (Vihs <) (fz (o0 < )

t=R+s

Broadly speaking, Proposition 2 states that for P < R, \I/;%(f])%l and for P > R, ‘Il;‘%z has the
same limiting distribution as \f Zt Ris (é\zt R— 01) , conditional on sample, and for all samples
except a set with probability measure approaching zero. Note that given A3, both R and P grow
with the sample size at the same rate as T. As can be clearly seen in the proof of the proposition, if
|R— P| = o(T), then the contribution of the observations in that range is asymptotically negligible.
Also, note that we do not need any adjustment term for the observations between P and R, or

between R and P, depending whether P is larger or smaller than R. The intuitive reason is that
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all observations in that range carry the same weight (i.e. are used the same number of times), and
therefore the standard block bootstrap, when “applied” to the observations in that range, works
properly.

Though a detailed proof of Proposition 2 is given in the appendix, it is worthwhile to give an
intuitive explanation of why there is an adjustment term in \I/}‘éfl)%l (and in \IJ}}(’ZAI)%Q) as one might ex-
pect that # Z;‘F:_Rl ((/9\;‘7th — 9;7,57R> has the same limiting distribution as # Z;‘F:_Rl ((/9;7,573 — 9}:]{) .
For notational simplicity in the current discussion, let h;; = Vj, In fi(yt,Zt*1,6?3 ) and hi, =
Vo, In f;(y;, 271, 9:) Via a mean value expansion around 67, using arguments similar to those

used in Lemma 4.1 of West and McCracken (1998), for the case of P < R we have,

1 T—1 R ;
7 3 (en=t)

P+s R+s
1
= Ajﬁ Z( s)hij+ P Z hi; + Z (P+s—(j—R))hij | +op(1)
j=s+1 j=P+s+1 j=R+s+1

(13)

-1
where it should be recalled that AI = (E (—Vgi In f;(ys, 2071, Gj))) . Also,

ﬂ\

5,3 (en =)

P+s R+s T-1

= Zfl S G=s)hi;—hig)+P Y (hij—hij)+ Y. (P+s—(—R)(hi; -

j=s+1 j=P+s+1 j=R+s+1
4oi(1), Pr—P

Now, up to a term of order O} (l/\/ﬁ) ,

) 1 P ) 1 P | Pts 1 P
E \FRJ§1(] — s)hy; \ijgﬂ(J - s)szg+1 i \FRng(J — $)hi,
and similarly,
) 1 R+s . )
B\ VR, §+1(P+s—(y+R))hm =
1 -1 1 T—1 .
\FR] £+1(P+8_ J-R P RZ;;HM 7 \FRJ ;SH(PﬂLS—(J—R))hz‘,j,
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Therefore, the expectation of the RHS in (14), computed under the bootstrap law, P} p, is not
zero, so that we cannot expect \F Zt Ris ((/9\;-“7,5,]3L — @,t7R> to converge in PEP—distribution to a

zero mean normal. Now, rewrite (13) as

T h \/> -
= Az. ﬁz (j—S)(h’] i,P ? :Zp: 1R+j lvR P)

T-1

Y. (P+s—(—R)(hi; —hir-r)

j=R+s+1

fR
P 1

T—1
Al | e 3G9 (g = Fr) + o X (Pt s (= By~ Fign)

j=s+1 j=R+ts+1
+ob(1), Pr—P, (15)

where hp, hg_p, and hp_g are the sample means constructed observations from s + 1 to P +
s, observations between P + s and R + s and from the last P observations. As shown in the
proof of the proposition, the first term on the RHS of (15) mimics the limiting distribution of
\f Zt Ris (Azt,R — 9;‘) , conditional on sample. On the other hand, the second term on the
RHS is O(1), conditional on sample, and for all samples except a set with probability measure
approaching zero. Therefore, the second term in (15) can be interpreted as a location bias term of
the standard block bootstrap. Such bias can be either positive or negative across different samples.
Also, the difference between the second term on the RHS of (12) and the second term on the RHS
of (15) vanishes asymptotically. Therefore, the adjustment term completely offsets the second term
on the RHS of (15), as R and P go to infinity.

So far we have considered the case in which all parameters are jointly estimated. However, it is
quite customary to first estimate conditional mean parameters via OLS or NLS and subsequently
estimate the error variance using residuals. Along these lines, let 6; = (3;,02), where 3; is ®Pi~!
valued and o2 is a scalar. Additionally, let In fi(y;, 2771, 3;) = —(y; — g:(Z771, 3i))?,

t
~ 1 )
Bup=argmin = > (g —9(Z7 )" = Rts<t<T-1i=l..n
€5
j=t—R+1

where g is twice differentiable and 2r—dominated on B, and 3375 R= }% Z;:t_RH (y;—gi(2771, Bi,t,R))z-
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The bootstrap analogs are

t
~ 1 N i .
/thR_argﬁIlnelg R _t§_R+1(yj _gZ(Z J 1757;))2 = R—’_SStST_]-v L= ]-a"')n

A2,k

and 07} p = RZ] —t—r (] — gi(Z%9 7@,@12))2-
Furthermore, let h; ; = 26jV5igi(ZJ_1,B;r), where €; = (yj—g(Zj_l,ﬂ;r)), and b} ; = QE;V,gigi(Z*’j_l,ﬂ;r),
fort—R < j <t, where € = (y; —g(z%i71, @7,5,3)), and finally let Bij = 2¢;Vp,9:(2971, Bi,T)> with

