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Resumo

Neste trabalho apresentamos duas contribuições para a literatura de redes de sensores sem fio
(WSN). A primeira é um modelo geral para alcançar a reprodutibilidade no nível do kernel
em simuladores paralelos. Infelizmente, os usuários devem implementar do zero como suas
simulações se repetem em simuladores WSN, mas uma simulação paralela ou distribuída im-
põe o princípio de concorrência, não trivial de ser implementada por não especialistas. Testes
usando o simulador chamado JSensor comprovaram que o modelo garante o nível mais restrito
de reprodutibilidade, mesmo quando as simulações adotam diferentes números de threads ou
diferentes máquinas em múltiplas execuções. A segunda contribuição é o simulador JSensor,
um simulador paralelo de uso geral para aplicações WSN de grande escala e algoritmos dis-
tribuídos de alto nível. O JSensor introduz elementos de simulação mais realistas, como o
ambiente representado por células personalizáveis e eventos de aplicação que representam fenô-
menos naturais, como raios, vento, sol, chuva e muito mais. As células são colocadas em uma
grade que representa o ambiente com características do espaço definido pelos usuários, como
temperatura, pressão e qualidade do ar. Avaliações experimentais mostram que o JSensor
tem boa escalabilidade em arquiteturas de computadores multi-core, alcançando um speedup
de 7,45 em uma máquina com 16 núcleos com tecnologia Hyper-Threading, portanto 50% dos
núcleos são virtuais. O JSensor também provou ser 21% mais rápido que o OMNeT++ ao
simular um modelo do tipo flooding.
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Abstract

In this work we present two contributions for the wireless sensor network (WSN) literature.
The first one is a general model to achieve reproducibility in kernel level of parallel simulators.
Unfortunately, users must implement how their simulations repeat from scratch in WSN sim-
ulators, but a parallel or distributed simulation imposes the concurrence principle, not trivial
to be implemented by non-specialists. Tests using the simulator named JSensor proved that
the model guarantees the most restrict level of reproducibility, even when simulations adopt
different number of threads or different machines in multiple runs. The second contribution is
the JSensor simulator, a parallel general purpose simulator for large scale WSN applications
and high-level distributed algorithms. JSensor introduces more realistic simulation elements,
such as the environment represented by customizable cells and application-events representing
natural phenomena, such as lightning, wind, sun, rain and more. The cells are placed in a
grid that represents the environment with characteristics of the space defined by the users,
such as temperature, pressure and air quality. Experimental evaluations show that JSensor
has good scalability in multi-core computer architectures, achieving a speedup of 7.45 in a
machine with 16 cores with Hyper-Threading Technology, thus 50% of cores are virtual ones.
JSensor also proved to be 21% faster than OMNeT++ while simulating a flooding model.
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Chapter 1

Introduction

How can we analyze the water quality of a river? How can we monitor streets, cities, provinces
of a country? How can we predict and prevent problems coming from earthquakes, snowstorms,
fire spreads and all kinds of natural disasters? How can we test some new drugs without using
animals? These and many other problems are initially solved by using simulators. It is
extremely expensive, and sometimes dangerous, to test initial ideas in a real environment.
Thus, very often we must use simulators to achieve comfortable confidence levels before real
tests.

The use of simulators that until few years ago was concentrated in military and scientific
domains have recently become important tools for many diverse areas, including environmental
monitoring, medical (drugs utilization, clinical feedbacks, etc.), human occupations in risk,
professional skills training, sports and so forth Okuda et al. (2009); Raković and Lutovac
(2015); Gregory (2017). One way to simulate abstractions and their interactions is modeling
them as sensor networks or precisely wireless sensor networks since some abstractions are
mobile. These abstractions are named nodes and they are capable of sensing, actuating,
processing, communicating and moving around the environment. Such nodes or sensors or
devices, working cooperatively, are termed wireless sensor networks (WSNs) Akyildiz et al.
(2002a). WSN simulators Varga and Hornig (2008a); Xue et al. (2007); Zeng et al. (1998a);
Ould-Ahmed-Vall et al. (2007a) designed for huge applications Chen et al. (2005), where
thousands or even millions of nodes are simulated, are becoming regular with the advance of
new WSNs applications, e.g., general Internet of Things (IoT) applications Muruganandam
et al. (2018), smart cities Lu et al. (2017), social sensing Ali et al. (2011) or natural environment
monitoring Lin et al. (2015).

WSNs simulators for huge applications are becoming essential, as mentioned before; how-
ever, standards and market-leaders simulators, such as OMNeT++, NS, GlomoSim and others
Varga and Hornig (2008b); Xue et al. (2007); Zeng et al. (1998a); Ould-Ahmed-Vall et al.
(2007a), do not implement environment modeling and application-events to simulate interfer-
ences from external agents or natural phenomena, such as rain, sun, lightning, and so forth,

1



1. Introduction 2

in Earth regions. The work Sundresh et al. (2004) detailed the importance of environment
modeling in WSN simulations, despite of most simulators, in special high performance com-
puting (HPC) ones, do not consider such a concept. Furthermore, some HPC simulators, like
the PDNS Riley and Park (2004a), exposes its distribution complexities, such as the concept
of messages of MPI Pacheco (1997) libraries, to their users, so they require high performance
programming skills, a non-trivial programming knowledge for non computer scientists like the
simulator users.

Another essential feature is to repeat a simulation, but this obvious requirement was not
addressed by the WSN simulator literature until now. In general, the users must implement
how their simulations will repeat from scratch. This development strategy implies in serious
drawbacks since the users normally put together business domain issues with reproducibility
issues in the simulation code. Another limitation occurred while using a parallel or distributed
version of a simulator because the users will require high performance programming skills
to implement their reproducibility demands. These skills include understanding concurrence
principle, its benefits and limitations, a deep technical knowledge even for computer scientists.

To attenuate the reproducibility problem in WSN simulators, this work presents the first
generic reproducibility model to be used in kernel level of a parallel WSN simulator, this
way not requiring any user interference to guarantee repeatable simulation runs, even when
we change the hardware or the simulator configuration after each run (Ex. use a quadcore
machine in run one and an octocore in run 2 or set the simulator with four threads in run
one and with sixteen threads in run two). The model implements the concept of chunk to
allow reproducibility, even when executing non-deterministic simulations in parallel. A chunk
encapsulates a set of nodes and application-events, a seed to ensure a starting point to gener-
ate pseudo-random numbers and a generator of pseudo-random numbers. The reproducibility
model has the fundamental ideas to partition the data and the processing of a simulation
among many threads, trying to achieve a fair load balancing and consequently scaling up the
simulations. To evaluate its applicability and correctness, we have implemented the repro-
ducibility model in Java and integrated it with JSensor simulator Silva et al. (2013); Ribeiro
et al. (2012b,a). This research result is detailed in Chapter 2.

The second contribution of this work is a new WSN simulator to attenuate the limitations
mentioned before. The new simulator is an extension of JSensor simulator Silva et al. (2013);
Ribeiro et al. (2012b,a), thus it is a Java parallel simulator to multi-core HPC architectures
that handles millions of elements, performing the evaluation of low level protocols, WSN
applications and high-level distributed algorithms according to the user needs. JSensor types
and operators are designed to be both simple and extensible to users, hiding HPC complexities,
but also capable to scale over multi-core machines. It implements environment modeling and
application-events to simulate interferences from external agents or natural phenomena.

Experimental evaluations were done to discover the simulator scalability, its memory con-
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sumption and if it is faster than a literature counterpart, precisely the OMNET++ simulator.
The performance results achieved speedups of 7.45 with 16 threads running concurrently and
the comparative evaluations against OMNeT++ reveled a runtime 21% faster of JSensor
when simulating the flooding model where the messages spreads to all connected nodes. This
technological result is detailed in Chapter 3.

After explaining both contributions, their benefits and limitations, we conclude the work,
presenting the final discussions and future investigations in Chapter 4.



Chapter 2

Reproducibility in Parallel Sensor
Network Simulations

2.1 Abstract

Currently, some network simulators adopt parallel computer architectures to improve their
scalability. The main problem with this strategy is guaranteeing the reproducibility transpar-
ently to simulation users. To diminish this problem, in this work, we present a reproducible
parallel simulation model that can be adopted in huge sensor network scenarios. This model
was integrated into a parallel sensor network simulator and validated accordingly. The model
is based on a chunk partition strategy, in which all simulation elements are wrapped into
chunks and simulated sequentially inside each chunk. Multiple chunks can be simulated in
parallel as many times as necessary by adding a seed and a pseudo-random number genera-
tor in each of them, thus always ensuring the same results. The results demonstrated that
our model could guarantee the reproducibility of stochastic parallel simulations performed in
different computer systems with different numbers of threads.

2.2 Introduction

A fundamental simulation requirement is reproducibility. Among the different reproducibil-
ity levels Dalle (2012a), the most restricted is repeatability, which allows the re-execution of
exactly the same simulation in terms of computation. In a discrete-event simulation, repeata-
bility means that the simulations produce the same series of events and processes in the same
order. In the case of parallel simulations, repeatability implies that concurrent activities must
be always processed in the same order, which requires additional synchronization and sorting
techniques. In general, parallel simulators do not support reproducibility in their kernels,
leaving this activity to their users.

4



2. Reproducibility in Parallel Sensor Network Simulations 5

In this work, we present a reproducible parallel-simulation model to be used on sensor
network scenarios that demand thousands of devices (Rashid and Rehmani, 2016; Aquino
and Nakamura, 2009; Maia et al., 2013). The nature of these networks, with thousands of
sensors/devices operating concurrently, and the reproducibility requirements are the biggest
motivations for the proposed study. Basically, our model consists of wrapping all simulation
abstractions into several chunks. These chunks are processed as ordinary sequential simulator
kernels; i.e., all computations and communications of a simulation are performed from a
single seed value and a pseudo-aleatory number generator. With this, it is possible to run
chunks in parallel and guarantee that each chunk can repeat its execution because ensuring
the reproducibility of sequential simulations is a trivial task.

