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Considering lattice Hamiltonians designed using conformal field theory to have fractional quantum Hall states
as ground states, we study the dynamics of one or two particles on such lattices. Examining the eigenspectrum
and dynamics of the single-particle sector, we demonstrate that these Hamiltonians cannot be regarded as
describing interacting particles placed on a Chern band, so that the physics is fundamentally different from
fractional Chern insulators. The single-particle spectrum is shown to consist of eigenstates localized in shells
which have a larger radius for larger eigenenergies. This leads to chiral dynamics along reasonably well-defined
orbits, in both the single-particle and the two-particle sectors.
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I. INTRODUCTION

Fractional quantum Hall (FQH) states such as the Laughlin
state [1] are widely considered to be fascinating phases of
matter, particularly because they are the primary experimental
realization of topological order [2–4]. Ever since their re-
alization with two-dimensional electron gases, mechanisms
have been proposed for realizing FQH states in various other
platforms. Theoretically proposed lattice versions of FQH
states include chiral spin liquids [5–7], the ground state of
interacting bosons in the presence of an effective magnetic
field [8,9], and fractional Chern insulators [10,11]. In this
work we are interested in another class of lattice Hamiltonians
which have FQH states as ground states—namely, those de-
rived in the framework of conformal field theory (CFT) [12].
These Hamiltonians are defined on open-boundary lattices
of essentially any shape [13]. They involve few-body, but
long-distance, terms, and they have analytical ground states.
Apart from that, very little is currently known about them.

In this work, we consider the one-particle and two-particle
dynamics on such lattice Hamiltonians. Specifically, we
take lattice Hamiltonians which would generate a fermionic
Laughlin state if the lattice filling were 1/3 or a bosonic
Laughlin state if the lattice filling were 1/2. Instead of these
fillings, we consider either a single particle or two parti-
cles and consider the dynamics and eigenspectrum of such
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systems. For the single-particle case, there is no difference
between fermions and bosons. For the two-particle case, we
consider both the fermionic case and the (hard-core) bosonic
case.

The motivation for this study is twofold. First, the spe-
cific motivation is to obtain additional insights into this very
special class of models. Indeed, our study of the structure
and dynamics of the single-particle sector teaches us that
these Hamiltonians cannot be regarded as a combination of
Chern bands plus interactions. This contrasts sharply to the
mechanism of obtaining FQH-like states in fractional Chern
insulators. Our results on the two-particle systems reveal the
extent to which interactions affect the spectrum and dynamics.

Second, a more general motivation is that the dynamics
of quantum particles in topological backgrounds has been of
increasing interest in the past few years. This activity lies at
the intersection of two prominent subfields of 21st-century
condensed matter physics: topological matter and nonequilib-
rium dynamics. Recently, some real-time dynamical aspects
of interacting particles in Landau levels (the platform for FQH
physics) have been explored [14,15]. Dynamics in topological
lattices (e.g., in Chern bands or in the presence of a back-
ground lattice Berry curvature) have been studied for both
wave packets [16–19] and many-particle systems [20–29].
Some of these theoretical investigations were motivated by
developments with cold-atom experiments. Indeed, real-time
dynamical measurements are central to the study of topologi-
cal matter/bands with cold atoms [30–37].

We introduce the lattice Hamiltonians in Sec. II. Following
Ref. [38], we present and use the Hamiltonians in a form that
distinguishes one-body, two-body, and three-body terms. In
Sec. III, we present the spectrum and some dynamical phe-
nomena of the one-particle sector, for square-shaped lattices.
The spectrum is found to be energetically arranged in order of
decreasing distance from the center of the lattice: the lowest-
energy eigenstates are concentrated spatially near the lattice
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center and the highest-energy states are localized at the lattice
edges. The propagation dynamics of an initially localized par-
ticle is found to be markedly chiral, while roughly maintaining
its initial distance from the edge. In Sec. IV, the two-particle
system on square lattices is described: again we describe both
spectra and dynamics. The fermionic and hard-core bosonic
systems are found to be qualitatively similar. The qualitative
features of the spectra and dynamics are explained as a
combination of single-particle effects. Finally, in Sec. V, we
provide context by comparing with other lattice Hamiltonians
which are topological or have chiral features.

II. LATTICE HAMILTONIANS

In this section we define the lattice Hamiltonians and
discuss some of their properties.