Bi,T be the estimator based on the full sample, and €; = (y; — g(Z” -1 5 1)). For P < R, define:
o) _ Z Bron—Bien \ [ —1 V3027 0ir) 0 -
fpt \Ft Rrs ztR_UthR 0 1
\/J%R (th‘il@ —s) (hij hip ) + Z] R+s+1 (P+s—(j—R))(hij— Ei,RfP))
s . 2 . ~ ~2
\/%R (Zf—:+1(] —5) < €& p)t ZJ —Risp1 (P+s—(— R))(E?,j - Ei,TfR)>

and for P > R define:

~ —1
( 7,2tR /8'L2tR ) + ( th svﬂ gZ(Zt_179i,T) 0 )

Oit,R — 9it,R 0 1

1371 72 /
t R+s

~

\/J%R (Zerss—H(J —s) (hij — b R) T+ Z;"L}}#sﬂ (R+s—(j— P))(/H” - Ei,TfR))
s . ~2 . ~ ~2 ’
o7 (S0 = 9) (B =8 ) + S pran (R+s— (G = P)@; —&r )

~ ~

where E-’p, E R_P, E-’T,R are defined as Eip, EiyR,p, E,T,R but with 9;[ replaced by 51‘,% and
~2 _ P ~ ~2 _ R ~
&p=PY, +sj—1 12t7 and & p = R™' )7, til 221:
Proposition 3: Let A1-A3 hold.
(i) Assume that as P — oo and l; — 00, I;/PY* — 0, and as R — oo and I3 — oo, l3/RY* — 0,

and finally as R — P — oo and ly — 00, ly/(R — P)/* — 0. Then, as P and R — oo, for P < R,
Plw: sup |Pj <<I>*(i) §v) (z,,R 9T><v >e| —0.
(o: o e eith =) (55 (0

t=R+s
(ii) Assume that as R — oo and l; — o0, l;/RY* — 0, and as P — oo and I3 — oo, l3/PY/* — 0,

and finally as P — R — oo and ly — o0, ly/(P — R)1/4 — 0. Then, as P and R — oo, for P > R,

(e m fro i =2) -2 (5 5 () )] 5] =0

t=R+
where PE p denotes the probability law of the resampled series, conditional on the (entire) sample.
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3.2 A Full Sample Block Bootstrap for PEE: Rolling Estimation Scheme

Suppose we instead resample P+ R observations from the entire sample. Let let W; = (1, Z'~1), and

draw b overlapping blocks of length [, where bl = T'—s. The resampled observations, W™, Wi, ... Wi, ..., Wr",
are equal to Wr,, Wr, 41, ..., W11+l 1y ey Wr,41—1, where I;, i = 1, ..., b are independent uniform ran-

dom draws on the interval s, — 1+ 1. Let 0*;‘ g be defined as in (1), but using W;* instead of

Wi Also, let hit = Vo,qi(y;*, Z*5' 1 ,01). Now, from (14), we have

5 2 (Bin-ten)

=R+
1 P+s R+s T-1
= Azﬁ G- —hiy)+P > (hi;—hi)+ > (P+s—(—R)hi;—hij)
j=s+1 j=P+s+1 j=R+s+1
+05(1), Pr—P (16)

Now, up to a term of order O} (l/\/ﬁ) ,

P+s P+s T P+s

1 1 1 1

E* > (= 9)hiy D=9z Y, hig# > (G = 8)hij,
\FR j=s+1 \FR Jj=s+1 r J=s+1 \/ﬁR J=s+l
\/ﬁ P+s P3/2 T P+s
B\ "o Do by =g D0 hii# > (= )iy,
g TR 2 \FRJ s+l
and similarly,
1 T-1
: S Pas-(GRM,| -
ij =R+s+1
1 T-1 = 1 T-1
> (PHs—(G-R)m Y hiy # ——== Y. (P+s—(i—R)h,,
fR j=R+s+1 T j=s+1 VPR J=RAs+1
Hereafter, let hi,T =7 Z?:S_H hi ;. Now,
| T (A R )
— > (0555 —irr
\/ﬁ t=R+s
1 P+s B R+s B T-1 B
= Al— PR (G- —hir)+P Y (hij—hir)+ > (P+s—(j—R)(hi;—hir)
Jj=s+1 j=P+s+1 j=R+s+1

1 P+s B R+s B T-1 B

—Aj-ﬁ Yo G=s)hig—hir)+ P D> (hij—hir)+ Y (P4s—(j—R)(hij—hir)
j=s+1 j=P+s+1 j=R4s+1

+05(1), Pr—P (17)
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Note that the first line on the RHS of (17) has the same limiting distribution as \F Zt Ris (@,t’pb - «91) ,
conditional on the sample and for all sample but a set of probability measure approaching zero.
On the other hand, the last line on the RHS of (17) is a location bias term, which is either positive or
negative across different samples. For convenience, define ;4\@-7T = (—% ZtT:S Vgi In f;(ye, 201, @;,p)) 71,

ﬁat = Vo, In fi(ys, 271, @-713) and ﬁz = %ZthsH Vo, In f;(yr, 2071, @-713). Consider,

(0 S )
\Ijz** _ 7Z(A**_0t>+

R,P 1t 2

VP
1 P+s ~ R+s ~
(30 G- hen) +P S (g —Tar) +
PR J=s+1 j=P+s+1
+ Z (P+s—(j— R)(hij — hir)) (18)
Jj=R+s+1
Now, \IJ%); — T T ! (Of ;= é;t) offsets the location bias term, and thus \I/%);* has the same

limiting distribution as ﬁ Zt: R ( it — 07 ) conditional on sample.

