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Abstract. Constrained differential renormalization (CDR) and the constrained version of implicit regular-
ization are two regularization independent techniques that do not rely on dimensional continuation of the
space-time. These two methods, which have rather distinct bases, have been successfully applied to several
calculations, which show that they can be trusted as practical, symmetry invariant frameworks (gauge and
supersymmetry included) in perturbative computations even beyond one-loop order. In this paper, we show
the equivalence between these two methods at one-loop order. We show that the configuration space rules
of CDR can be mapped into the momentum-space procedures of implicit regularization, the major principle
behind this equivalence being the extension of the properties of regular distributions to regularized ones.

PACS. 11.10.Gh; 11.15.Bt; 11.15.-q

1 Introduction

The problem of a simple regularization technique from the
calculational point of view that respects gauge invariance
and supersymmetry is still of great relevance, especially be-
yond one-loop level. The most simple and pragmatical reg-
ularization scheme known is dimensional regularization. It
is gauge invariant, since the manifest gauge symmetry is
not spoiled by the dimensional modification of the ampli-
tude. This is so because in this dimensional modification,
all the properties of regular integrals are retained, like the
vanishing of the surface terms and the preservation of the
vector algebra (see Sect. 3 of [1]). Nevertheless, this is not
the case when the theory to be treated is supersymmet-
ric. The dimensional modification spoils the symmetry be-
tween fermions and bosons. Dimensional reduction [2, 3]
appeared as a new supersymmetric invariant version of
this method. It only modifies the dimension of the inte-
gral and preserves the fields and the other mathematical
objects in the proper dimension of the theory. Some im-
portant steps towards a rigorous and model independent
generalization of dimensional reduction beyond one-loop
order have been given [4], but all-order statements have not
been established.
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Differential renormalization (DR) [5] is a method that
works in the proper dimension of the theory in coordinate
space. It has been proved to be quite simple and power-
ful in various applications [6—20]. The original DR consists
in the manipulation of singular distributions attributing to
them properties of the regular ones. They are expressed in
terms of a simpler singular function and then one performs
its substitution by a renormalized one. In this procedure
originates an arbitrary mass parameter for each different
expression. When symmetries are involved, relations be-
tween these parameters are established in order to obtain
a symmetric result. The constrained (version of) differen-
tial renormalization (CDR) [21] was developed in order to
automatically satisfy the symmetries without the need of
such adjustments at the end of the calculations. For this,
a set of rules was stated, which are actually extensions of
some additional properties of regular distributions to the
singular ones. A series of applications of this technique
was successfully carried out, which includes abelian and
non-abelian gauge symmetry, supersymmetric theories and
supergravity calculations [22—27].

Implicit regularization (IR) [28-30] is a momentum-
space regularization method defined in the physical dimen-
sion of the underlying theory. The basic idea behind the
method is, after implicitly assuming some (unspecified)
regulating function as part of the integrand of divergent
amplitudes, to extend all the properties of regular inte-
grals to the regularized ones. An algebraic identity is used
to expand the integrand and separate their regularization
dependent parts from the finite one. Symmetries of the
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model, renormalization or phenomenological requirements
determine arbitrary parameters introduced by this proced-
ure. In fact, there is a special choice of parameters that
automatically preserves the symmetries in all anomaly free
cases we have studied [28—43]. The possibility of these pa-
rameters being fixed at the beginning of the calculation is
desirable, since it considerably simplifies the application of
the method. This results in a constrained (version of) im-
plicit regularization (CIR).

The technique has been shown to be tailored to treat
theories with parity violating objects in integer dimen-
sions. This is the case of chiral and topological field
theories. The ABJ anomaly [44,45], and the radiative
generation of a Chern—Simons-like term, which violates
Lorentz and CPT symmetries [31,32] are examples suc-
cessful application of the technique. Moreover the method
was shown to respect gauge invariance in both abelian and
non-abelian theories at one-loop order [31-33, 36]. The cal-
culation of the S-function of the massless Wess—Zumino
model (at three loops) was also performed as a test of
the procedure [35]. A non-trivial test in a supersymmetric
model was performed, in which the anomalous magnetic
moment of the lepton in supergravity was successfully cal-
culated [39]. The extension of CIR to higher loop order
has been implemented and has been applied in scalar [38]
and gauge theories [43]. As for higher order calculations,
differential renormalization, in its original form, has been
used with success in scalar and gauge theories. CDR at
one-loop order has been used as a guide in supersymmetric
calculations at two-loop order [46, 47].

Constrained implicit regularization and constrained
differential renormalization (CDR) are examples of regu-
larization methods that work in the proper dimension of
the theory. Both were shown to respect gauge invariance
in abelian and non-abelian theories. The two techniques
were also tested in non-trivial supersymmetric calcula-
tions yielding positive results. Besides, although they work
in different spaces, the results are all identical. This fact
suggests the possibility of equivalence between the two
frameworks. In this paper, we show this equivalence by
mapping the rules of CDR into the ones of CIR.

