
Direct and indirect searches for top-Higgs FCNC couplings

Hoda Hesari,1 Hamzeh Khanpour,2,1 and Mojtaba Mohammadi Najafabadi1
1School of Particles and Accelerators, Institute for Research in Fundamental Sciences,

P.O. Box 19395-5531, Tehran, Iran
2Department of Physics, University of Science and Technology of Mazandaran,

P.O. Box 48518-78195, Behshahr, Iran
(Received 3 September 2015; published 29 December 2015)

Large top-quark flavor changing through neutral currents is expected by many extensions of the standard
model. Direct and indirect searches for flavor-changing neutral currents (FCNC) in the top-quark decays to
an up-type quark (up, charm) and a Higgs boson are presented. We probe the observability of the top-Higgs
FCNC couplings through the process e−eþ → tð→ lνlbÞt̄ð→ qHÞ, where l ¼ e, μ and q reflects up and
charm quarks. It is shown that the branching ratio Brðt → qHÞ can be probed down to 1.12 × 10−3 at
95% C.L. at the center-of-mass energy of 500 GeV with an integrated luminosity of 3000 fb−1. We also
update the constraint on the top-Higgs FCNC coupling using the electroweak precision observables related
to Z → cc̄ decay.
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I. INTRODUCTION

The discovery of a Higgs boson with a mass of about
125 GeV by the ATLAS and CMS experiments at the
CERN-LHC [1,2] has opened a window to search for new
physics through precise measurements of the processes
involving this particle. In particular, precise measurements
of Higgs boson couplings to the standard model (SM)
particles and its mass provide excellent opportunities for
searches for the SM extensions. The Higgs boson mass and
couplings to fermions and gauge bosons have been mea-
sured in various decay modes, and they are found to be in
agreement with the predictions of the SM within uncer-
tainties [3–7].
The top quark, the heaviest element of the SM, has the

largest Yukawa coupling to the Higgs boson. With a mass
of around 173.5 GeV, comparable to the electroweak
symmetry-breaking scale, measurement of the top-quark
properties would provide an appropriate probe for the
electroweak symmetry-breaking mechanism. Within the
SM, the Higgs boson couples to fermions via Yukawa
interactions, thereby producing the mass terms. There are
no flavor-changing neutral current (FCNC) transitions
mediated by the Higgs boson or by the Z, γ, g gauge
bosons at tree level. In other words, no leading-order
transitions of t → qH or t → qV, where q reflects up or
charm quarks and V ¼ γ, Z, g, exist in the SM framework.
The SM contributions to the top-quark FCNC occur at
loop level, with the expected branching ratios around
10−15 − 10−13 [8]. Such FCNC transitions are highly sup-
pressed because of the Glashow-Iliopoulos-Maiani (GIM)
mechanism [9], and top quarks almost exclusively decay to
a bottom quark and a W boson [10–12].
However, in some SM extensions, suppression due to the

GIM mechanism can be relaxed because of the additional

contributions of new particles in the loop diagrams, and
consequently, larger branching ratios of t → qH or t → qV
are expected. Quark singlet model [13,14], two-Higgs
doublet models [15–20], the minimal supersymmetric
standard model (MSSM) [21–26], extra dimensions [27],
and natural composite Higgs models [28,29] are examples
of the SM extensions in which significant enhancements of
top-quark FCNC appear. Even, in type III of the two-Higgs
doublet model without flavor conservation, the t → qH
transitions appear at tree level. These extensions of the SM
can enhance the branching ratio of t → qH up to 10−5.
Consequently, measuring any excess in the branching ratios
for top-quark FCNC processes would be an indication of
physics beyond the SM. There are already many studies on
the probe of the FCNC processes and anomalous couplings
in the top-quark sector in the literature [8,30–43].
Searches for the existence of physics beyond the SM can

be performed either at high-energy colliders or using its
indirect effects in higher-order processes. In this paper, we
perform direct and indirect probes for the top-Higgs FCNC
couplings. We redo the calculations which have been
performed in Ref. [37] on the effects of top-Higgs
FCNC couplings in the electroweak precision observables
of the Z boson and update the upper limit on Brðt → cHÞ
using the most recent measurements.
There are several proposals for a possible future e−eþ

