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1. INTRODUCTION

The need for research, development, and applications in computer science and information technology
throughout the world continues to grow over time [1]. In the last decade, Indonesia has been trying to catch up
with other countries regarding research and research publications. Based on the higher education database in
Indonesia as of 2019, there are at least 774 majors of informatics and computer science degrees, ranging from
bachelor to doctorate degrees. That high number is undoubtedly followed by the needs for research among
academia in higher education.

Before conducting a research project, researchers need to find information about the research trends
in a particular field and topic over time. The research can be performed based on the data, case studies, methods,
and other different variables from published papers in related journals or conference proceedings. Journals
proceedings and conference papers are notable sources to gain research trends from various fields of science
[2]. Often, that process can also be performed through some web search engines that index scholarly literature
across various publishing formats and disciplines, like Google Scholar, based on keywords and published time.
However, finding related research through search engine websites could not provide the research trends in a
specific time period automatically. In addition, researchers must classify and identify manually from many
scientific research papers to obtain the research trends in a particular topic.

Based on those problems, the development of some tools that can be used as a service and help
researchers to obtain research trends in a particular field and topic is necessary. Therefore, a topic modeling
approach can be proposed to reveal and extract topics from some given scientific articles. Topic modeling has
been used by researchers as an approach to find research trends.

Lamba and Madhusudhan [3] presented a topic modeling using LDA to help librarians identify the
trending themes in the library and information science field area. Hamzah et al. [4] applied the Latent Dirichlet
Allocation method to report a map on mobile learning research topics trends. They examined a total of 146
papers from ScienceDirect and Scopus published in 2007-2018 by determining 5 to 50 topics. To find the most
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appropriate number of topics, they used coherence value. Finally, they found that there were 25 most relevant
topics to their research goal.

Xu et al. [5] proposed a sensitive word weighted-Latent Dirichlet Allocation (LDA) model to
recognize topics about network sensitive information. They constructed a vocabulary containing sensitive
terms using word2vec. The proposed method has successfully improved the quantity of topic recognition and
quality of sensitive information as well. Liu et al. [6] conducted a study to extract research topics in clinical
psychology articles. They performed two different studies to extract the topics from clinical psychology
journals using Latent Dirichlet Allocation. The first study extracted topics between 1981 and 2018. As for the
second study, they employed a dynamic variant LDA to help recognize the development of the topics from
2007 until 2018.

Sun and Yin [7] applied Latent Dirichlet Allocation (LDA) on article abstract in transportation
research and revealed 50 critical topics from 22 leading transportation journals from 1990 to 2015. They also
performed temporal analysis for each journal. The study found that special issues on particular topics could be
identified from temporal analysis. In addition, by measuring the temporal trends at the regional level, they
could clearly find different research patterns from each country. Amado et al. [8] generated topics through
Latent Dirichlet Allocation modeling. Their study aimed to identify the trends in big data marketing research
by analyzing a total of 1560 articles published between 2010-2015. In that study, the authors revealed two main
points from the topic analysis, such as cross-domain topics for big data and marketing and significant insights
on authors’ affiliations regarding the geographical area.

Another study by Zou [9] also applied Latent Dirichlet Allocation (LDA) to obtain research trends
associated with drug safety based on titles and abstracts from the MEDLINE index from 2007 until 2016. The
results were the popular research topics from year to year, topics distribution over words, and clusterization of
topics distribution using dendrogram. The work by Waluya [10] retrieved relevant information using queries
or keywords inputted by the users. Probabilistic Latent Semantic Analysis (PLSA) is applied to build topic
models because it was considered capable of retrieving the information about similarity values between
documents so that it can categorize each document into the relevant topics. Wu et al. [11] compared three topic
modeling methods using China’s web-based news portal. The research applied scenarios towards cosine value
and compared it using K-center clusterization and used F-measure to calculate the result of clusterization itself.
They found that better topic classes can be obtained by using complex methods, such as PLSA2 and LDA, than
by using simpler topic modeling methods.