It follows immediately that \Ilg%)

observations, while \Ifg_jL p contains an extra correction term, also for the observations between P

)xx

and R. In this sense, one may prefer \I/( Dl rp tO \I/gZ p - However, a comparison of the two statistics

p only contains a correction term for the first and the last P

is left to future research, as the Monte Carlo experiments reported in Section 4 focus on the finite

sample behavior of \I/g?;, although our empirical findings suggest there may be little to choose

between split and full bootstrap sampling approaches (see Section 5).

3.3 A Split Sample Block Bootstrap for PEE: Recursive Estimation Scheme

This bootstrap procedure is discussed in detail in Corradi and Swanson (2003a). Here, we recap
their results for the split sample version of the block bootstrap. Results for the full sample version
of the block bootstrap are analogous to those given in the previous subsection for the case of rolling
estimation schemes.

Form bootstrap samples by first resampling from observations s+1, ..., R+ s, and then concate-
nating onto this an additional P observations resampled from the P remaining sample observations.
More specifically, let bily + boly = T, with bil; = R and byly = P. Also, let Wy = (y;, Zt71). First,
draw by overlapping blocks, of length [y, from s+ 1,..., R 4+ s and then draw by overlapping blocks,
of length Iy, from data indexed by R+s+1, ..., R+ s+ P, with replacement. The first R pseudo ob-
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. * * *
servations, Wi, Wyo, ... Wi, |, ..., Wg, , are equal to WIﬁ7WI§+17 ...,W11R+11_1, ...,WIbR;Hl_l,

where IZ-R, 1 =1,...,b; are independent uniform random draws on the interval s,..., R+ s —[1 + 1;
and the remaining P pseudo observations, W, .1, Wi, oo, s Wi ooy Wiy (1 p, are equal to
WI{”WI{DHa "-7W1f+l2—1a ...,WI£+Z2_1, where IP, i = 1,...,by are independent uniform random
draws from data indexed by R+ s, R+ 2,..., R+ s+ P — Iy — 1. Thus, conditional on the (entire)
sample, the pseudo time series W;*, t =s,...., R+s,R+s+1,..., R+ s+ P, consists of b = by + b2
asymptotically independent, but non identically distributed blocks of length I; and I, respectively.'?

Now, define the recursive PEE bootstrap m-estimator as,

Gzt—argmaxfz:lnfl y],Z*’J 10), R+s<t<T-—1,i=1,..,n.

Ze k2

Finally, define

*

R.P3

;T R . I R -1

— T Z ( ¥, — 0i,t> + <—T2vgl lnfi(yt,Zt_l,Gin)>
t=R+s t=s
1 et R+j—1 R+j—1
Sy > arj | Vo, In filyrij, 2571 0;0) — Z Vo, In fi(yrss, 27, 0:0) | |
Jj=s+1 ] 1
(19)

WhereaRj:#.+ﬁj+l—|—...+ﬁ, 7=0,1,....,P—1.
Pr0p051t10n 4: Let A1-A3 hold. Also, assume that as P, R — o0, l1,ls — 00, and that — 0

p1/4

P Wipa <o) -2 (5 3 (0uol) <o)

t R+s

Plw: sup >ec| —0,
veRe®@)

where PE p denotes the probability law of the resampled series, conditional on the (entire) sample.

= -, ~2 % . .
Now let Bit, ;4 o zt’ zt * be defined as ﬁztR, ﬁzt,Rv Uitﬁ, O R above but using a recursive

13More precisely, each block from R+ s+ 1,...,R+ s+ P —ls — 1 may overlap with any block from s+ 1,...,R+s

for at most s observations, where s is finite.
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instead of a rolling scheme, and define

~ -1
or . Z ﬁm — 1 Yiey V3927 0ir) 0
R,P,3 \/* ’\2* o t 0 1
t=R+s i

P+s—1 P+s—1
ﬁz] =s+1 AR,j ( i,R+j — PZ] =s+1 hR-H)
1 P+s—1 P4s—122
ﬁZ] s+1 AR,j ( 2R+] PZ] s+1 € R+j>

we have
Proposition 5: Let A1-A3 hold. Also assume that as P, R — oo, l1,lo — oo, and that

— 0. Then, as P and R — oo,
) H 07

Plo: Pr (D% . < (z—ef)<
onz e (3 5 059

t=R+s
where Pji p denotes the probability law of the resampled series, conditional on the (entire) sample.

