
 

WORKING PAPERS SERIES 

WP04-16 

 

 

 

Predictive Density Accuracy Tests 

Valentina Corradi and Norman Swanson  

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/47807?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Predictive Density Accuracy Tests∗

Valentina Corradi1 and Norman R. Swanson2

1Queen Mary, University of London and 2Rutgers University

February 2004

Abstract

This paper outlines a testing procedure for assessing the relative out-of-sample predictive accuracy of multiple condi-

tional distribution models, and surveys existing related methods in the area of predictive density evaluation, including

methods based on the probability integral transform and the Kullback-Leibler Information Criterion. The procedure

is closely related to Andrews’ (1997) conditional Kolmogorov test and to White’s (2000) reality check approach, and

involves comparing square (approximation) errors associated with models i, i = 1, ..., n, by constructing weighted

averages over U of E

((
Fi(u|Zt, θ†

i )− F0(u|Zt, θ0)
)2

)
, where F0(·|·) and Fi(·|·) are true and approximate

distributions, u ∈ U , and U is a possibly unbounded set on the real line. Appropriate bootstrap procedures for

obtaining critical values for tests constructed using this measure of loss in conjunction with predictions obtained

via rolling and recursive estimation schemes are developed. We then apply these bootstrap procedures to the case

of obtaining critical values for our predictive accuracy test. A Monte Carlo experiment comparing our bootstrap

methods with methods that do not include location bias adjustment terms is provided, and results indicate coverage

improvement when our proposed bootstrap procedures are used. Finally, an empirical example comparing alternative

predictive densities for U.S. inflation is given.
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1 Introduction

In the management of financial risk in the insurance and banking industries, there is often a need for

examining confidence intervals or entire conditional distributions. One such case is when value at

risk measures are constructed in order to assess the amount of capital at risk from small probability

events, such as catastrophes (in insurance markets) or monetary shocks that have large impact on

interest rates (see Duffie and Pan (1997) for further discussion). These considerations in part

account for the development over the last few years of a new strand of literature addressing the

issue of predictive density evaluation. Some of the important recent papers in this area include

Diebold, Gunther and Tay (DGT: 1998), Christoffersen (1998), Bai (2003), Diebold, Hahn and

Tay (1999), Hong (2001) and Christoffersen, Hahn and Inoue (2001), and Giacomini (2002).1 This

paper has two primary objectives. First, we build on the results of Corradi and Swanson (2003a)

by outlining a procedure for assessing the relative out-of-sample predictive accuracy of multiple

conditional distribution models that can be used with rolling and recursive estimation schemes.

Second, we provide a brief survey of related techniques, such as those based on the use of the

probability integral transform and the Kullback-Leibler Information Criterion (KLIC).

The literature on the evaluation of predictive densities is largely concerned with testing the

null of correct dynamic specification of an individual conditional distribution model. However, in

the literature on the evaluation of point forecast models it is acknowledged that all models in a

group that is being evaluated may be misspecified (see e.g. White (2000) and Corradi and Swanson

(2002)). In this paper, we draw on elements of these two literatures in order to provide a test for

choosing among a group of misspecified out-of-sample predictive density models. Reiterating our

above point, the focus of most of the papers cited above is that the density associated with the true

conditional distribution is clearly the best predictive density. Therefore, evaluation of predictive

densities is usually performed via tests for the correct (dynamic) specification of the conditional

distribution. Along these lines, by making use of the probability integral transform, DGT suggest

a simple and effective means by which predictive densities can be evaluated. Using the DGT

terminology, if pt(yt|Ωt−1) is the “true” conditional distribution of yt|Ωt−1, then pt(yt|Ωt−1) is an
1Ten years ago, when Clive Granger was asked by one of the authors of this paper in an interview what he thought

the most important future areas in time series analysis were, he replied that predictive density construction and

evaluation was one of the most critical areas which needed to be developed.
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identically and independently distributed uniform random variable on [0, 1]; so that the difference

between an empirical version of pt(yt|Ωt−1) constructed using estimated parameters and the 45

degree line can be used as measure of goodness of fit.2 A feature common to the papers cited

above is that the null hypothesis is that of (dynamic) correct specification. Our approach differs

from these as we do not assume that any of the competing models (including the benchmark) are

correctly specified.3 Thus, we posit that all models should be viewed as approximations of some

true unknown underlying data generating process. For this reason, it is our objective in this paper

to provide a conditional Kolmogorov test, in the spirit of Andrews (1997), that allows for the

joint comparison of multiple misspecified conditional distribution models, for the case of dependent

observations. In particular, assume that the object of interest is the conditional distribution of a

scalar, Yt+1, given a (possibly vector valued) conditioning set, Zt, where Zt contains lags of Yt+1

and/or lags other variables. Now, given a group of (possibly) misspecified conditional distributions,

F1(u|Zt, θ†
1), ..., Fm(u|Zt, θ†

m), assume that the objective is to compare these models in terms of

their closeness to the true conditional distribution, F0(u|Zt, θ0) = Pr(Yt+1 ≤ u|Zt). If m > 2,

we follow White (2000), in the sense that we choose a particular conditional distribution model

as the “benchmark” and test the null hypothesis that no competing model can provide a more

accurate approximation of the “true” conditional distribution, against the alternative that at least

one competitor outperforms the benchmark model. However, unlike White, we evaluate predictive

densities rather than point forecasts. Needless to say, pairwise comparison of alternative models,
2Using the same approach, Bai (2003) proposes a Kolmogorov type test based on the comparison of pt(yt|Ωt−1, θT )

with the CDF of a uniform on [0, 1]. As a consequence of using estimated parameters, the limiting distribution of

his test reflects the contribution of parameter estimation error and is not nuisance parameter free. To overcome this

problem, Bai (2003) uses a novel device based on a martingalization argument to construct a modified Kolmogorov

test which has a nuisance parameter free limiting distribution. His test has power against violations of uniformity but

not against violations of independence. Hong (2001) proposes an interesting test, based on the generalized spectrum,

which has power against both uniformity and independence violations, for the case in which the contribution of

parameter estimation error vanishes asymptotically. For the case where the null is rejected, Hong (2001) also proposes

a test for uniformity that is based on a comparison between a kernel density estimator and the uniform density,

and that is robust to non independence (see also Hong and Li (2003)). Diebold, Hahn and Tay (1999) propose a

nonparametric correction for improving the density forecast when the uniform (but not the independence) assumption

is violated. Finally, Bontemps and Meddahi (2003a,b) suggest a GMM type approach for testing normality and various

distributional assumptions.

3Corradi and Swanson (2003c) allow for dynamic misspecification under both hypotheses.
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in which no benchmark need be specified, follows from our results as a special case. In our context,

accuracy is measured using a distributional analog of mean square error. More precisely, the squared

(approximation) error associated with model i, i = 1, ..., m, is measured in terms of the average over

U of E

((
Fi(u|Zt+1, θ†

i )− F0(u|Zt+1, θ0)
)2

)
, where u ∈ U , and U is a possibly unbounded set on

the real line.4 It should be pointed out that one well known measure of distributional accuracy is

the Kullback-Leibler Information Criterion (KLIC), in the sense that the “most accurate” model

can shown to be that which minimizes the KLIC (see Section 2 for a more precise discussion).

Using the KLIC approach, Giacomini (2002) suggests a weighted version of the Vuong (1989)

likelihood ratio test for the case of dependent observations, while Kitamura (2002) employs a

KLIC based approach to select among misspecified conditional models that satisfy given moment

conditions.5 Furthermore, the KLIC approach has been recently employed for the evaluation of

dynamic stochastic general equilibrium models (see e.g. Schörfheide (2000), Fernandez-Villaverde

and Rubio-Ramirez (2001), and Chang, Gomes and Schörfheide (2002)). For example, Fernandez-

Villaverde and Rubio-Ramirez (2001) show that the KLIC-best model is also the model with the

highest posterior probability. In general, there is no reason why our measure of accuracy is more

“natural” than the KLIC, or vice-versa. However, in the next section we outline how certain

problems (such as comparing conditional confidence intervals) that are difficult to address using

the KLIC can be handled quite easily using our measure of distributional accuracy.

The limiting distribution of the suggested statistic turns out to be a functional of a Gaussian

process with a covariance kernel reflecting both (dynamic) misspecification and parameter estima-

tion error (PEE). The limiting distribution is not nuisance parameter free and critical values cannot

be directly tabulated. Valid asymptotic critical values can be obtained via an empirical version of

the block bootstrap which properly takes into account PEE, however. The PEE contribution is

summarized by the limiting distribution of P−1/2 ∑T−1
t=R

(
θ̂t − θ†

)
, where R denotes the length of

the estimation period, P the number of recursively estimated parameters, θ̂t is either a recursive

m−estimator constructed using the first t observations or a rolling m−estimator constructed using

observations from t − R + 1 to t, and θ† is its probability limit. Intuitively, in the recursive case,
4To the best of our knowledge, the only other papers in which this measure is considered are Corradi and Swanson

(2003a,b).
5Of note is that White (1982) shows that quasi maximum likelihood estimators (QMLEs) minimize the KLIC,

under mild conditions.
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earlier observations are used more frequently than temporally subsequent observations, while in

the rolling case, observations in the center of the sample are used more frequently than observa-

tions either at the beginning or at the end of the sample. This introduces a location bias to the

usual block bootstrap, as under standard resampling with replacement schemes, any block from

the original sample has the same probability of being selected.6 We consider two solutions to this

problem. First, we modify the usual resampling scheme and add an adjustment term which corrects

for the bootstrap location bias. Second, we retain the usual resampling scheme, but add additional

adjustment terms to those needed when our modified resampling scheme is used. Additionally, we

consider cases in which all parameters are jointly estimated as well as cases where the conditional

mean parameters are first estimated via OLS or NLS, and the error variance is subsequently es-

timated using the residuals from the conditional mean model.7 In order to assess the usefulness

of our bootstrap procedures, we carry out a series of Monte Carlo experiments evaluating finite

sample coverage probabilities of our “PEE” bootstraps for rolling and recursive estimation schemes

with analogous bootstrap methods that do not include our “adjustment” terms. Results indicate

that the adjustment terms lead to improved coverage probabilities. Thus, our procedures should

prove useful for constructing critical values for our predictive density accuracy tests.

The rest of the paper is organized as follows. Section 2 outlines the setup, presents the predictive

density accuracy test, and states the asymptotic properties of the test statistic for both the case

of recursive and rolling parameter estimation schemes. Section 3 is broken into four subsections.

The first two subsections outline bootstrap procedures for mimicking the limiting distribution of

parameter estimation error in rolling estimation schemes, while the third subsection summarizes

the results of Corradi and Swanson (2003a) for recursive estimation schemes. Finally, the fourth

subsection applies the results of the previous two subsections in order to obtain asymptotically

valid critical values for the predictive density accuracy test. Section 4 contains the results of a

6Note that in the fixed sampling scheme, we just need to take into account the contribution of
√

R θR − θ† ,

whose limiting distribution is properly captured by “standard” block bootstrap techniques, using for example the

results of Goncalves and White (2003). This case has been considered by Corradi and Swanson (2003b), within the

context of in sample evaluation of conditional misspecified distribution models.
7From a theoretical perspective, it should be noted that all of our rolling estimation scheme results are new

to this paper. Additionally, our recursive estimation scheme results for the case where parameters are estimated

sequentially are new, while those for the joint estimation case summarize previous results reported in Corradi and

Swanson (2003a).
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small Monte Carlo study of the bootstrap procedures developed in the paper, in particular (i) we

compare the relative coverage probabilities for recursive and rolling schemes, and (ii) we evaluate

the importance of the adjustment term in our bootstrap. In Section 5, an empirical example based

on predicting U.S. inflation is presented. Finally, concluding remarks are gathered in Section 6.

All proofs are in an appendix. Hereafter, P ∗ denotes the probability law governing the resampled

series, conditional on the sample, E∗ and V ar∗ the mean and variance operators associated with P ∗,

o∗P (1) Pr−P denotes a term converging to zero in P ∗−probability, conditional on the sample except

a subset of probability measure approaching zero, and finally O∗
P (1) Pr−P denotes a term which

is bounded in P ∗−probability, conditional on the sample except a subset of probability measure

approaching zero.

2 Predictive Density Evaluation

Our objective is to “choose” a conditional distribution model that provides the most accurate out-

of-sample approximation of the true conditional distribution, given multiple predictive densities,

and allowing for misspecification under both the null and the alternative hypotheses. One strategy

that yields tests of the null of correct specification that are equally as useful as those discussed above

is the conditional Kolmogorov test approach of Andrews (1997), which is based on a direct compar-

ison of empirical joint distributions with the product of parametric conditional and nonparametric

marginal distributions. Corradi and Swanson (2003c) extend Andrews (1997) in order to allow for

the in-sample comparison of multiple misspecified models. As discussed above, one of our main

objectives in this paper is the extension of those results to out-of-sample predictive density eval-

uation in the context of various different estimation schemes. From the perspective of prediction,

we assume that the objective is to form parametric conditional distributions for a scalar random

variable, yt+1, given Zt, and to select among these, where Zt = (yt, ..., yt−s1+1, Xt, ..., Xt−s2+1),

t = s, ..., T̃ , ...T̃ + s, with s = max{s1, s2}, and T̃ + s = T, with T = (s + R) + P. Assume that

i = 1, ..., n different models are estimated. In order to examine rolling estimation schemes, define

the rolling m-estimator for the parameter vector associated with model i as:

θ̂i,t,R = arg max
θi∈Θi

1
R

t∑

j=t−R+1

ln fi(yj , Z
j−1, θi), R + s ≤ t ≤ T − 1, i = 1, ..., n (1)
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and

θ†
i = arg max

θi∈Θi

E(ln fi(yj , Z
j−1, θi)), (2)

where fi(·|·, θi) is the conditional density associated with Fi(·|·), i = 1, ..., n, so that θ†
i is the

probability limit of a quasi maximum likelihood estimator (QMLE). If model i is correctly specified,

then θ†
i = θ0. We compute a sequence a P estimators, first using observations from s + 1 to R + s,

then from to s + 2 to R + s + 1, and so on until we use the last R observations, that is from P + s

to T − 1. These estimators are then used to construct sequences of P 1-step ahead forecasts and

associated forecast errors, for example. In the context of such rolling estimators, it is necessary

to distinguish between the cases of P ≤ R and P > R, as we shall see below. The rolling and

recursive estimation schemes defined above are commonly used in out of sample forecast evaluation

(see e.g. West (1996), West and McCracken (1998), Clark and McCracken (2001 and 2003)).

Notably exceptions are Giacomini and White (2003), who propose to use a rolling scheme with

a fixed window, not increasing with the sample size, so that estimated parameters are treated as

mixing variables, and Pesaran and Timmerman (2003), who, in order to take account possible

structure breaks, suggest an adaptive manner for choosing the window of observations.

We also consider recursive estimation schemes, for which we define the recursive m-estimator

for the parameter vector associated with model i as:

θ̂i,t = arg max
θi∈Θi

1
t

t∑

j=s

ln fi(yj , Z
j−1, θi), R + s ≤ t ≤ T − 1, i = 1, ..., n (3)

and θ†
i defined as in (2). Again following standard practice, this estimator is first computed using

observations from s + 1 to R + s observations, and then from s + 1 to R + 1 + 1 observations, and

so on until the last estimator is constructed using T − 1 − s observations. As previously, these

estimators are then used to construct sequences of P 1-step ahead forecasts and associated forecast

errors.

Now, define the group of conditional distribution models from which we want to make a selec-

tion as F1(u|Zt, θ†
1), ..., Fn(u|Zt, θ†

n), and define the true conditional distribution as F0(u|Zt, θ0) =

Pr(yt+1 ≤ u|Zt). In the sequel, F1(·|·, θ†
1) is taken as the benchmark model, and the objective is to

test whether some competitor model can provide a more accurate approximation of F0(·|·, θ0) than

the benchmark.8
8In this test, the competing models are known. This is different than the probability integral transform approach
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Following Corradi and Swanson (2003a), we begin by assuming that accuracy is measured

using a distributional analog of mean square error. More precisely, the squared (approxima-

tion) error associated with model i, i = 1, ..., n, is measured in terms of the average over U of

E

((
Fi(u|Zt, θ†

i )− F0(u|Zt, θ0)
)2

)
, where u ∈ U , and U is a possibly unbounded set on the real

line.

In particular, we say that model 1 is more accurate than model 2, if
∫

U
E

((
F1(u|Zt, θ†

1)− F0(u|Zt, θ0)
)2
−

(
F2(u|Zt, θ†

2)− F0(u|Zt, θ0)
)2

)
φ(u)du < 0,

where
∫
U φ(u)du = 1 and φ(u) ≥ 0, for all u ∈ U ⊂ '. For any given evaluation point, this measure

defines a norm and it implies a standard goodness of fit measure.

As mentioned above, another measure of distributional accuracy available in the literature is the

KLIC (see e.g. White (1982), Vuong (1989), Giacomini (2002), and Kitamura (2002)), according

to which we should choose Model 1 over Model 2 if

E(log f1(Yt|Zt, θ†
1)− log f2(Yt|Zt, θ†

2)) > 0.

The KLIC is a sensible measure of accuracy, as it chooses the model which on average gives

higher probability to events which have actually occurred. Also, it leads to simple likelihood ratio

type tests. Interestingly, Fernandez-Villaverde and Rubio-Ramirez (2001) have shown that the

best model under the KLIC is also the model with the highest posterior probability. Although

our approach and the KLIC approach should perhaps be viewed as alternatives, and as such one

might want to implement both tests in some contexts, it should be noted that if we are interested

in measuring accuracy over a specific region, or in measuring accuracy for a given conditional

confidence interval, say, this cannot be done in a straightforward manner using the KLIC, while it

can easily be done using our measure. For example, if we want to evaluate the accuracy of different

models for approximating the probability that the rate of inflation tomorrow, given the rate of

inflation today, will be between 0.5% and 1.5%, say, we can do so quite easily using the square

error criterion, but not using the KLIC.