The paper is organized as follows: in Sect. 2, we present
the basics of constrained differential renormalization; in
Sect. 3, the basics of CIR is considered; the connections be-
tween the rules of the two techniques are analyzed in Sect. 4
and, finally, concluding comments are presented in Sect. 5.

2 Constrained differential renormalization

We reproduce here the basics of constrained differential
renormalization (CDR). Given an amplitude in position
space, it is written as a linear combination of derivatives of
basic functions. The basic functions are products of scalar
Feynman propagators with a differential operator acting in
the last one. For example, the bubble and the triangular
basic functions have, respectively, the general form

Bm1m2 [O] = Am1 (x)OIA"w (CL‘) (1)
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and

Tm1m2m3 [O] = A’ml (.CE)Am2 (y)OIAmg (.CE - y) ) (2)

where A, (x) is the scalar Feynman propagator and O, is
a differential operator with respect to x.

A crucial step in order to write the amplitude in this
way is the use of the Leibniz rule for derivatives. The rules
that we will list below permit one to write renormalized ex-
pressions for the basic functions such that, when they are
substituted into the amplitude, we will have the underlying
symmetries of the theory preserved.

The rules are as follows.

1. Differential reduction: singular expressions are substi-
tuted by derivatives of regular ones. For this, two steps
are used.

— Functions with singular behavior worse than loga-
rithmic are reduced to derivatives of logarithmically
singular functions without introducing any dimen-
sionful constant.

— For the logarithmically singular functions (at one
loop) the following identity is used:

1 1 Inz2M? 1\®
we i m=(w) - ©

This relation introduces the unique mass scale of the
whole process. It plays the role of a renormalization
group scale. The superscript R will make sense in
connection with the next rule and it indicates that
we are dealing with the renormalized basic function.

2. Formal integration by parts: derivatives act formally by
parts on test functions. For a general basic function

FlO|(z1,... ,&zn) = Apm, (21) ... Ay, (20)
X Opy Ay (X1 F 22+t 20),
(4)

with O, a differential operator with respect to z1, we
have

[OFR = oF®. (5)

In words, this rule states that, when calculating the
Fourier transform of a basic function and integration
by parts is carried out, the surface term is discarded.
This means validity of the equation above. So the super-
script R makes sense, since the first rule states that the
renormalized expression for a singular basic function is
written in terms of derivatives of a expression with well
defined Fourier transform.

3. Delta function renormalization rule: for the general ba-
sic function of (4), it is assumed that

[F[Ova L1y 7xn)5(x - y)]R
= [F[O](z, 21, ..., 2,)]R6(x — ). (6)
4. The validity of the propagator equation:
@) (07 =m?) A ()]

 23) (=0 ()] . (7)

[F1O)(z, 21, ..
= [F[O|(z, x1,...
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With the rules above, one can find relations between the
basic functions. A table with the renormalized basic func-
tions can always be used to perform the calculation of any
amplitude.

3 Constrained implicit regularization

Implicit regularization (IR) can be formulated by a simi-
lar set of rules, just like CDR. The first thing to be done is
writing the momentum-space amplitude as a linear combi-
nation of basic integrals, multiplied by polynomials of the
external momentum. These basic integrals are the Fourier
transforms of the CDR basic functions. Typical basic inte-
grals are

i1 d*k 1, ky, by

ot = [ Gy i ©
They are, respectively, the Fourier transforms of By, [1],
Bpm[0,] and By, [0,0,]. As in the case of CDR, each one
of these basic integrals can be treated following a set of
rules. So a table with their results can be used whenever
a new calculation is being performed. The rules of CIR are
as follows.

1. A regularization technique is applied to the integral. It
can be maintained implicit, but it must have some prop-
erties: it cannot modify the integrand and the dimen-
sion of the space-time. The first property is to preserve
the finite part and the second one is a requirement in
order not to violate supersymmetry. A good one would
be a simple cutoff. The problem of possible violation
of symmetries by this technique will be automatically
handled by the constraining character of implicit regu-
larization.

2. The divergent part to be subtracted in a given ba-
sic integral is obtained by applying recursively the
identity

v

(p—k)2—m?

= 1 _ p?>—2p-k

= (k;2 — m2) (kQ _ m2)[(p— k)g — m2] y (9)

until the divergent part does not have the external mo-
mentum p in the denominator. This will assure local
counterterms. The remaining divergent integrals have

the general form
/A Ky Koy - -
o (2= m)e

where [, stands for [ d*k/(2m)* and the superscript A
is to indicate that the integral is regularized. One more
comment is in order. The assumption that a regulariza-
tion is working in the basic integrals is, in fact, only for
the separation of the finite part from the regularization

(10)
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dependent one (which does not need to be calculated),
by means of the recursive application of the identity (9).
This is analogous to the application of the Taylor op-
erator on the integrand of an amplitude in the BPHZL
method.

3. The divergent integrals with Lorentz indices must be
expre ssed in function of surface terms. For example,

kuk, 1

[ =3 (L e ()
A
e /k W) |

The surface terms, which vanish for integrable cases,
depend here on the regularization applied. They are
symmetry violating terms. The possibility of making
shifts in the integrals needs the surface terms to vanish.
As far as loop integrals are concerned, non-null surface
terms imply that the amplitude depends on the mo-
mentum routing choice. So the constraint of IR is the
restoring of symmetry by means of the cancellation of
these surface terms with local restoring counterterms.
In practice, we do this automatically by setting them
to zero. We will comment on the anomalous situation
later.