collider [44–50] which would provide precise measure-
ments, in particular, in the top-quark sector and Higgs
boson properties. As a direct way to search for the top-
Higgs FCNC interactions, we study the sensitivity of a
future e−eþ collider via tt̄ events at center-of-mass energy
of 500 GeV. We consider the case in which one of the top
quarks decays to a W boson and a bottom quark with
leptonic decay of theW boson ðt → lνlbÞ and the other top
quark decays anomalously, t → qH (q ¼ u and c). We
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consider the H → bb̄ decay mode, as the Higgs boson
decay into bb̄ pairs has a maximum branching ratio [51],
and high efficiency in tagging the jets originating from the
hadronization of bottom quarks can be achieved [46,52,53].
We provide the 95% C.L. upper limit on the branching ratio
of t → qH for various b-quark tagging efficiencies. There
are several proposals for the center-of-mass energy and
the integrated luminosity for a future electron-positron
collider in the literature [54–57]. We give the results for
the integrated luminosities of 300 and 3000 fb−1 of data
and the center-of-mass energy of

ffiffiffi
s

p ¼ 500 GeV.
This paper is organized as follows. In Sec. II, we briefly

describe the theoretical framework that we consider to
study the top-Higgs FCNC interactions. In Sec. III, we
review the current best limits on top-Higgs FCNC proc-
esses from direct and indirect searches. The update of the
upper limit on Brðt → cHÞ using electroweak precision
observables of the Z boson is also presented in Sec. III. In
Sec. IV, we describe the Monte Carlo event generation,
detector simulation for top-pair production in electron-
positron collisions with FCNC decays of one of the top
quarks (t → qH). The 95% C.L. upper limits on the
branching ratio of t → qH at different integrated luminos-
ities and various b-tagging efficiencies are also presented in
this section. Finally, our summary and conclusions are
given in Sec. V.

II. THEORETICAL FRAMEWORK

The general effective Lagrangian describing the inter-
action of a light up-type quark (q ¼ u, c) with the top quark
and a Higgs boson can be written as [58]

L ¼ −
g

2
ffiffiffi
2

p
X
q¼u;c

gtqHq̄ðgvtqH þ gatqHγ5ÞtH þ H:c:; ð1Þ

where the dimensionless real coefficient gtqH (with q ¼ u
and c) denotes the strength of the top-Higgs FCNC
coupling, and g is the weak coupling constant. The
coefficients gvtqH and gatqH are general complex numbers
with the normalization jgvtqHj2 þ jgatqHj2 ¼ 1. Strong can-
cellations arising from the GIM mechanism cause a tiny
value for gtqH in the SM. In the SM framework, gtqH
amounts to 10−6, while in a big range of MSSM parameter
space, a sizable value at the order of 10−2 is expected
[24,30].
After neglecting the up and charm quark masses,

the t → qH and t → bW widths at leading order can be
written as

Γðt → qHÞ ¼ α

32s2W
jgtqHj2mt

�
1 −

M2
H

m2
t

�
2

;

Γðt → bWÞ ¼ αjVtbj2
16s2W

m3
t

m2
H

�
1 −

3m4
W

m4
t

þ 2m6
W

m6
t

�
;

where α is the fine-structure constant, Vtb is the CKM
matrix element, sW is the sine of the Weinberg angle, and
mt, mW , and mH are the top quark, W boson, and Higgs
boson masses, respectively. We estimate the branching ratio
of t → qH as the ratio of Γðt → qHÞ to the width of
t → Wb. It has the following form:

Brðt → qHÞ ¼ g2tqH
2

x2

1 − 3x4 þ 2x6
ð1 − y2Þ2

¼ 0.0274 × g2tqH; ð2Þ

where x ¼ mW=mt and y ¼ mH=mt. For the calculations,
we use mH ¼ 125.7 GeV, mt ¼ 173.21 GeV, α ¼ 1=128,
and mW ¼ 80.38 GeV [59].