A. Setup

Our starting point is a family of lattice models, which were
constructed in Ref. [12] using conformal field theory. The
members of the family are labeled by the positive integer q,
which is odd for fermions and even for hard-core bosons. The
inverse 1/q plays a role analogous to that of the filling fraction
of Landau levels in the conventional quantum Hall effect. If
the lattice filling is set to be 1/q, the ground state is known
analytically to be a lattice analog of the 1/q Laughlin state.
The Hamiltonians are given by

H =
∑

i

�
†
i �i, �i =

∑

j( �=i)

wi j[d j − di(qn j − 1)], (1)

where d j is the annihilation operator acting on site j, and
n j = d†

j d j is the particle number operator. The particles are
hardcore bosons (fermions) for q even (odd). The coefficient
is wi j = 1/(zi − z j ), where z j is the position of the jth lattice
site written as a complex number, z j = x j + iy j . The Hamil-
tonian is valid for general choices of z j , but in this work we
focus on the simplest case of a square lattice. The Hamiltonian
conserves the number of particles.

The Hamiltonian was designed to produce particular
ground states at filling 1/q. However, having defined them
on a particular lattice, we can consider any particle number
sector, although the ground states for other fillings will not be
Laughlin states. In this work we focus on the smallest sectors:
the one-particle and two-particle sectors.

B. Decomposition into one-body, two-body,
and three-body parts

We would like to split this Hamiltonian into a noninteract-
ing part plus interactions. By multiplying out the terms in the
defining Hamiltonian, one obtains [38]

H =
∑

i �= j

C1(i, j) d†
i d j +

∑

i �= j

C2(i, j) nin j

+
∑

i �= j �=k

C3(i, j, k) d†
i d jnk +

∑

i �= j �=k

C4(i, j, k) nin jnk

+
∑

i

C5(i) ni, (2)

where the coefficients Ci are given by

C1(i, j) = 2w∗
i jwi j +

∑

k( �=i,�= j)

(w∗
kiwk j + w∗

jiw jk + w∗
ikwi j ),

C2(i, j) = (q2 − 2q)w∗
i jwi j − q

∑

k( �=i,�= j)

(w∗
i jwik + w∗

ikwi j ),

C3(i, j, k) = −q(w∗
jiw jk + w∗

ikwi j ),

C4(i, j, k) = q2w∗
ikwi j,

C5(i) = 2
∑

j( �=i)

w∗
i jwi j +

∑

j,k( �=i)

w∗
ikwi j . (3)

The first and the fifth term of the Hamiltonian (2) involve
only one particle, the second and the third term involve the
interaction of two particles, and the fourth term involves
three particles. If there is only one particle in the system, the
Hamiltonian simplifies to

H1p =
∑

i �= j

C1(i, j) d†
i d j +

∑

i

C5(i) ni. (4)

The first (C1) term is the single-particle hopping. The hopping
coefficients are complex and long range. Although hoppings
at all distances are present, the magnitudes fall off slowly
with distance. The second (C5) term is an on-site energy. Note
that the parameter q does not appear in either of these terms,
consistent with the fact that quantum statistics does not play
any role in the single-particle physics.

If there are two particles, the Hamiltonian simplifies to

H2p =
∑

i �= j

C1(i, j) d†
i d j +

∑

i �= j

C2(i, j) nin j

+
∑

i �= j �=k

C3(i, j, k) d†
i d jnk +

∑

i

C5(i) ni. (5)

The new terms include both a density-density interaction term
C2 and a hopping term between any two sites that depends on
the occupancy of other sites. Again, these terms survive till
arbitrary ranges.

If the total number of particles is � 3, all terms contribute
and there is no simplification of the Hamiltonian. The C4 term
is a three-body interaction term, which only appears when we
have more than two particles in the system. In this paper, we
focus on the one-particle and two-particle sectors, so that the
C4 term plays no role.

C. Single-particle properties

The noninteracting part H1p [Eq. (4)] of the Hamilto-
nian H consists of a potential (C5) and a complex hopping
term (C1).