P1/4 - 0

and

R1/4

3.4 Bootstrap Critical Values for the Predictive Density Accuracy Test

Turning again to our predictive density accuracy test, we are now in a position to construct an
appropriate bootstrap statistic, from whence bootstrap critical values can be constructed. Using
the bootstrap sampling procedures defined in the previous section, one first constructs appropriate

bootstrap samples. Thereafter, form bootstrap statistics as follows,

Ziy = x| Zpus (K)o

where for j =1 (rolling estimation scheme) and P < R,

ZhaaLh) = T_Zl (0t =0 - Az Fen) - (o <0 - AEIZGD) )
((1{%“ <= B2 F)” = (Moo < ) = A2 B ) )

% Z (Vo Fi(ul 2,81 1) (1o <) — Fl(u\ztﬁm)))/
1 =2 ~
( v (B1n - 91,t,3)>
+f Z (Veka(MZ Onr) (1{1/211 < u}f— Fk(U!Ztﬁk,T)»
1 (5
(st 3 ) ). 0
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For j = 1 and P > R, Z}7u’1(1,k) is defined as above, but with wﬁ}ﬁl}l,m;}”jﬁyl replaced by

*(1 *(k
Vi P Ui P

For j = 2 (recursive estimation scheme),

T-1
* 1 * *t Ok 2 I 2
Zpu2(lk) = 7P Z <<<1{yt+1 <up - Fi(ulZ ’t791,t)> - (1{yt+1 <wu}— Fl(u|Zt791,t)> )
t=R
—~ 2 —~ 2
(i < b - Az 8)) - (1 <0 = RlZ800) ) )
g T-1 R R ,
T (Vo Fuulz!,01r) (Hyins < uh = Fulz',001) )
( ) 1 T-1
X (\IJR7P73 — ﬁ Z ( 1,6t — «91,t>>
t=R
o T-1 R R ,
23 (Vo Pl 2 Ber) (Mot < b = Fuul2',8r)))
t=s

) LT
X (‘1’55,12,3 N > (‘975,1: - 9kz¢)> -
=R

Finally, when the conditional mean parameters are estimated by (N)LS and the variance is subse-

quently estimated using residuals, replace \I/E(?;i, with CIDE(Z}W 1=1,2,3,1=1k.

Proposition 6: Let Assumptions A1-A4 hold.. Also, assume that: (i) for the rolling estimation

scheme and P < R, as P — oo and l; — 00, ll/Pl/4 — 0, and as R — oo and l3 — o0, lg/P1/4 — 0,

and finally as R — P — oo and ly — 00, ly/(R — P)/* — 0; or (ii) for the rolling estimation scheme

and P > R, as R — oo and [ — oo, ll/R1/4 — 0, and as P — oo and I3 — oo, 13/R1/4 — 0, and

finally as P — R — 0o and Iy — o0, l/(P — R)'/* — 0, or (iii) for the recursive estimation scheme,
b

as PR — oo and l1,ls — oo, then Plf/4 — 0 and RiE 0. Then, as P and R — oo, for j = 1,2

P <w : sup
veER

Pp p < max /UZ}Z,uvj(l,k)qﬁ(u)du < v) - P ( max /[]Zﬁu’j(l,k)(b(u)du < v)

k=2,...,n k=2,....,m

where Zp, (L k) = Zpu (1K) — VP (u3(u) — i (u)

The above result suggests proceeding in the following manner. For any bootstrap replication,
compute the bootstrap statistic, Zj{,’ e Perform B bootstrap replications (B large) and compute the
quantiles of the empirical distribution of the B bootstrap statistics. Reject Hy, if Zp; is greater
than the (1 — «)th-percentile. Otherwise, do not reject. Now, for all samples except a set with

probability measure approaching zero, Zp ; has the same limiting distribution as the corresponding
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bootstrapped statistic when F (u%(u) - uz(u)) =0, V k, ensuring asymptotic size equal to . On
the other hand, when one or more competitor models are strictly dominated by the benchmark,
the rule provides a test with asymptotic size between 0 and «. Under the alternative, Zp; di-
verges to (plus) infinity, while the corresponding bootstrap statistic has a well defined limiting
distribution, ensuring unit asymptotic power. From the above discussion, we see that the boot-
strap distribution provides correct asymptotic critical values only for the least favorable case under
the null hypothesis; that is, when all competitor models are as good as the benchmark model.
When maxg—s__m [;; (43 (w) — pi(u)) p(u)du = 0, but [;; (43 (w) — pi(u)) ¢(u)du < 0 for some Fk,
then the bootstrap critical values lead to conservative inference. An alternative to our bootstrap
critical values in this case is the construction of critical values based on subsampling (see e.g.
Politis, Romano and Wolf (1999), Ch. 3). Heuristically, construct 1" — 2br statistics using sub-
samples of length by, where bp/T — 0. The empirical distribution of these statistics computed
over the various subsamples properly mimics the distribution of the statistic. Thus, subsampling
provides valid critical values even for the case where maxp—s . [;; (43 (v) — pi(u)) ¢(u)du = 0,
but [, (#3(u) — pi(u)) ¢(u)du < 0 for some k. This is the approach used by Linton, Maasoumi and
Whang (2003), for example, in the context of testing for stochastic dominance. Needless to say, one
problem with subsampling is that unless the sample is very large, the empirical distribution of the
subsampled statistics may yield a poor approximation of the limiting distribution of the statistic.
An alternative approach for addressing the conservative nature of our bootstrap critical values is
suggested in Hansen (2001). Hansen’s idea is to recenter the bootstrap statistics using the sample
mean, whenever the latter is larger than (minus) a bound of order /2T loglog T. Otherwise, do
not recenter the bootstrap statistics. In the current context, his approach leads to correctly sized
inference when maxy—o . m [i; (1f(u) — pi(w)) ¢(u)du = 0, but [;; (3 (u) — pi(u)) ¢(u)du < 0 for
some k. Additionally, his approach has the feature that if all models are characterized by a sample

mean below the bound, the null is “accepted” and no bootstrap statistic is constructed.

