
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 12, No. 1, February 2022, pp. 285~292

ISSN: 2088-8708, DOI: 10.11591/ijece.v12i1.pp285-292 285

Journal homepage: http://ijece.iaescore.com

Performance analysis of real-time and general-purpose

operating systems for path planning of the multi-robot systems

Seçkin Canbaz1, Gökhan Erdemir2
1Department of Information Technologies, İstanbul Sabahattin Zaim University, Instanbul, Turkey

2Department of Electrical and Electronics Engineering, İstanbul Sabahattin Zaim University, Instanbul, Turkey

Article Info ABSTRACT

Article history:

Received Mar 31, 2020

Revised Jun 17, 2021

Accepted Jun 30, 2021

 In general, modern operating systems can be divided into two essential parts,

real-time operating systems (RTOS) and general-purpose operating systems

(GPOS). The main difference between GPOS and RTOS is the system is

time-critical or not. It means that; in GPOS, a high-priority thread cannot

preempt a kernel call. But, in RTOS, a low-priority task is preempted by a

high-priority task if necessary, even if it’s executing a kernel call. Most

Linux distributions can be used as both GPOS and RTOS with kernel

modifications. In this study, two Linux distributions, Ubuntu and Pardus,

were analyzed and their performances were compared both as GPOS and

RTOS for path planning of the multi-robot systems. Robot groups with

different numbers of members were used to perform the path tracking tasks

using both Ubuntu and Pardus as GPOS and RTOS. In this way, both the

performance of two different Linux distributions in robotic applications were

observed and compared in two forms, GPOS, and RTOS.

Keywords:

GPOS

Mobile robotics

Multi-robot systems

Path planning

RTOS

This is an open access article under the CC BY-SA license.

Corresponding Author:

Gökhan Erdemir

Department of Electrical and Electronics Engineering, Istanbul Sabahattin Zaim University

Halkali, Kucukcekmece, Istanbul 34303, Turkey

Email: gokhan.erdemir@izu.edu.tr

1. INTRODUCTION

In recent, almost all of electronic devices are designed for the devices to operate independently from

human beings and autonomously have operating systems to perform a specific task [1]-[5]. Commonly used

operating systems can be listed as android for mobile devices, windows for PCs, Linux and iOS for both

platforms. The main purpose of operating systems is to use the hardware most effectively and also to fulfill

the tasks in the fastest way [6]. On the other hand, operating systems have some dependencies while

performing described tasks. The time is one of the important dependencies for operating systems. The

calculation of the processing time is crucial parameter in especially time depended on operations and tasks. It

is an important parameter that determines the performance of an operating system and minimizes the

possibility of error [6]. Therefore, all operating systems have time dependencies. Two different time

calculation methods have been used which were named based on their kernel structures which depend on

operating systems type [4], [7]-[13]. These are general purpose operating system (GPOS) and real-time

operating system (RTOS).

GPOS is a common operating system type such as windows, Linux, android. that is designed to

fulfill personal use. The main purpose of GPOS, which is an operating system design that can be used by

everybody, is high efficiency. Efficiency is directly related to the number of tasks completed per unit cycle. It

means that GPOSs must support multi-tasking [8], [14]. On the other hand, task scheduling and allocation are

performed without priority levels of the tasks in GPOSs [15]. It is possible to execute lower priority tasks

https://creativecommons.org/licenses/by-sa/4.0/

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 12, No. 1, February 2022: 285-292

286

instead of higher priority tasks, primarily. In this way, system performance can be increased which depends

on the task-scheduling algorithms. It means that system efficiency can increase at the same time. However, it

is possible to occur delays in processing time in GPOS. This is a tolerable error, and it can be solved by using

effective task-scheduling and allocation algorithms. But, this situation can cause crucial errors if the task has

time dependency [4], [16]-[19]. For example, in the obstacle avoidance for mobile robots, when an obstacle

is detected, an obstacle avoidance task must be performed simultaneously. It means that the task must have

higher priority. Otherwise, the robot may hit the obstacle and an accident occurs. This is an undesirable and

unexpected situation. In order to avoid such an error, the task with high priority should be executed quickly.

