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ABSTRACT

The problem of parametric estimation in photovoltaic (PV) modules considering man-
ufacturer information is addressed in this research from the perspective of combinato-
rial optimization. With the data sheet provided by the PV manufacturer, a non-linear
non-convex optimization problem is formulated that contains information regarding
maximum power, open-circuit, and short-circuit points. To estimate the three param-
eters of the PV model (i.e., the ideality diode factor (a) and the parallel and series
resistances (Rp and Rs)), the crow search algorithm (CSA) is employed, which is a
metaheuristic optimization technique inspired by the behavior of the crows searching
food deposits. The CSA allows the exploration and exploitation of the solution space
through a simple evolution rule derived from the classical PSO method. Numerical
simulations reveal the effectiveness and robustness of the CSA to estimate these pa-
rameters with objective function values lower than 1 × 10−28 and processing times
less than 2 s. All the numerical simulations were developed in MATLAB 2020a and
compared with the sine-cosine and vortex search algorithms recently reported in the
literature.
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1. INTRODUCTION
The presence of photovoltaic (PV) sources has increased rapidly in the past two decades in low,

medium and high-voltage levels, and their accelerated development has decreased their production, mainte-
nance, and operative costs [1]-[3]. Moreover, these renewable energy resources have reduced the energy pur-
chase costs in urban areas and greenhouse gas emissions in rural networks powered by diesel generators [4].
The integration of these PV sources into electrical grids generally requires the power electronic converters to
manage their energy production to maximize the producer’s profit [5]. This energy management is achieved
through linear and non-linear control strategies applied to find and maintain the operation of the PV module
in the maximum power point (MPP) [6]-[8]. In the literature, different models are utilized to represent the PV
modules, which are composed of one, two, or three diodes. Each one of them has multiple parameters that have
to be found prior to determining the panel behavior regarding current, voltage, and power outputs [2], [9]. The
most accepted model to represent the PV module is the single-diode representation. In this model, we need
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to find three parameters of the PV module that are associated with the ideality diode factor and the series and
parallel resistances [10]. To find these parameters, in the current literature, several optimization techniques are
available that use the data sheet information provided by the panel manufacturer, where three main operative
points can be highlighted: i) open-circuit point, ii) short-circuit point, and iii) MPP. These points formulate
a non-linear non-convex optimization problem to determine the best combination of the model parameters to
represent the complete electrical behavior of the PV module [11], [12].

In the literature, methods such as the adaptive differential evolution algorithm [5], the sine-cosine
algorithm [10], the analytical method [13], the genetic algorithm [14], the cuckoo search algorithm [15], the
least square method [16], the electromagnetic-like algorithm [17], and the grasshopper optimization algorithm
[18], [19], among others, can be found. It should be noted that this revision demonstrates that the non-linear,
non-convex nature of the parametric estimation problem makes the application of powerful optimization tech-
niques necessary to find the optimal parameters that ensure the correct operation of the PV modules’ equivalent
electric circuit.

Based on this state-of-the-art revision, we propose a new optimization algorithm to estimate the elec-
trical parameters of the PV module using the single-diode model representation. The proposed algorithm
corresponds to the crow search algorithm (CSA), which has not been previously applied to this problem using
the PV data sheet with the main advantage that only four parameters can be tuned. Moreover, numerical results
demonstrate the values of objective functions that are lower than 1 × 10−28, which are clearly better than the
results reported in [5] and [10], where the values of objective functions were 1×10−12 and 1×10−15, respec-
tively. An additional advantage of the proposed approach is that it reaches the optimal solution in less than 2 s
by ensuring optimal funding through the non-parametric Wilcoxon test. It is important to mention that the CSA
has previously been reported in [2] to determine the parameters of the PV modules. However, the authors of [2]
focus their study on an optimization model that takes into account only the power tracking error, considering
variations in the temperature and irradiance inputs. It differs from our proposal since we are working directly
with the manufacturer nameplate in which three operative points are considered to determine the general model
of the PV system, which correspond to short-circuit point, open-circuit point, and MPP.