Our model was integrated into the JSensor simulator Ribeiro et al. (2012c), which can run
parallel simulations over shared-memory computer architectures. Thus, JSensor allows faster
simulations and/or scenarios in which hundreds of thousands of sensors are simulated by a
multi-core CPU. The proposed model guarantees JSensor reproducibility, including when it
is executed with different numbers of threads. The reproducibility level achieved with the
proposed model is repeatability. In this way, stochastic parallel simulations are feasible in
JSensor. The results demonstrated that our model can guarantee reproducibility over the
scenarios evaluated.

This chapter is organized as follows: Section 2.3 presents the related work. Section 2.4
formalizes the reproducibility model. Section 2.5 discusses the evaluations and results. Sec-
tion 2.6 concludes the chapter and mentions some future work.

2.3 Related Work

We found several surveys describing different simulators used to evaluate sensor network ap-
plications Chhimwal et al. (2013a); Sundani et al. (2011a). Basically, a sensor network appli-
cation is composed of i. manager-user interfaces; ii. high-level distributed algorithms; and iii.
low-level protocols. In general, the simulators are used to evaluate high-level distributed algo-
rithms or low-level protocols. In both cases, it is possible to simulate a complete application,
but there are high development complexity costs.

To the best of our knowledge, Java in Simulation Time (JiST) Barr et al. (2005a) and
JSensor Ribeiro et al. (2012c) are the only parallel simulators that specialize in high-level
distributed algorithms. JSensor allows the development of simulation models considering some
embedded software components, such as general data structures, inter-process communication
mechanisms, and load balancing. As mentioned before, our model was integrated into this
simulator and validated accordingly.

On the other hand, there are several parallel simulators that specialize in low-level proto-
cols. Huge simulations have high processing costs, for instance, to simulate different network
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protocols simultaneously. Low-level parallel simulators include Global Mobile System Simula-
tor (GloMoSim) Zeng et al. (1998b), Parallel Distributed NS (PDNS) Riley and Park (2004a),
and Georgia Tech Sensor Network Simulator (GTSNetS) Ould-Ahmed-Vall et al. (2007b).

None of the well-established and market-leading simulators mention their reproducibility
support on the kernel level, i.e., are transparent to the users. Normally, reproducibility issues
are coded from scratch by the simulator users.

Considering reproducibility strategies on the user level, there are studies of methods to
generate parallel random numbers Hill (2015); to improve numerical consistency for parallel
calculation across a vast number of processors Robey et al. (2011a); and to achieve numerical
reproducibility in Monte Carlo simulations Cleveland et al. (2013a). Based on the above
discussion, we present a reproducibility model that can be adopted on the kernel level of a
parallel simulator, hiding this development task.

2.4 Reproducibility model

Let the simulated elements be represented by: a set of sensors (S); a set of environmental
models (E) to describe the time-space domain and characteristics of the monitored area; and
a set of interaction models (Ψ) to describe the sensor-to-sensor and sensor-to-environment
interactions. These simulated elements are defined and implemented by users and executed
following a global time clock.

The proposed model is composed of three main artifacts: global, local and synchronization.
The first describes the global simulation processing and it is formally represented as a 4-tuple,
(C, Sy, σ,G), which consists of a set of chunks C = {C1,C2, . . . ,Cc} to wrap one or more
instances of simulated elements (S, E and Ψ), where c is defined by the user; a synchronization
element Sy to schedule the interactions among chunks, i.e., the Ψ instance events; a fixed
global seed σ; and a global random-number generator G(σ) = {σsy, σ1, σ2, . . . , σc}, where σsy
is adopted by the synchronization element and the others (σ1...c) are considered in each chunk.

The operation of the global artifact is described as follows: i. t threads are created,
T = {T0, T1, T2, . . . , Tt}, where t ≤ c is defined by user. T0 is the main simulation thread and
it executes the synchronization element (Sy). T1...t are the kernel threads and they encapsulate
the chunks (C1...c). ii. T0 creates c chunks and allocates them for kernel threads (T1...t),
following a circular list strategy. iii. At each simulation time (round), different simulated
elements are instanced. These instances can be created statically or randomly, according to
the user needs. In the static alternative, T0 associates each new instance that is created
before the simulation begins to the chunks sequentially, following a circular list strategy. New
instances created during the simulation are allocated to the next chunk in the previous circular
list. As all events are created in the same sequence, all chunks chosen will be the same in all
simulations. The simulation execution time is defined by the user. In the random alternative,



2. Reproducibility in Parallel Sensor Network Simulations 7

after the association following the same previous strategy, a simulated element of chunk Ci

is instanced for execution in a random simulation time using seed σi. The random strategy
guarantees the same association sequence when running different simulations. iv. the chunk
interactions are coordinated by the synchronization element (Sy).

The local artifact describes the local simulation processing. This artifact is represented by
the chunks. Each chunk (Ci) is formally described as a 6-tuple, (E′,Ψ′, S′, σi, G), consisting
of: a subset of the environmental models (E′ ⊆ E); a subset of the sensor-interaction models
(Ψ′ ⊆ Ψ); a subset of the sensor nodes (S′ ⊆ S); a fixed local seed (σi); and a local random
number generator (G(σi) = {x1, x2, . . . , xl}). We can have one or more instances of simulated
elements in a chunk; for instance, we can have only instances of sensor node elements or
different instances of the environment, interactions and sensors. The simulated elements of
different chunks are disjoint and must be the same in all simulations, regardless of the number
of kernel threads.

The local artifact operation is determined by a synchronization element (Sy). When one
instance of a simulated element is scheduled and released, it is executed sequentially. A
simulated element of a chunk Ci generates interaction events based on seed σi, as described
below. The interactions among the instances of simulated elements follow different random
event times generated by G(σsy), as described below. These strategies guarantee the same
creation and execution order when running different simulations.

Finally, the synchronization artifact determines the execution order and the synchroniza-
tion of simulated element instances. This artifact is necessary because these instances must
be able to both share and consume their information, which usually requires synchronization.
The synchronization element (Sy) is formally described as a 3-tuple (e, σsy, G), consisting of:
a set of events (e = {e1 ∪ e2 ∪ . . .∪ ek}), where k is the number of interaction instances (Ψk).
Each subset ek = {ek,1, ek,2, . . . , ek,m}, where m is the number of events, describing the execu-
tion sequence of interaction instances; a fixed synchronization seed (σsy); and a synchronized
random number generator G(σsy) = {y1, y2, . . . , yn}.

Each event ek,m = (yn, idk, idm,msg,Corig,Cdest) is composed of: the random time-
scheduling value (yn); the event-type value (idk) based on the Ψk interaction model; the
event-identification value (idm), generated randomly and based on random seed (σorig) of
Corig; the message (msg) adopted to describe the event action and implemented by the user;
the origin chunk Corig, where 1 ≤ orig ≤ c; and the destination chunk Cdest, where 1 ≤ dest ≤ c
and orig 6= dest.

Let inbox be the list of running events (ek,m), indexed by event type (idk), and for each
event type we have its ordered list of events indexed by event identification (idm). The
operation of the synchronization artifact at each global time clock is thus as follows: i. Different
events are written in inbox, following their type (idk). ii. All events are sorted according to
identification (idm). iii. Events of different types are executed sequentially; i.e., all events
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with k = 1 are executed, then all events with k = 2, and so on. iv. Events of equal type in
different threads are executed in parallel.

The event scheduling is based on the global time clock and the event type. Consequently,
events will be the same in all executions. This scheduling, based on two rules, is performed
because inconsistencies occur only when we have events of different types. In this case, the
order is fundamental. For instance, in our model, the sensor node can perform concurrent
communication, but it cannot communicate and sense in the same clock time. In this case,
concurrent communication could be realized only once by the user because collision is an
expected behavior in wireless communication. Additionally, these two scheduling rules are
mandatory because non-determinism is introduced by the OS threads running over a com-
puter architecture. The simulator kernel threads can guarantee the synchronization, but they
inherit the non-deterministic behavior of OS threads because the former are managed by the
latter. This scheduling does not avoid non-deterministic behavior, but it always guarantees
the reproducibility by ordering the events.

2.5 Reproducibility model evaluation

The implementation of our model hides the reproducibility aspect from JSensor users. To
ensure the reproducibility of simulations, the users need to set the numbers of threads and
chunks and the initial σ value and then implement the simulation elements. In this imple-
mentation, the number of threads could be equal to or less than the number of machine cores.
As mentioned before, the number of chunks is never less than the number of threads defined
by the users.

All simulations were performed in a machine equipped with an Intel Core i7-4710HQ CPU
with hyper-threading technology, with each core operating at 2.50 GHz and 16 GB of RAM
DDR3 1333 Mhz. The OS was Ubuntu 14.04.1 LTS 64 bits kernel 3.13.0-39-generic, and all
experiments fit in RAM memory. All algorithms were compiled in Java 64 bits (JAVA 8 -
update 101).

To evaluate our model on JSensor, we used a scenario to stress the simulator in terms of
events and messages. The simulation elements of our scenario were as follows: Set of sensors
S = Smobile ∪ Sgateway, where Smobile = sm1, sm2, . . . , sm10,000 represents the mobile sensors
and Sgateway = sg1, sg2, . . . , sg100 represents the relays nodes; Set of environment models
E = Es ∪ Er ∪ El, where Es is the sun radiation, Er is the incidence of rain, and El the
presence of lightning. The environment area (10, 000× 10, 000) is partitioned in a grid of cells
(1, 000 × 1, 000) to delimit the incidence of the phenomena. The mobile sensors Smobile are
deployed at random locations and the gateways Sgateway are located at the center of each cell.
The natural phenomena occur randomly during the simulation. There is a set of interaction
models Ψ = Ψr ∪ Ψc ∪ Ψm ∪ Ψs, where Ψr is the routing communication model (sensor-to-
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sensor), based on the Dynamic Source Routing (DSR) algorithm Johnson et al. (2001). Ψc

is the physical communication model (sensor-to-sensor), based on Unit Disk Graph (UDG)
connectivity, which adopts a communication range of 1, 000. Ψm is the sensor mobility model
(sensor-to-environment), based on a random walk Angelopoulos et al. (2010). Ψs is the sensing
model (environment-to-sensor). Additionally, we set σ = 1587632589 in all simulations.