In this study, we propose an implementation of topic modeling using Latent Dirichlet Allocation
(LDA) for computer science and information technology research in Indonesia. Based on the previous studies,
LDA is the most utilized unsupervised learning method in topic modeling to help determine topics from text
[12]. LDA is the most popular probabilistic topic model to be applied in analyzing scientific publications in
many areas, such as content comparison, citation network analysis, and time gaps [13]-[15].

Moreover, the topic modeling task will be conducted based on titles and the year of publication. To
obtain better topic modeling results, we also propose TF-IDF (Term Frequency-Inverse Document Frequency)
and phrase identification to be applied before the topic modeling task [16], [17]. The objective of this study is
to facilitate academicians in obtaining the trends and illustration of research topics in the field of computer
science and information technology in Indonesia. Furthermore, the results of topic modeling can be used as
references and considerations before doing any research project.

2. METHOD

The research pipeline of our study is illustrated in Figure 1. In the first stage, we perform data
collection. Secondly, preprocessing is carried out to remove unnecessary parts from the text. After
preprocessing, we applied phrase identification to identify phrases from texts [17]. The next step is applying
term weighting for each token using TF-1DF (Term Frequency-Inverse Document Frequency). Topic modeling
and coherence value calculation are performed to obtain the topics and the best number of topics from the
corpus. Finally, we conduct data visualization to illustrate our topic modeling result. A detailed explanation of
each stage conducted in this study will be described respectively in the next section.

Topic Modeling &
oherence Value
Calculation

Phrase TF-IDF Term
Identification Weighting

Data
Visualization

Data Collection Preprocessing

Figure 1. Research Pipeline
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2.1. Data Collection

The data utilized in this study are collected using Harzing’s Publish or Perish! desktop-based
application that specifically scrapes the information of journal researches from scientific journal search
engines, such as Google Scholar, Scopus, and Crossref. We collected the title of scientific papers published
from 2010 until 2019 from Google Scholar. The titles of scientific papers are gained by using keywords related
to computer science, informatics and information technology in Bahasa Indonesia, for example, rekayasa
perangkat lunak (software engineering), sistem cerdas (intelligent system), sistem informasi (information
system) and jaringan komputer (computer network).

2.2. Preprocessing

Preprocessing is an important step that can influence the results of topic modeling. An appropriate
application of the steps in preprocessing will improve the quality of the resulting topics modeling. The
preprocessing steps carried out in this study are adjusted to the conditions of the research title data that had
been obtained previously. The preprocessing steps are as the following:
Omitting punctuation and symbols (e.g. :., - ) & / *7: +2! * # $%).
Omitting numbers, but not the numbers in the middle or directly after or before the alphabet.
Case folding by changing all letters into lowercase letters.
Removing stop words that lack meaning and do not represent the content of a particular sentence (e.g.
"dan” (and), “atau” (or), "yang” (which)).

Eall N

2.3. Phrase Identification

The phrase identification process is performed to obtain phrases from the text. It is essential to identify
phrases from the corpus before performing topic modeling to avoid loss of context and meaning from topic
results. For example, the phrase “rumah sakit” (hospital) will have a different context and meaning compared
with the respective words, “rumah” (house) and “sakit” (sick). Therefore, in this study, we identify phrases
by creating bigram and trigram models from our corpus. The phrase identification is carried out by counting
the occurrences of two or three words that appear together. If the consecutive words appear together at least
five times, they would be considered as a phrase by adding underscore between the consecutive words [17].

2.4. TF-IDF (Term Frequency-Inverse Document Frequency) Term Weighting

The purpose of TF-IDF term weighting is that the process of word analysis can be done more
effectively by reducing the amount of vocabulary and eliminating noise or unnecessary words [18][19]. The
TF-IDF calculation process used logarithmic notation as can be seen in equation (1).