The hypotheses of interest are:

H0 : max
k=2,...,n

∫

U
E

((
F1(u|Zt, θ†

1)− F0(u|Zt, θ0)
)2
−

(
Fk(u|Zt, θ†

k)− F0(u|Zt, θ0)
)2

)
φ(u)du ≤ 0

(4)

where only the null model is explicitly stated.
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versus

HA : max
k=2,...,n

∫

U
E

((
F1(u|Zt, θ†

1)− F0(u|Zt, θ0)
)2
−

(
Fk(u|Zt, θ†

k)− F0(u|Zt, θ0)
)2

)
φ(u)du > 0,

(5)

where φ(u) ≥ 0 and
∫
U φ(u) = 1, u ∈ U ⊂ ', U possibly unbounded. Note that for a given

u, we compare conditional distributions in terms of their (mean square) distance from the true

distribution. We then average over U.9 The statistic is:

ZP,j = max
k=2,...,n

∫

U
ZP,u,j(1, k)φ(u)du, j = 1, 2 (6)

where for j = 1 (rolling estimation scheme),

ZP,u,1(1, k) =
1√
P

T−1∑

t=R

((
1{yt+1 ≤ u}− F1(u|Zt, θ̂1,t,R)

)2
−

(
1{yt+1 ≤ u}− Fk(u|Zt, θ̂k,t,R)

)2
)

(7)

and for j = 2 (recursive estimation scheme),

ZP,u,2(1, k) =
1√
P

T−1∑

t=R

((
1{yt+1 ≤ u}− F1(u|Zt, θ̂1,t)

)2
−

(
1{yt+1 ≤ u}− Fk(u|Zt, θ̂k,t)

)2
)

,
(8)

9If interest focuses on predictive conditional confidence intervals (see e.g. Christoffersen (1998)), so that the

objective is to “approximate” Pr(u ≤ yt+1 ≤ u|Zt), then the null and alternative hypotheses can be stated as:

H ′
0 : max

k=2,...,n
E F1(u|Zt, θ†1)− F1(u|Zt, θ†1) − F0(u|Zt, θ0)− F0(u|Zt, θ0)

2

− Fk(u|Zt, θ†k)− Fk(u|Zt, θ†k) − F0(u|Zt, θ0)− F0(u|Zt, θ0)
2
≤ 0.

versus

H ′
A : max

k=2,...,n
E F1(u|Zt, θ†1)− F1(u|Zt, θ†1) − F0(u|Zt, θ0)− F0(u|Zt, θ0)

2

− Fk(u|Zt, θ†k)− Fk(u|Zt, θ†k) − F0(u|Zt, θ0)− F0(u|Zt, θ0)
2

> 0.

Analogously, if interest focuses on testing the null of equal accuracy of only two predictive conditional distribution

models, say F1 and Fk, Diebold-Mariano (1995) type test, we can simply state the hypotheses as:

H ′′
0 :

U

E F1(u|Zt, θ†1)− F0(u|Zt, θ0)
2
− Fk(u|Zt, θ†k)− F0(u|Zt, θ0)

2
φ(u)du = 0

versus

H ′′
A :

U

E F1(u|Zt, θ†1)− F0(u|Zt, θ0)
2
− Fk(u|Zt, θ†k)− F0(u|Zt, θ0)

2
φ(u)du $= 0.

8



where θ̂i,t,R and θ̂i,t are defined as in (1) and in (3).

In Corradi and Swanson (2003b), we show how the hypotheses above can be restated as

H0 : max
k=2,...,n

∫

U

(
µ2

1(u)− µ2
k(u)

)
φ(u)du ≤ 0

versus

HA : max
k=2,...,n

∫

U

(
µ2

1(u)− µ2
k(u)

)
φ(u)du > 0,

where µ2
i (u) = E

((
1{yt ≤ u}− Fi(u|Zt, θ†

i )
)2

)
. In the sequel, we require the following assump-

tions.

Assumption A1: (yt, Xt), with yt scalar and Xt an Rζ−valued (0 < ζ < ∞) vector, is a strictly

stationary and absolutely regular β−mixing process with size −4(4 + ψ)/ψ, ψ > 0.

Assumption A2: (i) θ†
i is uniquely identified (i.e. E(ln fi(yt, Zt−1, θi)) < E(ln fi(yt, Zt−1, θ†

i )) for

any θi *= θ†
i ); (ii) ln fi is twice continuously differentiable on the interior of Θi, for i = 1, ..., n, and

for Θi a compact subset of R#(i); (iii) the elements of ∇θi ln fi and ∇2
θi

ln fi are p−dominated on

Θi, with p > 2(2 + ψ), where ψ is the same positive constant as defined in Assumption A1; and

(iii) E
(
−∇2

θi
ln fi(θi)

)
is positive definite uniformly on Θi.10

Assumption A3: T = R + P, and as T →∞, P/R → π, with 0 < π < ∞.

Assumption A4: (i) Fi(u|Zt, θi) is continuously differentiable on the interior of Θi and∇θiFi(u|Zt, θ†
i )

is 2r-dominated on Θi, uniformly in u, r > 2, i = 1, ..., n;11 and (ii) let vkk(u) =plimT→∞

V ar

(
1√
T

∑T
t=s

(((
1{yt+1 ≤ u}− F1(u|Zt, θ†

1)
)2
− µ2

1(u)
)
−

((
1{yt+1 ≤ u}− Fk(u|Zt, θ†

k)
)2
− µ2

k(u)
)))

,

k = 2, ..., n, define analogous covariance terms, vj,k(u), j, k = 2, ..., n, and assume that [vj,k(u)] is

positive semi-definite, uniformly in u.

Assumptions A1 and A2 are standard memory, moment, smoothness and identifiability condi-

tions. A1 requires (yt, Xt) to be strictly stationary and absolutely regular. The memory condition

is stronger than α−mixing, but weaker than (uniform) φ−mixing. Assumption A3 requires that R

and P grow at the same rate. Of course, if R grows faster than P , then ΨR,P,i and ΘR,P,i, i = 1, 2, 3

(as defined below) vanish in probability, and there is no need to capture the contribution of param-

eter estimation error when constructing bootstrap critical values for predictive accuracy tests such
10We say that ∇θi ln fi(yt, Z

t−1, θi) is 2r−dominated on Θi if its j − th element, j = 1, ..., #(i), is such that

∇θi ln fi(yt, Z
t−1, θi) j

≤ Dt, and E(|Dt|2r) <∞. For more details on domination conditions, see Gallant and White

(1988, pp. 33).

11We require that for j = 1, ..., pi, E ∇θFi(u|Zt, θ†i
j
≤ Dt(u), with supt supu∈$ E(Dt(u)2r) <∞.
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as those discussed in the sequel. Assumptions A4(i) states standard smoothness and domination

conditions imposed on the conditional distributions of the models, and assumption A4(ii) states

that at least one of the competing models, F2(·|·, θ†
1), ..., Fn(·|·, θ†

n), has to be nonnested with (and

non nesting) the benchmark.

Proposition 1: Let Assumptions A1-A4 hold. Then,

max
k=2,...,n

∫

U

(
ZP,u,j(1, k)−

√
P

(
µ2

1(u)− µ2
k(u)

))
φU (u)du

d→ max
k=2,...,n

∫

U
Z1,k,j(u)φU (u)du,

where Z1,k,j(u) is a zero mean Gaussian process with covariance Ck,j(u, u′), j = 1 corresponding to

the rolling and j = 2 to the recursive estimation scheme, equal to:

E




∞∑

j=−∞

((
1{ys+1≤ u}− F 1(u|Zs, θ†

1)
)2
− µ2

1(u)
)((

1{ys+j+1≤ u′}− F 1(u
′|Zs+j ,θ†

1)
)2
− µ2

1(u
′)
)



+E




∞∑

j=−∞

((
1{ys+1≤ u}− F k(u|Zs,θ†

k)
)2
− µ2

k(u)
)((

1{ys+j+1≤ u′}− F k(u
′|Zs+j ,θ†

k)
)2
− µ2

k(u
′)
)



−2E




∞∑

j=−∞

((
1{ys+1≤ u}− F 1(u|Zs,θ†

1)
)2
− µ2

1(u)
)((

1{ys+j+1≤ u′}− F k(u
′|Zs+j ,θ†

k)
)2
− µ2

k(u
′)
)



+4Πjmθ†1
(u)′A(θ†

1)E




∞∑

j=−∞
∇θ1 ln f1(ys+1|Z

s, θ†
1)∇θ1

ln f1(ys+j+1|Z
s+j , θ†

1)
′



A(θ†
1)mθ†1

(u′)

+4Πjmθ†k
(u)′A(θ†

k
)E




∞∑

j=−∞
∇θk

ln fk(ys+1|Z
s, θ†

k)∇θk
ln fk(ys+j+1|Z

s+j , θ†
k)
′



A(θ†
k)mθ†k

(u′)

−4Πjmθ†1
(u, )′A(θ†

1
)E




∞∑

j=−∞
∇θ1 ln f1(ys+1|Z

s, θ†
1)∇θk

ln fk(ys+j+1|Z
s+j , θ†

k)
′



A(θ†
k)mθ†k

(u′)

−4CΠjmθ†1
(u)′A(θ†

1)E




∞∑

j=−∞
∇θ1 ln f1(ys+1|Z

s, θ†
1)

((
1{ys+j+1≤ u}− F 1(u|Zs+j ,θ†

1)
)2
− µ2

1(u)
)



+4CΠjmθ†1
(u)′A(θ†

1)E




∞∑

j=−∞
∇θ1 ln f1(ys+1|Z

s, θ†
1)

((
1{ys+j+1≤ u}− F k(u|Zs+j ,θ†

k)
)2
− µ2

k(u)
)



10



−4CΠjmθ†k
(u)′A(θ†

k)E




∞∑

j=−∞
∇θk

ln fk(ys+1|Z
s, θ†

k)
′
((

1{ys+j+1≤ u}− F k(u|Zs+j ,θ†
k)

)2
− µ2

k(u)
)



+4CΠjmθ†k
(u)′A(θ†

k)E




∞∑

j=−∞
∇θk

ln fk(ys+1|Z
s, θ†

k)
′
((

1{ys+j+1≤ u}− F 1(u|Zs+j ,θ†
1)

)2
− µ2

1(u)
)



(9)

with m
θ†i

(u)′ = E
(
∇θiFi(u|Zt, θ†

i )
′
(
1{yt+1 ≤ u}− Fi(u|Zt, θ†

i )
))

and

A(θ†
i ) = A†

i =
(
E

(
−∇2

θi
ln fi(yt+1|Zt, θ†

i )
))−1

, and for j = 1 and P ≤ R, Π1 =
(
π − π2

3

)
, CΠ1 =

π
2 , and for P > R, Π1 =

(
1− 1

3π

)
and CΠ1 =

(
1− 1

2π

)
, finally for j = 2, Π2 = 2

(
1− π−1 ln(1 + π)

)

and CΠ2 = 0.5Π2.

From this proposition, we see that when all competing models provide an approximation to the

true conditional distribution that is as (mean square) accurate as that provided by the bench-

mark (i.e. when
∫
U

(
µ2

1(u)− µ2
k(u)

)
φ(u)du = 0,∀k), then the limiting distribution is a zero

mean Gaussian process with a covariance kernel which is not nuisance parameters free. Ad-

ditionally, when all competitor models are worse than the benchmark, the statistic diverges to

minus infinity at rate
√

P . Finally, when only some competitor models are worse than the bench-

mark, the limiting distribution provides a conservative test, as ZP will always be smaller than

maxk=2,...,n
∫
U

(
ZP,u(1, k)−

√
P

(
µ2

1(u)− µ2
k(u)

))
φ(u)du, asymptotically. Of course, when HA

holds, the statistic diverges to plus infinity at rate
√

P.

3 Bootstrap Critical Values

In this section we begin by outlining bootstrap methods for mimicking the limiting distribution

of 1√
P

∑T−1
t=R+s

(
θ̂i,t,R − θ†

)
and 1√

P

∑T−1
t=R+s

(
θ̂i,t − θ†

)
where θ̂i,t,R and θ̂i,t are the rolling and

recursive estimators as defined in (1) and (3). For fixed sampling schemes, the properties of the

block bootstrap for m−estimators and/or GMM estimators with dependent observations have been

studied by several authors. For example, Hall and Horowitz (1996) and Andrews (2002a,b) show

that the block bootstrap provides improved critical values, in the sense of asymptotic refinements,

for “studentized” GMM estimators and for tests of overidentifying restrictions, in the case where

the covariance across moment conditions is zero after a given number of lags. In addition, Inoue

and Shintani (2003) show that the block bootstrap provides asymptotic refinements for linear
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overidentified GMM estimators for general mixing processes. A recent contribution which is useful

in our context is that of Goncalves and White (2003), who show that for m−estimators, the limiting

distribution of
√

T (θ̂∗i,T − θ̂i,T ) provides a valid first order approximation to that of
√

T (θ̂i,T − θ†
i )

for heterogeneous and near epoch dependent series, where θ̂∗i,T is a resampled estimator, and T

denotes the length of the entire sample. Based on the results mentioned above, one might expect
1√
P

∑T−1
t=R

(
θ̂∗t,R − θ̂t,R

)
to have the same limiting distribution as 1√

P

∑T−1
t=R

(
θ̂t,R − θ†

)
and similarly

for the recursive case. However, in the rolling case, observations in the middle of the sample are

used more frequently than observation at either the beginning or the end of the sample, while

in the recursive case, earlier observations are used more frequently than temporally subsequent

observations. This introduces a location bias to the usual block bootstrap, as under standard

resampling with replacement, any block from the original sample has the same probability of being

selected. Also, the bias term varies across samples and can be either positive or negative, depending

on the specific sample. In both the rolling and recursive scheme, we circumvent the problem of

bootstrap location bias by first slightly modifying the resampling scheme, and then by adding a

proper correction term that offsets the bootstrap bias.

3.1 A Split Sample Block Bootstrap for PEE: Rolling Estimation Scheme

In the rolling estimation scheme, we need to distinguish between the case in which P ≤ R and

P > R. For the time being assume P ≤ R, we then explain how to modify the resampling pro-

cedure for the case of P > R. Let Wt = (yt, Zt−1), we first draw b1 overlapping blocks of length

l1, b1l1 = P from observations s + 1, ..., P + s, then we draw b2 overlapping blocks of length l2,

b2l2 = R + s − P from observations P + s + 1, ..., R + s, and finally b3 overlapping blocks of

length l3, b3l3 = (T + s) − (R + s) − 1 from the last P observations. The first P pseudo observa-

tions, W ∗
s+1,W

∗
s+2, ..., W

∗
s+l−1, ..., W

∗
P+s, are equal to WI1

1
, WI1

1+1, ..., WI1
1+l1−1, ..., WI1

b1
+l1−1, where

I1
i , i = 1, ..., b1 are independent uniform random draws on the interval s + 1, ..., P + s − l1 + 1,

the following ((R + s) − (P + s)) observations W ∗
P+s+1, W

∗
P+s+2, ..., W

∗
P+s+l, ..., W

∗
R+s, are equal

to WI2
1
,WI2

1+1, ..., WI2
1+l2−1, ..., WI2

b2
+l2−1, where I2

i , i = 1, ..., b2 are independent uniform random

draws from data indexed by P +s+1, P +s+2, ..., R+s− l2−1, and finally the last P observations

W ∗
R+s+1,W

∗
R+s+2, ..., W

∗
R+s+l3

, ...,W ∗
R+s+P−1, are equal to WI3

1
,WI3

1+1, ..., WI3
1+l3−1, ..., WI3

b3
+l3−1,

where I3
i , i = 1, ..., b3 are independent uniform random draws from data indexed by R + s + 1, R +

s + 2, ..., R + s + P − l3 − 1. Thus, conditional on the (entire) sample, the pseudo time series W ∗
t ,
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t = s, ..., R + s,R + s + 1, ..., R + s + P, consists of b = b1 + b2 + b3 asymptotically independent,

but non identically distributed blocks of length l1, l2 and l3 respectively. More precisely, each block

from R + s + 1, ..., R + s + P − 1 may overlap with any block from say P + s + 1, ..., R + s for at

most s observations, where s is finite. The case of P > R can be treated in an analogous way, by

noting that in this case we first draw b1 overlapping blocks of length l1, b1l1 = R from observations

s+1, ..., R+s, then we draw b2 overlapping blocks of length l2, b2l2 = (P +s)− (R+s) from obser-

vations R+s+1, ..., P +s, and finally b3 overlapping blocks of length l3, b3l3 = (T +s)− (P +s)−1

from the last R observations. Now, define the rolling bootstrap estimator as,

θ̂∗i,t,R = arg max
θi∈Θi

1
R

t∑

j=t−R+1

ln fi(y∗j , Z
∗,j−1, θi), R + s ≤ t ≤ T − 1, i = 1, ..., n. (10)

Further, for P ≤ R, define12,

Ψ∗(i)R,P,1

=
1√
P

T−1∑

t=R+s

(
θ̂∗i,t,R − θ̂i,t,R

)
+

(
− 1

T

T∑

t=s

∇2
θi

ln fi(yt, Z
t−1, θ̂i,T )

)−1

×



 1√
PR

P+s∑

j=s+1

(j − s)



∇θi ln fi(yj , Z
j−1, θ̂i,T )− 1

P

P+s∑

j=s+1

∇θi ln fi(yj , Z
j−1, θ̂i,T )





+
1√
PR

T−1∑

j=R+s+1

(P + s− (j −R))



∇θi ln fi(yj , Z
j−1, θ̂i,T )− 1

P

T−1∑

j=R+s+1

∇θi ln fi(yj , Z
j−1, θ̂i,T )









(11)

12Note that in the expression below the average score terms involve using all T observations in constructing θi,T ,

but only P observations when forming the average, such as in the terms 1
P

P+s
j=s+1∇θi ln fi(yj , Z

j−1, θi,T ) and

1
P

T−1
j=R+s+1∇θi ln fi(yj , Z

j−1, θi,T ). This is done to ensure the terms are not identically zero. Also note that the

precise sample period used in these terms is not crucial; it is only crucial that the terms are not identically zero.

This is the reason why, here and elsewhere, we sometimes take the sum over the first P observations, sometimes over

the last P obervations, etc. Of course, experimentation may ultimately suggest that certain versions of these terms

involving particular summands perform better in finite samples than others. This is left to future research, however.

13



and for P > R, define,

Ψ∗(i)R,P,2

=
1√
P

T−1∑

t=R+s

(
θ̂∗i,t,R − θ̂i,t,R

)
+

(
− 1

T

T∑

t=s

∇2
θi

ln fi(yt, Z
t−1, θ̂i,T )

)−1

×



 1√
PR

R+s∑

j=s+1

(j − s)



∇θi ln fi(yj , Z
j−1, θ̂i,T )− 1

R

R+s∑

j=s+1

∇θi ln fi(yj , Z
j−1, θ̂i,T )





+
1√
PR

T−1∑

j=P+s+1

(R + s− (j − P ))



∇θi ln fi(yj , Z
j−1, θ̂i,T )− 1

R

T−1∑

j=P+s+1

∇θi ln fi(yj , Z
j−1, θ̂i,T )









(12)

Proposition 2: Let A1-A3 hold.

