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Resumo 

A presença e a funcionalidade de alguns recetores gustativos de compostos amargos 

(TR2) foi demonstrada recentemente nas células epiteliais do plexo coróide (PC) de rato. 

As células do PC formam a barreira sangue-líquido cefalorraquidiano, uma das 

principais barreiras cerebrais. A presença de TR2 no PC sugere que estes recetores 

possam estar envolvidos na monitorização da composição química do sangue e do líquido 

cefalorraquidiano. 

As barreiras do cérebro desempenham um papel crucial na proteção do sistema nervoso 

central (SNC) impedindo o acesso de substâncias nocivas ao cérebro. 

Consequentemente, muitos fármacos direcionados para o tratamento de patologias do 

SNC não conseguem ultrapassar estas barreiras. Isto deve-se, em grande parte, à 

presença de diversos transportadores nas células que constituem estas barreiras, os quais 

transportam os fármacos para fora das células e, portanto, impedem a sua acumulação 

nas células alvo. 

Diversos compostos amargos, ligandos dos TR2, possuem propriedades anti-tumorais e 

de neuroprotecção. Contudo, a biodisponibilidade destes compostos é, normalmente, 

muito baixa o que dificulta a sua aplicação terapêutica. Adicionalmente, sabe-se que 

estes compostos interagem com transportadores membranares nas células das barreiras 

do cérebro. Isto sugere que os compostos amargos com potencial terapêutico sejam 

transportados para fora das células, o que explica a sua baixa biodisponibilidade, mas 

também que podem regular a ação dos transportadores de membrana o que poderá 

contribuir para uma maior acumulação intracelular dos compostos. Uma vez que estes 

compostos amargos são agonistas dos TR2, é possível que estes tenham um papel crucial 

na regulação da biodisponibilidade desses compostos ao nível do SNC, tal como 

reportado em alguns órgãos.  

Como tal, o trabalho desenvolvido nesta tese de doutoramento teve como principal 

objetivo a análise da expressão e da função da via de sinalização gustativa do amargo na 

barreira sangue-líquido cefalorraquidiano humana. Adicionalmente, foi estudado o 

papel dos TR2 no transporte do composto resveratrol ao nível da barreira sangue-líquido 

cefalorraquidiano humana. 

Na primeira parte do trabalho, foi possível confirmar a expressão de 13 TAS2Rs e das 

proteínas efetoras da via de transdução de sinal gustativa num modelo humano da 

barreira sangue-líquido cefalorraquidiano. Além disto, foi também demonstrada a 
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funcionalidade dos TAS2R14 e 39, em resposta aos compostos quercetina e cloranfenicol, 

respetivamente. 

Na segunda parte do trabalho, analisámos o transporte do composto amargo, resveratrol, 

num modelo in vitro da barreira sangue-líquido cefalorraquidiano humana, e avaliámos 

a possível envolvência dos TAS2Rs, que ligam o resveratrol, nesse transporte. Deste 

trabalho concluiu-se que o resveratrol atravessa a barreira sangue-líquido 

cefalorraquidiano na direção sangue - líquido cefalorraquidiano (basolateral – apical), 

de forma dependente do TAS2R14. Observámos também que os transportadores de 

efluxo ABCC1, ABCC4 e ABCG2 presentes nas células epiteliais do CP transportam o 

resveratrol, e que este aumenta a expressão do ABCG2 e modula a sua função, bem como 

a do ABCC4, de forma dependente do TAS2R14. 

Em suma, os resultados obtidos durante o desenvolvimento deste projeto permitem 

afirmar que os TAS2Rs são expressos e estão funcionais na barreira sangue-líquido 

cefalorraquidiano humana, podendo participar na monitorização da composição 

química dos fluidos que a circundam. Adicionalmente, reforçam o papel crucial que esta 

barreira desempenha na regulação do transporte de substâncias para o cérebro. No 

futuro, será importante continuar a explorar o papel de outros TAS2Rs após ativação 

pelos seus ligandos no cérebro, assim como, na regulação dos mecanismos de transporte 

e, também de destoxificação existentes na barreira sangue-líquido cefalorraquidiano. 

Este conhecimento irá certamente contribuir para uma melhoria dos processos 

terapêuticos utilizados para entrega de fármacos ao SNC. 
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Resumo Alargado 

A proteção do sistema nervoso central (SNC) quanto à entrada de moléculas 

potencialmente tóxicas é assegurada principalmente por duas barreiras, a barreira 

hematoencefálica formada por células endoteliais e, a barreira sangue-líquido 

cefalorraquidiano formada pelas células epiteliais do plexo coróide (PC). Estas barreiras 

permitem ainda a remoção de metabolitos endógenos. Apesar de vital, esta vigilância 

constante limita a entrega de fármacos ao SNC e, portanto, o tratamento de diversas 

neuropatologias. Este fenómeno é denominado por farmacorresistência e é assegurado, 

em grande parte, por diversos transportadores de efluxo nas células que compõem as 

barreiras cerebrais. Dado que muitos dos fármacos utilizados no tratamento de doenças 

do SNC (doenças neurodegenerativas, tumores cerebrais e outras) são substratos destes 

transportadores, a sua interação resulta na fraca acumulação intracelular dos fármacos, 

limitando assim o seu efeito terapêutico. A principal classe de transportadores envolvida 

neste evento é a família de transportadores ABC (ATP-binding cassette). Deste modo, 

um dos principais desafios da farmacologia moderna é o desenvolvimento de novas 

terapias que consigam ultrapassar as barreiras do cérebro. 

A barreira sangue-líquido cefalorraquidiano é formada pelas células epiteliais do PC. O 

PC é uma estrutura altamente vascularizada que se encontra nos ventrículos do cérebro. 

Desempenha variadas funções no SNC entre as quais a produção e secreção do líquido 

cefalorraquidiano e de barreira, através do estabelecimento da barreira sangue-líquido 

cefalorraquidiano.  

O nosso grupo de investigação, através de um estudo de microarrays de cDNA no PC de 

rato, identificou a expressão de uma vasta gama de recetores quimiossensoriais, tais 

como, recetores gustativos, do olfato e vomeronasais. Relativamente aos recetores 

gustativos, é já conhecida a sua presença em diversos tecidos fora da cavidade oral, onde 

medeiam vários processos incluindo broncodilatação, inflamação, metabolismo, 

regulação enteroendócrina, imunidade inata e fertilidade masculina. Em particular, os 

recetores gustativos de compostos amargos (TR2) parecem ter um papel determinante 

em muitos destes processos. Assim, é possível que os TR2 respondam a alterações na 

concentração dos seus ligandos nos fluidos do organismo, ditando assim o destino e os 

efeitos destes compostos. Portanto, ao nível da barreira sangue-líquido 

cefalorraquidiano os TR2 poderão desempenhar um papel relevante na vigilância 

química da composição do sangue e do líquido cefalorraquidiano. 
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Os compostos que ativam os T2Rs, compostos amargos, correspondem a grupos de 

moléculas muito diversos, podendo ter origem natural ou sintética. A ligação de um 

composto amargo a um TR2 e a consequente ativação do recetor associada à sensação de 

paladar amargo, foi pela primeira vez identificada na cavidade oral e, uma vez que muitos 

dos compostos tóxicos têm o sabor amargo, corresponde a uma reação protetora do 

organismo para evitar a ingestão de substâncias tóxicas. Contudo, hoje sabe-se que os 

TR2 são expressos numa vasta gama de tecidos fora da cavidade oral, conhecendo-se 

também outras funções em diferentes tecidos e órgãos. Um dos principais grupos de 

compostos amargos são os flavonóides, compostos derivados de plantas e cujas 

propriedades anti-inflamatórias, antioxidantes e anti-tumorais têm sido extensamente 

estudadas na última década. Além dos flavonóides existem muitos outros compostos 

amargos com idêntico potencial terapêutico como é o caso do resveratrol, entre outros. 

Dadas as suas propriedades intrínsecas, o potencial terapêutico destes compostos tem 

sido avaliado ao nível das doenças que afetam o SNC e em vários tipos de cancro. 

Contudo, a biodisponibilidade destes compostos nos tecidos alvo, incluindo o cérebro, é 

normalmente muito baixa sendo, portanto, um obstáculo para a sua aplicação no 

tratamento de doenças. Nos últimos anos, vários estudos têm tentado analisar os 

mecanismos envolvidos na biodisponibilidade destes compostos, mas é ainda um 

assunto que carece de maior entendimento. No entanto, sabe-se que muitos destes 

compostos interagem com transportadores ABC, podendo comportar-se como 

substratos, inibidores ou indutores da sua atividade em vários tecidos, incluindo as 

barreiras do cérebro e a barreira sangue-tumor. Uma vez que, os TR2 são ativados por 

compostos amargos, surge a hipótese de que estes recetores possam regular os efeitos 

biológicos destes compostos nos mais variados tecidos em que se encontram. Aliás, 

existem evidências deste mecanismo, nomeadamente ao nível do trato gastrointestinal e 

das vias respiratórias. Assim, para um melhor entendimento sobre os efeitos destes 

compostos e da extensão do seu potencial terapêutico quer seja no SNC ou noutros 

tecidos, é essencial analisar o papel dos TR2.  

O trabalho desenvolvido nesta tese de doutoramento teve como principal objetivo a 

análise da expressão e da função da via de sinalização gustativa dos compostos amargos 

na barreira sangue-líquido cefalorraquidiano, num modelo in vitro que mimetiza o PC 

humano. Foi também alvo de estudo, o papel dos TR2 humanos, TAS2Rs, como 

moduladores do efeito de ligandos específicos com potencial neuroprotetor na função e 

na atividade de certos transportadores ABC na barreira sangue-líquido 

cefalorraquidiano.  
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No primeiro trabalho apresentado nesta tese confirmámos a presença de TAS2Rs na 

barreira sangue-líquido cefalorraquidiano humana. Identificámos a presença de 13 

transcritos de TAS2Rs e a expressão proteica de 4 TAS2Rs (4, 5, 14 e 39) na linha celular 

humana de plexo coróide HIBCPP (human malignant choroid plexus papilloma cell 

line). A expressão dos TAS2R4, 5, 14 e 39 foi também analisada e validada em cortes 

histológicos de PC de homens e de mulheres. Além dos TAS2Rs, a expressão de proteínas 

efetoras da via de sinalização do paladar foi também analisada nas células HIBCPP, 

tendo-se confirmado a presença da α-gustaducina (GNAT3), da fosfolipase C Beta 2 

(PLCβ2) e do canal 5 de potencial de recetor transitório (TRPM5). Para analisar a 

funcionalidade da via de sinalização do paladar, realizaram-se estudos de single cell 

calcium imaging nas células HIBCPP. Com estes ensaios, demonstrou-se que as células 

HIBCPP respondem a vários estímulos amargos, através da ativação dos TAS2Rs. Mais 

especificamente, o flavonóide quercetina ativou o recetor 14 e o antibiótico cloranfenicol 

ativou o recetor TAS2R39, verificando-se uma diminuição significativa nos níveis de 

cálcio intracelular após o silenciamento da expressão destes recetores. 

No segundo trabalho apresentado foi avaliado o papel de alguns dos TAS2Rs 

identificados no transporte de um composto fenólico com alto valor terapêutico, o 

resveratrol, através da barreira sangue-líquido cefalorraquidiano humana. Inicialmente, 

foi analisada a capacidade das células HIBCPP responderem ao resveratrol via TAS2R14 

e/ou TAS2R39, ligando previamente identificado destes dois recetores. Observou-se que 

as células HIBCPP respondem ao resveratrol via TAS2R14. Em seguida, através de 

ensaios de permeação, com culturas de HIBCPP em insertos, modelo in vitro que 

mimetiza a barreira, examinámos o transporte de resveratrol na direção basolateral-

apical, simulando a passagem sangue - líquido cefalorraquidiano. Foi possível detetar a 

presença de resveratrol no lado apical após um período de incubação, demonstrando 

assim que este composto atravessa a barreira sangue-líquido cefalorraquidiano. Ainda, 

o silenciamento do TAS2R14, localizado na membrana celular basolateral, reduziu os 

níveis de resveratrol no lado apical, indicando que a passagem de resveratrol através das 

células epiteliais do PC é dependente da ativação do TAS2R14. Posto isto, colocou-se a 

hipótese do TAS2R14 regular a ação de transportadores ABC nas células do PC, 

influenciando o transporte de resveratrol através destas células. Foram selecionados dois 

transportadores membranares basolaterais, o ABCC1 e o ABCC4, e um apical, o ABCG2. 

A utilização de substratos e inibidores específicos destes transportadores permitiu 

observar que a inibição de cada um destes transportadores afeta o transporte de 

resveratrol nas células HIBCPP, favorecendo a acumulação intracelular do composto. 

Assim, todos estes transportadores estão envolvidos no transporte de resveratrol na 
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barreira sangue-líquido cefalorraquidiano. Relativamente ao efeito do próprio 

resveratrol na expressão e função destes transportadores obtiveram-se resultados muito 

interessantes. O resveratrol aumentou a expressão do ABCG2 via TAS2R14, o mesmo não 

se verificando relativamente aos outros transportadores analisados. Por outro lado, o 

resveratrol modula a função de ambos os transportadores ABCC4 e ABCG2 de forma 

dependente da expressão de TAS2R14, induzindo alterações nos níveis intracelulares de 

substratos específicos. 

No seu conjunto, os resultados obtidos nesta tese apoiam a hipótese de que os TAS2Rs 

presentes na barreira sangue-líquido cefalorraquidiano atuam na vigilância da 

composição química do sangue e do líquido cefalorraquidiano através da regulação da 

atividade de transportadores de efluxo. Um dos dados mais relevantes é certamente a 

confirmação de que o resveratrol consegue passar a barreira sangue-líquido 

cefalorraquidiano humana, realçando a sua importância na entrega de fármacos ao SNC. 

No futuro, espera-se que os estudos aqui apresentados sirvam de ponto de partida para 

muitos outros com enfoque no transporte de outros compostos amargos ao nível da 

barreira sangue-líquido cefalorraquidiano. Adicionalmente, espera-se que os TR2 

recebam a devida atenção como reguladores dos efeitos dos seus ligandos, o que 

contribuirá certamente para um melhor entendimento dos processos envolvidos na 

entrega de fármacos ao SNC e, portanto, no desenvolvimento de novas abordagens 

terapêuticas mais eficazes. 
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Abstract 

Bitter taste receptors (TR2) expression and functionality was recently reported in the rat 

choroid plexus (CP). CP epithelial cells establish a major brain barrier, the blood-

cerebrospinal fluid barrier (BCSFB). Given their capacity to bind a large array of 

chemical compounds, we hypothesised that TR2 might be involved in monitoring the 

composition of blood and cerebrospinal fluid. 

Brain barriers play a critical role in the protection of the central nervous system (CNS) 

by hindering the access of toxic substances to the brain. Consequently, many drugs 

targeting neurological disorders are impaired to cross these barriers. This is explained 

through the expression of several membrane transporters in brain barriers cells that 

efflux drugs, thus impairing drug cell accumulation in the brain. 

A wide range of compounds that bind to TR2 show neuroprotective and anti-tumoral 

properties. However, their low bioavailability in the CNS restrains its therapeutic 

application. Additionally, bitter compounds might interact with transporters that are 

also found in brain barriers. Therefore, bitter compounds might be effluxed which 

explains their low bioavailability but can also regulate the action of these transporters in 

order to increase their or other drugs’ intracellular accumulation. Considering that bitter 

compounds are TR2 agonists it is possible that TR2 play an important role on the 

bioactive effects of bitter compounds in the CNS, as reported in other tissues.  

The main goal of this doctoral thesis was to analyse the expression and function of the 

bitter signalling pathway in the human BCSFB. Additionally, the role of human TR2 

(TAS2Rs) as modulator of specific neuroactive bitter compounds on ABC transporters 

function and activity at the BCSFB was also evaluated. 

The first research work presented showed the expression of 13 TAS2Rs as well as of 

downstream effector proteins of the taste signalling pathway in the human BCSFB. 

Moreover, we demonstrated that TAS2R14 and TAS2R39 are functional in a human cell 

model of the BCSFB and respond to bitter compounds quercetin and chloramphenicol, 

respectively. 

The second research work evaluated resveratrol transport across the BCSFB and the 

involvement of TAS2Rs. Results showed that resveratrol is able to cross the BCSFB from 

blood to cerebrospinal fluid in a dependent manner of TAS2R14 expression at CP 

epithelial cells. Further, efflux transporters ABCC1, ABCC4 and ABCG2, which are 

expressed at CP epithelial cells, transport resveratrol. Additionally, resveratrol 
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upregulated ABCG2 expression and regulated ABCC4 and ABCG2 efflux activity in 

TAS2R14 dependent way. 

In conclusion, the results obtained during this project demonstrate that TAS2Rs are 

expressed and functional at the human BCSFB and support their participation in the 

monitorization of chemical composition of the surrounding fluids. Furthermore, the 

major achievements of this thesis strongly support the role of BCSFB in the regulation of 

the transport of molecules into the brain. In the future, it is necessary to further exploit 

the role of other TAS2Rs as mediators of the effects of bitter compounds in the brain, as 

well as in the regulation of transport and detoxifying systems at the BCSFB. The 

knowledge hereby created has far-reaching potential for improving the challenging task 

of delivering therapeutic drugs into the CNS. 
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Thesis Overview 

 

This Doctoral thesis is organized in 6 chapters. 

The first and second chapters enclose the introductory section and intend to 

contextualize the putative relevance of the bitter taste signalling pathway in the blood-

cerebrospinal fluid barrier. In the first chapter the chemical surveillance at the choroid 

plexus is discussed, focusing on the bitter taste receptors (TR2). Additionally, the 

expression and activity of TR2 in other tissues is also analyzed. In the second chapter, 

the biological relevance of bitter compounds is reviewed in the frame of central nervous 

system disorders and puts in evidence TR2 as their potential targets. 

The third chapter presents the general and specific aims established for the work plan of 

this doctoral thesis. 

The fourth and fifth chapters present the results of the research work developed: 

- Research Work 1: Bitter taste receptors profiling in the human blood-cerebrospinal 

fluid-barrier (Chapter 4); 

- Research Work 2: The bitter taste receptor TAS2R14 regulates resveratrol transport 

across the human blood-cerebrospinal fluid barrier (Chapter 5); 

Finally, the sixth chapter contains the concluding remarks highlighting the advances 

obtained during this research work and discuss the future directions in the 

chemosurveillance at the brain barriers. 
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1.1. The choroid plexus 

The choroid plexuses (CPs) are highly vascularized structures, located in the ventricular 

system of the brain. In the lateral ventricles of the mammalian brain, CPs form a sheet-

like structure, whereas in the third and fourth ventricles these resemble villus like 

structures. The CPs are formed by single layers of cuboidal epithelial cells laying on a 

basement membrane. Below the basement membrane, within the connective tissue, lays 

a network of fenestrated capillaries, fibroblasts and immune cells (e.g., mast cells, 

macrophages, granulocytes), and a rich extracellular matrix [1]. The CPs’ epithelial cells 

(CPEC) are connected by tight junctions (TJ), adherens junctions (AD) and desmosomes, 

forming a sealed barrier that prevents paracellular movement of substances into and out 

of the brain. CPEC also have numerous microvilli and cilia at the ventricle facing (apical) 

side, and extensive infoldings at the blood facing (basolateral) side, thus providing a large 

surface for contact between the epithelium and the cerebrospinal fluid (CSF) and 

between the epithelium and the stroma interstitial fluid on the other side [2]. In addition, 

the CPEC apical and basolateral membranes contain a wide range of transporters, 

channels, pumps and receptors that mediate and set the pace for the exchange of 

compounds between the periphery and the CSF. These are essential to fulfil the CPs’ role 

as a source of nutrients for the brain, and also for the excretion of molecules originating 

from the brain metabolism. Several fundamental functions have been attributed to the 

CPs and have been within the scope of recent reviews. The best known functions of CPs 

are CSF formation [1], nutrient and hormone supply to the CSF and brain, clearance of 

deleterious compounds and waste products from brain metabolism [3–5], immune 

surveillance [6], amyloid beta (Aβ) clearance [7, 8], and neurogenesis [9–11]. Other 

emerging functions of the CPs are chemical surveillance as depicted from the presence 

of the taste and olfactory transduction pathways in CPEC [12, 13] and the potential 

function of the CP as an extra-suprachiasmatic nucleus circadian clock [14] (Figure 1.1.). 
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Figure 1. 1. Main biological functions of the choroid plexuses. (CP – choroid plexuses; CSF – cerebrospinal 
fluid; CPEC – choroid plexuses epithelial cell; TJ – tight junction; AJ – adherens junction; ZO – zonula 
occludens protein; JAM – junctional adhesion molecules; Cyp450 – cytochrome P450; GPX – glutathione 
peroxidase; UGT – UDP glucuronosyltransferase). 

 

1.2. Chemical surveillance at the choroid plexus 

We identified a wide range of chemosensory receptors transcripts in the rat CPs by cDNA 

microarrays [15]: 34 taste receptors (TRs), over a 1000 odorant receptor, and 196 

vomeronasal receptors. We demonstrated that the olfactory and taste transduction 

pathways are active in the CPs [12, 13]. ORs and TRs, and some effector components of 

their signalling pathway were also identified in the cerebral cortex of mice and 

throughout the human brain [16, 17]. Transcriptome analysis indicate that these systems 

are also expressed in the human CP (GSE49974) [18], and some of these receptors are 

also expressed at the blood-brain barrier (BBB) (GSE45171) [19]. Beyond their functions 

in the perception of odours and flavours, a growing body of evidence show that in non-

olfactory and at extra-oral organs, chemosensory receptors are essential for the crosstalk 

between cells and their niches, and with external cues, responding to their ligands and 

bringing about downstream responses. Expression of chemosensory receptors in the CPs 

is a novel and intriguing subject, potentially of high relevance due to its barrier function 

between the blood and the CSF. Given the large amount and variety of compounds 

circulating in the blood, CSF and brain interstitial fluid, it is likely that these receptors 

have crucial functions in the chemosurveillance system of the CNS.  
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1.2.1. Taste receptors  

Taste receptors that bind sweet, umami and bitter compounds are G protein coupled 

receptors (GPCRs) that generate taste perception upon binding to their ligands. As such, 

they evaluate the nutrient content of food (sweet and umami receptors) or prevent the 

ingestion of toxic substances (bitter receptors). Sweet and umami taste receptors were 

initially described in the oral cavity: taste receptor type 1 (TR1; Tas1r in rodents and 

TAS1R in humans) that bind sweet and umami compounds, and taste receptor type 2 

(TR2; Tas2r in rodents and TAS2R in humans) that detect bitter compounds. The TR1 

class form two dimeric receptors, the T1R1/T1R3 that respond to umami (glutamate in 

humans, or most non-aromatic L-amino acids in rodents) and the T1R2/T1R3 that 

respond to sweet, and the TR2 class bind bitter compounds [20]. Almost all of the human 

TAS2R repertoire has now been effectively “deorphanized” [21]. Regarding rodent Tas2r 

ligands, Lossow et al. identified cognate compounds for 21 of the 34 mouse bitter Tas2r 

[22], but there is substantial amino acid sequence divergence between homologous 

human and rodent bitter TRs genes, which may result in functionally distinct receptors 

[23]. Both TR1 and TR2 utilize the same signalling cascade effectors: ligand binding to 

TRs results in a conformational change of the receptor and in the activation of a series of 

signal transducers such as the taste-specific heterotrimeric G-protein gustducin (formed 

by α-gustducin, Gβ3 and Gγ13 subunits), which activates a specific phospholipase C-beta 

2 (PLCB2) to produce IP3 (Figure 1.2.). The IP3 opens the inositol 1,4,5-trisphosphate 

receptor type 3 ion channels (ITPR3), triggering an increase in intracellular Ca2+ levels 

which will activate a taste-selective cation channel, the transient receptor potential 

channel, subfamily M, member 5 (TRPM5), that eventually depolarizes the cell [20, 24]. 

 

Figure 1. 2. Taste pathway signal transduction. Sweet, umami and bitter stimuli utilize taste receptors, which 
belong to the superfamily of G protein-coupled receptors (GPCR). Sweet and umami activates taste receptors 
type 1 (TR1) while bitter activates taste receptors type 2 (TR2). However, the transduction mechanism is 
identical: the tastant binds to the receptor, resulting in a conformational change and in the activation of a 
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series of signal transducers such as the taste-specific heterotrimeric G-protein gustaducin (formed by α-
gustducin, Gβ3 and Gγ13 subunits), which activates phospholipase C-beta 2 (PLCβ2) to cleave 
phosphatidylinositol 4,5-bisphosphate (PIP2) into diacylglycerol (DAG) producing inositol 1,4,5-
trisphosphate (IP3). The IP3 opens receptor type 3 ion channels (IP3R3), triggering an increase in 
intracellular Ca2+ levels which will activate the transient receptor potential channel M5 (TRPM5), that 
eventually depolarizes the cell. 

 

The first identification of taste signaling components outside the oral cavity was the 

description of α-gustducin and TRs in the brush cells of the stomach and intestine [25]. 

Later, Zancanaro et al [26] described α-gustducin in the nasal and upper airway tissue, 

the first time in a tissue outside the digestive tract, suggesting that common transduction 

mechanisms could be shared by unrelated chemosensory tissues. The discovery of about 

35 bitter TRs in rodents (25 in humans) in oral taste bud cells [27] was followed by a 

large number of studies showing ectopic expression of TRs in distinct organs and tissues 

[28–30]. It is becoming evident that TR2, are expressed in extra-oral tissues, where they 

perform functions like bronchodilation, inflammation, metabolism, enteroendocrine 

regulation, innate immunity and male fertility (Table 1.1.). It is clear, with all these data, 

that depending on tissue/cell/organ and on the TR2, different effects may occur in 

response to alterations in the concentrations of their ligands in the body fluids. The 

physiologic roles of TR2 in health and disease were recently reviewed [29–32] 

highlighting that TRs might be of therapeutic potential, mainly because of the wide range 

of known ligands. TR2’ ligands are numerous and diverse and can be either endogenous 

or exogenous ligands, present in body fluids. Natural compounds such as flavonoids or 

synthetic chemicals such as the anti-psychotic haloperidol are good examples of the 

diversity of bitter ligands. Moreover, these compounds might be able to activate only one 

or several TRs. For example, the flavonoid quercetin binds only TAS2R14 [33], however 

the antibiotic chloramphenicol can bind to seven of the human TAS2R [21].  

1.2.1.1. Taste receptors at extra-oral organs 

As already mentioned, we identified 34 TRs genes expressed in rat CP by cDNA 

microarrays [15], but only 50% of them are conserved in humans. Among those, only 

eight were previously described in other organs, with ligands and/or functions identified 

and high/medium levels of expression: Tas1r1, Tas1r3, Tas2r135, Tas2r126, Tas2r118, 

Tas2r139, Tas2r140 and Tas2r121. Tas2r135 and Tas2r126 are two of the few bitter TRs 

expressed in mouse myometrium [34]. Denatonium and phenanthroline treatment, both 

Tas2r135 bitter ligands, can completely relax myometrium pre-contracted by different 

uterotonics. Besides, Tas2r135, Tas2r126 and other Tas2rs have been described along the 

rodent gastrointestinal tract: stomach (in a total of 9 expressed Tas2r), small intestine 

(in a total of 7 Tas2r) and large intestine (in a total of 12 expressed Tas2r) [35, 36]. The 
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expression of TR2 in mouse gut muscle and the contractility responses to bitter ligands, 

as denatonium benzoate, suggest its modulator role in the gastrointestinal motility with 

effects on gastric emptying and satiation [36]. Tas2r135 is also expressed in white 

adipose tissue and pre-adipocytes, where it is implicated in the regulation of metabolism 

and development of obesity [28]. Tas2r135 and Tas2r126 are also two of the seven bitter 

TRs identified in rodent heart that are upregulated after nutrient deprivation and 

starvation. These findings could reflect a potential function of these Tas2r as nutrient 

sensors in the heart [23]. TAS2R16 (homologous to the rodent Tas2r118) is expressed in 

human brain tissue: Pyramidal, Purkinje and hippocampal neurons [37]. The only 

functional study about TAS2R in the CNS was the stimulation of the neuroblastoma cell 

line SH-SY5Y with salicin or diphenidol, two ligands of TAS2R16, that revealed increased 

extracellular signal regulated kinase (ERK) and cAMP response element binding (CREB) 

phosphorylation, promoting neurite outgrowth in these cells. These results show that 

salicin might modulate neurite outgrowth by bitter TR activation [37]. Salicin from 

willow bark has been used since a long time ago in China and Europe for the treatment 

of headache, pain and inflammation. The existence of TAS2R16 in the human CP [18], as 

well as its homologous in rat CP (Tas2r118), has increased interest because the presence 

of its natural ligand salicin in the blood and/or CSF may promote neurite outgrowth, and 

could be used as therapeutic target in the case of CNS injury. Tas2r139, TAS2R39 in 

humans, was identified in omental, mesenteric and cerebral arteries. The treatment of 

pre-contracted arteries with Tas2r agonists, chloroquine and quinine, resulted in their 

relaxation in a concentration-dependent manner [38]. Tas2r139 is also expressed in 

detrusor smooth muscle and the activation of Tas2r with chloroquine or denatonium 

benzoate relaxes this muscle and suppresses overactive bladder symptoms [39]. This 

bitter receptor is also one of the TAS2R expressed in human heart, with the putative 

function of nutrient sensor in this organ [23]. TAS2R14 (homologous to the rodent 

Tas2r140) is one of the most studied bitter TRs, identified in several tissues, with 

different biological functions in varied locations. TAS2R14 is expressed in the ciliated 

epithelial cells and in the smooth muscle cells of the airways [40, 41]. Anti-inflammatory 

properties of flavones, in airways, were linked to respiratory epithelial innate immunity 

through TR2 activation: flavones binding to TAS2R14 elicit nitric oxide production, 

increasing ciliary beating and mucociliary clearance [41, 42]. Moreover, also in the 

airways, TR2 agonists evoked increased [Ca2+] intracellular in the smooth muscle cells, 

relaxation of isolated cells and dilation of airways [43]. Given the need for efficacious 

bronchodilators for treating lung diseases, this pathway has been exploited for therapy 

with the thousands of known synthetic and naturally occurring bitter compounds. 

Besides, transcriptome analysis revealed upregulation of bitter TRs in leucocytes of 
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severe asthmatics [44]. Tas2r140 (or TAS2R14) was also described in the smooth muscle 

cells of several arteries: rat mesenteric and cerebral arteries and in human omental 

arteries. Quinine treatment, both a Tas2r140 and TAS2R14 ligand, relaxed these arteries 

in a concentration-dependent manner [38]. This TR2 was also identified in human and 

mouse urogenital tract (detrusor smooth muscle and myometrium). Once again, 

TAS2R14 activation by chloroquine and other bitter ligands, elicited relaxation of 

detrusor muscle and myometrium, respectively [34, 39]. An additional location of this 

TR2 is the human and rodent gastrointestinal tract. TAS2R14 is expressed in the stomach 

and colon, with putative gastric acid secretion and gastrointestinal motility functions, 

respectively [35, 36, 45]. TAS2R13 (homologous to the rodent Tas2r121) is expressed in 

the human frontal cortex [46]. The functions of TR2 in the brains of humans and rodents, 

including the CP, are yet unknown. It is possible that exogenous ligands of TR2 in the 

brain are transported through the blood, CSF and the extracellular fluid. Additionally, 

brain TR2 might be stimulated by endogenous compounds from neighbouring cells, or 

even from the same cells, thus having a self-stimulating mechanism regulating internal 

trafficking. The generalized expression of these TR2 lends weight to the idea that these 

receptors in the brain may sustain physiological roles and, suggests a new scenario in the 

chemical signalling system of the CNS.  

1.3. Conclusions 

Placed on the interface between the periphery (blood) and the CNS, the CP is well 

positioned to sense alterations in the fluids in contact with its apical side (CSF side) and 

in its basolateral side (blood side) and respond to them accordingly, in order to ensure 

brain homeostasis. This overwhelming task requires permanent surveillance of the blood 

and CSF for the presence of noxious compounds, and the assessment of general 

alterations in the composition of these body fluids. Moreover, it requires a complex 

detoxification system of the CSF [2] and selective efflux and influx receptors that 

accurately control molecular trafficking across the blood-cerebrospinal fluid barrier 

(BCSFB). How these mechanisms are regulated is still a poorly understood subject. The 

large repertoire of chemosensory receptors in CPs cells, such as TR2, supports the 

existence of an upstream mechanism to assess the composition of the blood and CSF and 

to deploy appropriate downstream responses of the cell machinery that allow coping with 

the chemical alterations sensed. Given the nature of TR2 as GPCRs, ligands can be 

hydrophilic molecules, and downstream signalling may be either genomic or 

nongenomic and affect the main intracellular pathways (affecting cell proliferation, 

migration, chemiotaxis, endocrine responses), as seen in non-gustatory organs. It is thus 

of utmost importance to elucidate the function of TR2 at the BCSFB as they represent a 
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promising route for manipulating the entrance, metabolism and the clearance of a large 

number of chemicals in the brain.
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Table 1. 1. Expression of TR2 in extra-oral tissues. 
 