4. The divergent part of the integral is written in terms of
the basic divergences, thus:

A
Ilog(m2):/k E—m2)?

(11)

(12)

and

A

These objects will require local counterterms in the pro-
cess of renormalization.

(13)

Finally, we can solve the finite (regularization inde-
pendent) part and define a subtraction scheme, for in-
stance, absorbing the basic divergent integrals in the renor-
malization constants defined by the counterterms. This
can be done in a mass independent fashion. For this, we
use a scale relation between the basic divergent integrals,
which will also introduce the renormalization group scale
of the method.

In order to give an example of the use of these steps, we
apply the method to the simple logarithmically divergent
one-loop amplitude

A 34
1
I= / dk . (14)
(2m)* (k? = m?)[(k —p)? —m?]
By applying the identity (9) in the regularized amplitude
above, we get

2
p —2p-k
I:Ilog(m2)_/ (kg_
k

m?)?[(k —p)* —m?]

(15)
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Notice that the second integral in (15) is finite and, be-
cause of this, we do not use the superscript A. It is conve-
nient to express the regularization dependent part, given
by (12), in terms of an arbitrary mass parameter, A. This
becomes essential if we are treating massless theories [38].
It can be done by using the regularization independent
relation

B = g 00) + 010 (2) (19

with b =i/(47)?. The mass parameter A\? is suitable
for use as the renormalization group scale, as can be
seen in [35,38]. After solving the finite part, we are left
with

I:Ilog(AQ)_bZO(p27m2a)‘2)7 (17)
where
1 2 1— a2
2062, 3%) = [ dam (PEEERE) s
0 _

Finally, we would like to comment on the relation be-
tween surface terms and anomalies. Momentum routing
invariance seems to be the crucial property in a Feynman
diagram in order to preserve symmetries. In fact such sur-
face terms evaluate to zero should we employ dimensional
regularization (DREG) to explicitly evaluate them. This
property somewhat reveals why DREG is manifestly gauge
invariant; yet it breaks supersymmetry (the invariance of
the action with respect to supersymmetry transformations
only holds in general for specific values of the space-time
dimension).!

A vparticular situation, however, is the occurrence
of quantum symmetry breaking (anomaly). Anomalies,
within perturbation theory, may present some oddities
such as preserving a certain symmetry at the expense
of adopting a special momentum routing in a Feynman
diagram e.g. in the (Adler-Bardeen—-Bell-Jackiw) AVV tri-
angle anomaly. In the case of chiral anomalies, IR has been
shown to preserve the democracy between the vector and
axial sectors of the Ward identities, which is a good ‘acid
test’ for regularizations [32]. The arbitrary parameter rep-
resented by the surface term remains undetermined and
floats between the axial and vector sectors of the Ward
identities. That is to say, in the anomalous amplitudes,
there is no possibility of restoring, at the same time, the
axial and the vectorial Ward identities. The counterterm
that will restore one symmetry causes the violation of the
other and, therefore, it does not make sense to set the
surface terms to zero. The answer is to be established by
physical constraints on such an amplitude. This feature has
also been illustrated in the description of two-dimensional
gravitational anomalies [37].

1 The idea of associating momentum routing in the loops
with symmetry properties of the Green’s functions has been
exploited in a framework named ‘preregularization’, which did
not call for momentum routing invariance but instead fixed the
routing in order to fulfill certain Ward identities [48].

C.R. Pontes et al.: Equivalence between CIR and CDR

4 Mapping constrained implicit regularization
in constrained differential renormalization

We show in this section that the rules of constraining dif-
ferential renormalization can be mapped in the ones of
constrained implicit regularization. We will sometimes re-
produce with few details the calculations of [25].

Rules 1 and 2 of CDR

We begin by analyzing rules 1 and 2 of CDR. We will
consider here the simpler two-point massless basic func-
tion, B[1]. The reason is that the one-loop renormalization
of CDR will always occur when the other basic functions
are written as functions of it. So its renormalization is the
basis for finding all the other renormalized expressions. We
write

1 2
Bll=A@1AD) = ()« (9)
which, after application of rule 1, gives
1/ 1\ _ Inz2M?
R[] —

In order to compare the two techniques, we will take
this basic function into the momentum space. The bare
momentum-space expression for B[1] in euclidian space is
given by

. d*k 1
Bl=[ -~~~ 21
- Gy O
where Iy = —iI of (14) for the massless case. If we intend

to obtain the Fourier transform of the renormalized expres-
sion, we will have to make use of CDR rule 2. This rule says
that we must ignore the surface term when integration by
parts is performed. With this prescription, the derivatives
act directly on the exponential. So we get

o (37

with M? = 4M?/~2, v being the Euler constant.