III. CURRENT CONSTRAINTS ON Brðt → qHÞ
In this section, we review the currently available limits

on the branching ratio of t → qH from the collider experi-
ments as well as the indirect limits. We also update the
limits from observables related to Z → cc̄ decay.
Direct limits.—The ATLAS search for the tqH FCNC is

based on the top-quark pair events with one-top-quark
decays of t → qH (H → γγ) and the standard decays of the
other top quark. The analysis uses 4.7 fb−1 and 20.3 fb−1

integrated luminosity of data collected at
ffiffiffi
s

p ¼ 7 and
8 TeV, respectively. Assuming mH ¼ 125.5 GeV, the
observed limit on the branching ratio of t → qH at
95% C.L. is 7.9 × 10−3 [60]. This analysis has set an
upper limit of 5.1 × 10−3 at 95% C.L. on Brðt → cHÞ.
The limits from the CMS experiment are based on an

inclusive search involving a lepton and a photon in the final
state. The analysis uses tt̄ events with one of the top quarks
decaying to cþH and standard model decays of the other
top quark. The results correspond to 19.5 fb−1 data at the
center-of-mass energy of 8 TeV. The 95% C.L. upper limit
on Brðt → cHÞ was found to be 5.6 × 10−3 for a Higgs
boson mass of 126 GeV [61]. Table I summarizes the
current direct limits as well as the projected ones on the top-
Higgs FCNC branching ratios at the LHC and the High
Luminosity LHC with a center-of-mass energy of 14 TeV
and with integrated luminosities of 300 and 3000 fb−1. The
LHC projections are taken from Ref. [62]. As can be seen
from Table I, the best possible limit on Brðt → qHÞ from
the LHC would be at the order of 10−4 in the high-
luminosity regime.
Indirect limits.—Low-energy measurements in flavor-

mixing processes can be used to constrain the top-quark
flavor violation in the tqH vertex. Considering higher order
corrections,D0 − D̄0 mixing observable, the mass difference
ΔM, receives sizable contributions from both tuH and tcH
couplings at the same time. Using themeasured value ofΔM,
one can obtain a limit on the product of two couplings, i.e.,
gtuHgtcH [63].With theHiggs bosonmass in the range of 115–
170 GeV, upper limits of gtuHgtcH ≤ ð1.94 − 2.72Þ × 10−2
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are obtained. This corresponds to an upper limit of Brðt →
qHÞ < ð5.3 − 7.4Þ × 10−4 if we assume gtuH ¼ gtcH.
Another indirect way to constrain the top-Higgs FCNC

couplings is to use the electroweak precision observables of
Z bosons [37]. The tcH vertex contributes to the Z → cc̄
decay at loop level. It affects the electroweak precision
observables in the Zcc̄ vertex. The total width, partial
width, and asymmetries are affected by the tcH FCNC
interaction. In [37], the tcH vertex contribution has been
calculated, and the upper limits of Brðt → cHÞ ≤ ð0.09 −
2.9Þ × 10−3 for the Higgs mass in the range of 114 ≤ mH ≤
170 GeV have been obtained. We update this limit with the
Higgs boson mass of 125 GeV using the current measure-
ments of the Zcc̄ vertex.
After taking into account the tcH FCNC coupling

contributions to the width of Z → cc̄, it can be written as

ΓðZ → cc̄Þ ¼ ΓðZ → cc̄ÞSMð1þ δHtcHÞ; ð3Þ

where the tcH one-loop corrections are given by δHtcH. The
details of the calculations of δHtcH are available in [37]. It can
be expressed in terms of the Veltman-Passarino functions.
Using the calculations and the related input from the
Particle Data Group [64], an upper limit of Brðt → cHÞ ≤
2.1 × 10−3 is found at 95% C.L. As can be seen, the
indirect limits are at the same order of the current direct
limits, i.e., 10−3.