Tissue, cell, organ TR2 Function Ligand Analysis method Refs 

ADIPOSE TISSUE      

Mouse gonadal, 
subcutaneous and 
mesenteric white adipose 
tissue; pre-adipocytes 
(3T3-F442A) 

mTas2r108, 135 Regulation of adipocytes metabolism DB, quinine RT-PCR [47] 

AIRWAYS      

Human and mouse 
solitary chemosensory 
cells (sinuses) 

hTAS2R4, 10, 47 
 
 
mTas2r108, 119 
 

Antimicrobial peptide release 
 
Detection of irritants and bacterial 
signals/Changes in respiratory 
rate/trigger trigeminally-mediated 
protective airway reflexes 

DB 
 
 
DB, quinine, CYX 

RT-PCR, IHC, ICC 
 
 
IHC, ICC, RT-PCR,  
 

[48–50] 
[51–53] 

Human and mouse 

ciliated epithelial cells 

(nose and sinuses) 

 

hTAS2R14 (mTas2r140) 

 

hTAS2R38 (mTas2r138) 

 

Anti-inflammatory effect 
 
Nitric oxide release (bactericide) 

Mucociliary clearance (ciliary beat 
frequency) 

DB, flavone 
 
DB, AHL, PTC 

ICC 
 
IHC, ICC 

[41, 54] 

[55] 

[56, 57] 

Human and mouse 

ciliated epithelial cells 

(trachea, bronchi) 

 

hTAS2R1, 3 ,4, 7-10, 13, 14, 16, 

38, 43, 46 

 

mTas2r105,108 

Mucociliary clearance (ciliary beat 

frequency) 

 
Changes in respiratory rate  

Bitter agonists  

 

 

CYX 

 

Microarray, RT-PCR, 

IHC 

[58] 
 
 
[42] 

Human and mouse 

smooth muscle cells 

(trachea, bronchi) 

 

hTAS2R1, 3, 4, 5, 8, 9, 10, 13, 
14, 19, 20, 30, 31, 42, 46, 50 
 
mTas2r107 

Bronchodilatation  
 
 
Bronchodilatation 

Chloroquinine, quinine, DB  
 
 
Choloroquinine, quinine, DB 

RT-qPCR, ICC 
 
 
RT-PCR, IHC 

[40, 43, 
59] 
 
[60, 61] 

ARTERIES (smooth muscle cells) 

Human pulmonary 
artery, Guinea pig aorta, 
mouse aorta 

hTAS2R1, 3, 4, 5, 7, 9, 10, 13, 
14, 16, 38, 40, 42, 43, 44, 45, 
46, 47, 48, 49, 50, 60 

Regulation of the vascular tone 
(vasodilation/ vasoconstriction) 

Chloroquine, DB, 
dextromethorphan, 
noscapine 
 

RT-qPCR, WB, ICC [62, 63] 
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Human omental arteries  
 
Rat mesenteric and 
cerebral arteries 

hTAS2R3, 4, 7, 10, 14, 39, 40  
 
rTas2r7, 39, 40, 108, 114, 130, 
137, 140 

 
Vasodilation 

 
Chloroquine, quinine 

RT-PCR 
WB, IIC, IHC 
 

[38] 

BONE MARROW      

Bone marrow stromal-
derived cells 

hTAS2R46 Extracellular release of ATP DB, thujone, nicotine RT-PCR, IHC, ICC [64] 

BRAIN      

Human brain neurons 
(Pyramidal, Purkinje, 
Hippocampal); SH-SY5Y 
cells 

hTAS2R16 Neurite outhgrowth Salicin, diphenidol RT-PCR, IHC, ICC, WB [37] 

Human frontal cortex hTAS2R4, 5, 10, 13, 14, 50 Differential expression in PD, AD, 
PSP and CJD 

 Microarray, RT-qPCR [46, 65] 

Rat brainstem, 
cerebellum, cortex, 
nucleus accumbens; C6 
Glial cells; primary 
neuronal cells 

rTas2r107, 108(hTAS2R4), 
138(hTAS2R38) 
 
rTas2r1 

 DB, quinine RT-PCR, IHC, WB 
 
RT-PCR, IHC 

[66] 
 
[67] 

Rat CP rTas2r109, 144  Salicin RT-PCR, IHC [13] 
 

Mouse hypothalamus, 
brainstem, hippocampus 

mTas2r116   RT-qPCR, ISH [68] 

GASTROINTESTINAL 
TRACT 

     

Human and mouse 
stomach:  
 
Human parietal cells 
 

 
 
 
hTAS2R7, 10, 14, 43, 46 

 
 
 
Gastric acid secretion 

 
 
 
Bitter agonists 

 
 
 
IHC, ICC, RT-qPCR 

 
 
 
[45] 

Human and mouse 
smooth muscle cells 

hTAS2R3(mTas2r137), 
4(mTas2r108),10, mTas2r135 

Gastrointestinal motility DB, Chloroquine RT-PCR [36] 

HGT-1 cells hTAS2R1, 3, 4, 5, 7, 9, 10, 13, 
14, 16, 19, 20, 30, 31, 38, 39, 
40, 41, 42, 43*, 46, 50 

*Gastric acid (proton) secretion 
 

Caffeine 
 

RT-PCR, CRISP-Cas9 
KO Tas2r43 

[45] 
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Rat and mouse stomach rTas2r1-3, 5-12, 16, 34, 38  

mT2R108, 109, 113, 115, 126, 

134, 135, 137, 138(?), 140, 143 

  RT-PCR [35, 69, 
70] 

Mouse small 
intestine: 

     

Duodenum, jejunum, 
ileum 

mTas2r108, 119, 126, 135, 137, 
138, 143 

  RT-PCR [35] 

Jejunum and ileum 
mucosa (Paneth cells) 

mTas2r131 Defensive role  IHC, Tg mice [35] 

STC-1 cells (EEC) 

 

mTas2r102, 105, 118, 119, 123, 
126, 127, 130, 108*, 134*,138*, 
144* 

*CCK release 
GLP-1 release 

DB, PTC, PROP, caffeine, 
nicotine, CYX, FTC, KDT501 

RT-qPCR, IHC/WB [69–73] 

Human and rodent 
colon: 
 
Human and rat mucosa, 
HuTu80 cells (h EEC), 
NCI-H716 cells (h EEC) 

 

 

hTAS2R1(rTas2r1)*, 3, 

4(rTas2r16)*, 5, 10, 13, 

38(rTas2r26)*, 39, 40, 42-47, 

49, 50, 60 

 

- PYY and GLP-1 release from 
enteroendocrine L cells 
-hT2R1,4,38 activation by 6-PTU 
causes anion secretion in human and 
rat large intestine 
-hT2R14 activation by Hoodia 
gordinii causes CCK secretion in 
HuTu80 cells 
-Bitter Gentiana scabra extract 
stimulates GLP-1 release 

 
 
 
PTC, Bombesin, Hoodia 
gordinii and Gentiana scabra 
extracts 

 

 

RT-PCR, IHC, Tg mice 

 

 

 

[74–80] 

Mouse mucosa 
 
 
Mouse goblet cells 
Mouse smooth muscle 

mTas2r108, 113, 117, 119, 125, 
126, 131, 135, 137, 138, 140, 
143 
mTas2r131 
mTas2r108, 135, 137 
 

 
 
 
Gastrointestinal motility 

 
 
 
DB, Chloroquine 
 

 
 
 
RT-PCR, Tg mice 
 

 
 
[35, 36, 
81] 

Caco-2 cells  Modulation of gut efflux membrane 
transporters 

PTC RT-PCR, WB [82] 

HEART      

Human and rodent heart 
(cardiomyocytes, 
fibroblasts, heart tissue) 

hTAS2r3-5, 9, 10, 13, 14, 19, 
20, 30, 31, 39, 43, 45, 46, 50 

Nutrient sensors (?)  RT-qPCR, ISH [23] 
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 (r,m)Tas2r108*, 120, 121, 126, 

135, 137**, 143 

 

(* and ** activation):  ↘ left 

ventricular pressure and ↗ aortic 
pressure; nutrient sensors (?) 

* sodium thiocyanate 
** sodium benzoate 
 

RT-qPCR, ISH 

 

[23, 83] 

KERATINOCYTES      

Human epidermal 

keratinocytes, HaCat 

cells 

 

hTAS2R1, 38 ↗ the expression of differentiation 
markers 

Diphenidol, amarogentin IHC, ICC, RT-PCR, WB [84] 

 

LEUCOCYTES      

Human leucocytes hTAS2r4, 5, 10, 13, 14, 19, 20, 
31, 45, 46, 50 

↘ the release of several pro-
inflammatory cytokines and 
eicosanoid from leucocytes 

Chloroquine, DB Microarray, RT-qPCR [44] 

 All the 25 hTAS2R (differential 
mRNA expression in 5 types of 
blood leucocytes) 

  RT-qPCR, ICC [85] 

PANCREAS      

Human tumor pancreatic 
cells, tumor pancreatic 
derived cell lines 
(MiaPaCa-2, Su8686, 
T3M4, HuH7) 
 

hTAS2R38 Pancreatic cancer progression(?) PTU, AHL-12 WB, IHC, ICC [86] 

PLACENTA      

Human placental tissues hTAS2R38  Diphenidol, PTC IHC, ICC [87] 

TESTIS      

Mouse testis mTas2r105 Male infertility  IHC, RT-PCR, Tg mice, 
IHC 

[88]  [89] 

 mTas2r105-108, 113, 117, 119, 
125, 126 

Sperm behavior and fertilization Caffeine, PTC, PROP, 
picrotin, salicin, DB 

RT-PCR, RT-qPCR, 
ISH 

[90] 

Mouse testis, cauda of 
epididymis, sperm 
 

mTas2r131   Tg mice, RT-PCR, IHC, 
ISH 

[91] 
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THYMUS      

Murine Thymus mTas2r131   Tg mice [91] 

 mTas2r105, 108, 131   RT-qPCR, Tg mice [92] 

THYROID      

Human thyroid; 

NthyOri3-1 cells 

 

Mouse thyroid 

hTAS2R4, 10, 38, 42, 43  

 

 

mTas2r131 

Regulation of thyroid hormone 
secretion 

Camphor, Chloramphenicol, 
Colchicine, CYX, DB, PROP 
 

RT-qPCR, IHC, Tg mice [93] 

UROGENITAL TRACT      

Human and mouse 

detrusor smooth muscle 

 

hTAS2R1, 4 ,5, 7-10, 13, 14, 20, 

30, 31, 38-40, 45, 50 

mTas2r114, 117, 130, 138, 144 

Detrusor muscle relaxation Chloroquine 
 
Chloroquine, DB, quinine 

RT-qPCR [39] 

Human and mouse 
myometrium (uterine 
smooth muscle cells) 

hTAS2R4, 5, 10, 13, 14 
mTas2r126, 135, 137, 143 

Relax contracted myometrium DB, 1,10-phenanthroline, 
chloroquine 

IHC, RT-qPCR [34] 

Mouse urethral 
chemosensory cells 
(brush cells) 

mTas2r108 Acetylcholine release (bladder 
detrusor muscle activity) 

DB Tg mice, RT-PCR, IHC [94] 

Mouse kidney mTas2r108, 119, 135, 137, 138, 
140, 143 
 
mTas2r105*, 106, 110, 113, 114, 
134, 143 

*Maintenance of the structure of the 
glomerulus and renal tubule 
 

 RT-PCR 
 
Tg mice, RT-PCR, WB, 
IHC 
 

[95] 
 
[96] 

TAS2R-human taste receptors type 2; Tas2r-rodent taste receptor type 2; *-orthologous gene; RT-PCR-Reverse transcriptase PCR; RT-qPCR-Reverse transcriptase real time PCR;  
IHC-immunohistochemistry; ICC -immunocytochemistry; WB-western blot;  ISH-In situ hybridization; Tg-transgenic; NB-northern blot; AHL-acyl-homoserine lactone; DB-
Denatonium benzoate; PTC-phenylthiocarbamide; PTU-Phenylthiourea; PROP-6-n-propylthiouracil; CYX-Cycloheximide; DMPP-1,1-dimethyl-4-phenylpiperazinium iodide; 
EEC-enteroendocrine cells; GLP-1-Glucagon-like peptide-1; PD-Parkinson’s Disease; AD-Alzheimer’s Disease; PSP- Progressive Supranuclear Palsy; CJD-Creutzfeldt–Jakob 
Disease; h-human; m-mouse; r-rat. 
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2.1. Introduction 

Brain diseases are a major healthcare problem worldwide. The incidence of neuronal and 

neurodegenerative disorders including AD and PD as well as stroke is increasing along 

with the progressive aging of the population, despite many efforts to present valuable 

and permanent solutions in their prevention and treatment. Despite the great advances 

on the understanding of their pathophysiological mechanisms, effective therapies for 

CNS disorders such as neurodegenerative diseases (e.g. AD and PD), ischemic stroke or 

brain cancer (e.g. gliomas) are scarce. The complexity of these disorders partly justifies 

the failure of most therapies. On the other hand, the existence of brain barriers that 

hinder the drugs’ access to the brain also plays an important role in limiting the efficacy 

of different therapies. There are two main brain barriers: the BBB formed by brain 

capillary endothelial cells, astrocytes’ end-feet, pericytes, and neurons; and the BCSFB 

corresponding to CP epithelial cells, localized at the brain ventricles [1]. These barriers 

are constituted by tight junctions that limit the passage of molecules through the 

paracellular route, and by several membrane cell transporters that influx or efflux 

molecules, including nutrients, waste metabolites, toxins, xenobiotics, and small 

peptides (Fig. 2.1). Regarding brain drug delivery, ATP- binding cassette (ABC) 

transporters play a critical role at brain-barriers and are responsible for the efflux of 

many drugs out of the brain. Together, the BBB and the BCSFB regulate the molecular 

exchanges between the periphery and the CNS to maintain its homeostasis [2]. 

Additionally, when treating brain cancer and brain metastasis (such as non–small cell 

lung cancer (NSCLC), breast cancer, and melanoma), another interface must be 

considered: the blood-tumor barrier (BTB) [3]. This barrier is formed by brain tumor 

capillaries and although distinct from BBB, also display numerous efflux transporters 

that contribute to the chemoresistance phenomenon observed in the treatment of brain 

cancers or brain metastasis derived from primary tumors outside the CNS [4] (Figure 

2.1). 

Currently, drug delivery to the brain constitutes one of the main challenges in 

pharmacology, since many drugs fail to reach their therapeutic targets. Therefore, it is 

important to exploit the effects of new molecules in the CNS and evaluate their potential 

to reverse disease-associated cellular mechanisms as well as in counteracting the action 

of efflux mechanisms at blood-brain barriers and BTB.  
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Figure 2. 1. Brain drug delivery is restrained by efflux mechanisms present at brain barriers and BTB. Brain 
endothelial cells and CP epithelial cells establish the main brain barriers, the BBB and the BCSFB, 
respectively. Brain endothelial cells surrounding brain tumors or metastasis display particular features that 
enhance tumor’s chemoresistance and are designated BTB. Both endothelial, CP epithelial and cancer cells 
express multiple transporters that efflux drugs and other molecules impacting the treatment of many CNS 
disorders. BBB – blood-brain barrier; BTB – blood-tumor barrier; CP – choroid plexus. 

 

2.2. Many therapeutic compounds taste bitter  

Interestingly, 30% of bitter compounds of the BitterDB database [5] are also found in the 

DrugBank, and 66% of approved drugs are predicted to be bitter [6]. These data reinforce 

the therapeutic potential of bitter compounds. 

Bitter molecules are chemically diverse, can be natural or synthetic, and include hydroxyl 

fatty acids, fatty acids, peptides, amino acids, amines, amides, azacycloalkanes, N-

heterocyclic compounds, ureas, thioureas, carbamides, esters, lactones, carbonyl 

compounds, phenols, crown ethers, terpenoids, secoiridoids, alkaloids, glycosides, 

flavonoids, steroids, halogenated or acetylated sugars, and metal ions [7] (Figure 2.2). 

Although structurally diverse, bitter compounds are abundantly found as phenolic 

compounds or polyphenols, that can be subdivided in two major categories: flavonoids 

and nonflavonoids. Polyphenols belong to a vast group of plant-derived organic 

compounds, including fruits, vegetables, seeds, leaves, and roots, that have been 

associated to the prevention of chronic diseases [8]. Flavonoids can be further classified 

into six groups (flavones, isoflavones, flavanones, flavonols, flavanols and 

anthocyanidins), based on their chemical structure [8, 9] (Figure 2.2.). Flavones, such as 

apigenin and luteolin, are the most basic structure of flavonoids and are mostly found in 

herbs and spices. Isoflavones, also known as phytoestrogens, are present in soybeans, 
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soy derivates and herbs, and includes daidzein and genistein. Flavonols, such as 

quercetin and kaempferol, are the most abundant flavonoids in fruits and vegetables and 

present high antioxidant activity. Flavanones are less abundant flavonoids and are 

mainly found in citrus fruits such as naringenin. In turn, flavanols are the most abundant 

flavonoids in nature and can be found in several plant-based products as green tea, cocoa, 

cereals, vegetables and fruits. Major flavanols are epicatechin, epigallocatechin gallate 

and procyanidin C2. Anthocyanidins, such as cyanidin, can be found in berry-type fruits 

and other coloured fruits and vegetables [8, 9]. A major nonflavonoid compound is the 

stilbene trans-resveratrol, mainly found in the skin of red wine grapes, but also in other 

grapes and berries, peanuts, and pistachio (Figure 2.2.). Besides polyphenols, bitter 

compounds can also be found in other natural classes such as alkaloids (e.g. caffeine, 

papaverine, and noscapine), terpenoids (e.g. curcubitacins), saponins (e.g. 

amarogentin), amino acids, and peptides [10]. There is also a great variety of synthetic 

bitter compounds, and many of these are used in therapeutics. This is the case of the 

antimalaria drug chloroquine, the immunosuppressive agent azathioprine, the antibiotic 

dapsone or the antipsychotic haloperidol [11]. Table 2.1. summarizes the classes and 

sources of some of the most studied bitter compounds that present potential application 

in the treatment of brain disorders. 

 

Figure 2. 2. Classes of bitter compounds. Bitter compounds can be divided in natural and synthetic. 
Additionally, natural bitter compounds comprise several families namely, polyphenols, terpenoids, 
alkaloids, peptides, saponins and amino acids. 
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Table 2. 1. Bitter ligands, sources and cognate TR2.  

Bitter ligand Class Sources TR2 Refs 

Arborescin Guaianolide sesquiterpene lactone Artemisia gorgonum (Asteraceae) 1, 4, 10, 14, 43, 46 [12] 

[13] 

Azathioprine Thiopurine Synthetic 4, 10, 14, 46 [14] 

Brucine Alkaloid Dried seed of Strychnosnux-vomica L. Loganiaceae 4, 46 [10] 

Dapsone Sulfone Synthetic 4, 10, 40 [15] 

Epicatechin Flavanol Woody plants, green tea 4, 5, 39 
[16] 

Epigallocatechin gallate Flavan Green and black tea 14, 39 

Eriodictyol Flavanone Eriodictyon californicum 14, 39 [17] 

Genistein Isoflavone Soy derivates 14, 39 [18] 

Haloperidol Butyrophenone Synthetic 10, 14 [19] 

Liquiritigenin Flavanone Radix glycyrrhiza 14, 39 [20] 

Luteolin Flavone Vegetables and fruits 14, 39 [21] 

Naringenin Flavonone Vegetables, citrus fruits, nuts, coffee and tea 14, 39 [22] 

Noscapine Phthalide-isoquinoline alkaloid Papaver somniferum 14 [23] 

Papaverine Isoquinoline alkaloid Papaver somniferum L 7, 10, 14 [24] 

Parthenolide Sesquiterpene lactone Tanacetum parthenium 1, 4, 8, 10, 14, 44, 46 [25] 

Procyanidin C2 Proanthocyanidin Apple, cocoa, grapes, and berries 5 [8] 

Quercetin Flavonol Fruits, vegetables, spices, herbs and cereal grains 14 [26] 

Resveratrol Polyphenol, stilbene Grapes, berries, peanuts and red wine 14, 39 [27] 

Kaempferol Flavonol Seeds, leaves, fruits, flowers, and vegetables 14, 39 [28] 
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2.3. Therapeutic effects of bitter compounds 

2.3.1. Neuroprotection 

The typical hallmarks observed in these CNS diseases include increased oxidative stress 

and inflammation, protein misfolding, and cell death [29, 30]. Thus, therapeutic 

approaches based on drugs that can prevent and/or reverse these events present a great 

therapeutic potential. Interestingly, there are several bitter compounds with neuroactive 

effects by modulating multiple molecular targets, as already demonstrated in vitro and 

in vivo (Table 2.2.).  

In AD, Aβ deposition and consequent plaque formation in the brain is correlated with 

increased oxidative stress, cell death, and cognitive decline. Notably, many bitter 

compounds have shown to counteract these events (Table 2.2.). Epigallocatechin gallate, 

genistein, naringenin, quercetin and resveratrol contributed to the degradation of Aβ and 

hyperphosphorylation of tau proteins in several studies [31–37]. Moreover, several 

reports showed the ability of bitter compounds to ameliorate cognitive impairment and 

improve the behavioural performance in mice and rat disease models [31, 33–36, 38–

41]. Furthermore, these compounds can also mediate a decrease in cell apoptosis 

(inhibiting caspase-3 activation and reducing Bax/Bcl-2 ratio) [32, 39, 42, 43], 

inflammation [44, 45], and oxidative stress by regulating the expression and activity of 

inflammatory markers (TNF-α, IL-1β, iNOS) and antioxidant enzymes (SOD, GSH, 

catalase (CAT)) [43, 45]. Similarly, in PD, other bitter compounds showed beneficial 

effects; epigallocatechin gallate improved behavioural deficits, reduced oxidative stress, 

and increased dopamine levels in a mouse model of PD [46]; naringenin administration 

in vivo also reduced oxidative stress, inflammation, and cell apoptosis [47, 48].  

Stroke or cerebral ischemia causes a lesion and a reduction in the blood flow, triggering 

multiple correlated events such as energy failure, loss of cell-ion homeostasis, acidosis, 

increased intracellular calcium levels, excitotoxicity, oxidative stress, BBB disruption, 

and activation of glial cells [49]. Flavonoids such as epigallocatechin gallate, eriodictyol, 

and kaempferol as well as nonflavonoid resveratrol decreased infarct volume in stroke 

models [50–56]. Moreover, dapsone, an antibiotic usually used in leprosy and 

dermatological disorders [15], also decreased the damaged area and improved the 

neurological deficits [57]. Additionally, this compound downregulated the expression of 

the nuclear factor erythroid 2-related factor (Nrf2) in neurons and glial cells leading to 

decreased oxidative stress. Since stroke compromises oxygen and blood supply, 

angiogenesis is a critical process for recovery. Interestingly, both epigallocatechin gallate 

[50] and resveratrol [58] induced angiogenesis in the damaged area. 
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Table 2. 2. Neuroprotective effects of bitter compounds. 

Bitter agonist Biological activity Experimental model Ref 

Dapsone 
 

Promoted functional recovery: ↑ neurological deficits; 
↑ Fractional anisotropy values; 
↓ Tissue damage; 
↓ Nrf2 expression in neurons and glial cells; 
↓ Oxidative stress. 

Wistar Han cerebral ischemia rat model (MCA 
occlusion) 

[57] 

Protected brain microvascular integrity; 
↓ Body weight; 
↓ Serum oxLDL; 
↑ ZO-1 and occludin expression. 
↑ LC-3 II. 

C57BL/6J High Fat Diet mouse model [59] 

Inhibited LDL oxidation; 
↑ ZO-1, occludin, claudin-5; 
↓ Intracellular oxLDL; 
Attenuated lysosome dysfunction; 
Activated autophagy; 
Reversed LAMP1 aggregation in cytoplasm; 
↓ ZO-1 destruction. 

Brain capillaries  
HBMEC 

Attenuated spatial learning and memory impairment; 
Inhibited autophagy: ↑ LC3B-II/LC3B-I and Beclin 1, and ↓ p62. 

Sprague Dawley rats treated with propofol [60] 

Epigallocatechin 
gallate 

Ameliorated cognitive impairment; 
↓ Aβ plaques formation. 

Sprague–Dawley cognitive impairment rat 
model 

[31] 

Prevented Aβ1-42-induced toxicity; 
↑ Cell viability and ↓ cell apoptosis; 
↓ Endoplasmatic reticulum stress-induced cytotoxicity: GRP78, CHOP, cleaved-caspase-
12. 

SH-SY5Y (Aβ1-42-induced neuronal apoptosis) [32] 

↓ neuronal apoptosis: ↓ cleaved-caspase-3; 
Downregulated ER stress associated-proteins: GRP78, CHOP, and cleaved-caspase-12. 

APP/PS1 
transgenic mice model 

↓ Neprilysin expression via ERK and PI3K activation; 
↑ Neprilysin release into extracellular space; 
↑ Aβ degradation. 

Rat cortical astrocytes [61] 

Improved behavioural deficits; 
↓ Oxidative stress; 
↑ Dopamine levels; 
Regulated iron-proteins expression: ↑ ferroportin. 

C57 mouse model of Parkinson Disease (MPTP-
induced) 

[61] 
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Improved neurological function; 
↓ infarct volume; 
Promoted angiogenesis: ↑ nº of Ki67/CD31-positive vessels, Nrf2, VEGF, and VEGFR2 
expression; 
↓ Oxidative stress: ↓ GRP78, CHOP, cleaved-caspase-12. 

C57BL/6 cerebral ischemia mouse model (MCA 
occlusion) 

[50] 

Prevented mitochondrial impairment of complex I and ATP synthase (complex V) 
activities; 
↑ Cell proliferation; 
Restored mitochondrial biogenesis: ↑ PGC-1α, nuclear respiratory factor 1 (NRF-1) and 
mitochondrial transcription factor A (T-FAM); 
Activated AMPK: ↑ p-AMPK/AMPK ratio. 

Ts65Dn mice neural progenitor cells (Down 
syndrome model) 

[62] 

↓ Lipid accumulation; 
↓ Inflammation: TNF-α, IL-6, and IL-1β; 
↓ Microglial activation; 
↓ Phosphorylation of JAK2 and STAT3. 

BV-2 [63] 

↓ Body weight, lipid deposition, and epididymal adipocytes sizes; 
↓ Inflammation: TNF-α, IL-6, and IL-1β; 
↓ Phosphorylation of JAK2 and STAT3. 

C57BL/6J High Fat Diet mouse model 

↑ NEP activity in blood, cortex and hippocampus; 
Improved memory; 
↑ Nº of dendritic spines in the hippocampal CA1 area. 

Wistar Han prenatal hypoxia rat model [64] 

Ameliorated obesity and ↓ lipid deposition; 
Enhanced Brown adipose tissue thermogenesis; 
↓ Inflammation: TNF-α, IL-6, and IL-1β; 
↓ p-NF-κB and p-STAT3; 
↓ Microglial activation. 

C57BL/6J High Fat Diet mouse model [65] 

Ameliorated the corticosterone-induced neuronal injuries (nuclear shrinkage, pyknosis 
fragmentation, and appearance of apoptotic bodies); 
↑ Cell viability; 
↑ ERK1/2 and PI3K/AKT phosphorylation; 
↑ PGC-1α; 
↑ ATP production. 

Rat primary hippocampal neurons 
(corticosterone-induced neurotoxicity) 

[66] 

Improved behavioural performance; 
Restored glucocorticoid, dopamine and serotonin plasma levels; 
↑ PKCα and ERK1/2 expression and phosphorylation; 
↑ ATP production. 

Wistar Han psychological stress rat model [67] 

↑ Cell viability; 
↓ LDH release; 
↓ ROS levels and MDA expression; 
↓ Cell apoptosis: ↓ Bax and ↑ Bcl-2; 

HBMEC (ADMA-induced injury) [68] 
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↓ pERK1/2 and p-38. 
↑ Cell survival; 
↓ Cell apoptosis (↓ activated caspase-3); 
↑ Nº type-2b/3 cells and immature neurons. 

Balb/C mice 
 

[69] 

Induced neuronal differentiation; 
↑ pAkt in hippocampus. 

Adherent hippocampal neural precursor cells 

Eriodictyol Attenuated Aβ25–35 cytotoxicity; 
↓ JNK/p38 signaling pathway activation; 
↑ Nrf2 protein levels leading to ARE pathway activation 

Primary cultures of cortical neurons [70] 

Prevented neuronal death; 
↓ Infarct area; 
Improved neurological and memory; 
↓ TNF-α, iNOS and GFAP expression. 

Cerebral ischemia mice model [51] 

Prevented memory and neuronal damage; 
↓ Aβ1−42 formation; 
Suppressed AChE and ↑ ChAT activity; 
Suppressed LPS-induced glial overactivation; 
Inhibited NF-κB and MAPK pathways. 

C57BL/6J mice - LPS induced inflammation [71] 

Genistein Activated autophagy; 
Contributed to complete degradation of Aβ and hyperphosphorylated tau protein; 
Corrected AD associated behaviour. 

AD rat model 
 

[33] 

Attenuate spatial recognition, discrimination, and memory deficits; 
↓ MDA (malondialdehyde); 
↑ SOD and CAT activity and GSH levels; 
↓ AChE activity; 
↓ IL-6, NF-κB p65, TLR4, TNFα, COX2, iNOS, GFAP; 
↑ Nrf2. 

LPS-induced cognitive deficits Wistar rats [72] 

Liquiritigenin Improved behavioral performance; 
Inhibited AChE and thiobarbituric acid reactive substance activities in the hippocampus; 
↑ BDNF protein level, ERK phosphorylation and CREB in the hippocampus. 

Scopolamine-induced cognitive deficits CD-1 
mice 

[20] 

Luteolin Improved spatial learning and memory; 
↑ CA1 pyramidal layer thickness. 

Streptozotocin-induced AD rat model [38] 

Improved locomotor function; 
↑ Neuron survival; 
↓ Cell apoptosis; 
Suppressed oxidative stress (↓ MDA and XO, ↑ SOD and GSH-Px); 
Suppressed inflammatory response (↓TNF-α, IL-1β, and IL-18); 
↑ Nrf2 levels and ↓ nod-like receptor pyrin domain containing 3 protein expression. 

Spinal cord injury rat model [73] 
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Restored cell viability; 
↓ ROS levels; 
Prevented cell apoptosis (↑ Ser112 phosphorylation of Bad and ↓ pro-caspase 3 cleavage); 
↑ HO-1 protein expression; 
Induced MAPKs activation (ERK, p38, JNK, Akt). 

Primary cultured rat cortical cells (H2O2 
induced-oxidative stress) 

[74] 

Naringenin ↓ Cell apoptosis; 
↓ Caspase-3; 
↑ PI3K/AKT and estrogen receptor. 

PC12 (Aβ25-35-induced AD) [42] 

↑ Spatial learning and memory; 
↓ Aβ plaques and Tau hyper-phosphorylation. 

Cortical neurons (Aβ1-42 and Aβ25-35 induced 
AD) 

[34] 

↓ MDA; 
↓ Cell apoptosis; 
↑ Estrogen receptor; 
↑ Spatial memory and cognition. 

Wistar rats (Aβ25-35-induced AD) [39] 

↑ GRx and CAT; 
↓ Lipid peroxidation and iNOS; 
↓ Nuclear pigmentation and cytoplasmic vacuolation. 

C57BL/6 mice (PD model, MPTP-induced) [47] 

↓ α-synuclein; 
↑ Dopamine transporter, DOPAC, HVA and TH; 
↓ TNFα and IL-1β; 
↑ SOD. 

C57BL/6 mice (PD model, MPTP-induced) [48] 

↓ ROS and MDA; 
↑ SOD, GSH; 
↓ Caspase-3, Bax and ↑ Bcl-2, AMP, ADP, ATP, ANT, Nrf2, HO-1 and NQO1. 

Neurons (hypoxia-induced ischemic stroke) [43] 

↓ Th1, Th9, Th17; 
↑ Treg; 
↓ T-bet, PU.1, and RORγt. 

C57BL/6 mice ((MOG)35-55-induced EAE) [75] 

↓ IFNγ, STAT1, STAT3, STAT4, IL-6; 
↑ gp-130; 
↓ Foxp3. 

C57BL/6 mice (EAE induced by anti-
CD3/CD28) 

[76] 

↓ T cells proliferation, IFN-γ, IL-17A, TNF-α and IL-6; 
Blocked T cells at G0/G1 phase; 
↑ P27; 
↓ Retinoblastoma protein phosphorylation, IL-2, CD25 and STAT5. 

Mouse T cells (EAE induced by anti-CD3/CD28 
and 
(MOG)35-55 

[77] 

↓ TLR4, NF-κB, TNF-α, COX2 and iNOS; 
↑ Nrf2, SOD, CAT, and GSH; 
↓ MDA and AChE; 
↓ GFAP; 
↑ Spatial recognition memory, discrimination ratio and retention and recall capability. 

Albino Wistar rats (cognitive deficit LPS-
induced) 

[78] 
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↑ SIRT1; 
↓ NF-κB; 
↑ Serotonin, noradrenaline, dopamine and TH.  

Sprague-Dawley rats (cognitive deficit age-
induced) 

[79] 

↓ Bad, caspase-3 and Bax; 
↑ Bcl-2, Bcl-xL; 
↓ TUNEL; 
↑ PI3K/Akt; 
↓ PTEN, NF-κB, TNF-α, IL -6 and IL-1β; 
Improved of cognitive dysfunction. 

Sprague-Dawley rats (cognitive deficit 
isoflurane-induced) 

[80] 

↓ iNOS and COX-2; 
↑SOCS3, AMPKα and PKCδ. 

BV2 (LPS-induced neuroinflammation) [81] 

↓JNK, ERK, p38, MAPK, TNF-α, IL-1β; 
↑ Arg-1 and IL-10. 

BV2 (LPS-induced neuroinflammation) [82] 

↑ BDNF and GDNF; 
↑ Nrf2; 
↑ Dopaminergic neurons survival. 

Primary rat midbrain neuron-glia co-cultures [83] 

↑ Mitochondrial complex I- IV activities; 
↓ Lesions /10kb; 
↑ GSH and GST; 
↓ MDA and protein carbonyl; 
↑ Spatial and recognition memory. 

Swiss Albino mice [84] 

Papaverine ↓ TNF-α and IL-1β by cAMP/PKA signaling pathway; 
↓ pMEK and pERK; 

Retina primary microglia-LPS-induced 
microglial activation 

[85] 

↓ IL1β and TNFα expression; 
Modulated phenotype alterations: ↓ Il1rn, Socs3, Nos2 and Ptgs2 transcription, ↑ Arg1 
and Mrc1 transcription; 
↓ p-IKK expression and inhibited the nuclear translocation of P65. 

BV2- LPS-induced microglial activation [24] 

Quercetin Reversed β-amyloidosis and tauopathy;  
↓ Astrogliosis and microgliosis; 
Enhanced memory and learning. 

3Tg-AD mouse model [35] 

↓ eIF2a phosphorylation and ATF4 expression through GADD34 induction in the brain; 
Improved memory in aged mice and delayed memory deterioration at the early stage of 
AD. 

APP23 mice with human APP751 
complementary DNA with a Swedish double 
mutation on the C57BL/6 genetic background 

[40] 

↓ Neuronal cell apoptosis; 
↑ Bcl-2, Bcl-xL and survivin, and ↓ cleaved caspase-3; 
↓ ROS; 
Upregulated pBad and pAKT. 

Sprague Dawley rats (Brain Ischemic Injury 
model, four-vessel occlusion -induced) 

[86] 

Enhanced docosahexaenoic acid antioxidant and anti-inflammatory effects: 
↓ NO and ROS production; 

BV2 (LPS-induced neuroinflammation) [87] 
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↑ Nrf2 and HO-1 expression; 
↓ TNFα expression; 
↓ Phospho-cytosolic phospholipase A2 and lipid peroxidation product 4-
hydroxynonenal. 
Antidepressant activity by inhibiting NMDA receptors; 
↑ NO synthesis and antioxidant activity. 