The remainder of this paper is organized as follows. Section 2 presents the formulation of the para-
metric estimation problem in PV modules considering the data sheet information provided by the manufacturer.
Section 3 presents the general description of the proposed CSA. Section 4 presents the primary characteristics
of the test system and the computational validation features. Section 5 shows the numerical validation of the
proposed methodology and its analysis and discussion. Finally, section 6 presents the main concluding remarks
derived from this research as well as some possible future works.

2. OPTIMIZATION MODEL
The nomenclature of the mathematical optimization model presented for the parametric estimation in

PV modules using a single-diode model has been listed below:

Variables and parameters
Ipv : Define the photoelectric current a : Ideality factor of the diode
I0 : Inverse saturation current in the PV

module
Nc : Number of PV cells connected in series

Impp : Maximum power point current amin : Lower bound of the ideality diode factor
Isc : Short-circuit current amax : Upper bound of the ideality diode factor
Vmpp : Maximum power point voltage Rmin

p : Lower bound of the parallel resistance
Voc : Open-circuit voltage Rmax

p : Upper bound of the parallel resistance
Rs : Series equivalent resistance Rmin

s : Lower bound of the series resistance
Rp : Parallel equivalent resistance Rmax

s : Upper bound of the series resistance
q : Electron charge (e.g., 1.60217646 ×

10−19 Coulomb)
T : Absolute temperature in the diode union

(273.15 + 25 Kelvin)
k : Boltzmann constant (1.38064852 ×

10−23 Joules/Kelvin)

The parametric estimation problem in PV modules considering Nc cells connected in series is de-
veloped based on their ideal model using a single-diode representation [10]. The schematic modeling of the
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single-diode model, that is, the electrical circuit equivalent, has been presented in Figure 1.

Figure 1. Equivalent circuit of a photovoltaic module

To analyze PV modules with the electrical circuit equivalent depicted in Figure 1, the exponential relation is
used to define the output voltage and current as in (1) [20], [21].

I = Ipv − I0

[
exp

(
q
V + RsI

akNcT

)
− 1

]
− V + RsI

Rp
. (1)

With the objective to determine all the parameters of the PV module, that is, the series and parallel
resistances and the diode ideality factor, the three main operative points provided by the module manufacturer
have been considered. These operative points include: i) open-circuit point, ii) short-circuit point, and iii) MPP.
The analysis of each one of these points has been presented below.

2.1. Open-circuit operative point
The open-circuit operative point of the PV module presented in Figure 1 implies that the voltage in its

terminals is V = Voc with a null current flow through them, that is, I = 0. With this operative condition, it is
possible to obtain an expression for Ipv from (1) as (2):

Ipv = I0

[
exp

(
q

Voc

akNcT

)
− 1

]
− Voc

Rp
. (2)

2.2. Short-circuit operative point
The second operative point provided by the PV module manufacturer corresponds to the short-circuit

scenario at the terminals of the module, which implies that I = Isc and V = 0. With these operative conditions,
in (1) assumes in (2):

Isc = Ipv − I0

[
exp

(
q
RsIsc
akNcT

)
− 1

]
− RsIsc

Rp
. (3)

Now, if we combine (2) and (3), and some algebraic manipulations are made, the following equation for the
inverse saturation current is derived:

I0 =
Isc + RsIsc

Rp
+ Voc

Rp

exp
(
q Voc

akNcT

)
− exp

(
q RsIsc
akNcT

) . (4)

It should be noted that if we substitute (4) in (2), we can obtain a general representation of the PV current as
(5):

Ipv =

(
Isc + RsIsc

Rp
+ Voc

Rp

) [
exp

(
q Voc

akNcT

)
− 1
]

exp
(
q Voc

akNcT

)
− exp

(
q RsIsc
akNcT

) − Voc

Rp
. (5)

2.3. Maximum power point
In the information provided by the PV module manufacturer, an operational point named MPP is

available. This point presents the information regarding the maximum possible power transferred from the
panel to the system with which this is interconnected, that is, (Impp, Vmpp). If this point is substituted in (1), a
general equation for Impp is found as (6):

Impp =

(
Ipv − I0

[
exp

(
q
Vmpp+RsI

akNcT

)
− 1
]

−Vmpp+RsImpp

Rp
.