RTOSs have been designed to solve high-time dependency tasks [9], [16], [17], [20]. RTOSs are

divided into three subcategories according to their time dependency. These are soft real-time, hard real-time,

and firm real-time, respectively [3], [9], [21]. The task processing and completion times are absolutely

certain in RTOS [22]. Since the task that is processed will finish at the end of a predetermined maximum

scheduling time, it is terminated or completed in a certain time [11], [23]. However, in some possible delays,

the responses of the system are various which depends on the type of RTOS. Delays are tolerable in soft real-

time systems, poorly tolerable in hard real-time systems, and no tolerance in firm real-time systems [12],

[24]-[26]. If the task is not completed on time, it is terminated or canceled in firm real-time systems [12],

[24]-[26]. It is crucially important to have highly precise decision ability for autonomous robot applications

in a dynamic and unknown environment [27]-[29]. The decision process is one of the high-time dependency

tasks, especially, detection and identification of obstacles [28], [30], [31].

RTOSs are divided into two types according to their core architectures which are monolithic kernel

and microkernel [32]-[35], as well. In a monolithic kernel, all processes in the operating system are defined

in the kernel. All processes such as file management and networking. run in the kernel. On the other hand,

applications work on the user side. The disadvantage of this design is the entire system can be affected by

any negativity in the kernel [32], [33]. In this structure, the whole kernel must be recompiled for a change

that can be performed [32], [33]. And, this process is a cause of the time loss [32], [33]. The whole operating

system processes work on the user side in microkernel systems [32]-[34]. All processes communicate with

each other. This approach increases the message traffic and decreases performance. But, the microkernel

architecture is more secure than the monolithic kernel architecture. An occurred error during task-processing

does not affect the whole system. It is not more complex because it contains less code [32]-[34].

In this study, GPOS and RTOS versions of Ubuntu and Pardus which are two Linux distributions

were analyzed to compare their performances on path planning of the multi-robot systems. Moreover, it is

possible to compare the performance of robot operating system (ROS) on these two distributions, in this

study. Robot groups with different numbers of members were used to perform the path tracking tasks using

both Ubuntu and Pardus as GPOS and RTOS to analyze their performance in the turtlesim simulation

environment. In this way, both the performance of two different Linux distributions in multi-robotic

applications were observed and compared. Two different path planning cases were performed, and results

were discussed.

2. RESEARCH METHOD

In this study, GPOS and RTOS were installed on two different Linux distributions which are Ubuntu

and Pardus, and system performances were analyzed. Ubuntu is one of the most popular Linux distribution

with a Linux kernel, using the Debian infrastructure and architecture [36]. This operating system, distributed

as open-source, has been developed since October 2004 and is currently the most popular Linux-based

system [36]. Pardus is an open-source operating system developed by Ulakbim and Tübitak using the Debian

infrastructure. Its distributions have been on the market since 2005 [37]. Experimental studies on the

simulation have been performed on ROS. Although ROS is perceived as a real operating system, it is actually

software based on an operating system and used for robot control [38]-[43]. It is possible to test mobile

robots in a virtual environment with the turtlesim package installed in the ROS noetic version. The turtlesim

package is a visualization tool that allows us to observe the movements of a virtual robot by working on ROS

via user codes [38]-[40]. ROS rqt plugin for turtlesim was used as a trajectory planning application of multi-

robot systems [44]. Free distribution and usage permissions are given in the license file in the application

[45]. The turtlesim plug-in in the rqt of [44], a selected picture as a planned path is drawn with the help of

swarm robots. In drawing the picture, the number of robots is various according to the size and complexity of

the picture [44]. In case studies, the computer which has an Intel Atom® N2600 1.6 Ghz processor, 2 GB

DDR3 RAM, 500 GB hard disk was used.