We executed the same simulation, varying the number of threads (1, 2, 4, 8) and quan-
tifying the number of messages, mobility events, and node deactivations. To identify repro-
ducibility problems, we executed our implementation considering the following: i. different
numbers of chunks (Chunks) ii. the use of only one seed to generate the random numbers
(Seed); and iii. the original sequence of events, ignoring the ordering step (Sort). These
different configurations were considered because they are the most common problems in the
development of parallel simulations.

Tables 2.1 - 2.3 illustrate the reproducibility evaluation. The results demonstrated that
our model maintains the same quantifier values when the number of threads varies. However,
in all other configurations, the final quantifier values change, indicating a failure to reproduce
the same simulation.

Table 2.1: Reproducibility evaluation :: Number of messages

#threads Our model Chunks Seed Sort

8 9,768 10,079 8,529 9,133
4 9,768 10,241 9,054 9,408
2 9,768 10,241 9,752 10,646
1 9,768 10,499 9,845 10,064

Table 2.1 presents the numbers of messages during the same simulated scenario, varying
only the number of threads. We observed that when the simulated elements are created and
allocated, specifically, into different numbers of chunks, the number of messages varies because
the ordering of communication events is affected. For instance, the DSR algorithm generates
more or fewer messages to discover an appropriate route because the order of messages arriving
at a specific node could change in different simulations.

Table 2.2: Reproducibility evaluation :: Mobility events

#threads Our model Chunks Seed Sort

8 1,505,846 1,504,906 1,508,174 1,512,714
4 1,505,846 1,488,315 1,487,004 1,503,054
2 1,505,846 1,488,315 1,457,107 1,472,960
1 1,505,846 1,492,151 1,525,011 1,513,041

Table 2.2 presents the results about the number of mobility events. We observed that
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when using only one seed to generate the random numbers, the number of mobility events
varies. This occurs because the event id, which is randomly generated, is not the same in all
simulations; consequently, the event order used during the scheduling is not the same.

Table 2.3: Reproducibility evaluation :: Node deactivation

#threads Our model Chunks Seed Sort

8 49 50 47 45
4 49 59 49 53
2 49 59 39 50
1 49 52 49 47

Finally, Table 2.3 illustrates the results on the number of node deactivations because
this behavior is mandatory in several simulations. In our example, the environmental event
lightning deactivates gateway sensors for a short period. We observed a difference in event
ordering in different simulations when the synchronization mechanism is active but the sorting
is not. These results demonstrated that sorting must work together with the synchronization
strategy to achieve parallel reproducibility. The justification, as mentioned above, is the non-
determinism of the OS threads. Specifically, the event order is not the same in different
simulations; consequently, the event sequence in the environment cells does not follow the
same order.

2.6 Conclusion

We presented a reproducible parallel simulation model to be adopted in sensor network sce-
narios. Our model consists of wrapping all simulation elements into several chunks. All
computations and communications of a simulation are performed from a single seed value and
a pseudo-aleatory number generator. Consequently, it is possible to run chunks in parallel
and to guarantee that each chunk can repeat its execution.

We integrated our model into the JSensor simulator, which performs efficiently in multi-
core architectures. By using our model, the reproducibility on JSensor was guaranteed. The
results demonstrated that our model could guarantee the reproducibility when different par-
allel simulations are performed, including when different numbers of threads are used. Future
works include applying this model in GPU-based simulations and other parallel simulations
scenarios. Finally, our model could be integrated and evaluated in other parallel sensor net-
work simulators.



Chapter 3

JSensor: A Parallel Simulator for
Huge Wireless Sensor Network
Simulations

3.1 Abstract

This work presents JSensor, a parallel general purpose simulator which enables huge simula-
tions of wireless sensor networks (WSNs) applications. Its main advantages are: i) to have a
simple API with few classes to be extended, allowing easy prototyping and validation of WSNs
applications and protocols; ii) to enable transparent and reproducible simulations, regardless
the number of threads of the parallel kernel; and iii) to scale over multi-core computer archi-
tectures, allowing more the simulation of more realistic elements, such as the environment and
application-events representing natural phenomena. JSensor is a parallel event drive simula-
tor which executes according to event timers, so the simulation elements (nodes, application
or events) can send messages, process task or move around the environment. The mentioned
environment follows a grid structure of extensible spatial cells. The results demonstrated that
JSensor scales well, precisely it achieved a speedup of 7.45 with 16 threads in a machine
with 16 cores (eight physical and eight virtual cores), and comparative evaluations versus
OMNeT++ showed that the presented solution could be 21% faster.

3.2 Introduction

The world around us has a variety of phenomena described by variables such as temperature,
pressure, and humidity, which can be monitored by devices capable of sensing, actuating, pro-
cessing, communicating and moving around the environments. Such devices, working cooper-
atively, are termed wireless sensor networks (WSNs) Akyildiz et al. (2002a). WSNs simulators

11
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for large applications Chen et al. (2005), where thousands or even millions of nodes are simu-
lated, are becoming regular with the advance of new WSNs applications, e.g., general Internet
of things (IoT) applications Muruganandam et al. (2018), smart cities Lu et al. (2017), social
sensing Ali et al. (2011) or natural environment monitoring Lin et al. (2015).

It is not simple to perform simulations of large WSNs applications, neither to achieve good
speedup when we use parallel strategies for high-performance computing (HPC) architectures.
The new WSNs applications have demanded robust simulators, e.g., simulators capable of
evaluating scenarios with millions of nodes with protocols and specific models implemented.
For instance, to simulate human behavior during one week in Tokyo downtown, based on cell
phone information, would require millions of nodes with different communication protocols
and interference models Xiong et al. (2016).

Standards and market-leaders simulators, such as OMNeT++, NS, and others Varga and
Hornig (2008b); Xue et al. (2007); Zeng et al. (1998a); Ould-Ahmed-Vall et al. (2007a), do
not implement environment modeling and application-events to simulate interference from
external agents or natural phenomena, such as rain, sun, lightning, and so forth, in Earth
regions. Sundresh et al. Sundresh et al. (2004) detail the importance to model the complete
application environment in a WSN simulation. They propose a model for indoor and outdoor
environments made of tiles. Based on this simulator, it is possible to implement concrete,
grass and walls tiles, each one with different signal interference and propagation. However,
the most simulators, in special HPC ones, do not consider this modeling.

Another limitation in WSN simulator is the non-reproducibility. In general, the users
diminishes the reproducibility problem while implementing their simulation models in the
simulators. Parallel simulations impose an extra challenge regarding reproducibility because
they introduce the concurrency principle when implementing threads or processes sharing
common resources, thus generating non-deterministic behaviors. In this case, repeatable par-
allel simulations must treat the non-determinism. In summary, reproducibility can become
very complicated in parallel scenarios, being not suitable to be designed by users.

To allow parallel simulations of massive, robust and reproducible WSN applications, we
present JSensor. It is a Java parallel simulator to multi-core HPC architectures that han-
dles millions of elements, evaluating both low-level protocols and WSN applications according
to the user requirements. JSensor types and operators are designed to be extensible and
straightforward to users, but also capable of scaling over multi-core machines. It presents
several application models, precisely node mobility model, node connectivity model, node
distribution model, message transmission model, interference model and reliability model.
Therefore we can emulate even message lost and channel noise. All these models are transpar-
ently reproducible, regardless the hardware used or the number of threads used in each parallel
simulation, so users do not need to implement any extra code to achieve reproducibility in
JSensor.
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To evaluate JSensor, we tested it with three different applications: i) a robust data prop-
agation application using the flooding model; ii) a mobile phone application with communica-
tion interference and WSN routing protocols; and iii) a sophisticated air quality application
regarding CO2. We execute the experiments in two machines, one with 16 cores and other
with 24 cores, both with hyper-threading technology (50% of all cores are virtual). The per-
formance results achieved speedups of 7.45 with 16 threads running concurrently. The com-
parative evaluations of JSensor versus OMNeT++ reveled a runtime 21% faster of JSensor
when simulating the flooding model.

The remainder of this chapter is as follows: Section 3.3 discusses JSensor related work,
pointing out their benefits and limitations. Section 3.4 presents the JSensor kernel and its
specificities. Section 3.5 explains the parallelism implementation adopted by JSensor. Sec-
tion 3.6 shows the JSensor strategies that allow the reproducibility of parallel and large WSNs
applications. Section 3.7 describes the applications used to test the simulator speedup and
memory consumption. Section 3.8 presents the performance evaluations conducted and the
results obtained. Finally, Section 3.10 concludes the chapter and presents some the future
research directions.

3.3 Related Work

We evaluate several parallel simulators used to assess WSNs applications. Several surveys
described different WSNs simulators, their limitations, and their improvements Weingärtner
et al. (2009); Khan et al. (2011); Chhimwal et al. (2013b); Sundani et al. (2011b); Yick et al.
(2008); Akyildiz et al. (2002b); Vieira et al. (2003); Yu and Jain (2011); Minakov et al. (2016).
In general, a WSN application presented the following elements: i) manager interfaces, e.g.,
data visualization or node range controllers; ii) high level distributed algorithms, e.g., clus-
tering, localization, or data aggregation strategies; and iii) low-level protocols, e.g., routing,
duty cycle, or address naming protocols. Normally, the simulators are used to evaluate high
level distributed algorithms Barr et al. (2005b); Distributed Computing Group (2015) or low
level protocols Zeng et al. (1998a); Doerel (2009); Riley and Park (2004b); Ould-Ahmed-Vall
et al. (2007a). In both cases, it is possible to simulate a complete WSN application.