In Fig. 1(a) we show the behavior of the potential C5.
The potential increases rapidly as one moves from the center
of the lattice towards the edges. For square-shaped lattices,
this increase is approximately quadratic in the horizontal and
vertical directions and somewhat more complicated in the
diagonal directions. From this perspective, the physics of
the single-particle Hamiltonian is like that of a particle in a
potential trap which is approximately harmonic.
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FIG. 1. (a) The potential C5 for a 20 × 20 lattice. The sites i ≡
(ix, iy ) are indexed by the horizontal and vertical coordinates ix and
iy, which are each integers running from 1 to 20. (b) Magnetic flux
through each smallest plaquette for a 20 × 20 lattice. The color at
position (ix + 0.5, iy + 0.5) in this plot represents the strength of the
flux through the plaquette surrounded by the sites (ix, iy ), (ix + 1, iy ),
(ix, iy + 1), and (ix + 1, iy + 1).

When a particle hops around a closed loop, the state
acquires an Aharonov-Bohm phase of 2π times the mag-
netic flux enclosed by the path. This allows us to compute
the flux through each plaquette, by adding the phase fac-
tors of the nearest-neighbor hopping (C1) terms surrounding
that plaquette. One can regard this as a “magnetic field.”
This quantity is shown in Fig. 1(b). For a typical Landau
level system, the magnetic field is uniform in real space,
while for a Chern band, the Berry curvature has some
structure in momentum space. In contrast, in our model
the flux strength has an intricate spatial structure, being
strongest in the center and weakest at the corners of the
lattice.

The spatial variation observed in Fig. 1 originates from
the shape of the edge of the lattice. This is so because
wi j is only a function of the relative position of zi and
z j . This means that the local contributions to the sums
appearing in the coefficients are the same for all sites
in the bulk, while the variation comes from the nonlocal
contributions, which are determined by the shape of the
edge.

D. Units and indexing

In studies of quantum dynamics on lattice models,
it is common practice to set the nearest-neighbor hop-
ping strength to unity, so that time is measured in units
of the inverse hopping strength. Since we have many
different hoppings, the nearest-neighbor hopping is not
particularly special. In the Hamiltonian (2), for square-
shaped lattices the nearest-neighbor hopping strength in-
creases roughly linearly with the width/length of the
lattice.

We find it convenient to use the form (2) for the Hamilto-
nian, without any rescalings. This fixes the units of energy and
time, which we do not explicitly specify.

In writing the Hamiltonians above, we have used i and
j to label sites. Since we will be considering square (or
rectangular) lattices of size Lx × Ly, it will be convenient to
sometimes use Cartesian coordinates for the site indices, e.g.,
i ≡ (ix, iy). The indices ix and iy will run from 1 to Lx and from
1 to Ly, respectively.
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FIG. 2. Eigenenergies of the single-particle system, indexed in
ascending order.

III. THE ONE-PARTICLE SECTOR: SPECTRUM AND
DYNAMICS

In this section we examine the spectrum and some dynam-
ical behaviors of the system with a single particle. The evolu-
tion occurs according to the Hamiltonian (4). For definiteness
we focus on a 20 × 20 square lattice but the results are very
similar for other lattice sizes.

We first analyze the structure of the eigenvalues and eigen-
states (Sec. III A), and then consider the dynamics when
the single particle starts at various positions on the lattice
(Sec. III B).

A. Eigenvalues and eigenstates

In Fig. 2 we show the eigenvalues of the square lattice sub-
ject to the single-particle Hamiltonian (4), for sizes 10 × 10
and 20 × 20. A prominent feature is that the spectrum is not
clustered into separated bands. In fact, when the eigenenergies
are plotted against the index (ascending order of energies),
the resulting plot is roughly linear over most of the spectrum,
except for the last (highest-energy) states which have rapidly
increasing energy. The absence of any band structure is a stark
difference from the single-particle physics of, e.g., Chern-
band lattices or Landau level physics.