Female Swiss Albino mice (Olfactory 
bulbectomy) 

[88] 

↓ Total cholesterol and HDL decrease;  
↓ ROS and MDA level;  
Ameliorated cognitive impairment by modulating PI3 K/AKT/Nrf2 pathway and 
activating CREB pathway. 

Male Chinese Kunming mice (High fat diet 
induced-neurotoxicity) 

[89] 

Attenuated ROS mediated oxidative stress and mitochondrial DNA oxidation; 
↑ MnSOD activity; 
Prevented cytochrome-c translocation; 
↑ Bcl-2 and ↓ Bax, p53 and caspase-3; 
↓ DNA damage. 

Male albino rats (Aluminium induced-
neurotoxicity) 

[90] 

Resveratrol Improved memory and cognitive function; 
↓ Anxiety; 
↓ Aβ and p-tau pathology in the hippocampus (↑ NEP and ↓ BACE1); 
↑ AMPK and activated SIRT1 pathway. 

3xTg-AD mouse model [36] 

Improved learning and memory functions; 
↑ AMPK and PGC-1; 
↓ NF-κB / IL-1β / NLRP3 in hippocampus and prefrontal cortex. 

Mouse model of AD (induced-Aβ1–42) [41] 

↓ MMP9 and ↑ IL-4 and FGF-2 in CSF; 
↑ MMP10 and ↓ IL-12P40, IL12P70 and RANTES in plasma; 
↓ Aβ40 in plasma and in CSF. 

People with mild or moderate AD [37] 

Preserved BBB integrity; 
↓ MMP-9 in CSF. 

People with mild or moderate AD [91] 

↓ Cell death: ↓ caspase-3; 
Promoted mitophagy: ↑ Nº of acidic vesicular organelle, LC3-II/LC3-I ratio, Parkin and 
Beclin-1 expression, and LC3 and TOMM20 co-localization; 
↓ Neuronal oxidative damage; 
↑ ΔΨm, ATP, T-SOD and CAT levels. 

PC12 (Aβ1-42 -induced neurotoxicity) [92] 

Reverted Aβ1-42 -induced neurotoxicity via AMPK signaling: 
↑ Cell viability; 
↓ Inflammation: ↓ TNF-α, IL-1β, iNOS and COX-2; 
↓ Inhibitory kappa B kinases (IKKα and IKKβ); 
↓ NF-κB expression and nuclear translocation; 
↓ Oxidative stress: ↑ SOD-1, NRF2, Gpx1, CAT, GSH and HO-1. 

Human neuronal stem cells (Aβ1-42 -induced 
neurotoxicity) 

[45] 

Improved memory function; ICR mice model of AD (Aβ1-42 -injected) [44] 
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↓ PDE4A5, 4B1 and 4D3 expression; 
↑ BDNF, pCREB, PKA; 
↑ BCl-2 and ↓ Bax; 
↓ IL-1β and IL-6. 
Improved locomotor activity, muscle strength and coordination; 
↓ Haematoma volume and damage area;  
Via adenosine A1 receptor? 

Sprague–Dawley rat stroke model (collagenase-
induced intracerebral haemorrhage) 

[53] 

↑ Cell viability and ↓ Caspase-3 and -9 activity via AMPK signaling; 
↑ AMPK and p-AMPK; 
↑ Bcl-2 and CREB; 
Restored mitochondrial activity; 
↑ PGC1α, NRF-1 and Tfam. 

SH-SY5Y (OGD stroke model) [93] 

Attenuated neurological deficits and cerebral edema; 
↓ Neuronal death; 
↓ Haematoma volume; 
↓ IL-1β. 

CD1 mice stroke model (collagenase-induced 
intracerebral haemorrhage) 

[54] 

↓ Activated NLRP3 inflammasome, caspase-1, IL-1β and IL-18; 
↓ Cerebral infarct volume and brain water content; 
 Improved neurological scores. 

Sprague-Dawley rat (MCAO- induced cerebral 
ischemic) 

[55] 

↓ Neuronal deficits and infarct volume; 
↑ p-AMPK and SIRT1; 
↓ PDEs and ↑ ATP and cAMP. 

Sprague–Dawley rats (MCAO- induced cerebral 
ischemic) 

[56]
  

Enhanced angiogenesis and neurogenesis (post-acute treatment); 
↑ GDNF and VEGF. 

C57BL6 mice (MCAO- induced cerebral 
ischemic) 

[58] 

Attenuated cognitive impairment; 
↓ Inflammation: ↓ TNF-α, IL-6 and ↑ IL-4 and -10; 
Modulated PPARγ/NF-κB signaling: ↑ PPARγ and p65, ↓ p-p65 and p-IKBα; 
↑ GABAAR, NMDAR1, BNDF, TrKB and CaMKII, and ↓ p-CaMKII; 

C57/BL6J mice cognitive impairment model 
(chemotherapy-induced) 

[94] 

↓ Cell apoptosis; 
↓ Inflammation: ↓ IL-1β, CCL2 and CCL3; 
Modulated several miRNAs expression targeting pathways related to the 
pathophysiology of bacterial meningitis (e.g. FOXO and Thyroid hormone signaling 
pathways). 

Infant Wistar Han rat model of pneumococcal 
meningitis 

[95] 

Prevented learning and memory deficits; 
↓ PPARγ and ↑ p16 expression in hippocampus. 

C57BL/6J mice (High fat diet induced-cognitive 
deficits) 

[96] 

↑ Cell viability; 
↑ ERK1/2 activation. 

SH-SY5Y (dopamine induced cell death) [97] 

Inhibited age-dependent motor function decline; 
↑ ERK1/2 activation. 

C57BL/6 mice (dopamine induced cell death) 
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↓ REST expression via SIRT1 and c-Jun signaling; 
↓ Neuronal death. 

SH-SY5Y and rat cortical neurons (PCB-95-
induced neurotoxicity) 

[98] 

Kaempferol ↓ Cerebral infarct volume and neurological score; 
↓ Brain injury and cell apoptosis; 
↓ Inflammation: ↓ TNF-α, IL-6 and IL-1β in serum and brain; 
↓ Oxidative stress: ↑ SOD and GSH, and ↓ MDA in serum and brain; 
Upregulated pAkt and Nrf-2; 
Downregulated p-GSK-3b, NF-kB and p-NF-kB. 

Sprague-Dawley cerebral ischemia rat model 
(MCA occlusion) 

[52] 

Improved short and long –term memory; 
↓ Inflammation: ↓ TNF-α, IL-6 and NF-κB p65; 
↓ Cell apoptosis: ↓ p53, PARP1 and FOXO-2, and ↑ Bcl-2; 
↓ Oxidative stress: ↑ MnSOD and GSH; 
↑ SIRT1 nuclear activity and levels and inhibited PARP1. 

Wistar Han rats (CdCl2-induced neurotoxicity 
model) 

[99] 

↓ Neuronal damage; 
↓ Iba-1 expression; 
↓ Inflammation: ↓ IL- 1β, IL-6, TNF-α, MCP-1, COX-2 and iNOS; 
Protected BBB integrity: ↑ occludin-1, claudin-1 and CX43; 
↓ HMGB1 level; 
Suppressed TLR4/MyD88 inflammatory pathway. 

BALB/c mice LPS-induced neuroinflammation [100] 

↓ Neuronal death in the CA3 region of hippocampus; 
Improved spatial learning and memory; 
↓ Oxidative stress in hippocampus: ↑ GPx, CAT and SOD; 
↑ Trkβ and GluA2 expression. 

Sprague-Dawley hypoxia rat model [101] 

↑ Trkβ expression;  
↓ pE47; 
↓ cell neurodegeneration. 

Primary hippocampal cell cultures 

Improved striatal neuron injury; 
↑ TH and PSD95 levels in striatum; 
↓ Inflammation: ↓ TNF-α, IL-6, IL-1β, MCP-1, ICAM-1 and COX-2; 
Protected BBB integrity; 
Suppressed HMGB1/TLR4 inflammatory pathway activation. 

BALB/c mice LPS-induced neuroinflammation [102] 
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2.3.2. Anti-cancer effects 

Despite cancer in general present several hurdles for current therapies to enhance life 

expectancy of patients, brain cancer is probably the most challenging due to its unique 

anatomy and physiology. Brain tumor’s therapy usually comprises radiotherapy, 

chemotherapy and surgery. However, chemoresistance often limits the entrance of drugs 

into the brain and depending on the tumor localization, surgery might not be an option 

[103]. Gliomas are the most common malignant primary brain tumors and comprise 

astrocytomas, oligodendrogliomas, and ependymomas (reviewed in [104]). 

Glioblastoma, an astrocytoma of grade IV, is the most prevalent and aggressive primary 

brain tumor and is associated with a poor prognosis and low life expectancy (reviewed in 

[104]). Besides primary brain tumors, brain metastasis with outer-CNS origin, such as 

lung, breast and colorectal cancers, melanoma or renal cell carcinoma contribute for the 

higher mortality associated to brain cancer [103]. Therefore, strategies for increasing 

survival rates and to develop more efficient therapies require a further understanding of 

the effects of potential therapeutic agents to counteract molecular and cellular events 

observed in cancer cells. These include abnormal cell proliferation, deregulation of 

apoptotic pathways, upregulation of inflammatory cytokines, mitochondrial 

dysfunction, increased angiogenesis and dysregulation of extracellular matrix dynamics. 

In the last years, a growing body of evidence show that many bitter compounds display 

anti-tumoral activity in brain cancer as well as in systemic cancer either in vitro and in 

in vivo models (Table 2.3). 

Like in neuroprotection, the flavonoids family is among the more studied regarding anti-

cancer effects, but it is not the only one. Actually, many other compounds such as the 

immunosuppressive azathioprine, the alkaloids brucine, noscapine and papaverine, the 

sulfone dapsone and the lactone parthenolide showed anti-proliferative, anti-

invasiveness, pro-apoptotic, anti-angiogenic and anti-metastasis effects in different 

types of cancer (Table 2.3). In particular, parthenolide has been the focus of many studies 

showing anti-tumoral effects in various systemic cancers that metastise to the brain, such 

as colorectal [105, 106] and lung cancers [107–109] (Table 3.). Additionally, parthenolide 

effects comprises the induction of apoptosis through cell cycle arrest and/or by 

increasing expression of p53 and activating caspase-3, -9 and PARP (Poly (ADP-ribose) 

polymerase) and downregulating anti-apoptotic proteins including Bcl-2 and Bcl-xL 

[107, 109–113]. Moreover, parthenolide inhibited angiogenesis [107, 108] and epithelial-

mesenchymal transition (EMT) [108, 109, 114] processes, thus suppressing cancer cells 

growth, proliferation, and invasiveness abilities. Similarly, several flavonoids are among 

the most promising anti-cancer compounds. Anti-tumoral effects of these have been 



Characterization of bitter taste receptors expression and function in the human blood-cerebrospinal fluid barrier 
 

 

Ana Catarina Duarte 

 

69 

reported in several types of cancer including glioblastoma. Grube and colleagues showed 

that epigallocatechin gallate, at achievable CNS concentrations, induced cell stress in 

primary glioblastoma cells, activating autophagic cellular response through increasing 

ROS levels [115]. Moreover, combination of epigallocatechin gallate and temozolomide 

sensitized glioblastoma cells to temozolomide effects resulting in decreased cell viability. 

In another study, epigallocatechin gallate inhibited O6-methylguanine (O6-meG) DNA-

methyltransferase (MGMT) expression via WNT/β-catenin pathway which reversed the 

resistance to temozolomide of GBM-XD and T98G cells [116]. Conversely, in non-tumor 

glial cells, epigallocatechin gallate enhanced MGMT expression, showing specific anti-

tumoral effect. More recently, human U251 glioblastoma cells treated with 

epigallocatechin gallate showed increased cell senescence related to telomerase activity 

inhibition [117]. Other flavonoid, luteolin inhibited EGF-induced glioblastoma U87 and 

U252 cells proliferation and induced apoptosis by arresting cell cycle at S and G2/M 

phases and increasing cleaved caspase-3 and PARP  [118]. Moreover, luteolin inhibited 

the phosphorylation of proteins that participate in Akt and MAPK pathways. Quercetin 

and sodium butyrate combination was tested in rat C6 and human T98G glioblastoma 

cells. This combination had a synergetic effect in inhibiting protective autophagy by 

downregulating Beclin-1 and LC3B II, thus inducing cell apoptosis [119]. Although, 

genistein, kaempferol and naringenin effects in glioblastoma were not analysed, these 

are very interesting flavonoids in the frame of glioblastoma considering their anti-

tumoral properties already reported in other types of cancer (Table 2.3). On the other 

hand, resveratrol has been extensively analysed in different cancers including 

glioblastoma (Table 2.3). A recent study showed in vitro and in vivo that resveratrol 

reverses TGF-β1 induced EMT via Smad signaling, upregulating E-cadherin and 

downregulating N-cadherin, vimentin, β-catenin, Twistl1, Snail and Slug. Moreover, 

resveratrol inhibited cell migration, invasion and stem-cell like properties of 

glioblastoma cells [120]. 

 



Characterization of bitter taste receptors expression and function in the human blood-cerebrospinal fluid barrier 
 

 

Ana Catarina Duarte 

 
70 

Table 2. 3. Anti-tumoral activity of bitter compounds.    

Bitter agonist Biological activity Experimental model Ref 

Azathioprine ↓ Proliferation of resistant cancer cells. A2780 and A2780-cisplatin-resistant [121] 
Autophagy activation; 
↑ Cell apoptosis; 
↓ ΔΨm; 
↑ ROS production. 

HT29 and HCT116 [122] 

↓ Vav1-dependent invasive cell migration and matrix degradation; 
↓ Rac and Cdc42 signaling; 
↓ Metastasis. 

Pancreatic cancer cell lines [123] 
Xenograft and genetic mouse models of 
pancreatic cancer 

Brucine ↓ Cell proliferation, migration and invasion; 
↑ Cell apoptosis; 
↓ Angiogenesis and vasculogenic mimicry tube formation; 
F-actin cytoskeleton and microtubule structure disruption; 
Downregulation of EPHA1, MMP-9, MMP-2. 

MDA-MB-231 [124] 

↓ Cell growth and ↑ cell apoptosis; 
Activated Wnt/β‐catenin signaling pathway. 

SW480, DLD1 and LoVo [125] 

↓ Tumor volume and weight. DLD1‐bearing nude mice 
↓ Tumor incidence; 
Restoration of biochemical markers levels. 

Rat model of chemically induced mammary 
carcinogenesis  

[125] 

↓ Cell proliferation, migration and colony formation; 
↑ Cell apoptosis; 
↓ MMP2, MMP3 and MMP expression; 
Inhibited Wnt/β-catenin signaling pathway. 

LoVo  
 

[126] 

↓ Tumor growth. Male immune-deficient BABL/C nude mice 

↓ Cell migration, invasion, adhesion; 
↑ E-cadherin and β‐catenin; 
↓ Vimentin and fibronectin; 
↓ MMP-2 and MMP-9. 

MDA-MB-231 and Hs578-T [127] 

↓ RANKL-induced migration of MDA-MB-231 cells; 
↓ TRAP (tartrate resistant acid phosphatase) activity; 
↓ Osteoclastogenesis of RAW264.7 cells; 
↓ RANKL-induced bone resorption; 
↓ RANKL-induced TGF-β1, NF-κB and Hes1 expression; 
↓ RANKL-induced Notch1 and Jagged1 protein levels. 

RANKL-induced osteoclastogenesis model 
(co-cultures of r MDA-MB-231 and 
RAW264.7) 

[128] 
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↑ OPG/RANKL expression ratio; 
↓ Differentiation and bone resorption function of osteoclasts; 
Expression and secretion of OPG and RANKL regulation in osteoblast cells. 

Breast cancer bone metastasis model (co-
culture of MDA-MB-231 and MC3T3-E1 
cells) 

[128] 

↓ Cell viability; 
↓ Anchorage-independent growth; 
↓ Cell migration. 

MCF-7 [128] 

↓ BCL-2 and COX-2 expression; 
↑ BAX expression; 
↓ Cell survival rate; 
↓ Growth of xenograft tumors. 

U251 human glioma cell 
 
Nude mice tumor xenograft model 

[129] 

Dapsone ↑ Anti-proliferative activity; 
↓ Anchorage-independent growth; 
↓ Clonogenic survival; 
↓ Cell migration; 
↑ Anti-glioma activity against different pro-neoplastic features. 

Primary cultured glioma cells [130] 

Epicatechin ↓ Cell viability and ↑ cell apoptosis; 
Induced cell cycle arrest;  
MMP dissipation; 
Inhibited FASN enzymes expression; 
↓ Fatty acid levels; 
↑ ROS production. 

HepG2 [131] 

Epigallocatec
hin gallate 

↓ Cell growth; 
Induced cell cycle arrest in G2/M phase; 
↑ Cell apoptosis via the mitochondrial pathway; 
↓ Cell migration, invasion, and adhesion; 
↓ MMP-2/9 activity; 
Inhibited the activation of lipid raft-associated EGFR; 
Prevented EGFR dimerization and activation; 
Inhibited MEK/ERK1/2 and PI3K/AKT signaling pathways activation; 
↓ Proteins involved cell survival regulation. 

Caco-2, HCT-116, SW-480, HT-29, and 
LoVo 

[132] 

Improved serum liver markers including ALT, AST, and total bilirubin; 
↓ Tumor formation; 
↓ Expression of genes associated with high cancer risk; 
Inhibited fibrosis progression; 
Inactivated of hepatic stellate cells; 
Induced senescence-associated secretory phenotype. 

Male Wistar rats with induced 
hepatocellular carcinoma 

[133] 
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Inhibition of tumor sphere formation; 
Inhibition of ALDH1A1 and SNAI2 (Slug) expression; 
AXL receptor tyrosine kinase highly expression. 

Cancer stem cells (H1299-sdCSCs) 
obtained from tumor spheres of H1299 
human lung cancer cells 

[134] 

DNA damage; 
↑ Phosphorylation of γ‐H2AX histone and micronuclei; 
↑ Telomere‐shortening‐induced senescence; 
↑ Telomere‐independent genotoxicity. 

U251 [117] 

↓ Cell growth, migration and invasion; 
"Cadherin switch" prevention; 
↓ Expression level of TCF8/ZEB1, β-Catenin, and Vimentin; 
Inhibited Akt pathway; 
Suppressed IGFR phosphorylation;  
Induced Akt degradation. 

Panc-1, MIA PaCa-2, BxPC-3, HPAF-II, 
CFPAC-1, and Su.86.86 

[135] 

↓ Cell viability; 
Induced cell cycle arrest in G1 phase; 
↑ Caspase‑3 and -7 activity; 
↑ Cell apoptosis. 

HSC‑3 (oral squamous cell carcinoma) cells 
 
 

[136] 

↓ Tumor size; 
↓ Proliferation: ↓ Ki‑67 expression. 

Mice tumor xenografts 

↓ Cell viability and ↑ cell apoptosis; 
Induced cell cycle arrest in G2/M phase; 
↑ PARP, pro-caspase-3 and pro-caspase-9 protein levels. 

MCF-7  
 
 

[137] 

Tumor growth suppression; 
Downregulation of proteins associated with apoptosis; 
↓ Proliferation: ↓ Ki‑67 expression. 

Female CB-17 severe combined 
immunodeficient mice 

Suppressed EMT, invasion and migration; 
Inhibited TGF-β1-induced expression of EMT markers (↓ E-cadherin and ↑ vimentin); 
Blocked Smad2/3 phosphorylation and Smad4 translocation. 

8505C  [138] 

Radiosensitized cells through miR-34a/Sirt1/p53 signaling pathway; 
↑ Cell apoptosis: ↓Bcl-2 and ↑ Bax and caspase-3 expression. 

H22 [139] 

Inhibited tumorspheres; 
↓ Stem cell markers; 
↓ Proliferation‑associated proteins expression; 
↑ Cell apoptosis. 

Bladder cancer stem cells [140] 

↑ Cell apoptosis; 
DNA damage; 
↓ GRP78 expression; 
Activated NF-κB; 
↓ ABCB1 gene expression and blocked drug efflux; 
↑ Caspase-3 and PARP activation and Bad, and ↓ Bcl-2. 

HCT-116 and DLD1 [141] 
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↓ Cell viability and proliferation; 
Anticarcinogenic effect. 

MCF-7 and MDA-MB-23 [142] 

Inhibited PGE2 and EP1-selective agonist induced migration; 
↑ Bax/Bcl-2; 
↓ Cell viability. 

HepG2 [143] 

↓ Cell growth; 
↑ Cell apoptosis: ↑ caspase -3, -8 and -9 activation; 
Induced autophagy; 
Regulated several apoptosis-related genes; 
Induced mitochondrial depolarization; 
Modulated autophagy-related proteins Beclin1, ATG5 and LC3B levels; 
Inhibited glycolytic enzymes (HK, PFK, LDH and PK) activities and mRNA levels; 
↓ HIF1α and GLUT1 expression. 

4T1 
 
 
 
 

[144] 

↓ Tumor weight; 
↓ Glucose and lactic acid levels; 
↓ VEGF expression. 

Balb/c mice injected subcutaneously with 
4T1 cells 

↓ Cell proliferation and survival; 
↑ Cell apoptosis (NB4 cells); 
Induced cell cycle arrest in G0/G1 phase; 
↑ ATM, HMGA2, pATM levels, and SA-β-galactosidase staining; 
Cellular senescence; 
Beneficial epigenetic modulation. 

NB4 and K562 [145] 

↓ MGMT mRNA and protein expression; 
Reversed TMZ resistance via the WNT/β-catenin pathway; 
Prevented β-catenin translocation into the nucleus; 
↓ TCF1 and LEF1 transcription factors. 

GBM-XD and T98G (MGMT-positive 
GBM) 
 
 

[116] 

↑ MGMT expression. GliaX 

↓ Cell growth; 
Induced cell cycle arrest at G1 and G2 phases; 
↓ Cyclin E and D1; 
↑ p21. 

HCT116 [146] 

↑ Accumulation of autophagic vacuoles; 
↑ ROS production; 
Sensitized cells to temozolomide. 

Primary human GBM cell culture [115] 

↓ Cell proliferation and ↑ cell apoptosis; 
↓ p-PI3K and p-Akt. 

H1299 [147] 

↓ Cell proliferation and ↑ cell apoptosis; 
↑ Bcl-2 and, ↓ BAX, BAK1 and cytochrome C. 

U266 [148] 

↓ Cell proliferation and ↑ cell apoptosis; 
↑ Caspase-3 positive cells; 

Jurkat cells [149] 
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↑ Fas expression. 
↑ Chromosomal instability; 
↑ Cell apoptosis; 
Inhibited of cell division. 

COLO205 [150] 

↓ Cell viability and cell apoptosis; 
Induced cell cycle arrest; 
MMP dissipation; 
Inhibited FASN enzymes expression; 
↓ Fatty acid levels; 
↑ ROS production. 

HepG2 [131] 

↓ Solid tumors; 
Inhibited carcinogenesis; 
↓ Nº of precancerous lesions; 
↓ Tumor load; 
Histological progression delay. 

Colon carcinogenesis mouse model [151] 

↑ Cell death and ↓ Cell viability; 
↑ ROS production; 
Induced cell cycle arrest; 
Induced autophagy; 

Primary effusion lymphoma cells [152] 

↓ ΔΨm; 
↑ ROS production; 
Changes in nuclear morphology; 
↓ Cell viability; 
↓ Phosphorylation of several proteins involved in cell proliferation and survival. 

A-431 and SK-BR-3 [153] 

↓ Cell proliferation, invasion and migration; 
Induced cell cycle arrest in G0/G1 phase. 

RKO [154] 

↓ Cell viability and invasion; 
↑ Cell apoptosis; 
↑ TFPI-2 expression. 

T24 [155] 

Inhibited cell growth; 
↑ Cell apoptosis: ↓ Bcl-2, and ↑ Bax and Caspase-3 protein expression; 
↓ ABCG2 expression and ↑ adriamycin uptake. 

Eca109 and Ec9706 [156] 

↓ Cell viability; 
↓ β-catenin, pAkt and cyclin D1; 
Inactivated β-catenin signaling pathway; 

MDA-MB-231 [157] 

↑ PTEN, Caspase-3 and -9; 
↓ Akt; 
↑ Bax/Bcl-2 ratio; 
↓ hTERT. 

T47D [158] 

Inhibited spheroid formation; Colorectal cancer stem cells [159] 
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↓ Cell proliferation and ↑ cell apoptosis; 
↓ Wnt/β-catenin pathway activation. 
↓ ERα protein levels; 
↓ Cell viability. 

T-47D [160] 

↓ Cell proliferation and ↑ cell apoptosis; 
↓ EGFR expression; 
↓ Erk 1/2 and Mek phosphorylation; 
↓ Bcl-2 and ↑ Bax; 
Inhibited P90 RSK mRNA expression. 

SACC-83 [161] 

↓ Cell proliferation, migration and invasion; 
↑ Cell apoptosis: ↑ activated caspases-3, -8 and -9, Bax, and PARP, and ↓ Bcl-2. 

SW780 
 

[162] 

↓ Tumor volume and weight; 
↓ NF-κB and MMP-9 mRNA and protein expression. 

Mice bearing SW780 tumors 

↓ Tumor cells activity; 
Inhibited tumorsphere formation; 
↓ Cancer stem cells markers; 
↓ Cell proliferation and ↑ cell apoptosis; 
↓ Wnt/β-catenin activation. 

A549 and H1299 [163] 

↑ Cell apoptosis; 
Suppressed β-catenin signaling; 
↓ mRNA and transcriptional activity of β-catenin in p53 wild-type KB cells; 
Enhanced β-catenin ubiquitination and proteasomal degradation. 

Head and neck cancer patients 
 
KB and FaDu 

[164] 

↓ Cell proliferation and ↑ cell apoptosis; 
↓ p-β-catenin (Ser552), p-GSK3β(S9) and β-catenin target genes; 
↓ Tumor growth in vivo; 

SGC-7901 [165] 

↓ Cell proliferation and growth; 
↑ pERK1/2 p-p38. 

BeWo, JEG-3, and JAR [166] 

↓ Cell proliferation and ↑ cell apoptosis; 
Induced autophagy; 
↑ Caspase -3 and -9 activity; 
↑ Bax, cleaved caspase-3 and -9, Atg5, Atg7, Atg12, Beclin-1, and LC3B-II; 
↓ Bcl-2, pAKT (Ser473) and pSTAT3 (Tyr705); 
↓ ABCB1 mRNA and protein. 

CAR (cisplatin-resistant oral cancer cells) [167] 

↑ pERK1/2, pJNK1/2 and p38α, p38γ and p38δ, and pAkt levels; 
Inhibited Akt, ERK1/2 or alternative p38MAPK activity. 

HT-29 [168] 

Genistein Induced cell morphological changes; 
↓ Total viable cells; 
Induced G2/M phase arrest and cell apoptosis; 
↑ ROS and Ca2+ production; 
↓ ΔΨm levels; 

HL-60 [18] 
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↑ IRE-1α, Calpain 1, GRP78, GADD153, caspase-3, -4, -7 and -9, ATF-6α, Bax and PARP-cleavage; 
↓ Bcl-2 and Bid. 
↓ Tumor weight; 
↑ ATF-6α, GRP78, Bax, Bad, and Bak. 

BALB/c nu/nu mice 

Induced cell cycle arrest in G2/M phase; 
↓ Cyclin A and B1; 
↑ p21WAF1/CIP1 and Cdk; 
Induced cell apoptosis: ↑ Caspases -3, -8 and -9, and PARP activation, cytosolic release of 
cytochrome c, and ↑ Bax/Bcl-2 ratio; 
↓ Mitochondria integrity; 
Inactivated PI3K/Akt signaling pathway; 
↑ ROS accumulation. 

T24 [169] 

↓ Tumor incidence; 
↓ Nº and size of tumors; 
↓ MDA, NF-κB and Bcl-2 expression; 
↑ Nrf2, HO-1 and Bax expression; 
↓ mTOR pathway (↓ mTOR, p70S6K1, and 4E-BP1 phosphorylation). 

Laying hens ovarian cancer model [170] 

↓ Cell viability; 
Inhibited EGFR and AKT activation; 
Altered MAPK pathway (↓ p-p38, ↑ p-ERK1/2); 
↓ IL-6; 
Induced iNOS; 
↓ p-ERα (Ser118) ERβ protein and ERα mRNA levels. 

HuCCA-1 and RMCCA-1 [171] 

Inhibited cell growth; 
↑ Cell apoptosis: ↑ caspase‑3/9 activation; 
Activated miR‑27a expression levels; 
↓ MET protein expression; 

A549 [172] 

↓ CIP2A and E2F1; 
↓ Cell growth and ↑ cell apoptosis; 

MCF-7-C3 and T47D [173] 

↓ Cell proliferation and ↑ cell apoptosis; 
↓ Akt, SGK1 and miR-95 mRNA expression; 
↓ pAkt. 

HCT-116 [174] 

↓ Tumor growth. Mouse xenograft tumor 

Haloperidol Inversely associated with gastric cancer risk. Gastric cancer patients [175] 
↑ Erastin- and sorafenib-induced cell death; 
↑ S1R protein; 
↑ Oxidative stress; 
↑ Cellular levels of Fe2+ (ferroptosis – cell death); 
↑ GSH and lipid peroxidation. 

HepG2 and Huh-7 [176] 
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↓ Cell proliferation; 
↑ Endoplasmic reticulum stress; 
↑ Cell Apoptosis. 

Pancreatic ductal adenocarcinoma samples [177] 

↓ Cell migration; 
↓ Final tumor size and metastasis. 

Mice orthotopic xenograft tumors 

Kaempferol ↓ Cell proliferation and ↑ cell apoptosis; 
↓ DHT-induced androgen receptors activation; 
↓ Downstream targets of androgen receptors (PSA, TMPRSS2, and TMEPA1); 
↓ PSA protein levels; 
↓ Androgen receptor protein expression and nuclear accumulation; 
Suppressed vasculogenic mimicry of PC-3 cells. 

LNCaP and PC-3 [178] 

↓ IQGAP3 expression 
↓ Cell proliferation and ↑ cell apoptosis; 
↓ p-ERK1/2 and Bcl2, and ↑ Bax. 

ZR-75-30 and BT474 [179] 

↓ Cell proliferation; 
Induced cell cycle arrest in G₂/M phases; 
Induced cell apoptosis and DNA damage; 
↑ Expression levels of γH2AX, cleaved caspase -3 and -9, and p-ATM. 

MDA‑MB‑231 [180] 

Induced selective cytotoxicity; 
↓ ΔΨm; 
Mitochondrial swelling; 
Induced cell apoptosis and ROS production; 
 ↑ Release of cytochrome c, ↑ caspase-3 activation. 

DEN- and 2-AAF-induced hepatocellular 
carcinoma in rats 

[181] 

Induced cell cycle arrest in G2/M phase;  
Stimulated the extrinsic apoptosis via death receptors/FADD/Caspase-8 pathway; 
↑ p53. 

A2780/CP70 [182] 

↓ Cell viability; 
↑ SubG1 population; 
↓ Akt, BCL2, ABCB1, and ABCC1 genes; 
↑ Cell apoptosis; 
↑ Caspase-3 protein and mRNA; 
↑ Bax/Bcl-2 ratio; 
Inhibited multidrug resistance. 

HL-60 and NB4 [183] 

↓ Cell migration and invasion; 
↓ RhoA expression and Rac1 activation; 
Blocked PKC/MAPK/activator protein‑1AP‑1 cascade; 
↓ MMPs expression and activity. 

MDA-MB-231 and MDA-MB-453 [184] 

↓ Cell viability 
Inhibited telomerase and PI3K/AKT signaling pathway; 

HeLa [185] 
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Induced cell apoptosis via p53 and Bax/Bcl‑2. 
↑ Cell apoptosis; 
↑ DR4, DR5, CHOP, JNK, ERK1/2, p38; 
↑ Caspase-3, -8, -9 and Bax; 
↓ Bcl-xL, Bcl-2, survivin, XIAP and c-FLIP. 

OVCAR-3 and SKOV-3 [186] 

Promoted DNA methylation; 
↓ DNMT3B levels; 
Promoted Ub proteasome degradation. 

Nude mice bearing bladder cancer [187] 

↓ Cell proliferation and clonal formation; 
Induced cell cycle arrest in G0/G1 phase; 
Inhibited tumor glycolysis; 
↑ Cell apoptosis: ↑ Bax, caspase-3 and ↓ Bcl-2. 

KYSE150 and Eca109 [188] 

Induced morphological changes: smaller nuclei with chromatin condensation and perinuclear 
apoptotic bodies; 
↓ Cell growth; 
↑ Cell apoptosis: ↑ PARP cleavage and ↓ Bcl-2. 

MCF-7 [189] 

↓ Cell viability and ↑ cell apoptosis; 
↑ LDH activity; 
↑ GRP78, GRP94, PERK, IRE1α, partial ATF6 cleavage, caspase‑4, CHOP and cleaved caspase‑3. 

HepG2 [190] 

↓ Bcl-2 and ↑ Bax, Fas, cleaved caspase-3, -8, -9, and PARP; 
↓ pAKT, TIMP2 and MMP2. 

HCCC9810 and QBC939 [191] 

↓ Volume of subcutaneous xenograft. Xenograft model 

↓ Nº and volume of metastasis foci; 
↓ Ki-67-positive cells. 

Lung metastasis model 

↓ Cell viability and ↑ cell apoptosis; 
↓ Migratory activity; 
Inhibited EGFR related Src, ERK1/2, and AKT pathways. 

Miapaca-2, Panc-1, and SNU-213 [192] 

Inhibited TGF‑β1‑induced EMT; 
Inhibited cell migration; 
↑ E-cadherin; 
Suppressed mesenchymal markers; 
↑ TGF-β1-mediated matrix MMP-2 activity. 

A549 [193] 

↓ Cell growth and viability; 
Inhibited DNA repair protein expression; 
↑ DNA damage and condensation; 
↓ Protein expression associated with DNA repair system: p-ATM, p-ATR, 14-3-3σ, DNA-PK, 
MGMT, p53 and MDC1; 
↑ p-p53 and p-H2AX. 