4 Monte Carlo Results

In this section we build on the Monte Carlo results of Corradi and Swanson (2003a), where the
bootstrap for PEE in recursive estimation schemes is analyzed via experimentation using \I’E, p3» as

defined in (19). In particular, in this section we compare \I/E, P1 and \I/E, P3 (where the superscript

23



or subscript ¢ is suppressed for simplicity) with analogous bootstrap PEE statistics where no bias
adjustment is made.

As in Corradi and Swanson (2003a), two data generating processes are specified, namely y; =
¢+ pyi—1 + e and Yy = ¢+ p1yi—1 + payi—1 + &1, with e, ~ IN(0,1), c= 0.1, p = {0.2,0.4,0.6,0.8}
and p; = p2 = {0.1,0.2,0.3,0.4}. Given this setup, we proceed to estimate both AR(1) and AR(2)
models for each of the two alternative DGPs. Thus, when we estimate (via OLS) an AR(1) (or
an AR(2)) model, é\l,t = (¢4, prt) (or 9\17,5 = (G4, P1,1-P204)"), with I = 1,2 denoting the estimate
models (AR(1) and AR(2), respectively), and 92 = (czr7 plT)' (or 9; = (cj, p}l, p;l)’), where 9;
denotes the probability limit of 5“/. Needless to say, in the case of correct dynamic specification, 9}
represents the parameters characterizing the conditional expectation, while in the case of dynamic
misspecification (e.g. the DGP is AR(2) and we estimate an AR(1)), GZT represents pseudo true
values, which can be explicitly computed.

We confine our attention to the slope parameters in the above regression models. For notational
simplicity, consider the case in which we estimate a AR(1) and the DGP is also AR(1), so that
we compute a P—sequence of estimators p;, bootstrap estimators p;, and we know that ol =

{0.2,0.4,0.6,0.8}. Now, the rolling estimation scheme bootstrap is thus given by:!?

T—1 T -1
E,P,l = Z (ﬁ;&k ( Z 1—3/ )

3=

t=R+1 t=2

1 R = )
X[ﬁ ;(J —1) | €r+j-1 (Yr+j—1—7Y) — 2 2 er+j—1 (YRtj—1 —7)

1 = . R 1 Bl
+\/T3RFZR;2(P +1=0=2) | &+ (v —7) — 5 Z eiv1 (i1 —9) | s

where €g+; = (Yr+j —Y) — pr (Yr+j—1 —7), § =T} ZtT:s y¢. Furthermore, the recursive estima-

14 Subsequent analysis of finite sample properties of predictive density tests constructed as outlined above using

our bootstrap results is the subject of ongoing research and will be reported in a later paper.
15Tn our experiments, p; is computed using the pseudo time series obtained by first resampling b1 blocks from the

first R observations and then concatenating by blocks resampled from the last P observations, as described in Section
2. Examination of the alternative PEE bootstrap methods developed in this paper, including the method for the case
where the entire sample is used, and extra adjustment terms are added to the bootstrap statistic, is left to future

research.
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tion scheme bootstrap is given by:
_ -1
1 _
Z — Pt) Z Yt—1 —
=
P P

7\f Z R,j €R+] (yR-‘r]
J
Furthermore, define analogous bootstrap statistics without adjustment as

*
\IIR,P,B

+g yR+j - y)
=2

_ ;| I
Yrp1=—"F7= (Py — pt)
VP t=R+1
and .-
* 1 — ~ ~
RP3 = 7= Z (Py — pt)
VP t=R+1

Finally, let 27 , be the (1—a) quantile of the distribution of U% ., j = 1,3 and let z7 , be the (1—«)

quantile of the distribution of ‘I/*R pj»J =1,3. Recall that the adjusted and non-adjusted bootstrap
statistics are characterized by the same asymptotic variance; the only difference is that the latter
is biased. Thus, we can directly compare the coverage probabilities of the different bootstraps
with and without adjustment terms. Thus, we define 100(1 — )%, equal-tailed, two-sided confi-

dence intervals corresponding to the rolling bootstrap with adjustment and the rolling bootstrap

Papi+ b and C13 -

I,(lfa/Q)

VP

»
“1a/2 1

VP P 2

1 —P-1~
P 2ut=R Pt —

without adjustment, respectively: CI7 : {

—1 ~ Z3 ~ 3 — . . . vt
{% R Pt — 3’%2 SR Pt %} . Similarly, for the recursive bootstrap we have: C1 :
1 P—-1~ Ef,a/Q 1 P—-1~ f,(ka/z) P—-1 ~ ~§,o¢/2 1 P—-1~ 3,(1711/2)
{P t=R Pt~ "5 P tRpt‘f‘? and01'2 R B tRpt'i‘iP