(i) Assume that as P →∞ and l1 →∞, l1/P 1/4 → 0, and as R →∞ and l3 →∞, l3/P 1/4 → 0,

and finally as R − P → ∞ and l2 → ∞, l2/(R − P )1/4 → 0. Then, as P → ∞ and R → ∞, for

P ≤ R,

P

(
ω : sup

v∈("(i)

∣∣∣∣∣P
∗
R,P

(
Ψ∗(i)R,P,1 ≤ v

)
− P

(
1√
P

T−1∑

t=R+s

(
θ̂i,t,R − θ†

i

)
≤ v

)∣∣∣∣∣ > ε

)
→ 0.

(ii) Assume that as R → ∞ and l1 → ∞, that l1/R1/4 → 0, and as P → ∞ and l3 → ∞,

l3/R1/4 → 0, and finally as P −R →∞ and l2 →∞, l2/(P −R)1/4 → 0. Then, as P and R →∞,

for P > R,

P

(
ω : sup

v∈("(i)

∣∣∣∣∣P
∗
R,P

(
Ψ∗(i)R,P,2 ≤ v

)
− P

(
1√
P

T−1∑

t=R+s

(
θ̂i,t,R − θ†

i

)
≤ v

)∣∣∣∣∣ > ε

)
→ 0,

where P ∗R,P denotes the probability law of the resampled series, conditional on the (entire) sample.

Broadly speaking, Proposition 2 states that for P ≤ R, Ψ∗(i)R,P,1 and for P > R, Ψ∗(i)R,P,2 has the

same limiting distribution as 1√
P

∑T−1
t=R+s

(
θ̂i,t,R − θ†

i

)
, conditional on sample, and for all samples

except a set with probability measure approaching zero. Note that given A3, both R and P grow

with the sample size at the same rate as T. As can be clearly seen in the proof of the proposition, if

|R−P | = o(T ), then the contribution of the observations in that range is asymptotically negligible.

Also, note that we do not need any adjustment term for the observations between P and R, or

between R and P, depending whether P is larger or smaller than R. The intuitive reason is that
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all observations in that range carry the same weight (i.e. are used the same number of times), and

therefore the standard block bootstrap, when “applied” to the observations in that range, works

properly.

Though a detailed proof of Proposition 2 is given in the appendix, it is worthwhile to give an

intuitive explanation of why there is an adjustment term in Ψ∗(i)R,P,1 (and in Ψ∗(i)R,P,2) as one might ex-

pect that 1√
P

∑T−1
t=R

(
θ̂∗i,t,R − θ̂i,t,R

)
has the same limiting distribution as 1√

P

∑T−1
t=R

(
θ̂i,t,R − θ†

i,R

)
.

For notational simplicity in the current discussion, let hi,t = ∇θi ln fi(yt, Zt−1, θ†
i ) and h∗i,t =

∇θi ln fi(y∗t , Z∗,t−1, θ†
i ). Via a mean value expansion around θ†, using arguments similar to those

used in Lemma 4.1 of West and McCracken (1998), for the case of P ≤ R we have,

1√
P

T−1∑

t=R+s

(
θ̂i,t,R − θ†

i

)

= A†
i

1√
PR




P+s∑

j=s+1

(j − s)hi,j + P
R+s∑

j=P+s+1

hi,j +
T−1∑

j=R+s+1

(P + s− (j −R))hi,j



 + oP (1)

(13)

where it should be recalled that A†
i =

(
E

(
−∇2

θi
ln fi(yt, Zt−1, θ†

i )
))−1

. Also,

1√
P

T−1∑

t=R+s

(
θ̂∗i,t,R − θ̂i,t,R

)

= A†
i

1√
PR




P+s∑

j=s+1

(j − s)(h∗i,j − hi,j) + P
R+s∑

j=P+s+1

(h∗i,j − hi,j) +
T−1∑

j=R+s+1

(P + s− (j −R))(h∗i,j − hi,j)





+o∗P (1), Pr−P (14)

Now, up to a term of order O∗
P

(
l/
√

P
)

,

E∗



 1√
PR

P+s∑

j=s+1

(j − s)h∗i,j



 =
1√
PR

P+s∑

j=s+1

(j − s)
1
P

P+s∑

j=s+1

hi,j *=
1√
PR

P+s∑

j=s+1

(j − s)hi,j ,

and similarly,

E∗



 1√
PR

R+s∑

j=P+s+1

(P + s− (j + R))h∗i,j



 =

1√
PR

T−1∑

j=R+s+1

(P + s− (j −R))
1
P

T−1∑

j=R+s+1

hi,j *= 1√
PR

T−1∑

j=R+s+1

(P + s− (j −R))hi,j ,
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Therefore, the expectation of the RHS in (14), computed under the bootstrap law, P ∗R,P , is not

zero, so that we cannot expect 1√
P

∑T−1
t=R+s

(
θ̂∗i,t,R − θ̂i,t,R

)
to converge in P ∗R,P−distribution to a

zero mean normal. Now, rewrite (13) as,

1√
P

T−1∑

t=R+s

(
θ̂∗i,t − θ̂i,t

)

= A†
i



 1√
PR

P∑

j=s+1

(j − s)
(
h∗i,j − hi,P

)
+
√

P

R

R∑

j=P+1

(
h∗i,R+j − hi,R−P

)

+
1√
PR

T−1∑

j=R+s+1

(P + s− (j −R))(h∗i,j − hi,T−R)





−A†
i



 1√
PR

P∑

j=s+1

(j − s)
(
hi,j − hi,P

)
+

1√
PR

T−1∑

j=R+s+1

(P + s− (j −R))(hi,j − hi,T−R)





+o∗P (1), Pr−P, (15)

where hP , hR−P , and hT−R are the sample means constructed observations from s + 1 to P +

s, observations between P + s and R + s and from the last P observations. As shown in the

proof of the proposition, the first term on the RHS of (15) mimics the limiting distribution of
1√
P

∑T−1
t=R+s

(
θ̂i,t,R − θ∗i

)
, conditional on sample. On the other hand, the second term on the

RHS is O(1), conditional on sample, and for all samples except a set with probability measure

approaching zero. Therefore, the second term in (15) can be interpreted as a location bias term of

the standard block bootstrap. Such bias can be either positive or negative across different samples.

Also, the difference between the second term on the RHS of (12) and the second term on the RHS

of (15) vanishes asymptotically. Therefore, the adjustment term completely offsets the second term

on the RHS of (15), as R and P go to infinity.

So far we have considered the case in which all parameters are jointly estimated. However, it is

quite customary to first estimate conditional mean parameters via OLS or NLS and subsequently

estimate the error variance using residuals. Along these lines, let θi = (βi,σ2), where βi is 'pi−1

valued and σ2 is a scalar. Additionally, let ln fi(yj , Zj−1,βi) = −(yj − gi(Zj−1,βi))2,

β̂i,t,R = arg min
βi∈Bi

1
R

t∑

j=t−R+1

(yj − g(Zj−1,βi))2 =, R + s ≤ t ≤ T − 1, i = 1, ..., n

where g is twice differentiable and 2r−dominated on B, and σ̂2
i,t,R = 1

R

∑t
j=t−R+1(yj−gi(Zj−1, β̂i,t,R))2.
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The bootstrap analogs are

β̂∗i,t,R = arg min
βi∈Bi

1
R

t∑

j=t−R+1

(y∗j − gi(Z∗,j−1,βi))2 =, R + s ≤ t ≤ T − 1, i = 1, ..., n

and σ̂2,∗
i,t,R = 1

R

∑t
j=t−R+1(y

∗
j − gi(Z∗,j−1, β̂∗i,t,R))2.

Furthermore, let hi,j = 2εj∇βigi(Zj−1, β†
i ), where εj = (yj−g(Zj−1, β†

i )), and h∗i,j = 2ε∗j∇βigi(Z∗,j−1,β†
i ),

for t−R < j ≤ t, where ε∗j = (y∗j −g(Z∗,j−1, β̂i,t,R)), and finally let ĥi,j = 2ε̂j∇βigi(Zj−1, β̂i,T ), with

β̂i,T be the estimator based on the full sample, and ε̂j = (yj − g(Zj−1, β̂i,T )). For P ≤ R, define:

Φ∗(i)R,P,1 =
1√
P

T−1∑

t=R+s

(
β̂∗i,t,R − β̂i,t,R

σ̂2∗
i,t,R − σ̂2

i,t,R

)
+

(
− 1

T

∑T
t=s∇2

βi
gi(Zt−1, θ̂i,T ) 0

0 1

)−1




1√
PR

(∑P+s
j=s+1(j − s)

(
ĥi,j − ĥi,P

)
+

∑T−1
j=R+s+1 (P + s− (j −R))(ĥi,j − ĥi,R−P )

)

1√
PR

(∑P+s
j=s+1(j − s)

(
ε̂2i,j − ε̂

2
i,P

)
+

∑T−1
j=R+s+1 (P + s− (j −R))(ε̂2i,j − ε̂

2
i,T−R)

)





and for P > R define:

Φ∗(i)R,P,2 =
1√
P

T−1∑

t=R+s

(
β̂∗i,t,R − β̂i,t,R

σ̂2∗
i,t,R − σ̂2

i,t,R

)
+

(
− 1

T

∑T
t=s∇2

βi
gi(Zt−1, θ̂i,T ) 0

0 1

)−1




1√
PR

(∑R+s
j=s+1(j − s)

(
ĥi,j − ĥi,R

)
+

∑T−1
j=P+s+1 (R + s− (j − P ))(ĥi,j − ĥi,T−R)

)

1√
PR

(∑R+s
j=s+1(j − s)

(
ε̂2i,j − ε̂

2
i,R

)
+

∑T−1
j=P+s+1 (R + s− (j − P ))(ε̂2i,j − ε̂

2
i,T−R)

)



 ,

where ĥi,P , ĥi,R−P , ĥi,T−R are defined as hi,P , hi,R−P , hi,T−R but with θ†
i replaced by θ̂i,T , and

ε̂
2
i,P = P−1 ∑P+s

t=s+1 ε̂2i,t, and ε̂
2
i,R = R−1 ∑R+s

t=s+1 ε̂2i,t.

Proposition 3: Let A1-A3 hold.

(i) Assume that as P →∞ and l1 →∞, l1/P 1/4 → 0, and as R →∞ and l3 →∞, l3/R1/4 → 0,

and finally as R− P →∞ and l2 →∞, l2/(R− P )1/4 → 0. Then, as P and R →∞, for P ≤ R,

P

(
ω : sup

v∈("(i)

∣∣∣∣∣P
∗
R,P

(
Φ∗(i)R,P,1 ≤ v

)
− P

(
1√
P

T−1∑

t=R+s

(
θ̂i,t,R − θ†

i

)
≤ v

)∣∣∣∣∣ > ε

)
→ 0.

(ii) Assume that as R →∞ and l1 →∞, l1/R1/4 → 0, and as P →∞ and l3 →∞, l3/P 1/4 → 0,

and finally as P −R →∞ and l2 →∞, l2/(P −R)1/4 → 0. Then, as P and R →∞, for P > R,

P

(
ω : sup

v∈("(i)

∣∣∣∣∣P
∗
R,P

(
Φ∗(i)R,P,2 ≤ v

)
− P

(
1√
P

T−1∑

t=R+s

(
θ̂i,t,R − θ†

i

)
≤ v

)∣∣∣∣∣ > ε

)
→ 0,

where P ∗R,P denotes the probability law of the resampled series, conditional on the (entire) sample.
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3.2 A Full Sample Block Bootstrap for PEE: Rolling Estimation Scheme

Suppose we instead resample P+R observations from the entire sample. Let let Wt = (yt, Zt−1), and

draw b overlapping blocks of length l, where bl = T−s. The resampled observations, W ∗∗
s ,W ∗∗

s+1, ...,W
∗∗
s+l−1, ...,W

∗∗
T ,

are equal to WI1 ,WI1+1, ..., WI1+l−1, ...,WIb+l−1, where Ii, i = 1, ..., b are independent uniform ran-

dom draws on the interval s, ..., T − l + 1. Let θ̂∗∗i,t,R be defined as in (1), but using W ∗∗
t instead of

W ∗
t . Also, let h∗∗i,t = ∇θiqi(y∗∗t , Z∗∗,t−1, θ†

i ). Now, from (14), we have

1√
P

T−1∑

t=R+s

(
θ̂∗∗i,t,R − θ̂i,t,R

)

= A†
i

1√
PR




P+s∑

j=s+1

(j − s)(h∗i,j − hi,j) + P
R+s∑

j=P+s+1

(h∗i,j − hi,j) +
T−1∑

j=R+s+1

(P + s− (j −R))(h∗i,j − hi,j)





+o∗P (1), Pr−P (16)

Now, up to a term of order O∗
P

(
l/
√

P
)

,

E∗



 1√
PR

P+s∑

j=s+1

(j − s)h∗i,j



 =
1√
PR

P+s∑

j=s+1

(j − s)
1
T

T∑

j=s+1

hi,j *=
1√
PR

P+s∑

j=s+1

(j − s)hi,j ,

E∗




√

P

R

P+s∑

j=s+1

h∗i,j



 =
P 3/2

TR

T∑

j=s+1

hi,j *=
1√
PR

P+s∑

j=s+1

(j − s)hi,j ,

and similarly,

E∗



 1√
PR

T−1∑

j=R+s+1

(P + s− (j + R))h∗i,j



 =

1√
PR

T−1∑

j=R+s+1

(P + s− (j −R))
1
T

T−1∑

j=s+1

hi,j *= 1√
PR

T−1∑

j=R+s+1

(P + s− (j −R))hi,j ,

Hereafter, let hi,T = 1
T

∑T
j=s+1 hi,j . Now,

1√
P

T−1∑

t=R+s

(
θ̂∗∗i,t,R − θ̂i,t,R

)

= A†
i

1√
PR




P+s∑

j=s+1

(j − s)(h∗i,j − hi,T ) + P
R+s∑

j=P+s+1

(h∗i,j − hi,T ) +
T−1∑

j=R+s+1

(P + s− (j −R))(h∗i,j − hi,T )





−A†
i

1√
PR




P+s∑

j=s+1

(j − s)(hi,j − hi,T ) + P
R+s∑

j=P+s+1

(hi,j − hi,T ) +
T−1∑

j=R+s+1

(P + s− (j −R))(hi,j − hi,T )





+o∗P (1), Pr−P (17)
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Note that the first line on the RHS of (17) has the same limiting distribution as 1√
P

∑T−1
t=R+s

(
θ̂i,t,R − θ†

i

)
,

conditional on the sample and for all sample but a set of probability measure approaching zero.

On the other hand, the last line on the RHS of (17) is a location bias term, which is either positive or

negative across different samples. For convenience, define Âi,T =
(
− 1

T

∑T
t=s∇2

θi
ln fi(yt, Zt−1, θ̂i,P )

)−1
,

ĥi,t = ∇θi ln fi(yt, Zt−1, θ̂i,P ) and ĥi = 1
T

∑T
t=s+1∇θi ln fi(yt, Zt−1, θ̂i,P ). Consider,

Ψ(i)∗∗
R,P =

1√
P

T−1∑

t=R

(
θ̂∗∗i,t − θ̂i,t

)
+

+Âi.T
1√
PR

(
P+s∑

j=s+1

(j − s)(ĥi,j − ĥi,T ) + P
R+s∑

j=P+s+1

(ĥi,j − ĥi,T ) +

+
T−1∑

j=R+s+1

(P + s− (j −R))(ĥi,j − ĥi,T )) (18)

Now, Ψ(i)∗∗
R,P − 1√

P

∑T−1
t=R

(
θ̂∗∗i,t − θ̂i,t

)
offsets the location bias term, and thus Ψ(i)∗∗

R,P has the same

limiting distribution as 1√
P

∑T−1
t=R

(
θ̂i,t − θ∗i

)
, conditional on sample.

It follows immediately that Ψ(i)∗
R,P only contains a correction term for the first and the last P

observations, while Ψ(i)∗∗
R,P contains an extra correction term, also for the observations between P

and R. In this sense, one may prefer Ψ(i)∗
R,P to Ψ(ii)∗∗

R,P . However, a comparison of the two statistics

is left to future research, as the Monte Carlo experiments reported in Section 4 focus on the finite

sample behavior of Ψ(i)∗
R,P , although our empirical findings suggest there may be little to choose

between split and full bootstrap sampling approaches (see Section 5).

3.3 A Split Sample Block Bootstrap for PEE: Recursive Estimation Scheme

This bootstrap procedure is discussed in detail in Corradi and Swanson (2003a). Here, we recap

their results for the split sample version of the block bootstrap. Results for the full sample version

of the block bootstrap are analogous to those given in the previous subsection for the case of rolling

estimation schemes.

Form bootstrap samples by first resampling from observations s+1, ..., R+s, and then concate-

nating onto this an additional P observations resampled from the P remaining sample observations.

More specifically, let b1l1 + b2l2 = T, with b1l1 = R and b2l2 = P. Also, let Wt = (yt, Zt−1). First,

draw b1 overlapping blocks, of length l1, from s + 1, ..., R + s and then draw b2 overlapping blocks,

of length l2, from data indexed by R+s+1, ..., R+s+P, with replacement. The first R pseudo ob-
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servations, W ∗
s+1, W

∗
s+2, ..., W

∗
s+l−1, ..., W

∗
R+s, are equal to WIR

1
,WIR

1 +1, ..., WIR
1 +l1−1, ..., WIR

b1
+l1−1,

where IR
i , i = 1, ..., b1 are independent uniform random draws on the interval s, ..., R + s− l1 + 1;

and the remaining P pseudo observations, W ∗
R+s+1,W

∗
R+s+2, ..., W

∗
R+s+l2

, ...,W ∗
R+s+P , are equal to

WIP
1
,WIP

1 +1, ..., WIP
1 +l2−1, ..., WIP

b2
+l2−1, where IP

i , i = 1, ..., b2 are independent uniform random

draws from data indexed by R + s, R + 2, ..., R + s + P − l2 − 1. Thus, conditional on the (entire)

sample, the pseudo time series W ∗
t , t = s, ..., R + s,R + s + 1, ..., R + s + P, consists of b = b1 + b2

asymptotically independent, but non identically distributed blocks of length l1 and l2 respectively.13

Now, define the recursive PEE bootstrap m-estimator as,

θ̂∗i,t = arg max
θi∈Θi

1
t

t∑

j=s

ln fi(y∗j , Z
∗,j−1, θi), R + s ≤ t ≤ T − 1, i = 1, ..., n.

