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 Origin and triggers of power quality (PQ) events must be identified in prior, 

in order to take preventive steps to enhance power quality. However it is 

important to identify, localize and classify the PQ events to determine the 

causes and origins of PQ disturbances. In this paper a novel algorithm is 

presented to classify voltage variations into six different PQ events 

considering the space phasor model (SPM) diagrams, dual tree complex 

wavelet transforms (DTCWT) sub bands and the convolution neural network 

(CNN) model. The input voltage data is converted into SPM data, the SPM 

data is transformed using 2D DTCWT into low pass and high pass sub bands 

which are simultaneously processed by the 2D CNN model to perform 

classification of PQ events. In the proposed method CNN model based on 

Google Net is trained to perform classification of PQ events with default 

configuration as in deep neural network designer in MATLAB environment. 

The proposed algorithm achieve higher accuracy with reduced training time 

in classification of events than compared with reported PQ event 

classification methods. 
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1. INTRODUCTION 

The present power grid is being updated to the so-called smart grid (SG) with the use of information 

and communication technology, enhanced control systems, and sensing methods [1]. With smart grid 

technology, there will be 3-40% of renewable energy resources (RES) integrated by 2030. The evolution of 

the smart grid mechanism gives rise to new challenges in power quality issues [2], [3]. Sources of 

disturbances both at the source end and the consumer side needs to be found and suitably addressed to take 

appropriate mitigation action [4]. IEC 61000-4-30 specifies a power quality (PQ) event and suggests 

intelligent monitoring of PQ events in order to respond to electrical equipment failures [5].  

An appreciable amount of effort is recorded in the literature for analyzing PQ event classification. 

Classification of PQ events entails the use of feature extraction methods like “Fourier transforms (FT), S 

transforms (ST), Hilbert Huang transforms (HHT), and Wavelet transforms (WT)” based methods are 

reported in [6]-[9]. Power quality disturbance (PQD) classification is also heavily influenced by artificial 

intelligence techniques such as “support vector machine (SVM), artificial neural networks (ANN), fuzzy 

logic (FL), genetic algorithm (GA), deep learning” based methods are reported in [10]-[12]. Classification of 

harmonics is carried out by k-means algorithms and support vector machines (SVM) in [13]. Voltage dips 

and interruptions are classified using expert systems in [14], [15]. Discrete wavelet transforms (DWT) 

combined with SVM for the categorization of PQ events is described in [16] uses image files of PQ events 

https://creativecommons.org/licenses/by-sa/4.0/
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instead of sampled voltage data. Deep learning algorithms are used to classify image data demonstrating 

100% accuracy. Balouji and Salor [17] phase space reconstruction (PSR) and convolutional neural networks 

(CNN) are used in a hybrid technique for PQ event classification that processes 2D image files representing 

voltage disturbances demonstrating more accurate results compared with existing methods. A complete 

framework for PQ event classification using 2D CNNs and space phasor model (SPM) is presented in [18]. In 

the proposed approach in order to reduce the complexity and improve efficiency in PQ event classification 

the input voltage data is converted into SPM data, the SPM data is transformed using 2D DTCWT into low 

pass and high pass sub bands. The low pass sub band and combined high pass sub bands are simultaneously 

processed by the 2D CNN model to perform classification of PQ events. 

 

 

2. RESEARCH METHOD 

2.1.  Space phasor model  

SPM denoted as St, considering the voltages from three phases to neutral Va (t), Vb (t), Vc (t) is 

given as shown in (1) with the parameter α = ej2π/3. 

 

St = 2/3[Va (t)+αVb (t)+α2Vc (t)], t = 1, 2, 3 ……..n (1) 

 

St is a complex quantity representing voltage in time and consists of real and imaginary parameters ranging 

from -1.1 to 1.1 pu. Expression (1) can be rewritten in vector form as St=[s1, s2, s3…sn]  T. Splitting the 

vector in terms of real and imaginary vectors and is represented as S=[St,RSt,I]nx2. The parameters 

St,R=[S1,RS2,R …Sn,R]T and St,I =[S1,I S2,I …Sn,I]Tε [-1.1, 1.1].  