N
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For a term i in document j, the tf; ; represents the number of occurrences of i in j. The N notation
represents the total number of documents. The df; represents the number of documents containing i. Words
with high TF-IDF values are words that rarely appear in many documents. The low TF-IDF values are for the
words that appear the most in many documents. Any word with an obtained TF-IDF value of 0 means that that
word is not in the document.

2.5. Topic Modeling with Latent Dirichlet Allocation (LDA) and Coherence Value Calculation

Latent Dirichlet Allocation (LDA) is an unsupervised learning method in machine learning
techniques. LDA is a generative probabilistic model that is applied to a set of discrete data such as text data
[10]. The visual model representation of LDA can be seen in Figure 2 [20].
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Figure 2. LDA model representation

Figure 2 illustrates the three levels of LDA representation, where M represents the document and N
represents the number of words in a document. The first level is the corpus level parameter represented by «
and B. This corpus level parameter is assumed to be sampled once in the corpus generation process, then the

* https://harzing.com/resources/publish-or-perish
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document level variable (8) will be sampled once for each document. Furthermore, word-level variables are
symbolized by z and w. Both variables will be sampled once for each word in each document. Based on the
notations, the generative process on LDA will correspond to the joint distribution of latent variables and
observed variables. The calculation of the probability of a corpus is shown by the equation (2).

M Ng
polas) = | [ peale <]_[Zp(zdnwd)p(wduzdn,ﬁ)) a6, @
d=1

n=1 zZgy

The £ notation describes the topic, where each £ is a distribution of several of words. The variable 64
is the document level variable with one sample per document representing the proportion of topics for
documents to d. The zan and wan NOtations represent variables at the word level with one sample for each word
in each document.

During the topic modeling task using LDA, we calculate a coherence score to obtain the most
appropriate number of topics [17]. Topic coherence calculates a particular topic by computing the degree of
semantic closeness between high-scoring terms in the topic [21]. We determined the best number of topics
based on the highest coherence score [17]. In this study, we employed the C, measure as a method for
measuring coherence. The C, measurement is based on a sliding window that utilizes normalized pointwise
mutual information (NPMI) and the cosine similarity [22].

Ultimately, we also perform document counting to find out the number of documents that belong to a
particular topic. The term ‘documents’ at this stage refers to the research title. The purpose of this process is to
find out the number of documents performing research on a particular topic so that we can obtain the research
trend in a particular period of time. For each research title, there would be one topic with the highest
contribution to it. In this stage, we assign corpus and TF-IDF values of each word as the input. The output of
this stage is the most dominant topic for each research title.

2.6. Visualization

This study utilizes two different visualization tools to visualize the topic models, pyLDAvis and word
cloud. PyLDAVvis can be utilized to see the word distribution for each relevant topic with its level of relevance
[23]. Moreover, PyLDAvis is also used to visualize the closeness between one topic and another using a
Cartesian diagram. As for the word cloud, it shows the word visualization based on the word frequency [24].
Word cloud visualization will display as the representation of the word distribution for each topic. The word
cloud results are presented using a dashboard page where users could specify the year or year range to look for
research trends.

3. RESULTS AND DISCUSSION

We have collected about 81,516 titles of the scientific papers. We then apply preprocessing tasks to
our dataset. After that, bigram and trigram language models are built to identify the phrase by using Gensim’s
Phrases model. The formation of bags of words is obtained by calculating the value of TF-IDF using the
Gensim library that is already provided in Python.

The next step is to make an LDA model for each year. To build an LDA model, this study utilizes the
Gensim library with the LdaModel() function, while to get the coherence value, the CoherenceModel() function
is used. For the LdaModel() function, there are four parameters that must be fulfilled, namely corpus, id2word,
num_topics, and iterations. Corpus is a parameter that refers to the dataset of our study. The id2word parameter
refers to the dictionary that is mapping from word to IDS to words. The id2word parameter is utilized to identify
the vocabulary size of our corpus. Num_topics parameter is assigned by the number of topics that we want to
obtain from the corpus. Finally, the iterations are used to assign the maximum number of iterations through the
data when concluding the topic distribution from the corpus.