In Fig. 3 we illustrate the spatial structure of the eigen-
states, for the 20 × 20 lattice. We have shown the density
profiles of 12 of the eigenstates, from the ground state to
one of the highest-energy eigenstates. If the eigenstate cor-
responding to eigenvalue Eα is denoted by |Eα〉, then the
quantity displayed here is

ni(Eα ) = 〈Eα|d†
i di|Eα〉, (6)

where i is the site index.
The prominent feature of the density profiles is that each

eigenstate is localized at a certain distance from the edges
of the lattice. The lower-energy eigenstates are localized far
away from the edges, and the higher-energy eigenstates are
localized close to the edges. The ground state is very well
localized in the central four sites. As we move up in energy,
the eigenstates move out from the center toward the edges.
The ≈ 40 eigenstates with the highest energies are mostly
localized at the outermost layer of sites, although the degree
of localization varies somewhat from eigenstate to eigenstate,
as seen by comparing the α = 385 and α = 398 cases. The
eigenstates at intermediate energies are localized in regions
which are generally of a shape similar to that of the boundary,
square in this case. (However, the corners are significantly
rounded for some of the eigenstates.)
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FIG. 3. Site occupancies 〈Eα|d†
i di|Eα〉 for different eigenstates

|Eα〉, where α indexes the eigenstates according to increasing energy.
The number above each plot indicates α (e.g., α = 398 for the last
plot). A different color scale has been used for each row, because in
the higher eigenstates the weight is spread out among a larger number
of sites, resulting in smaller nonzero site occupancies.

The spatial structure of eigenstates is due to the potential
C5 [Fig. 1(a)]. The hopping magnitudes are relatively small
compared to the values of the potential; hence each eigenstate
consists of configurations with small variance of the C5 term.
This is realized by sites at roughly fixed distances from the
edges. We have checked that, if the hopping terms (C1) are
replaced by nearest-neighbor hoppings of comparable magni-
tude, the eigenstates have similar spatial structures.

We have also checked that, for rectangular-shaped lattices
(Lx �= Ly), the overall features of the eigenvalues are very
similar to those shown in Fig. 2. The eigenstates in such a
lattice are localized in rectangular regions with an aspect ratio
similar to that of the lattice.

B. Real-time dynamics

We now consider real-time dynamics. We concentrate on
initial states in which the particle is localized at a particular
site. As the initial position, we use sites at various distances
from the edge, moving toward the center of the lattice. For
concreteness, we focus on the sites on the diagonal, starting
from a corner site and then moving toward the center. In Fig. 4
these sites are labeled as a, b, c,...corresponding to the sites
(1,1), (2,2), (3,3),...

The overlaps of an initial state with the system eigenstates
affect the dynamics strongly, as can be seen from an expansion

0
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a (1,1)

i (9,9)
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FIG. 4. (a) We choose the initial state |ψ (0)〉 to be a state with
a single particle at a particular site. The site could, e.g., be one
of the sites a, b, c, etc. (b) Norm square Pα = |〈Eα|ψ (0)〉|2 of the
coefficients of the initial state in the basis of the energy eigenstates.
For each plot, the legend gives the chosen initial position of the
particle, and the lattice has 20 × 20 sites. One can notice from these
plots that if we start the dynamics with the particle initially at the
edge, then the particle is more likely to be found in the higher excited
states. As we move towards the bulk, the contributing states have
lower and lower energy.

in the energy eigenbasis:

|ψ (t ) 〉 =
∑

α

〈Eα|ψ (0)〉e−iEαt |Eα 〉. (7)

It is therefore useful to examine the overlaps. In Fig. 4(b),
the magnitudes of overlap of some of the initial states with
all the eigenstates are shown. (Actually we show the squared
magnitudes, Pα = |〈Eα|ψ (0)〉|2.) Since each initial state has
the particle localized on a particular site, the overlap is simply
the weight of the single-particle eigenstate on that site, and
Pα is the probability of finding the particle at that site, when
the system is in eigenstate |Eα〉. Knowing the spatial structure
of the eigenstate, we expect that for an initial state with the
particle localized at site a (at the lattice edge), the overlap
will mainly be with high-energy eigenstates. From the same
argument, one expects that as one moves the initial position
toward the center of the lattice, the dominant overlaps move
toward lower eigenenergies. This pattern is seen clearly in
Fig. 4.