)
. (6)
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2.4. Optimization model
Based on the information provided by the PV module manufacturer, that is, the three aforementioned

operative points, it is possible to formulate an optimization model that allows the estimation of the parameters
of the electrical equivalent circuit, that is, series and parallel resistances and the ideality diode factor using
a single-objective formulation that minimizes the mean square error between the manufacturer data and the
calculated values. The general structure of the objective function assumes the following form:

min z = E2
oc + E2

sc + E2
mpp, (7)

where

Eoc =I0

[
exp

(
q

Voc

akNcT

)
− 1

]
− V

Rp
− Ipv, (8)

Esc =Ipv − I0

[
exp

(
q
RsIsc
akNcT

)
− 1

]
− RsIsc

Rp
− Isc, (9)

Empp =

(
Ipv − I0

[
exp

(
q
Vmpp+RsI

akNcT

)
− 1
]

−Vmpp+RsImpp

Rp

)
− Impp. (10)

It should be noted that to find the value of the objective function defined in (7), it is necessary to
know the values of the parameters a, Rs, and Rp (decision variables) in conjunction with the simultaneous
solution of the (4) and (5) for the inverse saturation and the PV current. To complete the optimization model
for parametric estimation in PV modules considering manufacturer data, we assign the lower and upper bounds
for the decision variables as in (11) [10]:

amin ≤ a ≤ amax, Rmin
p ≤ Rp ≤ Rmax

p ,
Rmin

s ≤ Rs ≤ Rmax
s .

(11)

It should be observed that the proposed optimization model defined from (7) to (11) added with the
equality constraints (4) and (5) corresponds to a continuous non-linear non-convex optimization problem. It
implies that multiple solutions for the parameters a, Rs, and Rp can exist with the same numerical perfor-
mance, that is, multimodal optimization behavior [22]. Due to this reason, to reach an adequate solution with
minimal computational effort, this paper proposes the application of the methaeuristic optimization technique
known as CSA [23], [24], which has not been previously reported in the literature to address the parametric es-
timation problem in PV modules. This is the main contribution of this research based on its excellent numerical
performance. In the next section, we will present the CSA and its application of the studied problem.

3. CROW SEARCH ALGORITHM
The CSA is a recently developed combinatorial optimization technique to solve continuous non-linear

complex and non-convex optimization problems with multiple constraints [25], [26]. This technique belongs to
the family of the bio-inspired optimization derived from the conventional particle swarm optimization (PSO)
methodology. It is commonly known that crows observe other birds to know where they hide their food in order
to steal it once the owner leaves. In the case a crow commits thievery, this crow will take additional precautions
such as moving hiding places to reduce the possibility of being a future victim [27]. In fact, they use their
own experience of having been a thief to forecast the behavior of possible thieves and can determine the safest
course to protect their caches from being pilfered. The main characteristics of the crows are: i) they live in
flocks; ii) they can memorize the position of their hiding places; iii) they can follow each other to commit
thievery; and iv) they can protect their caches from being pilfered by a probability. In this paper, we present
the mathematical adaptation of this behavior to solve complex optimization problems as originally proposed in
[23]. The primary steps in the implementation of the CSA have been discussed below.

3.1. Initialization of the problem and selection of the adjustable parameters
The optimization problem is defined, that is, the optimization model (7) to (11) is added with the

equality constraints (4) and (5). Then, the adjustable parameters of the CSA are selected , that is, the flock size
n, the maximum number of iterations tmax, the flight length fl, and the awareness probability Ap. It should be
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noted that the selection of these parameters is heuristic and depends on the knowledge that the programmer has
about the optimization problem under study. These are typically selected using multiple simulations to identify
the best trade-off between response quality and processing times.

3.2. Initial position and memory of the crows
In a d-dimensional space, all the n crows are initially positioned as the members of the flock. It is

worth mentioning that each crow represents a feasible solution of the optimization problem that is composed
by d decision variables.

Crows =


x11 x12 · · · x1d

x21 x22 · · · x2d

...
...