We observe the following features to evaluate the simulators: i) multicore or multicom-
puter architecture support; ii) parallel programming abstractions for users; iii) the catalog of
available network protocols; iv) environment modeling, where we represent continuous terri-
tories of Earth as a grid of cells to place the simulation nodes and application-events, enabling
transparent concurrent thread-safe accesses to Earth regions to change their properties, such
as the water level, lightning occurrence, temperature, luminosity and so one. v) reproducibil-
ity of simulations at the kernel level, therefore transparent for users; and vi) application-events
to model natural phenomena, such as thunder, rain, wind, lightning, and others. Note that,
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some application-events can occupy vast regions of Earth, like wind or sun, thus many cells of
the environment, but a node always holds a single cell per simulation time; vii. The simulator
project artifacts, e.g., programming and installation guides for users, discussion lists, if the
solution is open source or not, discontinued or active, free or commercial and many other
project issues.

To the best of our knowledge, Java in Simulation Time (JiST) Barr et al. (2005b) is
the unique parallel simulator specialized in high level distributed algorithms. It is based on
discrete events and could be used combined with Scalable Wireless Ad hoc Network Simulator
(SWANS) Liu et al. (2001). In this simulator, each network element is an entity that can
create events to be simulated. It performs the interactions among entities after synchronization
barriers. Out of synchronization barriers, entities are independent, allowing the simulator do
scale up regardless the application domain. JiST meets the “Multi-core support” and “Project
artifacts” features.

On the other hand, we found several parallel simulators specialized in low-level protocols.
One of them is the Global Mobile System Simulator - GloMoSim Zeng et al. (1998a), which
is designed with libraries for WSN simulations. It is based on parallel discrete events and
uses a C-like parallel simulation language (PARSEC) Bagrodia et al. (1998). There is a set
of modules where each of them simulates a specific network protocol in the communication
stack. There are a large number of protocols available in the GloMoSim library. To minimize
the overhead of large-scale WSNs simulations each kernel thread is responsible for simulating
one layer of the communication protocol stack. GloMoSim meets the “Multi-core support”
and “Network protocols” features.

The GloMoSim commercial version is the Qualnet Doerel (2009). It was released in 2000
by Scalable Network Technology (SNT)1. Some additional features in the commercial version
are a GUI based simulation, high fidelity commercial protocols and device models, comparative
performance evaluation of alternative protocols at each layer, built-in measurement on each
layer, modular layer stack design, and support for multiple parallel simulation strategies.
Qualnet meets the “Multi-core support”, “Network protocols”, and “Project artifacts” features.

A widely used simulator for WSNs application is Castalia. Castalia is based on the OM-
NeT++ platform Varga and Hornig (2008b) and can be used to test distributed algorithms or
protocols in realistic wireless channel and radio models. It also implements MAC and routing
protocols. It is necessary to integrate MPI in OMNeT++ platform to perform parallel simula-
tions. Therefore, it becomes difficult for users without HPC skills. Another drawback in using
MPI over multicore computer architectures is that most of its implementations are for multi-
computer clusters with private memory abstractions. Therefore, network communications are
considered even in a shared memory multicore architecture what introduces a considerable
overhead. Castalia meets the “Network protocols” and “Project artifacts” features.

1http://web.scalable-networks.com/
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Other parallel simulator, based on Network Simulator version 2 (NS-2) Xue et al. (2007), is
the Parallel Distributed NS (PDNS) Riley and Park (2004b). It uses a conservative, blocking
based, an approach for synchronization with a possible sub-optimal speedup. It inherits all
protocols, models, and applications of NS-2. However, all complexity and program difficulties
are inherited too. Vodel et al. Vodel et al. (2008) mention that “the integration with such
a complex framework, like NS-2, constrains PDNS to several conceptual limitations”. PDNS
meets the “Multi-core support”, “Multi-computer support”, and “Network protocols” features.

The NS-3 Riley and Henderson (2010) is also a version of the NS family, which is intended
to replace the predecessor, NS-2. It has a discrete-event simulation engine written in C++ and
a modular object-oriented architecture. The NS-3 provides a range of traditional protocols,
such as TCP/IP, IPv6, and IEEE802.11. The simulator supports parallel and distributed
simulation using MPI. Another novelty is the possibility of using Python in conjunction with
C++ in some parts of the simulation. NS-3 meets the “Multi-core support”, “Multi-computer
support”, “Network protocols” and “Project artifacts” features.

Finally, we found the Georgia Tech Sensor Network Simulator (GTSNetS) Ould-Ahmed-
Vall et al. (2007a). It allows the development and evaluation of algorithms for large-scale
WSNs. GTSNetS is complete, providing different energy models, battery models, network
protocols, application protocols, and tracing options. Furthermore, the users could easily
extend or replace the available models for a specific requirement. GTSNetS reports that could
handle 200 thousand nodes in a simulation Khan et al. (2011). GTSNetS meets the “Network
protocols” and “Project artifacts” features.

A summary of presented features among cited works and JSensor is presented in Table 3.1.
As observed, JSensor meets most of the presented features.

Table 3.1: Summary of related work features

Features JSensor JisT GlomoSim Qualnet Castalia PDNS NS-3 GTSNetS

Multicore support X X X X – X X –
Multicomputer support – – – – – X X –
Parallel programming abstraction X – – – – – – –
Network protocols∗ X – X X X X X X
Environment modeling X – – – – – – –
Application-events X – – – – – – –
Kernel level reproducibility X – – – – – – –
Project artifacts X X – X X – X X

∗JSensor considers only the routing layer

Additional features regarding both environment modeling and application-events in WSN
applications considered only by JSensor are: i. Application-events: JSensor reinforce the
existence of application-events and not only nodes in a WSN simulation. In conjunction with
nodes and the simulated environment, application-events introduce dynamics in a simulation
with the possibility of natural phenomena modeling, this way not only nodes-environment
interactions exist, but also application-events-environment ones. Different from other simu-
lators, in JSensor this feature is transparent to users; and ii. Environment modeling : Very
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often in a simulation, it is necessary to change the environment, so this simulation element
must be extensible and dynamic. Different of presented simulators, JSensor implements a
thread-safe environment to simulate vast territories of Earth. To discretize continuous Earth
regions, JSensor adopts a grid of cells with extensible properties, very similar to a raster
representation of Geographic Information Systems (GIS).

3.4 JSensor Parallel Simulator

JSensor is coded in Java, which means it is portable to many platforms with a JVM running.
It is designed to execute asynchronous simulations based on events. Its architecture, illustrated
in Figure 3.1, is organized into rings, according to its behaviors and visibility to users.
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Figure 3.1: JSensor ’s architecture
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The more outer rings abstractions can adopt any inner ones so that the elements of the
n-th circle can inherit behaviors from any inside ones. The most internal ring represents
the kernel, where fundamental concepts are responsible for running simulations. The service
layer provides different features for users develop their models and applications. Finally, the
application layer represents the simulated application, each feature in JSensor has a practical
example from an already developed model as illustrated in application ring on Figure 3.1.

3.4.1 Kernel Layer

The kernel layer creates the threads for parallel events execution, the chunks to guarantee
reproducible parallel simulations with a different number of threads (detailed in Section 3.6),
the environment which encapsulates a grid of cells, and the capability to log the simulation
data. Furthermore, the kernel executes send-receive, timer, mobility and other simulation
events of nodes and application-events. All simulation events have a predefined time to occur
and JSensor guarantees their order by considering their internal clocks. Regularly, JSensor
removes and executes events according to a global clock.

The kernel layer is composed by:

• Runtime: It is the main class, responsible for managing the structure of the kernel. It
contains the lists of nodes and application-events, the chunks, and the environment.
Furthermore, this class controls the threads that execute the simulation models, and it
keeps the simulation times synchronized.

• Node: It represents the general node in a WSN application. Any new node type must
extend the class Node. Nodes can have a variety of sensors, and they can move through
the environment, interact with the environment, have an initial position, identify their
neighbors, execute specific events, and communicate with other nodes. The communi-
cations are send-receive message events, classified in two types: Unicast and Multicast.

• Message: It is responsible for performing the communication between nodes. Using
the Unicast or Multicast methods of the nodes, the message will be sent according to
protocols, delays, package losses, channel noises, and any possible interference defined
by the user. All new application messages must be a specialization of this class. Thus,
it must implement a clone() method to enable copies of itself.

• Application-event: It represents an application phenomenon, natural or not, with life-
time, topology, mobility, and capacity of interacting with the environment. We observe
the entire interleaving of events and nodes, e.g., when environmental changes occur,
made by application-events, the nodes can perceive them.

• Cell: It represents a single element of the environment. It can hold different properties,
like water level, humidity, CO2 level and so forth. Nodes and application-events can
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read and write cell properties from regions where they live, concurrently and in a thread-
safe manner. The Figure 3.2 illustrates that multiple nodes, application-events or their
combinations are in a cell. They can read its properties and write new values into it, so
the concurrent write operations are synchronized transparently by the kernel.
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X=35,
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Relative neighborhood
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Humidity
Temperature
CO2 level

Cell properties

On demand grid

Figure 3.2: Grid of cells.

Despite the fact that the modification of a single cell is sequential, the cell modification
step executes in parallel by splitting the cells into chunks, so all changes for a specific
cell are made by the same chunk and, consequently, the same thread. The chunk concept
and its benefits will be explained in details in Section 3.5.

• Environment: It is a map of spatial cells where the user can build his cells to customize
the environment. A cell exists only if a node or an application-event have inhabited or
modified it, in this way we build the JSensor environment on-demand. This process
is essential for a simulator designed for large-scale scenarios, for instance, over vast
territories of the Earth.

• AbsCustomGlobal: It maintains and controls general simulation timers. Besides, it en-
ables the user to finalize the simulation and perform actions at key points, precisely
before and after the execution of each simulation round and after the complete simula-
tion.

3.4.2 Services Layer

JSensor provides a set of services for users so that they can develop their models for nodes,
messages, cells, or application-events. To implement a new model, the users must extend
JSensor existing types or implement different interface classes.

• Node Model: This interface is used to create a new Node. It contains the method
onCreation(), which defines the first tasks during the node creation, and it is when the
simulation starts. The second method, named handleMessages(Inbox inbox), allows users
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to check the messages received in a specific event and to process them according to their
needs.

• Distribution Model: The unique method of this interface is getPosition(Node n), used
to distribute the nodes through the environment during the initial state of the simulation,
i.e., during the simulation first event. The method has a node as the argument and must
return a valid position for this node.