In Fig. 5 we show the dynamics starting from position
a [corner site, (1,1)]. The dynamics is presented through
snapshots of site occupancies at a series of time instants. Since
the corner site has appreciable overlap only with the highest-
energy eigenstates, which are all localized near the edge of
the lattice, we expect that the particle will stay confined
to the edge of the lattice. This is seen clearly in Fig. 5.
In addition, we see that the dynamics is chiral: the particle
circles counterclockwise around the edge of the lattice. At
the same time, there is increasing delocalization (dispersion)
along the edge, so that, after t � 1, the wave function is spread
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FIG. 5. Propagation dynamics of a single particle initially placed at the corner of a 20 × 20 lattice. The dynamics is illustrated through a
series of snapshots of the occupancy profiles, i.e., values of 〈ψ (t )|d†

i di|ψ (t )〉 at every site. The particle is seen to execute chiral motion around
the edge, in addition to dispersion along the edge on a longer timescale. There is very little weight spreading into the bulk.

throughout the edge regions. There is, however, no significant
delocalization perpendicular to the edge: the particle does not
enter the bulk of the lattice.

We comment now on the timescale for the motion along the
edge. The particle seems to move by one site approximately
in time ≈ 0.015. For the 20 × 20 lattice, the nearest-neighbor
hoppings along the edge bonds have magnitude between ≈ 48
and ≈ 64 (lower near the corners and higher near the edge
centers). Since h̄ = 1, the hopping timescale can be expected
to be the inverse of nearest-neighbor coupling strength, con-
sistent with the observed ≈ 0.015. Of course, this estimate
does not take into account longer-range hoppings.

In Fig. 6 we show the dynamics starting from position
f [site (6,6)], which is about halfway between the corner
and the center of the lattice. Since the eigenstates are each
localized at different distances from the edge, this initial state
will have overlap with those eigenstates which are at roughly
this distance from the edge. Thus, we expect the particle to
remain confined in a region which is at this distance from
the edge, i.e., to move along a roughly square-shaped ringlike
region. Another way of arguing this is to note that the quantum
particle finds itself in a steep potential (C5 term) on a two-
dimensional lattice. In such a situation, one finds that the
particle is free to move perpendicular to the slope, and the

1 

10

20

0

0.5

1

1 10 20
1 

10

20

1 10 20 1 10 20 1 10 20 1 10 20 1 10 20
0

0.05

0.1

FIG. 6. Propagation dynamics of a single particle in a 20 × 20 lattice. The particle is initially placed some distance away from the edge, at
position (6,6), referred to in the text as site f . The particle is seen to move chirally along an orbit roughly equidistant from the edge.
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only dynamics allowed in the slope direction would be small-
amplitude Bloch oscillations, as studied, e.g., in Refs. [18,39].

In Fig. 6 we indeed see that the particle moves along a
ring-shaped region and does not escape to regions closer to or
farther from the edge. In addition, we see the same chirality
as we saw at the edge: the particle moves counterclockwise
around this ring. Eventually, the particle position also dis-
perses along the ring-shaped orbit, so that the wave function
is spread around the whole orbit.

When the particle is started at other distances from the
edge, we see the same phenomenon: it moves chirally (coun-
terclockwise) along an orbit that is roughly equidistant from
the edge, and eventually there is dispersion that smears out
the wave function over the complete orbit; i.e., the particle
becomes delocalized parallel to the edge but remains localized
perpendicular to the edge.

The localization behavior and the shapes of the orbits can
be understood from the spatial structure of the eigenstates or,
equivalently, from the shape of the on-site potential term C5.
The chiral behavior of the motion is an additional intriguing
feature. The edge chirality (Fig. 5) is similar to the behavior in
Chern-band lattices, but the chirality in the bulk orbits (Fig. 6)
is something peculiar to the present system. We discuss this
issue further in the concluding section.

IV. THE TWO-PARTICLE SECTOR

We now turn to the two-particle sector, described by the
Hamiltonian (5). In addition to the single-particle hopping
(C1) and potential (C5) terms we have examined already,
we now also have density-density interaction (C2) terms and
correlated hopping (C3) terms.

We consider both a system with two hard-core bosons
(q = 2, with di and d†

i satisfying bosonic commutation rela-
tions) and a system with two spinless fermions (q = 3, with
the operators satisfying fermionic anticommutation relations).
For the properties we examine, the two cases turn out to be
very similar.

In Fig. 7, we display the spectra of the two-fermion and
two-boson systems for a square lattice. A relatively small
system (5 × 5) is chosen for clarity; the features are quali-
tatively unchanged as the size is varied. The two-fermion and
two-boson spectra are seen to be very similar.