HL-60 [194] 

Luteolin ↓ S100A7 expression by supressing Src/Stat3 signaling; A431-III [195] 
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↓ p-Src, p-Stat3 and p-S100A7; 
↓ Cell migration and invasion; 
↑ E-cadherin and ↓Twist; 
↓ Cell proliferation; 
Induced cell cycle arrest in S and G2/M phases; 
↓ pAkt, p-mTOR, p-p70S6K and p-MAPK;  
↑ Cell apoptosis: ↑ caspase and PARP cleavages, and ↓ Bcl-xL. 

U87 and U251 [118] 

↓ RPS19 expression; 
Blocked Akt/mTOR/c-Myc signaling pathway. 

A431-III [196] 

↓ Cell proliferation, migration, invasion and adhesion; 
Inhibited tube‐forming potential; 
Suppressed EMT (↑ E-cadherin, ↓ N‐cadherin and vimentin); 
↓ p‐Akt, HIF‐1α, VEGF‐A, p‐VEGFR‐2, MMP‐2, and MMP‐9 protein levels. 

A375 and B16‐F10 [197] 

Induced PARP cleavage and nuclear fragmentation; 
↑ Fas and FasL expression; 
↑ Caspases-8 and -3 activation; 
↑ Histone H3 acetylation; 
Activated the c-Jun signaling pathway. 

HL-60 [198] 

↓ Cell viability; 
Induced cell cycle arrest in G0/G1 phases; 
↑ Cell apoptosis: ↑ caspase-8 and ↓ Bcl-2; 
↑ Nº of intracellular autophagosomes; 
Promoted LC3B-I conversion to LC3B-II; 
↑ Beclin 1 expression. 

SMMC-7721 [199] 

↑ Cell apoptosis: ↑ caspase-3 and -9, cytochrome c and Bax/Bcl-2 ratio; 
Suppressed PI3K (↓ p-PI3K, p-AKT and p-mTOR) and MAPK (↓ p-ERK1/2) pathways; 
↑ Dual-specifcity phosphatases 1, 2, 4 and 5 and ↓ chemokine C-X-C motif ligand 16. 

BGC-823 [200
] 

Inhibited STAT6 phosphorylation; 
↓ IL-4 enhanced secretion of CCL2; 
↓ IL-4 enhanced migration of monocytes; 
↓ Migration of Lewis lung carcinoma cells in a CCL2-dependent manner. 

RAW 264.7 [201] 

↓ Cell viability and ↑ cell apoptosis; 
↓ ΔΨm levels; 
↓ SREBP1 and SREBP2 mRNA and SREBP1 protein expression; 
Inhibited PI3K/AKT/mTOR/SREBP cascade. 

JAR and JEG-3 [202] 

↓ Cell proliferation; 
↑ Cell apoptosis (↑ activated caspase-3 and -9, ↓ Bcl-2/Bax ratio); 
↑ pERK, pMEK, pAkt; 
↓ Cell migration and EMT (↑ E-cadherin and ↓ N-cadherin) through MEK-ERK pathway. 

A549 [203] 

↓ Cell proliferation and ↑ cell apoptosis; Hs578T, MDA-MB-231 and MCF-7 [204] 
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Induced cell cycle arrest at S and G2/M phases in Hs578T and MDA-MB-231 cells, and at S phase 
in MCF-7 cells; 
↓ Cyclin B and D1; 
↑ FOXO3a expression through PI3K and PKB/Akt inhibition; 
↑ FOXO3a target genes: p21 and p27; 
↑ Activated PARP and cytochrome c. 
↓ Cell viability, migration and invasion; 
↓ Tube formation; 
Inhibited Notch signalling: ↓ Notch-1, Hes-1, Hey, VEGF, Cyclin D1 and MMP expression; 
Regulated miRNAs associated with tumor suppression: ↑ miR-34a, miR-181a, miR-139-5p, miR-
224 and miR-246 and ↓ miR-155. 

MDA-MB-231 and MCF-7 [205] 

Naringenin Induced cell cycle arrest in G0/G1 and G2/M phase; 
↑ p53; 
↑Cell apoptosis: nuclei damage, ↑ Bax/Bcl-2 ratio, cytochrome C release, ↑ caspase-3 activation. 

HepG2 [206] 

↓ Cell growth and ↑ Cell death.; 
↑ pAMPK; 
↓ Cyclin D1. 

E0771 [207] 

Delayed tumor growth. OVX C57BL/6 mice injected with E0771 
cells 

[208] 

↓ Cell proliferation and migration; 
↑ Cell apoptosis and ROS production; 
↓ ΔΨm and ↑ Bax/Bcl-2 ratio (PC3 cells); 
↓ ERK1/2, P70S6K, S6, and P38 phosphorylation (PC3 cells); 
↓ ERK1/2, P53, P38, and JNK phosphorylation (LNCaP cells); 
↑ pAkt. 

PC3 and LNCaP 

↑ Cell apoptosis; 
↓ Prdx-1 (peroxiredoxin-1) expression; 
↑ ROS levels; 
↑ ASK1 (apoptosis signal-regulation kinase 1), JNK, p38 and p53 expression. 

SNU-213 [209] 

↓ TGF-β1 secretion and intracellular accumulation; 
Inhibited TGF-β1 transport from the trans-Golgi network; 
↓ PKC activity. 

Balb/c mice inoculated with breast 
carcinoma T1-Luc2 cells 

[210] 

↓ Cell proliferation; 
↓ Lipid peroxidation, TNF-α, IL-6 and IL-1β; 
↑ SOD, CAT, GPx, GR, GST; 
↓ CYP1A1, PCNA and NF-κB expression. 

Swiss albino mice (benzo(a)pyrene (B[a]P)-
induced lung carcinogenesis) 

[211] 

Inhibited HER2 (human epidermal growth factor receptor-2)-TK (Tyrosine Kinase) activity; 
↓ Cell proliferation; 

SKBR3 and 
MDA-MB-231 

[212] 
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↑ Cell apoptosis: ↓ ΔΨm, ↑ condensed cromatin, and ↑ activated caspase-3 and -8. 
Inhibited cell growth by arresting cell cycle at S and G2/M phases; 
↑ Cell apoptosis; 
↓ Cdk4, Cdk6, Cdk7, Bcl2, x-IAP and c-IAP-2 expression; 
↑ p18, p19, p21, caspase-3, -7, -8 and -9, Bak, AIF and Bax expression; 
↓ PI3K, pAkt, pIκBα and NFκBp65; 
Enhanced the sensitivity of cancer cells to DNA-acting drugs. 

SW1116 and SW837, HTB26 and HTB132 [213] 

Noscapine 
 

↓ Cell viability; 
↑ Cell apoptosis: ↓ Bcl-xL expression and ↑ caspase-3 activation (dependent of TAS2R14 
expression). 

SKOV3 [214] 

↓ Cell viability (dependent of TAS2R14 expression). Du145 and PC3 

↓ Cell proliferation; 
Enhanced cisplatin effects: 
↓ Cell proliferation and arrest cell cycle at G2/M phase; 
↑ Cell apoptosis (↓ XIAP, survivin and NF-kB, ↑ caspase-3 expression). 

SKOV3/DDP [215] 

Enhanced cisplatin effects: 
↓ Tumor growth; 
↑ Cell apoptosis: ↓ XIAP, survivin and NF-kB, and ↑ caspase-3 expression. 

Nude mice SKOV3/DDP-xenografted tumor 

Papaverine Inhibited RAGE-dependent nuclear factor κ-B activation; 
↓ Cell proliferation, migration and invasion by suppressing RAGE. 

HT1080 [216] 

Parthenolide Inhibited deubiquitinating enzyme ubiquitin-specific peptidase 7; 
Inhibited Wnt signalling, partly by destabilizing β-catenin; 
↓ Cell proliferation and ↑ cell apoptosis. 

HCT116, SW480, SW620, Caco-2 and HT-
29 (colorectal carcinoma) and HEK293T 
cells 

[105] 

Attenuated TGF-β1-induced elongated, fibroblast-like shape changing in cells; 
Inhibited TGF-β1-induced cell migration and invasion; 
↓ β-catenin, Vimentin, Snail, and Slug, and ↑ E-cadherin. 

HT-29 and SW480 [114] 

Attenuated H2O2-induced growth inhibition and morphological changes; 
↓ ROS; 
Protected cells from H2O2-induced apoptosis; 
Suppressed ↓ ΔΨm; 
Restored autophagy flux and mitophagy; 
Inhibited mitochondrial marker protein TIM23 degradation; 
↑ LC3-II expression; 
↓ Mitochondria DNA; 
Prevented H2O2-induced lysosomes damage. 

C2C12 myoblasts [217] 

↓ Cell growth; 
↓ RANKL stimulated osteoclast formation; 
↓ Adhesion and spreading of osteoclast precursors and survival of mature osteoclasts; 

LNCaP, PC3, DU145, Mat-Ly-Lu and RM1-
BT, and C4-2B4 

[218] 
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Inhibit NFκB activation. 
↓ Cell viability and migration, and ↑ cell apoptosis; 
↑ Autophagocytic proteins LC3-II and beclin-1; 
Inhibited mTOR/PI3K/AKT; 
Inhibited the growth of the mouse xenograft tumors. 

MDA-T32 [219] 

Inhibited lung cancer cells 
↓ Proliferation stimulating effect of nicotine; 
↑ Cell apoptosis; 
VEGF-inhibiting effects 
↓ Bcl-2, and ↑ E2F1, P53, GADD45, Bax, BIM, and caspase-3, -7,- 8, -9; 
Activation of P53- dependent apoptosis; 

A549 and H526 [107] 

Prevented tumor formation; 
↓ Severity of histopathological changes; 
Restored detoxification enzymes, lipid peroxidation, and antioxidants 
↓ p53 and Bcl-2, and ↑ Bax. 

DMBA-induced hamster buccal pouch 
carcinogenesis 

[110] 

↑ Cell apoptosis; 
Induced cell cycle arrest in G1 phase; 
↑ Bax, p53, cleaved caspase-3 and -9, and ↓ Bcl-2 and Bcl-xL; 
↓ Cyclin D1; 
↑ Cyclin-dependent kinase inhibitor 1 expression; 
Inhibited STAT3 activation; 
↓ Cell migration and invasion. 

SGC-7901/DDP [111] 

Suppressed Elongation factor1-α and vimentin. MCF7 [220] 
↓ Nrf2 expression; 
↓ CAT, MnSOD, HSP70 and Bcl-2 levels; 
↑ ROS; 
Chemoresistance prevention. 

MDA-MB231  [106] 

Inhibited HIF‑1α activity; 
↓ Angiogenesis by preventing NF-κB activation; 
↓ Protein levels associated with glucose metabolism, angiogenesis, development and survival that 
are regulated by HIF‑1α; 
Protected the morphological change from EMT state; 
Inhibited MMP activity; 
↓ Cell motility involved in the regulation of the hypoxia-induced EMT markers; 

HT-29, DLD-1 and HCT116 
 
 
 

[108] 

↓ CRC xenograft growth; 
Regulated NF‑κB, HIF‑1α and EMT specific marker. 

Nude mouse tumor xenograft model 

↓ Cell viability and ↑ cell apoptosis; 
↓ Cell proliferation and invasion; 
Suppressed cell response via targeting on B-Raf and inhibiting MAPK/Erk pathway; 
↓ Protein and mRNA expression of c-Myc; 

GLC-82 [221] 
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Inhibited STAT3 activity. 
↓ Cell proliferation and ↑ cell apoptosis; 
Prevented cell migration and invasion; 
Suppressed migration/invasion-related protein expression: E-cadherin, β-catenin, vimentin, 
Snail, COX-2, MMP-2, MMP-9;  
↓ Bcl-2 and Bcl-xL and ↑ activated caspase-3. 

SW620 [109] 

↓ Cell growth and ↑ cell apoptosis; 
↑ Autophagy; 
↑ p62/SQSTM1, Beclin 1, and LC3II. 

Panc-1 and BxPC3 [109] 

Mitochondrial-mediated apoptosis and autophagy; 
↑ Caspase-3 activation, Bax, Beclin-1, ATG5 and ATG3; 
↓ Bcl-2 and mTOR; 
Inhibited PI3K and Akt; 
Activated PTEN; 
↑ ROS production and ↓ ΔΨm. 

HeLa [112] 

↑ Autophagy and mitophagy; 
↑ PINK1 and Parkin translocation to mitochondria; 
↑ Autophagy proteins; 
↑ ROS. 

Saos-2 and MG-63 [222] 

↑ Cytotoxicity; 
Nuclear disruption and DNA fragmentation; 
↑ Cell apoptosis; 
Induced cell cycle arrest; 

A375 [223] 

Attenuated ubiquitinated Nemo. 
↑ IκB-α expression;  
↓ p65 levels in nucleus; 
↓ NF-κB activity; 
↓ Cell proliferation and ↑ cell apoptosis; 
Induced cell cycle arrest; 
↓ Levels of ubiquitinated TRAF6 and total proteins. 

RPMI 8226 [113] 

↑ Cell apoptosis: ↑ nuclear fragmentation, caspase- 3, -8 and PARP cleavage, Bim; 
Induced cytosolic Bim translocation into the mitochondria; 
Induction of DR5 protein expression. 

MC-3 and HN22 
 

[224] 

Tumor size and volume shrinking; 
↑ Cell apoptosis by increasing Bim and death receptor 5. 

Nude mouse tumor xenografts 

Procyanidin 
trimer  
(C1 and C2) 

↓ Cell viability and ↑ cell apoptosis; 
↑ DNA damage and cell cycle arrest; 
↑ Bax, caspase-3 and -9, and ↓ Bcl-2. 

MDA-MB-231 and MCF-7  [225] 



Characterization of bitter taste receptors expression and function in the human blood-cerebrospinal fluid barrier 
 

 

Ana Catarina Duarte 

 
84 

↓ Cell viability. Caco-2, HCT15, HT29, HCT116, SW480 
and LoVo 

[226] 

Anticancer efficacy by inducing G1 arrest and autophagy; 
↓ Akt/mammalian target of the (mTOR) pathway; 
↑ ERK1/2 pathway. 

A459 and H460 [227] 

Quercetin ↓ Tumor incidence and volume; 
Suppressed DNA damage and induced DNA repair; 
↓ ROS levels; 
↓ Lipid and protein peroxidation (↓ MDA and protein carbonyl); 
↑ CAT, SOD, GPx, GR, and GST expression and activity; 
↑ NQO-1 and HO-1 expression. 
Modulated NRF2/Keap1 signaling (↑ NRF2 and ↓ Keap1). 

Wistar Han colorectal cancer model 
(dimethylhydrazine-induced) 

[228] 

↓ Cell proliferation, migration and invasion by ↓ MALAT1; 
↑ Cell apoptosis: ↑ Bax/Bcl-2. 

PC-3 [229] 

Inhibited tumor growth, EMT process and PI3K/Akt signaling pathway via ↓ MALAT1: 
↓ Tumor weight and volume; 
↓ Ki67 expression; 
↑ E-cadherin and ↓ N-cadherin; 
↓ pAkt. 

PC-3 xenograft mice model 

↓ Cell viability; 
↑ Cell apoptosis: ↓ Bcl-2 and Bcl-xL, ↑ caspase-3, -9, Bid, Bad, Bax and cytochrome c. 

PA-1 [230] 

↓ S100A7 expression through Src/Stat3 signaling; 
↓ p-Src, p-Stat3 and p-S100A7; 
↓ Cell migration and invasion; 
↑ E-cadherin and ↓Twist; 

A431-III [195] 

Enhanced sodium butyrate effects: 
Inhibited autophagy and ↓ Beclin-1 and LC3B II expression; 
↑ Cell apoptosis: morphological alterations (membrane blebbing, nuclear fragmentation and 
chromatin condensation), ↓ Bcl-2, survivin, PARP and ↑ Bax and caspase-3. 

Rat C6 and human T98G [119] 

↓ Cell viability and proliferation; 
↑ Cell apoptosis: chromatin condensation, ↑ Bax, pJNK, p-p38 and pERK1/2, cleaved PARP and ↓ 
Bcl-2. 

A375SM [231] 

↓ Tumor volume; 
↑ Apoptosis; 
↑ pJNK and p-p38. 

A375SM melanoma tumor xenograft 

Enhanced cisplatin effects: 
↑ Cell apoptosis by down-regulating NF-κB; 
↓ pAkt and pIKKβ, NF-κB and xIAP. 
↓ PARP and ↑ Caspase-8 and -9 activation. 

Tca-8113 and SCC-15 [232] 



Characterization of bitter taste receptors expression and function in the human blood-cerebrospinal fluid barrier 
 

 

Ana Catarina Duarte 

 

85 

Enhanced cisplatin effects: 
↓ Tumor weight and growth. 

Tca-8113 xenograft mice model 

↓ Cell viability; 
↓ Cell adhesion, invasion and migration; 
↓ MMP-2 and -9, ↑ and -2; 
↓ PTHR1 mRNA expression. 

U2OS and Saos-2 [233] 

↓ Cell proliferation and stem cells spheroid formation; 
Inhibited PI3K/Akt and MAPK/ERK pathways. 

Prostate CSCs, PC3 and LNCap [234] 

↓ Cell proliferation and ↑ cell apoptosis; 
Induced cell cycle arrest at G1 phase; 
Inhibited CSCs proliferation, clone formation, and mammosphere generation through 
PI3K/Akt/mTOR signaling; 
↓ m-TOR, p-m-TOR, PI3K, p-PI3K, Akt, p-Akt, ERα, CyclinD1 and Bcl-2 and ↑ Bax. 

MCF-7 and breast cancer stem cells 
(CD44+/CD24−) 

[235] 

Inhibited tumor growth and metastatic ability of CSCs. CD44+/CD24− CSCs xenograft mice model 
↓ IL-18 secretion; 
↓ AIM2 and pro-caspase-1 expression; 
↓ p-JAK2 and p-STAT1; 
Inhibited nuclear translocation of p-STAT1. 

IFN-ꝩ-primed human keratinocytes treated 
with poly (dA:dT) 

[236] 

↓ Cell proliferation, migration and invasion; 
↓ MMP-2, MMP-9 and VEGF expression; 
Inhibited glycolysis, ↓ glucose uptake and lactic acid production; 
Induced autophagy via Akt-mTOR. 

MCF-7 and MDA-MB-231 [237] 

↓ Tumor growth and metastasis; 
↓ VEGF; 
Inhibited glycolysis; 
Induced autophagy by inhibiting p-Akt/Akt. 

MCF-7 xenograft mice model 

↓ RPS19 expression; 
Blocked Akt/mTOR/c-Myc signaling pathway. 

A431-III [196] 

↓ Cell proliferation; 
Induced cell cycle arrest at G0/G1 phase; 
↓ CDK2 and CDK4, ↑ p16 and p21 expression; 
↑ Cell apoptosis: condensed cromatin and nuclear fragmentation, ↑ PARP cleavage, caspase-3 and 
-9; 
Induced autophagy: ↑ light chain 3-II, ↓ p62 expression and ↑ acidic vesicular organelles. 

HL-60 [238] 

↓ Tumor volume; 
↑ Cell apoptosis: ↑ PARP cleavage. 

HL-60 xenograft mice model 

↓ Cell proliferation; 
Alleviated side effects of chemotherapeutic drug SN-38 through GSK-3β/β-catenin signaling. 

AGS [239] 

Enhanced irinotecan chemotherapeutic effects: 
↓ Tumor size; 

AGS xenograft mice model 
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Inhibited angiogenesis: ↓ VEGF-R2 and VEGF-A in tumor tissue; 
↓ % of Tie2-expressing monocytes; 
↓ COX-2 and restored E-cadherin expression; 
↓ Twist and integrin β6 expression. 
↓ Cell migration and invasion; 
↓ HIF-1α, VEGF, MMP2, and MMP9 mRNA and protein expression levels (HOS cells). 

HOS and MG63 [240] 

↓ Metastatic lung tumor formation and growth. HOS-osteosarcoma lung metastasis mice 
model 

 
[241] 

Inhibited cell proliferation, migration and invasion; 
↑ Cell apoptosis; 
Inhibited angiogenesis: ↓ VEGF-R. 

Y79 

↓ Cell proliferation, migration and invasion; 
Inhibited EMT: ↑ E-cadherin, ↓ N-cadherin, Vimentin, Zeb1, Twist, Slug, and Snail; 
↓ MMP-2 and -7 secretion; 
↓ p-STAT3; 
Reversed IL-6-induced EMT, invasion, and migration. 

PANC-1 and PATU-8988 [242] 

↓ Cell proliferation and clonogenic survival; 
Induced cell cycle arrest at G0/G1 phase; 
↑ Cell apoptosis: ↑ PARP cleavage, caspase-3 and -8; 
↓ pJAK1, pSTAT3, VEGF expression and STAT3-dependent luciferase reporter gene activity; 
Inhibited MMP-9 secretion and ↓ nuclear translocation of STAT3. 

HER2-overexpressing BT-474 [243] 

Induced cell toxicity. CEM, K562, Nalm6, T47D and EAC [244] 
Induced cell cycle arrest at S phase; 
↑ Cell apoptosis: ↑ p53, p-p53, MCL1 cleavage, ↓ Bcl-2 and BCL-xL, and ↑ BAX, caspase-3, -9 and 
PARP cleavage. 

Nalm6 

↓ Tumor volume and ↑ mice lifespan; 
↓ Cell proliferation: ↓ Ki-67 positive cells; 
↑ Cell apoptosis: ↑ p53 and p-p53. 

EAC xenograft mice model 

↓ Cell viability; 
↑ Cell apoptosis: morphological changes, ↑ Annexin V-positive cells; 

CT26 and MC38 [245] 

↑ Cell apoptosis via MAPK pathway; 
↑ Caspase-3, -9 and PARP cleavage, ↓ Bcl-2 and Bcl-xL; ↑ pERK, pJNK and p-p38; 
↓ Cell migration and invasion: ↓ MMP2 and MMP9 activity and ↑ TIMP-1 and TIMP-2 mRNA; 
↑ E-cadherin and ↓ N-cadherin, β-catenin and Snail expression. 

CT26 

Anti-metastatic effect: ↓ number of tumor nodules and lung weight. CT26-colorectal lung metastasis mice model 
↓ Cell proliferation and ↑ cell apoptosis; 
Induced cell cycle arrest at sub-G1 phase; 
↑ ROS levels and ↓ ΔΨm; 
↓ pAkt, p-P70S6K and pS6, ↑p-p38, p-JNK, p-ERK1/2, and p-P90RSK; 
Enhanced anti-proliferative effects of cisplatin and paclitaxel. 

JAR and JEG3 [246] 
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↓ Cell proliferation and migration and ↑ cell apoptosis; 
Induced cell cycle arrest at G2/M phase; 
Inhibition of Akt/mTOR pathway: ↓ pAkt, p-P70S6K and 4E-BP1, ↑ MAPK activity; 

MDA-MB-231 and MDA-MB-435 [247] 

↓ Tumor growth. GFP-MDA-MB-231 xenograft mice model 

↑ CB1-R expression; 
↓ Cell proliferation and migration, and ↑ cell apoptosis via CB1-R; 
Induced cell cycle arrest at S phase; 
Inhibited PI3K/Akt/mTOR pathway: ↓ GSK3β, PI3K, Akt, S6, 4EBP1, and STAT3 
phosphorylation; 
↑ β-catenin and induced JNK/JUN pathway. 

Caco2 and DLD-1 [248] 

↓ Cell proliferation and ↑ cell apoptosis; 
Induced cell cycle arrest at G1 phase; 
↓ Cyclin D1, p21, Twist and p-p38MAPK expression. 

MCF-7 [249] 

↑ Cell apoptosis: ↑ caspase-3, -8, -9 activation, PARP cleavage, Bax, Bak and cytochrome C release, 
and ↓ Bcl-xL; 
Induced cell cycle arrest at G0/G1 phase; 
↑ ROS levels and ↓ ΔΨm; 
↑ pERK. 

HL-60 [250] 

↓ Tumor volume; 
↑ ROS levels; 
↓ Cell proliferation: ↓ Ki67 positive cells; 
↑ Cell apoptosis: ↑ PARP and caspase-3 cleavage; 
↑ pERK. 

HL-60 xenograft mice model 

Resveratrol Inhibited neoplastic transformation; 
↑ Mitochondrial content; 
↑ Citrate synthase; 
↑ SIRT1 enzyme activity; 
Prevented ↓ ΔΨm, ATP levels and ↑ mitochondrial superoxide generation and ROS. 

Bhas42 (benzo[a]pyrene-induced 
bioenergetic dysfunction) 

[251] 

↓ Cell viability and proliferation; 
Induced TRAF6 lysosomal degradation; 
Inhibited NF-κB pathway; 
Suppressed EMT: ↑ E-cadherin and ↓ vimentin and slug. 

DU145 and PC3 [252] 

Modulated epigenetic factors; 
↑ BRCA1, p53 and p21 expression; 
↓ Methyltransferases PRMT5 and EZH2 expression; 
↓ KDAC activity and KDAC1, 2 and 3 expression; 
↑ KAT2A and KAT3B expression; 
↑ Activating histone marks: H3K9ac and H3K27ac and ↓ repressive histone marks: H4R3me2s and 
H3K27me3. 

MCF-7 and MDA-MB-231 [253] 



Characterization of bitter taste receptors expression and function in the human blood-cerebrospinal fluid barrier 
 

 

Ana Catarina Duarte 

 
88 

Induced premature senescence; 
↑ p21 and p53; 
↑ Rad9; 
↓ Cell proliferation, migration and invasion; 
Supressed EMT: ↑ E-cadherin and γ-catenin, ↓ N-cadherin and vimentin; 
↓ Slug. 

MCF-7 and A549 [254] 

↓ Cell proliferation and colony formation; 
↓ EZH2 expression by inhibiting ERK1/2 pathway. 

MCF-7 and T47D [255] 

Inhibited cell growth under hypoxic conditions; 
Cell cycle arrest at G0/G1 phase; 
Prevented HIF-1α stabilization; 
↓ Glucose uptake. 

PC-3 [256] 

↓ Cell viability and induces cell apoptosis; 
↑ ATP2A3 expression; 
↓ HDAC activity and HDAC2 expression; 
↑ Histone H3 acetylation and histone mark H3K27Ac enrichment; 
↑ HAT activity; 
↓ DNMT activity; 
↓ Methyl-CpG binding proteins (MeCP2 and MBD2). 

MCF-7 and MDA-MB-231 [257] 

↓ Cell viability; 
↑ SET7/9 expression; 
↑ p53, cell apoptosis (↑ cleaved caspase-3 and PARP) via SET7/9. 

HCT116, CO115 and SW48 [258] 

↓ Cell migration; 
Reversed TGF-β1 induced EMT through PI3K/Akt and Smad signaling:  
↓ MMP-2 and -9, Fibronectin, α-SMA, p-PI3K, p-AKT, Smad2, Smad3, p-Smad2, p-Smad3, 
vimentin, Snail1, and Slug and ↑ E-cadherin. 

MDA231 [259] 

↓ Tumor weight and growth; 
↓ Lung metastasis. 

MDA231 xenograft mice model 

Reversed TGF-β1 induced EMT via Smad signaling: 
↑ E-cadherin and ↓ N-cadherin, vimentin, β-catenin, Twistl1, Snail and Slug; 
↓ Cell migration and invasion; 
↓ MMP-2 and -9; 
Suppressed stem cell-like properties: ↓ Bmi1 and Sox2; 
↓ pSmad 2 and 3. 

LN18 and U87 [120] 

Reversed TGF-β1 induced EMT: ↓ N-cadherin, Vimentin, and pSmad2 and 3. U87 xenograft mice model 

↓ Cell proliferation; 
Induced cell cycle arrest at S phase; 
↑ Cell apoptosis; 
Induced changes in cell cycle related genes. 

4T1 [260] 

Induced chemosensitivity; MCF‐7‐ADR [261] 
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↓ Cell viability and ↑ cell apoptosis; 
↑ miR‐122‐5p and ↓ miR‐542‐3p; 
↓ Bcl‐2, CDK2, CDK4 and CDK6 levels; 
Induced cell cycle arrest at G1 phase. 
↓ Neuroglobin levels by impairing E2/ERα pathway; 
↓ pAkt; 
Enhanced paclitaxel apoptotic effects (↑ PARP-1 cleavage). 

MCF‐7 and T47D [262] 

↓ Cell growth and colony formation; 
↑ ROS; 
↓ NAF-1 expression through Nrf2 pathways: ↑ Nrf2 expression and Nrf2 nuclear translocation; 
↑ Cell apoptosis: ↑ Bax and ↓ Bcl-2; 
Enhanced gemcitabine effects: ↑ cell apoptosis and ↓ cell growth by inhibiting NAF-1. 

Panc-1 and Mia paca-2 [263] 

Enhanced 5-flurouracil effects: 
↓ Cell growth and proliferation and ↑ cell apoptosis;  
Induced cell cycle arrest at S phase; 
Supressed EMT: ↓ vimentin and Slug; 
↓ Cell stemness (↓ CD51); 
Inhibited Akt and STAT3 activation; 
↑ Anti-telomerase activity by inhibiting STAT3 binding to hTERT. 

DLD1 and HCT116 [264] 

↓ Cell proliferation and ↑ cell apoptosis; 
Inhibited Wnt signaling pathway: ↓ β-catenin, c-myc and cyclin D1 expression. 

MGC-803 [265] 

↓ Cell proliferation; 
↑ Cell apoptosis: ↓ ΔΨm, ↑ Bax/Bcl-2 ratio, Fas, Fas-L cleaved caspase-3 and -8; 
Induced autophagy: ↑ microtubule-associated protein 1 light chain 3-II levels, nº of 
autophagosomes and Atg5, Beclin-1 and P62 expression; 
Inhibited PI3-Akt and activated LKB1-AMPKmTOR pathway. 

HL-60 [266] 

↑ ZFP36 expression and target genes (CCND1, MYC and VEGFA); 
↓ DNMT1 and ↑ ZFP36 promoter demethylation; 
↓ Cell proliferation and migration. 

A549 [267] 

Enhanced rapamycin effects: 
↓ Cell viability by inhibiting mTORC1 and mTORC2 signaling pathways; 
↓ Cyclin D1 and pRb levels; 
↑ Activated caspase-3 and PARP. 

MM1.S [268] 

↑ DUSP1 expression; 
Inhibited NF-κB pathway; 
↓ COX-2; 
Sensitizes cells to cisplatin pro-apoptotic effects. 

DU145 and PC3 [269] 

↓ Cell proliferation, migration and invasion; 
↓ Cyclin D1, c-Myc, MMP-2 and MMP-9; 
↓ Sox2, Bmi-1, pAkt and pSTAT3. 

MDA-MB-231, MCF-7-CAF-CM [270] 
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Suppressed stemness properties and ↓ self-renewal signaling molecules expression. 
↓ Cell stemness and self-renewal ability; 
↓ Sox2, Bmi-1, pAkt and pSTAT3. 
↓ CD44high/CD24low cell population; 

MCF-7 – CAF-CM 

Sensitized cells to gemcitabine; 
Inhibited lipid synthesis (↓ FASN and SREBP1); 
Rescued stemness induced by gemcitabine by inhibiting SREBP1. 

MiaPaCa-2 and PC-1 [271] 

↓ Cell viability; 
Induced cell cycle arrest at S phase; 
↑ Cell apoptosis: ↑ Bax, cleaved caspase-3 and -8, and ↓ Bcl-2; 
Suppressed NF-κB signaling (↓ p65). 

SGC-7901 [272] 

↓ Cell proliferation; 
Inhibited H2O2 induced cell activation, invasion, migration and glycolysis; 
↓ miR-21 and ↑ PTEN. 

Human pancreatic stellate cells and Panc-1 [273] 

Enhanced TMZ effects: 
↓ Cell proliferation and growth; 
↑ Cell apoptosis: ↑ Cleaved caspase-3 and Bax, and ↓ XIAP and Bcl-2; 
Inhibited Wnt signaling pathway: ↓ Wnt2, MGMT and β‐catenin, ↑ GSK‐3β. 

T98G and U138 [274] 

Enhanced TMZ effects: 
↓ Tumor volume and growth; 
Inhibited Wnt signaling pathway: ↓ Wnt2, MGMT and β‐catenin, ↑ GSK‐3β; 
↑ Cell apoptosis. 

T98G xenograft mice model 

↓ Cell proliferation; 
Induced cell apoptosis: ↑ caspase-3 and -9, Bax, p53 and ↓ Bcl-2, Bcl-xL; 
↓ Cyclin B1. 

HeLa [275] 

Inhibited norepinephrine cell invasion and EMT induction: ↑ E-cadherin expression, ↓ Slug; 
↓ hTERT by ↓ pSrc and HIF-1α. 

SKOV-3 and PA-1  [276] 

Arrested cell cycle at G0/G1 phase; 
↓ p-GSK3β, cyclin D1, p-PTEN, p-PI3K and p-PKB/Akt. 

MGC803 [277] 

↓ POK erythroid ontogenic factor the expression and activity. U87MG, T98G and U251 [278] 

↓ Cell proliferation, migration and invasion TGF-β-induced; 
↑ E-cadherin, ↓ vimentin, MMP-2, MMP-9, Slug and Snail expression; 
Inhibited TGF-β1/Smads signaling pathway activation. 

LoVo [279] 

Inhibited metastatic ability: ↓ nº of lung metastasis. GFP-LoVo xenograft mice model 

↓ Tumor weight; 
Inhibited invasive ability: ↓ nº of metastatic lesions in lung and liver. 

LoVo-orthotopic transplantation tumor 

↓ ABCB1 mRNA and protein expression via AMPK activation; 
↓ ABCB1 efflux activity; 
↓ pIkBα and NF-kB activity. 

HCT116/L-oxaliplatin [280] 

↑ Cell apoptosis: ↑ PARP-1 cleavage, chromatin condensation and p53 activation; HCT-116 [281] 
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Activated Ataxia Telangiectasia Mutated kinase. 
↓ Cell proliferation; 
Enhanced 5-Fluorouracil effects by ↓ cell invasion; 
↑ Claudin-2 and E-cadherin, ↓ vimentin and Slug; 
↓ NF-kB nuclear translocation and activation, and ↓ MMP-9 and caspase-3; 
 Inhibited pIkBα and degradation. 

HCT116, SW480 [282] 

Improved cytotoxic effects of herceptin: 
↓ Bcl-xL expression; 
↓ HER-2 receptor (T47D cells). 

MCF-7 and T47D [283] 

↓ Glucose uptake; 
↑ Cell apoptosis; 
Inhibited plasma membrane GLUT1 localization by inhibiting Akt activity. 