SPM plots are represented as identical cycles of voltage waveforms shown in single circle or ellipse 

and deviations from the normal will have variations in the SPM plots. Classification of voltage dip 

considering SPM is done by measuring three parameters such as semi-minor, major axis and the major axis 

direction [19]. These three metrics are linked to voltage dip characteristics considering rotating angle of the 

ellipse that can be distinguished between 6 types (Da, Db, Dc, Ca, Cb and Cc) of voltage dips [20]. The 

direction of ellipses is changed by 30o for all the six types of dips generated synthetically. Type C semicircles 

(Ca, Cb, Cc) denotes phasor with minimum voltage drop and Type D semicircles (Da, Db, Dc) denotes 

phasor with major voltage drop. Table 1 presents the labelling of PQ events considering the rotation in the 

ellipse with rotating angle variation in 30o. The corresponding dip class is also indicated considering the 

correlation between the rotation angles Ψ and parameter T. 

 

 

Table 1. PQ event data labelling 
Angles (Ψ) in degrees T Class  

0 to 30 

30 to 60 
60 to 90 

90 to 120 

120 to 150 
150 to 180 

1 

2 
3 

4 

5 
6 

Db 

Cc 
Da 

Cb 

Dc 
Ca 

 

 

Figure 1 presents the example of SPM plots with voltage dip variations, which is represented as 

ellipses rotated during PQ events and circles during normal events and the dots between the circle and 

ellipses representing transition segments shown in Figure 1(a). Multi-stage voltage dip SPM diagram is 

presented in Figure 1(b). If the radius of the circle is less than 1 pu this is considered as last stage event. The 

two ellipses are defined as Type C and Type D voltage dip and the dots correspond to transition segment. 

Figure 1(c) represents single phase transition of star connected transformer. 

The PQ event is represented as ellipse with zero minor axes and also indicates the severity of the 

event. Figure 1(d) shows the SPM diagram for a type Cc event with high voltage dips in phases a and b and 

no voltage dips in phase c. Figure 1(e) presents the voltage dip due to transformer energizing process leading 

to even-harmonic distortion. Hexagon shape of the SPM plot indicates harmonics 5 and harmonics 7 kind of 

PQ event. Figure 1(f) presents the SPM of PQ event during transients that are indicated as dots oscillating 

around the circle of normal voltage. Considering the variations in SPM diagrams it is required to suitably 

classify the PQ events considering the inputs as image sequences. Use of deep learning networks for 

classification of image sequences is attempted in this work based on SPM diagrams. 
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(a) (b) 

  

 
(c) (d) 

 

  
(e) (f) 

 

Figure 1. Waveforms of SPM plots with different voltage dip: (a) voltage dip, (b) multi-stage dip,  

(c) single-phase interruption, (d) phase-angle jump, (e) harmonic voltage, (f) voltage transient 

 

 

2.2.  2D representation of SPM 

For classification of voltage dips considering SPM diagrams the S vector are quantized into 22 equal 

length segments defined with matrix M as in (2), where k1 and k2 are defined as in (3) by using ceiling 

function ([.]) and absolute value (|.|). Matrix M is of size 22x22 that is considered as inputs to the classifier 

unit. 