Finally, define

Ψ∗R,P,3

=
1√
P

T−1∑

t=R+s

(
θ̂∗i,t − θ̂i,t

)
+

(
− 1

T

T∑

t=s

∇2
θi

ln fi(yt, Z
t−1, θ̂i,T )

)−1

× 1√
P

P+s−1∑

j=s+1

aR,j



∇θi ln fi(yR+j , Z
R+j−1, θ̂i,T )− 1

P

P∑

j=1

∇θi ln fi(yR+j , Z
R+j−1, θ̂i,T )



 ,

(19)

where aR,j = 1
R+j + 1

R+j+1 + ... + 1
R+P−1 , j = 0, 1, ..., P − 1.

Proposition 4: Let A1-A3 hold. Also, assume that as P, R →∞, l1, l2 →∞, and that l2
P 1/4 → 0

and l1
R1/4 → 0. Then, as P and R →∞,

P

(
ω : sup

v∈("(i)

∣∣∣∣∣P
∗
R,P

(
Ψ∗R,P,3 ≤ v

)
− P

(
1√
P

T−1∑

t=R+s

(
θ̂i,t − θ†

i

)
≤ v

)∣∣∣∣∣ > ε

)
→ 0,

where P ∗R,P denotes the probability law of the resampled series, conditional on the (entire) sample.

Now let β̂i,t, β̂∗i,t, σ2
i,t, σ̂2,∗

i,t be defined as β̂i,t,R, β̂∗i,t,R, σ2
i,t,R, σ̂2,∗

i,t,R above but using a recursive

13More precisely, each block from R + s + 1, ..., R + s + P − l2 − 1 may overlap with any block from s + 1, ..., R + s

for at most s observations, where s is finite.
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instead of a rolling scheme, and define

Φ∗R,P,3 =
1√
P

T−1∑

t=R+s

(
β̂∗i,t − β̂i,t

σ̂2∗
i,t − σ̂2

i,t

)
+

(
− 1

T

∑T
t=s∇2

βi
gi(Zt−1, θ̂i,T ) 0

0 1

)−1




1√
P

∑P+s−1
j=s+1 aR,j

(
ĥi,R+j − 1

P

∑P+s−1
j=s+1 ĥR+j

)

1√
P

∑P+s−1
j=s+1 aR,j

(
ε̂2i,R+j −

1
P

∑P+s−1
j=s+1 ε̂

2
R+j

)



 ,

we have

Proposition 5: Let A1-A3 hold. Also assume that as P, R → ∞, l1, l2 → ∞, and that l2
P 1/4 → 0

and l1
R1/4 → 0. Then, as P and R →∞,

P

(
ω : sup

v∈("(i)

∣∣∣∣∣P
∗
R,P

(
Φ∗R,P,3 ≤ v

)
− P

(
1√
P

T−1∑

t=R+s

(
θ̂i,t − θ†

i

)
≤ v

)∣∣∣∣∣ > ε

)
→ 0,

where P ∗R,P denotes the probability law of the resampled series, conditional on the (entire) sample.

3.4 Bootstrap Critical Values for the Predictive Density Accuracy Test

Turning again to our predictive density accuracy test, we are now in a position to construct an

appropriate bootstrap statistic, from whence bootstrap critical values can be constructed. Using

the bootstrap sampling procedures defined in the previous section, one first constructs appropriate

bootstrap samples. Thereafter, form bootstrap statistics as follows,

Z∗P,j = max
k=2,...,n

∫

U
Z∗P,u,j(1, k)φ(u)du,

where for j = 1 (rolling estimation scheme) and P ≤ R,

Z∗P,u,1(1, k) =
1√
P

T−1∑

t=R

(((
1{y∗t+1 ≤ u}− F1(u|Z∗,t, θ̂∗1,t,R)

)2
−

(
1{yt+1 ≤ u}− F1(u|Zt, θ̂1,t,R)

)2
)

−
((

1{y∗t+1 ≤ u}− Fk(u|Z∗,t, θ̂∗k,t,R)
)2
−

(
1{yt+1 ≤ u}− Fk(u|Zt, θ̂k,t,R)

)2
))

− 2
T

T−1∑

t=s

(
∇θ1F1(u|Zt, θ̂1,T )

(
1{y∗t+1 ≤ u}− F1(u|Zt, θ̂1,T )

))′

×
(

Ψ∗(1)R,P,1 −
1√
P

T−1∑

t=R

(
θ̂∗1,t,R − θ̂1,t,R

))

+
2
T

T−1∑

t=s

(
∇θk

Fk(u|Zt, θ̂k,T )′
(
1{y∗t+1 ≤ u}− Fk(u|Zt, θ̂k,T )

))

×
(

Ψ∗(k)
R,P,1 −

1√
P

T−1∑

t=R

(
θ̂∗k,t,R − θ̂k,t,R

))
. (20)
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For j = 1 and P > R, Z∗P,u,1(1, k) is defined as above, but with Ψ∗(1)R,P,1, Ψ
∗(k)
R,P,1 replaced by

Ψ∗(1)R,P,2, Ψ
∗(k)
R,P,2.

For j = 2 (recursive estimation scheme),

Z∗P,u,2(1, k) =
1√
P

T−1∑

t=R

(((
1{y∗t+1 ≤ u}− F1(u|Z∗,t, θ̂∗1,t)

)2
−

(
1{yt+1 ≤ u}− F1(u|Zt, θ̂1,t)

)2
)

−
((

1{y∗t+1 ≤ u}− Fk(u|Z∗,t, θ̂∗k,t)
)2
−

(
1{yt+1 ≤ u}− Fk(u|Zt, θ̂k,t)

)2
))

− 2
T

T−1∑

t=s

(
∇θ1F1(u|Zt, θ̂1,T )′

(
1{y∗t+1 ≤ u}− F1(u|Zt, θ̂1,T )

))′

×
(

Ψ∗(1)
R,P,3 −

1√
P

T−1∑

t=R

(
θ̂∗1,t − θ̂1,t

))

+
2
T

T−1∑

t=s

(
∇θk

Fk(u|Zt, θ̂k,T )′
(
1{y∗t+1 ≤ u}− Fk(u|Zt, θ̂k,T )

))′

×
(

Ψ∗(k)
R,P,3 −

1√
P

T−1∑

t=R

(
θ̂∗k,t − θ̂k,t

))
.

Finally, when the conditional mean parameters are estimated by (N)LS and the variance is subse-

quently estimated using residuals, replace Ψ∗(l)R,P,i, with Φ∗(l)R,P,i, i = 1, 2, 3, l = 1, k.

Proposition 6: Let Assumptions A1-A4 hold.. Also, assume that: (i) for the rolling estimation

scheme and P ≤ R, as P →∞ and l1 →∞, l1/P 1/4 → 0, and as R →∞ and l3 →∞, l3/P 1/4 → 0,

and finally as R−P →∞ and l2 →∞, l2/(R−P )1/4 → 0; or (ii) for the rolling estimation scheme

and P > R, as R →∞ and l1 →∞, l1/R1/4 → 0, and as P →∞ and l3 →∞, l3/R1/4 → 0, and

finally as P −R →∞ and l2 →∞, l2/(P −R)1/4 → 0, or (iii) for the recursive estimation scheme,

as P, R →∞ and l1, l2 →∞, then l2
P 1/4 → 0 and l1

R1/4 → 0. Then, as P and R →∞, for j = 1, 2

P

(
ω : sup

v∈(

∣∣∣∣P
∗
R,P

(
max

k=2,...,n

∫

U
Z∗P,u,j(1, k)φ(u)du ≤ v

)
− P

(
max

k=2,...,n

∫

U
Zµ

P,u,j(1, k)φ(u)du ≤ v

)∣∣∣∣ > ε

)
→ 0,

where Zµ
P,u,j(1, k) = ZP,u,j(1, k)−

√
P

(
µ2

1(u)− µ2
k(u)

)
.

The above result suggests proceeding in the following manner. For any bootstrap replication,

compute the bootstrap statistic, Z∗P,j . Perform B bootstrap replications (B large) and compute the

quantiles of the empirical distribution of the B bootstrap statistics. Reject H0, if ZP,j is greater

than the (1 − α)th-percentile. Otherwise, do not reject. Now, for all samples except a set with

probability measure approaching zero, ZP,j has the same limiting distribution as the corresponding

22



bootstrapped statistic when E
(
µ2

1(u)− µ2
k(u)

)
= 0, ∀ k, ensuring asymptotic size equal to α. On

the other hand, when one or more competitor models are strictly dominated by the benchmark,

the rule provides a test with asymptotic size between 0 and α. Under the alternative, ZP,j di-

verges to (plus) infinity, while the corresponding bootstrap statistic has a well defined limiting

distribution, ensuring unit asymptotic power. From the above discussion, we see that the boot-

strap distribution provides correct asymptotic critical values only for the least favorable case under

the null hypothesis; that is, when all competitor models are as good as the benchmark model.

When maxk=2,...,m
∫
U

(
µ2

1(u)− µ2
k(u)

)
φ(u)du = 0, but

∫
U

(
µ2

1(u)− µ2
k(u)

)
φ(u)du < 0 for some k,

then the bootstrap critical values lead to conservative inference. An alternative to our bootstrap

critical values in this case is the construction of critical values based on subsampling (see e.g.

Politis, Romano and Wolf (1999), Ch. 3). Heuristically, construct T − 2bT statistics using sub-

samples of length bT , where bT /T → 0. The empirical distribution of these statistics computed

over the various subsamples properly mimics the distribution of the statistic. Thus, subsampling

provides valid critical values even for the case where maxk=2,...,m
∫
U

(
µ2

1(u)− µ2
k(u)

)
φ(u)du = 0,

but
∫
U

(
µ2

1(u)− µ2
k(u)

)
φ(u)du < 0 for some k. This is the approach used by Linton, Maasoumi and

Whang (2003), for example, in the context of testing for stochastic dominance. Needless to say, one

problem with subsampling is that unless the sample is very large, the empirical distribution of the

subsampled statistics may yield a poor approximation of the limiting distribution of the statistic.

An alternative approach for addressing the conservative nature of our bootstrap critical values is

suggested in Hansen (2001). Hansen’s idea is to recenter the bootstrap statistics using the sample

mean, whenever the latter is larger than (minus) a bound of order
√

2T log log T . Otherwise, do

not recenter the bootstrap statistics. In the current context, his approach leads to correctly sized

inference when maxk=2,...,m
∫
U

(
µ2

1(u)− µ2
k(u)

)
φ(u)du = 0, but

∫
U

(
µ2

1(u)− µ2
k(u)

)
φ(u)du < 0 for

some k. Additionally, his approach has the feature that if all models are characterized by a sample

mean below the bound, the null is “accepted” and no bootstrap statistic is constructed.

4 Monte Carlo Results

In this section we build on the Monte Carlo results of Corradi and Swanson (2003a), where the

bootstrap for PEE in recursive estimation schemes is analyzed via experimentation using Ψ∗R,P,3, as

defined in (19). In particular, in this section we compare Ψ∗R,P,1 and Ψ∗R,P,3 (where the superscript
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or subscript i is suppressed for simplicity) with analogous bootstrap PEE statistics where no bias

adjustment is made.14

As in Corradi and Swanson (2003a), two data generating processes are specified, namely yt =

c + ρyt−1 + εt and yt = c + ρ1yt−1 + ρ2yt−1 + εt, with εt ∼ IN(0, 1), c = 0.1, ρ = {0.2, 0.4, 0.6, 0.8}

and ρ1 = ρ2 = {0.1, 0.2, 0.3, 0.4}. Given this setup, we proceed to estimate both AR(1) and AR(2)

models for each of the two alternative DGPs. Thus, when we estimate (via OLS) an AR(1) (or

an AR(2)) model, θ̂l,t = (ĉl,t, ρ̂l,t)′ (or θ̂l,t = (ĉl,t, ρ̂1,l,t,ρ̂2,l,t)′), with l = 1, 2 denoting the estimate

models (AR(1) and AR(2), respectively), and θ†
l = (c†l , ρ

†
l )
′ (or θ†

l = (c†l , ρ
†
1,l, ρ

†
2,l)

′), where θ†
l

denotes the probability limit of θ̂l,t. Needless to say, in the case of correct dynamic specification, θ†
l

represents the parameters characterizing the conditional expectation, while in the case of dynamic

misspecification (e.g. the DGP is AR(2) and we estimate an AR(1)), θ†
l represents pseudo true

values, which can be explicitly computed.

We confine our attention to the slope parameters in the above regression models. For notational

simplicity, consider the case in which we estimate a AR(1) and the DGP is also AR(1), so that

we compute a P−sequence of estimators ρ̂t, bootstrap estimators ρ̂∗t , and we know that ρ† =

{0.2, 0.4, 0.6, 0.8}. Now, the rolling estimation scheme bootstrap is thus given by:15

Ψ∗R,P,1 =
1√
P

T−1∑

t=R+1

(ρ̂∗t − ρ̂t) +

(
1
T

T∑

t=2

(yt−1 − y)2
)−1

×[
1√
PR

P+1∑

j=2

(j − 1)



êR+j−1 (yR+j−1 − y)− 1
P

P+1∑

j=2

êR+j−1 (yR+j−1 − y)





+
1√
PR

T−1∑

j=R+2

(P + 1− (j − 2))



êj+1 (yj+1 − y)− 1
P

P+1∑

j=2

êj+1 (yj+1 − y)



 ],

where êR+j = (yR+j − y)− ρ̂T (yR+j−1 − y) , y = T−1 ∑T
t=s yt. Furthermore, the recursive estima-

14Subsequent analysis of finite sample properties of predictive density tests constructed as outlined above using

our bootstrap results is the subject of ongoing research and will be reported in a later paper.
15In our experiments, ρ∗t is computed using the pseudo time series obtained by first resampling b1 blocks from the

first R observations and then concatenating b2 blocks resampled from the last P observations, as described in Section

2. Examination of the alternative PEE bootstrap methods developed in this paper, including the method for the case

where the entire sample is used, and extra adjustment terms are added to the bootstrap statistic, is left to future

research.
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tion scheme bootstrap is given by:

Ψ∗R,P,3 =
1√
P

T−1∑

t=R+1

(ρ̂∗t − ρ̂t) +

(
1
T

T∑

t=2

(yt−1 − y)2
)−1

× 1√
P

P∑

j=2

aR,j



êR+j (yR+j − y)− 1
P

P∑

j=1

êR+j (yR+j − y)



 .

Furthermore, define analogous bootstrap statistics without adjustment as

Ψ̃∗R,P,1 =
1√
P

T−1∑

t=R+1

(ρ̂∗t − ρ̂t)

and

Ψ̃∗R,P,3 =
1√
P

T−1∑

t=R+1

(ρ̂∗t − ρ̂t)

Finally, let z∗j,α be the (1−α) quantile of the distribution of Ψ∗R,P,j , j = 1, 3 and let z̃∗j,α be the (1−α)

quantile of the distribution of Ψ̃∗R,P,j , j = 1, 3. Recall that the adjusted and non-adjusted bootstrap

statistics are characterized by the same asymptotic variance; the only difference is that the latter

is biased. Thus, we can directly compare the coverage probabilities of the different bootstraps

with and without adjustment terms. Thus, we define 100(1 − α)%, equal-tailed, two-sided confi-

dence intervals corresponding to the rolling bootstrap with adjustment and the rolling bootstrap

without adjustment, respectively: CI∗1 :
{

1
P

∑P−1
t=R ρ̂t −

z∗1,α/2√
P

, 1
P

∑P−1
t=R ρ̂t +

z∗1,(1−α/2)√
P

}
and CI∗2 :

{
1
P

∑P−1
t=R ρ̂t −

z∗3,α/2√
P

, 1
P

∑P−1
t=R ρ̂t +

z∗3,(1−α/2)√
P

}
. Similarly, for the recursive bootstrap we have: C̃I

∗
1 :

{
1
P

∑P−1
t=R ρ̂t −

z∗1,α/2√
P

, 1
P

∑P−1
t=R ρ̂t +

z∗1,(1−α/2)√
P

}
and C̃I

∗
2 :

{
1
P

∑P−1
t=R ρ̂t −

z∗3,α/2√
P

, 1
P

∑P−1
t=R ρ̂t +

z∗3,(1−α/2)√
P

}
.

The coverage probabilities for CI∗1 and CI∗2 , for example, are then obtained by computing the

proportion of times, across simulation replications, for which ρ† falls into the respective interval. By

comparing these coverage probabilities we have a direct measure of the impact of the adjustment

term. Broadly speaking, if the difference between the actual and nominal coverage is smaller for

CI∗1 than for C̃I
∗
1, then it is definitely worthwhile to construct bootstrap critical values based on

the bootstrap with adjustment. Furthermore, direct inspection of the coverage probabilities for CI∗1

will yield evidence concerning block length selection and overall performance of the PEE bootstrap

methods. All bootstrap empirical distributions are based on 200 bootstrap replications, and all

tabulated results are based on 500 Monte Carlo simulations. In addition, samples of T = {800,1600}

observations are used, and the number of estimators constructed in the context of the PEE recursive
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scheme bootstrap is P = 0.5T , with the first estimator constructed using T − P observations, the

second with T − P + 1 observations, etc. The number of estimators constructed in the context of

the PEE rolling scheme bootstrap is also P = 0.5T (and hence our use of Ψ∗R,P,1 instead of Ψ∗R,P,2),

with all estimators constructed using R observations. The nominal coverage probability, across all

experiments, is set equal to 0.90. We have tried a variety of values of α in the construction of the

confidence intervals. However, as the results are qualitatively the same, we report results only for

α = 0.10.