. . .
...

xn1 xn2 · · · xnd

 (12)

It should be noted that the generation of each component of the crow i associated with the variable j takes the
following form:

xij = xmin
j + r

(
xmax
j − xmin

j

)
, ∀
{

i = 1, 2, ..., n
j = 1, 2, ..., d

}
(13)

where, r is a random number between 0 and 1 generated with a normal distribution.
In the beginning of the search process, the memory of each crow is initialized. However, in the initial

iteration, the crows have no search experience. Then, it is assumed that they have hidden their foods at their
initial positions.

Memory =


m11 m12 · · · m1d

m21 m22 · · · m2d

...
...

. . .
...

mn1 mn2 · · · mnd

 (14)

3.3. Fitness function evaluation
As a conventional metaheuristic optimization algorithm, the CSA works with a fitness function instead

of the original objective function of the problem to deal with infeasibilities in the solution space [28]. However,
in the case of the parametric estimation of PV modules, due to the structure of the optimization model, it is
possible to directly evaluate the objective function for each crow.

3.4. Generation of the new position for each crow
The generation of new positions for the crows in the search space proceeds as follows: consider that

the crow i wants to pass to a new position. For this goal, this crow randomly selects one of the flock crows (e.g.,
crow k) to follow in order to discover the position where they have hidden their food (i.e., mk). Following this
procedure, the new position of the crow i is obtained as (16):

xt+1
i =

{
xt
i + rif

i,t
l (mt

k − xt
i) , rk ≥ Ak,t

p

a random position (see (13)), otherwise
(15)

where rj is a random number with uniform distribution between 0 and 1, and Ak,t
p denotes the awareness

probability of crow k at iteration t. It should be observed that this procedure is repeated for all the crows. It is
worth mentioning that each crow generated with (15) is revised if the lower and upper bounds of the decision
variables are fulfilled. In the case that the crow i violates these bounds, in (13) is used to correct it.

3.5. Evaluation of the objective function and updating of the memories
For each one of the positions of the crows, the objective function is evaluated, which is used to update

their memories as (16):

mt+1
i =

{
xt+1
i , z

(
xt+1
i

)
is better than z (xt

i)
mt

i, otherwise
(16)

It is observed that if the fitness function value of the new position of the crow i is better than the fitness
function value of the memorized position, the crow updates its memory by the new position. ”Better” in the
case of parametric estimation in PV modules implies ”lower”.
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3.6. Check termination criterion
The steps defined in subsections 3.4. and 3.5. are repeated until the maximum number of iterations

is reached (i.e., tmax). When the termination criterion is met, the best position of the memory in terms of the
objective function value (i.e., the minimum value) is reported as the solution of the optimization problem.

3.7. Implementation of the CSA
Algorithm 1 presents the general pseudo-code that defines the steps necessary to implement the CSA

to solve the problem of parametric estimation in PV modules [23].

Algorithm 1: Application of the crow search algorithm to the problem of the parametric estimation
in PV modules

Data: Read the data of the PV module provided by the manufacturer;
Define the algorithm parameters;
Randomly initialize the position of a flock of n crows in the search space;
Evaluate the fitness function for all the crows;
Initialize the memory of each crow;
for t = 1 : tmax do

for i = 1 : n do
Randomly select one of the crows to follow (e.g., crow k);
Define an awareness probability;
if rk ≥ Ak,t

p then
xt+1
i = xt

i + rif
i,t
l (mt

k − xt
i);

else
xt+1
i = a random position (apply Eq. (13));

end
Check the feasibility of new positions;
Evaluate the new position of the crows;
Update the memory of crows;

end
end
Result: Return the best solution stored in the memory of the crows

4. TEST SYSTEM AND COMPUTATIONAL VALIDATION
The implementation of the proposed CSA to the problem of the parametric estimation in PV modules

represented with its single-diode model has considered the information provided by the manufacturer of the Ky-
ocera KC200GT [10] as shown in Table 1, in the software MATLAB 2020a using a desk computer INTEL(R)
Core(TM) i5− 3550 3.5-GHz, 8 GB of RAM version 64-bit with Microsoft Windows 7 Professional.