• Connectivity Model: It represents the nodes interconnections. There are two types
of connection between nodes, logical and physical. The logical one defines if a pair of
nodes can communicate and its implementation is through the method isConnected(Node
from, Node to), which requires two nodes as arguments and returns a boolean value. The
physical one occurs if two nodes are near enough to receive signals from each other and
its implementation is through the method isNear(Node n1, Node n2), requiring two nodes
as arguments and returning a boolean value.

• Message Model: This interface allows users to create messages according to their needs.
For that, it is necessary to implement the clone() method so that the kernel can create
copies of the messages.

• Timer Model: Timers create new simulation events, allowing the simulation to schedule
a task in the future.

• Reliability Model: It abstracts the reliability of the simulated network. For each mes-
sage, the model decides if it should arrive at the destination or not. For several reasons
a network packet cannot reach the destination, so JSensor enables such scenarios via
reliability model implementations. The unique method necessary to build a new relia-
bility model is the reachesDestination(Message msg) method, which returns a boolean
value that indicates if the simulation should drop the message.

• Transmission Model: The message transmission model defines how much time the mes-
sage spent until it reaches the destination. The method timeToReach(Node nodeSource,
Node nodeDestination, Message msg) needs to be implemented and it returns a float
value that represents the time.

• Application-event Model: It allows the user to create application-events, e.g., natural
phenomena or any other external event capable of interacting with the environment. It
requires the implementation of the method setValue(CellModel cell), which argument is
the cell to be modified. The method allows the user to make modifications in a cell
returning the copy to be synchronized by the kernel in safe-mode. This strategy is
mandatory to keep data consistency in parallel scenarios, where nodes and application-
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events change cells concurrently, even in non-commutative simulations, assuring the
reproducibility.

• Distribution Model: By using this interface, the user can implement a distribution
model for the application-events. The method getPosition(Event e) must be imple-
mented and it returns a valid position for the application-event e.

• Cell Model: The users can create cell models according to their needs. The unique
method to be implemented is the clone() method, which is adopted by the kernel to
create copies of the cells to perform safe modifications.

• Handle Cell Model: The application of this model changes cells, keeping the consis-
tency of the simulation state and also the reproducibility since the simulator must replace
the cells in the same order, regardless it is an aleatory order or not. Due to JSensor ’s
parallel characteristic, the user must implement a handle model to keep the right or-
der. The method to be executed is the fire(Node node, CellModel cell), which has as
arguments the node associated with a cell and the changed cell.

• Mobility Model: It defines how the nodes will move during the simulation, so to develop
a new model the user must implement the methods getNextPosition(Node n) and clone().
The first one must return a valid position for the node n and the clone is adopted by
the kernel to create copies of the model to perform parallel executions safely.

• Global Model: This model encapsulates several useful JSensor features. The method
hasTerminated() stops the simulation when it returns true. Furthermore, it has the
methods preRun() and postRun(), which are executed before and after the simulation,
respectively. In the same context, the methods preRound() and postRound() can be
executed before and after each round. A round represents a complete cycle of steps,
e.g., move, send a message and discover neighbors. Each of these steps can have zero or
more events to be simulated.

3.4.3 Application Layer

JSensor implements different applications to offer a significant number of features for new
users. The following features are available in JSensor through the Flooding, Mobile Phone,
and Air Quality applications detailed on Section 3.7.

• The FloodingNode of the flooding simulation decides during the onCreation() method
call if the node will send an initial message, how it will move and also the creation of a
structure that will control the received messages to avoid handling messages already re-
ceived. When handleMessages(Inbox inbox) is executed, the node controls the messages,
labeling them as received or sending them to its neighbors.
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• The Flooding application implements the RandomDistribution model, which generates
pseudo-random numbers to define the position of the nodes.

• The default connectivity implementation on JSensor is the UnitDiskGraph connectivity,
which connects the nodes if they are inside each other’s radius. The flooding applica-
tion connects all the nodes in the logic level, and it does not define a new physical
communication, letting JSensor to use the default UnitDiskGraph model.

• The Flooding application implements a simple Message that contains the sender and
destination nodes, the message to be transmitted and a counter to hold how many hops
the message had until the destination. In this case, a message containing sender ID,
destination ID, a counter for the number of hops and the message content.

• The flooding application adopts a timer to send the initial messages (MessageTime). At
the method fire() of the timer, the simulation sends the message to all neighbors of the
node via broadcast. To start the timer, its method startRelative() is called, passing as
argument a time and a node.

• The Flooding application adopts the ReliableDelivery model, which does not drop
any message.

There is also the LossyDelivery model in JSensor, which drops 5% of messages ran-
domly.

• The Flooding application adopts ConstantTime transmission model, which returns a
constant time.

JSensor has also the TimeByNode transmission model, which returns a value based on
the type of node sending the message.

• JSensor has the ClimateEvent model used by the Mobile Phone simulation to change
the climate according to previously defined states, precisely sunny, cloudy, rainy and
rainy with lightning.

• On Mobile Phone application, the climate event is distributed in grid implemented by
GridDistribution model, so it covers all the environment.

• The Air Quality application uses a Cell Model with CO2 level, water level, and a
boolean value for lightning presence through the AirConditionCell model. The CO2

levels indicate the amount of gas in a cell. The water level means the water accumulated
by several hours of rain. The lightning indicates if it struck a cell recently.

• The Mobile Phone application adopts the Set Event Cell to deactivate nodes struck
by lightning, changing the node state to disabled.
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• The Air Quality application uses the IncreaseCO2model to increase the CO2 level based
on the node that produced it.

• JSensor has Random Way Point mobility model to guarantee that a node will move in
one of eight possible positions selected randomly or will stay in the same place an aleatory
time. The user in the simulator can also define the distance traveled by the nodes in
each movement. All applications implemented use the Random Way Point model.

• All simulations use the CustomGlobal implementation. This class is especially useful
for debugging and obtaining global simulator information, so, for instance, we can use
JSensor ’s logging files at the end of each round to write which cells had CO2 level above
a threshold, using the postRound() method. The simulation uses the method postRun()
when it finishes, for example, to write the final values of the CO2 level from each cell.

Besides the above implementations, JSensor provides two fundamental routing algorithms:
DSR Johnson et al. (2001) and AODV Perkins et al. (2003). The simulation could straight-
forwardly integrate these algorithms. We use these routing algorithms in the Mobile phone
and Air quality applications.

3.5 JSensor Parallel Kernel

JSensor simulates nodes and application-events in parallel over multicore HPC architectures,
as illustrated by Figure 3.3. The Runtime class, introduced previously, manages a pool of
worker threads, where each worker is responsible for one or more chunks. As depicted on Fig-
ure 3.3, each chunk contains the respective set of nodes and application-events. In summary,
there are w workers active in a machine with w cores and each worker has a similar number
of chunks and nodes to simulate.

The nodes share a grid of cells, named environment, and each JSensor cell has coordinates
latitude-longitude and which nodes exist in the cell. Cells exist only if there is at least one
node dwelling it or if an application-event has modified it. As shown in Figure 3.3, the worker
threads and, consequently, the nodes access the grid to change properties of the environment,
so for concurrence reason, the grid needs to be thread-safe.

The size of the cells to build the grid can be varied. Thus the grid size parameter impacts
the runtime of the simulations since the simulator needs to reach more cells to define the
neighborhoods of a node when cells size is small. We identify the same effect when we use
large communication ranges in the node.

The Figure 3.4 illustrates three examples of a grid with three different cell sizes. The
first grid represents a scenario where the node radius is 300 meters, and the cell size is 150
meters. In this case, the number of cells within the communication radius of the node for
which we want to define the neighborhood is high. The simulation does not check the cells
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Figure 3.3: Parallelism in JSensor

that are entirely within the communication radius because the nodes that belong to them are
neighbors. However, there are several partially covered cells, and therefore all nodes inside
these cells should be checked to determine whether or not they are neighbors.

Figure 3.4: Cell size influence.

As observed, more cells to be verified increase the runtime and the optimal cell size is a
value near the communication radius of the nodes, as illustrated in Figure 3.4 by the second
grid example, where the cell size and the communication radius are both 300 meters. The third
scenario illustrates an example where the communication radius is 300 meters, and the cell
size is 600 meters. In this case, once the cell size is bigger than the communication radius, the
environment will have fewer cells. Although there are fewer cells to be verified, the number of
nodes in each cell is significant, including also nodes far away from the communication radius
of the node under evaluation.

Mobility events cause a drawback in the workload and, consequently, in the runtime. The
nodes inhabit the cells, so when a node moves it can still stay in the same cell or move to
a neighboring cell. The first case is simple because the simulator does not need to handle
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the cells, just changing the position of the nodes. If the node moves to another cell, JSensor
creates a new one if it does not exist, due to on-demand creation strategy explained before,
and then move the node. As a parallel kernel, several worker threads can be moving nodes
to the same cells, so JSensor needs to ensure synchronization. Each worker thread blocks
the cell until it finishes the write operations. The synchronization order to access a shared
simulation resource, e.g., a cell or a node message inbox follow a predefined rule to achieve
both performance and reproducibility, explained in details in the next section.

A significant capability is the synchronization strategy on JSensor. To perform the syn-
chronization the class Runtime is responsible for maintaining events ordered according to its
internal clock. JSensor creates synchronization barriers after the simulation of a new set of
nodes in specific event time, so it assumes that there are nodes simulating events at the same
time. Thus, they can execute in parallel without interference. It is important to make it
clear that JSensor works with a bag-of-tasks style parallelization, where the elements of the
simulation are split between the chunks to run in parallel.

JSensor goes further, detailing what execution means, so internally it enables a node to
communicate, calculate its new neighbors, sense the environment, move through the simulated
environment and so forth. This way, JSensor implements synchronization barriers, figure 3.5,
after each simulation step finishes, i.e., after mobility, connectivity, send-receive message and
sensing simulation steps, for instance. We simulate in parallel nodes operating at the same
time and doing the same event type (e.g., sending a message), so it is possible to affirm that
in JSensor there are no nodes in parallel at same simulation time and on different simulation
steps. We adopt the same assumptions for application-events.