We would like here to show that rules 1 and 2 together
stands for the subtraction of Ijog (A\?) in implicit regulariza-
tion. To make it clear, we reproduce here the calculation
of [5], in which the authors show that the combination of
rules 1 and 2 corresponds to the subtraction of a local cut-
off dependent term. Let us consider the exclusion of a small
ball, B, of radius €. We can write

BR[1)= (22)

. 1 \?
Bil= [ ateso) () (23)
1/ 1\ . In 22 M?
= —— [ 00—
4 (47r2> /1%435 el @)h—0
1/ 1\ In z2M?
=1 (5) { [ aon r0 2
ln 22 M?
+/R4_BE d4xauf(x)8uT},
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with do, = ez « d2 the outward normal volume element of

the 3-sphere S¢, which is the boundary of B.. The second

integral is well defined and can be integrated by parts with

no problem. The complete result, taking in account that
- 1

flz) =elPe is
Bl1]= e <1 —Ine’M?—In (J\%))

_ ﬁ <1n (%) +1-1In (%—22)) ;o (24)

where the momentum cutoff is given by A% = 4/(y%¢?).
We now remember that B[1] = Ig and use the implicit
regularization result of (14) for m? = 0, so that

B[1]=—i {Ilog(/\Q) —bln (%) } :

If we use a simple momentum cutoff, A2, to calculate
Liog(A?), we get

Bl = ﬁ (m ((ﬁ;) t1-In (g;)) . (26)

It is the same as the result of differential renormaliza-
tion. We just have to rescale our mass parameter such
that e2A\? = M2. The important conclusion here is that the
position-space surface term that is subtracted by means
of rule 2 of CDR is exactly the basic divergence of IR,
Tiog(A?).

In (2.15) of [5], the authors find a divergent contribu-
tion in the limit € — 0, associated to the radius € of a spher-
ical surface around the propagator distributional product
pole. Such a divergent counterpart could be subtracted by
adding a suitable counterterm in an arbitrary proportion
to the action. An alternative procedure would be to con-
sider the pole contribution as a concentrated distribution
at x = 0. There arises a linear combination of delta func-
tions with arbitrary coefficients [49], as many as the pole
order is higher. In both cases the arbitrariness is fixed by
a subtraction scheme.

(25)

The role of rules 3 and 4 of CDR

Next, we dedicate this subsection to the role of rules 3
and 4 in constrained differential renormalization in order
to understand how they are translated to implicit regu-
larization. These rules are important for introducing an
unique mass parameter in the calculation that is being
performed. They make it possible to establish relations be-
tween a basic function with n+ 1 propagators with one
with n propagators. If this one is already renormalized,
then the same mass scale is used. Let us see how it works
before we look at its version in IR. Consider the basic
function

F,[O —mi_H] =An, (@1) ... A (T0) X (Dxl —m,zﬂ_l)
X Ay (@1 + 22+ +20), (27)
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where F,[0] = F[O](z1,22,...,2,) and the variables
r1,...,T, are differences between the vertex points of the
loop. With the help of rule 4, we can write

FX[O-m2 ] =—(Faa[lJd(z14+22+...+3,)"
(28)

and, by using rule 3:

F}:‘ [D —mi+1] = —Ff‘fl[l]é(xl +axot...+x,).
(29)
In momentum space, a momentum k; is associated with
each internal line and therefore with each variable z;. If we

consider as the loop momentum the one associated with
the last propagator, we have

Fs—l[ok](ph ce 7pn—1) =

Ok

R
(/k (k2+m2)[(k—p1)2+m3]... [(k: —Pn-1)? +mfl1]> '
(30)

Nevertheless, Fourier transforming (29) yields

(kK2 +m?2 1)

R
</ (K22 0) (k= p)2 [k = po)? +m%1>

1
- (/k (k2 +m2) [(k+pp—p1)>+mi]
R
X ! .
[(k+pn_pnl)2+m%1]>

The straightforward operation in momentum space, which
is standard in CIR, is the simple cancellation of the fac-
tor (k%2 +m?2 +1), present in both numerator and denom-
inator of the integrand. But the sequence of procedures
performed above includes a shift k — k4 p, in the in-
tegral. It is also in accordance with CIR, where surface
terms are discarded. Let us see how rules 3 and 4 per-
form this shift. We can write (28), in which rule 3 has not
yet been applied, in terms of its inverse Fourier transform,
as

(31)

F}} [D - mi+1]

_ (/ B [1)(ps .

R
x e'P1 oL elPn—1Tn-16( E xl)>

7pn—1)

1
- (// W+ md)[(k—p )2 tm3]
1
Mk —pa)?+m2_]

R
x ePn—1Tn-1§ <Z xl)> .

elP1TL
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Carrying out the Fourier transformation of the equation
above and applying rule 3, we get

ER [—(K*+m? . ,)]

yerey 5

X .. elP1—p)yar

1
[(k—pn-1)24+m2_,]
R
% ei(pn1p2—1)'wnle_ip;.xn> 5 (Z 1’1) . (33)

Integration on the x variables gives us
FRE[-(K+m2 )]
oo f e
p1r oy Jk (B2 +mR)[(k—p1)2+mi]

1
(k—=pn-1)*+mj_4]

X
[
R
X 6(pr—p1+0y) - 0(Pn1— Py +p2)> . (34)

This will furnish us with the same as the result of (31).