PA-1, OVCAR3, MDAH2774 and SKOV3 [284] 

Suppressed EMT: ↑ E-cadherin, ↓ Gli‑1, Snail and N‑cadherin; 
Inhibited hedgehog signaling pathway; 
↓ Cell proliferation, migration and invasion. 

SGC‑7901 [285] 

↑ Cell apoptosis; 
↑ H2AX phosphorylation by regulating MAPK activity; 
Induced JNK and p38, and blocked ERK. 

K562 [286] 

↓ Cell proliferation; 
↑ Cell apoptosis: ↑ cytochrome c release and Bax, ↓ ΔΨm and Bcl-2; 
Enhanced anti-tumor effects of cisplatin: ↓ cell proliferation, ↑ cell apoptosis. 

H838 and H520 [287] 

Enhanced erlotinib effects: ↑ cell viability, colony formation and ↑ cell apoptosis. 
↑ ROS; 
↓ Survivin and Mcl-1; 
↑ p53, PUMA, γH2AX, activated PARP and caspase-3; 
Suppressed AKT/mTOR/S6 kinase pathway. 

H460, A549, PC-9 and H1975 [288] 

Combined with rapamycin: 
Prevented Akt upregulation and autophagy; 
Inhibited mTORC1 signaling; 
Inhibited cell growth and induced cell apoptosis (↓ survivin expression, ↑ PARP cleavage). 

MCF7 and MDAMB-231 [289] 
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2.4. Bitter compounds modulate ABC transporters 

expression and activity 

Membrane cell transport and detoxification systems play critical roles in CNS 

homeostasis. For this reason, altered expression of ABC transporters has also been linked 

with brain diseases. Besides, a variety of ABC family members are expressed in the BBB, 

BCSFB and BTB resulting in the efflux of several compounds out of the brain, including 

chemotherapeutic drugs and other therapies for neurological diseases. The most studied 

ABC transporters are: ABCB1 (ATP-binding cassette subfamily B member 1), ABCC 

family members or multidrug-associated proteins (MPRs) and ABCG2 (ATP-binding 

cassette subfamily G member 2) [290]. In the last years, a large number of studies 

demonstrated that several bitter compounds, such as flavonoids, interact with ABC 

transporters (reviewed in [291]). In some cases, these compounds are substrates of one 

or more ABC transporter which limit their cellular uptake and the therapeutic effect. In 

addition, some bitter compounds can also act as inhibitors of ABC transporters which 

might contribute to increase brain drug bioavailability or even their bioavailability [291]. 

In this section, we present the current knowledge about the interaction of some bitter 

compounds, flavonoids and non-flavonoids, with ABC transporters. 

Flavonoids present an outstanding potential for CNS disorders treatment, but their low 

bioavailability can limit their health beneficial effects. Therefore, it is essential to 

understand their bioavailability in the CNS and the mechanisms involved in their 

transport across biological barriers. Thus, most studies concerning flavonoids transport 

focus on the role of specific ABC transporters using in vitro models of the intestine, liver 

and kidney, due to the relevance of these for drug absorption, metabolism and excretion 

or elimination, respectively. Additionally, studies in cancer cell lines have been carried 

out elucidating the role of flavonoids on ABC transporters expression and function. 

In MGC-803 cells, genistein downregulated ABCC1, ABCC5 and ABCG2 expression 

[292], while in HepG2 upregulated ABCB1 and ABCC2 [293]. In MCF-7 cells genistein 

induced ABCC1 and ABCG2 expression, but only ABCC1 in MDA-MB-231 cells. 

Moreover, MCF-7 cells showed an increase in doxorubicin and mitoxantrone efflux and 

resistance, dependent on ABCG2 activity [294]. After 3-days genistein administration in 

Wistar Han rats, hepatic ABCB1 expression increased as well as the biliary excretion of 

rhodamine-123 and digoxin, both well-known ABCB1 substrates [295]. Yang et al 

described that the permeability of several flavonoids in a BBB rat model: genistein 

presented the highest apparent permeability level and quercetin the lowest [296]. 

Interestingly, verapamil, an ABCB1 inhibitor, increased quercetin flux across this barrier, 
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indicating that quercetin is a substrate of ABCB1 in rat brain endothelial cells. In Caco-2 

cells, liquiritigenin upregulated ABCB1, ABCC2 and ABCG2 expression. In addition, the 

efflux of rhodamine 123 was enhanced in these cells indicating that liquiritigenin also 

increased ABCB1 activity [297]. Moreover, ABCC4 and ABCG2 might play an important 

role in the disposal and elimination of liquiritigenin metabolites after sulfonation [298]. 

Unlikely many compounds, noscapine is able to cross the BBB [299]. A recent study 

demonstrated that noscapine and some derivates increased Calcein AM accumulation in 

NCI/AdrRES cells by directly interacting with ABCB1, inhibiting its function [300]. 

Quercetin has been widely related with ABC transporters acting as inhibitor, substrate 

or both (reviewed in [291]). Importantly, quercetin downregulated and inhibited ABCG2 

function, in an in vitro rat BCSFB model, Z310 cells, increasing Hoechst 33342 cellular 

accumulation [301]. Moreover, the quercetin inhibitory effect was even greater than the 

Ko143 result, a specific ABCG2 inhibitor. Another study about the effects of quercetin on 

ABCG2 in two porcine BBB in vitro models [302], revealed that quercetin induced 

ABCG2 expression in PBMEC/C1-2 and primary brain microvascular endothelial cells, 

decreasing Hoechst 33342 accumulation. Therefore, ABCG2 modulation by quercetin is 

tissue/cell dependent. Furthermore, it is important to notice that ABCG2 localizes in the 

apical and luminal sides of the BCSFB and BBB, respectively [303, 304], meaning that 

in the BCSFB, ABCG2 faces the CSF, while in the BBB, ABCG2 faces the bloodstream. 

Therefore, in the BBB this transporter seems to limit the access of molecules to the brain, 

but in the BCSFB it might contribute for the entrance of molecules in the CNS after cell 

uptake. Despite the relevant data regarding quercetin effects on ABCG2 expression and 

function at the brain barriers, the transport of quercetin across these has not been 

explored, yet. Previous studies showed that kaempferol is both an ABCG2 substrate and 

inhibitor, and an ABCB1 substrate [305]. In MDCK/ABCG2 cells, kaempferol inhibited 

quercetin efflux by ABCG2, increasing quercetin transport from apical to basolateral side 

[305]. Therefore, kaempferol and quercetin co-administration might improve quercetin 

bioavailability. Additionally, bidirectional transport assays with kaempferol showed that 

its transport in MDCK/ABCG2 cells predominantly occurs from the apical to the 

basolateral side. Moreover, in the presence of GF120918, an ABCG2 inhibitor, 

kaempferol cell accumulation increased showing that it is also a substrate of ABCG2. 

Conversely, kaempferol is not a substrate of ABCC2 in MDCK/ABCC2 cells. In MCF-

7/ADR cells kaempferol intracellular levels increased in the presence of an ABCB1 

inhibitor, thus showing that it is a substrate of this transporter [305].  

Despite the individual ability of flavonoids to interact with ABC transporters, some 

reports indicate that a combined administration of flavonoids can enhance their 
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bioavailability [306, 307]. In Caco-2 cells, combination of quercetin and apigenin, but 

not naringenin, increased the permeability of cells to these compounds and decreased 

their extracellular concentration probably by reducing their metabolism or increasing 

cellular uptake. Moreover, quercetin and apigenin acted synergistically to downregulate 

ABCB1, ABCC2, ABCC3 and ABCG2 and to inhibit ABCB1 ATPase activity [307]. 

Blackberry extract, containing epicatechin, kaempferol and quercetin metabolites among 

other phenolic compounds, altered transport and metabolizing systems in Caco-2 cells 

[306]. Pre-treatment of Caco-2 cells monolayers with blackberry extracts decreased 

apical to basolateral transport of epicatechin, quercetin-3-O-glucoside and kaempferol-

7-O-glucoside. Moreover, blackberry extracts modulated gene expression of Phase II 

metabolizing enzymes and ABC and SLC (Solute carrier family) transporters which 

might explain the changes observed in flavonoids transport. Gene expression of SLC7A9, 

SLC28A1, SLC38A5 decreased and SLC7A11 increased in the apical side, while ABCA1, 

ABCC5 and SLC7A8 decreased in the basolateral side of Caco-2 cells. 

Resveratrol is one of the most studied phytochemicals showing to have neuroprotective 

and anti-tumoral properties. However, resveratrol presents low bioavailability in 

targeted cell/tissues which limits its application on CNS therapeutics. Given the potential 

of resveratrol, its interaction with ABC transporters has been analysed. Resveratrol is 

transported by ABCC2 and ABCG2 in the intestine [308–310] and in the kidney [311]. 

Moreover, resveratrol is a substrate of ABCG2 [312] and modulates ABC transporters 

expression and function [313] in a tissue-dependent way. In rat kidney, resveratrol 

upregulated ABCG2 [311], but in Caco-2 cells downregulated ABCB1, ABCC1, ABCG2 

[314] and ABCC2 [303, 315]. Regarding the bioavailability of resveratrol in the CNS, 

some reports indicate that resveratrol must cross brain barriers since it is detectable at 

low levels in rodents [316] and human [317] brains after systemic administration.  

 

2.5. Bitter compounds are chemosensitizers  

Some bitter compounds can modulate ABC transporters function which are often 

responsible for the drug resistance observed in CNS diseases, including brain cancer. 

Therefore, many studies have been focused on exploring if these compounds can 

overcome pharmacoresistance or sensitize cancer cells to chemotherapeutic drugs 

(reviewed in [318]).  

Recently, the ability of various flavonoids to overcome ABCB1-mediated 

pharmacoresistance to antiepileptic drugs was tested in MDCK/ABCB1 cells [319]. 

Among others, quercetin, kaempferol and epigallocatechin gallate increased rhodamine 

123 cellular accumulation probably by inhibiting ABCB1 function, while apigenin, 
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epicatechin and fisetin induced ABCB1 activity. Moreover, the flavonoids that inhibited 

ABCB1 also promoted the cellular accumulation of certain antiepileptic drugs such as 

phenytoin, carbamazepine and licarbazepine and their active metabolites in 

MDCK/ABCB1 cells. Therefore, coadministration of these flavonoids with already used 

antiepileptic drugs can be a novel approach to improve the therapy of epilepsy. In 

MDCK/ABCG2 cells, quercetin and kaempferol inhibited the chemotherapeutic 

desatinib efflux by ABCG2 resulting in increased cellular accumulation of desatinib 

[320]. However, no effects were observed in ABCB1 function. In doxorubicin resistant 

human breast cancer MCF‐7 cells, quercetin enhanced the antitumor activities of 

doxorubicin, paclitaxel, and vincristine by inducing cell apoptosis or arresting cell cycle 

at G2/M phase. Moreover, quercetin alone or in combination to each chemotherapeutic 

drug downregulated ABCB1 expression. In accordance, quercetin increased doxorubicin 

accumulation in cells [321]. Further studies showed that quercetin enhanced apoptotic 

effects of doxorubicin and not only decreased ABCB1 expression but also downregulated 

ABCC1 and ABCG2 in breast cancer cells (MCF-7 and MDA-231 cells) [321]. Conversely, 

these effects were not observed in non-tumoral MCF-10A mammary cells and myocardial 

AC16 cells. Similarly, in multidrug resistant cell line BEL/5-FU, a human hepatocellular 

carcinoma model, quercetin sensitize cells to chemotherapeutic drugs 5-FU, mitomycin 

C and doxorubicin and downregulated ABCB1, ABCC1 and ABCC2 expression. The efflux 

pump activity of these transporters was inhibited as demonstrated by the increase of 

rhodamine-123 and doxorubicin intracellular accumulation after quercetin exposure. In 

addition, Chen and colleagues showed that ABCB1, ABCC1 and ABCC2 inhibition by 

quercetin was dependent on the FZD7 through the Wnt/β-catenin pathway [322]. 

Resveratrol can also sensitize cancer cells to chemotherapeutic drugs such as paclitaxel 

[262], gemcitabine [263, 271], 5-flurouracil [264, 282], rapamycin [268, 289], cisplatin 

[269], and temozolomide [274]. 

Considering these findings, the use of some bitter compounds as co-adjuvant therapy 

might contribute for improving the outcome of current therapies either by promoting 

drug accumulation on target cells, or by enhancing the therapeutic action of conventional 

drugs. 

2.6. TAS2Rs mediate the effects of bitter compounds  

In humans, 25 bitter taste receptors (TAS2Rs) recognize hundreds of bitter compounds 

that in the oral cavity originate the bitter sense perception [323, 324]. Usually, the 

receptor-ligand interaction triggers an aversive response that acts as a warning to avoid 

the ingestion of poisonous aliments due to the toxic profile of many bitter compounds 
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[325]. However, this concept is not straightforward  since many bitter molecules have 

beneficial health properties [9, 326].  

The role of TR2 as modulators of the effects of bitter compounds is poorly discussed in 

the literature. Although TR2 expression has been reported in many tissues such as 

airways, gastrointestinal tract, kidney, testis and CP [327, 328], their functional 

relevance is still a matter of debate, despite the increasing  evidence supporting their role 

in mediating the action of bitter compounds.  

In the airways, TAS2R14 mediated flavones anti-inflammatory activity and induced 

cytokine secretion [329]. Another compound, artesunate improved bronchodilatation in 

a mice model of asthma showing to be a potential candidate in the treatment of this 

pathology [330]. Interestingly, in lung macrophages LPS-treatment induced the 

expression of TAS2R7 and 38 [331]. Moreover, in LPS-stimulated macrophages, two 

promiscuous bitter compounds quinine and denatonium benzoate supressed the 

inflammatory response by decreasing TNF-α, CCL3 and CXCL8 levels. More specific 

ligands, such as dapsone, colchicine, strychnine, and chloroquine also demonstrated to 

inhibit LPS-induced pro-inflammatory cytokines release, as well as erythromycin, 

phenanthroline, ofloxacin, carisoprodol, specific ligands of TAS2R10, 5, 9 and 14, 

respectively. Another study suggests that TAS2R signalling participate in innate immune 

responses [331]. In primary macrophages, TAS2Rs activation was observed in the 

presence of several bitter compounds including bacterial TAS2Rs agonists. Moreover, it 

was demonstrated that TAS2Rs activation by bacterial-derived agonists such as 3-oxo-

dodecanoyl-homoserine lactone, flufenamic acid, or Pseudomonas quinolone signal, 

induces phagocytosis in macrophages. Anti-cancer properties of bitter compounds might 

also be regulated by TAS2Rs. In ovarian cancer cells, noscapine induced cell apoptosis 

via TAS2R14 [214]. In neuroblastoma cells, TAS2Rs overexpression induced neurite 

elongation, decreased the expression of cancer stem cells markers (DLK1, CD133, 

Notch1, and Sox2) and inhibited self-renewal characteristics. In vivo, overexpression of 

TAS2R8 and TAS2R10 reduced tumor incidence and volume, and downregulated MMP-

2 and P-selectin expression. Moreover, TAS2R8 and TAS2R10 over-expression inhibited 

cell migration and invasion, and MMP expression and activity suggesting that these 

receptors have an important role in suppressing metastatic potential of neuroblastoma 

cells [332]. Recently, Singh and colleagues, analysed the expression and function of 

TAS2R4 and TAS2R14 in breast cancer cells [333]. The authors found that TAS2R4 levels 

decrease but TAS2R14 increase in breast cancer tissue in comparison to non-cancerous 

controls. In addition, activation of TAS2R4 and TAS2R14 by quinine and apigenin, 

respectively, attenuated MDA-MB-231 proliferation and induced early-apoptosis. 
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However, the same was not observed in non-metastatic MCF-10A cells. Moreover, 

quinine via TAS2R4 and apigenin via TAS2R14 decreased MDA-MB-231 cells migration 

and MMP-9 secretion. 

Despite a growing body of evidence shows that bitter taste signalling in extra-oral organs 

respond to internal and external stimuli and participate in several biological processes, 

the knowledge about TR2 functions is still scarce. Furthermore, the role of TR2 in 

transport and detoxification systems is even less understood. Jeon and colleagues 

showed that TAS2R38 activation by phenylthiocarbamide in Caco-2 cells upregulates 

ABCB1 expression and increases its activity [334]. Although these data support that TR2 

signalling is directly involved in the regulation of transport mechanisms, we are far from 

completely understanding this relation. Therefore, overcoming this gap will contribute 

to improve the bioavailability of certain therapeutic drugs to the CNS and thus, the 

treatment of several brain disorders. 

 

2.7. Conclusion  

In recent years, a great number of bitter compounds that are able to bind TR2 have 

shown bioactive effects in several CNS diseases and different types of cancer models. 

Therefore, bitter compounds are promising candidates in the therapy of CNS disorders. 

However, their low bioavailability in the CNS and the lack of knowledge about how these 

molecules cross the blood-brain interfaces restrains their therapeutic application. 

On the other hand, some bitter compounds might modulate the transport and detox 

systems of other molecules, contributing to more efficient drug delivery to the brain. 

Importantly, several reports indicate a critical role of TR2 in mediating the biological 

actions of bitter compounds, suggesting that TR2 might also regulate their 

neuroprotective and anti-tumoral activities (Figure 2.3.). However, if and how TR2 

regulate the transport of bitter compounds across BBB, BCSFB and BTB or to what extent 

TR2 are the actual targets of their bitter ligands and elicit the therapeutic effects 

attributed to many of these bitter compounds in the CNS still needs clarification. 
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Figure 2. 3. Effects of bitter compounds and role of TR2 as mediators of their actions in the CNS. Binding of 
bitter compounds to TAS2Rs at the brain barriers might play a critical role in the regulation of membrane 
ABC transporters function and, thus contribute for the accumulation of bitter compounds in brain cells. 
Moreover, TR2 activation might mediate bitter compounds neuroprotective and anti-cancer activity. 
TAS2Rs – bitter taste receptors; ABC – ATP-binding cassette; EMT – epithelial-mesenchymal transition; 
ECM – extracellular matrix. 
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3. Global Aims 

 

The brain barriers are important gatekeepers of the CNS. However, these structures 

hinder the access of many drugs to the CNS compromising the treatment of brain 

diseases. Among the drugs with therapeutic potential for brain diseases are several bitter 

compounds. However, data about the transport of these compounds across the brain 

barriers and its accumulation in brain cells is still scarce.  

One major brain barrier is the BCSFB established by CP epithelial cells that display 

transport and detox systems that largely contribute for drug resistance. Therefore, 

understanding the mechanisms involved in the chemical surveillance of blood and CSF 

and unveiling possible modulators of these systems is crucial to overcome 

pharmacoresistance. Recently, we discovered that the bitter taste signalling pathway is 

expressed and functional in rat CP raising some questions that we intended to answer. 

Therefore, the main goal of this doctoral thesis was to characterize the bitter taste 

signalling pathway in the human BCSFB. 

The specific aims of this thesis were: 

- Confirm and identify which bitter taste receptors (TAS2Rs) are expressed in the 

human BCSFB; 

- Analyze the functionality of TAS2Rs expressed in the human BCSFB; 

- Evaluate the role of TAS2Rs in the transport of bitter ligands across the human 

BCSFB. 
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Chapter 4 

- Research Work 1 

 

Research Work 1 

Bitter taste receptors profiling in the 

human blood-cerebrospinal fluid-

barrier 

 

 

 

 

 

 

 

 

This chapter corresponds to the original research article: 

Duarte AC, Santos J, Costa AR, Ferreira CL, Tomás J, Quintela T, Ishikawa H, Schwerk 

C, Schroten H, Ferrer I, Carro E, Gonçalves I, Santos CRA (2020). Bitter taste receptors 

profiling in the human blood-cerebrospinal fluid-barrier, Biochemical Pharmacology, 

https://doi.org/10.1016/j.bcp.2020.113954 
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4.1. Abstract 

The choroid plexus (CP) epithelial cells establish an important blood-brain interface, the 

blood-cerebrospinal fluid barrier (BCSFB), which constitutes a complementary gateway 

to the blood-brain-barrier for the entrance of several molecules into the central nervous 

system (CNS). However, the mechanisms that operate at the BCSFB to regulate the 

molecular traffic are still poorly understood. The taste signalling machinery, present in 

many extra-oral tissues, is involved in the chemical sensing of the composition of body 

fluids. We have identified this pathway in rat CP and hypothesised that it could also be 

present in the human BCSFB. In this study, we characterised the bitter taste receptors 

(TAS2Rs) expression profiling in human CP by combining data retrieved from available 

databases of the human CP transcriptome with its expression analysis in a human CP cell 

line and IHC of human CP sections from men and women. TAS2R4, 5, 14 and 39 

expression was confirmed in human CP tissue by IHC and in HIBCPP cells by RT-PCR, 

immunofluorescence and Western blot. Moreover, the presence of downstream effector 

proteins GNAT3, PLCβ2 and TRPM5 was also detected in HIBCPP cells. Then, we 

demonstrated that HIBCPP cells respond to chloramphenicol via TAS2R39 and to 

quercetin via TAS2R14. Our findings support an active role of TAS2Rs at the human 

BCSFB, as surveyors of the bloodstream and CSF compositions. These findings open new 

avenues for studies on the uptake of relevant compounds for targeted therapies of the 

CNS. 

 

Keywords: Choroid plexus; blood-cerebrospinal fluid barrier; taste signalling; bitter 
taste receptors 
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4.1. Introduction 

The CPs, located in the ventricular system of the brain, are formed by single layers of 

cuboidal epithelial cells laying on a basement membrane. Bellow the basement 

membrane, within the connective tissue, lays a network of fenestrated capillaries, 

fibroblasts and immune cells imbedded in a rich extracellular matrix [1]. Several 

functions have been attributed to the CPs such as CSF formation, biosynthesis of proteins 

and hormones, clearance of harmful substances from the CSF, immune surveillance, 

neurogenesis, regulation of the circadian rhythm and chemical surveillance [2]. Notably, 

CP epithelial cells form a physical barrier between the blood and the CSF, the blood-CSF 

barrier (BCSFB). Due to the presence of tight junctions that connect the CP epithelial 

cells, the BCSFB extensively prevents paracellular transport between blood and CSF 

fluids, thus playing a critical role to ensure the homeostatic balance in the brain 

environment [3]. Additionally, molecular traffic regulation at the BCSFB is ensured by 

several influx and efflux transporters and detoxifying enzymes that are present in CP 

epithelial cells [3].  

One of the challenges of modern pharmacology is to understand why many anticancer 

and other brain targeting drugs fail to reach the CNS at relevant therapeutic 

concentrations. This occurs mainly because these drugs, independently of their 

lipophilicity, are effluxed by transporters, such as ATP-binding cassette (ABC) 

transporters, preventing them from entering the brain circulation [4]. Although the BBB 

has been the focus of most research on the drug flux to the brain, in the last years, the 

BCSFB started to be widely studied since it displays a complex and effective detoxifying 

system and is an additional gateway to the brain [4–6]. Nonetheless, data regarding the 

regulation of these mechanisms at the BCSFB are still scarce. The presence of taste and 

olfactory transduction pathways was previously described in the rat CP epithelial cells 

[7,8] adding potential new players to the chemosensory machinery of the CP. Ultimately, 

their function may be related to the activation of downstream pathways such as those 

involved in drug transport and metabolism, as seen in other organs [9,10]. 

Taste receptors belong to the G-protein coupled receptors family that includes: type 1 

taste receptors (TR1) and type 2 taste receptors (TR2). Three different TR1 subunits 

dimerize to recognize sweet (T1R2+T1R3) or umami (T1R1+T1R3) compounds [11,12]. 

On the other hand, humans recognize bitter compounds through 25 bitter taste receptors 

(TAS2Rs) [13,14]. In the mouth, TR1 or TR2s activation are similar and include the 

activation of the GNAT3, that activates PLCβ2 and induces the production of IP3 which 

triggers an increase in intracellular calcium levels. In turn, calcium elevation activates 
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the TRPM5 causing cell depolarization [15,16]. Currently it is well recognized that taste 

receptors are not restrained to the oral cavity. Instead, they are also expressed in many 

other organs [17,18]. The expression of taste receptors has been reported in the airways, 

gut, heart, thyroid and in the CNS [17] and in mouse [19] and rat CP [7]. The function of 

taste receptors in taste bud cells as sensors of the composition of food and beverages is 

well understood. However, in extra-oral tissues, studies on their function are still scarce 

and differ between the organs/tissues/cells analyzed [17,18,20]. However, there is 

already evidence that TAS2Rs mediate biological functions in response to internal and 

external chemical stimuli. For example, in the airways, TAS2Rs activation by flavones 

was related to enhanced anti-inflammatory responses and increased cytokine secretion 

[21], while artesunate improved bronchodilation [22]. In human neuroblastoma cells 

TAS2Rs activation mediated an increase in apoptosis and a decrease in cell survival and 

invasion [23]. Other biological functions, regulated by TAS2R activation include thyroid 

activity [24], gastrointestinal function [9], spermatogenesis [25] and innate immunity 

[26]. Bitter taste receptor agonists are numerous and structurally diverse: ions, peptides, 

alkaloids, polyphenols and glucosinolates [27,28]. Notably, some drugs with therapeutic 

applications bind and activate TAS2Rs, such as chloroquine (antimalarial), 

dextromethorphan (antitussive) or haloperidol (antipsycothic) [20]. Moreover, these 

compounds might be able to activate only a single or multiple TAS2Rs [27,28].  

We have previously shown that the taste signalling pathway is present and functional in 

the rat CP [7]. Thus, we hypothesized that the taste transduction machinery, including 

TAS2Rs, could also be present in the human BCSFB, acting as chemosensors of the blood 

and CSF composition. Therefore, we investigated the presence and functionality of 

TAS2Rs in the human BCSFB. The expression of several bitter receptors was confirmed 

in human CP samples and in the human CP cell line HIBCPP that is a validated model of 

the BCSFB [29,30]. Bitter receptors TAS2R4, TAS2R5, TAS2R14 and TAS2R39 were 

found in both human CP and in HIBCPP cells. Moreover, among the receptors analyzed, 

TAS2R14, that binds several bitter agonists, presented higher protein levels. In 

summary, in the present work we were able to show both mRNA and protein expression 

of key components of the bitter taste signalling pathway in human CP epithelial cells.  

Additionally, calcium functional assays showed a specific activation of TAS2R14 and 

TAS2R39, in HIBCPP cells, by bitter quercetin and chloramphenicol stimulus, 

respectively. 

 

4.2. Materials and Methods 

4.2.1. Materials 
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Bitter compounds chloramphenicol, haloperidol and quercetin were purchased from 

Sigma-Aldrich (Merck, Portugal), and 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) from Gerbu Biotechnik GmbH (Germany). The 

primary antibodies, previously validated, rabbit -GNAT3 (sc-395) and -PLCβ2 (sc-206) 

were obtained from Santa Cruz Biotechnology (USA); rabbit TRPM5 (AB104566) from 

Abcam (UK); rabbit - TAS2R4 (RRID AB_2201090; OSR00153W), -TAS2R5 (RRID 

AB_2287162; OSR00154W), -TAS2R10 (RRID AB_2556259; PA5-39708), -TAS2R14 

(RRID AB_2556261; PA5-39710), -TAS2R39 (RRID AB_2556262; PA5-39711) from 

Fisher Thermo Scientific; and mouse β-actin (A1978) from Sigma-Aldrich (Merck, 

Portugal). Secondary antibodies goat anti-rabbit HRP-conjugated (sc-2004) and goat 

anti-mouse HRP-conjugated (sc-2005) were purchased from Santa Cruz Biotechnology 

(USA); donkey anti-rat Cy3 from Jackson Immunoresearch (UK), goat anti-rabbit Alexa 

Fluor® 488 from Thermo Fisher Scientific (RRID AB_143165; A11008, Molecular 

Probes, USA). FURA-2AM, pluronic acid F-127, Lipofectamine™ 2000 (11668027), 

Opti-MEM medium and small interfering RNA (siRNA) targeting TAS2R14 (s27144), 

TAS2R39 (s48942) and scramble siRNA (4390843) were purchased in Thermo Fisher 

Scientific (USA). 

A stock solution of each bitter compound was prepared in dimethyl sulfoxide (DMSO), 

and freshly dissolved in Tyrode´s solution or culture medium before the experiments, 

where the DMSO final concentration did not exceed 0.20%. 

 

4.2.2. Microarray data analysis 

Since TAS2Rs expression in human CP has not been investigated before, we performed 

an initial search in transcriptomic data available of human CP in order to exploit this 

hypothesis. For that, microarray data related to human CP transcriptomics was obtained 

from a genomics data repository (GEO – Gene Expression Omnibus). An in silico 

analysis on TAS2Rs expression in human CP was performed with data retrieved from the 

expression profile of human CP epithelium of seven male healthy donors (51-73 years 

old) (accession number: GSE49974, [31]), and from another one containing the 

expression profile of the human CP cell line HIBCPP (accession number: GSE42870, 

[32]). Briefly, we searched for TAS2Rs genes in the two databases, and the mean values 

of TAS2Rs expression were calculated for all the available human CP samples (N=7), and 

HIBCPP cells (N=3). Validation of these data was further processed by IHC, in human 

CP sections, and by Reverse Transcription-Polymerase Chain Reaction (RT-PCR), 

immunofluorescence and Western blot, in the human CP cell line HIBCPP. 
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4.2.3. Immunohistochemistry 

Cases for IHC study were obtained from the Institute of Neuropathology Brain Bank 

(HUB-ICO-IDIBELL Biobank) following the guidelines of the Spanish legislation on this 

matter (Real Decreto 1716/2011) and the approval of the local ethics committee of the 

Bellvitge University Hospital-IDIBELL. CP samples were fixed in buffered formalin for 

no less than 3 weeks and then embedded in paraffin. These were from four males aged 

52, 62, 67 and 69, and one woman 81 years old. The neuropathological study of the brain 

disclosed no associated neurodegenerative and vascular alterations excepting early 

stages of neurofibrillary tangle degeneration (Braak stage I-II) and small blood vessel 

disease in older cases.        

Paraffin-embedded human CP slices from men and women were pretreated with 

Trilogy™ (Cell Marque™, Millipore Sigma, Portugal) which combines deparaffinization, 

rehydration and unmasking, in accordance with manufacture recommendations. After 

washing with Tris-buffered saline containing 0.1% of Tween 20 (TBS-T), endogenous 

peroxidases activity were blocked with 3% H2O2 for 10 min at RT. Slices were then 

washed twice with TBS-T. Next, slices were incubated for 1h at RT with the following 

primary antibodies: rabbit TAS2R4 (1:500), TAS2R5 (1:500), TAS2R10 (1:300), 

TAS2R14 (1:100) or TAS2R39 (1:300). Slices were washed twice with TBS-T and treated 

with HiDef Detection™ HRP Polymer System (Cell Marque™, Millipore Sigma, 

Portugal). First, HiDef Detection™ Amplifier was applied in the human CP slices for 10 

min RT, washed twice with TBS-T, followed by HiDef Detection™ HRP Polymer Detector 

also for 10 min at RT. After slices washing with TBS-T, immunoreactivity was detected 

with diaminobenzidine (DAB) for 10 min, RT. Slices were washed twice with TBS-T. 

Next, tissue sections were stained with Hematoxylin for 3 min RT to allow nuclei 

visualization. Negative control slices were treated under the same conditions without 

primary antibody. After dehydration, the slices were mounted and the images were 

acquired in a Zeiss Primo Star microscope (Carl Zeiss, Germany) using a magnification 

of 40x.  

 

4.2.4. Cell Culture 

Experiments were performed using the Human epithelial CP papilloma (HIBCPP) cell 

line derived from a human malignant CP papilloma [33]. HIBCPP cells were cultured in 

Dulbecco’s Modified Eagle Medium: nutrient mixture F-12 (DMEM/F12, Pan-Biotech, 

Germany) supplemented with 5 µg/mL insulin (Sigma-Aldrich, Merck, Portugal), 4 mM 

L-glutamine, 100 U/mL penicillin, 100 µg/mL streptomycin and 10% (v/v) fetal bovine 
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serum (FBS). For all studies here described, HIBCPP cells were used between passage 26 

and 33. 

 

4.2.5. RT-PCR  

To validate TAS2Rs expression in human CP, total RNA was isolated from HIBCPP cells 

using TRI Reagent (Sigma-Aldrich, Merck, Portugal) following the manufacturer’s 

instructions. After treatment with DNAse I (Sigma-Aldrich, Merck, Portugal), 500 ng of 

total RNA was reverse transcribed using a M-MLV Reverse Transcriptase (NZYTech, 

Ltd., Portugal). For the RT-PCR, cDNA was amplified by KAPA2G Fast ReadyMix PCR 

Kit ( Sigma-Aldrich, Merck, Portugal) and specific primers targeting 21 TAS2R (Table 1) 

in a final volume of 25 µL. Specific primer design for TAS2R43, 45 and 46 was not 

possible due to high homology shared between these receptors. Also, TAS2R30/47 was 

not detected in the microarrays data thus its expression was not analyzed. For the 

remaining TAS2Rs, every set of RT-PCR included a control without cDNA, and a cDNA 

synthesis control (absence of reverse transcriptase). The RT-PCR protocols comprised a 

15s denaturation at 95ºC, 15s annealing period at 58-60ºC, and 30s to 1 min extension 

at 72ºC, for 40 cycles. PCR products were analyzed by electrophoresis on 1 or 1.5% 

agarose gels, visualized by GreenSafe staining (NZYTech, Ltd., Portugal) and detected 

using UVITEC transilluminator (UVitec Cambridge). In addition, PCR products were 

purified, and Sanger sequenced by Stabvida (Portugal). 
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Table 4. 1. Primer sequences. 
 