To validate the effectiveness of the CSA to find a high-quality solution to the problem of the para-
metric estimation in PV modules, a population of 20 individuals was considered, that is, n = 20, with 100000
consecutive iterations; an awareness probability fixed as 0.75, and a variable fly length defined by the follow-
ing rule fl = 2rand ∗ (1 − t/tmax). Moreover, the lower and upper bounds for the decision variables are
0.5 ≤ a ≤ 2, 0.001 ≤ Rp ≤ 1, and 50 ≤ Rs ≤ 200, which have been taken from [10].

Table 1. Kyocera KC200GT manufacturer information (Taken from [5])
Parameter Symbol Value

Open-circuit voltage Voc 32.900 V
Temperature coefficient for Voc KVoc -0.123 V/oC

Short-circuit current Isc 8.210 A
Temperature coefficient for Isc KIsc 3.180×10−3 A/oC

Voltage on the MPP Vmpp 26.300 V

Number of cell in series Nc 54
Current on the MPP Impp 7.610 A
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5. NUMERICAL RESULTS
The application of the CSA to the problem of parametric estimation in PV modules produced the

results reported in Table 2, where the best 10 solutions are presented after 100 consecutive evaluations. From
results in Table 2, we can observe that: i) the value of the objective function related with the mean square error
(see (7)) that evaluates the error regarding the open-circuit point, short-circuit point, and MPP provided by the
manufacturer of the PV module and the calculated values using the single-diode model are lower (i.e., better)
than 1 × 10−29, which can be considered null for any practical implementation. In this context, as mentioned
in [5], all the parameters represent optimal solutions, moreover, these improve the conclusion reported in [10]
wherein values lower than ×−15 were considered optimal; ii) the solutions in the range from 3 to 8 present the
same objective function value, that is, 7.8886 × 10−31, which confirm the multimodal nature of the problem
of the parametric estimation in PV modules since there are different combinations of the decision variables
that have the same numerical performance; iii) the electrical parameter that presents more variations along the
optimal solutions is the parallel resistance since the minimum value reached for this parameters is found in
the solution 10 with a value of 55.0001 Ω and the maximum value is found in the solution 5 with a value of
188.3342 Ω, that is, a difference superior than 120 Ω between both solutions; and iv) the average processing
times reported by the CSA to find the numerical results reported in Table 2 was about 1.80 s with a standard
deviation of 0.20 s, which demonstrates the efficiency of the CSA to find the global optimal solution.

In Figure 2 is presented the V − I curve of the PV module for each one of the ten solutions reached
by the CSA and presented in Table 2. These curves were obtained making a sweep in the voltage variable
from 0 to Voc in steps of 0.10 V by solving the (1) for all the combinations of a, Rs and Rp parameters of the
single-diode model of the PV module presented in Figure 1. From the numerical results presented in Figure
1, it can be noted that the points P1, P2, and P3 correspond to the open-circuit point, MPP, and short-circuit
operative points, which confirms that the information provided by the PV module manufacturer is sufficient to
estimate with minimum errors the complete behavior of the panel in all its operative range; moreover, when the
Wilcoxon test was applied for ten independent samples, each one of them with 10 optimal solutions, a mean
value for p of about p of 0.5486 with a value of h = 0 was obtained; this implies that the null hypothesis of the
Wilcoxon test is confirmed, and therefore, the analyzed samples present the same median with a significance
level of 100 %, which demonstrates that the CSA has the ability to find the global optimal solution at each
evaluations with 100 consecutive search through the solution space.

Table 2. Ten best results reached by the CSA
No a Rs (Ω) Rp (Ω) ff
1 0.65018 0.3938 56.8600 0
2 0.57158 0.5199 81.3492 0
3 0.59211 0.4996 76.4901 7.8886×10−31

4 0.64397 0.5071 113.2315 7.8886×10−31

5 0.50549 0.6038 188.3341 7.8886×10−31

6 0.51566 0.5436 74.2629 7.8886×10−31

7 0.58256 0.5137 81.6568 7.8886×10−31

8 0.60683 0.5451 159.1443 7.8886×10−31

9 0.67940 0.3646 55.8052 2.2877×10−29

10 0.67623 0.3605 55.0001 2.5243×10−29

5.1. Comparison with combinatorial methods
In this section, we present the comparative results among the proposed CSA and different combina-

torial methods that solve optimization problems in the continuous domain. These methods are: vortex search
algorithm [12], sine-cosine algorithm [10], PSO [29], and genetic algorithm [30]. For each one of these com-
parative methods, 100 consecutive evaluations were made to obtain the best 10 results reported in Table 3.