It is clear from the expression above that rules 3 and 4
taken together are equivalent, in momentum space, to the
cancellation of a factor k% +m2_; (here, in euclidian space)
in the numerator with its correspondent in the denom-
inator and the subsequent shift k¥ — k+p,. A comment
is in order. There is physical appeal in the result above.
The operation we are discussing corresponds to a point
contraction. If we consider the original outgoing external
momenta pi,...,pn, we have Y p; = 0. When the point
contraction is performed, the momentum p,, does not flow
outward, so that the internal momentum that circulates
the loop is changed to k+ p,. Alternatively, if we con-
sider the definition (30), we have for the result of (31):
—F® [1)(p1 —Pn,--->Pn—1—pn). This is in accordance
with the new condition of energy-momentum conservation,
pP1+...+Dn-1 =0.

We have seen in this calculation that the sequence of
applications of rules 3 and 4, when observed from the mo-
mentum space, includes a shift. Clearly, if the integral is
at least linearly divergent, this corresponds to discarding
a surface term. But, as we will show below, this is not the
unique procedure of CDR that works as a source of shifts in
momentum space. Besides, generally (but not always) rules
3 and 4 are used with the intention of using the renormal-
ized version of the basic function B[1], which corresponds
to a logarithmically divergent integral in momentum space.
For this case, no surface term is missed. As we shall see, the
crucial point occurs when Lorentz indices are involved and
Leibniz rule is used.

Finally, we enforce that, in constrained implicit regular-
ization, shifts and the cancellation of factors of the numer-
ator and the denominator are essential steps. With these
procedures, we can always display the basic divergences
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as the 1oz and the Iuaq, which depend on the same mass
parameter.

Leibniz rule in position space, ambiguities in Fourier
transforms and shifts in momentum space

There is an essential characteristic of constrained differen-
tial renormalization, which we will show, that takes care of
momentum-space surface terms: the validity of the Leibniz
rule. It is an essential tool when one establishes relations
between basic functions with and without Lorentz indices.
This happens in connection with an ambiguity when the
Fourier transform of a bare basic function is performed. Let
us consider the basic function,

Flo,)(x1,22,... ,&n) = Ay (21) ... Ay (20)
X a;lemnH (r14+z2+...20),
(35)
which has the Fourier transform
F[k#](ph .o apn)
:/ ikptt
k1, knt1 (k% +m%) cee (k121+1 —|—m%+1)

X 5(]{11 =+ kn+1 —p1) - 5(kn + kn+1 —pn) . (36)

At this point, if there is a singularity, there emerges an
ambiguity: depending on the momentum we choose to be
the loop momentum, a different momentum routing is ob-
tained. In other words, the integrals will differ by a shift.
First, let us take k,,+1 to be the loop momentum. We ob-
tain

F[k#](ph s 7pn)
ik,
_/k (k2 +mpq) [(k—p1)2+m3]... [(k—pn)? +m3]
—iky,
:/k (k24+m2_ ) [(k+p1)2+m3]...[(k+pn)2+m2]

(37)

The last equality follows from the Lorentz structure of the
integral. On the other hand, if we choose k1, we have

F[ku](plv e 7p’n)
:/ i(pr —Fk)u ‘
w(k2+m)[(k—p1)? +m? 4] [(k+pn—p1)* +m7]
(38)

It is clear that (38) is obtained by performing the shift
k — k — p1 in the integrand of (37). There is nothing wrong
with this if the integral is finite or at most logarithmically
divergent. But this is not the case in general. If the inte-
gral is linearly divergent, for instance, a surface term must
be added to compensate for the shift. One could avoid this
problem by stating, as a rule of the technique, that the mo-
mentum associated with the last propagator, which closes
the loop, should be the loop momentum.
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Nevertheless, in some situations, if the Leibniz rule is
allowed for, this ambiguity cannot be removed. Let us con-
sider the simple example of the massless basic function,

B[Oy = A(x)0,A(x) (39)
which, by the Leibniz rule, can be written as
1
BIO,) = 50, B11]. (40)
so that
BR[o,] = %auBRu] : (41)

We should call the reader’s attention to the fact that (40)
was written considering that

A(2)0,A(x) = 0u(A(z))A(x) (42)
which, if we take into account the rule discussed above,

which tells us that the momentum associated to the last
propagator is the loop momentum, implies that

_/ ik, :/ i(p— k),
R K2 +R)? e K2 (p— k)2

So we can say that the application of the Leibniz rule in
position space, in some peculiar situations, is equivalent to
discarding a surface term in momentum space.