Int J Elec & Comp Eng ISSN: 2088-8708

Performance analysis of real-time and general-purpose operating systems … (Seçkin Canbaz)

287

3. EXPERIMENTAL STUDIES

All experimental studies were designed for path planning and formation control of multi-robot

system. Official logos of operating systems were used. In all case studies, [44] were used to draw robots's

paths.

3.1. Experiment 1 draw a path using Pardus logo

In this experiment, Pardus logo was drawn as simple path planning using [44]. Pardus GPOS-RTOS

and Ubuntu GPOS-RTOS operating systems were used with the same parameters. The results were recorded,

and performance comparison was performed. In Figure 1, Pardus official logo and selected paths were

shown, separately. The code was run with its default settings without changing and the same shape was

drawn in 4 different operating systems. In Figure 2, drawing paths by robots are shown by using turtlesim.

Thus, processor usage and processing time on the turtlesim were measured and recorded in the data table.

Results were presented in Figure 3, separately. According to results which were shown in Figure 3, central

processing unit (CPU) usage is lower and processing time is shorter than other operating systems when

Ubuntu GPOS was used. On the other hand, low CPU usage of RTOSs were observed than GPOS versions,

in Figure 3, as well.

Figure 1. Pardus logo and rqt turtlesim view

Figure 2. Drawing Padus logo path result drawn using turtlesim

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 12, No. 1, February 2022: 285-292

288

Figure 3. Processor usage graphs for experiment 1

3.2. Experiment 2 draw a path using Ubuntu-Linux logo

In this experiment, Ubuntu-Linux logo was drawn as simple path planning using [44]. Pardus

GPOS-RTOS and Ubuntu GPOS-RTOS operating systems were used with the same parameters. The results

were recorded, and performance comparison was performed. In Figure 4, Ubuntu-Linux official logo and

selected paths were shown, separately. The code was run with its default settings without changing and the

same shape was drawn in 4 different operating systems. In Figure 5, drawing paths by robots are shown by

using turtlesim. Thus, processor usage and processing time on the turtlesim were measured and recorded in

the data table. Results were presented in Figure 6, separately. According to results which were shown in

Figure 6, CPU usage is lower and processing time is shorter than other operating systems when Ubuntu

GPOS was used. On the other hand, low CPU usage of RTOSs were observed than GPOS versions, in Figure

6. Low CPU usage of RTOS was observed in both experiments. We can say that the main reason for this is

that the long processes are terminated and the other process is executed, in RTOS.

Figure 4. Ubuntu-Linux logo and rqt turtlesim view

Int J Elec & Comp Eng ISSN: 2088-8708

Performance analysis of real-time and general-purpose operating systems … (Seçkin Canbaz)

289

Figure 5. Drawing Ubuntu-Linux logo path result drawn using turtlesim

Figure 6. Processor usage graphs for experiment 2

4. RESULTS AND DISCUSSION

In experiment 1 and 2, complex trajectory tracking and formation control for multi-robot systems

were performed by using [44] on all operating systems. The processing times for each operating system are

presented in Table 1. As can be seen from the results in Table 1, in the comparison of RTOS and GPOS,

GPOSs give better results than RTOS in processing time. The main reason for this is while drawing a picture

in GPOS, when each robot's task is finished during drawing, the operating system reads the value and the

process of the next robot begins. But before beginning of the process in RTOS, the beginning and ending

times of the process is determined. If the processing time is set as 100 milliseconds for each process, even if

robot completes its task before 100 milliseconds, the resources will be available for the other robot at the end

of the 100 milliseconds. Although, this situation increases system security and reduces the margin of error, it

causes delays in processing times as it extends the processing time.