From results listed in Table 3 it is possible to observe that:
− The CSA and the VSA optimization approaches present the best numerical performance with respect to

the objective function values lower than ×10−28 and ×10−25, respectively.
− The solutions found by the SCA and the CGA methods can also be considered optimal, since the objective

function is in practical terms null. However, we can mention that the SCA presents a better numerical
performance when compared with the CGA as was demonstrated in [10], since the best objective function
is 9.7192× 10−28 for the SCA and 3.2207× 10−12 for the CGA, which implies a difference higher than
1× 10−5 between them.
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− The list of different solutions reported in 3 confirms the non-linear non-convex nature of the problem of
the parametric estimation in PV systems, since the CGA and the SCA are stuck in local optimums, while
the PSO, the VSA, and the proposed CSA present a better numerical performance reaching high-quality
objective function values.

To complement the analysis among the CSA and the comparative metaheuristic methods, the parameters for
the optimal solutions are listed in Table 4 with label number 1 presented in Table 3.

Figure 2. V − I curve obtained by solving (1) for the parameters presented in Table 2

Table 3. Ten best solutions reported by each comparative method
No CSA VSA SCA PSO CGA
1 0 0 9.7192×10−18 2.5243×10−29 3.2207×10−12

2 0 0 1.0823×10−17 1.0097×10−28 5.1049×10−11

3 7.8886×10−31 0 1.3799×10−16 1.6155×10−27 2.3014×10−10

4 7.8886×10−31 0 1.9364×10−16 2.5243×10−27 2.7546×10−10

5 7.8886×10−31 7.8886×10−29 3.5309×10−16 6.0647×10−27 3.9197×10−10

6 7.8886×10−31 1.9248×10−28 5.2122×10−16 2.9181×10−26 5.1134×10−10

7 7.8886×10−31 1.3067×10−26 5.4738×10−16 3.5498×10−26 5.2351×10−10

8 7.8886×10−31 1.3354×10−26 8.4393×10−16 5.0553×10−26 6.0393×10−10

9 2.2877×10−29 2.9614×10−26 9.3922×10−16 7.6361×10−26 6.2646×10−10

10 2.5243×10−29 4.8872×10−26 1.5123×10−16 1.4485×10−25 6.8811×10−10

Table 4. Optimal solutions reported by the proposed and comparative methods
Method a Rs (Ω) Rp (Ω)

CSA 0.650181877806710 0.393806884684579 56.8600309871423
VSA 0.502572297672421 0.505917172241395 57.6920080257133
PSO 0.681740933460645 0.508343460036893 170.884395321487
SCA 0.917140758347724 0.146864384999908 52.6718647012995
CGA 0.985461664181760 0.234102605899478 70.5159926098178

6. CONCLUSION
In this research, the CSA was implemented to find the optimal parameter combination to represent PV

modules with its single-diode model. Numerical results demonstrated that this algorithm finds solutions with
values lower than 1 × 10−28 regarding the objective function value after 100 consecutive evaluations, which
were better in comparison with the classical metaheuristic methods used to solve this problem; these methods
were the VSA, SCA, PSO, and CGA respectively. The first 10 solutions reached by the CSA confirm that the
problem of the parametric estimation in PV modules is a multimodal non-linear optimization problem with
different combinations of the decision variables that present the same numerical performance. Regarding the
processing times, the proposed CSA takes about 1.80 s to find the optimal solution of the studied problem with
the main advantage being that based on the Wilcoxon test, after 100 consecutive evaluations, the possibility
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of finding the global optimum is ensured. Moreover, the CSA is easily implementable in any programming
language with only 4 parameters to be tuned. In the future, it will be possible to develop the following re-
search works: i) to extend the proposed CSA to the parametric estimation in induction motors and distribution
transformers that are modeled with non-linear non-convex optimization models and ii) to apply the proposed
optimization model to the estimation of parameters in PV modules considering real measures of voltages and
currents including variable weather conditions.
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