Figure 3.5: Synchronization barriers

Another significant capability of JSensor parallelization is that it does not adopt node
localization to partition the workload, i.e., worker thread simulates any node of any region,
so it tends to keep the workload fair among the workers. Workload strategies based on node
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position are often inefficient since nodes are not distributed uniformly in the environment
once they move in the simulated area, changing their locations during the simulation. The
partition of workload using protocol stack layers, provided in Zeng et al. (1998a); Doerel
(2009) simulators, cannot scale for large number of threads, requiring a second task partition
strategy.

Finally, the Algorithm 1 presents the core logic of Runtime class. It has access to all
elements of the simulation, including current_time, the list of nodes N , the list of events E,
and the shared grid in which the nodes reside G. The list of nodes N consists of k sublists,
where k is the number of machine’s cores. The same is true for the list of application-events E.
This way, each sub-list Nk and Ek is associated to a chunk. This partition schema into chunks
is required to guarantee that each thread simulates its respective nodes and application-events,
avoiding concurrent accesses and, consequently, bottlenecks.

Algorithm 1 Runtime main execution
Require: time, N , E, G
1: while t ≤ time do
2: for i← 0 . . . |σ| do
3: for j ← 0 . . . k do
4: events← Hold the list of events will execute at time t
5: Performs the events of the state σi of all nodes
6: events← Hold the list of events to be executed at time t
7: Performs the events of the state σi
8: end for
9: Synchronize all N who performed σi

10: end for
11: end while

Analyzing the Algorithm 1 we have:

• Line 1: Loop definition to execute each simulation time t.

• Line 2: Loop definition to execute all simulation steps σ. The steps are partitioned
according to actions of the simulator, such as: σ1 mobility, σ2 connectivity, σ3 message
send-receive, σ4 sensing, and σ5 general-purpose computing events.

• Line 3: Loop definition to execute all k threads. In each σ step the simulator starts all
k threads of the simulation with their list of nodes and application-events, executing all
events that have compatible time. More specifically, we implemented a thread pool to
avoid the creation and destruction of threads repeatedly, thus maintaining some threads
active while the simulation occurs.

• Line 9: Between two steps there is a synchronization barrier to prevent threads from
different steps to be started until all threads in the current step have finished their step
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execution. This strategy ensures that nodes or application-events can move, connect,
send-receive messages and create new events in parallel, however, one step at the time.

3.6 JSensor Reproducibility

Parallelism affects both simulations causality, creating changes over events dependents, as the
numerical reproducibility. The events can be simulated in a different order during different
runs of the same simulation because of the non-reproducibility of communication between
processors. The change in the order of only two events of a simulation may end up generating
entirely different results. As detailed in Cleveland et al. (2013b), the change of event simulation
order can lead to numerical inconsistency, caused by changing the order of double precision
floating operations. This problem occurs not only with mathematical operations but in any
simulation that deals with non-commutative operations.

As a simulator, JSensor must allow the reproducibility of simulations. In Dalle (2012b),
the authors detail types of reproducibility, as well as simulations examples and reproducibility
requirements. There are four levels of reproducibility, level one is the most restricted and used
by JSensor. Level one is also known as the repeatability property; it designates the ability to
re-execute the same simulation history as previously regarding computation, including the in-
herently non-deterministic computations. In the case of discrete-event simulation, for example,
repeatability means that the simulations produce the same series of events and process them
in the same order. In the case of distributed simulations, in particular, repeatability implies
that parallel activities, e.g., when the event occurs at the same simulation time, the processing
must always be in the same order, which requires some additional synchronization Fujimoto
(2000).

Reproducibility of sequential simulations is trivial because they need a seed and a good
random number generator. In this way, we ensure the same sequence of numbers from the seed
as often as necessary. In case of parallel simulators, the reproducibility is not trivial, since
multiple threads or processes execute concurrently and often nodes are simulated without any
synchronization. JSensor has reproducibility level one of the sequential and parallel simula-
tions, regardless the hardware used or the number of threads started to perform the simulation.
A simulation can contain non-deterministic models, arising from the use of pseudo-random
numbers as alternatives for defining probabilities. Algorithms for mobility, communication,
the initial distribution of nodes and many more frequently use pseudo-random numbers.

JSensor implements the concept of chunk to allow reproducibility, even when executing
non-deterministic simulations in parallel. A chunk encapsulates a set of nodes and application-
events, a seed to ensure a starting point to generate pseudo-random numbers and a generator
of pseudo-random numbers. The number of chunks can be the number of machine processing
cores or any other positive integer number. If we consider the number of machine processing
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cores to define the number of chunks, JSensor allows the user to start it with worker thread
pool equals or less than the number of machine cores, so it ensures reproducibility of simula-
tions with the same amount of threads or not. In summary, we adopt the highest concurrency
level to define the number of chunks, since each worker thread must manage at least one.
This way, all other concurrence level adopted in the same machine or not will be smaller and
repeatable by JSensor.

As explained above, each worker thread simulates a set of nodes and application-events.
Therefore, each thread can simulate one or more chunks of nodes and application-events. The
chunks are never shared among threads to avoid unnecessary synchronizations. The idea to
start from only one seed and to generate other seeds based on the number of chunks enables
reproducibility in parallel since now each chunk with several nodes and application-events
have their seeds to repeat in other executions. Each chunk has a seed and a random pseudo-
numbers generator, regardless the number of threads on execution. Non-proportional numbers
to define both the number of worker threads and the number of chunks, e.g., four workers and
seven chunks, in a simulation can allocate more chunks to one worker thread than others, so
they should be avoided.

Figure 3.6 illustrates a machine with four processing cores and how it is possible to
compare the same simulations running with two threads and then with four worker threads.
Initially, the nodes are partitioned into four chunks, regardless of the number of threads the
user selected in the simulation. In Figure 3.6 (a), the user chooses two threads. Thus, each
thread will simulate the nodes and application-events of two chunks sequentially. In the
Figure 3.6 (b), we have four threads, so each thread simulates the nodes and the application-
events of a single chunk. The JSensor simulates nodes and application-events of a chunk in
the same order, and we guarantee the same sequence of pseudo-random numbers from a seed
and a generator since each chunk is a sequential simulation. Thus, as shown in Figure 3.6, no
matter the number of worker threads, each thread JSensor always simulate the same nodes
and application-events in the same order. The unique restriction is that the number of chunks
requires being higher or equal than the number of worker threads.

When simulating cell properties, the users often use mathematical operations and other
non-commutative operations. To maintain the reproducibility, we store or repeat the events
in the same order, before being simulated. In Robey et al. (2011b), the authors mention
that sorting technique is a distinct method to obtain numerical consistency. Besides the
advantage of simplicity, this technique also has the benefit of being generic, since we are not
seeking only the reproducibility of mathematical operations, but any activity in cell properties.
The simulator partitions the cells into chunks, and the kernel ensures that the simulation
accesses each chunk of cells through only one thread. As mentioned before, this strategy
avoids synchronization, ensuring scalability. The simulator stores and sort the grid of cells
into chunks. Thus, we achieve for cells the same reproducibility level assumptions for nodes
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Figure 3.6: Reproducibility using chunks in JSensor.

and application-events.

3.7 Available JSensor Applications

In this section, we explain the available applications in JSensor used to perform the evaluations
explained in the next section.

3.7.1 Flooding Application

In a data propagation application, like flooding, it is reasonable that all nodes are intercon-
nected, and all messages can propagate to all nodes with the same probability. In JSensor
flooding application, nodes send messages copies to their neighbors, that consists of all nodes
inside the sending node radius.

To start the message propagation, the model selects nodes to send initial messages. Each
of this nodes must create a new message and select one node of the network as a target.
When a node receives a new message, it compares its ID with the message target ID. If it
is the target, reports the receipt of the message and finishes the propagation of this message
copy. Otherwise, the target forwards the message to its neighbors. The simulation runs until
all reachable nodes have received all messages.

This simulation presents few code lines, but it stresses a simulator regarding communi-
cation, generating a massive number of messages. We tested few different scenarios using
JSensor, Sinalgo, and OMNeT++. In the following models, we fix the simulation area in
84.000 square units, and we position the nodes randomly. To start the simulation ten initial
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nodes are selected to send the first messages and the communication radius is 300 units. Be-
sides, other features are added to the models for each test scenario, as presented in Table 3.2.

Table 3.2: Features added for each scenario

Scenario #nodes net. density mobility? cells size

#1 125K to 1M 5 to 40 NO 300 un.
#2 500K 20 0 to 100% 300 un.
#3 500K 20 100% 75 to 300 un.
#4 2.4K to 38.4K 2 NO 300 un.

When we compare results from the different simulators, we face a significant challenge,
because the results will hardly be the same. That happens due to the different decisions made
by the kernel during the simulations. For example, the order the simulator executes the events
at the same time can lead to results substantially distinct.

To make a fair comparison between JSensor and OMNeT++, we used a scenario where
the results are equals. Making some adjustments in the flooding model, we used the scenario
4, that exchanges a massive quantity of messages among nodes, always keeping its path the
same, independent of the simulator used. The network consists of a ring topology, and the
application always send messages to a node with a position in the ring equals sn+ dn/2e+ 1,
where sn is the node sending a message, and n is the total of nodes. Using this model, one of
the paths of the ring will always be shorter, avoiding different results that have the same cost.
All nodes in the network send a message that is transmitted node by node until it reaches the
destination.

3.7.2 Mobile Phone Application

The mobile phone application aims to test the scalability, exploring new scenarios not used
in the Flooding model. It considers mobility models, messages loss, routing algorithms, dis-
tribution models, different message delays, and natural phenomena, making a more realistic
simulation. These new models also increase the simulation workload, making it possible to
evaluate the simulator performance running more complex simulations.