As for the coherence value, it was obtained after the model had been generated. The
CoherenceModel() function was applied to evaluate the topic model result. The number of topics with the
highest coherence value will be chosen as the most appropriate number of topics. In our experiment, we
assigned the range number of topics from 2 to 20 topics to obtain the best number of topics. The example
results of calculating the coherence value in the year 2019 can be seen in Figure 3, and the details of the
coherence value for the diagram can be seen in Figure 4. According to the chart in Figure 3, it is clear that the
highest coherence value is achieved when the number of topics is equal to 16. Therefore, we can conclude that
the most suitable number of topics in 2019 is 16 topics.

Discovering Computer Science Research Topic Trends using Latent Dirichlet Allocation 20
(Kartika Rizqi Nastiti', Ahmad Fathan Hidayatullah?, Ahmad R. Pratama®)


http://u.lipi.go.id/1466480524
http://u.lipi.go.id/1464049910

JOIN | Volume 6 No. 1| June 2021: 17-24

Sm——L
050
v 045
o
b
w
S 040
v
v
A
Q
S o35
030
2 2 6 8 10 12 14 16 18
Num Topics

Figure 3. Coherence score chart in the year 2019

Mum Topics = 2 has Coherence Value of 8.2764@95606
Num Topics = 4 has Coherence Value of 8.33938938509
Num Topics = 6 has Coherence Value of 8.3863628141
Num Topics = 8 has Coherence Value of 8.4379782371
Num Topics = 18 has Coherence Value of 0.446927504
Num Topics = 12 has Coherence Value of 0.4741874394
Mum Topics = 14 has Coherence Value of 0.4848696768
Num Topics = 16 has Coherence Value of 0.5258541333
Mum Topics = 18 has Coherence Value of 8.496@539742

Figure 4. The list of coherence values of 2019

Table 1 shows more detail about the coherence values result and the most appropriate number of
topics from 2010 until 2019. In addition, we also make aggregate for several different periods of the year. For
instance, we merge the scientific research papers in the year 2018-2019, 2017-2019, 2016-2019, until 2010-
2019.

Table 1. Coherence Values

Years Number of Topics Coherence Value
2010 18 0.4814599141
2011 16 0.5495813255
2012 18 0.4934268752
2013 18 0.5096695948
2014 12 0.4985809264
2015 6 0.5329307382
2016 18 0.54215305
2017 16 0.5160163434
2018 8 0.5169211186
2019 10 0.6078580128
2018-2019 14 0.5183195359
2017-2019 16 0.4987779732
2016-2019 18 0.4776285773
2015-2019 16 0.4994886329
2014-2019 14 0.5045297658
2013-2019 16 0.5417630578
2012-2019 14 0.4588848188
2011-2019 16 0.4579770423
2010-2019 18 0.4505668673

Figure 5 shows the sample of topic model results in the year of 2019. The model in the figure shows
a list of keywords and their weightage or importance of each keyword from each topic. For example, we can
conclude that cloud computing is the most discussed topic in the topic 0 (zero) with the weight of 0.009 because
the phrase “cloud computing” has the highest importance. To help understand the topic better, we utilize word
cloud visualization. Word cloud visualization is a visualization tool that provides the relative prevalence of
words that have been ranked by their importance to illustrate the main themes of a collection of texts [25]. In
word cloud, the size of the words represents the importance of the words from a collection of texts. The bigger
the size of a word/term/phrase indicates that it appears more frequently. Figure 6 shows an example of word
clouds that we have generated from the topic in the year of 2019. From the example in Figure 6, we can see
two examples of word clouds. Based on the size of the term, the word cloud at the top discusses cloud
computing topic while the word cloud at the bottom represents information system topic.
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Topic: @ Word: @.@@o*"cloud_computing”™ + @.8@6* "internet_banking”
+ B.285*"jadwal™ + B8.885*"studi_kasus™ + @.885*"pengaruh_kualitas”
+ B.@ax*"sistem_informasi” + 8.885*"invers” + 8.884*"calon_guru” +
8.884*"rancang_bangun” + 8.@@4*"provinsi_sumatera”