Gene Primer Fw (5´-3’) Primer Rv (5´-3’) 
Amplicon 

size (bp) 

TAS2R3 ATCAGGGCTGCCTAATTGCT GTCCTGTAGTCTTGAGCCAGG 1035 

TAS2R4 TGCTTCGGTTATTCTATTTCTCTGC CCTGGAGAGTAAAGGGTGGC 823 

TAS2R5 ACTACCAGGGGATCTGACCTC CCGAGCACACACTGTCTTCC 937 

TAS2R8 TGTTCAGTCCTGCAGATAACATC GCATTCTGACAAATGTCTGCC 897 

TAS2R10 GCTACGTGTAGTGGAAGGCA TGCAGTACCCTCAAAGAGGC 876 

TAS2R13 GCTAGGGCTCAGCAGAGAAAT GGCAAGTCCAAACTTCCCTAAT 1607 

TAS2R14 TGGGTGGTGTCATAAAGAGCAT CTGAGGGCTCCCCATCTTTG 924 

TAS2R39 TCTGCGATCCTGCAGAAAGT GATGAAGTCGAAGCTGAAGCC 930 

TAS2R40 TCTTGGCGCAGAAACCTGAA TTCCAGTCACAGAGTCTGCC 1015 

TAS2R41 GCAGCGAATGGCTTCATTGT AACAGGAGCTGCGAGAACAC 833 

TAS2R44 TTTTTCCAGTGTGGTAGTGGTTCT GATGAAGGCTTCTCTCCTTTCACC 900 

TAS2R48 GAACAAGTGTTACTAAGCCTGC CTTCTTTCACTCAGCGTGTCA 952 

TAS2R50 ACAACCAGTGATATTAGGCTTGC TCAGGTCTTTTACTCAGCACCT 963 

GAPDH ATGGGGAAGGTGAAGGTCG GGGGTCATTGATGGCAACAATA 108 

Fw-forward; Rv-reverse. 

 

4.2.6. Immunocytochemistry 

The taste transduction machinery components were also analyzed by 

immunocytochemistry. HIBCPP cells were cultured in 12 well plate with glass coverslips 

for 5-6 days. Then, cells were washed three times with phosphate-buffered saline (PBS), 

fixed with 4% paraformaldehyde (PFA) at room temperature for 10 min, permeabilized 

and blocked for 1h with PBS containing 0.2% Triton X-100 and 3% bovine serum 

albumin (BSA). After that, cells were incubated overnight at 4ºC with the following 

primary antibodies: rabbit TAS2R4 (1:300), TAS2R5 (1:300), TAS2R10 (1:300), 

TAS2R14 (1:300), TAS2R39 (1:300), GNAT3 (1:100), PLCβ2 (1:100) or TRPM5 (1:500). 

Next, cells were washed and incubated with secondary antibody goat anti-rabbit Alexa 

Fluor® 488 (1:1000) at room temperature for 1h. Nuclei were stained with Hoechst 

33342 (1:1000) for 10 min, and coverslips were placed on glass slides using fluorescence 

mounting medium (Dako, USA). Images were then acquired on a LSM710 confocal laser 

scanning microscope (Carl Zeiss, Germany) at a 63x magnification. 

 

4.2.7. Western blot 

Protein expression of the taste machinery components was analyzed by Western blotting 

(WB). The bitter receptors TAS2R4, TAS2R5, TAS2R14 and TAS2R39 were also analyzed 
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based on the following criteria: 1) expression validated by RT-PCR; 2) number and 

therapeutic relevance of known ligands; 3) primary antibodies commercially available, 

suitable for both WB and immunofluorescence techniques; 4) previous validation of 

primary antibodies.  

WB was performed with protein extracts obtained from HIBCPP cells using ice-cold 

RIPA lysis buffer (NaCl 150mM, NP-40 1%, sodium deoxycholate 0.5%, SDS 0.1%, Tris 

50 mM). Total protein content was measured using Pierce BCA Protein Assay Kit 

(Thermo Fisher Scientific, USA) according to the manufacturer’s recommendations. 

Samples were separated by SDS-PAGE using 8-12.5% gels and were electrically 

transferred to polyvinylidene difluoride (PVDF) membranes (Millipore, Merck, 

Portugal). Blots were blocked for 1h at room temperature with TBS containing 5% 

skimmed milk powder. Then blots were incubated overnight with primary rabbit 

antibodies to TAS2R4 (1:1000), TAS2R5 (1:1500), TAS2R14 (1:500), TAS2R39 (1:500), 

GNAT3 (1:100), PLCβ2 (1:100), TRPM5 (1:500). Moreover, GNAT3, TRPM5 and PLCβ2 

primary antibodies specificity was assessed through parallel incubation with the 

respective peptides. After this, blots were washed at room temperature with TBS-T 

before incubation for 1h with HRP-conjugated goat anti-rabbit secondary antibody (1:40 

000). Blots were washed, and antibody binding was detected using the ECL substrate 

(ClarityTM Western ECL Substrate, Bio-Rad, Portugal) according to the manufacturer’s 

instructions. Images of blots were captured with the ChemiDoc MP Imaging system (Bio-

Rad). Additionally, expression of TAS2R4, TAS2R5, TAS2R14 and TAS2R39 was 

normalized with β-actin. For that, blots were incubated during 1h at room temperature 

with mouse anti- β-actin (1:20 000) before incubation for 1h with HRP-conjugated goat 

anti-mouse secondary antibody (1:40 000). After blotting, images were acquired, and 

protein bands were quantified using the Image Lab software (Bio-Rad). 

 

4.2.8. Single Cell Calcium Imaging 

4.2.8.1.  MTT assay 

Before Ca2+ imaging experiments, the cytotoxicity of the selected bitter compounds was 

assessed in HIBCPP cells by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide (MTT) assay. Briefly, 2 x104 cells were seeded in a 96-well plate and 24h before 

incubation, the culture medium was replaced by serum-free medium. Cells were 

incubated for 24h with chloramphenicol (0.125-1.5 mM), haloperidol (25-200 µM), 

quercetin (25-200 µM) or vehicle (DMSO ≤ 0.2%) diluted in culture medium. Then, 

culture medium was removed, cells were washed twice with PBS and incubated with 50 

µl of MTT solution (5 mg/mL in PBS), for approximately 3h at 37 °C in a humidified 
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atmosphere containing 5% CO2. Untreated cells and ethanol 70% treated cells were used 

as negative and positive controls, respectively. Following MTT incubation, formazan 

crystals were dissolved in DMSO for 30 minutes, and absorbance was read at 570 nm in 

a microplate spectrophotometer xMark™ (Bio-Rad). HIBCPP cell viability was expressed 

as a percentage relative to the absorbance determined in the negative control cells.  

 

4.2.8.2. Single Cell Ca2+ Imaging 

Once the cytotoxic profile of bitter compounds in HIBCPP cells had been established we 

proceeded with Ca2+ imaging assays. Briefly, HIBCPP cells were seeded in -slide 8 well 

ibiTreat (Ibidi, Germany) and changes in intracellular calcium levels were measured 

after stimulation of cells with confluency about 60-70%. HIBCPP cells were loaded with 

5 M of FURA-2 AM and 0.02% pluronic acid F-127 in HIBCPP culture medium for 1h. 

Next, cells were washed twice with Tyrode’s solution (NaCl 140 mM, KCl 5 mM, MgCl2 

1.0 mM, CaCl2 2 mM, Na-pyruvate 10 mM, glucose 10 mM, HEPES 10 mM, NaHCO3 

5mM, pH 7.4) and loaded with Tyrode’s for 30 min. After that, dose-response 

experiments were performed with chloramphenicol, haloperidol and quercetin. The -

slide plates were placed on an inverted fluorescence microscope (Axio Imager A1, Carl 

Zeiss). Stock solution of each bitter compound was freshly prepared in Tyrode´s solution 

before the experiments. The stimulus was applied manually with a micropipette after 

baseline was recorded. The intracellular calcium levels were evaluated by quantifying the 

ratio of the fluorescence emitted at 520 nm following alternate excitation at 340 nm and 

380 nm, using a Lambda DG4 apparatus (Sutter Instruments, Novato) and a 520 nm 

bandpass filter (Carl Zeiss) under a 40x objective (Carl Zeiss) with an AxioVision camera 

and software (Carl Zeiss). Data was processed using the Fiji software (MediaWiki). 

Changes in fluorescence ratio (F=F340/F380) were measured in at least 20 cells, in three 

or more independent experiments. Response intensity, or intracellular calcium 

variation, (F/F0), was calculated in the following way: F/F0=(F-F0)/F0, where F0 

corresponds to fluorescence ratio average at baseline (2 min acquisition before stimulus) 

and F correspond to maximum peak of fluorescence ratio evoked by the stimulus applied 

to the cells. 

 

4.2.9. TAS2R14 and TAS2R39 knockdown  

The specific activation of TAS2R14 by haloperidol or quercetin, and of TAS2R39 by 

chloramphenicol was assessed by calcium imaging assays in HIBCPP cells after TAS2R14 

or TAS2R39 knockdown with specific siRNAs. Briefly, HIBCPP cells were transfected for 
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72h with a mixture of siRNA targeting TAS2R14 (siRNA TAS2R14) or TAS2R39 (siRNA 

TAS2R39) and Lipofectamine™ 2000 in Opti-MEM medium, following the 

manufacturer’s instructions. A scramble siRNA was also used as negative control for 

TAS2R14 or TAS2R39 specific targeting. After transfection, calcium imaging assays were 

carried out as described in the previous section (2.8.2.) with chloramphenicol (500 M), 

haloperidol (50 M) and quercetin (50 M) stimuli. 

 

4.2.10. Statistical analysis 

Statistical analysis and comparison was performed using GraphPad Prism 7 software. 

Statistical significance was determined by one-way analysis of variance (ANOVA) 

followed by Bonferroni´s post hoc test. Results are reported as mean ± SEM and data 

were considered statistically significant at a value of p<0.05. 

4.3. Results 

4.3.1. Taste transduction signalling is present in human CP 

There are 25 members of the bitter taste receptor gene family in humans [13,14]. In this 

work we intended to analyze their expression profile in human CP. Therefore, our first 

approach consisted in investigating the presence of TAS2Rs in human CP microarrays 

(tissue and HIBCPP cells), in GEO repository databases (Table 2). In human CP tissue, 

almost all the 25 TAS2Rs, except for TAS2R10, 30/47 and 40, were detected. In HIBCPP 

cells, 15 TAS2Rs were detected, including TAS2R10 and 40. Notably, expression levels of 

TAS2Rs in both databases are very similar for these receptors. 

In order to validate the data obtained from human CP microarrays studies, we evaluated 

the expression of bitter taste receptors in human CP sections collected from men and 

women. All the four TAS2Rs selected to immunohistochemistry were detected: TAS2R4, 

TAS2R5, TAS2R14 and TAS2R39 in the epithelial cells of both men and women CP 

samples (Figure 4.1.). The receptor TAS2R10 was not detected in human CP samples, 

which is in accordance with microarray data (Figure 4.1.). Notably, TAS2R4, TAS2R5 

and TAS2R39 seem to have higher levels of expression in the human CP of women than 

men (Figure 4.1.). 

 

 

Table 4. 2. TAS2R expression in human CP transcriptome databases available in the GEO 
(Gene Expression Omnibus) repository of human CP samples and HIBCPP cells, and 
validation of TAS2Rs expression in HIBCPP cells by RT-PCR. 
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Human CP samples 

(GSE49974) 
HIBCPP cells 
(GSE42870) 

HIBCPP cells 
RT-PCR 

TAS2R1 ●● ●● - 

TAS2R3 ●● ●● + 

TAS2R4 ●● ●● + 

TAS2R5 ●● - + 

TAS2R7 ●●● ●● - 

TAS2R8 ●● ●● + 

TAS2R9 ●● ●● - 

TAS2R10 - ●● + 

TAS2R13 ●● ●● + 

TAS2R14 ●● ●● + 

TAS2R16 ●● ●● - 

TAS2R20/49 ●● - na 

TAS2R30/47 - - na 

TAS2R38 ●● ●● - 

TAS2R39 ●● ●● + 

TAS2R40 - ●● + 

TAS2R41 ●● ●● + 

TAS2R42 ●● - - 

TAS2R43 ●● - na 

TAS2R44 ●●● - + 

TAS2R45 ●● - na 

TAS2R46 ●● - - 

TAS2R48 ●● - + 

TAS2R50 ●●● ●● + 

TAS2R60 ●● - - 

Expression 
levels 

0-4 ●  
4-8 ●●  
>8 ●●●  

CP-choroid plexus; HIBCPP-human choroid plexus papilloma cells; “-“– absence/not detected; “+” – 
detected; na – not analyzed. 
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Figure 4. 1. Representative images showing the immunolocalization of taste receptors in human CP slices of 

men ( ) and women ( ). Bitter taste receptors TAS2R4, TAS2R5, TAS2R14 and TAS2R39 but not 
TAS2R10 were detected in human CP of men and women. Immunohistochemistry was performed using DAB 
and Hematoxylin. (-) negative control. Scale bar - 10 µm.  

 

4.3.2. HIBCPP cells express 13 different TAS2Rs  

The expression of bitter taste receptors in HIBCPP cells was also validated by RT-PCR 

using specific primers (Table 4.1). The results demonstrated the mRNA expression of 13 

TAS2Rs (3, 4, 5, 8, 10, 13, 14, 39, 40, 41, 44, 48 and 50) (Table 4.2 and Figure 4.2). No 

mRNA was detected for TAS2R1, 7, 9, 16 and 38, although microarrays data indicate they 

are expressed in human CP tissue and HIBCPP cells. Also, TAS2R42 which was only 

detected in CP tissue was not detected by RT-PCR in HIBCPP cells. On the other hand, 

TAS2R5, 44 and 48 that have not been detected by cDNA microarrays in HIBCPP cells 

reveal valid transcripts by RT-PCR assay (Figure 4.2). TAS2R20/49, 43 and 45 mRNA 

expression was not analyzed due three different factors: data was not registered in 

HIBCPP cells microarrays; the design of specific primers failed due to the great homology 

between them; and no ligands are known for TAS2R45. Based on data retrieved from the 

transcriptome databases of human CP samples and HIBCPP cells and on our analysis on 

the expression of bitter taste receptors, it is important to highlight that TAS2R 3, 4, 5, 8, 



Characterization of bitter taste receptors expression and function in the human blood-cerebrospinal fluid barrier 
 

 

 

Ana Catarina Duarte 

 

 

145 

13, 14, 39, 41, 44, 48 and 50 (Table 4.2, shaded) were detected by these three different 

approaches. 

 

 

Figure 4. 2. mRNA expression profile of bitter taste receptors in HIBCPP cells. RT-PCR was performed with 
cDNA synthetized from HIBCPP cells RNA in the presence (+) or absence (-) of reverse transcriptase. The 
identities of the amplified products were confirmed by Sanger sequencing. Kb – Kilobase. 

4.3.3. The key components of the taste signalling machinery are 

expressed in HIBCPP cells 

The taste transduction machinery consists of taste receptors and downstream effector 

proteins like GNAT3, PLCβ2, and TRPM5. Thus, we assessed these taste-related proteins 

and the same four bitter taste receptors in protein extracts of HIBCPP cells by 

immunofluorescence and WB (Figure 4.3. and 4.4.) using available antibodies, 

previously validated [7,21]. Taste receptors TAS2R4, TAS2R5 and TAS2R39 were 

detected in the cytoplasm and plasma cell membrane, while TAS2R14 was located 

exclusively at the plasma membrane of HIBCPP cells (Figure 4.3.). GNAT3, PLCβ2, and 

TRPM5 were found in the cytoplasm of HIBCPP cells. Unexpectedly, GNAT3 was also 

detected in the nucleus (Figure 4.3.), although in our previous work in rat CP, we 

observed GNAT3 localization in the cytoplasm and plasma membrane [7]. Protein 

detection was reduced by pre-incubation of the antibodies with the respective peptides 

(Figure 4.3.).  
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Figure 4. 3. Immunofluorescence detection of bitter taste receptors and taste signalling pathway effector 
proteins in HIBCPP cells. Confocal images of bitter taste receptors TAS2R4, TAS2R5, TAS2R14, TAS2R39 
and downstream effectors GNAT3, PLCb2 and TRPM5 expression in HIBCPP cells (green). Nuclei were 
stained with Hoechst 33,423 (blue). Scale bar – 10 µm. 
 

Moreover, expression of TAS2R4, TAS2R5, TAS2R14 and TAS2R39, and of downstream 

effectors GNAT3, PLCβ2, and TRPM5 was also detected by WB (Figure 4.4.). All these 

taste-related proteins were detected at the expected size except for TAS2R14, showing a 

molecular weight of approximately 20 kDa, instead of 36 kDa as reported by the antibody 

manufacturer. Once again, pre-incubation of the antibodies of the downstream effector 

proteins GNAT3, PLCβ2, and TRPM5 with the respective peptides, abolished the signal 

obtained in WB demonstrating antibody specificity (Figure 4.4.). Regarding TAS2R4, a 
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previous study in human airway epithelial cells validated the antibody used in our 

experiments [34], and also TAS2R14 and TAS2R39 antibodies were previously used in 

human A549 cells [21]. 

 

Figure 4. 4. Taste receptors and taste signalling pathway effector proteins are expressed in HIBCPP cells. 
WB detection of bitter taste receptors TAS2R4, TAS2R5, TAS2R14 and TAS2R39, and of taste machinery 
components GNAT3, PLCb2 and TRPM5 in HIBCPP protein extracts. kDa – kilo Dalton; WB – Western blot. 

 

In addition, we analyzed TAS2Rs relative expression in HIBCPP cells. Of the four bitter 

receptors studied, TAS2R14 presented the higher protein levels followed by TAS2R4, 

TAS2R5 and TAS2R39, with the last two presenting very similar levels (Figure 4.5.). 

 

Figure 4. 5. Bitter taste receptors relative expression to β-actin. (A) Detection of the bitter receptors TAS2R4, 
TAS2R5, TAS2R14 and TAS2R39, and β-actin in HIBCPP by WB. (B) Quantification of TAS2R4, TAS2R5, 
TAS2R14 and TAS2R39 protein levels in HIBCPP by WB and normalized to β-actin levels. Among the 
TAS2Rs analyzed, TAS2R14 presented the higher protein levels followed by TAS2R4. Graphs indicates the 
mean ± SEM (N ≥ 3, independent cultures). WB – Western blot. 
 

4.3.4. Chloramphenicol, haloperidol and quercetin elicited calcium 

responses in HIBCPP cells  

After confirming bitter taste receptors expression in HIBCPP cells, their functionality 

was analyzed by stimulating these cells with three bitter agonists: chloramphenicol, 

haloperidol and quercetin. Beforehand, the viability of HIBCPP cells was assessed for 

24h with the selected bitter compounds (Figure 4.6 A-C). We found that concentrations 

above 1 mM of chloramphenicol, 100 µM of haloperidol and quercetin reduced HIBCPP 

cells viability (Figure 4.6 A-C). Next, we proceeded to calcium functional studies using 
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concentrations of ligands that would not affect cell viability. Therefore, we analyzed 

HIBCPP calcium responses to chloramphenicol (0.125-0.5 mM), haloperidol (10-100 

µM) and quercetin (10-100 µM) stimuli by calcium imaging experiments (Figure 4.6 D-

F). For each compound, calcium imaging assays were carried out in the presence of 

vehicles and compared to untreated cells to establish that calcium variations observed 

were not related to vehicle concentration (data not shown). Moreover, calcium variations 

were collected during 2 min before the stimuli to obtain a baseline (F) that was used to 

normalize the responses obtained with the compounds. Additionally, only assays 

showing a uniform baseline were evaluated. Chloramphenicol and haloperidol elicited 

calcium responses in a dose-dependent manner (Figure 4.6.D, F). Chloramphenicol at 

0.5 mM (ΔF/F= 0.405 ± 0.072), but not at 0.125 (ΔF/F= 0.206 ± 0.028) or 0.250 mM 

(ΔF/F= 0.260 ± 0.024), triggered a significant increase in intracellular calcium levels in 

HIBCPP cells (Figure 4.6.D). Cells treated with 50 or 100 µM of haloperidol showed 

higher calcium levels (ΔF/F= 0.738 ± 0.010 and 0.845 ± 0.061) in comparison with 

vehicle treated cells (ΔF/F= 0.1076 ± 0.003). Lower concentrations of haloperidol, 10 

µM (ΔF/F= 0.319 ± 0.033) and 25 µM (ΔF/F= 0.334 ± 0.079), did not provoke 

significant calcium responses (Figure 4.6.E). Quercetin stimuli at all concentrations 

tested 10, 50 and 100 µM (ΔF/F= 0.397 ± 0.026, 0.323 ± 0.041 and 0.597 ± 0.062) 

increased intracellular calcium levels in comparison to vehicle treated cells (ΔF/F= 0.104 

± 0.004) (Figure 4.6.F).  

 

4.3.5. Chloramphenicol and quercetin responses in HIBCPP cells 

are mediated by TAS2R39 and TAS2R14 

In calcium imaging experiments we observed dose-responses of HIBCPP cells to 

chloramphenicol, haloperidol and quercetin. It has been reported that chloramphenicol 

binds TAS2R1, 8, 10, 39, 41, 43, and 46 [27], haloperidol binds TAS2R10 and 14 [27] and 

quercetin binds TAS2R14 [35]. Thus, these bitter compounds are all TAS2R14 and/or 

TAS2R39 ligands. Therefore, we explored the specific activation of TAS2R14 and/or 

TAS2R39 by performing calcium assays in HIBCPP cells after TAS2R14 or TAS2R39 

knockdown. HIBCPP cells responses to chloramphenicol (500 µM), after TAS2R39 

silencing, showed decreased calcium levels of 72.89 ± 11.21 % in comparison to 

untreated, 42.73 ± 11.21 % to mock-, or 60.79 ± 10.23 % to scramble siRNA-transfected 

cells (Figure 4.6.G). On the other hand, haloperidol (50 µM) responses, after TAS2R14 

silencing, did not reveal alterations in comparison with untreated, mock- or scramble 

siRNA-transfected cells (Figure 4.6.H). At last, the HIBCPP cell responses to quercetin 

(50 µM) after TAS2R14 knockdown, decreased 56.53 ± 9.41 % in comparison to 
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untreated, 37.57 ± 10.24 % to mock- or 48.29 ± 10.24 % to scramble siRNA-transfected 

cells (Figure 4.6.I). Additionally, no significant differences were observed between 

control conditions (untreated, mock-, or scramble siRNA-transfected cells) in calcium 

imaging assays with any of these compounds. 

 

Figure 4. 6. Bitter taste signalling pathway is functional in human CP epithelial cells. (A) Bitter compounds 
cytotoxicity in HIBCPP cells was assessed by MTT assay. HIBCPP cells were treated for 24 h with different 
concentrations of chloramphenicol, haloperidol and quercetin. Bar graphs represent mean ± SEM [N ≥ 3; 
*p < 0.05, ***p < 0.001, ****P < 0.0001 vs untreated cells; One-way ANOVA followed by Bonferroni’s post 
hoc test]. Cells treated with vehicle (DMSO ≤ 0.2%) do not show alterations in cellular viability. C+ positive 
control. (B) Calcium dose response curves of HIBCPP cells to different concentrations of chloramphenicol 
(0.125–0.5 mM), haloperidol (10–100 mM) and quercetin (10–100 mM). Dot line – calcium levels measured 
in cells with vehicle only (DMSO ≤ 0.2%). (C) Calcium responses to chloramphenicol, haloperidol and 
quercetin in transfected HIBCPP cells with TAS2R14 or TAS2R39 siRNAs. Intracellular calcium levels were 
measured in HIBCPP cells transfected or mock-transfected for 72 h with TAS2R14 or TAS2R39 siRNA, or a 
scramble siRNA, after chloramphenicol (0.5 mM), haloperidol (50 mM) or quercetin (50 mM) stimuli. 
Response intensity was measured: (ΔF/F0) = ((F340-F380)-F0)/F0, where F0 corresponds to fluorescence 
ratio average of a 2 min baseline and F corresponds to maximum peak of fluorescence ratio evoked by 
stimuli. Graphs indicate the mean ± SEM (N ≥ 4, independent cultures; *p < 0.05, **p < 0.01, ***p < 0.001, 
****p < 0.0001; One-way ANOVA followed by Bonferroni’s post hoc test). There were no significant 
differences between untreated cells and mock or scramble siRNA-transfected cells. 
 

4.4. Discussion 

A functional taste signalling pathway has been previously reported in mouse [19] and rat 

CP [7]. Since the CP has a crucial role in the maintenance of brain homeostasis as an 
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important interface between the blood and the CSF, the taste transduction pathway in 

the CP suggests a likely mechanism to survey both blood and CSF composition. To date, 

taste signalling or TAS2Rs presence in human CP epithelial cells have not been 

confirmed. In this study, we aimed to address this question to evaluate whether these 

receptors may be associated with the capacity of the human CP to monitor the blood and 

the CSF and respond to alterations in their composition. The in silico analysis of human 

CP microarray data available in the GEO database provided strong evidences that several 

TAS2Rs mRNAs are present in human CP tissue [31], and in the human CP cell line 

HIBCPP [32]. In our study, we validated and confirmed the mRNA expression of thirteen 

TAS2Rs in the HIBCPP cells. Of these, eleven were also detected in human CP tissue 

microarrays data including TAS2R4, TAS2R5, TAS2R14 and TAS2R39 whose expression 

was confirmed in men and women CP sections. Interestingly, TAS2R4, TAS2R5 and 

TAS2R39 seem to present higher levels in women CP sections in comparison to men, 

indicating that TAS2Rs expression and their function might be different between men 

and women. In accordance, previous studies in rat CP showed that the sex hormone 

background regulates the taste signalling pathway [36,37].  

The downstream effector proteins GNAT3, PLCβ2 and TRPM5 are important 

components of the taste signalling pathway. Therefore, their expression was analyzed 

and confirmed in HIBCPP cells, reinforcing the presence and functionality of this 

pathway in the human CP. Moreover, our findings not only confirm the presence of the 

bitter taste signalling machinery in the human CP but also suggest that these receptors 

might be activated by circulating compounds in the bloodstream and/or in the CSF. 

Among the bitter taste receptors studied, TAS2R14 and TAS2R4 presented considerably 

higher protein levels in comparison with TAS2R5 and TAS2R39. Interestingly, TAS2R14 

is the one TAS2R with more known ligands (150) [38,39]. In addition, some of the bitter 

agonists that bind TAS2R14 have neuroactive effects such as the phenolic compound 

resveratrol [40], the flavonoids quercetin [35] and epigallocatechin gallate [41], or the 

anti-psychotic drug haloperidol [27], suggesting an important role of TAS2R14 in the 

cells/tissue where it is expressed. Actually, in the human upper airways, TAS2R14 seem 

to mediate anti-inflammatory responses to flavones [21]. However, the function of this 

and other TAS2Rs remain to be elucidated despite their presence in many tissues. Along 

with TAS2R14, also TAS2R39 has a wide range of ligands (84) such as flavonoids and 

other compounds [38,39], while the remaining TAS2Rs whose expression was 

confirmed, only bind specific ligands. However, the importance of these receptors should 

not be neglected since some of their ligands had shown neuroprotective actions. This is 

the case of dapsone, a ligand of TAS2R4 [27], that seem to be effective to prevent seizures 
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when combined with diazepam [42]. Interestingly, other ligands had shown antitumoral 

properties such as arborescin [43] that binds TAS2R4 [27] and parthenolide [44], a 

TAS2R4 and TAS2R8 ligand [27]. Additionally, arborescin and parthenolide are also 

TAS2R14 agonists [27]. Another interesting bitter ligand is andrographolide that binds 

TAS2R30/47, TAS2R46 and TAS2R50 [27] and seems to be a promising drug against 

several CNS disorders such as AD and PD [45]. Of these three receptors, only TAS2R50 

expression was confirmed in HIBCPP cells. 

To ascertain that the bitter taste signalling pathway is functional and responsive in 

HIBCPP cells, single cell calcium imaging experiments were conducted with some bitter 

agonists: chloramphenicol, that binds TAS2R1, 8, 10, 39, 41, 43, and 46 [27], haloperidol 

that binds TAS2R10 and TAS2R14 [27] and quercetin that only binds TAS2R14 

[35].Importantly, of these, TAS2R8, TAS2R10, TAS2R13, TAS2R14, TAS2R39 and 

TAS2R41 expression was found in HIBCPP cells. Our results showed intracellular 

calcium dose-dependent responses to chloramphenicol and haloperidol in HIBCPP cells. 

Moreover, chloramphenicol and quercetin responses seem to be mediated by TAS2R39 

and TAS2R14 activation, respectively, since knockdown of these receptors induced a 

massive decrease in calcium responses. Therefore, these results support that the bitter 

taste signalling pathway is functional in human CP epithelial cells. 

In summary, the expression and function of the bitter taste signalling pathway were 

analyzed in an in vitro model of the human CP, showing that this model is suitable for 

future studies on the function of these receptors, as these cells also contain the 

downstream effector molecules and respond to bitter compounds. Moreover, the bitter 

taste receptors TAS2R4, TAS2R5, TAS2R14 and TAS2R39, present in both human CP 

tissue and in HIBCPP cells, might become activated by circulating compounds, such as 

therapeutic drugs or components of our diet like flavonoids. Thus, the effect of TAS2Rs 

activation by therapeutic compounds or flavonoids should be assessed to investigate the 

intracellular cascades triggered by TAS2R activation.  
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5.1. Abstract 

The regulation of transport mechanisms at brain barriers must be thoroughly 

understood, so that novel strategies for improving drug delivery to the brain can be 

designed. The blood-cerebrospinal fluid barrier (BCSFB) established by the choroid 

plexus (CP) epithelial cells has been poorly studied in this regard despite its relevance 

for the protection to the central nervous system (CNS). 

This study assessed the role of bitter taste receptors (TAS2Rs), TAS2R14 and TAS2R39, 

in the transport of neuroactive compounds across CP epithelial cells using an in vitro 

model of the human BCSFB. Both receptors are expressed in human CP cells and known 

to bind resveratrol. First, Ca2+ imaging assays demonstrated that resveratrol specifically 

activates the TAS2R14 receptor, but not TAS2R39, in these human CP epithelial cells. 

Then, we proceeded with permeation studies that showed resveratrol can cross the 

human BCSFB, from the blood to the CSF side and that TAS2R14 knockdown decreased 

the transport of resveratrol across these cells. Conversely, inhibition of efflux 

transporters ABCC1, ABCC4 or ABCG2 also restrained the transport of resveratrol across 

these cells. Interestingly, resveratrol upregulated the expression of ABCG2 located at the 

apical membrane of the cells via TAS2R14, whereas ABCC1 and ABCC4 at the basolateral 

membrane of the cells were not affected. Altogether, our study demonstrates that the 

BCSFB is a gateway for resveratrol entrance into the CNS and that the receptor TAS2R14 

regulates its transport by regulating the action of efflux transporters at CP epithelial cells.  

 

Keywords:  
Blood-cerebrospinal fluid barrier, chemical surveillance, bitter taste receptors, 
resveratrol, ABC transporters 
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5.2. Introduction 

Brain barriers are fundamentally the gatekeepers of the CNS. There are two major brain 

barriers: the BBB constituted by the endothelial cells of brain capillaries, and the BCSFB 

established by the CP epithelial cells in the ventricles of the brain [1]. The BCSFB stands 

as a unique interface between the blood and the CSF regulating the molecular trafficking 

between the two fluids, thus promoting homeostatic balance and ensuring proper CNS 

function [2]. This strict regulation is guaranteed by the presence of influx and efflux 

transporters that control the entrance and exit of many substances into and out of the 

CNS, and by detoxifying enzymes that reduce the toxicity of many compounds in transit 

[2–4]. Efflux mechanisms at the BCSFB depend mainly on ABC transporters that are 

expressed at the basolateral membrane (blood facing) of CP epithelial cells such as 

ABCC1/Mrp1 and ABCC4/Mrp4, or at the apical membrane (CSF facing) such as 

ABCG2/Bcrp and ABCB1/P-gp [2,5]. ABCB1 is highly expressed in the BBB, but  has very 

low expression in the CP [6]. ABC transporters are of great interest, since they are 

responsible for the resistance to many chemotherapies, thus interfering with the CNS 

delivery of anticancer drugs, such as doxorubicin (ABCB1, ABCC2, ABCC3, ABCG2), 

methotrexate (ABCB1, ABCC1, ABCC2, ABCC4, ABCG2), temozolomide (ABCB1, 

ABCG2) and paclitaxel (ABCB1, ABCC1) [7,8]. However, how the function of ABC 

transporters is regulated at the BCSFB remains unclear despite its importance for drug 

delivery to the CNS. 

Bitter taste receptors (TR2) belong to the GPCR family. In humans, 25 TAS2Rs enable 

the identification of a wide range of bitter compounds [9,10]. Upon ligand-binding 

TAS2Rs trigger the activation of the GNAT3, and thus PLCβ2 that induces the production 

of IP3. IP3 elicits an increase in intracellular Ca2+ levels, that, on taste buds, activates the 

TRPM5 causing cell depolarization [11,12]. Besides the oral cavity, the taste signalling 

pathway is widespread in several barrier tissues: airways [13,14], gastrointestinal tract 

[15–18], kidney [19,20], testis [21,22], skin [23,24], not only in humans but also in mouse 

[25] and rat CP [26], where they regulate several biological processes in response to 

alterations in the composition of body fluids. For example, bronchoconstriction and 

bronchodilation, release of gut  hormones (e.g. ghrelin, leptin, cholecystokinin), and 

regulation of sperm chemotaxis (reviewed in [27]). Interestingly, activation of TAS2R38 

in Caco-2 cells by a bitter agonist (phenylthiocarbamide) increased ABCB1 expression 

and its efflux activity, but not ABCC1 or ABCG2 expression. Moreover, TAS2R38 

knockdown prevented ABCB1 upregulation [17]. This suggests that TAS2Rs might 

regulate biomolecular transport by modulating the expression and activation of ABC 
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transporters. Our previous findings of TAS2Rs in the CP epithelial cells and the data 

available demonstrating expression and activity of taste receptors in extra-oral tissues 

suggest that, at the CP, these receptors might function as chemical sensors of blood and 

CSF composition and be involved in the control of the traffic of chemical compounds 

across this brain barrier. 

TAS2R14 and TAS2R39 bind various compounds [24,28,29] and are expressed in several 

tissues [14,24,30–32] including human CP samples and in HIBCPP cells, an in vitro 

model of the human BCSFB where their functional relevance remains unknown. In this 

study, we proposed that TAS2Rs, more specifically TAS2R14 and/or TAS2R39 could 

mediate the entrance of molecules from circulation into the CSF. To explore this 

hypothesis, we used the HIBCPP cell line to carry out functional Ca2+ imaging studies 

using resveratrol, a ligand of these two receptors that is also a neuroactive compound 

and a flavonoid well documented for their antioxidant, anti-inflammatory, anti-bacterial 

and anticarcinogenic properties. We found that, in HIBCPP cells, resveratrol specifically 

activates TAS2R14. Permeation studies showed that resveratrol can cross the human CP 

epithelial cells and, interestingly, TAS2R14 knockdown decreased resveratrol efflux at 

the apical membrane. Additionally, inhibition of ABCC1, ABCC4 and ABCG2 

transporters decreased the efflux and increased accumulation of resveratrol inside the 

cells. Altogether, the present study provides strong evidence for an important role of 

TAS2R signalling at the human BCSFB regarding the passage of resveratrol, from the 

bloodstream into the CSF and the CNS.  