Our findings are reported in Tables 1-4, and are organized as follows. The second column lists

the bootstrap used to mimic the distribution of PEE associated with either the AR(1) autoregres-

sive parameter (denoted ρ̂ in the tables) or the autoregressive parameters from the AR(2) model

(denoted ρ̂1 and ρ̂2 in the table). Entries given under the heading roll1 correspond to coverage

probabilities associated with CI∗1 , while those given under the heading roll2 correspond to cover-

age probabilities associated with C̃I
∗
1. Similarly, entries given under the heading rec1 correspond

to coverage probabilities associated with CI∗2 , while those given under the heading rec2 correspond

to coverage probabilities associated with C̃I
∗
2.Tables 1-4 is broken into two panels, depending upon

whether data were generated according to an AR(1) process (Panel A) or an AR(2) process (Panel

B), and the autoregressive parameters of the DGPs are given in the header line for each panel. In

addition, block lengths used are denoted by the various values of l1 = l2. (The same block length

when resampling from the first R observations and from the last P observations.)

A number of clear-cut findings emerge upon inspection of the tables. First, the adjustment terms

in the rolling and recursive bootstrap PEE statistics are required in order to improve coverage.

Probabilities associated with the respective versions of the bootstrap statistics that do not contain

adjustment terms (Ψ̃∗R,P,1 and Ψ̃∗R,P,3) are generally poor, relative to the properly adjusted versions.

Second, and as expected, coverage is best when the autoregressive parameters in the models are

smaller, with performance worsening as these parameters increase from 0.2 to 0.8 in the AR(1) case

(see Panel A of Tables 1-4) and from 0.1 to 0.4 in the AR(2) case (see Panel B of the same tables).

This is particularly true, again as expected, for the smaller block lengths. Finally, misspecification

does not play a great roll in coverage probability accuracy. For example, whether an AR(2) is

estimated when the true DGP is an AR(1) (as is the case for the ρ̂1 and ρ̂2 rows of entries in

Panel A of each table) is of secondary importance. Of primary importance appears to be block

length and the magnitude of the autoregressive component of the model. This is a promising

26



finding, in the sense that the bootstrap methods discussed here are in this sense robust to model

misspecification - a good property given our assumption in our predictive density test that all

models may be misspecified. Although much further research will need to be undertaken before

all of the properties of the bootstraps discussed in this paper are known, and before the related

properties of tests (such as the predictive density test) based on the use of our bootstrap techniques

become clear, we take the results of this paper to be a positive step in that direction.

5 Empirical Illustration - Forecasting Inflation

In this section we use a simple stylized macroeconomic example to illustrate how to apply the

predictive density accuracy test discussed in Section 2. In particular, assume that the objective is

to select amongst 4 different predictive density models for inflation, including an linear AR model

and an ARX model, where the ARX model differs from the AR model only through the inclusion

of unemployment as an additional explanatory variable. Assume also that 2 versions of each of

these models are used, one assuming normality, and one assuming that the conditional distribution

being evaluated follows a Student’s t distribution with 5 degrees of freedom. Further, assume that

the number of lags used in these models is selected via use of either the SIC or the AIC. This

example can thus be thought of as an out-of-sample evaluation of simplified Phillips curve type

models of inflation.

The data used were obtained from the St. Louis Federal Reserve website. For unemployment, we

use the seasonally adjusted civilian unemployment rate. For inflation, we use the 12th difference

of the log of the seasonally adjusted CPI for all urban consumers, all items. Both data series

were found to be I(0), based on application of standard augmented Dickey-Fuller unit root tests.

All data are monthly, and the sample period is 1954:1-2003:12. This 600 observation sample

was broken into two equal parts for test construction, so that R = P = 300. Additionally, all

predictions were 1-step ahead, and were constructed using the recursive estimation scheme discussed

above. Bootstrap percentiles were calculated based on 100 bootstrap replications, and we set

u ∈ U ⊂ [Infmin, Infmax], where Inft is the inflation variable being examined, and 100 equally

spaced values for u across this range were used (i.e. φ(u) is the uniform density). Lags were selected

as follows. First, and using only the initial R sample observations, autoregressive lags were selected

according to both the SIC and the AIC. Thereafter, fixing the number of autoregressive lags, the
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number of lags of unemployment (Unemt) was chosen, again using each of the SIC and the AIC.

This framework enabled us to compare various permutations of 4 different models using the ZP,2

statistic, where

ZP,2 = max
k=2,...,4

∫

U
ZP,u,2(1, k)φ(u)du

and

ZP,u,2(1, k) =
1√
P

T−1∑

t=R

((
1{Inft+1 ≤ u}− F1(u|Zt, θ̂1,t)

)2
−

(
1{Inft+1 ≤ u}− Fk(u|Zt, θ̂k,t)

)2
)

,

as discussed in Section 2. In particular, we consider (i) a comparison of AR and ARX models, with

lags selected using the SIC; (ii) a comparison of AR and ARX models , with lags selected using the

AIC; (iii) a comparison of AR models, with lags selected using either the SIC or the AIC; and (iv) a

comparison of ARX models, with lags selected using either the SIC or the AIC. Recalling that each

model is specified with either a Gaussian or Student’s t error density,we thus have 4 applications,

each of which involves the comparison of 4 different predictive density models. Results are gathered

in Tables 5-8. The tables contain: mean square forecast errors - MSFE (so that our density accuracy

results can be compared with model rankings based on conditional mean evaluation); lags used;
∫
U

1√
P

∑T−1
t=R

(
1{Inft+1 ≤ u}− F1(u|Zt, θ̂1,t)

)2
φ(u)du = DMSFE (for “ranking” based on our

density type mean square error measures), and {50,60,70,80,90} split and full sample bootstrap

percentiles for block lengths of {3,5,10,15,20} observations (for conducting inference using ZP,2).

Although this empirical application is presented only for illustrative purposes, we claim that

the results presented in Tables 5-8 are indicative of the types of results that may generally be

obtained upon application of the tools developed in this paper. For example, notice that lower

MSFEs are uniformly associated with models that have lags selected via the AIC (see MSFE values

in Tables 1-4). This rather surprising result suggests that parsimony is not always the best “rule

of thumb” for selecting models for predicting conditional mean, and is a finding in agreement with

one of the main conclusions of Marcellino, Stock and Watson (2004). Interestingly, though, the

density based mean square forecast error measure that we consider (i.e. DMSFE) is not generally

lower when the AIC is used. This suggests that the choice of lag selection criterion is sensitive to

whether individual moments or entire distributions are being evaluated. Of further note is that

maxk=2,...,4
∫
U ZP,u,2(1, k)φ(u)du in Table 1 is -0.046, which fails to reject the null hypothesis that

the benchmark AR(1)-normal density model is at least as “good” as any other SIC selected model.

Furthermore, when only AR models are evaluated (see Table 3), there is nothing gained by using
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the AIC instead of the SIC, and the normality assumption is again not “bested” by assuming fatter

predictive density tails (notice that in this case, failure to reject occurs even when 50th percentiles

of either the split or full sample recursive block bootstrap distributions are used to form critical

values). In contrast to the above results, when either the AIC is used for all competitor models

(Table 2), or when only ARX models are considered with lags selected by either SIC or AIC (Table

4), the null hypothesis of normality is rejected using 90th percentile critical values. Further, in

both of these cases, the “preferred model”, based on ranking according to DMSFE, is (i) an ARX

model with Student’s t errors (when only the AIC is used to select lags) or (ii) an ARX model with

Gaussian errors and lags selected via the SIC (when only ARX models are compared). This result

indicates the importance of comparing a wide variety of models. If we were only to compare AR

and ARX models using the AIC, as in Table 2, then we would conclude that ARX models beat AR

models, and that fatter tails should replace Gaussian tails in error density specification. However,

inspection of the density based MSFE measures across all models considered in the tables makes

clear that the lowest DMSFE values are always associated with more parsimonious models (with

lags selected using the SIC) that assume Gaussianity.

6 Concluding Remarks

In this paper we discuss a test for predictive density accuracy. In addition, we provide a survey

of related predictive density evaluation methods, and stress that our method differs from many

of these in the sense that we allow all competing models to be misspecified. From a theoretical

perspective, we outline 3 block bootstrap procedures applicable to a wide class of test statistics

(those for which the limit distribution is a functional of Gaussian processes) constructed based on

estimators obtained via rolling estimation schemes. Additionally, we survey 2 other block bootstrap

procedures for recursive estimators due to Corradi and Swanson (2003a). The paper also contains

a small Monte Carlo investigation that illustrates the sorts of coverage probabilities that might be

expected upon use of the bootstrap procedures. Finally, an empirical example based on forecasting

models of inflation is used to illustrate the predictive density accuracy test, and it is found that

density evaluation based on AR models leaves nothing to choose between AR(1) models under

normality and models under alternative Student’s t distributional assumptions and those with lags

selected using the AIC instead of the SIC. On the other hand, when the lag selection device is fixed
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to be the AIC, then ARX predictive density models “win”, and the Student’s t distribution better

mimics the actual distribution of the predictive density than the Gaussian distribution.

This paper is meant as a starting point. Much further research is needed, both theoretical

and empirical, before the full impact of the bootstrap procedures and predictive density accuracy

tests that we have outlined will become clear. For example, alternative bootstrap procedures such

as the full sample procedure with additional adjustment terms discussed here need to be further

developed and examined, both theoretically, and via Monte Carlo experimentation. Additionally,

empirical and Monte Carlo investigation comparing and contrasting the various predictive density

accuracy tests discussed in this paper remains to be done.
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7 Appendix

The main theoretical contributions of this paper are contained in the proofs of Propositions 2 and

3, as the other propositions follow in a fairly straightforward manner, given the results of Corradi

and Swanson (2003a,b).

Proof of Proposition 1: This proof requires a simple modification to the proof of Theorem 1 in

Corradi and Swanson (2003b). In fact, the only difference is that in the current context parameters

are estimated either recursively (see Corradi and Swanson (2003a) for further discussion of the re-

cursive case), or using a rolling estimation scheme. Let µ2
i (u) = E

((
1{yt+1 ≤ u}− Fi(u|Zt, θ†

i )
)2

)

= E
((

1{yt+1 ≤ u}− F0(u|Zt, θ0)
)2

)
+E

((
F0(u|Zt, θ0)− Fi(u|Zt, θ†

i )
)2

)
. We begin by consider-

ing the rolling case. For any given u,

ZP,u,1(1, k) =
1√
P

T−1∑

t=R+s

((
1{yt+1 ≤ u}− F1(u|Zt, θ̂1,t,R)

)2
−

(
1{yt+1 ≤ u}− Fk(u|Zt, θ̂k,t,R)

)2
)

=
1√
P

T−1∑

t=R+s

((
1{yt+1 ≤ u}− F1(u|Zt, θ̂1,t,R)

)2
− µ2

1(u)
)

− 1√
P

T−1∑

t=R+s

((
1{yt+1 ≤ u}− Fk(u|Zt, θ̂k,t,R)

)2
− µ2

k(u)
)

+
√

P (µ2
1(u)− µ2

k(u))

=
1√
P

T−1∑

t=R+s

((
1{yt+1 ≤ u}− F1(u|Zt, θ†

1)
)2
− µ2

1(u)
)

− 1√
P

T−1∑

t=s

((
1{yt+1 ≤ u}− Fk(u|Zt, θ†

k)
)2
− µ2

k(u)
)

− 2
P

T−1∑

t=R+s

∇θ1F1(u|Zt, θ1,t,R)′
(
1{yt+1 ≤ u}− F1(u|Zt, θ†

1)
)√

P
(
θ̂1,t,R − θ†

1

)

+
2
P

T−1∑

t=R+s

∇θk
Fk(u|Zt, θk,t,R)′

(
1{yt+1 ≤ u}− Fk(u|Zt, θ†

k)
)√

P
(
θ̂k,t,R − θ†

k

)

+
√

P (µ2
1(u)− µ2

k(u)) + oP (1)
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=
1√
P

T−1∑

t=R

((
1{yt+1 ≤ u}− F1(u|Zt, θ†

1)
)2
− µ2

1(u)
)

− 1√
P

T−1∑

t=s

((
1{yt+1 ≤ u}− Fk(u|Zt, θ†

k)
)2
− µ2

k(u)
)

−2m
θ†1

(u)′A(θ†
1)

1√
P

T−1∑

t=R+s

1
R

t∑

j=t−R+1

ln f1(yj , Z
j−1, θ1)

+2m
θ†k

(u)′A(θ†
k)

1√
P

T−1∑

t=R+s

1
R

t∑

j=t−R+1

ln fk(yj , Z
j−1, θk)

+
√

P (µ2
1(u)− µ2

k(u)) + oP (1) (21)

where θi,t,R ∈ (θ̂i,t,R, θ†
i ), i = 1, ..., n, and m

θ†i
(u)′ = E

(
∇θiFi(u|Zt, θ†

i )
′
(
1{yt+1 ≤ u}− Fi(u|Zt, θ†

i )
))

and A(θ†
i ) =

(
E

(
−∇2

θi
ln fi(yt+1|Zt, θ†

i )
))−1

and where the oP (1) term holds uniformly in u ∈ U.

We need to distinguish between the case of P ≤ R and P > R. In the former case, by Lemma 4.1

in West and McCracken (1998, WM), 1√
P

∑T−1
t=R+s

1
R

∑t
j=t−R+1 ln fk(yj , Zj−1, θ†

1) is asymptotically

normal with variance
(
π − π2

3

)
E

(∑∞
j=−∞∇θ1 ln f1(ys+1|Zs, θ†

1)∇θ1 ln f1(ys+j+1|Zs+j , θ†
1)
′
)

, while

the long run covariance between
1√
P

∑T−1
t=R+s

1
R

∑t
j=t−R+1 ln fk(yj , Zj−1, θ†

1) and

1√
P

∑T−1
t=R

((
1{yt+1 ≤ u}− F1(u|Zt, θ†

1)
)2
− µ2

1(u)
)

is given by

π
2 E

(∑∞
j=−∞∇θ1 ln f1(ys+1|Zs, θ†

1)
((

1{ys+j+1 ≤ u}− Fk(u|Zs+j , θ†
k)

)2
− µ2

k(u)
))

. Again from Lemma

4.1 in WM, for the case of P > R,
(
π − π2

3

)
and π

2 are replaced by
(
1− 1

3π

)
and

(
1− 1

2π

)
.

In the recursive case, the second last line in (21) becomes,

−2m
θ†1

(u)′A(θ†
1)

1√
P

T−1∑

t=R+s

1
t

t∑

j=s+1

ln f1(yj , Z
j−1, θ1)+2m

θ†k
(u)′A(θ†

k)
1√
P

T−1∑

t=R+s

1
t

t∑

j=s+1

ln fk(yj , Z
j−1, θk)

and the asymptotic variance of the parameter estimation error component as well as the covariance

term follow from Lemma A5 in West (1996). Finally, convergence of finite dimensional distributions

and stochastic equicontinuity follows by the same argument as in the proof of Theorem 1 in Corradi

and Swanson (2003b).

The proofs of Propositions 2 and 3 require three Lemmas, which are given below.

As the statement of Proposition 2 holds for i = 1, ..., n, and the proof is the same regardless

which model we consider, for notational simplicity we drop the subscript i. Also, we only consider

the case where P ≤ R, as the case where P > R follows straightforwardly using the same arguments.
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Lemma A1: Let A1-A3 hold. Assume that for P ≤ R, as P →∞ and l1 →∞, l1/P → 0, and as

R →∞ and l3 →∞, l3/R → 0, and finally as R − P →∞ and l2 →∞, l2/(R − P ) → 0, then (i)

supt≥R

∣∣∣θ̂∗t,R − θ̂t,R

∣∣∣ = oP ∗(1), Pr−P, and (ii) supt≥R

∣∣∣θ̂∗t,R − θ†
∣∣∣ = oP ∗(1), Pr−P.16

Lemma A2: Let A1-A3 hold. If as R →∞ and P →∞, l1, l3 →∞, l1/P 1/4 → 0 and l3/R1/4 → 0,

then supt≥R tϑ
∣∣∣(θ̂∗t,R − θ†)

∣∣∣ = oP ∗(1), Pr−P, for all ϑ < 0.5.

Lemma A3: Let A1-A3 hold. If as R →∞ and P →∞, l1, l3 →∞, l1/P 1/4 → 0 and l3/R1/4 → 0,

then if P/R → π > 0,

V ar∗



 1√
P

T−1∑

t=R

1
R

t+R∑

j=t−P+1

(
∇θq(y∗j , Z

∗,j−1, θ†)
)


 = ΠC00, Pr−P, t

where C00 =
∑∞

j=−∞E
((
∇θq(y1+s, Zs, θ†)

) (
∇θq(y1+s+j , Zs+j , θ†)

)′) and Π = π−π2/3 for P ≤ R

and 1− π2/3 for P > R.

Proof of Lemma A1: (i) We need to extend the consistency results for bootstrap m−estimators

of Goncalves and White (2003, Theorem 2.1), to the case of rolling m−estimators. Recalling that

for t ≥ R + s,

θ̂t,R = arg max
θ∈Θ

1
R

t∑

j=t−R+1

ln f(yj , Z
j−1, θi) and θ̂∗t,R = arg max

θ∈Θ

1
R

t∑

j=t−R+1

ln f(y∗j , Z
∗,j−1, θi)

and given that the argmax is a measurable function, and because of the unique identifiability

conditions in A2(ii), it suffices to show that

sup
t≥R+s

sup
θ∈Θ

∣∣∣∣∣∣
1
R

t∑

j=t−R+1

(
ln f(y∗j , Z

∗,j−1, θ)− ln f(yj , Z
j−1, θ)

)
∣∣∣∣∣∣
= oP ∗(1), Pr−P.