To evaluate the effect of the two-body terms, we also plot
the spectra of the two-fermion and two-boson systems in
which the C2 and C3 terms have been set to zero. (In the
fermionic case, this spectrum can be built by adding pairs
of distinct single-particle eigenenergies.) The interacting sys-
tems are seen to have energies slightly smaller than those of
the C2 = C3 = 0 systems, but the difference is small. We con-
clude that the effect of the two-body interaction/correlation
terms is quite mild.

In Fig. 8, we display the density profiles for a selection
of eigenstates for the two-fermion system on a 10 × 10 lat-
tice. The lowest-energy eigenstates have the two particles
localized near the center of the lattice, while in the highest-
energy eigenstates both particles are localized near the edges
of the lattice. At intermediate energies, the two particles
are localized at various distances from the center. In many
cases, the density profile can be interpreted as two distinct
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2 bosons, no interaction
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FIG. 7. Energy eigenvalues of the two-particle systems, for a
small (5 × 5) square lattice. The two-fermion and two-boson systems
are seen to have very similar spectra (two lower datasets, barely
distinguishable from each other). Also shown (curves with slightly
higher energies) are the spectra of two-fermion and two-boson
systems in which the interaction terms (C2 and C3 terms) have been
suppressed from the Hamiltonian. These two datasets are also very
close and hence barely distinguishable from each other.

single-particle eigenstates being occupied. This qualitative
picture is what one would expect of a system with non-
interacting particles—a visual inspection of the eigenstate
density profiles does not show any obvious signature of the
interaction/correlation terms.

The two-boson system (not shown) has the same qualitative
features—lowest-energy eigenstates have both particles near
the center, and highest-energy eigenstates have both particles
near the edge. Of course, the sequence of density profiles does
not match in detail (e.g., the 810th eigenstate of the two-boson
system does not have the same density profile as the 810th
eigenstate of the two-fermion system).

This structure of the eigenstates is reflected in the dy-
namics. When both particles are started near the center, they
remain near the center, while if both particles are started at
or near the edge, they each perform chiral dynamics at or
near the edge. There is no qualitative difference seen between
fermionic and bosonic cases.

In Fig. 9, we show the dynamics following from placing
two particles at different distances from the edge. Each parti-
cle follows roughly the orbit that it would have followed in the
single-particle case, and eventually the wave function spreads
in the regions covered by these two orbits.

V. CONCLUDING DISCUSSION

In this work, we have examined the one-particle and two-
particle sectors of lattice models which, at appropriate fillings,
have Laughlin states as exact ground states. We have focused
on square-shaped lattices, but expect the qualitative results to
be valid for other lattice shapes.

No Chern bands. We find that the single-particle spectrum
is not arranged in bands. This means that the mechanism for
obtaining fractional quantum Hall states in the present class
of models is strikingly different from that in fractional Chern
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FIG. 8. Number density (site occupancy) profiles in different
eigenstates of the two-fermion system. The eigenstate labels are
indicated on top of the individual density plots. A different color
(density) scale has been used for each row, because in the higher
eigenstates the weight is spread out among a larger number of sites,
resulting in smaller nonzero site occupancies. The two-boson case
(not shown) shows the same overall features as one moves from
low-energy to high-energy eigenstates.

insulators [10,11] or in Hofstadter lattices [8,9]. In those
cases, the single-particle system is composed of bands with
definite Chern numbers, and adding interactions to partially
filled Chern bands is expected to create FQH ground states in
a manner analogous to that of FQH states observed in fraction-
ally filled Landau levels in the continuum. In Hamiltonians of
the type (1) derived from CFT, our finding indicates that the
FQH phenomenon is not reliant on Chern-band physics in the
single-particle sector. The present Hamiltonians are not easy
to adapt to periodic boundary conditions, which means Chern
numbers would anyway be tricky to define.

Ring-shaped eigenstates and orbits. The single-particle
spectrum is arranged energetically according to eigenstates
being progressively closer to the edge of the lattice. This is
not surprising given that the single-particle potential term (C5

term) in the Hamiltonian acts as a strong “trapping” poten-
tial. Single-particle states in trapping potentials have been
previously explored in, e.g., Refs. [26,40]. Similar radially
localized eigenstates were found in those cases.

Given this spatial structure of the single-particle eigen-
states, it is unsurprising that the spreading/propagation dy-
namics of an initially localized particle occurs around such
a square/ring-shaped region. The dynamics in Refs. [18,40]
are somewhat comparable. One might also expect to see
some Bloch oscillation in the direction perpendicular to the
square/ring-shaped orbit, but the amplitudes of such oscilla-
tions are too small to be visible in our occupancy snapshots.