 

5.3. Materials and Methods 

5.3.1. Reagents 

Resveratrol was obtained from TCI Europe N.V. (Japan), 3-(4,5-dimethylthiazol-2-yl)-

2,5-diphenyltetrazolium bromide (MTT) from GERBU Biotechnik GmbH (Germany), 

fluorescein-methotrexate (FL-MTX) from Biotium (USA), reversan, and lucifer yellow 

from Sigma-Aldrich (Portugal), Ko143 from Tebu-bio and Ceefourin 1 from Tocris (UK). 

The primary antibodies, previously validated, rabbit TAS2R14 (RRID AB_2556261; PA5-

39710), TAS2R39 (RRID AB_2556262; PA5-39711), mouse occludin Alexa Fluor® 594 

conjugated (RRID AB_2532186; 331594) were obtained from Fisher Thermo Scientific 

(USA); and mouse β-actin (A1978) from Sigma-Aldrich (Portugal). Secondary antibodies 

goat anti-rabbit HRP-conjugated (sc-2004) and goat anti-mouse HRP-conjugated (sc-

2005) were purchased from Santa Cruz Biotechnology (USA); donkey anti-rat Cy3 from 

Jackson Immunoresearch (UK), goat anti-rabbit Alexa Fluor® 488 from Thermo Fisher 
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Scientific (RRID AB_143165; A11008, Molecular Probes, USA). Hoechst 33342 

(I34406), FURA-2 AM (F1221), pluronic acid F-127, Lipofectamine™ 2000 (11668027), 

Opti-MEM medium and small interfering RNA (siRNA) targeting TAS2R14 (s27144), 

TAS2R39 (s48942), scramble siRNA (4390843) and PowerUp™ SYBR™ Green were 

purchased from Thermo Fisher Scientific (USA). Acetonitrile analytical grade was 

purchased from Enzymatic, deionised (DI) water was obtained from a Milli-Q System 

(Millipore) and glacial acetic acid from Fisher Scientific UK.  

A stock solution of resveratrol was prepared in dimethyl sulfoxide (DMSO), and freshly 

dissolved in Tyrode´s solution, culture medium or Krebs Ringer buffer (KRB) before the 

experiments, where the DMSO final concentration did not exceed 0.25%.  

5.3.2. Establishment of Human epithelial CP papilloma Cell Culture 

Human epithelial CP papilloma (HIBCPP) cells derived from a human malignant CP 

papilloma [33], were cultured, as previously reported [34], in DMEM/F12 (Pan-Biotech, 

Germany) supplemented with 5 µg/mL insulin (Sigma-Aldrich, Portugal), 4 mM L-

glutamine, 100 U/mL penicillin, 100 ug/mL streptomycin and 10% (v/v) FBS. For all 

studies described here HIBCPP cells were used between passage 26 and 34. 

5.3.3. Assessment of the responses of Human epithelial CP papilloma 

to neuroactive compounds by Ca2+ imaging 

The response of HIBCPP cells to resveratrol was evaluated by Ca2+ imaging experiments. 

This bitter compound was selected considering its ability to bind TAS2R14 and/or 

TAS2R39, present in CP epithelial cells, and its potential therapeutic application in 

neurologic diseases. 

5.3.4. Assessment of the cytotoxicity of resveratrol in HIBCPP cells 

Before Ca2+ imaging experiments, the cytotoxicity of resveratrol was assessed in HIBCPP 

cells by the MTT assay. Briefly, 2 x104 cells were seeded in a 96-well plate and 24h before 

incubation, the culture medium was replaced by serum-free medium. Cells were 

incubated for 24h with resveratrol (50-250 µM), or vehicle (DMSO ≤ 0.25%) diluted in 

culture medium. Then, culture medium was removed, cells were washed twice with PBS 

and incubated with 50 µl of MTT solution (5 mg/mL in PBS), for approximately 3h at 37 

°C in a humidified atmosphere containing 5% CO2. Untreated cells and ethanol 70% 

treated cells were used as negative and positive controls, respectively. Following MTT 

incubation, formazan crystals were dissolved in DMSO for 30 minutes, and absorbance 
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was read at 570 nm in a microplate spectrophotometer xMark™ (Bio-Rad). HIBCPP cell 

viability was expressed as a percentage relative to the absorbance determined in the 

negative control cells.  

5.3.5. Single Cell Ca2+ Imaging 

Once the cytotoxic profile of resveratrol in HIBCPP cells had been established we 

proceeded with Ca2+ imaging assays. First, we performed a dose-response experiment 

with resveratrol (25-250 µM) or vehicle only (DMSO ≤ 0.25%).  

Ca2+ imaging assays were performed as described before [35]. HIBCPP cells were seeded 

in -slide 8 well ibiTreat (Ibidi, Germany) and 72h after transfection, cells were loaded 

with 5 M of FURA-2 AM and 0.02% pluronic acid F-127 in culture medium for 1h. Next, 

cells were washed twice with Tyrode’s solution (NaCl 140 mM, KCl 5 mM, MgCl2 1.0 mM, 

CaCl2 2 mM, Na-pyruvate 10 mM, glucose 10 mM, HEPES 10 mM, NaHCO3 5 mM, pH 

7.4) and loaded with Tyrode’s for 30 minutes before acquisition. The -slide plates were 

placed on an inverted fluorescence microscope (Axio Imager A1, Carl Zeiss, Germany). 

Resveratrol stimulus was applied manually with a micropipette, and cells Ca2+ response 

was evaluated by quantifying the ratio of the fluorescence emitted at 520 nm following 

alternate excitation at 340 nm and 380 nm, using a Lambda DG4 apparatus (Sutter 

Instruments, Novato, CA) and a 520 nm bandpass filter (Carl Zeiss) under a 40x 

objective (Carl Zeiss) with an AxioVision camera and software (Carl Zeiss). Data was 

processed using the Fiji software (MediaWiki). Changes in fluorescence ratio 

(F=F340/F380) were measured in at least 20 cells, in four or more independent 

experiments. Response intensity, or intracellular Ca2+ variation, (F/F0), was calculated 

in the following way: F/F0=(F-F0)/F0, where F0 corresponds to the fluorescence ratio 

average of baseline (2 minutes acquisition before stimuli) and F correspond to the 

maximum peak of fluorescence ratio evoked by stimuli. 

5.3.6. TAS2R14 and TAS2R39 knockdown  

Then, TAS2R14 and/or TAS2R39 specific activation by resveratrol (50 µM) was also 

assessed by Ca2+ imaging experiments in HIBCPP cells after silencing TAS2R14 or 

TAS2R39 expression. 

HIBCPP cells were transfected with a mixture of siRNA targeting TAS2R14 (siRNA 

TAS2R14) or TAS2R39 (siRNA TAS2R39) and Lipofectamine™ 2000 in Opti-MEM 

medium, following the manufacturer’s instructions. A scramble siRNA was also used as 

negative control for TAS2R14 or TAS2R39 specific targeting. Transfection conditions 
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were optimized using different timeframes (24, 48 and 72h), siRNA and transfection 

agent concentrations (data not shown). TAS2R14 and TAS2R39 expression were then 

analyzed by Western blot (WB) and immunofluorescence in mock- and siRNAs-

transfected cells.  

5.3.6.1. Western blot 

Protein expression of the TAS2R14 and TAS2R39 was analyzed in protein extracts 

obtained from HIBCPP cells, after transfection, using ice-cold RIPA lysis buffer (NaCl 

150mM, NP-40 1%, sodium deoxycholate 0.5%, SDS 0.1%, Tris 50 mM). Total protein 

content was measured using Pierce BCA Protein Assay Kit (Thermo Fisher Scientific, 

USA) according to the manufacturer’s recommendations. Samples were separated by 

SDS-PAGE using a 12.5% gel and were electrically transferred to polyvinylidene 

difluoride (PVDF) membranes (Millipore, Merck). Blots were blocked for 1h at room 

temperature (RT) with Tris-buffered saline (TBS) containing 5% skimmed milk powder. 

Then blots were incubated overnight with primary rabbit antibodies to TAS2R14 (1:500) 

or TAS2R39 (1:500), and 1h RT with mouse anti-β-actin (1:20 000). After this, 

membranes were washed at RT with TBS containing 0.1% of Tween (TBS-T) before 

incubation for 1h with HRP-conjugated goat anti-rabbit or goat anti-mouse (1:40 000) 

secondary antibodies. Blots were washed, and antibody binding was detected using the 

ECL substrate (ClarityTM Western ECL Substrate, Bio-Rad, USA) according to the 

manufacturer’s instructions. Images of blots were captured with the ChemiDoc MP 

Imaging system (Bio-Rad) and protein bands were quantified using the Image Lab 

software (Bio-Rad). 

5.3.6.2. Immunofluorescence 

Immunostaining of TAS2R14 and TAS2R39 in HIBCPP cells was also carried out after 

transfection. HIBCPP cells were cultured in 12 well plates with glass coverslips for 5-6 

days. Then, cells were washed three times with phosphate-buffered saline (PBS), fixed 

with 4% paraformaldehyde (PFA) at RT for 10 min, permeabilized and blocked for 1h 

with PBS containing 0.2% Triton X-100 and 3% bovine serum albumin (BSA). Then cells 

were incubated overnight at 4ºC with the rabbit primary antibodies TAS2R14 (1:300) 

and TAS2R39 (1:300). Next, cells were washed and incubated with secondary antibody 

goat anti-rabbit Alexa Fluor® 488 (1:1000) at RT for 1h. Nuclei were stained with 

Hoechst 33342 (1:1000) for 10 min, and coverslips were placed on glass slides using 

fluorescence mounting medium (Dako, Germany). Images were then acquired on a 
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LSM710 confocal laser scanning microscope (Carl Zeiss) at a 63x magnification. 

Fluorescence images from at least three different experiments were processed using Zen 

software (Carl Zeiss). For all conditions, five to six regions of interest (ROIs) were 

captured, and the staining intensity of fluorescence was quantified.  

After WB and immunofluorescence assays, the optimal transfection conditions 

established were the following: 10 nM of siRNA (TAS2R14, TAS2R39 and scramble) for 

72h. These conditions were applied in Ca2+ imaging and permeation studies. 

5.3.7. Assessment of the role of TAS2R14 in the flow of resveratrol 

across the BCSFB 

5.3.7.1. Cell culture in inserts and assessment of paracellular 

permeability 

To determine if TAS2R14 regulates resveratrol flow across the BCSFB, we had to set up 

a proper model of the BCSFB using HIBCPP cells. For that, HIBCPP cells were plated in 

culture inserts (pore diameter 0.4 µm, 0.33 cm2; VWR, Portugal), as described previously 

[34,35]. Briefly, HIBCPP cells were seeded in the upper chamber at a density of 1.5 x105 

in culture inserts, in culture medium containing 10% of FBS. Culture medium was added 

to the lower chamber only two days after seeding. Paracellular permeability of HIBCPP 

layers was monitored through transepithelial electrical resistance (TEER) measurement, 

using an Epithelial-volt-ohm-meter (EVOM, World Precision Instrument, USA), every 

day from culture day 3, and culture medium was maintained with 1% FBS from day 4 

onwards. TEER values of blank inserts (without cells) were used as control values and 

subtracted to calculate the final TEER (Ω. cm2). 

In addition to TEER measurement, the paracellular flux of lucifer yellow was determined 

at the 8th day of cell culture. Briefly, culture inserts were transferred to a new plate, 

washed and incubated in KRB for 30 minutes, at 37 °C in a humidified atmosphere 

containing 5% CO2. Next, lucifer yellow (50 µM) dissolved in KRB was applied to the 

apical chamber of inserts, and only KRB was added to the basolateral chamber. After an 

incubation period of 60 minutes at 37 ºC, samples of apical and basolateral chambers 

were collected, and lucifer yellow concentration was measured with a SpectraMax 

Gemini spectrofluorometer (Molecular Devices) at excitation/emission wavelengths of 

398 nm/518 nm. The % of lucifer yellow in the basolateral chamber was calculated to 

estimate cell layer integrity. The establishment of HIBCPP layers under the culture 

conditions described before was also analyzed by occludin staining to visualise tight 

junctions (described in the next section). 
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5.3.7.2. Subcellular localization of TAS2R14 

Before assessing if TAS2R14 regulates the flow of resveratrol across the BCSFB, it was 

important to determine the TAS2R localization in the membrane of these cells. The 

localization of TAS2R14, whether in the basolateral or in the apical membrane was 

assessed by double staining with the ABCC1 transporter, that locates to the basolateral 

membrane of CP epithelial cells [5], or with the tight junction occludin that localizes 

between cells close to the apical membrane [34]. Briefly, HIBCPP cells were grown in 

culture filter inserts for 8 days and then washed with PBS, fixed with 4% PFA at RT for 

10 min, permeabilized and blocked for 1 hour with PBS containing 0.2% Triton X-100 

and 3% BSA. Next, cell inserts were cut out and transferred to a coverslip and cells were 

incubated with rabbit anti-TAS2R14 (1:300) combined with rat anti-ABCC1 (1:100) 

overnight at 4ºC. After that, cells were washed several times and incubated with 

secondary antibodies goat anti-rabbit Alexa Fluor® 488 (1:1000) and donkey anti-rat 

Cy3 (1:800) or mouse anti-occludin Alexa Fluor® 594 conjugated at RT for 1h. After 

wash, nuclei were stained with Hoechst 33342 (1:1000) for 10 minutes. For each 

condition, fluorescence z-stack images (0.5 m thickness) were acquired with a confocal 

LSM 710 Zeiss microscope using a 63x objective (Carl Zeiss, Germany). Image processing 

was conducted with Zen software (Carl Zeiss) and representative images, from at least 3 

different experiments, were selected for graphical presentation. Optical slice view was 

constructed from fluorescence samples and subcellular localization of TAS2R14 was 

compared to ABCC1 or occludin expression at the basolateral or apical membrane, 

respectively. 

5.3.7.3. Resveratrol permeation studies 

HIBCPP cells were seeded in culture inserts as previously described, and experiments 

were performed at the 8th day of culture at full-confluence, assessed following the 

protocol described in 5.3.7.1. First, the passage of resveratrol across HIBCPP cells was 

assessed at different time points (0, 2 and 3h) after incubation of cells with resveratrol. 

Briefly, culture medium was removed from the apical and basolateral chambers, cells 

were washed three times with KRB and allowed to equilibrate in this buffer for 30 

minutes at 37ºC, 5% CO2. Next, resveratrol (50 µM) in KRB was added to the basolateral 

chamber of culture inserts and only KRB was added to the apical side. After 0, 2 and 3h 

the media in the basolateral and apical chambers was collected, and samples were stored 

at -20 ºC for analysis of resveratrol levels by high-performance liquid chromatography 

(HPLC).  
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Then, the role of TAS2R14 in resveratrol transport was evaluated. For that, permeation 

assays were carried out as described above in mock-, siRNA scramble- or siRNA 

TAS2R14-transfected HIBCPP cells for 72h. Resveratrol (50 µM) in KRB was added to 

the basolateral side and samples from both chambers were collected after 3h for 

resveratrol measurement by HPLC. 

5.3.7.4. Measurement of resveratrol by HPLC   

A high-performance liquid chromatography system (HPLC) 1290 Infinity with a binary 

pump 1290 VL from Agilent Technologies (Soquimica, Lisboa, Portugal) was set to 

perform the chromatographic analysis coupled to diode array detection (DAD) carried 

with a 1290 DAD detector (Soquimica, Lisboa, Portugal). The chosen wavelength to 

detect resveratrol was 306 nm. Separation was achieved with a Zorbax Eclipse plus C18 

(1.8 μm, 2.1 × 50 mm i.d.) analytical column from Agilent Technologies (Soquimica, 

Lisboa, Portugal) with a guard column Zorbax Ecliple pluc C18 (1.8 μm, 2.1 × 5 mm i.d.) 

also from Agilent Technologies (Soquimica, Lisboa, Portugal). The HPLC-DAD worked 

on isocratic mode with a mobile phase composed by deionized water: acetonitrile: glacial 

acetic acid (66:33.9:0.1). Mobile phase rate was 0.5 mL/min and sampler and column 

temperatures were set to 4 and 35 °C, respectively. Chromatographic runtime was 5 min. 

The analysis was carried out according to the Food and Drug Administration guidelines. 

5.3.7.5. Effect of TAS2R14 activation on ABC transporters 

Based on the initial hypothesis, a way by which taste receptors might control cell 

trafficking of their ligands, could be through the regulation of ABC transporters. To test 

this hypothesis, we first analysed the role of basolateral ABC transporters ABCC1 and 

ABCC4 and apical transporter ABCG2 in resveratrol transport across the BCSFB. 

The functionality of ABC transporters in HIBCPP cells was assessed by analysing the cell 

accumulation of its known substrates ABCC1 - Calcein AM (0.1 µM), ABCC4 - FL-MTX 

(2 µM) and ABCG2 - Hoechst 33342 (1 µM). For that, cells were seeded in culture inserts 

to assess ABCC1 and ABCC4 function due to their basolateral localization, or in 96-well 

plates with a density of 3.2 x104 cells/well to analyse ABCG2 as described before [5], as 

this transporter is located at the apical membrane of cells. At the 8th day of culture, cells 

were washed three times with KRB and preincubated for 1h at 37 ºC, with or without 

their inhibitors; ABCC1 - reversan (10 µM), ABCC4 - ceefourin 1 (5 µM) or ABCG2 - 

Ko143 (100 nM). Next, cells were incubated with the substrates in the presence or 

absence of inhibitors for 2h at 37 ºC. Finally, cells were washed with ice-cold KRB and 
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lysed with 1% Triton X-100 in KRB for 30 minutes at 37 ºC. Calcein AM, FL-MTX and 

Hoechst 33342 accumulation in HIBCPP cells was analysed in a SpectraMax Gemini 

spectrofluorometer (Molecular Devices) at excitation/emission wavelengths of 490 

nm/520 nm, 490 nm/520 nm and 350 nm/480 nm, respectively.  

Then, the role of TAS2R14 and ABCC1, ABCC4 and ABCG2 in resveratrol transport was 

evaluated. For that, permeation assays were carried out as described above in mock-, 

siRNA scramble- or siRNA TAS2R14-transfected HIBCPP cells for 72h. Another group 

of cells was pre-incubated with or without ABCs inhibitors, reversan (10 µM), ceefourin 

1 (5 µM) and Ko143 (100 nM) for 1h at 37 ºC. In all experiments, resveratrol (50 µM) in 

KRB was added to the basolateral side and samples of both chambers were collected after 

3h. 

5.3.8. Effect of TAS2R14 activation on the expression and function of 

ABC transporters 

Besides ABC transporters function on resveratrol transport across the BCSFB, also 

TAS2R14 role in ABC transporters expression and function was analysed in HIBCPP 

cells. For that, at the end of the experiments performed in the previous section (2.4.5.), 

mock-, siRNA scramble- and siRNA TAS2R14-transfected cells in culture inserts were 

collected in TripleXtractor (Grisp Research Solutions, Portugal) for subsequent RNA 

extraction and ABC transporters expression analysis by real time RT-PCR. Moreover, 

ABC transporters function was evaluated through the analysis of their substrate’s 

accumulation in mock-, siRNA scramble- and siRNA TAS2R14-transfected cells as 

described below at the section 5.3.8.1. 

5.3.8.1. Analysis of the expression of ABC transporters by Real time 

RT-PCR 

Real time RT-PCR (RT-qPCR) was used to analyse the expression of ABC transporters 

(ABCC1, ABCC4 and ABCG2) after TAS2R14 activation by resveratrol. Total RNA was 

isolated from HIBCPP cells using TripleXtractor following the manufacturer’s 

instructions, and 500 ng of total RNA was reverse transcribed using a M-MLV Reverse 

Transcriptase (NZYTech, Ltd., Portugal). RT-qPCR reactions were carried out using 1 µL 

of cDNA synthesized in a 10 µL reaction mixture containing PowerUp™ SYBR™ Green 

and specific primers (Table 1) [5]. Glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH) was used as endogenous control. RT-qPCR was carried out in a 96-well plate 

(Thermo Fisher Scientific, USA) and amplification conditions used were 50 ºC for 2 
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minutes, 95 ºC for 2 minutes, and 40 cycles of 95 ºC for 15 seconds, 60 ºC for 15 seconds 

and 72 ºC for 1 minute. Fluorescence was measured after each cycle and displayed 

graphically (iCycles iQ Real-time detection System Software, Bio-Rad). The software 

determined the quantification cycle (Ct) values for each sample. Data collected from RT-

qPCR experiments and ABCC1, ABCC4 and ABCG2 relative expression was analysed 

using the formula 2-(ΔΔCt) [36]. 

Table 5. 1. Primer sequences used in real-time RT-qPCR. 

Gene Primer Fw (5’ – 3’) Primer Rv (5’ – 3’) AT 

ABCC1 CGACATGACCGAGGCTACATT AGCAGACGATCCACAGCAAAA 

60 ºC 
ABCC4 TGTGGCTTTGAACACAGCGTA CCAGCACACTGAACGTGATAA 

ABCG2 ACGAACGGATTAACAGGGTCA CTCCAGACACACCACGGAT 

GAPDH ATGGGGAAGGTGAAGGTCG GGGGTCATTGATGGCAACAATA 

Fw – forward; Rv – reverse; T – temperature. 

5.3.8.2. Analysis of the role of TAS2R14 on the function of ABC 

transporters  

The role of TAS2R14 activation in the functionality of ABC transporters in HIBCPP cells 

was assessed by analysing the cell accumulation of its known substrates ABCC1 - Calcein 

AM (0.1 µM), ABCC4 - FL-MTX (2 µM) and ABCG2 - Hoechst 33342 (1 µM) in mock-, 

siRNA scramble- and siRNA TAS2R14 transfected cells. ABCC1 and ABCC4 function was 

assessed using culture inserts and ABCG2 in 96-well plates, as described in the section 

5.3.7.5. Therefore, at the 8th day of culture, cells in the culture inserts and in the 96-well 

plates were washed three times with KRB and allowed to equilibrate for 30 minutes at 

37 ºC. Next, cells were incubated with the ABC substrates (Calcein AM, FL-MTX and 

Hoechst 33342) for 3h at 37 ºC, with or without resveratrol. Then, the cells were washed 

with ice-cold KRB and lysed with 1% Triton X-100 in KRB for 30 minutes at 37 ºC. 

Calcein AM, FL-MTX and Hoechst 33342 accumulation in HIBCPP cells was analysed in 

a SpectraMax Gemini spectrofluorometer (Molecular Devices) at excitation/emission 

wavelengths of 490 nm/520 nm, 490 nm/520 nm and 350 nm/480 nm, respectively.  

5.3.9. Statistical analysis 

Statistical analysis and comparison were performed using GraphPad Prism 7 software. 

Statistical significance of differences between two groups was determined by the student 

t-test, and for more than two groups it was used the one-way or two-way analysis of 
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variance (ANOVA) followed by Bonferroni´s post hoc test. Results are reported as mean 

± SEM and data were considered statistically significant at a value of p<0.05. 

5.4. Results 

5.4.1. Resveratrol elicited Ca2+ responses in HIBCPP cells via TAS2R14 

activation 

The activation of TAS2R14 and TAS2R39 in HIBCPP cells by resveratrol was evaluated 

by Ca2+ imaging. Prior to Ca2+ imaging assays, resveratrol cytotoxicity in HIBCPP cells 

was assessed by the MTT assay (Figure 5.1.A). Resveratrol (Figure 5.1.A) for all the 

concentrations tested no significant differences in cell viability were noticed in 

comparison with untreated or vehicle-only treated cells after 24h of incubation.  

Once the toxicity profile of this bitter compound was assessed, we proceeded to 

functional studies. As mentioned before, TAS2Rs activation upon ligand-binding triggers 

a cascade that leads to increased intracellular Ca2+ levels. Therefore, we analyzed the 

HIBCPP responses to resveratrol (25-250 µM) stimuli by Ca2+ imaging experiments 

(Figure 5.1.B). Ca2+ imaging assays were carried out in the presence of vehicle and 

compared to untreated cells to establish that Ca2+ responses observed were not related 

to vehicle concentration (data not shown). Moreover, Ca2+ variations were collected 

during 2 min before the stimuli to obtain a baseline (F0) that was used to normalize the 

responses obtained with the compounds. Only assays showing a uniform baseline, 

meaning without significant Ca2+ changes were analyzed. Resveratrol (Figure 5.1.B) 

elicited Ca2+ responses in a dose-dependent manner. HIBCPP cells treated with 

resveratrol stimuli above 50 µM showed a massive increase of Ca2+ levels (ΔF/F0= 0.961 

± 0.094) in comparison with vehicle treated cells (ΔF/F0= 0.1035 ± 0.004) (Figure 

5.1.B).  
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Figure 5. 1. Resveratrol elicited Ca2+ responses in HIBCPP cells. (A) The cytotoxicity of resveratrol was 
assessed in HIBCPP cells by the MTT assay. HIBCPP cells were treated for 24 h with different concentrations 
of resveratrol. Bar graphs represent mean ± SEM (N ≥ 3). Vehicle - cells treated with ≤ 0.25% DMSO. K+ - 
positive control. (B) Ca2+ dose–response curves obtained in HIBCPP cells in response to different 
concentrations of resveratrol (25–250 µM). Dot line – calcium levels measured in cells in response to vehicle 
DMSO ≤ 0.25%. Average response intensity, or intracellular Ca2+ variations were measured: (ΔF/F0) = 
((F340-F380)-F0)/F0, where F0 corresponds to fluorescence ratio of a 2 min baseline and F corresponds to 
the maximum peak of fluorescence ratio evoked by stimuli. Results are presented as the mean ± SEM (N ≥ 
4, independent experiments; ***p < 0.001; One-way ANOVA followed by Bonferroni’s post hoc test). 
 

Next, we investigated whether the Ca2+ response observed was dependent on TAS2R14 

or TAS2R39 activation. Previous studies showed that resveratrol binds TAS2R14 and 

TAS2R39 [37]. Therefore, specific activation of TAS2R14 and/or TAS2R39 by resveratrol 

was evaluated in Ca2+ imaging studies in HIBCPP cells after TAS2R14 or TAS2R39 siRNA 

silencing.  

TAS2R14 and TAS2R39 silencing was achieved by transfecting HIBCPP cells for 72h with 

10 nM of specific TAS2R14 or TAS2R39 siRNAs, respectively. Knockdown efficiency was 

assessed by WB and immunofluorescence experiments in mock- and siRNAs-transfected 

cells (Figure 5.2.). The protein expression of TAS2R14 and TAS2R39 decreased 

significantly in WB (Figure 5.2.A) and in immunofluorescent assays (Figure 5.2.B) in 

comparison with mock- and siRNA scramble-transfected cells. In addition, no significant 

differences were observed between mock-transfected cells and TAS2R14 or TAS2R39 

siRNAs alone, or scramble siRNA-transfected cells. These optimized silencing conditions 

were then applied in Ca2+ imaging assays. A similar effect of resveratrol was observed in 

untreated, mock- and siRNA scramble-transfected cells (Figure 5.2.C). On the other 

hand, TAS2R14 knockdown resulted in a decreased response to resveratrol in 

comparison to controls: 39.36 ± 12.19 % vs untreated, 39.27 ± 11.49 % vs mock- and 

39.06 ± 12.19 % vs siRNA scramble-transfected cells (Figure 5.2.). TAS2R39 knockdown, 

however, had no significant effect in the Ca2+ response to resveratrol in HIBCPP cells. 

Additionally, no significant differences were observed between control conditions 

(untreated, mock-, or scramble siRNA-transfected cells) in Ca2+ imaging assays. 
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Figure 5. 2. Ca2+ responses of HIBCPP cells to resveratrol is dependent on TAS2R14 expression. (A) WB 
analysis of TAS2R14 and TAS2R39 expression following siRNA transfection (72 h) in HIBCPP cells. Protein 
levels of both TAS2R14 and TAS2R39 decreased in siRNA TAS2R14- and siRNA TAS2R39-transfected cells 
in comparison with mock- and siRNA scramble-transfected cells. β-actin served as loading control. (B) 
Immunofluorescence analysis of TAS2R14 and TAS2R39 expression after siRNA transfection. HIBCPP cells 
immunoreactive to antibodies TAS2R14 and TAS2R39, after nuclei staining with Hoechst 33423 were 
observed and images obtained in confocal microscope. Quantification of TAS2R14 or TAS2R39 expression 
(green fluorescence) was performed in different regions of interest (ROIs) of images obtained from three 
independent experiments. Fluorescence intensity decreased in siRNA TAS2R14- and siRNA TAS2R39-
transfected cells in comparison to mock- and siRNA scramble-transfected cells. Scale bar – 10 µm. Graph 
bars indicates the mean ± SEM (N ≥ 3, independent cultures; *p < 0.05, **p < 0.01, ****p < 0.0001; One-
way ANOVA followed by Bonferroni’s post hoc test). (C) Ca2+ responses to resveratrol stimulus in HIBCPP 
cells transfected with TAS2R14 or TAS2R39 siRNAs. Intracellular Ca2+ levels were measured in HIBCPP 
cells transfected or mock-transfected for 72 h with TAS2R14 or TAS2R39 siRNA, or with scramble siRNA, 
after resveratrol (50 µM) stimulus. Graph bars indicate the mean ± SEM (N ≥ 4, independent cultures; *p < 
0.05; One-way ANOVA followed by Bonferroni’s post hoc test). For all the experiments, there were no 
significant differences between untreated cells and mock- or scramble siRNA-transfected cells. 

 

5.4.2. TAS2R14 localizes in the basolateral membrane of HIBCPP cells 

Ca2+ imaging assays showed that TAS2R14 is activated by resveratrol in HIBCPP cells. 

Thus, we tested whether this interaction occurs in the basolateral or apical membrane of 

HIBCPP cells, by determining the subcellular localization of this bitter taste receptor. 

These studies were performed after establishment of HIBCPP cell layers cultured in 

permeable filter culture inserts (pore 0.4 µm) mimicking BCSFB features, as previously 
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described [5,34,35]. Barrier properties were evaluated through the measurement of 

TEER, evaluation of lucifer yellow flux and analysis of the expression of the tight junction 

protein occludin (Figure 5.3.). 

 

 

Figure 5. 3. Establishment of a barrier of HIBCPP cells. The barrier properties of HIBCPP cells were 
evaluated through the measuring of the parameters: (A) TEER values were measured in HIBCPP culture 
from the 3rd to 8th day of culture. TEER values increased along culture time reaching maximum levels on 7 
or 8th day of culture. (B) Paracellular permeability was evaluated analysing the Lucifer yellow flux through 
the HIBCPP cells’ barrier at the 8th day of culture. After incubating HIBCPP cells with Lucifer yellow for 1 
h, low paracellular flux was observed with only 2.029 ± 0.625% of the tracer being detected in the basolateral 
chamber. (C) The formation of tight junctions and polarization of HIBCPP cells was also analysed by occludin 
staining, that showed a continuous pattern of apical localization. Together, this data indicates a high 
tightness of the HIBCPP layers, mimicking the BCSFB. 

Then, the subcellular localization of TAS2R14 was analyzed by confocal microscopy, 

comparing to the basolateral localization of the ABCC1 transporter (Figure 5.4.A) and to 

the apical thigh junction occludin (Figure 5.4.B) [5]. Double staining of TAS2R14 (Figure 

5.4Ai) and ABCC1 (Figure 5.4Aii) in HIBCPP cells showed an overlap in the expression 

of both proteins (Figure 5.4Aiii). On the other hand, TAS2R14 co-staining with occludin 

did not provide evidences of existing co-localization (Figure 5.4Bii). Indeed, occludin 

staining (Figure 5.4Biii) was not observed in the same z-plane as TAS2R14 (Figure 5.4Bi). 

 

Figure 5. 4. TAS2R14 localizes at the basolateral membrane of HIBCPP cells. Subcellular localization of 
TAS2R14 in the basolateral or apical membrane of HIBCPP cells was analysed by confocal microscopy. 
HIBCPP cells were stained with rabbit polyclonal antibody to TAS2R14 (green) followed by a rat polyclonal 
antibody to ABCC1 (red) (A) or a monoclonal antibody to occludin (red) (B). Nuclei were stained with 
Hoechst 33423 (blue). At the same z-stack plane, TAS2R14 expression (Ai) overlaps with ABCC1 (Aii) 



Characterization of bitter taste receptors expression and function in the human blood-cerebrospinal fluid barrier 
 

 

 

Ana Catarina Duarte 

 

 

174 

indicating a basolateral localization of TAS2R14 (Aiii). Contrarily, double staining with TAS2R14 and 
occludin does not show colocalization. In the same z-stack plane of TAS2R14 expression (Bi) and when 
merging both signals (Bii), occludin expression is not observed. However, in a different z-stack plane (more 
apical) occludin staining becomes evident but does not merge with TAS2R14 (Eiii). Scale bar – 10 µm. 

5.4.3. The permeability of HIBCPP cells to resveratrol is dependent on 

TAS2R14 activation at the basolateral membrane 

The knowledge regarding resveratrol ability to cross brain barriers and to permeate the 

brain is still scarce, despite its therapeutic potential. We further explored whether the 

human BCSFB could be a gateway for resveratrol into the CNS and what are the 

mechanisms underlying its trafficking across HIBCPP cells. In fact, subcellular 

localization of TAS2R14 expression at the basolateral membrane of HIBCPP cells gave 

further support to the hypothesis that this receptor could be involved in the passage of 

resveratrol from the bloodstream into the CSF. To address this possibility, resveratrol 

permeation studies were performed in this in vitro BCSFB model, to evaluate if TAS2R14 

silencing would affect the ability of resveratrol to cross the barrier from the basolateral 

to the apical side (Figure 5.5.A). Permeation assays with resveratrol were carried out at 

three different time-points (0, 2 and 3h) adding resveratrol at 50 µM to the basolateral 

chamber, and then, collecting samples from the apical and basolateral chambers to 

measure resveratrol levels by HPLC. At time 0h, resveratrol was not detected at the apical 

chamber of culture inserts. After 2h and 3h, resveratrol was already detectable in the 

apical chamber, providing evidence that it was able to cross the barrier formed by 

HIBCPP cells (Figure 5.5.B). Additionally, resveratrol levels in the apical chamber after 

3h (13.43 ± 0.87 µM) were two times higher than after 2h (6.40 ± 1.05 µM) (Figure 5.5.B). 