IV. STUDY OF tqH IN TOP-PAIR EVENTS
IN e−eþ COLLISIONS

In this section, we search for top-Higgs FCNC couplings
in the e−eþ → tð→ lνlbÞt̄ð→ qHÞ channel, where l ¼ e,
μ and q ¼ u, c, and we present the potential of a future
electron-positron collider to probe tqH couplings. As
mentioned before, we concentrate on the semileptonic
decay of a top quark and the anomalous decay of another
top quark with the Higgs boson decaying into a bb̄ pair, as
shown in Fig. 1. Therefore, the final state consists of an
energetic lepton (muon or electron), a neutrino (appears as
missing momentum), and four hadronic jets. Three of the
jets are produced from the hadronization of bottom quarks.
In this study, we assume gvtqH ¼ 1 and no axial

coupling, i.e., gatqH ¼ 0. At the center-of-mass energy of

ffiffiffi
s

p ¼ 500 GeV, the leading-order cross section including
the branching ratios reads

σ ffiffi
s

p ¼500 GeVðgtqHÞ ¼ 11.306 × g2tqH ðfbÞ: ð4Þ

At a higher center-of-mass energy, the cross section
decreases as 1=s. Now, we turn to event generation and
simulation. In order to simulate the signal events, the top-
Higgs FCNC effective Lagrangian [Eq. (1)] is implemented
in the FeynRules package [65–67]; then, the model is
imported to a Universal FeynRules Output (UFO) module
[68]. After that, it is inserted into a MadGraph5-
aMC@NLO [69,70] event generator. PYTHIA [71,72] is
utilized for parton showering and hadronization, and
Delphes 3 [73,74] is employed to account for detector
effects.
The main background comes from top-pair events with

semileptonic decay of one of the top quarks and hadronic
decay of another top quark. Other backgrounds to our
signal include W�bb̄jj, Zbb̄jj (with leptonic decay of Z),
and Zl�l�jj (with hadronic decay of Z). The contribution
of Wjjjj, where j denotes non-bottom-quark jets, is
studied as well. All of these backgrounds are generated
at leading order using MadGraph5-aMC@NLO.
To consider detector resolutions, the final-state particles,

leptons and jets, are smeared according to Gaussian

-e

+e

 / Zγ

t

t

b

+W
+l

lν

c,u = q

H b

b

FIG. 1 (color online). The representative Feynman diagram for
production of a tt̄ event. It includes the decay chain with one
leptonic top decay and the other top decay from anomalous
FCNC coupling and Higgs decay into a bb̄ pair.

TABLE I. Current direct limits as well as the projected ones on the Brðt → qHÞ at the LHC and future HL-LHC.

Process Br Limit Search Data set Reference

t → qH 7.9 × 10−3 ATLAS t → t → Wbþ qH → lνbþ γγq 4.7, 20 fb−1 @ 7,8 TeV [60]
t → cH 5.1 × 10−3 ATLAS t → t → Wbþ qH → lνbþ γγq 4.7, 20 fb−1 @ 7,8 TeV [60]
t → cH 5.6 × 10−3 CMS tt̄ → Wbþ qH → lνbþ llqX 19.5 fb−1 @ 8 TeV [61]
t → qH 5 × 10−4 LHC tt̄ → Wbþ qH → lνbþ γγq 300 fb−1 @ 14 TeV [62]
t → qH 2 × 10−4 LHC tt̄ → Wbþ qH → lνbþ γγq 3000 fb−1 @ 14 TeV [62]
t → qH 2 × 10−3 LHC tt̄ → Wbþ qH → lνbþ llqX 300 fb−1 @ 14 TeV [62]
t → qH 5 × 10−4 LHC tt̄ → Wbþ qH → lνbþ llqX 3000 fb−1 @ 14 TeV [62]

DIRECT AND INDIRECT SEARCHES FOR TOP-HIGGS … PHYSICAL REVIEW D 92, 113012 (2015)

113012-3



distributions using the following parametrizations, which
are used in Delphes 3. Jet energies are smeared as [47,75]

ΔEj

Ej
¼ 40.0%ffiffiffiffiffi

Ej
p ⊕2.5% ðjetsÞ; ð5Þ

and for leptons (muons and electrons), we use a CMS-like
detector resolution:

ΔEl

El
¼ 7.0%ffiffiffiffiffiffi

El
p ⊕

0.35
El

⊕0.7% ðleptonsÞ; ð6Þ

where Ej and El represent the energies of the jets and
leptons, respectively. The energies are in GeV, and the
symbol ⊕ represents a quadrature sum. It should be
mentioned that the electron and muon energy resolutions
are different; however, for simplicity, we smear the energies
of muons similarly to the electrons.
The anti-kt algorithm [76] with a jet radius of 0.4 is used

to reconstruct jets. We present the results for three b-jet
identification efficiencies of ϵb ¼ 60%, 70%, 80%. A
mistag rate of 10% for charm-quark jets and 1% for other
light-flavor jets are considered. It is notable that b-tagging
efficiency and mistag rates play important roles in this
analysis, as we have bjets in the final state as well as in
light jets.
The events are selected according to the following

strategy. For each event, to reconstruct the semileptonic
decaying top quark, we require exactly one charged lepton
with pl

T > 10 GeV within the pseudorapidity range of
jηlj < 2.5. The events with more than one charged lepton
are discarded. The W-boson momentum in the top-quark
decay is obtained by summing the momenta of the charged
lepton and neutrino. Each event is required to have exactly
four jets, nj ¼ 4, with pjets

T > 20 and jηjetsj < 2.5. Among
the jets, at least three jets must be b-tagged jets. The b-jet
multiplicity is presented in Fig. 2 for signal and different

SM backgrounds. As can be seen from the distributions, the
three b-tag jets requirement is considerably useful to reduce
contributions of different backgrounds.
To have well-isolated objects, for any pair of objects

in the final state, we require ΔRij ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðηi − ηjÞ2 þ ðϕi − ϕjÞ2

q
> 0.4, with i and j running over

all particles in the final state.
To reconstruct the Higgs boson and then both top quarks,

there are ambiguities to choose the correct combinations of
the bjets. To solve the ambiguities and reconstruct the
Higgs boson and tt̄ system, we define χ2 as

χ2bmbnbk ¼ ðmbmW −mtopÞ2 þ ðmbnbk −mHiggsÞ2: ð7Þ

Various combinations of χ2bmbnbk , where m, n, and k run
over the bjets, are made, and the one with minimum χ2 is
chosen. The mass distribution of the reconstructed Higgs
boson is illustrated in Fig. 3. As can be seen, the invariant
mass distribution peaks at the Higgs boson mass for
signal events, while backgrounds have wide distributions.
As a result, applying a mass window cut can reduce
the background contributions. We require the recon-
structed invariant mass of the Higgs boson to satisfy
90 GeV < mreco

Higgs < 140 GeV.
Table II summarizes the cross sections (in fb) after

applying the cuts for the signal and backgrounds. The b-
tagging efficiency is assumed to be 60% in this table. The
contribution of Zbb̄jj (with Z → l�l�) and Zl�l�jj
(with Z → jj) backgrounds is negligible after all cuts. After
the jet requirements (set II of the cuts in Table II), the cross
section is at the order of 10−5 and goes to zero after the
three b-jet requirement. None of the W�jjjj events, where
j denotes light flavor jets, survives after the three b-jet
requirement. Therefore, these sources of backgrounds are
not mentioned in Table II. Considering different sources of

b-jet multiplicity
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FIG. 2 (color online). Distribution of b-jet multiplicity for
signal and SM backgrounds.
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FIG. 3 (color online). The reconstructed Higgs boson mass
distribution from the χ2 analysis for signal and backgrounds. The
signal sample is generated with gtuH ¼ 0.5.
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systematic uncertainties in detail is beyond the scope of this
work so an overall uncertainty of 30% is conservatively
assigned to the number of background events for the limit-
setting procedure.
Now, we proceed to set the 95% C.L. upper limit on the

signal cross section. Then, the limits are translated into the
upper limits on Brðt → qHÞ. Upper limits on the signal
cross section are calculated with a CLs approach [77]. The
RooStats [78] program is utilized for the numerical
evaluations of the CLs limits.
We summarize the 95% C.L. limits on Brðt → qHÞ in