Hereafter, for notational simplicity let ln f(y∗j , Z
∗,j−1, θ) = q∗j (θ) and ln f(yj , Zj−1, θ) = qj(θ), and

let µθ = E(qj(θ)). Now,

sup
t≥R+s

sup
θ∈Θ

∣∣∣∣∣∣
1
R

t∑

j=t−R+1

(
q∗j (θ)− qj(θ)

)
∣∣∣∣∣∣
≤ sup

t≥R+s
sup
θ∈Θ

∣∣∣∣∣∣
1
R

t∑

j=t−R+1

(
q∗j (θ)− E∗ (

q∗j (θ)
))

∣∣∣∣∣∣ (22)

+ sup
t≥R+s

sup
θ∈Θ

∣∣∣∣∣∣
1
R

t∑

j=t−R+1

(qj(θ)− µθ)

∣∣∣∣∣∣
+ sup

t≥R+s
sup
θ∈Θ

∣∣∣∣∣∣
1
R

t∑

j=t−R+1

(
E∗ (

q∗j (θ)
)
− µθ

)
∣∣∣∣∣∣
. (23)

16Recall that when |P − R| = o(T ), then the contribution of the observation in the range |P − R| is negligible,

whichever values we choose for l2.
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Now, assuming without loss of generality, P ≤ R,

1
R

t∑

j=t−R+1

E∗(q∗j (θ)) = hP (θ)
1{j(t) ≤ P}

R
+hR−P

1{P < j(t) ≤ R}
R

+hT−R
1{R < j(t) ≤ T − 1}

R

+O

(
l

R

)
, Pr−P

= hP α1(t) + hR−P α2(t) + hT−Rα3(t) + O

(
l

T

)
, Pr−P (24)

uniformly in θ, as under A3, P and R grow at the same rate, as the sample size increases, and for

i = 1, 2, 3 0 ≤ αi(t) ≤ 1 and
∑3

i=1 αi(t) = 1. Also the O(l/T ) term holds uniformly in t. Therefore,

the last term on the RHS of (23) writes as:

sup
t≥R+s

sup
θ∈Θ

∣∣(hP (θ)−µθ

)
α1(t)

∣∣ + sup
t≥R+s

sup
θ∈Θ

∣∣(hR−P (θ)−µθ

)
α2(t)

∣∣ + sup
t≥R+s

sup
θ∈Θ

∣∣(hP (θ)−µθ

)
α2(t)

∣∣
(25)

where given the mixing and moment conditions in A1 and A2, the first and third term on the RHS

of (25) are O(T−1/2)O(1), Pr−P, because of the uniform law of large numbers, the second term is

also O(T−1/2)O(1), if R − P = O(T ), otherwise if R − P = o(T ), then is O(1)o(1). Therefore the

sum is (25) is o(1)− Pr−P.

With regard to the first term on the RHS of (23), note that

sup
t≥R+s

sup
θ∈Θ

∣∣∣∣∣∣
1
R

t∑

j=t−R+1

(qj(θ)− µθ)

∣∣∣∣∣∣
≤ sup

t≥R+s
sup
θ∈Θ

∣∣∣∣∣∣
1
R

t∑

j=s

(qj(θ)− µθ)

∣∣∣∣∣∣
+sup

θ∈Θ

∣∣∣∣∣∣
1
R

R∑

j=s+1

(qj(θ)− µθ)

∣∣∣∣∣∣
= op(1)

by the same argument as in the proof of Lemma A1 in CS (2003a). Finally, with regard to the

RHS of (22), note that

sup
t≥R+s

sup
θ∈Θ

∣∣∣∣∣∣
1
R

t∑

j=t−R+1

(
q∗j (θ)− E∗ (

q∗j (θ)
))

∣∣∣∣∣∣

≤ sup
t≥R+s

sup
θ∈Θ

∣∣∣∣∣∣
1
R

t∑

j=s+1

(
q∗j (θ)−E∗ (

q∗j (θ)
))

∣∣∣∣∣∣
+ sup

t≥R+s
sup
θ∈Θ

∣∣∣∣∣∣
1
R

R∑

j=s+1

(
q∗j (θ)−E∗ (

q∗j (θ)
))

∣∣∣∣∣∣
= o(1), Pr−P,

because of the uniform law of large number for heterogeneous, independent observations.

Proof of Lemma A2: Without loss of generality we consider the case of P ≤ R. First note that,

tϑ
(
θ̂∗t,R − θ†

)
=



1
t

t∑

j=t−R+1

∇2
θ ln f(y∗j , Z

∗,j−1, θ
∗
t,R)




−1 

 1
t1−ϑ

t∑

j=t−R+1

∇θ ln f(y∗j , Z
∗,j−1, θ†)



 ,
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with θ
∗
t,R ∈ (θ̂∗t,R, θ†). Hereafter, for notational simplicity let ∇θ ln f(y∗j , Z

∗,j−1, θ) = ∇θq∗j (θ) and

∇2
θ ln f(yj , Zj−1, θ) = ∇2

θqj(θ), and A† =
(
E

(
−∇2

θqt(θ†)
))−1

,

sup
t≥R+s

∣∣∣∣∣∣
1
t

t∑

j=t−R+1

(
∇2

θq
∗
j (θ

∗
t,R)−A†−1

)
∣∣∣∣∣∣
≤ sup

t≥R+s

∣∣∣∣∣∣
1
t

t∑

j=t−R+1

(
∇2

θq
∗
j (θ

∗
t,R)− E∗

(
∇2

θq
∗
j (θ

∗
t,R)

))
∣∣∣∣∣∣(26)

+ sup
t≥R+s

∣∣∣∣∣∣
1
t

t∑

j=t−R+1

(
∇2

θqj(θt,R)−A†−1
)
∣∣∣∣∣∣
+ sup

t≥R+s

∣∣∣∣∣∣
1
t

t∑

j=s

(
∇2

θqj(θt,R)− E∗
(
∇2

θq
∗
j (θ

∗
t,R)

))
∣∣∣∣∣∣
,
(27)

with as θ
∗
t,R ∈ (θ̂∗t,R, θ†) and θt,R ∈ (θ̂t,R, θ†). As for the RHS of (26),

sup
t≥R+s

∣∣∣∣∣∣
1
t

t∑

j=t−R+1

(
∇2

θq
∗
j (θ

∗
t,R)−E∗

(
∇2

θq
∗
j (θ

∗
t,R)

))
∣∣∣∣∣∣
≤ sup

t≥R
sup
θ∈Θ

∣∣∣∣∣∣
1
t

t∑

j=t−R+1

(
∇2

θq
∗
j (θ)− E∗ (

∇2
θq
∗
j (θ)

))
∣∣∣∣∣∣

First note that,

E∗ (
∇2

θq
∗
j (θ)

)
=

1
P

P∑

j=1

∇2
θqj(θ)α1(t) +

1
R− P

R∑

j=P+1

∇2
θqj(θ)α2(t) +

1
T −R− 1

T−1∑

j=R+1

∇2
θqj(θ)α3(t)

thus RHS of (26) is o(1), Pr−P, by the same argument as in Lemma A1. Given Lemma A1,

supt≥R

∣∣∣θ∗t,R − θt,R

∣∣∣ = oP ∗(1) Pr−P, and supt≥R

∣∣θt,R − θ†∣∣ = oP (1), thus the sum of the two terms

in (27) is oP ∗(1) Pr−P, by the same argument used in the proof of Lemma A1.

Let nt = (2t log log t)1/2, and let ∇θ ln f(y∗j , Z
∗,j−1, θ) = h∗j (θ), and ∇θ ln f(yj , Zj−1, θ) = hj(θ),

sup
t≥R+s

∣∣∣∣∣∣
1
nt

t∑

j=t−R+1

h∗j (θ
†)

∣∣∣∣∣∣
≤ sup

t≥R+s

∣∣∣∣∣∣
1
nt

t∑

j=t−R+1

(
h∗j (θ

†)−E∗
(
h∗j (θ

†)
))

∣∣∣∣∣∣

+ sup
t≥R+s

∣∣∣∣∣∣
1
nt

t∑

j=t−R+1

E∗
(
h∗j (θ

†)
)
∣∣∣∣∣∣
, (28)

and noting that, by the same argument as in the proof of Lemma A1, up to a term of order

O(l/P 1/2), Pr−P, recalling that αi ∈ (0, 1] for i = 1, 2.3, there are constants C1, C2, C3 such that,

sup
t≥R+s

∣∣∣∣∣∣
1
nt

t∑

j=t−R+1

E∗
(
h∗j (θ

†)
)
∣∣∣∣∣∣
≤ C1

∣∣∣∣∣∣
1√

2R log log R

P∑

j=1

hj(θ†)

∣∣∣∣∣∣

+C2

∣∣∣∣∣∣
1√

2R log log R

R∑

j=P+1

hj(θ†)

∣∣∣∣∣∣
+ sup

t≥R+s

∣∣∣∣∣∣
1√

2R log log R

t∑

j=R+1

hj(θ†)

∣∣∣∣∣∣
, (29)

35



and all the terms on the RHS of (29) are O(1), a.s.− P, as, given A1 and A3 each terms satisfies

the conditions for the functional law of the iterated logarithm (e.g. Theorem 2 in Eberlain (1986)).

It remains to show that the first term on the RHS of (28) is OP ∗(1), Pr−P. To further simplify

the notation, we denote h∗j (θ
†) and hj(θ†) as h∗j and hj , respectively. By a similar argument as in

the proof of Lemma A2 in CS (2003a), it can be shown that

V ∗ = limT→∞ V ar∗
(

1√
T

∑T
t=1 h∗j (θ

†)
)

is O(1), Pr−P. The desired result then follows from Eber-

lain’s (1986) law of iterated logarithm for dependent and heterogeneous process, given A1 and

A2.

Proof of Lemma A3: As in the proof of Lemma A2, let ∇θ ln f(y∗j , Z
∗,j−1, θ) = h∗j (θ), and

∇θ ln f(yj , Zj−1, θ) = hj(θ), also let ∇θ ln f(y∗j , Z
∗,j−1, θ†) = h∗j , and ∇θ ln f(yj , Zj−1, θ†) = hj .

Along the lines of West and McCracken (1998, proof of Lemma 4.1), for the case of P ≤ R,

1√
P

T−1∑

t=R+s

1
R

t∑

j=t−R+1

h∗j=
1√
PR

P+s∑

j=s+1

(j − s)h∗j+
√

P

R

R+s∑

j=P+s+1

h∗j+
1√
PR

T−1∑

j=R+s+1

(P − s− (j −R))h∗j
(30)

Thus,

V ar∗



 1√
P

T−1∑

t=R

1
R

t∑

j=t−R+1

h∗j



 = V ar∗



 1√
PR

P+s∑

j=s+1

(j − s)h∗j





+V ar∗




√

P

R

R+s∑

j=P+s+1

h∗j



 + V ar∗



 1√
PR

T−1∑

j=R+s+1

(P − s− (j −R))h∗j



 + o(1) Pr−P
(31)

where the o(1) Pr−P term comes from the fact that the covariance term are o(1) Pr−P. In fact,

given the resampling scheme outlined in Section 3.1.1 any block from the first bi i = 1, 2 blocks can

overlap with any of the following bi+1 blocks for at most s observations. We begin by analyzing

the first term on the RHS of (31), Now, for j ≤ P, E∗
(
h∗j

)
= hP + O(l/P ), thus, given that s is

finite, up to a term of order O(l/P 1/2),17

V ar∗



 1√
PR

P∑

j=s+1

(j − s)h∗j



 = V ar∗
(

1√
PE

b1∑

k=1

l∑

i=1

((k − 1)l + i)hI1
k+i

)

17For notational simplicity, we start summation from 1 instead than from s. As s is finite, this has no consequence

on the asymptotic behavior.
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= E∗



 1√
PR

b1∑

k=1

l∑

i=1

l∑

j=1

((k − 1)l + i)((k − 1)l + j)(hIk+i − hP )(hIk+j − hP )′




=
1
P

1
R2

b1∑

k=1

l∑

i=1

l∑

j=1

((k − 1)l + i)((k − 1)l + j)E∗ (
(hIk+i − hP )(hIk+j − hP )′

)

=
1
P

1
R2

b1∑

k=1

l∑

i=1

l∑

j=1

((k − 1)l + i)((k − 1)l + j)

(
1
P

P−l∑

t=l

(ht+i−hP )(ht+j−hP )′
)

+ O(l/P 1/2) Pr−P

=
1
P

1
R2

b1∑

k=1

l∑

i=1

l∑

j=1

((k − 1)l + i)((k − 1)l + j)γ|i−j|

+
1
P

1
R2

b1∑

k=1

l∑

i=1

l∑

j=1

((k − 1)l + i)((k − 1)l + j)

(
1
P

P−l∑

t=l

(
(ht+i − hP )(ht+j − hP )′ − γi−j

)
)

+O(l/P 1/2) Pr−P (32)

We need to show that the last term on the last equality in (32) is o(1) Pr−P. First, as for all k, i, j

((k−1)l+i)((k−1)l+j)
R2 ≤ 1, it is majorized by

∣∣∣∣∣∣
b1

P

l∑

i=1

l∑

j=1

(
1
P

P−l∑

t=l

(
(ht+i − hP )(ht+j − hP )′ − γi−j

)
)∣∣∣∣∣∣

=

∣∣∣∣∣∣
1
P

P−l∑

t=l

l∑

j=−l

(
(ht − hP )(ht+j − hP )′ − γj

)
∣∣∣∣∣∣
+ O(l/P 1/2) Pr−P (33)

The first term on the RHS of (33) goes to zero in probability, by the same argument as in Lemma

2 in Corradi (1999)18. For the first term on the RHS of the last equality in (32), note that

1
P

1
R2

b2∑

k=1

l∑

i=1

l∑

j=1

((k − 1)l + i)((k − 1)l + j)γ|i−j| =
1
P

P−l∑

t=l

l∑

j=−l

t(t + j)γj + O(l/P 1/2) Pr−P

=
1
P

1
R2

P−l∑

t=l

t2
l∑

j=−l

γj +
1
P

P−l∑

t=l

l∑

j=−l

(t(t + j)− t2)γj + O(l/P 1/2) Pr−P

By the same argument as in Lemma 4.1 in West and McCracken (1998), the second term on the

RHS above approaches zero, while

1
P

P−l∑

t=l

t2
l∑

j=−l

γj →
π2

3
C00.

18The domination condition here are weaker than those in Lemma 2 in Corradi (1999) as we require only convergence

to zero in probability and not almot surely.
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By a similar argument, and following the proof of Lemma 4.1 in West and McCracken (1998), it

can be shown that

V ar∗




√

P

R

R+s∑

j=P+s+1

h∗j



 = (π − π2)C00 + oP (1)

V ar∗



 1√
PR

T−1∑

j=R+s+1

(P − s− (j −R))h∗j



 =
π2

3
C00 + oP (1).

Finally, the case of P > R can be treated along the same lines.

Proof of Proposition 2:

1
P 1/2

T−1∑

t=R+s

(
θ̂∗t,R − θ̂t,R

)
=

1
P 1/2

T−1∑

t=R+s

(
θ̂∗t,R − θ†

)
− 1

P 1/2

T−1∑

t=R+s

(
θ̂t,R − θ†

)

=
1

P 1/2

T−1∑

t=R+s



− 1
R

t∑

j=t−R+1

∇2
θ ln f(y∗j , Z

∗,j−1, θ
∗
t,R)




−1 

 1
R

t∑

j=t−R+1

∇θ ln f(y∗j , Z
∗,j−1, θ†)





− 1
P 1/2

T−1∑

t=R



− 1
R

t∑

j=t−R+1

∇2
θ ln f(yj , Z

j−1, θt,R)




−1 

 1
R

t∑

j=t−R+1

∇θ ln f(yj , Z
j−1, θ†)



 ,(34)

where θ
∗
t,R ∈

(
θ̂∗t,R, θ†

)
and θt,R ∈

(
θ̂t,R, θ†

)
.

Given Lemma A1 and A2 and given A1-A3,

sup
t≥R+s







 1
R

t∑

j=t−R+1

∇θ ln f(y∗j , Z
∗,j−1, θ

∗
t,R)




−1

−



 1
R

t∑

j=t−R+1

∇θ ln f(yj , Z
j−1, θt,R)




−1



= o∗P (1), Pr−P,

and also

sup
t≥R+s







− 1
R

t∑

j=t−R+1

∇2
θ ln f(y∗j , Z

∗,j−1, θ
∗
t,R)




−1

−A†



 = o∗P (1), Pr−P, (35)

so the RHS of (34) can be written as:

1
P 1/2

T−1∑

t=R+s

A†



 1
R

t∑

j=t−R+1

∇θ ln f(y∗j , Z
∗,j−1, θ†)− 1

R

t∑

j=t−R+1

∇θ ln f(yj , Z
j−1, θ†)



+o∗P (1), Pr−P

= A† 1
P 1/2

T−1∑

t=R+s



 1
R

t∑

j=t−R+1

h∗j −
1
R

t∑

j=t−R+1

ht



 + o∗P (1), Pr−P, (36)
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by letting ∇θ ln f(y∗j , Z
∗,j−1, θ†) = h∗t , ∇θ ln f(yj , Zj−1, θ†) = ht. Recalling (24), the RHS (36) for

P ≤ R, can be written as,

A† 1√
PR

P+s∑

t=s+1

(t− s)
(
h∗t − hP

)
+ A†

√
P

R

R+s∑

t=P+s+1

(h∗t − hR−P )

+A† 1√
PR

T−1∑

t=R+s+1

(P + s− (t−R))
(
h∗t − hT−R

)

−A† 1√
PR

P+s−1∑

i=s+1

(i− s)(hi − hP )−A† 1√
PR

T−1∑

t=R+s+1

(P + s− (t−R))
(
ht − hT−R

)

+o∗P (1), Pr−P. (37)

The sum of the first three terms in (37) satisfies a central limit theorem for mixing triangular arrays

(Wooldridge and White (1988)) and, by Lemma A3, has asymptotic variance equal to ΠC00, which

is the same as the asymptotic variance of P−1/2 ∑T−1
t=R+s(θ̂t,R−θ†

t ) (see Lemma 4.1, in West and Mc-

Cracken (1998)), conditionally on the samples and for all samples but a subset of measure approach-

ing zero. Therefore, it suffices to show that the last term on the RHS of (19), i.e. the adjustment

term, is equal to A† 1√
P

∑P+s−1
i=s+1 (i−s)(hi−hP )−A† 1√

PR

∑T−1
t=R+s+1(P +s−(t−R)) (ht − ht) , up to a

term vanishing asymptotically. Given A1 and A2,
(
− 1

T

∑T−1
t=s ∇2

θ ln f(yt, Zt−1, θ̂T )
)−1

−A† = o(1)

Pr−P (i.e. oP (1)), where θ̂T is the estimator constructed using all T observations.