In the discussion that follows in this section, we will
show that all the relations between the basic functions that
in CDR are obtained by using Leibniz and its rules 3 and 4
can be obtained in momentum space by performing shifts
and by canceling common factors of the numerator and the
denominator. We return to (41). If we look at this equation
in momentum space, we have

([ree) ([ o) @

or I, = (1/2)p,I. The relation above was obtained by the
use of properties of regular distributions in position space
extended to singular ones. We would like to treat directly
in momentum space the integral I,,. We will make use of
two different ways of calculation. In the first one, consider-
ing the extension of all the properties of regular to regular-
ized integrals, we perform the shift £ — k + p in the integral
I, so that

(k+p)s / ks
" /kk2(p+k)2 LR+ ke PRI T TP
(45)

(43)

In the last step, we have observed that I, is odd in p. The
equation above leads us again to the result I, = (1/2)p,I.
In the procedure above we have shifted a linear divergent
integral. This would require the addition of a surface term.
So this step is in accordance with the rule of implicit regu-
larization that tells us to eliminate such terms by means of
symmetry restoring counterterms.
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The second way we treat I, is its explicit calculation
by means of implicit regularization. This will permit us to
identify the forgotten surface term. We begin applying the
identity (9) twice to the integrand:

A ky 1 p?—2p-k
v [ (e ey

(v* —2p-k)?
oK)

_|_

(46)

in which we will take the limit m? — 0 at the end of the
calculation. Eliminating the vanishing terms, we have

I _2a/A Fiuka +/ (0 —2p- k)?
pE e R —m2 ) (R —m2)3(p— k)% —m?]

-5 (1 g (e oo [ )

+ 1., (47)

I « being the finite integral. After the calculation of this fi-
nite part, we obtain, in the limit m? — 0,

2 (e
p p p
Iﬂ = 7“ <I]Og(A2) —bhl <—w>> - 7;51#04

Pu, D
=T ——5ua,
2 25“

s _/Ai __Fa
v = [ ake \ (k2 —m2)?

is a surface term that will be set to zero and where we have
made use of the scale relation (16). In the analysis above,
we saw that the validity of the Leibniz rule in the calcu-
lation of B[0,] implies the validity of a shift in a linear
divergent integral. In other words, it means that a sur-
face term has been subtracted. Although we are analyzing
a particular case, this relation is used in the derivation of
all basic functions with upper Lorentz indices, as we show
in some examples.

The next example we examine is the calculation of the
basic function,

(48)
where

(49)

T[0u0,] = A(x)A(y) 0,0, Az +y) . (50)
It can be decomposed into a traceless and a trace part.
A local term is added and is to be fixed, due to a possible
ambiguity in the finite traceless part:

TR9,0,] =T {aua,, — i(s,wu + iéwTR[D]
1
+ @céwé(x)ﬂy) . (51)

In the equation above the second term of the r.h.s. is renor-
malized by means of rules 3 and 4 of CDR and c is the
arbitrary constant to be fixed. It is fixed so that the rules
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of CDR are valid. Specifically the Leibniz rule and rules 3
and 4 of CDR, state that

BR[ﬁu](x)é(y) =0T [au] + 23})’TR[5M5/)] - TR[Dau] .
(52)
The integration of this equation over x yields ¢ = —1/2. We
will repeat this procedure in momentum space and show

that the constant c is fixed so that it cancels the surface
term that comes from the traceless part. We have

. . 1
TRk, k=T [kuky - Zg,wk2]

1 N
+ _QWTR[]‘:Q] +

1
4 o1z (93)

We remember that an infrared cutoff m? is used (it disap-
pears after the scale relation is used). By using (9) and the
identity k? = (k* —m?) +m? in the first term, we get

_1 /AL_LL/AM
4 & (k2_m2)2 & (k2_m2)3

+ —— g, +non-ambiguous terms .

6472 (54)

We calculate it by symmetric integration (k,k, —
kQQW/ 4):

1 v A v 1
- / s —4 / AL S
1)), @mre ), E—mp (6

_m / SR

=9 | ) T e e

g

T 12872 ' Gamz I (55)

So in order to cancel this surface term, ¢ =1i/2, just like
the result of constrained differential renormalization (the
i factor is due to the fact that we work in Minkowski space).
The two examples we have worked out above are cases
that involve at most linear divergences. Besides, the num-
ber of Lorentz indices is at most two. When the degree
of divergence or the number of Lorentz indices increases,
new surface terms appear. Let us see the case of the basic
function,
B[0,0,] = A(x)0,0, A(x) . (56)
Following the steps of CDR, its most general renormalized
expression is given by

B[9,0,] = % (aua,, - %@,,m) B[]
1

+ 1672

[fauav + 5MV(9D + N2)] é(z),
(57)

where a differential equation was solved to find the first
term at = # 0 and the constants f, g (dimensionless) and p
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(mass dimension) where introduced to take care of ambi-
guities. As before, they will be fixed in such a way that
the rules of CDR, including the Leibniz rule, are respected.
Using these laws of manipulation, it can be shown that

_%maﬂBR[u +20,B%[0,0,] =0 (58)

and

BR[auay](x)(S(y) = _DyTR[auar/] + 2apTR[8M8V8p]
+ % (3;533 + 353}1) (BR[I]($)5(JI —|—y))
+ RB[0,0,](2)d(z +y). (59)

We will also need the basic function, which in the equation
below is decomposed in a trace and a traceless part, plus
a local arbitrary term, left to be adjusted according to the
rules:

709,08,
1
= T[(?#@l,@p - 6 (5#1/8P + 5#/)81/ + 591/8#)D]

1
+ 75 O (05 + 7)) + 0,10(0] +OY) + 6,00 + O})

y (—BR[I]cS(:r+y)+#dé(x)é(y)) . (60)

We should notice that rules 3 and 4 and the renormaliza-
tion of the basic function B[d,] have already been applied
in the trace part. When (57) is substituted into (58), it is
found that 4 =0 and g=—f. If (57), (60) and (53) are
inserted into the expression (59) and integration over z is
carried out, the result is f = 11—8 and d = —%.