Furthermore, the total levels of resveratrol in both chambers after the experiment were 

also evaluated (Figure 5.5.C). No significant differences in total resveratrol levels were 

found between 2h (33.76 ± 2.37 nmol) and 3h (33.52 ± 1.40 nmol) of incubation (Figure 

5.5.C). However, in comparison with the initial levels of resveratrol (50 µM or 50 nmol), 

there was some retention of this compound in cells or culture inserts.  
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Figure 5. 5. Resveratrol transport across HIBCPP cells depends on TAS2R14 expression. (A) Schematic 
presentation of the experimental setup for resveratrol permeation assays in HIBCPP cells. At the 7-8th day 
of culture, resveratrol (50 µM) was added to the basolateral chamber, and after 2 h or 3 h the medium in the 
basolateral and apical chambers were collected, and resveratrol levels analyzed by HPLC. In addition, 
resveratrol was also measured after TAS2R14 knockdown by siRNA transfection. (B) Accumulation of 
resveratrol in the apical chamber occurred in a time dependent manner (**p = 0.0021). Graph bars indicate 
the mean ± SEM (N = 3, **p < 0.01; Student T-test unpaired). (C) Resveratrol accumulation/retention in 
HIBCPP cells or culture inserts membrane was low and did not depend on incubation time. Resveratrol 
accumulation on the apical side decreased in TAS2R14 knockdown cells (D) but did not change in the 
basolateral side (E). (F) The sum of resveratrol in both compartments was reduced in TAS2R14 silenced 
cells. Graphs indicate the mean ± SEM (N > =5; *p < 0.05, **p < 0.01 vs mock-transfected cells; #p < 0.05 
vs siRNA scramble-transfected cells; One-way ANOVA followed by Bonferroni’s post hoc test). 

As resveratrol is a TAS2R14 ligand, we evaluated the possible involvement of TAS2R14 

in the passage of resveratrol across the BCSFB. Thus, we silenced TAS2R14, as described 

before, and compared resveratrol transport of controls (mock- and siRNA scramble-

transfected cells) with cells silenced for TAS2R14. Silencing of TAS2R14 resulted in a 

reduction in resveratrol accumulation of 5.83 µM (57.33 ± 14.03%) and 3.60 µM (42.12 

± 14.46%) in the apical chamber in comparison with mock- and siRNA scramble- 

transfected cells, respectively (Figure 5.5.D). No differences were observed in resveratrol 

levels at the basolateral chamber (Figure 5.5.E). Additionally, we compared the total 

levels of resveratrol in the apical and basolateral chambers to assess resveratrol 

accumulation in cells during the assays with TAS2R14 knockdown (Figure 5.5.F). After 

3h of incubation with resveratrol (50 nmol), our results show that total levels of 

resveratrol detected in both chambers in mock-transfected cells were 39.54 ± 2.73 nmol 
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(Figure 5.5.F), indicating low accumulation of resveratrol by HIBCPP cells. However, the 

levels of resveratrol found, after silencing TAS2R14, in the basolateral chamber and 

apical chambers decreased to 28.36 ± 3.30 nmol suggesting increased cellular 

accumulation of resveratrol by HIBCPP cells. 

5.4.4. ABCC1, ABCC4 and ABCG2 modulate resveratrol transport in 

HIBCPP cells 

Our observation of resveratrol accumulation at the apical side raised the possibility that 

this could be occurring by facilitated transport via the action of ABC transporters. Thus, 

we analysed the functionality of ABCC1, ABCC4 and ABCG2 in HIBCPP cells. Specific 

inhibitors of each transporter were selected, and inhibition of their function was analysed 

by measuring the cellular accumulation of known ABCC1, ABCC4 and ABCG2 substrates 

(Figure 5.6.). We used the following ABCC1, ABCC4 and ABCG2 substrates: Calcein AM 

(0.1 µM), FL-MTX (2 µM) and Hoechst 33342 (1 µM), respectively. Our results showed 

Calcein AM accumulation in HIBCPP cells in the presence of the ABCC1 inhibitor 

reversan (10 µM) (Figure 5.6.A), as well as FL-MTX in the presence of Ceefourin 1 (5 

µM), a specific inhibitor of ABCC4 (Figure 5.6.B). Moreover, Hoechst 33342 

accumulation in HIBCPP cells also increased significantly after incubation with the 

ABCG2 inhibitor Ko143 at 100 nM (Figure 5.6.C). Therefore, these results indicate that 

inhibition of ABCC1, ABCC4 and ABCG2 was achieved at each of the conditions used. 

 

Figure 5. 6. Evaluation of ABCC1, ABCC4 and ABCG2 function in HIBCPP cells. The cellular accumulation 
of specific substrates for ABCC1, Calcein AM (0.1 µM) (A), ABCC4, FL-MTX (2 µM) (B) and ABCG2, Hoechst 
33342 (1 µM) (C) was evaluated after 2 h of incubation, in the presence (+) or absence (-) of specific inhibitors 
reversan-ABCC1 (10 µM), Ceefourin 1-ABCC4 (5 µM) and Ko143-ABCG2 (100 nM). Graph bars indicate the 
mean ± SEM (N ≥ 3; *p < 0.05, **p < 0.01; Student T-test unpaired). FL- fluorescein, MTX – methotrexate. 

Then, we explored whether ABC transporters are involved in resveratrol transport across 

HIBCPP cells, also with the same type of permeation studies in HIBCPP cells. Prior to 

incubation with resveratrol for 3h, a pre-treatment of 1h was performed with each ABC 

inhibitor (ABCC1 - reversan, ABCC4 - ceefourin 1 or ABCG2 - Ko143) by adding each one 

to basolateral and apical chambers (Figure 5.7.A). In the presence of each ABC inhibitor 
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resveratrol levels decreased in both the apical (Figure 5.7.B) and basolateral (Figure 

5.7.C) chambers. In the apical chamber resveratrol accumulation decreased: 6.34 µM 

(69.95 ± 14.35%) with reversan, 7.45 µM (74.03 ± 15.42%) with Ceefourin 1 and 7.04 µM 

(62.94 ± 14.35%) with Ko143 in comparison with control cells (Figure 5.7.B). In the 

donor (basolateral) chamber, Ceefourin 1 reduced resveratrol levels by 22.84 µM (58.81 

± 9.52%) when compared with control cells. Further, in the basolateral side, reversan 

and Ko143 reduced resveratrol levels by 11.82 µM (37.12 ± 9.52%) and 13.52 µM (34.81 

± 8.83%) in comparison to control cells, respectively (Figure 5.7.C). Additionally, 

inhibition of ABCC1, ABCC4 or ABCG2 also decreased total levels of resveratrol (apical 

+ basolateral), which corresponded to 26.69 ± 3.28, 13.90 ± 2.41 or 24.64 ± 2.29 nmol, 

respectively, in comparison to 39.55 ± 3.10 µM of resveratrol found in controls (Figure 

5.7.D). The enhancement of cellular accumulation of resveratrol after inhibition of 

ABCC1, ABCC4 and ABCG2 suggest that all these transporters are involved in resveratrol 

efflux in CP epithelial cells. 

 

 

Figure 5. 7. ABCC1, ABCC4 and ABCG2 participate in resveratrol transport across HIBCPP cells. (A) 
Schematic presentation of the setup of resveratrol permeation assays in HIBCPP. HIBCPP cells were pre-
treated for 1 h with or without ABC specific inhibitors: reversan-ABCC1 (10 µM), Ceefourin 1-ABCC4 (5 µM) 
and Ko143-ABCG2 (100 nM) (added to both chambers), followed by an incubation for 3 h with resveratrol 
(50 µM). After the permeation experiments, resveratrol levels were evaluated in apical (B), basolateral (C) 
and both chambers (D). In the presence of each ABC inhibitor, resveratrol levels decreased in the apical 
and/or basolateral chambers. Graphs indicate the mean ± SEM (N > =5; *p < 0.05, **p < 0.01, ***p < 0.001, 
****p < 0.0001 vs control; One-way ANOVA followed by Bonferroni’s post hoc test). 
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5.4.5. Resveratrol modulates ABCC1, ABCC4 and ABCG2 expression, 

an effect dependent on TAS2R14 expression  

Permeation assays indicated that TAS2R14 regulates resveratrol transport across 

HIBCPP cells as resveratrol accumulation at the apical chamber decreased in TAS2R14 

knockdown cells. Resveratrol levels at the apical chamber also decreased after ABCC1, 

ABCC4 and ABCG2 inhibition. This suggested a possible role of TAS2R14 and/or 

resveratrol in modulating the expression of these ABCs and their function. To further 

understand the mechanisms involved in this transport, we investigated the effects of 

TAS2R14 knockdown and resveratrol on the expression of ABCC1, ABCC4 and ABCG2.  

We observed that TAS2R14 knockdown by itself did not change ABCC1 expression, 

unless siRNA TAS2R14-transfected cells were incubated with resveratrol treatment (50 

µM). In this situation ABCC1 expression decreased 51.96 ± 14.65 %, while no differences 

were observed in mock- or siRNA scramble-transfected cells (Figure 5.8.A). Silencing 

TAS2R14 increased ABCC4 expression in comparison with mock- and siRNA scramble-

transfected cells (Figure 5.8.B) in the absence of resveratrol, however resveratrol 

treatment in TAS2R14 knockdown cells decreased ABCC4 expression, reversing the 

effect observed in siRNA TAS2R14-transfected cells without resveratrol treatment 

(Figure 5.8.B). On the other hand, resveratrol increased ABCG2 expression in mock- and 

siRNA scramble-transfected cells, but not in siRNA TAS2R14-transfected cells (Figure 

5.8.C), suggesting that the resveratrol induction of ABCG2 expression is dependent of 

TAS2R14 activation.  
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Figure 5. 8. Resveratrol modulates ABCG2 expression and function by a mechanism dependent of TAS2R14 
expression. ABCC1 (A), ABCC4 (B) and ABCG2 (C) expression was analyzed by RT-qPCR in mock- and 
siRNA scramble/TAS2R14-transfected cells in the presence or absence of resveratrol (50 µM). Additionally, 
also accumulation of ABC’s substrates Calcein AM-ABCC1 (0.1 µM), FL-MTX-ABCC4 (2 µM) and Hoechst 
33342-ABCG2 (1 µM) was analysed in mock-, siRNA scramble- and siRNA TAS2R14-transfected HIBCPP 
cells in the presence or absence of resveratrol (50 µM) for 3 h. Graphs indicate the mean ± SEM (N > =3; *p 
< 0.05, **p < 0.01, ***p < 0.001 vs cells without resveratrol; #p < 0.05, ##p < 0.01, ###p < 0.001 vs mock- 
and siRNA scramble-transfected cells; Two-way ANOVA followed by Bonferroni’s post hoc test). RES – 
resveratrol. 

5.4.6. Resveratrol modulates ABCC4 and ABCG2 efflux activity, an 

effect dependent of TAS2R14 expression  

In our previous experiments we observed that the effects of resveratrol on the expression 

of ABCC1, ABCC4 and ABCG2 in HIBCPP cells were modulated by TAS2R14, raising the 

hypothesis that the effect of resveratrol on the activity of these transporters could also be 

mediated by this receptor. Thus, we explored the effects of resveratrol on the function of 

ABCC1, ABCC4 and ABCG2 efflux activity by analysing the cellular accumulation of 

Calcein AM, Fl-MTX and Hoechst 33342 in mock-, siRNA scramble- and siRNA 

TAS2R14-transfected HIBCPP cells. Regarding ABCC1 activity, Calcein AM 

accumulation in HIBCPP cells was similar for all the conditions tested, and therefore 

neither resveratrol or TAS2R14 seem to affect ABCC1 efflux of Calcein AM (Figure 5.8.D). 

Conversely, Fl-MTX accumulation in HIBCPP cells decreased in siRNA TAS2R14-

transfected HIBCPP cells treated with resveratrol in comparison with mock- (44.83 ± 

15.58 %) and scramble-transfected cells (41.14 ± 15.58 %) treated with resveratrol, but 

also with untreated siRNA TAS2R14-transfected cells (41.88 ± 13.49 %) (Figure 5.8.E). 

Concerning Hoechst 33342, ABCG2 substrate, its accumulation increased in siRNA 

TAS2R14-transfected cells treated with resveratrol in comparison with mock- (60.44 ± 



Characterization of bitter taste receptors expression and function in the human blood-cerebrospinal fluid barrier 
 

 

 

Ana Catarina Duarte 

 

 

180 

19.6 %) and siRNA scramble-transfected cells (51.87 ± 18.15 %) also treated with 

resveratrol (Figure 5.8.F). Therefore, our results indicate that resveratrol modulates 

ABCC4 and ABCG2 activity in HIBCPP cells dependently of TAS2R14 expression, but not 

ABCC1 activity. 

5.5. Discussion 

The BCSFB at the CP performs a critical role in the CNS homeostasis by regulating the 

molecular exchanges between the bloodstream and the CSF. The mechanisms operating 

at the BCSFB that are responsible for the maintenance of a homeostatic environment 

comprise several influx and efflux transporters, as well as detoxifying enzymes [2]. 

Upstream regulators of these transporters, however, are still poorly studied. Previously, 

we have identified several taste receptors in the rat CP [26]. The TR2, a class of taste 

receptors specialised in the detection of bitter compounds, are expressed in a wide range 

of extra-oral organs and tissues and can be activated by several natural or synthetic 

compounds [32,38,42,43]. Despite the growing evidence of TR2 roles in non-gustatory 

tissues, in the CP, functions of TR2 remain to be elucidated. In the present study, we 

proposed that a function of TAS2Rs could be that of upstream regulators of efflux 

transporters expressed at the human CP epithelial cells. To explore this hypothesis, we 

analysed the function of TAS2R14 and TAS2R39, previously reported in human CP 

samples and in the HIBCPP cell line to be activated by several ligands . Next, we 

evaluated their response to resveratrol that elicited an increase in intracellular Ca2+ in 

these cells. Based on the stronger stimulus exerted by resveratrol on these cells and on 

the indication that TAS2R14 mediated the response of these cells to resveratrol, we 

further explored the role of this receptor in the transport of resveratrol across the human 

CP epithelial cells. The interest in exploring the transport of resveratrol across the human 

CP epithelial cells was also raised by its intrinsic properties.  

Resveratrol is a natural polyphenol that has been extensively studied regarding its 

potential as a therapeutic agent. It might be an important co-adjuvant in AD treatment 

by reducing oxidative stress and counteracting Aβ toxicity. Additionally, resveratrol co-

administration with L-DOPA, that is used in Parkinson’s disease treatment, enhanced 

the anti-inflammatory effects of L-DOPA [44]. Furthermore, resveratrol also has 

anticancer effects (reviewed in [45,46]). In glioblastoma cells, combination of resveratrol 

and the anticancer drug paclitaxel showed a synergic interaction improving the 

anticancer effects of paclitaxel [47]. Despite all the evidences of neuroprotective effects 

of resveratrol, its low bioavailability is still a great limitation to its successful use as co-

adjuvant in the therapy of neurologic diseases [48–51]. Thus, it is critical to explore the 
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mechanisms associated with its transport into the CNS. Previous studies demonstrated 

that resveratrol reaches the brain of rodents [49] and humans [50], probably by crossing 

the BBB. However, these evidences were only based on resveratrol detection, at low 

levels, in the brain, which indeed indicates that resveratrol must be able to cross brain 

barriers. 

Interestingly, the CP was identified as one of the principal sites for resveratrol binding 

on the brain through quantitative autoradiographic studies, suggesting that the CP might 

play an important role in resveratrol uptake into the brain [52]. However, since the 

report by Han and colleagues [52] back in 2006, no further studies approached this 

subject. The binding of resveratrol by TAS2Rs was previously described by Roland and 

colleagues [37] in a study conducted to analyse the ability of several phenolic 

compounds, such as flavonoids and isoflavones, to activate TAS2R14 and TAS2R39 in 

the human HEK293 cell line. Interestingly, resveratrol was able to bind both TAS2R14 

and TAS2R39 [37]. Considering these data, we investigated TAS2R14 and TAS2R39 

activation by resveratrol, in HIBCPP cells, and observed that resveratrol induced 

intracellular Ca2+ responses in a dose-dependent manner. Moreover, we observed that 

this response was dependent on TAS2R14 activation, but not on the activation of 

TAS2R39, suggesting that TAS2R14 binds resveratrol in human CP epithelial cells rather 

than TAS2R39. The preferential binding of resveratrol to TAS2R14 instead of TAS2R39 

might be explained by differences in the concentration of resveratrol required to activate 

each receptor, and/or on the basal levels of each receptor in this cell model. Actually, in 

our previous analysis regarding TAS2Rs expression profile in this in vitro model of the 

human BCSFB we detected TAS2R14 and TAS2R39 expression, where TAS2R14 

expression was three times higher than TAS2R39. Moreover, Roland and colleagues [37] 

reported that resveratrol has a threshold value of 16 µM for TAS2R14, and of 63 µM for 

TAS2R39, in HEK293 cells. Since we analyzed TAS2R14 and TAS2R39 activation by 

resveratrol at the concentration of 50 µM in Ca2+ assays, which is below the threshold 

value reported to TAS2R39, our results seem to be in accordance to those previous 

observations.  

Our data in culture inserts show that resveratrol crosses HIBCPP cells, from the 

basolateral to the apical side. Supporting the hypothesis that resveratrol might enter the 

CNS at the BCSFB and not exclusively at the BBB as previously thought. After confirming 

the ability of resveratrol to cross human CP epithelial cells, we explored the putative role 

of TAS2R14 in resveratrol transport, and we found that silencing TAS2R14 the 

resveratrol levels decreased at the apical side. At this stage, our results indicated that the 
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presence of TAS2R14 at the BCSFB plays an essential role in enabling the access of 

resveratrol to the CSF. 

Another important issue to disclose is the transport of resveratrol mechanisms at the 

BCSFB. Despite the few data related to resveratrol transport and metabolism in the CNS, 

it was already known that passive diffusion and facilitated transport are possible routes 

of entry of resveratrol across CP cells [56]. More than a decade ago, resveratrol was 

described as a substrate of ABCG2 [57]. Subsequently, ABCC2 and ABCG2 were also 

implicated in the transport of resveratrol in the intestine [58–60] and kidney [61]. On 

the other hand, resveratrol seems to regulate some ABC transporters expression and 

function [62], although this function is dependent of the tissue analysed. In rat kidney, 

resveratrol upregulated ABCG2 [61], but in Caco-2 cells downregulated ABCB1, ABCC1, 

ABCG2 [63] and ABCC2 [64,65]. Consequently, resveratrol can enhance the delivery of 

therapeutic compounds that are substrates of ABC transporters, such as doxorubicin 

[63–66] and MTX [61,65]. In our study we focused on resveratrol transporters that are 

expressed in CP epithelial cells. We found that inhibition of ABCC1, ABCC4 and ABCG2, 

whose expression and function was previously demonstrated at the HIBCPP cells [5], 

decreased both basolateral and apical accumulation of resveratrol thus confirming their 

implication in enabling resveratrol across CP cells. As mentioned before, resveratrol 

itself might have an impact on the overall function and expression of its transporters 

[61,63,65–68]. To address this possibility, we evaluated resveratrol effects in the 

expression of ABCC1, ABCC4 and ABCG2 in controls and siRNA TAS2R14-transfected 

cells. Interestingly, resveratrol only upregulated the expression of ABCG2, but this effect 

was reverted after TAS2R14 knockdown, suggesting an upregulation of ABCG2 mediated 

by TAS2R14. Resveratrol had no effect on the expression of ABCC1 or ABCC4. However, 

reduced ABCC1 expression was observed in TAS2R14 knockout cells but only upon 

resveratrol treatment. In opposition, ABCC4 expression was higher in TAS2R14 

knockout cells than in controls. Concurrently the effect of resveratrol on the function of 

these three transporters was observed in ABCC4 and ABCG2. When TAS2R14 was 

silenced, resveratrol lead to a decreased accumulation of FL-MTX, ABCC4 substrate, and 

increased accumulation of the ABCG2 subtract Hoechst 33342 in HIBCPP cells, 

demonstrating that resveratrol affects the expression and the function of its transporters. 

In the literature, ABCG2 is the transporter most often implicated in resveratrol 

transport. Resveratrol and other polyphenols decreased ABCG2 transport capacity and 

activity resulting in increased cellular accumulation of known ABCG2 substrates [67]. 

Regarding resveratrol effects on ABCG2 expression levels, El-Sheik and colleagues [61] 

reported an upregulation in rat kidney after resveratrol administration, which is in 
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accordance with our results. In opposition, in Caco-2 cells, a cell line derived from the 

intestine, resveratrol treatment decreased the mRNA expression of ABCB1, ABCC1 and 

ABCG2 [63]. ABCG2 is commonly associated with the resistance to cancer therapies, 

since many chemotherapeutic agents are known substrates of this transporter [69]. In 

the BBB, ABCG2 localizes at the luminal side of endothelial cells which faces to the 

bloodstream, where it restrains the access of the chemotherapeutic drugs to the CNS 

[69,70]. In the BCSFB, ABCG2 localizes at the apical membrane of CP epithelial cells 

facing the CSF [71,72]. Therefore, ABCG2 expression at the human CP epithelial cells 

should facilitate the transport of substances from blood to the CSF [73]. Our results 

showing that resveratrol enhanced ABCG2 expression in CP epithelial cells indicate that 

this compound might increase the efflux of anti-cancer drugs into the CSF, probably by 

TAS2R14 activation.  

ABCC1 and ABCC4 are both expressed in the basolateral membrane of CP epithelial cells, 

where they impair noxious substances to reach the CNS and extrude endogenous 

metabolic waste products from the CSF to the blood [2]. Noteworthy, ABCC1 has been 

linked to the clearance of Aβ peptide [74,75]. Concerning ABCC4 function in the CP 

epithelial cells, it has been reported that mice lacking ABCC4 expression showed 

increased brain and CSF accumulation of the chemotherapeutic drug topotecan [76]. 

Thus, all the transporters analysed in our study play an important role in the ability or 

inability of certain molecules, such as chemotherapeutic drugs, to reach the CNS, but 

also in the clearance of noxious compounds, such as Aβ. Therefore, the regulation control 

of ABCC1, ABCC4 and ABCG2 expression and of their activity would have serious impact 

in the CNS function. Overall, our data showed that resveratrol interacts with transporters 

at the human CP epithelial cells, as observed before in other tissues, and the expression 

of TAS2R14 seems to be critical for resveratrol effects on ABC transporters observed in 

CP epithelial cells.  
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6.1. Concluding Remarks  

Despite all the efforts, brain drug delivery is still a great challenge mostly because most 

drugs have a limited capacity to cross brain barriers to reach the CNS. Although it is 

known that the efflux transporters at brain barriers play a critical role in this selective 

permeability, the upstream mechanisms that control these transporters are still poorly 

understood. 

In the last years, several reports indicate that some bitter compounds display 

uncountable health beneficial effects including neuroprotective and anti-tumoral 

activities, underscoring their potential as candidates to treat CNS disorders. However, 

the low bioavailability of bitter compounds’ in the brain is an obstacle to their therapeutic 

application. Interestingly, bitter compounds bind to TR2 in a wide range of organs and 

tissues triggering cellular responses related with different biological processes, which 

seem to be organ and tissue specific. 

Recently, our research group reported that there are functional TRs in the rat CP, 

including TR2, and the downstream effectors of the taste signalling pathway. Thus, as a 

starting point for this thesis it was hypothesized that TR2 in the CP could act as upstream 

regulators of transport and detoxification systems harbored at the BCSFB. Taking this 

into account, this thesis intended to characterize the expression and function of TAS2Rs 

in the human BCSFB. 

In the first original article presented in this thesis (Bitter taste receptors profiling in the 

human blood-cerebrospinal fluid barrier) the mRNA expression of 13 TAS2Rs was 

confirmed. Among them, TAS2R4, TAS2R5, TAS2R14 and TAS2R39 were chosen for 

protein analysis, which confirmed their presence in CP sections from men and women 

and in HIBCPP cells. Additionally, the expression of the expression of downstream 

effector proteins GNAT3, PLCβ2 and TRPM5 was also detected in HIBCPP cells, 

providing strong evidence that the bitter taste signalling is present in human BCSFB. 

Interestingly, the TAS2R with higher protein levels in HIBCPP cells, the TAS2R14, is also 

the one with more known ligands. This receptor can interact with phenolic compounds, 

flavonoids, and several therapeutic drugs. TAS2R39 is the second TAS2R member with 

more known ligands, sharing several of them with TAS2R14. On the other hand, TAS2R4 

and TAS2R5 are activated by a more restrict number of ligands. Despite this, all these 

four TAS2Rs interact with compounds that show neuroactive properties. For example, 

resveratrol and epigallocatechin gallate bind to TAS2R14 and TAS2 R39; haloperidol and 
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quercetin bind to TAS2R14; arborescin and dapsone bind to TAS2R4; epicatechin binds 

to TAS2R4 and 5; and parthenolide binds to TAS2R4 and TAS2R14 among other 

TAS2Rs. 

Taking this into account, some of these bitter compounds (chloramphenicol, haloperidol, 

and quercetin) were selected to analyze the functionality of bitter taste signaling in 

HIBCPP cells. The obtained results showed that all these compounds can elicited calcium 

responses in HIBCPP cells. Moreover, it was also demonstrated that chloramphenicol 

and quercetin specifically activate TAS2R39 and TAS2R14, respectively. 

This work demonstrated for the first time that human CP epithelial cells express key 

members of the taste signalling pathway, the TAS2Rs and downstream effector proteins. 

Moreover, the HIBCPP cell line can be used as a reliable in vitro model of the BCSFB to 

investigate TAS2Rs functions. Until now, the bitter taste signalling had been only 

reported in mouse and rat CP [1,2]. Moreover, it is worth noticing that despite some 

homology, the TR2 in human and rodents differ in number and amino acids composition. 

There are 25 TR2 in humans and 34 in rodents. Given the potential of TAS2Rs as 

potential therapeutic targets, it is of major importance to study these receptors in human 

models. 

The preliminary screening for TAS2Rs on the HIBCPP cells indicated that the TAS2Rs 

can modulate cellular responses. Such data suggest that the TAS2Rs in the BCSFB might 

be targeted by many therapeutic drugs for the treatment of CNS diseases, and thus 

TAS2Rs might regulate the access of these chemicals to the brain. Otherwise, as observed 

in other non-gustatory organs, TAS2Rs at the human CP may also play an important role 

in the regulation of downstream cellular events triggered by their cognate bitter ligands. 

Resveratrol is probably the most studied bitter compound and shows a remarkable 

therapeutic potential in brain disorders. Several studies show that resveratrol improves 

cognitive and memory performance and decreases Aβ levels in AD mouse models [3,4]. 

In addition, resveratrol has also therapeutic potential to treat stroke. This has been 

demonstrated in different in vivo studies where resveratrol administration decreased the 

damaged area and cell apoptosis, and increased angiogenesis [5–8]. Anti-cancer activity 

of resveratrol in brain tumors such as glioblastoma as also been demonstrated [9,10].  

However, little is known about its transport across brain barriers.  

Therefore, in the second original article (The bitter taste receptor TAS2R14 regulates 

resveratrol transport across the human blood-cerebrospinal fluid barrier) we aimed to 
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explore the role of TAS2Rs in the transport of resveratrol across the human BCSFB. 

Firstly, we demonstrated that TAS2R14 is activated by resveratrol in HIBCPP cells using 

calcium functional assays. Then, we showed that TAS2R14 is localized in the basolateral 

membrane of HIBCPP cells what suggests that it senses compounds that are present in 

the bloodstream, which is the case of resveratrol, that upon ingestion or other forms of 

administration circulates in the blood stream. However, as resveratrol also appears in 

the CSF, we hypothesized that TAS2R14 could control its transport from the periphery 

to the brain. Accordingly, permeation studies confirmed resveratrol transport across 

HIBCPP cells from the basolateral to the apical side, and importantly, this transport 

depended on TAS2R14 expression. 

In addition, previous studies reported resveratrol as a substrate of some ABC 

transporters which are also expressed in human CP epithelial cells. As already discussed, 

ABC transporters play a critical role in the human BCSFB for brain homeostasis, allowing 

the clearance of deleterious compounds such as Aβ by ABCC1, but also restrain the brain 

delivery of certain chemicals and drugs, including the chemotherapeutic topecan that is 

effluxed by ABCC4 in CP epithelial cells. In our work, we found that resveratrol transport 

across HIBCPP cells is mediated by ABCC1 and ABCC4 in the basolateral membrane, and 

by ABCG2 at the apical membrane. Moreover, resveratrol increased ABCG2 expression 

and activity via TAS2R14, a transporter commonly associated to drug resistance. 

Thus, in this second original article we confirmed that resveratrol is transported into the 

brain, through the human BCSFB via ABC transporters, whose expression and activity is 

modulated by TAS2R14 activation. 

Over the last years, the neuroactive potential of resveratrol has been demonstrated by 

several studies. However, the translation of resveratrol-based therapies to the treatment 

of CNS disorders has been hindered because resveratrol transport mechanisms across 

the brain barriers remained unclear. Therefore, our findings showed that resveratrol 

crosses the human BCSFB and accumulates in the CSF, which supports the application 

of these type of therapies providing more insights in the drug interaction with the brain 

barriers. Moreover, we provide for the first-time evidences of TAS2Rs functions, 

particularly of TAS2R14, in the human BCSFB. The expression of TAS2R14 in human CP 

epithelial cells allowed the transport of resveratrol across the human BCSFB and 

mediated resveratrol effects in the expression and activity of ABCG2, an important efflux 

transporter. 
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Overall, the results presented in this doctoral thesis demonstrate that TAS2Rs are 

expressed in the human BCSFB and that TAS2R14 acts as an upstream regulator of the 

activity of efflux transporters in this barrier. Moreover, we expect that the work here 

presented can be useful in the future to understand the interaction of other promising 

molecules for CNS therapies with the BCSFB, and thus improve their uptake to the brain. 

 

6.2. Future Trends 

Beyond the scientific advances achieved with the experimental work carried out in this 

thesis, several new avenues for disentangling the complexity of chemical sensing at brain 

barriers, and many novel research questions were put forward: 

What are the effects of resveratrol in CP epithelial cells and what is the role of TAS2R14 

in the process? 

The CP perform multiple functions that are critical for CNS homeostasis, which might be 

impaired in aging and in some diseases, such as AD. Since resveratrol presents 

neuroactive effects, it would be interesting to analyze if resveratrol is able to regulate CP 

epithelial cells functions beyond the regulation of its own transporters. In order to 

analyze that, the transcriptome of HIBCPP cells upon TAS2R14 activation by resveratrol 

would disclose potential pathways regulated by resveratrol in the human CP cells.  

Also, resveratrol seems to contribute to decrease Aβ deposition, which is known to 

accumulate in the CP epithelial cells contributing to CP dysfunction. Therefore, it would 

be important to assess if resveratrol is able to protect CP epithelial cells from Aβ-induced 

toxicity that usually is associated with increased oxidative stress and loss of barrier 

integrity at the BCSFB. The role of TAS2R14 as a regulator of resveratrol effects should 

thus be also assessed in this context.  

As mentioned before, ABCC1 in the CP is associated with Aβ clearance. Interestingly, in 

the second original paper present, we observed that ABCC1 mediates resveratrol 

transport across the human BCSFB, and in turn resveratrol downregulated ABCC1 

expression in siRNA TAS2R14-transfected HIBCPP cells. Thus, it seems important to 

investigate this interaction between ABCC1 and resveratrol concerning Aβ clearance and 

toxicity in the human CP. 
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Does TAS2R14 activation by resveratrol facilitate brain drug delivery? 

TAS2R14 activation by resveratrol regulates the expression and activity of ABC 

transporters. Therefore, this indicates that the permeability of the BCSFB is altered in 

the presence of resveratrol. Thus, it would be interesting to combine resveratrol with 

other compounds, such as chemotherapeutic drugs or others, and analyze the transport 

of these across the BCSFB. 

What other functions do TAS2Rs play in the human CP? 

We hypothesized that TAS2Rs regulate transport and detoxifying mechanisms at the 

human BCSFB. Although we have demonstrated that TAS2Rs, particularly TAS2R14, 

affects ABC transporters activity in human CP epithelial cells, in the future it would be 

interesting to analyze also the role of TAS2R14 and other TAS2Rs in detoxifying 

processes.  

This work shows that thirteen TAS2Rs are expressed in HIBCPP cells, which can be 

activated by several compounds with biological activity, such as flavonoids (e.g. 

epigallocatechin gallate, quercetin, kaempferol) and the alkaloid parthenolide. Most 

flavonoids bind TAS2R14 and/or TAS2R39, both functional at HIBCPP cells as we 

showed in the first original article presented in this doctoral thesis. On the other hand, 

parthenolide has been extensively reported as a promising anti-cancer molecule and 

binds TAS2R1, 4, 8, 10, 14, 44, 46. Therefore, evaluating the potential of these known 

TAS2R ligands and other bitter compounds to activate TAS2Rs in the human CP 

epithelial cells, and determining the cellular responses elicited upon ligand binding 

might unveil other functions of these receptors in the human BCSFB. 

Overall, our results indicate that the bitter taste signalling has important roles at the 

BCSFB, which might be critical for CNS homeostasis. Moreover, we characterized the 

HIBCPP cells as a proper in vitro model of the BCSFB to study TAS2Rs functions. Despite 

the relevance of these achievements, we are far from a complete understanding of 

TAS2Rs role in the human BCSFB. Rather, we pioneered the study of important 

components of the chemical surveillance system at brain barriers and expect that future 

studies will contribute to unveil more about bitter taste signalling in the human BCSFB, 

and its impact in health and disease.  

The BCSFB and the BBB are the two main brain interfaces between the blood and the 

CSF or the interstitial fluid, respectively. Moreover, both comprise a chemical 

surveillance system that allow the clearance of brain metabolic waste but impose 
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chemoresistance which compromise the treatment of many CNS disorders. Considering 

our findings in the human BCSFB, it is possible that also the BBB presents a functional 

bitter taste signalling that would be able to perceive chemical variations in the blood and 

in the interstitial fluid and respond accordingly. Interestingly, transcriptomic analysis of 

BBB (GSE45171) also shows the expression of TR2 [11,12]. Thus, in the future, the 

analysis of bitter taste signalling in the human BBB is of utmost importance considering 

our findings in the human BCSFB. Of paramount interest, this knowledge might 

contribute to disclose the regulation of transport and detoxifying mechanisms at the 

BBB, which are still poorly understood subjects. 
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