Now let ht(θ̂T ) = ∇θ ln f(yt, Zt−1, θ̂T ), and hP (θ̂), hR−P (θ̂T ), hT−R(θ̂T ) be defined as hP , hR−P ,

hT−R with θ† replaced by θ̂T , and let ∇2ht(θ̂T ) = ∇2
θ ln f(yt, Zt−1, θ̂T ). Now,

A† 1√
PR

P+s−1∑

t=s+1

(t− s)
((

ht(θ̂T )− hP (θ̂T )
)
−

(
ht − hP

))

= A† 1
PR

P+s−1∑

t=s+1

(t− s)
(
∇2ht(θT )−∇2hP (θT )

)√
P

(
θ̂T − θ†

)
= o(1), Pr−P, (38)

as
√

P
(
θ̂T − θ†

0

)
= O(1) Pr−P, and by the uniform law of large numbers for mixing triangular

arrays, 1
PR

∑P+s−1
t=s+1 (t − s)

(
∇2hR+i(θT )−∇2hP (θT )

)
= o(1) Pr−P. The term concerning obser-

vations from P + s + 1 to R + s does not require adjustment, as all observations carry the same

weights, the term concerning observations from R + s + 1 to T − 1 can be treated as above.

Proof of Proposition 3: We consider only the case of P ≤ R. The fact that 1
P 1/2

∑T−1
t=R

(
β̂∗t,R − β̂t,R

)

has the same limiting distribution as in Proposition 1, follows by exactly the same arguments as in
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the proofs of Lemmas A1-A3 and Proposition 2 above. Now,

σ̂2
t,R =

1
R

t∑

j=t−R+1

ε̂2j =
1
R

t∑

j=t−R+1

(
yj − g(Zj−1, β̂t,R)

)2
=

1
R

t∑

j=t−R+1

ε2j + OP (R−1/2),

as for ϑ < 1/2, supt≥R tϑ
(
β̂t,R − β†

)
= op(1) (see Lemma A1 in West and McCracken (1998)) and

supt≥R

√
R

(
β̂t,R − β†

)
1
R

∑t
j=t−R+1 εj = oP (1). Thus,

√
R

(
σ̂2

t,R − σ2†
)

=
1√
R

t∑

j=t−R+1

(
ε̂2j − σ2†

)
+ oP (1).

Now,

σ̂2∗
t,R =

1
R

t∑

j=t−R+1

ε̂∗2j =
1
R

t∑

j=t−R+1

(
y∗j − g(Z∗,j−1, β̂∗t,R)

)2

=
1
R

t∑

j=t−R+1

(
y∗j − g(Z∗,j−1, β̂t,R)

)2
=

1
R

t∑

j=t−R+1

ε∗2j + OP ∗(R−1/2), Pr−P,

where the last equality on the RHS of the above equation follows given Lemma A1 in West and

McCracken (1998) and Lemma A3 (since these results in turn ensure that supt≥R tϑ
(
β̂∗t,R − β̂t,R

)
=

oP ∗(1), Pr−P and supt≥R

√
R

(
β̂∗t,R − β̂t,R

)
1
R

∑t
j=t−R+1 ε∗j = oP ∗(1) Pr−P ). Thus,

√
R

(
σ̂2∗

t,R − σ̂2
t,R

)
=

1√
R

t∑

j=t−R+1

(
ε̂∗2j − ε̂2j

)

and up to a oP (1) term,

1
P 1/2

T−1∑

t=R+s

(
σ̂2∗

t,R − σ̂2
t,R

)
=

1√
PR

T−1∑

t=R+s

t∑

j=t−R+1

(
ε̂∗2j − ε̂2j

)
=

1√
PR

P+s∑

j=s+1

(j − s)
(
ε̂∗2j − ε̂2j

)

+
√

P

R

R+s∑

j=P+s+1

(
ε̂∗2j − ε̂2j

)
+

1√
PR

T−1∑

j=R+s+1

(P + s− (j −R))
(
ε̂∗2j − ε̂2j

)
. (39)

Letting ε̂
2
P = 1

P

∑P
i=1 ε̂2i and ε̂

2
R−P , ε̂

2
T−R defined in an analogous way. So, the LHS of (39) can be

written as:

 1√
PR

P+s∑

j=s+1

(j − s)
(
ε̂∗2j − ε̂

2
P

)
+
√

P

R

R+s∑

j=P+s+1

(
ε̂∗2j − ε̂

2
R−P

)

1√
PR

T−1∑

j=R+s+1

(P + s− (j −R))
(
ε̂∗2j − ε̂

2
T−R

)




−



 1√
PR

P+s∑

j=s+1

(j − s)
(
ε̂2j − ε̂

2
P

)
+

1√
PR

T−1∑

j=R+s+1

(P + s− (j −R))
(
ε̂2j − ε̂

2
T−R

)


 . (40)
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Note that for j = s + 1, ..., P + s E∗(ε̂∗2j ) = ε̂
2
P + O(l/P ), by the same argument use in the

proofs of Lemmas A1-A3 and Theorem 1, the term in the first square bracket in (40) has the same

limiting distribution as
√

R
(
σ̂2

t,R − σ2†
)

, conditional on the sample and for all samples but a set

of probability measure approaching zero. The term in the second square bracket is the adjustment

term used in the construction of Φ∗R,P,1. The case of P > R can be treated in an analogous fashion.

Proof of Proposition 4: This proof follows from Theorem 1 in Corradi and Swanson (2003a).

Proof of Proposition 5: This proof follows using arguments similar to those used in the proof

of Proposition 3.

Proof of Proposition 6: The proof to this proposition follows as a straightforward modification

of Proposition 7 in Corradi and Swanson (2003a).
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Table 1: Finite Sample Properties: Rolling and Recursive PEE Bootstrap: Part I(∗)

smpl boot coeff l = 4 l = 6 l = 10 l = 12 l = 15 l = 20 l = 25 l = 30 l = 50 l = 60
Panel A: DGP is an AR(1) Process - ρ = 0.2

800 roll1 ρ̂ 1.000 1.000 0.270 0.585 0.800 0.890 0.870 0.835 0.825 0.845
ρ̂1 0.840 0.800 0.295 0.620 0.805 0.895 0.885 0.830 0.825 0.850
ρ̂2 0.795 0.790 0.760 0.800 0.885 0.865 0.840 0.880 0.845 0.875

roll2 ρ̂ 0.790 0.800 0.310 0.510 0.720 0.760 0.785 0.730 0.690 0.755
ρ̂1 0.715 0.720 0.300 0.565 0.705 0.765 0.795 0.745 0.720 0.755
ρ̂2 0.730 0.695 0.700 0.720 0.735 0.780 0.720 0.780 0.705 0.715

rec1 ρ̂ 0.675 0.665 0.260 0.730 0.850 0.870 0.935 0.925 0.860 0.885
ρ̂1 0.820 0.855 0.290 0.745 0.860 0.920 0.930 0.910 0.900 0.890
ρ̂2 0.825 0.880 0.775 0.880 0.930 0.915 0.910 0.915 0.885 0.880

rec2 ρ̂ 0.810 0.780 0.260 0.730 0.850 0.855 0.905 0.900 0.855 0.865
ρ̂1 0.795 0.820 0.305 0.735 0.845 0.880 0.910 0.895 0.890 0.865
ρ̂2 0.780 0.835 0.750 0.865 0.905 0.910 0.870 0.865 0.885 0.850

1600 roll1 ρ̂ 0.875 0.850 0.765 1.000 0.070 0.410 0.680 0.755 0.915 0.860
ρ̂1 0.880 0.900 0.875 0.835 0.085 0.435 0.710 0.740 0.910 0.850
ρ̂2 0.880 0.900 0.875 0.830 0.750 0.800 0.870 0.855 0.835 0.855

roll2 ρ̂ 0.850 0.845 0.870 0.810 0.120 0.425 0.605 0.675 0.755 0.760
ρ̂1 0.755 0.770 0.755 0.755 0.120 0.435 0.640 0.685 0.785 0.795
ρ̂2 0.770 0.780 0.730 0.700 0.705 0.690 0.785 0.720 0.705 0.775

rec1 ρ̂ 0.725 0.725 0.760 0.690 0.115 0.555 0.765 0.885 0.890 0.925
ρ̂1 0.895 0.910 0.910 0.900 0.115 0.555 0.780 0.890 0.905 0.930
ρ̂2 0.920 0.935 0.915 0.880 0.810 0.895 0.915 0.960 0.940 0.940

rec2 ρ̂ 0.970 0.945 0.895 0.895 0.120 0.500 0.740 0.855 0.885 0.920
ρ̂1 0.865 0.890 0.875 0.880 0.120 0.530 0.770 0.870 0.890 0.925
ρ̂2 0.890 0.890 0.850 0.890 0.820 0.870 0.895 0.925 0.915 0.880

Panel B: DGP is an AR(2) Process - ρ = 0.1
800 roll1 ρ̂ 0.865 0.895 0.825 0.865 0.845 1.000 1.000 0.565 0.725 0.855

ρ̂1 0.845 0.820 0.830 0.805 0.830 0.820 0.730 0.615 0.745 0.860
ρ̂2 0.840 0.830 0.835 0.830 0.830 0.825 0.755 0.660 0.765 0.830

roll2 ρ̂ 0.900 0.885 0.870 0.875 0.840 0.790 0.765 0.540 0.635 0.780
ρ̂1 0.705 0.710 0.730 0.680 0.720 0.705 0.580 0.570 0.660 0.790
ρ̂2 0.700 0.725 0.720 0.710 0.725 0.725 0.600 0.605 0.645 0.745

rec1 ρ̂ 0.775 0.765 0.725 0.760 0.725 0.695 0.645 0.620 0.820 0.875
ρ̂1 0.905 0.920 0.860 0.920 0.910 0.860 0.805 0.640 0.860 0.915
ρ̂2 0.910 0.925 0.865 0.930 0.925 0.870 0.835 0.705 0.830 0.890

rec2 ρ̂ 0.900 0.920 0.950 0.920 0.925 0.830 0.855 0.610 0.815 0.850
ρ̂1 0.890 0.880 0.830 0.895 0.870 0.840 0.760 0.630 0.845 0.880
ρ̂2 0.880 0.900 0.840 0.890 0.890 0.825 0.780 0.705 0.805 0.875

1600 roll1 ρ̂ 0.775 0.810 0.870 0.870 0.840 0.845 0.800 0.820 1.000 0.395
ρ̂1 0.685 0.855 0.850 0.875 0.825 0.835 0.895 0.795 0.805 0.450
ρ̂2 0.695 0.885 0.850 0.890 0.835 0.835 0.915 0.790 0.800 0.515

roll2 ρ̂ 0.745 0.870 0.875 0.900 0.855 0.875 0.855 0.855 0.880 0.440
ρ̂1 0.595 0.740 0.710 0.755 0.725 0.720 0.775 0.675 0.685 0.490
ρ̂2 0.620 0.790 0.695 0.750 0.740 0.730 0.775 0.680 0.675 0.505

rec1 ρ̂ 0.695 0.735 0.795 0.820 0.730 0.775 0.730 0.765 0.780 0.505
ρ̂1 0.745 0.920 0.900 0.905 0.925 0.930 0.890 0.890 0.925 0.545
ρ̂2 0.775 0.920 0.905 0.915 0.930 0.930 0.905 0.885 0.920 0.550

rec2 ρ̂ 0.800 0.910 0.910 0.930 0.915 0.920 0.885 0.910 0.915 0.495
ρ̂1 0.735 0.890 0.870 0.880 0.905 0.920 0.875 0.860 0.890 0.550
ρ̂2 0.760 0.905 0.880 0.890 0.905 0.925 0.880 0.855 0.890 0.565

(∗) Notes:

DMSFE=
U

1√
P

T−1
t=R 1{Inft+1 ≤ u}− F1(u|Zt, θ1,t)

2
φ(u)du.

The second column lists the bootstrap used to examine parameter estimation error (PEE) associated with either an
AR(1) autoregressive parameter (ρ̂) or two autoregressive parameters from an AR(2) model (ρ̂1 and ρ̂2). Additionally,
two different DGPs are used to generate data; and AR(1) DGP slope parameter equal to 0.2 and an AR(2) with slope
parameters both equal to 0.1. (See Tables 2-4 for alternative parameterizations.) Bootstrap mnemonics ending with
a “1” denote methods that account for PEE, while those ending with a “2” indicate the the same rolling (or recursive)
bootstrap procedure was used, but with no adjustment terms. Numerical entires are 90% coverage probabilities. In
all experiments, 500 Monte Carlo iterations were carried out (see above for further details).
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Table 2: Finite Sample Properties: Rolling and Recursive PEE Bootstrap: Part II(∗)

smpl boot coeff l = 4 l = 6 l = 10 l = 12 l = 15 l = 20 l = 25 l = 30 l = 50 l = 60
Panel A: DGP is an AR(1) Process - ρ = 0.4

800 roll1 ρ̂ 0.015 0.200 0.590 0.725 0.770 0.805 0.810 0.800 0.720 0.770
ρ̂1 0.020 0.265 0.630 0.720 0.805 0.825 0.830 0.805 0.775 0.760
ρ̂2 0.790 0.835 0.825 0.870 0.865 0.845 0.850 0.840 0.750 0.780

roll2 ρ̂ 0.025 0.240 0.560 0.680 0.645 0.670 0.760 0.695 0.605 0.680
ρ̂1 0.035 0.315 0.580 0.660 0.680 0.680 0.755 0.745 0.695 0.695
ρ̂2 0.720 0.715 0.735 0.785 0.745 0.745 0.750 0.730 0.645 0.685

rec1 ρ̂ 0.015 0.190 0.575 0.700 0.780 0.810 0.800 0.795 0.785 0.780
ρ̂1 0.015 0.255 0.605 0.745 0.855 0.840 0.780 0.790 0.820 0.805
ρ̂2 0.710 0.835 0.835 0.865 0.875 0.830 0.830 0.845 0.780 0.805

rec2 ρ̂ 0.010 0.225 0.560 0.680 0.785 0.760 0.785 0.775 0.760 0.775
ρ̂1 0.025 0.270 0.600 0.730 0.820 0.800 0.745 0.780 0.770 0.785
ρ̂2 0.695 0.815 0.780 0.855 0.830 0.795 0.790 0.825 0.745 0.765

1600 roll1 ρ̂ 0.000 0.070 0.390 0.565 0.815 0.815 0.805 0.870 0.870 0.830
ρ̂1 0.000 0.115 0.460 0.630 0.835 0.835 0.845 0.885 0.870 0.855
ρ̂2 0.780 0.855 0.910 0.855 0.895 0.890 0.845 0.880 0.880 0.835

roll2 ρ̂ 0.000 0.090 0.420 0.510 0.720 0.700 0.700 0.770 0.750 0.710
ρ̂1 0.005 0.110 0.475 0.615 0.735 0.720 0.750 0.805 0.745 0.705
ρ̂2 0.745 0.745 0.795 0.750 0.750 0.800 0.760 0.775 0.750 0.690

rec1 ρ̂ 0.000 0.045 0.360 0.535 0.720 0.775 0.815 0.900 0.805 0.830
ρ̂1 0.000 0.070 0.430 0.605 0.760 0.775 0.870 0.910 0.850 0.830
ρ̂2 0.815 0.855 0.875 0.850 0.885 0.855 0.875 0.820 0.810 0.885

rec2 ρ̂ 0.000 0.060 0.360 0.540 0.715 0.755 0.775 0.850 0.765 0.775
ρ̂1 0.000 0.085 0.440 0.605 0.735 0.750 0.840 0.870 0.815 0.780
ρ̂2 0.805 0.855 0.830 0.820 0.840 0.820 0.830 0.800 0.800 0.835

Panel B: DGP is an AR(2) Process - ρ = 0.2
800 roll1 ρ̂ 0.195 0.545 0.750 0.825 0.795 0.790 0.865 0.835 0.815 0.865

ρ̂1 0.260 0.595 0.780 0.885 0.800 0.835 0.855 0.855 0.820 0.860
ρ̂2 0.330 0.670 0.855 0.870 0.870 0.825 0.865 0.870 0.795 0.805

roll2 ρ̂ 0.235 0.500 0.605 0.720 0.705 0.675 0.775 0.735 0.690 0.740
ρ̂1 0.305 0.565 0.665 0.760 0.725 0.740 0.750 0.730 0.710 0.730
ρ̂2 0.330 0.595 0.735 0.765 0.790 0.735 0.735 0.765 0.690 0.720

rec1 ρ̂ 0.190 0.525 0.715 0.790 0.840 0.825 0.800 0.825 0.790 0.720
ρ̂1 0.285 0.610 0.730 0.815 0.840 0.870 0.795 0.860 0.780 0.735
ρ̂2 0.300 0.610 0.815 0.825 0.845 0.840 0.845 0.865 0.765 0.815

rec2 ρ̂ 0.205 0.525 0.655 0.780 0.800 0.785 0.775 0.790 0.780 0.670
ρ̂1 0.280 0.575 0.705 0.800 0.800 0.835 0.775 0.835 0.770 0.705
ρ̂2 0.305 0.590 0.770 0.790 0.795 0.830 0.805 0.840 0.755 0.765

1600 roll1 ρ̂ 0.065 0.375 0.665 0.765 0.780 0.870 0.880 0.855 0.845 0.835
ρ̂1 0.100 0.415 0.690 0.780 0.815 0.855 0.885 0.875 0.840 0.835
ρ̂2 0.090 0.515 0.775 0.755 0.855 0.905 0.900 0.845 0.815 0.870

roll2 ρ̂ 0.125 0.395 0.625 0.710 0.690 0.730 0.805 0.710 0.780 0.725
ρ̂1 0.160 0.430 0.665 0.730 0.720 0.720 0.820 0.705 0.770 0.730
ρ̂2 0.120 0.520 0.730 0.680 0.760 0.785 0.770 0.740 0.750 0.750

rec1 ρ̂ 0.055 0.335 0.645 0.685 0.850 0.860 0.845 0.835 0.820 0.840
ρ̂1 0.095 0.405 0.695 0.725 0.855 0.890 0.855 0.845 0.835 0.850
ρ̂2 0.105 0.475 0.745 0.740 0.805 0.840 0.845 0.855 0.830 0.820

rec2 ρ̂ 0.060 0.355 0.615 0.650 0.810 0.855 0.805 0.815 0.795 0.805
ρ̂1 0.100 0.425 0.640 0.740 0.785 0.860 0.800 0.815 0.805 0.805
ρ̂2 0.115 0.465 0.760 0.725 0.800 0.805 0.840 0.805 0.795 0.795

(∗) Notes: See notes to Table 1.
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Table 3: Finite Sample Properties: Rolling and Recursive PEE Bootstrap: Part III(∗)

smpl boot coeff l = 4 l = 6 l = 10 l = 12 l = 15 l = 20 l = 25 l = 30 l = 50 l = 60
Panel A: DGP is an AR(1) Process - ρ = 0.6