Let us now see how it works in momentum space if the
principles of constrained implicit regularization are consid-
ered. First, we show that (58) is respected in momentum
space, as long as shifts in the integrand are permitted. In
momentum space, we have

L, 4 (p-k)k,
—= I+2 ———==0. 1
2p Put /}C k2(p— k)2 0 (61)
In the second integral, we can use
1
(p-k) = =5 [(p—k)* —k*—p7], (62)
so that it is given by
A A
Ky / K 2
— - — —p°l, ;. 63
{/k B i P (93)

The first term is obviously null. We shift the second one
(k — k+p) and obtain

A 2
1 P
Pu /]; k_2 -|-p2[ = pﬂfquad(’ﬁl2 = 0) + 7}?“] . (64)

In the expression above, the last term cancels out the
first one of (61). For the basic quadratic divergence with
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null mass, in [32,38] it was shown that an adequate
parametrization gives us

Iquad(m2) = ﬁmQ [ln (i—i) +const] ,  (65)

so that Iquaa(m? =0) =0 and (61) is satisfied. We call
the reader’s attention to the fact that this parametrization
furnishes the same result as the one of its correspondent
in position space, the one-point basic function A,,[1] =
Ap(z)d(x) of CDR. The next equation to be analyzed in
momentum space is (59), given by

/A kuke /A kuk,
v Ro—k2 T ) Ro—k20 —k)?

—|—/A (2p"- k)kuky
k k2(p—k)2(p' —k)?
1

Lo [
— 5 (Pup, +popy) T —n
-/ LI
k KE(p—p —k)?
We begin by noting that the two first terms of the r.h.s.
can be considered together, so that we have, in the numer-
ator, —p'? +2(p’ - k) = k? — (p’ — k)?. We break it again in
two parts, and perform cancellations with factors of the de-
nominator. So

_/AM__/AM
r K2(p—k)? i kK(p—k)?

/A kk,
+ [ s —
k(0 —k)?*(p—k)?
1

1 A
/ /
2(p,upy +pl/pu)/k kz(p—p’—k)z
/A k. k.
k K2p—p —k)?
The three last terms of the above equation must cancel
out in order to satisfy the equation. If we perform the shift

k — k—p’ in the last two integrals and use the result, also
obtained by means of shifts,

/A ky, :(p+p')p /A 1
k(0 —Fk)?2(p—Fk)? 2 k(0 —k)?2(p—Fk)?’

(68)

(66)

(67)

the exact cancellation occurs. The reader should observe
that all the results that CDR reaches with the help of the
Leibniz rule and its rules 3 and 4 are reached in momentum
space with the use of shifts and cancellation of common
factors of the numerator and the denominator.

We now will fix the arbitrary constants with the help
of the principles of constrained implicit regularization.
First, once (61) was verified, it is trivial to check that
the momentum-space version of (57) implies f = —g and
@ =0. We now turn to the Fourier transform of the
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expression (60).
T kyuko k)

. 1
=T [kukykp -5 (guvkp + gupks + gp,,ku)k2:|

1
+35 (9uv (Pp+P,) + 9up (Pr+0,) + 9o (P +1),))

AR "2 1

< (B P+ g (69)
As discussed before, the ambiguity concerns the traceless
part, and it is due to the presence of surface terms. We re-
call that in (60) the trace part is already renormalized and,
in this process, surface terms were discarded. Nevertheless,
in the present form, there is no ambiguity in the trace part
and the adjustment of the constant d is done considering
this fact. So d must be adjusted so as to cancel the surface
terms coming from the traceless part. We can write

TR [k k)

1
G (9L (P, 0") + 9up Lo (0, 0') + 9up 1 (p, D))

1
+ 15 (9 (Pp 1) + 9up (v + ) + o (P +P1))

+ non-ambiguous terms .

= Juvp —

1
1672 d
(70)

Let us consider the first integral,

S _/A kkok,
P e (R =m?)[(p — k)2 —m?][(p— k)2 —m?]
A
_ no kukykoko
=2(p+p) /}C (k2 —m2)4

kukyk,(p? —2p - k)2

- /k (k2 —m?2)3[(p— k)2 —m?][(p/ — k)? —m?]

/ kukyk,(p® —2p - k)?

