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 Compressive sensing is receiving a lot of attention from the image 

processing research community as a promising technique for image recovery 

from very few samples. The modality of compressive sensing technique is 

very useful in the applications where it is not feasible to acquire many 

samples. It is also prominently useful in satellite imaging applications since 

it drastically reduces the number of input samples thereby reducing the 

storage and communication bandwidth required to store and transmit the 

data into the ground station. In this paper, an interior point-based method is 

used to recover the entire satellite image from compressive sensing samples. 

The compression results obtained are compared with the compression results 

from conventional satellite image compression algorithms. The results 

demonstrate the increase in reconstruction accuracy as well as higher 

compression rate in case of compressive sensing-based compression 

technique. 
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1. INTRODUCTION 

Image processing applications plays a vital role in the present digital world. In that satellite imaging 

has many useful applications in agriculture, remote sensing, urban planning and mineral exploration. Despite 

many useful applications, it is critical to transmit the satellite image data into the ground station in the limited 

transmission bandwidth. The satellite will be in contact with the ground station only at certain intervals. The 

data need to be stored on-board until the next communication window of the satellite. For all the reasons, it is 

very important to compress the satellite image data to make the communication and storage feasible. Image 

compression algorithms are broadly classified into lossless and lossy image compression algorithms. The 

satellite image is not only used for viewing purposes but also used to make important exploratory analysis. 

Therefore, lossless image compression [1] is the modality used in most of the applications. But in certain 

cases, to improve the image acquisition rates and to improve the compression rate lossy satellite image 

compression algorithms are made use in missions like SPOT 4 [2]. 

Nyquist sampling theorem [3] is the well-known method for signal acquisition and faithful recovery 

of signal from the measurements. Advances in compressive sensing-based methodologies gives satisfactory 

proof on retrieving the signal from a smaller number of samples when the signal is compressible in nature. 

The modality of compressive sensing is very useful when it is not practical to acquire many samples and 

when it is very expensive to collect large number of samples. In both cases compressive sensing can 

contribute by making the image acquisition hardware simpler, reducing the image acquisition time, and 

thereby achieving image compression. 

https://creativecommons.org/licenses/by-sa/4.0/
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Conventional image compression algorithms rely on the Nyquist sampling theorem where large 

numbers of samples are collected only to be discarded at the stage of compression. Conventional image 

compression algorithms in the literature are generally based on transform coding techniques. Where, the 

images are transformed using discrete cosine transform (DCT) or discrete wavelet transform (DWT). The 

coefficients are then encoded using encoding techniques like run-length encoding, Golomb coding [4], [5], 

Arithmetic coding [6], and rice coding [7]. Many conventional image compression algorithms have been 

proposed in the literature for the compression of satellite images. The consultative committee for space data 

systems (CCSDS) document [8] describes the lossless compression methods for satellite images. The image 

compression algorithm based on DWT called set partition in hierarchical trees (SPIHT), where the significant 

DWT coefficients are encoded first for the fast and efficient coding of images is presented in [9]. Aranki et 

al. [10], the field programmable gate arrays (FPGA) implementation of the lifting scheme of DWT is 

proposed. The research work in [10] and [11] discuss the concept of finding the DWT coefficients of an 

image segment, in a pipeline fashion, instead of waiting for the entire image from the push-broom scanning, 

since the values of DWT coefficients depends on the pixels in the neighbourhood. JPEG-LS algorithm for the 

lossless compression of images is presented in [12]. A low complexity context based lossless image 

compression algorithm is presented in [13]. The JPEG-2000 algorithm, which is a DWT version of DCT 

based JPEG to achieve different degrees of image quality based on different applications is proposed by the 

joint photographic experts’ group in [14]-[16]. Compressive sensing [17]-[19] is based on the principle that if 

the signal is compressible in nature, it is possible to reconstruct the signal from very few measurements. The 

compressive samples are generated using the random sampling matrix which captures the signal in very few 

measurements. 

Figure 1 shows the general block diagram of the conventional image compression algorithms like 

JPEG and CCSDS standard. As it is evident from the block diagram, the satellite image goes through many 

processing steps at the encoder stage. First the image is transformed using one of the transform coding 

techniques like DCT or DWT. The insignificant coefficients are discarded after the transform coding. The 

remaining coefficients are subjected to quantization in the next stage. The quantized coefficients are further 

encoded using entropy coding techniques like Huffman coding, and arithmetic coding. The encoder is very 

simple in case of CS based compression algorithms as shown in Figure 2. The only processing step at the 

encoder is generation of compressive sensing samples from the random compressive sensing matrix. The 

decrease in computational steps in the encoder is of great significance in case of remote sensing application 

because memory and power are the two important critical resources in case of any remote sensing 

application. 