800 roll1 ρ̂ 0.000 0.020 0.300 0.470 0.685 0.735 0.825 0.845 0.830 0.805
ρ̂1 0.000 0.045 0.410 0.600 0.780 0.780 0.870 0.855 0.830 0.815
ρ̂2 0.850 0.885 0.870 0.870 0.845 0.880 0.880 0.855 0.825 0.790

roll2 ρ̂ 0.000 0.040 0.325 0.450 0.620 0.635 0.730 0.730 0.705 0.710
ρ̂1 0.000 0.090 0.440 0.535 0.700 0.640 0.740 0.705 0.775 0.690
ρ̂2 0.775 0.780 0.760 0.765 0.705 0.785 0.720 0.755 0.665 0.660

rec1 ρ̂ 0.000 0.010 0.275 0.420 0.715 0.765 0.815 0.815 0.815 0.760
ρ̂1 0.000 0.055 0.440 0.575 0.815 0.850 0.820 0.830 0.800 0.765
ρ̂2 0.850 0.865 0.900 0.855 0.875 0.860 0.830 0.855 0.780 0.755

rec2 ρ̂ 0.000 0.010 0.285 0.420 0.715 0.735 0.765 0.800 0.795 0.685
ρ̂1 0.000 0.045 0.440 0.585 0.795 0.820 0.775 0.800 0.750 0.700
ρ̂2 0.840 0.845 0.845 0.815 0.830 0.795 0.810 0.825 0.750 0.700

1600 roll1 ρ̂ 0.000 0.000 0.090 0.215 0.635 0.710 0.800 0.770 0.870 0.825
ρ̂1 0.000 0.010 0.215 0.430 0.715 0.785 0.830 0.810 0.870 0.810
ρ̂2 0.835 0.895 0.865 0.890 0.890 0.885 0.805 0.875 0.870 0.790

roll2 ρ̂ 0.000 0.005 0.125 0.235 0.585 0.645 0.715 0.655 0.785 0.685
ρ̂1 0.000 0.010 0.245 0.450 0.670 0.710 0.700 0.695 0.805 0.690
ρ̂2 0.760 0.765 0.775 0.855 0.790 0.760 0.710 0.810 0.790 0.740

rec1 ρ̂ 0.000 0.000 0.085 0.130 0.605 0.630 0.740 0.760 0.815 0.775
ρ̂1 0.000 0.000 0.165 0.375 0.710 0.780 0.795 0.820 0.860 0.800
ρ̂2 0.805 0.870 0.925 0.865 0.880 0.855 0.870 0.845 0.820 0.870

rec2 ρ̂ 0.000 0.000 0.090 0.140 0.575 0.630 0.700 0.740 0.760 0.750
ρ̂1 0.000 0.000 0.200 0.365 0.685 0.740 0.755 0.785 0.815 0.770
ρ̂2 0.765 0.845 0.875 0.825 0.870 0.820 0.830 0.805 0.805 0.840

Panel B: DGP is an AR(2) Process - ρ = 0.3
800 roll1 ρ̂ 0.025 0.285 0.625 0.720 0.810 0.820 0.830 0.810 0.750 0.785

ρ̂1 0.090 0.485 0.715 0.830 0.830 0.850 0.840 0.820 0.810 0.765
ρ̂2 0.135 0.455 0.710 0.820 0.830 0.835 0.895 0.830 0.805 0.780

roll2 ρ̂ 0.045 0.300 0.540 0.635 0.715 0.735 0.710 0.700 0.635 0.665
ρ̂1 0.140 0.435 0.660 0.705 0.725 0.755 0.685 0.675 0.690 0.640
ρ̂2 0.190 0.425 0.660 0.695 0.730 0.710 0.725 0.680 0.695 0.660

rec1 ρ̂ 0.025 0.255 0.605 0.640 0.780 0.835 0.880 0.770 0.735 0.735
ρ̂1 0.055 0.415 0.730 0.730 0.840 0.835 0.880 0.805 0.790 0.745
ρ̂2 0.105 0.470 0.750 0.790 0.835 0.850 0.830 0.830 0.725 0.705

rec2 ρ̂ 0.030 0.270 0.565 0.625 0.755 0.820 0.865 0.745 0.705 0.715
ρ̂1 0.065 0.430 0.675 0.725 0.805 0.825 0.865 0.760 0.765 0.710
ρ̂2 0.115 0.480 0.725 0.775 0.765 0.830 0.790 0.785 0.710 0.705

1600 roll1 ρ̂ 0.000 0.095 0.520 0.605 0.750 0.830 0.815 0.830 0.895 0.820
ρ̂1 0.005 0.180 0.700 0.720 0.830 0.835 0.830 0.830 0.905 0.860
ρ̂2 0.010 0.245 0.540 0.670 0.840 0.855 0.855 0.800 0.860 0.850

roll2 ρ̂ 0.005 0.150 0.510 0.560 0.690 0.740 0.735 0.730 0.750 0.705
ρ̂1 0.015 0.235 0.660 0.655 0.730 0.740 0.755 0.740 0.780 0.720
ρ̂2 0.020 0.295 0.510 0.615 0.700 0.735 0.705 0.725 0.745 0.750

rec1 ρ̂ 0.000 0.070 0.440 0.615 0.785 0.725 0.875 0.845 0.850 0.830
ρ̂1 0.010 0.145 0.585 0.675 0.830 0.795 0.885 0.870 0.875 0.825
ρ̂2 0.005 0.205 0.585 0.760 0.775 0.835 0.830 0.845 0.850 0.800

rec2 ρ̂ 0.005 0.085 0.460 0.580 0.745 0.700 0.825 0.795 0.790 0.770
ρ̂1 0.015 0.160 0.565 0.680 0.825 0.795 0.850 0.815 0.825 0.820
ρ̂2 0.010 0.225 0.555 0.730 0.750 0.820 0.795 0.785 0.820 0.760

(∗) Notes: See notes to Table 1.
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Table 4: Finite Sample Properties: Rolling and Recursive PEE Bootstrap: Part IV(∗)

smpl boot coeff l = 4 l = 6 l = 10 l = 12 l = 15 l = 20 l = 25 l = 30 l = 50 l = 60
Panel A: DGP is an AR(1) Process - ρ = 0.8

800 roll1 ρ̂ 0.000 0.000 0.015 0.150 0.560 0.645 0.730 0.795 0.745 0.745
ρ̂1 0.000 0.035 0.285 0.555 0.725 0.845 0.840 0.855 0.785 0.810
ρ̂2 0.940 0.895 0.935 0.885 0.915 0.860 0.895 0.885 0.820 0.765

roll2 ρ̂ 0.000 0.000 0.060 0.185 0.500 0.575 0.675 0.650 0.670 0.650
ρ̂1 0.000 0.055 0.325 0.530 0.670 0.730 0.770 0.750 0.645 0.650
ρ̂2 0.865 0.820 0.830 0.810 0.790 0.770 0.800 0.770 0.745 0.665

rec1 ρ̂ 0.000 0.000 0.060 0.090 0.540 0.660 0.685 0.750 0.690 0.750
ρ̂1 0.000 0.000 0.300 0.440 0.765 0.825 0.800 0.835 0.800 0.770
ρ̂2 0.865 0.925 0.910 0.910 0.870 0.880 0.860 0.840 0.775 0.785

rec2 ρ̂ 0.000 0.000 0.065 0.105 0.510 0.620 0.680 0.710 0.655 0.720
ρ̂1 0.000 0.005 0.330 0.435 0.765 0.805 0.785 0.790 0.750 0.690
ρ̂2 0.855 0.905 0.875 0.895 0.830 0.860 0.840 0.820 0.725 0.785

1600 roll1 ρ̂ 0.000 0.000 0.000 0.010 0.260 0.425 0.730 0.740 0.790 0.800
ρ̂1 0.000 0.005 0.115 0.250 0.605 0.775 0.820 0.865 0.815 0.850
ρ̂2 0.920 0.895 0.900 0.900 0.890 0.870 0.895 0.900 0.850 0.865

roll2 ρ̂ 0.000 0.000 0.010 0.025 0.300 0.430 0.660 0.675 0.680 0.720
ρ̂1 0.000 0.005 0.175 0.295 0.590 0.700 0.730 0.790 0.730 0.750
ρ̂2 0.900 0.845 0.815 0.775 0.825 0.740 0.775 0.795 0.730 0.715

rec1 ρ̂ 0.000 0.000 0.000 0.010 0.305 0.450 0.670 0.695 0.795 0.760
ρ̂1 0.000 0.000 0.055 0.180 0.580 0.680 0.830 0.820 0.810 0.835
ρ̂2 0.895 0.945 0.930 0.875 0.875 0.900 0.855 0.850 0.820 0.820

rec2 ρ̂ 0.000 0.000 0.000 0.010 0.320 0.445 0.700 0.670 0.755 0.750
ρ̂1 0.000 0.000 0.085 0.200 0.575 0.710 0.805 0.790 0.790 0.825
ρ̂2 0.885 0.940 0.900 0.850 0.870 0.870 0.835 0.815 0.780 0.820

Panel B: DGP is an AR(2) Process - ρ = 0.4
800 roll1 ρ̂ 0.000 0.055 0.465 0.580 0.765 0.760 0.865 0.770 0.795 0.780

ρ̂1 0.035 0.285 0.700 0.775 0.830 0.870 0.855 0.860 0.780 0.760
ρ̂2 0.040 0.345 0.655 0.775 0.860 0.865 0.815 0.845 0.800 0.760

roll2 ρ̂ 0.005 0.080 0.415 0.495 0.650 0.665 0.810 0.660 0.630 0.665
ρ̂1 0.055 0.315 0.650 0.655 0.725 0.765 0.795 0.740 0.675 0.655
ρ̂2 0.055 0.415 0.620 0.715 0.785 0.730 0.725 0.720 0.705 0.665

rec1 ρ̂ 0.000 0.050 0.405 0.505 0.755 0.755 0.800 0.725 0.770 0.715
ρ̂1 0.005 0.290 0.650 0.790 0.845 0.820 0.895 0.845 0.780 0.720
ρ̂2 0.045 0.325 0.715 0.675 0.825 0.840 0.870 0.815 0.765 0.765

rec2 ρ̂ 0.000 0.065 0.395 0.495 0.725 0.735 0.790 0.690 0.720 0.690
ρ̂1 0.010 0.310 0.650 0.790 0.820 0.790 0.855 0.795 0.730 0.670
ρ̂2 0.045 0.330 0.670 0.675 0.805 0.830 0.830 0.815 0.735 0.780

1600 roll1 ρ̂ 0.000 0.000 0.225 0.280 0.715 0.750 0.810 0.810 0.810 0.825
ρ̂1 0.000 0.050 0.465 0.595 0.830 0.860 0.855 0.855 0.810 0.835
ρ̂2 0.000 0.085 0.505 0.605 0.865 0.825 0.865 0.845 0.830 0.860

roll2 ρ̂ 0.000 0.010 0.265 0.315 0.600 0.670 0.725 0.725 0.650 0.720
ρ̂1 0.000 0.090 0.470 0.595 0.765 0.765 0.810 0.725 0.715 0.740
ρ̂2 0.000 0.165 0.520 0.520 0.740 0.745 0.765 0.700 0.760 0.705

rec1 ρ̂ 0.000 0.000 0.170 0.330 0.580 0.610 0.815 0.800 0.780 0.790
ρ̂1 0.000 0.020 0.455 0.585 0.780 0.755 0.865 0.790 0.870 0.855
ρ̂2 0.000 0.090 0.465 0.545 0.820 0.795 0.865 0.830 0.900 0.820

rec2 ρ̂ 0.000 0.005 0.175 0.345 0.560 0.600 0.780 0.780 0.730 0.770
ρ̂1 0.000 0.030 0.450 0.560 0.750 0.745 0.805 0.785 0.815 0.790
ρ̂2 0.000 0.110 0.485 0.540 0.780 0.775 0.820 0.800 0.850 0.795

(∗) Notes: See notes to Table 1.
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Table 5: Comparison of Autoregressive Inflation Models with and Without Unemployment Using SIC(∗)

Model 1 - Normal Model 2 - Normal Model 3 - Student’s t Model 4 - Student’s t
Specification AR ARX AR ARX
lag Selection SIC (1) SIC (1,1) SIC (1) SIC (1,1)

MSFE 0.00083352 0.00004763 0.00083352 0.00004763
DMSFE 1.80129635 2.01137942 1.84758927 1.93272971

ZP,u,2(1, k) benchmark -0.21008307 -0.04629293 -0.13143336

Critical Values

Split Sample Bootstrap Full Sample Bootstrap
Percentile 3 5 10 15 20 3 5 10 15 20

50 0.021162 0.024060 0.029225 0.032261 0.035047 0.024781 0.028650 0.031658 0.033059 0.039597
60 0.025038 0.029217 0.035260 0.042024 0.048347 0.030310 0.033776 0.038414 0.041436 0.049562
70 0.029217 0.033260 0.046050 0.062857 0.085990 0.037022 0.039206 0.047596 0.051924 0.065609
80 0.037753 0.044869 0.104205 0.116851 0.146838 0.047352 0.048774 0.060000 0.067258 0.093197
90 0.049772 0.112000 0.169281 0.197268 0.239285 0.071591 0.067820 0.096591 0.104021 0.170241

(∗) Notes: Entires in the table are given in two parts (i) summary statistics, and (ii) bootstrap percentiles. In (i):
“specification” lists the model used. For each specification, lags may be chosen either with the SIC or the AIC, and
the predictive density may be either Gaussian or Student’s t, as denoted in the various columns of the table. The
bracketed entires beside SIC and AIC denote the number of lags chosen for the autoregressive part of the model
and the number of lags of unemployment used, respectively. MSFE is the out-of-sample mean square forecast
error based on evaluation of P=300 1-step ahead predictions using recursively estimated models, and DMSFE =

U
1√
P

T−1
t=R 1{Inft+1 ≤ u}− F1(u|Zt, θ1,t)

2
φ(u)du, where R = 300, corresponding to the sample period from

1954:1-1978:12, is our analogous density based square error loss measure. Finally, ZP,u,2(1, k) is the accuracy test
statistic, for each benchmark/alternative model comparison. The density accuracy test is the maximum across the
ZP,u,2(1, k) values. In (ii) percentiles of split and full sample bootstrap empirical distributions under different block
length sampling regimes are given. Testing is carried out using 90th percentiles (ee above for further details).

Table 6: Comparison of Autoregressive Inflation Models with and Without Unemployment Using AIC(∗)

Model 1 - Normal Model 2 - Normal Model 3 - Student’s t Model 4 - Student’s t
Specification AR ARX AR ARX
lag Selection AIC (3) AIC (3,1) AIC (3) AIC (3,1)

MSFE 0.00000841 0.00000865 0.00000841 0.00000865
DMSFE 2.17718449 2.17189485 2.11242940 2.10813786

ZP,u,2(1, k) benchmark 0.00528965 0.06475509 0.06904664

Critical Values

Split Sample Bootstrap Full Sample Bootstrap
Percentile 3 5 10 15 20 3 5 10 15 20

50 -0.002736 -0.002844 -0.002719 -0.002855 -0.002866 -0.000348 0.000541 0.000745 0.000517 0.000301
60 -0.001674 -0.001489 -0.000748 -0.001035 -0.001230 0.001530 0.002071 0.002289 0.002202 0.002289
70 0.000745 0.000937 0.001086 0.001088 0.001086 0.002865 0.003447 0.004013 0.004036 0.004267
80 0.002635 0.002842 0.003430 0.004151 0.004440 0.004446 0.004919 0.005859 0.006300 0.007121
90 0.005140 0.005883 0.006333 0.006879 0.008406 0.007112 0.007578 0.008466 0.009770 0.010420

(∗) Notes: See notes to Table 5.
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Table 7: Comparison of Autoregressive Inflation Models Using SIC and AIC(∗)

Model 1 - Normal Model 2 - Normal Model 3 - Student’s t Model 4 - Student’s t
Specification AR AR AR AR
lag Selection SIC (1) AIC (3) SIC (1) AIC (3)

MSFE 0.00083352 0.00000841 0.00083352 0.00000841
DMSFE 1.80129635 2.17718449 1.84758927 2.11242940

ZP,u,2(1, k) benchmark -0.37588815 -0.04629293 -0.31113305

Critical Values

Split Sample Bootstrap Full Sample Bootstrap
Percentile 3 5 10 15 20 3 5 10 15 20

50 0.030910 0.034325 0.044692 0.049984 0.056810 0.029054 0.028849 0.033184 0.037521 0.041006
60 0.038460 0.046735 0.062769 0.083326 0.098715 0.034439 0.034439 0.039774 0.046804 0.053350
70 0.049358 0.080635 0.108230 0.132668 0.143861 0.037828 0.039183 0.051636 0.060352 0.071022
80 0.123676 0.134695 0.162630 0.184618 0.202485 0.048282 0.055104 0.078584 0.098374 0.110733
90 0.164544 0.177596 0.238318 0.265352 0.289242 0.098374 0.117644 0.138269 0.167334 0.207614

(∗) Notes: See notes to Table 5.

Table 8: Comparison of Autoregressive Inflation Models with Unemployment Using SIC and AIC(∗)

Model 1 - Normal Model 2 - Normal Model 3 - Student’s t Model 4 - Student’s t
Specification ARX ARX ARX ARX
lag Selection SIC (1,1) AIC (3,1) SIC (1,1) AIC (3,1)

MSFE 0.00004763 0.00000865 0.00004763 0.00000865
DMSFE 2.01137942 2.17189485 1.93272971 2.10813786

ZP,u,2(1, k) benchmark -0.16051543 0.07864972 -0.09675844

Critical Values

Split Sample Bootstrap Full Sample Bootstrap
Percentile 3 5 10 15 20 3 5 10 15 20

50 0.034626 0.034213 0.036984 0.038688 0.040339 0.009987 0.011698 0.013288 0.014661 0.016318
60 0.037691 0.037691 0.040489 0.044661 0.046770 0.012823 0.014629 0.016761 0.018989 0.020060
70 0.041699 0.044492 0.048036 0.051974 0.054885 0.014879 0.018140 0.020144 0.024000 0.025739
80 0.050567 0.051521 0.055278 0.059678 0.065561 0.019038 0.022255 0.025917 0.030161 0.033054
90 0.059443 0.059906 0.066012 0.073324 0.079340 0.025917 0.026484 0.034474 0.038606 0.041419

(∗) Notes: See notes to Table 5.
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