Table III for three b-tagging efficiencies of 60%, 70%, 80%
with 300 fb−1 and 3000 fb−1 of integrated luminosity of
data. With a b-tagging efficiency of 70% and 300 fb−1 of
data, an upper limit of 5.894 × 10−3 could be achieved. As
can be seen from Table III, higher b-tagging efficiency
leads improved limits at the level of 30%–40%. More data
makes the upper limits better; however, the gain is less than
1 order of magnitude.
In comparison with the LHC direct limits presented in

Table I, a future electron-positron collider would be able to
reach similar sensitivity to the LHC experiments. The limits
of the electron-positron collider could be significantly
improved by including other decay modes of the Higgs
boson such as H → γγ, WþW−, and ZZ. In addition,
utilizing a more powerful tool, such as a multivariate
technique, to separate signal from background could
provide better sensitivity.

V. SUMMARY AND CONCLUSIONS

In this paper, we have presented direct and indirect
searches for top-Higgs FCNC couplings. The radiative

corrections due to tcH coupling on the electroweak
precision observables of Z → cc̄ decay are used to con-
strain Brðt → cHÞ using the most recent measurements.
This leads to the upper limit of 2.1 × 10−3 on Brðt → cHÞ.
As a direct search, we study a future electron-positron

collider potential at the center-of-mass energy of 500 GeV
to search for the tqH FCNC couplings via top-quark pair
production. The search is based on the process in which one
of the top quarks decays leptonically ðt → blνlÞ and the
other top quark decays anomalously to t → qH with Higgs
boson decays into bb̄ pairs. The 95% C.L. upper limits on
the branching ratio of Brðt → qHÞwith q ¼ u and c quarks
are found to be 5.894 × 10−3 for 300 fb−1 of integrated
luminosity of data. This upper limit decreases down to
1.798 × 10−3 for the 3000 fb−1 data. We find that b-tagging
efficiency plays an essential role in this analysis and can
improve the results at the level of 30%–40%, moving from
an efficiency of 60% to 70%. These limits could be
considerably improved by including the other decay modes
of the Higgs boson such as γγ, WþW−, and ZZ.
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TABLE II. Cross sections (in fb) after applying different sets of cuts for signal and background. The b-tagging
efficiency is assumed to be 60% in this table. The details of the basic cuts applied are presented in the text.
ffiffiffi
s

p ¼ 500 GeV Signal Backgrounds

Cuts σtqH (fb) σW�bb̄jj (fb) σtt̄ (fb)
No cut 11.306ðgtqHÞ2 1.72 148.70
(I): 1lþ jηlj < 2.5þ Pl

T > 10þ Emiss
T > 10 7.972ðgtqHÞ2 1.623 106.065

(II): 4jetsþ jηjetsj < 2.5þ Pjets
T > 20þ ΔRl;jets ≥ 0.4 3.399ðgtqHÞ2 0.0071 47.824

(III): nb−jet ≥ 3þ ΔRl;b−jets ≥ 0.4 0.709ðgtqHÞ2 0.00015 1.417
(IV): 90 < mreco

Higgs < 140 0.570ðgtqHÞ2 0.00005 0.961

TABLE III. The 95% C.L. limits on Brðt → qHÞ for b-tagging efficiencies of 60%, 70%, 80% with 300 and
3000 fb−1 of integrated luminosity of data.

b-tagging efficiency IL Upper limit on gtqH Upper limit on Brðt → qHÞ
ϵb ¼ 60% 300 fb−1 0.463 5.894 × 10−3

ϵb ¼ 60% 3000 fb−1 0.256 1.798 × 10−3

ϵb ¼ 70% 300 fb−1 0.373 3.821 × 10−3

ϵb ¼ 70% 3000 fb−1 0.202 1.126 × 10−3

ϵb ¼ 80% 300 fb−1 0.301 2.476 × 10−3

ϵb ¼ 80% 3000 fb−1 0.166 7.546 × 10−4
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