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 12, No. 1, February 2022: 285-292

290

Table 1. The processing times for each operating system (milliseconds)

Experiment
Ubuntu Pardus

GPOS RTOS GPOS RTOS

1 61.890 68.940 76.700 78000

2 48.130 49.960 57.160 58.210

As a result of this application, there are two results that can be observed clearly in the performance

evaluation of multi-robots in path planning and formation control. The first one is, GPOSs completed their

task earlier than RTOSs in two different operating systems. The second one is, Ubuntu GPOS and RTOS

completed processes faster than Pardus with limited resources. At the same time, it has been observed that all

operating systems completed their tasks without any problems.

5. CONCLUSION

In this study, open-source operating systems, Ubuntu and Pardus, were used as operating systems in

order to freely modify in the core codes and structure. The main aim of this study is to observe and to

compare usability of RTOS and GPOS in multi-robot systems. RTOSs were completed tasks later than the

GPOSs as expected. Because, even if the processes were completed, the operating system read the value at

the end of the exact processing time determined for the processes. The results vary due to the structural

features of the operating systems. When choosing an operating system for the multi-robot applications,

features such as possible failure conditions, process security, processing time speeds should be taken into

consideration. A defined process is terminated or completed at certain time when a process run on RTOS.

This is very important feature, if robot is used in time dependency applications. Since the processing times

are clearly defined, that task is canceled in the delay that occurs in a task and the whole system is not affected

by an error that occurs and the system remains alive. GPOS and RTOS were compared for path planning and

formation control of multi-robot systems using two different Linux distributions. According to the

experimental results, it was seen that GPOS concluded all defined task faster than RTOS. GPOS can be

preferred in a way that performance is in the foreground in studies to be carried out in the field of multi-

robotic systems. If the task has time dependency or the task requires certain processing time, RTOSs must be

used, absolutely.

ACKNOWLEDGEMENTS

This study was supported by the Istanbul Sabahattin Zaim University Scientific Research Program

[grant number: BAP-1000-62, 2021].

REFERENCES
[1] D. P. Watson and D. H. Scheidt, “Autonomous systems,” Johns Hopkins APL Technical Digest (Applied Physics Laboratory),

vol. 26, no. 4, 2005, doi: 10.1201/b17251-10.

[2] C. S. Sharp, O. Shakernia, and S. S. Sastry, "A vision system for landing an unmanned aerial vehicle," Proceedings 2001 ICRA.
IEEE International Conference on Robotics and Automation (Cat. No.01CH37164), vol. 2, 2001, pp. 1720-1727, doi:

10.1109/ROBOT.2001.932859.

[3] P. Hambarde, R. Varma, and S. Jha, "The survey of real time operating system: RTOS," 2014 International Conference on
Electronic Systems, Signal Processing and Computing Technologies, 2014, pp. 34-39, doi: 10.1109/ICESC.2014.15.

[4] K. Ghosh, B. Mukherjee, and K. Schwan, "A survey of real-time operating systems," Networks Parallel Distrib. Process., vol. 29,

no. GIT-CC-93/18, 1994.
[5] H. Posadas, E. Villar, D. Ragot, and M. Martinez, "Early modeling of linux-based ROTS platforms in a system c time-

approximate co-simulation environment," 2010 13th IEEE International Symposium on Object/Component/Service-Oriented

Real-Time Distributed Computing, 2010, pp. 238-244, doi: 10.1109/ISORC.2010.18.
[6] A. Murikipudi, V. Prakash, and T. Vigneswaran, “Performance analysis of real time operating system with general purpose

operating system for mobile robotic system,” Indian Journal of Science and Technology, vol. 8, no. 19, pp. 1-6, 2015, doi:

10.17485/ijst/2015/v8i19/77017.
[7] C. Garre, D. Mundo, M. Gubitosa, and A. Toso, "Performance comparison of real-time and general-purpose operating systems in

parallel physical simulation with high computational cost," in SAE Technical Papers, 2014, vol. 1, doi: 10.4271/2014-01-0200.