 

𝑀(𝑘1, 𝑘2) = ∑
𝑛
𝑖=1 ∑(𝑘1,𝑘1) √(𝑆𝑖,𝑅)

2 + (𝑆𝑖,𝐼)
2 (2) 

 

(𝑘1, 𝑘2) =

{
 
 

 
 
([10(1.1 − 𝑆𝑖,𝐼)], [10(1.1 − |𝑆𝑖,𝑅|)]  𝑖𝑓  𝑆𝑖,𝑅 < 0 &̇ 𝑆𝑖,𝐼 > 0

([10(1.1 − 𝑆𝑖,𝐼)],         [10|𝑆𝑖,𝑅|])          𝑖𝑓  𝑆𝑖,𝑅 > 0 &̇ 𝑆𝑖,𝐼 > 0

([10|𝑆𝑖,𝐼)] + 11, [10(1.1 − |𝑆𝑖,𝑅|)]   𝑖𝑓  𝑆𝑖,𝑅 < 0 &̇𝑆𝑖,𝐼 < 0

([10|𝑆𝑖,𝐼|] + 11, [10|𝑆𝑖,𝑅|] + 11)      𝑖𝑓  𝑆𝑖,𝑅 > 0 &̇𝑆𝑖,𝐼 < 0

 

(3) 

 

In this work, pre-processing is carried out on the SPM data using 2D DTCWT level-1 decomposition 

obtaining sub bands of complex wavelet. The complex sub bands are processed by the 2D CNN for feature 

extraction and classification. 

 

 

3. CNN AND DUAL TREE COMPLEX WAVELET TRANSFORMS 

The deep learning model-based classification algorithm is designed to process the complex sub 

bands of input data captured using dual tree complex wavelet transforms.  

 

3.1.  DTCWT algorithm 

The dual tree complex wavelet sub bands are represented by ψ(x, y)=ψ(x) ψ(y), where ψ(.) is a 

complex wavelet given by ψ(.)=ψh(.)+jψg(.). The performance of DTCWT, replacing the complex wavelet, is 

articulated as: 

 

ψ(x, y) = [ψh(x)+jψg(x)] [ψh(y)+jψg(y)] 

            = ψh(x)ψh(y)−ψg(x)ψg(y)+j [ψg(x)ψh(y)+ψh(x)ψg(y)] (4) 

 

A set of six complex DTCWT wavelets separated in [21] is given in (5), the real wavelets are represented by 

(5a) and (5b) where (5c) and (5d) represents the complex wavelets. In consideration of (5) Table 2. Offers the 

2-D wavelet bases [22] for i=1, 2, 3. 

 

ψi(x, y)   = 1 √2(ψ1,i(x, y) − ψ2,i(x, y))  (5a) 
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ψi+3(x, y) = 1 √2(ψ1,i(x, y) + ψ2,i(x, y))  (5b) 

 

ψi(x, y)   = 1 √2 (ψ3,i(x, y) + ψ4,i(x, y)) (5c) 

 

ψi+3(x, y) = 1 √2(ψ3,i(x, y) − ψ4,i(x, y))”  (5d) 

 

The set of six wavelets described above is useful for isolating six orientations in the input image in a 

specified direction, and they are contained in the twelve sub bands without artifacts. The SPM image is 

processed using 2D DTCWT to obtain the sixteen sub bands of which four of them are low pass real sub 

bands and 12 of them are high pass real sub bands with six directional orientations both in positive and 

negative directions. Figure 2 presents the DTCWT sub bands of one PQ event of voltage dips. Figure 3 

presents the DTCWT sub bands for PQ event with multi-stage voltage dips. The advantages of working with 

DTCWT sub bands is that the directional orientations in ±450, ±150 and ±750 are localized in three different 

high pass sub bands and it is easier for the CNN model to classify the features. The low pass sub bands 

confine the input data information with half the resolution of original image and processing the low pass sub 

bands reduces complexity by 50%. 

 

 

Table 2. DTCWT sub bands 
High pass sub bands 

i=1  Real 

Imaginary 

ψ1,1(x, y) = φh(x)ψh(y) 

ψ3,1(x, y) = φg(x) ψh(y) 

ψ2,1(x, y) = φg(x) ψg(y) 

ψ4,1(x, y) = φh(x) ψg(y) 
i=2  Real 

Imaginary 

ψ1,2(x, y) = ψh(x) φh(y) 

ψ3,2(x, y) = ψg(x)  φh(y) 

ψ2,2(x, y) = ψg(x) φg(y) 