 

 

 
 

Figure 1. General block diagram of the conventional satellite image compression algorithm 

 

 

The most significant aspect of using CS for the compression in remote sensing applications can be 

attributed to the property of making the encoder very simple by removing all the processing steps in the 

encoder stage of the conventional compression algorithm. The compressive sensing samples are 

communicated to the ground station in case of satellite imaging applications. The disadvantage of CS based 

algorithms for compression is that the reconstruction process from compressive sensing samples is quite 

computationally expensive. This aspect can be overlooked as the reconstruction process happens in the 

ground station where resources are available in abundance. 
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The research work makes use of compressive sensing techniques to compress the satellite images. 

Compressive sensing samples are generated using a CS matrix containing random Fourier transform 

coefficients. The satellite image is compressed at various sampling rates to analyse the performance of the 

algorithm at different levels of compression. The satellite image is reconstructed from the compressive 

sensing samples by a class of interior point methods called log barrier method. The iterative technique 

minimizes the objective function with total variation regularization to solve the problem of image 

reconstruction from compressive sensing samples. The rest of the article is organized as follows; Section 2 

describes the compressive sensing technique proposed to reconstruct the satellite image from compressive 

sensing samples. Section 3 presents the experimental results using different datasets. The performance of the 

algorithm is analysed using quantitative metrics like peak signal to noise ratio (PSNR) and structural 

similarity index measure (SSIM). Section 4 concludes the research work presented in the article. 

 

 

 
 

Figure 2. General block diagram of compressive sensing-based algorithm 

 

 

2. CS-CR ALGORITHM 

Consider an image 𝐼, which has dimensions 𝑛 × 𝑛 The total number of pixels in 𝐼 is denoted by 𝑁. 

The image 𝐼 is vectorized as 𝑥 ≔ 𝑉𝑒𝑐(𝐼), where the length of the vector 𝑥 is 𝑁. The results in papers  

[20]-[22] demonstrates the possibility of recovering signals from fewer number of measurements i.e.,  

𝑧 = 𝐶𝑥 ∈ 𝑅𝑃 , 𝑃 ≪ 𝑁 with considerable accuracy. The basis pursuit problem to solve for optimal value of 𝑥 

from fewer compressive sensing samples 𝑧 is given by (1): 

 

𝑚𝑖𝑛𝑥‖𝑥‖1    𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐶𝑥 = 𝑧 (1) 

 

The optimization problem solves for 𝑥 with minimum 𝑙1 norm, which explains the compressive sensing 

measurements 𝑧. Another strategy to solve for 𝑥 is given by (2): 

 

𝑚𝑖𝑛𝑥  𝑇𝑉(𝑥)   𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐶𝑥 = 𝑧 (2) 

 

where, 𝑇𝑉(𝑥) represents the total variation [23] of 𝑥. 𝑇𝑉(𝑥) is defined as (3), 

 

𝑇𝑉(𝑥) = ∑ √(𝐷𝑖,𝑗
ℎ 𝐼)2 + (𝐷𝑖,𝑗

𝑣 𝐼)2
𝑖,𝑗  (3) 

 

where, 

 

𝐷𝑖,𝑗
ℎ 𝐼 = {

𝐼𝑖+1 − 𝐼𝑖,𝑗     𝑖 < 𝑛

0                  𝑖 = 𝑛
 (4) 

 

𝐷𝑖,𝑗
𝑣 𝐼 = {

𝐼𝑖,𝑗+1 − 𝐼𝑖,𝑗    𝑗 < 𝑛

0                  𝑗 = 𝑛
 (5) 

 

The problem in (2) can be generalized as (6), 
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𝑚𝑖𝑛𝑥 < 𝑘𝑜, 𝑥 >    𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐶𝑥 = 𝑧, 𝐹𝑖(𝑥) ≤ 0   𝑖 = 1 … . 𝑚 (6) 

 

where, 𝐹𝑖 represents the 𝑚 linearity constraints. The optimization problem in (6) can be converted into a 

series of sub problems with linearity constraints using the Log-barrier method [24] as (7): 

 

𝑚𝑖𝑛𝑥 < 𝑘𝑜, 𝑥 > +
1

𝜏𝐿
∑ − log(−𝐹𝑖(𝑥))   𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐶𝑥 = 𝑧𝑖  (7) 

 

Log-barrier method augments the inequality constraints into the objective by log penalty function. 