The coverage probabilities for C'I] and CI3, for example, are then obtained by computing the
proportion of times, across simulation replications, for which p' falls into the respective interval. By
comparing these coverage probabilities we have a direct measure of the impact of the adjustment
term. Broadly speaking, if the difference between the actual and nominal coverage is smaller for
CI} than for CI :, then it is definitely worthwhile to construct bootstrap critical values based on
the bootstrap with adjustment. Furthermore, direct inspection of the coverage probabilities for C'I}
will yield evidence concerning block length selection and overall performance of the PEE bootstrap
methods. All bootstrap empirical distributions are based on 200 bootstrap replications, and all

tabulated results are based on 500 Monte Carlo simulations. In addition, samples of ' = {800,1600}

observations are used, and the number of estimators constructed in the context of the PEE recursive
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scheme bootstrap is P = 0.57, with the first estimator constructed using T' — P observations, the
second with T"— P + 1 observations, etc. The number of estimators constructed in the context of
the PEE rolling scheme bootstrap is also P = 0.57 (and hence our use of \IIE, p, instead of \PR P72),
with all estimators constructed using R observations. The nominal coverage probability, across all
experiments, is set equal to 0.90. We have tried a variety of values of « in the construction of the
confidence intervals. However, as the results are qualitatively the same, we report results only for
a = 0.10.

Our findings are reported in Tables 1-4, and are organized as follows. The second column lists
the bootstrap used to mimic the distribution of PEE associated with either the AR(1) autoregres-
sive parameter (denoted p in the tables) or the autoregressive parameters from the AR(2) model
(denoted p; and po in the table). Entries given under the heading rolll correspond to coverage
probabilities associated with CI], while those given under the heading roli2 correspond to cover-
age probabilities associated with CI T Similarly, entries given under the heading recl correspond
to coverage probabilities associated with C'I3, while those given under the heading rec2 correspond
to coverage probabilities associated with Cl ;.Tables 1-4 is broken into two panels, depending upon
whether data were generated according to an AR(1) process (Panel A) or an AR(2) process (Panel
B), and the autoregressive parameters of the DGPs are given in the header line for each panel. In
addition, block lengths used are denoted by the various values of Iy = l5. (The same block length
when resampling from the first R observations and from the last P observations.)

A number of clear-cut findings emerge upon inspection of the tables. First, the adjustment terms
in the rolling and recursive bootstrap PEE statistics are required in order to improve coverage.
Probabilities associated with the respective versions of the bootstrap statistics that do not contain
adjustment terms (~E’ P1 and \I'}*% P,3) are generally poor, relative to the properly adjusted versions.
Second, and as expected, coverage is best when the autoregressive parameters in the models are
smaller, with performance worsening as these parameters increase from 0.2 to 0.8 in the AR(1) case
(see Panel A of Tables 1-4) and from 0.1 to 0.4 in the AR(2) case (see Panel B of the same tables).
This is particularly true, again as expected, for the smaller block lengths. Finally, misspecification
does not play a great roll in coverage probability accuracy. For example, whether an AR(2) is
estimated when the true DGP is an AR(1) (as is the case for the p; and p2 rows of entries in
Panel A of each table) is of secondary importance. Of primary importance appears to be block

length and the magnitude of the autoregressive component of the model. This is a promising

26



finding, in the sense that the bootstrap methods discussed here are in this sense robust to model
misspecification - a good property given our assumption in our predictive density test that all
models may be misspecified. Although much further research will need to be undertaken before
all of the properties of the bootstraps discussed in this paper are known, and before the related
properties of tests (such as the predictive density test) based on the use of our bootstrap techniques

become clear, we take the results of this paper to be a positive step in that direction.

5 Empirical Illustration - Forecasting Inflation

In this section we use a simple stylized macroeconomic example to illustrate how to apply the
predictive density accuracy test discussed in Section 2. In particular, assume that the objective is
to select amongst 4 different predictive density models for inflation, including an linear AR model
and an ARX model, where the ARX model differs from the AR model only through the inclusion
of unemployment as an additional explanatory variable. Assume also that 2 versions of each of
these models are used, one assuming normality, and one assuming that the conditional distribution
being evaluated follows a Student’s ¢ distribution with 5 degrees of freedom. Further, assume that
the number of lags used in these models is selected via use of either the SIC or the AIC. This
example can thus be thought of as an out-of-sample evaluation of simplified Phillips curve type
models of inflation.

The data used were obtained from the St. Louis Federal Reserve website. For unemployment, we
use the seasonally adjusted civilian unemployment rate. For inflation, we use the 12th difference
of the log of the seasonally adjusted CPI for all urban consumers, all items. Both data series
were found to be I(0), based on application of standard augmented Dickey-Fuller unit root tests.
All data are monthly, and the sample period is 1954:1-2003:12. This 600 observation sample
was broken into two equal parts for test construction, so that R = P = 300. Additionally, all
predictions were 1-step ahead, and were constructed using the recursive estimation scheme discussed
above. Bootstrap percentiles were calculated based on 100 bootstrap replications, and we set
u € U C [Infmin, Infmax|, where Inf; is the inflation variable being examined, and 100 equally
spaced values for u across this range were used (i.e. ¢(u) is the uniform density). Lags were selected
as follows. First, and using only the initial R sample observations, autoregressive lags were selected

according to both the SIC and the AIC. Thereafter, fixing the number of autoregressive lags, the
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number of lags of unemployment (Unem;) was chosen, again using each of the SIC and the AIC.
This framework enabled us to compare various permutations of 4 different models using the Zp»

statistic, where

Zps = max / Zpna (1, K)(u)du
k=2,...4 Js

and
1 T—1 R 9 R 9
Zraz(lh) = 2= 3 <(1{Inft+1 <uy— Fi(u|2',610)) — (W{Infen < u} = Fi(ul2',000)) ) ,
t=R