ψ4,2(x, y) = ψh(x) φg(y) 

i=3  Real 
Imaginary 

ψ1,3(x, y) = ψh(x) ψh(y) 
ψ3,3(x, y) = ψg(x) ψh(y) 

ψ2,3(x, y) = ψg(x) ψg(y) 
ψ4,3(x, y) = ψh(x) ψg(y) 

 

 

 
 

Figure 2. DTCWT sub bands for PQ event with single voltage dip 

 

 

 
 

Figure 3. DTCWT sub bands for PQ event with multi-stage voltage dip 
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3.2.  CNN model  

The CNN model is derived from extending the feed forward neural network model that comprises of 

neurons and activation functions in multiple layers. The input layer, pooling layer, convolution layer, fully 

connected layer and the output layer are included in the CNN model. The convolution layer is a signal 

processing model that captures low level features in the input data and translates into high level or global 

features.The signal processing operation in convolution layer is a filtering process that generates feature 

maps hk considering the inputs x by simple mathematical operation given as in (6). The parameter Wk and bk 

are the weights and biases of the convolution layer and f(.) represents the network activation function. 

 

hk
ij= f(Wk*x)ij + bk (6) 

 

Features extracted from input after every convolution layer are downsized to remove redundancy 

using the pooling layer using the max-pooling operation. The fully connected layer combines these features 

to perform classification of the input by considering maximum or average features. The fully connected layer 

output is given as input to output layer for final classification based on the combined feature maps. 

 

 

4. PROPOSED CLASSIFIER BASED ON SPM, DTCWT AND CUSTOMIZED CNN MODEL 

The proposed classifier model is presented in Figure 4. One of the challenges in CNN based 

classifier is the complexity in data processing as there are several stages of convolution layers, pooling layers 

and fully connected layers. In order to reduce the complexity and to improve efficiency in PQ event 

classification the input voltage data is converted into SPM data, the SPM data is converted into low-pass and 

high-pass sub bands using 2D DTCWT. The low pass and combined high pass sub bands are simultaneously 

processed by 2D CNN model to carry out PQ events classification.  

 

 

 
 

Figure 4. Proposed classifier model combining DTCWT and CNN 

 

 

The PQ data sets are downloaded from IEEE data port website from which the smart grid data sets 

from power network of the University of Cadiz that is acquired according to UNE-IEC 61000-4-11:2005 

standards using power quality instruments are used for analysis [23]. The CNN model is trained to categorize 

the input data into any of six classes (Da, Db, Dc, Ca, Cb and Cc). The suggested model is evaluated by 

taking into account two parameters: accuracy and loss, as described in (7). 

 

   
x

l
A

a
ccu

s
racy

Correctly predicted dips in all c s es

Total number of  dips

p x lLos  n s q x



 

 

(7) 

 

The performance assessment of CNN model in performing classification is presented in terms of 

classification rate (CR) and false alarm rate (FAR) as defined in (8). The parameters TP and TN are true 
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positive and true negative for the corresponding data set represented by i=1, 2, 3, 4, 5, 6. FP and FN are false 

positive and false negative parameters. 

 

i i

i i

i i i i

TP FP
CR FAR

TP FN FP TN
     and     

 
 (8) 

 

In this work CNN model based on Google Net is trained to perform classification of PQ events with 

default configuration as in deep neural network designer in MATLAB environment and the performances are 

compared with proposed CNN model. The properties of deep neural network based on GoogLeNet model is 

presented in Table 3. The GoogLeNet is a 144 layer structure with ReLu network activation function. The 

flow chart of the CNN model of the most essential layers of GoogLeNet, the input stage, intermediate stage, 

and output stage, is shown in Figure 5. 