Chiral motion. While the radially localized orbits could be
expected, the fact that the trajectories are chiral is a rather sur-
prising aspect. It is interesting to compare with other systems.
In Chern-band systems with open-boundary conditions, the
only single-particle eigenstates which have overlap with the
edge are the edge states which connect two bands. These edge
states have clear chirality: when the eigenenergies are plotted
as a function of momentum, the edge states appear as lines
with a definite slope in one direction. Thus, if a single particle
is placed at the edge of an open-boundary Chern-band system
(e.g., the Haldane lattice [41]), one sees chiral motion due to
the chirality of the edge states. This type of chiral motion has
been demonstrated experimentally in a photonic system [42].
However, a particle placed in the bulk of a Chern-band lattice
does not have chiral motion and should disperse in all direc-
tions. Thus our observed chiral motion, which occurs both
along the edge and in the bulk, cannot be regarded as analo-
gous to the Chern-band lattice case. (The dynamics in the bulk
that we show in Fig. 6 is utterly different from what would be
observed in a Chern-band lattice.) In the system studied in the
present paper, we cannot identify chirality by plotting energy
versus momentum, as momentum is difficult to define.

Other than the edges of Chern-band lattices, single-particle
dynamics in lattice systems do not generally show chiral
motion. For example, if one considers a tight-binding ring
threaded by a magnetic flux (through Peierls fluxes on the
hopping amplitudes), a particle released at one site will prop-
agate in both directions.

On a Hofstadter lattice (say open-boundary square lattice
with uniform flux per plaquette), a particle placed in the bulk
spreads out in all directions. A particle placed at the edge
does spread out along the edge and avoids spreading into
the bulk (as in our case), but this motion is not chiral—the
particle spreads out in both directions. In such a case, the
particle has overlap with bands with Chern numbers of both
signs. To examine the effect of the different Chern bands,
we have done the following numerical experiment: Starting
from the particle on the edge, one converts into the basis of
energy eigenstates and projects away all contributions from
the upper half of the energy spectrum, keeping only states
with one particular sign of the Chern number. (Of course, the
initial particle wave function is no longer localized perfectly
on a single site, but is spread over several sites.) In this case,
performing the real-time dynamics, we have found that the
particle moves chirally around the edge. Thus, even with the
chiral Hofstadter Hamiltonian, one needs to construct special
initial states to obtain chiral motion.

In Ref. [40], the dynamics of a wave packet has been
reported for a Hofstadter lattice subject to a harmonic trapping
potential. In that case, the wave packet spreads out nonchirally
across a ring-shaped region or in extreme cases remains
localized.
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FIG. 9. Dynamics of the two-boson system on a 12 × 12 lattice. In the initial state, the two bosons are at the positions a and d , i.e., at the
corner site (1,1) and at the site (4,4).

In addition to lattice systems, we could also compare with
the dynamics of a single particle in the continuum, subject
to both a magnetic field and a potential, and confined to the
lowest Landau level. An initially localized quantum particle
in this situation would presumably follow dynamics broadly
similar to what is observed in the present case—chiral dynam-
ics along an equipotential orbit, together with some dispersion
of the wave packet.

Two-particle sector. For the features of the two-particle
sector that we have examined, the interaction or quan-
tum statistics seems to play little role. The particles
mostly behave as if they are independent particles, and
there is little qualitative difference between fermionic and
bosonic cases. Somewhat disappointingly, the propagation
dynamics does not show any obvious signatures of the
rather unusual C3 term, which has the form of “assisted”
hopping.

Outlook. In this work we have studied the simplest dynam-
ical aspects of the CFT-inspired Hamiltonians introduced in

Refs. [12] and found some surprising aspects already in the
single-particle and two-particle sectors. One might imagine
new dynamical phenomena at finite filling, but numerical
study of dynamics for appreciable sizes becomes challenging
at finite fillings. More generally, we expect that propagation
and spreading dynamics in topological systems, in particular,
in the presence of edges and spatial inhomogeneities as in the
present case, will give rise to further insights into the structure
of different classes of Hamiltonians supporting topological
matter.
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