[8] M. D. Marieska, P. G. Hariyanto, M. F. Fauzan, A. I. Kistijantoro, and A. Manaf, "On performance of kernel based and embedded
real-time operating system: Benchmarking and analysis," in 2011 International Conference on Advanced Computer Science and

Information Systems (ICACSIS), 2011.

[9] S. Baskiyar and N. Meghanathan, "A survey of contemporary real-time operating systems," Informatica, vol. 29, no. 2,
pp. 233-240, 2005.

[10] R. Aslanian, "Real-time operating systems," Computer Standards and Interfaces, vol. 6, no. 1, pp. 45-49, 1987, doi:

10.1016/0920-5489(87)90044-4.
[11] P. Hambarde, R. Varma, and S. Jha, "The Survey of real time operating system: RTOS," 2014 International Conference on

Electronic Systems, Signal Processing and Computing Technologies, 2014, pp. 34-39, doi: 10.1109/ICESC.2014.15.

Int J Elec & Comp Eng ISSN: 2088-8708

Performance analysis of real-time and general-purpose operating systems … (Seçkin Canbaz)

291

[12] H. Wei, Z. Huang, Q. Yu, M. Liu, Y. Guan, and J. Tan, "RGMP-ROS: A real-time ROS architecture of hybrid RTOS and GPOS
on multi-core processor," 2014 IEEE International Conference on Robotics and Automation (ICRA), 2014, pp. 2482-2487, doi:

10.1109/ICRA.2014.6907205.

[13] H. Wei et al., "RT-ROS: A real-time ROS architecture on multi-core processors," Future Generation Computer Systems, vol. 56,
pp. 171-178, 2016, doi: 10.1016/j.future.2015.05.008.

[14] C. Garre, D. Mundo, M. Gubitosa, and A. Toso, “Performance comparison of real-time and general-purpose operating systems in

parallel physical simulation with high computational cost,” SAE Technical Paper, vol. 1, 2014, doi: 10.4271/2014-01-0200.
[15] S. Zouaoui, L. Boussaid, and A. Mtibaa, “Priority based round robin (PBRR) CPU scheduling algorithm,” International Journal

of Electrical and Computer Engineering (IJECE), vol. 9, no. 1, 2019, doi: 10.11591/ijece.v9i1.pp190-202.

[16] Nandana V., Jithendran A. and Shreelekshmi R., “Survey on RTOS: Evolution, types and current research,” International Journal
of Computer Applications, vol. 121, no. 21, pp. 28-31, 2015, doi: 10.5120/21825-5077.

[17] A. Murikipudi, V. Prakash, and T. Vigneswaran, “Performance analysis of real time operating system with general purpose

operating system for mobile robotic system,” Indian Journal of Science and Technology, vol. 8, no. 19, pp. 1-6, 2015, doi:
10.17485/ijst/2015/v8i19/77017.

[18] L. Das, S. Mohapatra, and D. P. Mohapatra, “Schedulability of rate monotonic algorithm using improved time demand analysis

for multiprocessor environment,” International Journal of Electrical and Computer Engineering, vol. 8, no. 1, pp. 429-440, 2018,
doi: 10.11591/ijece.v8i1.pp429-440.

[19] P. Dong, Z. Jiang, A. Burns, Y. Ding, and J. Ma, “Build real-time communication for hybrid dual-OS system,” Journal of Systems

Architecture, vol. 107, 2020, doi: 10.1016/j.sysarc.2020.101774.
[20] T. H. Lin, Y. Kinebuchi, and T. Nakajima, “Robust lightweight embedded virtualization layer design with simple hardware

assistance,” in IEICE Transactions on Information and Systems, 2012, vol. E95-D, no. 12, pp. 2821-2832, doi:

10.1587/transinf.E95.D.2821.
[21] B. S. Kim, H. S. Park, K. H. Kim, D. Godfrey, and K. Il Kim, “A survey on real-time communications in wireless sensor

networks,” Wireless Communications and Mobile Computing, vol. 2017, 2017, Art. no. 1864847, doi: 10.1155/2017/1864847.