At each iteration 𝐿, the value of 𝜏 is increased. When 𝜏 is sufficiently large, the solution 𝑥𝐿 approaches the 

optimal value of the original problem in (6). The second order approximation of (7) at ∆𝑥 is given by (8): 

 

𝐹0(𝑥 + ∆𝑥) ≈ 𝑥+< 𝐺𝑟𝑥 , ∆𝑥 > +
1

2
< 𝐻𝑥∆𝑥, ∆𝑥 > (8) 

 

where, 𝐺𝑟𝑥 represents the gradient, which is given by (9): 

 

𝐺𝑟𝑥 = 𝑘0 +
1

𝜏
∑

1

−𝐹𝑖(𝑥)
∇𝐹𝑖(𝑥)𝑖  (9) 

 
𝐻𝑥 Represents the Hessian matrix, which is given by (10): 

 

𝐻𝑥 =
1

𝜏
∑

1

𝐹𝑖(𝑥)2𝑖 ∇𝑓𝑖(𝑥)(∇𝐹𝑖(𝑥))
𝑇

+
1

𝜏
∑

1

−𝐹𝑖(𝑥)
∇2𝐹𝑖(𝑥)𝑖  (10) 

 

If 𝑥 is in feasible set, ∆𝑥 which represents the minima of second order approximation in (8) is given by the 

following set of linear: 

 

𝜏 (𝐻𝑥     𝐶𝑇

𝐶        0
) (∆𝑥

𝜌
) = −𝜏𝐺𝑟𝑥  (11) 

 

𝜌 is the Lagrange multiplier for the equality constraints.  

The flowchart of the CS-CR algorithm based on Log-barrier method for the reconstruction of image 

from compressive sensing measurements is given in Figure 3. The algorithm is initialized with 𝑥𝑜, 𝑡𝑜𝑙, 𝐿, 𝜏, 𝛼 

in step 1. In step 2 (7) is solved using Newton method using 𝑥𝐿−1 as initial point. In step 3, if 
𝑚

𝜏𝐿
< 𝑡𝑜𝑙, 

algorithm is terminated, else the algorithm goes back to step 2. 

 

 

 
 

Figure 3. Flowchart of the CS-CR algorithm 
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3. RESULTS AND DISCUSSION 

Experiments are conducted using MATLB R2016b in windows 10 laptop, 64-bit operating system 

with Intel(R) i7 processor, 16 GB RAM. For the experimentation two datasets [25] have been considered. A 

band from coastal_b1 data of Landsat NASA is considered as the first data. The image is 1024×1024 in size. 

Another data considered for experimentation is spot_la_b3 from SPOT 3 CNES. The image is 500×500 in 

size. Three algorithms [26] are considered to compare and validate the performance of the CS-based 

reconstruction algorithm. The algorithm proposed in CCSDS document, uses float DWT to achieve lossy 

compression of satellite images, where the parameters are tuned to achieve different rate distortion 

performance and full frame compression. The JPEG-2000 algorithm based on float DWT in both scan mode 

and frame mode is considered for the comparison where rate allocation optimization is done using the 

Lagrange multipliers. Another algorithm considered for comparison is the set partitioning in hierarchical 

trees (SPIHT), which is based on float DWT to down sample the image into different decomposition levels. 

The methods are compared in terms of quantitative metrics like PSNR and SSIM. PSNR provides the 

information about the average numerical similarity between the original and reconstructed image. SSIM 

provides the measure of average spatial structural similarity between original and reconstructed image. The 

measures PSNR and SSIM are defined as follows: 

 Peak signal to noise ratio (PSNR): 

 

𝑃𝑆𝑁𝑅(𝑋, �̂�) = 20𝑙𝑜𝑔10
max(𝑋)

√𝑀𝑆𝐸(𝑋,�̂�)
 (12) 

 

𝑋 and �̂� are the original image and the reconstructed image, respectively.  

 Mean square error (MSE): 

 

𝑀𝑆𝐸(𝑋, �̂�) =
1

𝑁
‖𝑋 − �̂�‖

2

2
 (13) 

 

 Structural similarity index measure (SSIM): 

 

𝑆𝑆𝐼𝑀(𝑋, �̂�) =
(2𝜇𝑋𝜇�̂�+𝐶1)(2𝜎𝑥�̂�+𝐾2)

(𝜇𝑋
2 +𝜇

�̂�
2 +𝐶1)(𝜎𝑋

2 +𝜎
�̂�
2 +𝐾2)

 (14) 

 

𝜇𝑋 and 𝜇�̂� refers to the mean values of original image and reconstructed image, respectively. 𝜎𝑋 and 𝜎�̂�refers 

to the standard deviations of the original and reconstructed image, respectively. 𝐾1 and 𝐾2are the constants 

related to the pixel values dynamic range. Higher PSNR and SSIM is the indication for increase in 

reconstruction accuracy. PSNR and SSIM are evaluated at different sampling rates for the CS-based 

algorithm. Sampling rate is the proportion of samples extracted from the original image with respect to total 

number of samples in the original image. 