Topic: 1 Word: 8.815*"sistem_informasi™ + 8.815*"rancang_bangun™ +
8.812*"framework_laravel” + @.889%"metodologi” + ©.808* "metodologi
_berorientasi” + @.8@7*"smp_negeri” + 8.887*"rancangan” + 8.88&6*"r
apid_application”™ + @.886*"studi_kasus" + 8.885*"event”

Topic: 2 Word: @.812*"dinas”™ + @.8@7*"dinas_pendidikan™ + @.887*"k
ota_ternate” + 8.8@7*"peserta_didik" + ©.886%"keputusan_penerimaa
n" + @.885*"pembangunan_daerah™ + @.885*"kendaraan_bermotor” + @.8
B5*"penerimaan” + @.885*"solusi” + B.e84*"modifikasi”

Topic: 3 Word: @.828*"sistem_informasi” + 8.814*"studi_kasus™ + 8.
Bas*"rancang_bangun” + 8.889*"informasi™ + @.887*"perancangan” +
8.e87*"implementasi_algoritma™ + 8.887*"sistem™ + ©.887*"pelayana
n" + 8.885*"web” + B.885*"jasa”

Topic: 4 Word: 8.813*"sma_negeri” + 8.811*"web_service” + 8.818%"s
iswa_sma" + 8.289*"sekolah_menengah” + ©.888%"bahasa_inggris" + 8.
g@g* " sistem_informasi™ + 8.9@7*"xyz" + ©.806%"sekolah™ + @.8856%"in
ternet_things"™ + @.8@5*"negeri”

Figure 5. Sample of topic modeling result
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Figure 6. Example of word clouds for topics in 2019

In this work, we also provide another topic modeling visualization using PyLDAvis library.
PyLDAVvis is able to display the distribution of words of each topic along with the level of relevance of each
word for the topic. The left panel on PyLDAvis shows a general perspective of the topics [8]. On the left panel,
the areas of the circles are corresponding to the relative prevalences of the topics within the corpus. In addition,
the left panel also provides information about inter-topic distances. The right panel provides information about
the overall term frequency and approximation term frequency within the selected topic. An example of
pyLDAVvis is shown in Figure 7 where we can see that the term sistem_information (information system)
dominates the overall term frequency. The same term also dominates in topic number one, which can be
inferred that the most discussed topic for topic number one is information system.
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Figure 7. Topic Visualization for 2019 using PyLDAvis

4.,  CONCLUSION AND FUTURE WORK

In this study, we have successfully conducted a topic modeling of scholarly literature written in
Bahasa Indonesia in the field of computer science and information technology. We performed the topic
modeling by utilizing the Latent Dirichlet Allocation (LDA) method to discover topics and research trends in
the field of computer science and information technology in Indonesia between 2010 and 2019. We combined
the LDA method with Term Frequency-Indexed Document Frequency (TF-IDF) to build the topic models. The
topic modeling result has provided good topic results regarding research trends in the field of computer science
and information technology within a period of ten years. In addition, we also provided a visualization of the
topic interpretation and word distribution for each topic along with its relevance using word cloud and
PyLDAVis.

While this study has discovered and extracted some research trends from Google Scholar, it is still
difficult to determine the appropriateness of some topics because there were terms that are still unevenly spread
across several topics. Also, the word distribution for each topic in general tends to be less related to one another.
Therefore, further research can be pursued to give a better analysis of why this is the case. With a deeper and
further analysis, we can expect to add more features to show the relevance and interconnections between one
topic to another. This new feature would make it even easier and more convenience for researchers to use this tool in
exploring topics and discovering trends for their research projects.
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