[22] U. C. Devi, “Soft real-time scheduling on multiprocessors,” Ph.D. dissertation Department of Computer Science, University of
North Carolina, Chapel Hill, North Carolina, 2006.

[23] M. Barabanov, “A linux-based real-time operating system,” M.S. thesis, New Mexico Institute of Mining and Technology Socorro

New Mexico 1997. [Online]. Available: http://luz.cs.nmt.edu/~rtlinux.Acknowledgements (accessed Mar. 27, 2021).
[24] A. Damm, J. Reisinger, W. Schwabl, and H. Kopetz, “Real-time operating system of MARS,” ACM SIGOBS Operating Systems

Review, vol. 23, no. 3, pp. 141-157, 1989, doi: 10.1145/71021.71029.

[25] J. Kacur, “Real time kernel for audio and visual applications,” Linux Audio Conf., 2010.
[26] F. Reghenzani, G. Massari, and W. Fornaciari, “The real-time linux kernel: A survey on PREEMPT_RT,” ACM Computing

Surveys, vol. 52, no. 1, pp. 1-36, 2019, Art. no. 18, doi: 10.1145/3297714.

[27] S. K. Das, A. K. Dutta, and S. K. Debnath, “OperativeCriticalPointBug algorithm-local path planning of mobile robot avoiding
obstacles,” Indonesian Journal of Electrical Engineering and Computer Science (IJEECS), vol. 18, no. 3, pp. 1646-1656, 2020,

doi: 10.11591/ijeecs.v18.i3.pp1646-1656.

[28] A. M. Azri, S. Abdul-Rahman, R. Hamzah, Z. A. Aziz, and N. A. Bakar, “Visual analytics of 3D LiDAR point clouds in robotics
operating systems,” Bulletin of Electrical Engineering and Infromatics (BEEI), vol. 9, no. 2, pp. 492-499, 2020, doi:

10.11591/eei.v9i2.2061.

[29] Y. Li, Y. Chen, Y. Yang, and Y. Li, "Soft robotic grippers based on particle transmission," in IEEE/ASME Transactions on
Mechatronics, vol. 24, no. 3, pp. 969-978, June 2019, doi: 10.1109/TMECH.2019.2907045.

[30] B. Rahmani, A. Harjoko, and T. K. Priyambodo, “A vision-based real-time obstacle avoidance’s rules utilising grid-edge-depth

map,” Indonesian Journal of Electrical Engineering and Computer Science (IJEECS), vol. 19, no. 1, pp. 513-525, 2020, doi:
10.11591/ijeecs.v19.i1.pp513-525.

[31] A. S. Handayani, S. Nurmaini, I. Yani, and N. L. Husni, “Analysis on swarm robot coordination using fuzzy logic,” Indonesian

Journal of Electrical Engineering and Computer Science (IJEECS), vol. 13, no. 1, pp. 48–57, 2019, doi:
10.11591/ijeecs.v13.i1.pp48-57.

[32] R. I. Mutia, “Inter-Process Communication Mechanism in Monolithic Kernel and Microkernel,” unpublished, 2014. [Online].
Available: http://www.eit.lth.se/fileadmin/eit/project/142/IPC_Report.pdf.

[33] D. Du, Z. Hua, Y. Xia, B. Zang, and H. Chen, "XPC: Architectural Support for secure and efficient cross process call," 2019

ACM/IEEE 46th Annual International Symposium on Computer Architecture (ISCA), 2019, pp. 671-684.
[34] X. Peng, K. Xiao, Y. Li, L. Chen, and W. Zhang, “Fast interprocess communication algorithm in microkernel,” International

Journal of Perfomability Engineering, vol. 16, no. 2, pp. 185-194, 2020, doi: 10.23940/ijpe.20.02.p3.185194.

[35] C. Main, "Virtualization on multicore for industrial real-time operating systems [from mind to market]," in IEEE Industrial

Electronics Magazine, vol. 4, no. 3, pp. 4-6, Sep. 2010, doi: 10.1109/MIE.2010.937935.