Figure 4 shows the reconstruction results using CS-based algorithm for coastal_b1 Landsat data at 

various sampling rates ranging from 0.1 to 0.5. Similarly Figure 5 shows the reconstruction results using CS-

based algorithm for spot_la_b3 data at various sampling rates ranging from 0.1 to 0.5. Figure 6(a) provides 

the comparison of PSNR values for two datasets spot_la_b3 and coastal_b1 using conventional compression 

techniques like JPEG-2000, SPIHT and CCSDS and the proposed CS- based technique. It is evident from the 

graph that, PSNR achieved using CS-based algorithm is much higher in case of both the datasets.  

The average PSNR value using JPEG-2000 algorithm for the spot_la_b3 dataset is 42.21. The 

average PSNR value for the same dataset using CCSDS based algorithm is 41.84. Similarly, the PSNR value 

using SPIHT algorithm is given by 41.68. The PSNR value achieved using the proposed compressive 

sensing-based algorithm is 74.82 for the spot_la_b3 dataset, which is 77%, 78%, 79% better compared to 

JPEG-2000, CCSDS, and SPIHT algorithms, respectively. The average PSNR value using JPEG-2000 

algorithm for the coastal_b1 dataset is 51.39. The average PSNR value for the same dataset using CCSDS 

based algorithm is 51.05. Similarly, the PSNR value using SPIHT algorithm is given by 50.64. The PSNR 

value achieved using the proposed compressive sensing-based algorithm is 93.67 for the coastal_b1 dataset, 

which is 82.27%, 83.48%, 84.97% better compared to JPEG-2000, CCSDS, and SPIHT algorithms, 

respectively. Figure 6(b) provides the PSNR values using CS based compression technique at different 

sampling rates. It is evident that there is a steady increase in the PSNR values with increase in the sampling 

rate for both datasets. The PSNR at 0.1 sampling rate for spot_la_b3 data is 72.68. The PSNR at 0.1 sampling 

rate for coastal_b1 data is 90.97. Figure 6(c) provides the structural similarity index measure for the two 

datasets considered at various sampling rates using CS-based compression technique. Average SSIM value in 

case of coastal_b1 data is 0.9984. Average SSIM value in case of spot_la_b3 data is 0.9961. Figure 6(d) 

provides the run time of the CS-based compression technique at various sampling rates. The average run time 
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for the spot_la_b3 data is 341.97s. The average run time for the coastal_b1 data is 1027s. Decrease in run 

time with increase in the sampling rate indicates that the algorithm converges faster when a greater number 

of samples are available as input. Figure 6(e) and Figure 6(f) provides the compression size in bytes of the 

original and reconstructed image at various sampling rates using CS-based compression technique for the 

datasets coastal_b1 and spot_la_b3, respectively. 

 

 

 
 

 
 

 
 

 
 

 
 

Figure 4. Reconstructed image at 0.1, 0.2, 0.3, 0.4, 0.5 sampling rates respectively, coastal_b1 Landsat data 
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Figure 5. Reconstructed image at 0.1, 0.2, 0.3, 0.4, 0.5 sampling rates respectively, spot_la_b3 CNES data 

[25] (All rights reserved © CNES (2007)) 

 Reconstruction at 0.4 sampling rate 
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(a) 

 

(b) 

 

(c) 

 

   
(d) (e) (f) 

 

Figure 6. These figures are; (a) PSNR using different compression techniques, (b) PSNR at various sampling 

rates using CS based compression technique, (c) SSIM at various sampling rates using CS based compression 

technique, (d) run time in seconds at various sampling rates using CS based compression technique,  

(e) original and compressed size of coastal_b1 image at different sampling rates, (f) original and compressed 

size of spot_la_b3 CNES image at different sampling rates 

 

 

4. CONCLUSION  

The main goal of this research work is to demonstrate the usefulness of the compressive sensing-

based compression techniques in satellite image compression domain. The experimental results and analysis 

demonstrate the supremacy of the compressive sensing-based technique over the conventional image 

compression techniques both in terms of the reconstruction accuracy and compression rate. The compressive 

sensing techniques will be extremely useful in compression of huge hyperspectral and multispectral satellite 

image datasets as they greatly alleviate the storage and transmission bandwidth bottlenecks in remote sensing 

applications. 
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