as discussed in Section 2. In particular, we consider (i) a comparison of AR and ARX models, with
lags selected using the SIC; (ii) a comparison of AR and ARX models , with lags selected using the
AIC; (iii) a comparison of AR models, with lags selected using either the SIC or the AIC; and (iv) a
comparison of ARX models, with lags selected using either the SIC or the AIC. Recalling that each
model is specified with either a Gaussian or Student’s t error density,we thus have 4 applications,
each of which involves the comparison of 4 different predictive density models. Results are gathered
in Tables 5-8. The tables contain: mean square forecast errors - MSFE (so that our density accuracy
results can be compared with model rankings based on conditional mean evaluation); lags used;
I # EtT:_]% <1{Inft+1 <u} — Fy(u]Zt, 6717,5))2 ¢(u)du = DMSFE (for “ranking” based on our
density type mean square error measures), and {50,60,70,80,90} split and full sample bootstrap
percentiles for block lengths of {3,5,10,15,20} observations (for conducting inference using Zps).
Although this empirical application is presented only for illustrative purposes, we claim that
the results presented in Tables 5-8 are indicative of the types of results that may generally be
obtained upon application of the tools developed in this paper. For example, notice that lower
MSFEs are uniformly associated with models that have lags selected via the AIC (see MSFE values
in Tables 1-4). This rather surprising result suggests that parsimony is not always the best “rule
of thumb” for selecting models for predicting conditional mean, and is a finding in agreement with
one of the main conclusions of Marcellino, Stock and Watson (2004). Interestingly, though, the
density based mean square forecast error measure that we consider (i.e. DM SFE) is not generally
lower when the AIC is used. This suggests that the choice of lag selection criterion is sensitive to
whether individual moments or entire distributions are being evaluated. Of further note is that
maxg—s,. 4 fU Zpu2(1,k)p(u)du in Table 1 is -0.046, which fails to reject the null hypothesis that
the benchmark AR(1)-normal density model is at least as “good” as any other SIC selected model.

Furthermore, when only AR models are evaluated (see Table 3), there is nothing gained by using
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the AIC instead of the SIC, and the normality assumption is again not “bested” by assuming fatter
predictive density tails (notice that in this case, failure to reject occurs even when 50th percentiles
of either the split or full sample recursive block bootstrap distributions are used to form critical
values). In contrast to the above results, when either the AIC is used for all competitor models
(Table 2), or when only ARX models are considered with lags selected by either SIC or AIC (Table
4), the null hypothesis of normality is rejected using 90th percentile critical values. Further, in
both of these cases, the “preferred model”, based on ranking according to DM SFFE, is (i) an ARX
model with Student’s ¢ errors (when only the AIC is used to select lags) or (ii) an ARX model with
Gaussian errors and lags selected via the SIC (when only ARX models are compared). This result
indicates the importance of comparing a wide variety of models. If we were only to compare AR
and ARX models using the AIC, as in Table 2, then we would conclude that ARX models beat AR
models, and that fatter tails should replace Gaussian tails in error density specification. However,
inspection of the density based MSFE measures across all models considered in the tables makes
clear that the lowest DM SFE values are always associated with more parsimonious models (with

lags selected using the SIC) that assume Gaussianity.

6 Concluding Remarks

In this paper we discuss a test for predictive density accuracy. In addition, we provide a survey
of related predictive density evaluation methods, and stress that our method differs from many
of these in the sense that we allow all competing models to be misspecified. From a theoretical
perspective, we outline 3 block bootstrap procedures applicable to a wide class of test statistics
(those for which the limit distribution is a functional of Gaussian processes) constructed based on
estimators obtained via rolling estimation schemes. Additionally, we survey 2 other block bootstrap
procedures for recursive estimators due to Corradi and Swanson (2003a). The paper also contains
a small Monte Carlo investigation that illustrates the sorts of coverage probabilities that might be
expected upon use of the bootstrap procedures. Finally, an empirical example based on forecasting
models of inflation is used to illustrate the predictive density accuracy test, and it is found that
density evaluation based on AR models leaves nothing to choose between AR(1) models under
normality and models under alternative Student’s ¢ distributional assumptions and those with lags

selected using the AIC instead of the SIC. On the other hand, when the lag selection device is fixed
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to be the AIC, then ARX predictive density models “win”, and the Student’s t distribution better
mimics the actual distribution of the predictive density than the Gaussian distribution.

This paper is meant as a starting point. Much further research is needed, both theoretical
and empirical, before the full impact of the bootstrap procedures and predictive density accuracy
tests that we have outlined will become clear. For example, alternative bootstrap procedures such
as the full sample procedure with additional adjustment terms discussed here need to be further
developed and examined, both theoretically, and via Monte Carlo experimentation. Additionally,
empirical and Monte Carlo investigation comparing and contrasting the various predictive density

accuracy tests discussed in this paper remains to be done.
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7 Appendix

The main theoretical contributions of this paper are contained in the proofs of Propositions 2 and
3, as the other propositions follow in a fairly straightforward manner, given the results of Corradi
and Swanson (2003a,b).