[36] R. Petersen, "Ubuntu 20.04 LTS Desktop: Applications and administration," Surfing Turtle Press, Jun. 2020.

[37] M. M. Karakoç and A. Varol, “National distribution project and pardus operating system,” Turkish Journal of Science &
Technolog, vol. 11, no. 2, pp. 25-34, 2016.

[38] M. Quigley et al., “ROS: an open-source robot operating system,” ICRA Workshop on Open Source Software, 2009. [Online].

Available: http://stair.stanford.edu (accessed Mar. 27, 2021).
[39] J. M. Cañas, E. Perdices, L. García-Pérez, and J. Fernández-Conde, “A ROS-based open tool for intelligent robotics education,”

Applied Sciences, vol. 10, no. 21, pp. 1-20, 2020, doi: 10.3390/app10217419.

[40] F. Ellouze, A. Koubâa, and H. Youssef, “ROSWeb services: A tutorial,” Studies in Computational Intellegence, vol. 625,
pp. 263-490, 2016, doi: 10.1007/978-3-319-26054-9_18.

[41] D. R. Sulaiman, “Multi-objective Pareto front and particle swarm optimization algorithms for power dissipation reduction in

microprocessors,” International Journal of Electrical and Computer Engineering (IJECE), vol. 10, no. 6, pp. 6549-6557, 2020,
doi: 10.11591/IJECE.V10I6.PP6549-6557.

[42] S. H. Abdulredah and D. J. Kadhim, “Developing a real time navigation for the mobile robots at unknown environments,”

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS), vol. 20, no. 1, pp. 500-509, Oct. 2020, doi:
10.11591/ijeecs.v20.i1.pp500-509.

[43] S. K. Das, A. K. Dutta, and S. K. Debnath, “Development of path planning algorithm of centipede inspired wheeled robot in

presence of static and moving obstacles using modified critical-snakebug algorithm,” IAES Int. J. Artif. Intell., vol. 8, no. 2,
pp. 95–106, 2019, doi: 10.11591/ijai.v8.i2.pp95-106.

[44] Franz. “Rqt plugin for ROS (Noetic) to control turtles in turtlesim.” GitHub.com. https://github.com/fjp/rqt-turtle (accessed Mar.

01, 2021).

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 12, No. 1, February 2022: 285-292

292

[45] F. Pusher. “Rqt plugin License.” GitHub.com. https://github.com/fjp/rqt-turtle/blob/master/LICENSE (accessed Mar. 01, 2021).

BIOGRAPHIES OF AUTHORS

Seçkin Canbaz received his B.Sc. degree form Istanbul University, Faculty of

Science, Department of Physics in 2015. He started to work at Istanbul Sabahattin Zaim

University in the Department of Information Technologies in 2016. He is currently master

student at Istanbul Sabahattin Zaim University, Department of Computer Science and

Engineering. His research interests are open-source operating systems, real-time operating

systems and ROS. He can be contacted at email: seckin.canbaz@izu.edu.tr.

Gökhan Erdemir received his B.Sc., M.Sc. and Ph.D. degrees from Marmara

University, Turkey, respectively. During his Ph.D., we worked as a research scholar at

Michigan State University, Department of Electrical and Computer in East Lansing MI,

USA. Now, he is an assistant professor at Istanbul Sabahattin Zaim University, Department

of Electrical and Electronics Engineering. His research topics include robotics, control

systems, and intelligent algorithms. He can be contacted at email: gokhan.erdemir@izu.edu.tr.

https://orcid.org/0000-0001-7289-016X
https://scholar.google.com/citations?hl=id&user=5N3HcE0AAAAJ
https://orcid.org/0000-0003-4095-6333
https://scholar.google.com/citations?hl=id&user=0L3q7csAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=35268252100
https://publons.com/researcher/3574965/gokhan-erdemir/