The model mimics a mobile phone network with antennas distributed in the simulation
area based on a grid distribution, aiming a better signal coverage and they cannot move
through the area. The mobile phones’ distribution is random, and 30 to 60% of them move
using the RandomWayPoint model presented in Section 3.4. The base station location has to
be near the mobile phone users to provide an acceptable reception quality. The mobile phones
can move through the environment and made calls to other ones through the Antennas. One
of the factors that influence the signal quality is the weather. To simulate this, application-
events like rains and lightning occurs from 20 to 30 time units and their incidence in a cell
where an Antenna lives can inactivate it, forcing the mobile phones to find other routes.
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There are 20,000 cell phones and 25 antennas. The communication between nodes is
made using messages. When the simulations start 30 to 60% of mobile phones, they send
an initial message aiming another mobile phone, but they cannot communicate directly. The
message needs to pass through the Antenna that provides the signal for this mobile phone.
For Antenna-Antenna communications DSR routing algorithm is used, and the message has to
arrive the Antenna where the destination mobile phone is connected. Every received message
by a mobile phone has 60% chance of being replied, keeping the data exchanging between the
mobile phones.

Mobile phones and Antennas have different communication reliability, so it is normal that
the number of lost packages to be different. The LossyDelivery used defines that 1% of
messages send by Antennas will be lost, and 3% for the mobile phones. The transmission time
for each message is also different, so Antennas spend 1 unit of time to deliver a message to
its destination and mobile phones 2 units. The models used on flooding and mobile phone
experiments take the simulator to the extreme concerning messages. Besides, other features
are added to the models for each test scenario, as presented in Table 3.3.

Table 3.3: Features added for each scenario

Scenario mobility? Appl.-event messages

#1 30% 30 30
#2 45% 25 45
#3 60% 20 60

3.7.3 Air Quality Application

The air quality simulation mimics the carbon cycle in the environment. The simulation nodes
are classified into CO2 producers and consumers. Trees and rain reduce carbon taxes from
environment cells. We classify trees into three types: big, medium and small trees. We
define the CO2 absorption according to tree size. Animals, including humans, produce CO2.
Machines like cars, trucks and many others, as well as industries, produce CO2 in different
rates. The total number of nodes is 190,0020, where 20 industries, 5,000 houses, 20,000
humans, 10,000 cows, 100,000 small trees, 50,000 medium trees, 1,000 big trees, 3,000 cars
and 1,000 trucks.

To make the model more realistic, we adopted a random behavior guided by lower-upper
bounded frontiers, i.e., caws producing 1-5% of CO2 when compared with a car and a car
producing 1-5% of CO2 when compared with industry. The same idea is adopted to simulate
nodes initial position, event lifetime, event size, node-event mobility and many more. The air
quality simulation has approximately 1,300 lines of code and 21 customized JSensor classes, so
it is the more complex one. The complexity here means the number of nodes and application-
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events, besides the variety of types and the lifetime event that mimics death and born of
nodes, like trees, humans and so forth.

We model the environment as cells with size 500×500 units, and properties CO2, water
and lightning, where CO2 and water are double values and lightning is a boolean value. If a
cell has water level above the threshold, it has a probability to become off by flood or by a
lightning incident (value true). The consequence is all nodes living in the cell must be off for
a period in the simulation, and then they must restart working. The idea is to mimic rain and
lightning occurrences, a moment off to repair malfunctions and a moment when nodes start
working again.

The initial position of nodes (cars, trees, and industries) are aleatory, as well as humans
and caws on random initial locations and walking through the environment. Human, caws,
trucks, and cars have a mobility model which assumes the space as eight possible regions to
move a defined distance. All mobile nodes share the same mobility model, but with different
step distance to each node type, e.g., a caw and a car have different ranges for each movement,
since they walk in different speeds. This application considers only one scenario; thus, it was
not necessary to use features variations.

3.8 Experiments

To perform the simulations, we use two different machines: Machine 1 (M1) equipped with
2 Intel Xeon processors E5-2620, each processor with six physical cores and six cores with
hyper-threading technology, both operating at 2.0 GHz each core and 128GB of RAM DDR3
1333Mhz. The Operating System was an Ubuntu 14.04.5 LTS 64 bits kernel 3.13.0-123-generic;
and Machine 2 (M2) equipped with 2 Intel Xeon processors E5620, each processor with four
physical cores and four cores with hyper-threading technology, both operating at 2.4 GHz each
core and 48GB of RAM DDR3 1333Mhz. The Operating System was a CentOS 7 64 bits,
kernel 3.10.0− 693.21.1.el7.x8664. In M1 and M2 all experiments could fit in RAM.

We repeat each experiment five times, and we calculate the average time from these runtime
values. We adopt the same strategy when memory consumption is measured. We implement
all JSensor algorithms in Java 64 bits (JAVA 8 - update 45).

3.8.1 Flooding Application Experiments

In this section we perform two comparative tests: JSensor versus Sinalgo, and JSensor versus
OMNeT++. Besides comparative results, in this section it is presented JSensor overheads
when the mobility and the cell size increase.

To make comparisons we configure the simulators to log the same information in the
simulations, so it possible to verify reproducibility. In the flooding model, it was recorded
the initial messages and the messages received by the destination nodes. All logs contain
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information about the simulation time the communication event occurred, precisely the node
that started the message, the target node of the message, the message number of hops, and
which nodes form the message route.

3.8.1.1 JSensor versus Sinalgo

JSensor models are based in Sinalgo simulator Distributed Computing Group (2015). Thus,
we used it to evaluate the scalability. We use the machine M2 in the Flooding scenario #1,
described in Section 3.7.1.

Figure 3.7 shows JSensor and Sinalgo runtimes when the network size increases in the
simulation. The network size indicates how many nodes the simulation runs. We tested both
with 125K to 1M nodes, using sequential Sinalgo and JSensor with one and sixteen threads.
JSensor with sixteen is faster than Sinalgo in all experiment instances, precisely near 9 times
units faster when 1M of nodes are simulated. The one thread execution has almost the same
runtime than Sinalgo in all experiments, what means that HPC JSensor features did not
deteriorate its execution too much. In summary, Sinalgo runtime deteriorates more than
parallel JSensor when nodes increase.
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Figure 3.7: Runtime JSensor versus Sinalgo.

When we increased the size of the network, the difference between the simulation times
became expressive, reinforcing the HPC advantages of JSensor. It happens because the events
in the same step have a high level of independence so that they execute in parallel. The parallel
kernel portion consumes part of the computational resources, what makes the difference in
simulating small and huge scenarios. When the simulation becomes harder, the parallelism
increases so that the kernel can achieve an almost reasonable workload, what makes a huge
difference in the total simulation time.
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It is important to reinforce that in all tests the number of messages and all application
features were the same in all simulations performed in both simulators, corroborating with
JSensor reproducible characteristics.

3.8.1.2 JSensor versus OMNeT++

We test the Flooding scenario #4 with the machine M1 in parallel and using the maximum
of available cores, i.e., in both simulators it was considered 24 threads. The results presented
in the Figure 3.8 confirms our hypothesis that JSensor performs well for large simulations.
For the 9,600 nodes JSensor presented a runtime 0,2% slower than OMNeT++, but as the
number of nodes increased the difference in runtime became expressive, reaching 21% faster
than OMNeT++ when 38,400 nodes were simulated.

Figure 3.8: Runtime JSensor versus OMNeT++

The reason why JSensor presented better results for large simulations is that we design
its entire kernel for concurrent computing. Further, the use of the cells grid allows the faster
node neighbors discovery, the deactivation of modules not used by the simulation and the use
of thread pools save simulation time. The promising result is not only 21% faster in large
simulations but also be 0,2% slower in small simulations, demonstrating the low overhead
introduced by the native parallelism of JSensor.

In terms of memory consumption the difference between simulators was considerable, as
Figure 3.9 illustrates. The most significant difference occurred in the instance with 9,600 nodes,
being JSensor memory consumption 7.6 times greater than OMNeT++. The positive aspect
is that as the number of nodes increases, the difference in memory consumption decreases,
reaching 3.5 times more memory than OMNeT++ with 38,400 nodes. The main reason for this
behavior is that JSensor creates copies of messages, cells and several other WSN abstractions
to guarantee safe write operations and the reproducibility, so in this case, JSensor introduce
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memory overhead. A Java element is the garbage collector, which runs periodically, but in a
non-deterministic way for Java developers, so the memory consumption is always measured in
a fuzzy way. Finally, JSensor operates over a JVM that introduces its memory overhead.

Figure 3.9: Memory Consumption JSensor versus OMNeT++.

All tests performed in this section produced the same messages in both simulators using
their logs. These results corroborate with JSensor reproducible characteristics.

3.8.1.3 JSensor Speedup Evaluation

Once we have the simulation times of JSensor and Sinalgo (see Figure 3.7), we can calculate
the speedup of JSensor when we increase the number of threads. Sinalgo was selected as the
best sequential simulator, since it is faster than JSensor with one thread. JSensor uses sixteen
threads and the experiment considered 1M of nodes flooding messages during several hours per
simulation. Each flooding simulation produced around 10M of messages and the simulation
finishes when the nodes handle all messages. We calculate the speedup as speedup = s/p,
where s is the best sequential simulation found and p is the parallel one. Figure 3.10 illustrates
that JSensor achieved a maximum speedup of 7.45 times in a machine with sixteen cores,
where only eight are physical ones.

Initially, this result sounds not a very good speedup one; however, it is using Amdahl’s
Law or its predecessor Gustafson Law. Amdahl’s Law Amdahl (1967) made an observation:
"the serial part of the program limits the speedup, and the curve represents a diminishing
return.". This observation means that a simulation with a 90% parallel portion could achieve
a speedup of 6.4 using 16 processors and around 10 regardless of the number of processors
used. The input instance size changes the speedup, so better speedups can be achieved as the
input increases, but not forever, so Gustafson Gustafson (1988) is more complete, but it is
also unrealistic for some domains.
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Figure 3.10: JSensor speedup

Using Gustafson or Amdahl and being conservative, a speedup of 7.45 indicates that
the simulation has a parallelization near 90%, which means very promising since flooding is
communication intensive. Typically, several nodes are sending/receiving messages at each
simulation event, enabling JSensor to execute them in parallel. All the tests performed
in this section have the same number and type of messages and nodes, corroborating the
reproducibility with any number of threads.