 

 

Table 3. Properties of GoogLeNet for PQ event classification 
Layers Filter Size Network size 

Conv+Relu+Pool+Pooldout 

Conv+Relu 
Conv+Relu+Cross Conv+Pool 

4 stages of parallel layers 

Pool+Full Connected+Softmax+Output 

7x7, 3x3 

3x3, 3x3 
3x3, 3x3, 3x3 

9 stages 

7x7 

224x224x3  112x112x64 

112x112x64 56x56x64 
56x56x64  28x28x96 

28x28x96  14x14x24 

14x14x24  7x7x1024 

 

 

 
 

Figure 5. CNN structure: (a) input stage, (b) intermediate stage, (c) output stage 

 

 

4.1.  DTCWT sub bands and CNN model for classification 
The block diagram of proposed CNN model is presented in Figure 6 that process DTCWT sub 

bands. The input SPM diagrams are grouped into six different folders in MATLAB environment and each of 

the diagrams are labelled to distinguish between PQ events. The input data is decomposed into level-1 

DTCWT sub bands using 2D DTCWT that uses 10-tap filters. The decomposition generates 6 complex high 

pass sub bands that are converted to 6 real sub bands by taking absolute values. From 2 complex low pass 

sub bands one low pass sub band is computed. In order to reduce the complexity in training process the six 

high pass sub bands are combined into a single image of size 256x384 by cascading the sub bands (i.e. 

128x128 sized sub bands are arranged into 2 row and 3 columns). The customized CNN model is designed 

process the low pass sub band (128x128) and high pass sub band (256x384) and the target set is assigned for 

training the network to perform accurate classification. Each of the SPMs that are in six different folders are 

processed by the DTCWT module and is used as training data for the customized CNN model. The trained 

CNN model generate two classification outputs one based on low pass sub bands and the other based on high 

pass sub bands. Considering two classifier outputs the final decision is carried out to find out the PQ event. 

The final decision model at the output of CNN is designed to classify the PQ event correctly only if both the 

CNN outputs classify the PQ event correctly else the classification is termed false. From the training results 
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the optimum CNN parameters such as weights and biases are identified and the trained CNN model is 

evaluated for its performances considering new set of PQ events that are not part of training process. 

 

 

 
 

Figure 6. Proposed classifier based on SPM, DTCWT and customized CNN mode 

 

 

The deep learning networks with the properties are defined in Table 4, configured to train the low 

pass and high pass sub bands independently. Training the CNN model is carried out by initializing the 

kernels with default numbers as set by deep network designer toolbox in MATLAB 2020b. The input PQ 

data obtained from IEEE data port of 480 signals recorded for 3 seconds is split into six different events each 

of 80 in number. Each of them is stored in different folders with labelling. From 80 data sets 70% of them are 

used for training and are labelled and 30% of them are used for performance evaluation are unlabelled. For 

each of the data the output and the class to which it belong to known and it is required to estimate the 

classification correctness after training. The learning algorithm used for calculating the labels specified in 

this work is the Soft-max activation function. The cost function for calculating the error at the output layer is 

cross entropy, defined as in (9) that considers the target probability yi and the output probability ŷi in 

computing the error ei. 

 

𝑒𝑖 = −∑ �̂�𝑖 ln 𝑦𝑖
𝑛
𝑖=1  (9) 

 

The error gradients are computed and the weights are updated in the model using back propagation 

algorithm. The error is minimized and the CNN model parameters such as weights and biases are updated 

considering gradient descent method. These steps are repeated until all the training images are processed and 

for the given epoch set during training. The CNN model trained is saved and the network is exported into 

workspace for testing the network performance. 
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Table 4. Properties of GoogLeNet for PQ event classification 
Layers Filter Size Network size 

Input image 

2D DTCWT LPSB–4, HPSB-12 
Sub band selection 

- 

10-tap 
- 

256x262 

128x128 
128x128, 256x384 (LPSB-1, HPSB-1) 

Conv+Relu+Pool+Pooldout 32 kernels of 5x5, 

2x2 avg. pooling 

256 x 256 x 32 

128x128x32 100x100x48 
Conv+Relu+Pool+Pooldout 48 kernels of 3x3, 

2x2 avg. pooling 

100x100x48 64x64x48 

Conv + Relu 
Full connected+Softmax+Output 

Combiner/selector 

64 kernels of 3x3 
6x6 

Decider 

64x64x64 
6, 6   LPSB, HPSB 

6 classes 

 

 

5. RESULTS AND DISCUSSION  

The performance of the presented model is evaluated by considering the test data along with 

synthetically generated another set of PQ events. Figure 7 presents the training performance results in terms 

of accuracy and loss. More than 90% of accuracy in classification is achieved only after 10 epochs and the 

loss factor is almost zero after 10 epochs. 