(=) [(p= B2 —
kukyko(p —2p' - k)(p? — 2p- k)2

+/k (2 —m?) [(p—k)? —m?]
A ko koko

(kQ _ m2)4

+ non-ambiguous terms,

(71)

2049 [

which was expanded with the use of the identity (9) and
where we discarded the terms with odd integrand in k. The
infrared cutoff m? disappears in the end. The divergent in-
tegral can be written as a function of surface terms. Let us
define

A A
B Guv kuk,
L= S o A—— | —_— 72
Qa20u /}; (k2 —m?2)2 /k (k2 —m2)3 (72)
and
A 1
ai?og{uugaﬁ} = g{;u/gaﬁ} /]; (k2 _ m2)2
A
k.k ko k
_94 Sulvialf 73
I (73)
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The parameters as and a3 are surface terms. It can easily
be shown that

o= [ ot (wliey) 0

and

A
0 [ dkuky ke
/k kP [(k@u_mas} = 9{uwYap}(a3 —az). (75)

These surface terms can be calculated by means of sym-
metric integration, with the substitutions k,k, — g,ka /4
and k. kykaks = giu9apyk* /24. We obtain

i B
32727 7% 96n2

Qg =

(76)

Returning to the integral, we have

1 (e
Juup = _E(p+p/) 9{uv9po} 3 +...

o 57’ .
=——(p+p) 9{uv9pc} 9672 + non-ambiguous terms .

12
(77)
For the integral I,,(p, p’), one can write
A
kuk
I,—2 g B S
133 (p+p) /k (k:2—m2)3 +
1 "
= 5(p-|—p) Juvia + ...
i . .
=— 64?(1)4_ p')? g + non-ambiguous terms.
(78)

When the results of (77) and (78) are inserted into (70),
and d is chosen to cancel these surface terms, it is found
that d = 3, as expected.

The momentum-space version of (57), taking into ac-
count that f = —g and pu =0, is written

R 1 1, 1 )
Blkuk,] = 3 (pupu = 9wP ) I+ @f (PupPv — ™) -
(79)

It is important to call the reader’s attention to the fact that
the decomposition in a traceless plus a trace part was not
applied to this basic function. Instead, a differential equa-
tion was solved for z # 0 in order to find the term on BJ[1].
When the decomposition is performed, the traceless part
is responsible for an ambiguity due to surface terms (ST),
and a local term is added in order to take care of this prob-
lem. For the present case, there is also an ambiguity, but
it is not due to the first term (on B[1]), which is already
free from the ST. It emerges from the solution of the differ-
ential equation. So the constant f is not the counterterm
to cancel the surface term. It is actually the local term
that survives after the surface terms were eliminated. CDR
assures it with the use of some consistency equations ob-
tained with the help of the Leibniz rule. In the case of IR,
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the same result is achieved by explicit calculation, as long
as ST are discarded. Let us expand it with the help of the
identity (9) (m? will be set to zero in the final result):

. A kuk,
Blkub) = o= || e =
_ A kuk, 1 p?—2p-k
- @ G
(p®> —2p-k)? (p® —2p-k)?
CET e e
(80)

By discarding the terms with an odd integrand and re-
membering that we can use a parametrization so that the
quadratic divergence is proportional to m?, we obtain

A A
k.k kukykok
IV:_2 uvv 404,8/ phvhahp
g pl(Wﬂﬁw+pPk<wﬂﬁ%

+ finite, (81)
in which we can use (72) and (73) to write
1 1
IMV = g (pupu - ZQWZP) Ilog(m2)
+ ST + finite terms.. (82)

The scale relation (16), the elimination of surface terms
and the calculus of the finite part yields

1 1 p?
I,uz/ = g <p,up1/ - ngup2> {Ilog(/\Q) —bln <—w>}

1

- 1_8b(pupu - g;wp2) , (83)
where b =i/(4m)2. Then the constant f is found to be the
same as the one fixed by CDR.

In the analysis carried out in this section, we have ver-
ified that all the rules and characteristics of constrained
differential regularization can be mapped into the steps of
implicit regularization. The only reason we have preferred
to restrict ourselves, in the examples that we worked out,
to the massless case is its simplicity, but all the features are
present. The same procedure can be applied to the massive
case, even when the problem involves particles with differ-
ent masses. In this case, the expressions are greater and the
whole process is more tedious, but there does not emerge
any new feature. Besides, these two methods were applied
to a large set of problems, massive and non-massive, always
yielding equivalent results.

5 Concluding comments

The equivalence between constrained implicit regulariza-
tion (CIR) and constrained differential renormalization
(CDR) has been analyzed in this paper. The two methods
have been tested, with positive and equivalent results, in
many non-trivial situations, from the symmetry point of
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view. The physical dimension of the theory to be treated is
not modified and, for this reason, these methods are can-
didates to be good tools in supersymmetric calculations.
In the analysis carried out in this work it has been shown
that each one of the rules of CDR, in position space, have
its counterpart in momentum space, materialized in one
of the rules of CIR. The relation has been shown to be
one to one. The main characteristic of the two frameworks
is the extension of properties of regular mathematical ob-
jects to the regularized ones. This is accomplished with
the help of symmetry restoring counterterms. In practice
it is very simple, as long as it is implemented by a set of
rules.

The principles of CIR are successfully being applied at
higher order calculations [43]. Differential renormalization
at higher order has been used in various situations. We be-
lieve that the equivalence between these two frameworks at
all orders could also be shown.
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