Proof of Proposition 1: This proof requires a simple modification to the proof of Theorem 1 in
Corradi and Swanson (2003b). In fact, the only difference is that in the current context parameters
are estimated either recursively (see Corradi and Swanson (2003a) for further discussion of the re-

2
cursive case), or using a rolling estimation scheme. Let p?(u) = E (<l{yt+1 <u} — Fy(u|Zt, 92)) >

2
—E ((1{%+1 <) — Fo(u| 2, 60))2) +E <(Fo(u|zt, 00) — Fi(u| 2", 9})) > . We begin by consider-

ing the rolling case. For any given u,

T-1
1 . 2 . 2
Zpua(1,k) = 7P > ((1{yt+1 <uj— Fl(u!Zt,HLt,R)) - (1{yt+1 <u} - Fk(U|Zt79k,t,R)> )
t=R+s
= ~ )
- 52 (s <) = AG0IZ 51 - i)
71
1 -~ 2
—= ((l{yt—i-l < u} — Fi(ulZ", ek,t,R)) - M%(@) +VP(ui(u) — pi(w)
\/ﬁtz R+s
T—
- L < Hyrp1 <u} — Fl(U’Zt,QD)Q - M%(U))
\/ﬁt R+s
| T LN
ﬁ > (((Myen <0} = Bl 6))” - k(o
2 —~
F VglFl(u]Z eltR (1{%4_1 S u} — Fl(u\Zt,HJ{)) \/ﬁ ((9177573 — 91)
t=R+s
T-1
125 Vo F(ulZ! ) (1ye1 < u} = Fi(lZ",6))) VP (Brr - 6})
P t=R+s ' - a o h *

+VP(u(u) — pi(w)) + op(1)
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D

t=R
T

] ((1{%“ <} - Fu(ul2 o))~ i)

t=s

—2m ( Z Z lnfl y]7 17 1)

t R+s j=t—R+1

+2m9£( Z Z lnfk y]7 17 k‘)

t R+s j=t—R+1

+VP (i (u) = pi(w)) + op(1) (21)

(11 <) = Fatulz'8D) = i)

-
= TN

<~ Sl-

VP

where 0,y r € (0;4.7,0)),i=1,...,n,and i (u) =FE (VgiFi(u]Zt,H;r)’ (1{yt+1 <u}— Fi(u]Zt,Hg)))
and A(6]) = (E (—vgi In fi(yea] 28, 6] )))_1and where the 0p(1) term holds uniformly in u € U.
We need to distinguish between the case of P < R and P > R. In the former case, by Lemma 4.1
in West and McCracken (1998, WM), \F Zt Ris &t Z; g I fi(yy, 271 HT) is asymptotically
normal with variance (77 — ?2) E (Z],_oo Vo, In fi(ys41|2°%, o Vo, In f1(yYstj+1]2Z° +J GT) ) , while
the long run covariance between

\f Zt R+s R Zé’zt—R—i—l In fk(yj’Zj_lﬂgJ{) and
2
ﬁ Sk <<1{yt+1 <u} — Fi(u|lZ, 91)) — u%(u)) is given by

E (zj__oo o0 In f1(ys1112°,0]) <(1{ysﬂﬂ <u} — Fy(ulz*,0)) - ) . Again from Lemma
4.1 in WM, for the case of P > R, <7T — %2> and 7§ are replaced by ( ?%) and ( %) .

In the recursive case, the second last line in (21) becomes,

ERNOZTIEED S SR AN ERNIERNBAT S B S SR TARPRNS

t R+s Jj=s+1 t R+s j=s+1

and the asymptotic variance of the parameter estimation error component as well as the covariance
term follow from Lemma A5 in West (1996). Finally, convergence of finite dimensional distributions
and stochastic equicontinuity follows by the same argument as in the proof of Theorem 1 in Corradi
and Swanson (2003b).
The proofs of Propositions 2 and 3 require three Lemmas, which are given below.

As the statement of Proposition 2 holds for ¢ = 1,...,n, and the proof is the same regardless
which model we consider, for notational simplicity we drop the subscript 7. Also, we only consider

the case where P < R, as the case where P > R follows straightforwardly using the same arguments.
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Lemma A1l: Let A1-A3 hold. Assume that for P < R, as P — oo and l; — oo, [1/P — 0, and as
R — o0 and I3 — o0, I3/R — 0, and finally as R — P — oo and ly — o0, la/(R — P) — 0, then (i)
SUp;> ‘é\;"R - (/9\,573’ = op+(1), Pr—P, and (ii) sup;>p ’%,R — GT’ =op+(1), Pr—P.16

Lemma A2: Let A1-A3 hold. If as R — oo and P — o0, Iy, 13 — o0, I;/PY* — 0 and I3/RY* — 0,
then sups p t¥ ‘(é\;R - GT)’ = op+(1), Pr—P, for all ¥ < 0.5.

Lemma A3: Let A1-A3 hold. If as R — oo and P — o0, Iy, 13 — o0, I;/PY* — 0 and I3/RY* — 0,
then if P/R — m > 0,

= 1 t+R ‘
Vart | == (veq(y;f,z*ﬂ—l,ef)) — TICy, Pr—P, t
\/ﬁ t:R j=t—P+1
where Cyg = ]__Oo ( Voq(yits, Z° 07)) (ng(y1+s+j, Zs+j,0T))/> and Il =7 —72/3for P< R

and 1 —72/3 for P > R.

Proof of Lemma A