 

 

 

 
 

Figure 7. Training performance; (a) accuracy, (b) loss 

 

 

Validation accuracy of 90% is achieved in total time of 13 min 12 sec, 30 epochs and learning rate 

of 0.01 was set during training process. The total training time for the proposed network is compared with the 

training time of GoogLeNet results. Intel Core i3-3110M CPU@2.4GHz with 4.0 GB and 64-bit OS is used 

as the system in which MATLAB2020b is used for modelling and evaluation of the CNN model. Figure 8 

depicts the suggested CNN model's confusion matrix. Where the classification accuracy from the test vectors 

is found to be 99.16%. Figure 9 shows confusion matrix for new data set, it is found that for the data Db and 

Ca the CNN model classifies accurately. In case of test data belonging to Cc, 98 data sets are classified 

correctly, 2 Cc data is classified as Ca. Similarly in case of Dc data of the 100 data sets 92 of them are 

correctly classified and 8 of them are classified as Ca, Cb and Da. 

Table 5 presents the performance in terms of CR and FAR. The average CR and FAR is 97.23% and 

0.48% respectively. Table 6 compares the accuracy, number of PQ events classified, total time for training, 

and total time for data processing of the proposed CNN model to all other existing work. From the 

comparison results the advantages of the proposed method is the computation time which is 23 seconds or 

94.5% improvement is achieved. The accuracy of the proposed model in classification is 97.23% as 

compared with similar method. 

Two factors that give false classification results are the noise in the input data and the size of major 

axis and minor axis of the ellipse if it is below a certain limits the network is not able to classify 

appropriately. The classification accuracy can be further improved by further training the network with real 

time signals considered in large number and setting the learning rare less than 0.001. The network can be 

further modified to classify more than 14 PQ events by appropriately setting the intermediate layers.  

mailto:CPU@2.4
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Figure 8. Confusion matrix of training and validation Figure 9. Confusion matrix for test data set 2 

 

 

Table 5. Performance of CNN model – CR and FAR 
Class Db Cc Da Cb Dc Ca Avg. 

CR% 98.9 99.5 98.5 92.3 96.8 97.4 97.23 
FAR% 0.9 0.9 0.2 0.4 0.3 0.2 0.48 

 

 

Table 6. Comparison of classification models for PQ events 
Method Feature 

extraction 

No. of PQ 

events 

Accuracy 

(%) 

Training 

Time 

Computation 

time 

References 

PSR+CNN Automated 10 99.8 113 min 7 min [18] 

SPM+CNN Automated 7 96.78 98 min 5 min [20] 

ST+NN+DT Handcrafted 13 99.9 - - [24] 
Hybrid ST + DT Handcrafted 11 94.9 - - [25] 

SPM+DTCWT+CNN Automated 6 97.23 13.12 min 23 sec Proposed 

 

 

6. CONCLUSION  

A novel algorithm is presented in this paper that is used to classify voltage variations into 6 different 

PQ events considering the SPM diagrams, DTCWT sub bands and the CNN model. The input data which is 

of 1D is converted into 2D using SPM and the intensity components and the directional features are separated 

using DTCWT. The low pass and high pass sub bands are independently trained by the customized CNN 

model to perform classification of the PQ events. Compared with the reported PQ event classification 

methods the proposed algorithm is demonstrated to achieve higher accuracy and is fast in classification of 

events with reduced complexity in the architecture. 
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