3.8.1.4 Mobility Overhead

To check the effect of mobility in the JSensor simulations, we performed several tests using
the Flooding scenario #2 and the machine M2. First, we set the number of nodes in 500K and
vary the percentage of nodes with mobility between 0 to 100%, as shown in the Figure 3.11.
JSensor introduces a significant overhead when nodes are mobile, but the increase in the
number of mobile nodes does not affect its runtime drastically. With 0% of nodes with
mobility it spends 3K seconds and if we increase the mobility 25 times the runtime increased
only 2 times, becoming 6K seconds. After 25% of mobility, the impact in runtime reduced
drastically, becoming residual, precisely varied from 7K seconds to near 9K seconds with all
nodes mobile.

JSensor only creates necessary structures if there is at least one node with mobility, what
explains the fast behavior of flooding without mobile nodes. The memory consumption did
not present any relevant variation with the variation of the number of mobile nodes. All sim-
ulations performed in this section maintain the number and type of both nodes and messages
identical.
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Figure 3.11: Mobility performance.

3.8.1.5 Cell Size Overhead

We also conduct tests to check the impact of the size of the cells in the simulation time and
memory usage using the Flooding scenario #3 and the machine M2. Figure 3.12 illustrates
the runtime results when the cell size varied in a network with 500K mobile nodes. The tests
consider only mobile nodes because mobility cost is influenced by the cells sizes, as explained
before.
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Figure 3.12: Performance versus cell size.

As depicted in Figure 3.12, if we double the cell size, the execution time increased more
than 67%, so these results confirm the hypothesis presented in Section 3.5. The size of the
cell with the best performance among the tested scenarios is the one with the same size as
the nodes communication radius, precisely 300 units in Figure 3.12. In this case, the number
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of cells to be scanned is small, and cells entirely inside the communication radius do not need
to have their nodes checked, saving CPU clocks. Cells that are not entirely within the radius
must have all nodes checked to make sure that they are neighbors.

Although the variation of memory consumption is not alarming, as presented in Fig-
ure 3.13, we found that using smaller cells ends up consuming more memory. We expect this
result because the more cells to store more memory is needed. All simulations performed in
this section maintain the number and type of both nodes and messages identical.
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Figure 3.13: Memory versus cell size.

3.8.2 Mobile Phone Application Experiments

In flooding tests, we have used straightforward communication models to make possible to
compare with other simulators. In this section, we explore more features to check up JSensor ’s
behavior in more complex scenarios. We have tested the mobile phone model using three
scenarios, as described in Section 3.7.2, to evaluate the impact of increasing mobility, nodes,
application-events and messages in a simulation. Figure 3.14 shows a similar speedup behavior
for the three scenarios, with a small variation in the results (from 6.8 to 7.4). The scenario #3
simulation with the best speedup result can be explained by Gustafson discoveries Gustafson
(1988) since it was the larger than scenario #1 and #2 simulations regarding the number of
messages, application-events occurring more frequently and more nodes mobile.

The impact of scenario #3 concerning memory consumption was low when compared with
other simulations in Figure 3.15. In general, the parallel versions using 6, 12, 18 and 24 threads
varied the concurrence level in 4 times, but the memory consumption ranged less than 10%
from 6 to 24 threads, demonstrating a promising result. The difference between single-thread
version and multiple-thread version, precisely with 6 threads is considerable since there are
concurrence overheads in the parallel version. In Figure 3.15 the memory consumption in-
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Figure 3.14: Mobile phone application speedup.

creased from 3GB to near 11GB or more than 3.5 times when we compare the one thread
version with the six one. Internally, JSensor uses data structures and algorithms with the
faster runtime, i.e., with low complexity concerning runtime, being memory consumption a
secondary requirement, thus not fundamental. This way, the concurrent multi-thread execu-
tions tend to consume much more RAM than single ones.
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Figure 3.15: Memory consumption.

In the mobile phone model, we recorded which were the initial messages sent, the messages
received by the destination or target nodes, the application event and mobility events. The
message logs contain information about which simulation time the event occurred, which node
sent it, which target node, how many hops, and by which nodes the message has passed. The
Application event logs inform if a cell has been struck by lightning or is flooded. Mobility
events contain information about the node’s previous position and what the current position
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is. Comparing these files we verified the reproducibility of the simulations. As in Flooding ap-
plication (Section 3.8.1), in all executions the number of messages and all application features
were the same in all simulations performed.

3.8.3 Air Quality Application Experiments

To explore more the application-events, environment modeling, timers and mobility features
we test the air quality scenario using the machine M1. Figure 3.16 presents the speedup
of air quality scenario, where with 24 threads the simulation achieved a speedup of 5.19, so
as the simulation complexity increases the speedup decreases, an expected behavior since the
synchronizations and object copies, for instance, increase. In these experiments, the amount of
CO2, the water level and if a cell is off of operation represent modifications in the environment
that must maintain the reproducibility, so they are very often CPU-bound.
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Figure 3.16: Speedup air quality application.

Another feature widely used in this model is mobility. In air quality application all the
humans, cows, cars and trucks move during all the simulation. When a node moves through
the environment, it can stay in the same cell or change the cell. In the first case, the kernel
only needs to change the node position in the cell, but if the node changes the cell, the kernel
can have to create a new cell, if it does not exist, remove the node from the old cell and insert
it in the new one. All these other operations to guarantee mobility is also time-consuming,
thus influence negatively in speedup.

However, if we consider a speedup above 7 as a simulation with 90% of parallelism with
16 processors, the air quality application with speedup above 5 can indicate parallelism of
80% with 24 processors, an also promising result, especially if we consider the complexities
introduced in the simulation. The memory consumption did not show significant variation
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among the experiment instances, maintaining an average of 127GB of RAM used by each
simulation.

The air quality model contains the same log information already presented in the flooding
and mobile phone models: messaging log, mobility, application events and so forth. All
information is recorded for each type of application-event and nodes. We verified the logs,
reaching identical results, this way corroborating with the reproducibility even when different
number of threads are configured.

3.9 Modeling Limitation

We expose several JSensor benefits and drawbacks regarding its implementation and designs
in previous sections. In Section 3.5, it was presented that the kernel has synchronization
barriers after each step, where the order of the events is done to maintain reproducibility.
The synchronization order to access a shared simulation resource follows a predefined rule,
precisely JSensor uses the node, application-event, message or any other abstraction ID to
perform the order, using them in ascending order. Then, the lower event ID implies higher
priority. This strategy was implemented to reduce the runtime of message inbox checks, the
grid of cells management, neighborhood calculus, and so forth, since sorted collections enable
binary searches, logarithmic insertion/removal operations, and other optimal operations.

Unfortunately, the same order during multiple synchronization barriers in a single simu-
lation is sometimes not realistic. If we suppose two cows are deciding to eat the grass of the
same cell multiples times during a single simulation, it is neither fair nor realistic, that the
same cow always wins, regardless the number of times they concur for the corresponding cell
in the same simulation.

Unfortunately, this limitation is present in other HPC simulators, like those presented
in Section 2.3. A solution is to support an aleatory order using the same seed used for
other purposes in a sequential simulation per chunk. This way, it guarantees that concurrent
events to move, send/receive a message and others will not obey a static order during a single
simulation, but also preserving the reproducibility of multiple simulations. This realism will
introduce overheads in simulation, since before processing a collection of messages or cells or
nodes or any other simulator abstraction in single event time, the kernel will generate their
ordering using a seed number, as mentioned before, creating many more insertion operations
and data structures copies to guarantee dynamic order.

3.10 Conclusion

In this work, we present JSensor, a parallel Java simulator to large-scale WSN simulations and
general purpose simulations. We highlighted the JSensor main features, we compared it with
the literature, and a detailed comparative table summarizes the core differences and similarities
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of both JSensor and related work. Different simulation applications, i.e., communication
intensive simulation with a flooding model, a WSN simulation with a mobile phone model
with two routing algorithms, and we implemented a general purpose simulation for air quality
and tested it exhaustively. In general, JSensor proved to scale very well for CPU-bound WSN
or general purpose simulations with thousands of nodes and millions of messages. Cell size
and mobility features did not affect the simulations drastically concerning memory usage and
runtime, demonstrating that the presented solution scales well even in extreme scenarios.

JSensor future plans include: i) adoption of tiles, proposed in Sundresh et al. (2004), in
conjunction with spatial cells; ii) implementation of other wireless and wired network protocol
standards especially protocols for simulating MAC and physical layers; iii) implementation of
a UI for large-scale WSN simulations based on a distributed publish-subscribe architectural
style, where developers or any end-user can observe the simulations remotely; iv) implemen-
tation of a multicomputer version for JSensor ; v) implementation of a multicore version for
JSensor where graphical processing units (GPUs) are considered; and vi) implementation of
the option for simulating dynamic ordering during synchronizations, as detailed in Section
3.9.



Chapter 4

Conclusion

In this work, we present the first generic reproducibility model to be used in kernel level by
WSN simulators. This way, repeatable simulations can occur without users interferences. The
model key ideas of how to partition the data and processing of a simulation were implemented
and tested in JSensor, an existing HPC simulator useful for evaluating WSN applications
and high-level distributed algorithms demands. Few steps were enough to introduce the most
restrictive reproducibility level, known as the repeatability property; it designates the ability
to re-execute the exact same simulation history as previously in terms of computation, in-
cluding the inherently non-deterministic computations. Experiments demonstrated that the
reproducibility model can be integrated in existing simulators and it produces correct results,
even when users change the number of threads or the machines after each simulation run.

The second contribution of this work is a new version of JSensor, where reproducibility
is implemented in kernel mode, environment modeling and application-events to simulate
interferences from external agents or natural phenomena are also implemented in kernel mode,
thus exposed to users in a simple, transparent and extensible way. An experimental evaluation
demonstrated that JSensor scales very well in multi-core hardwares with a shared memory
abstraction. Comparative evaluations reinforced that it is also a competitive WSN simulator
for HPC since it outperformed OMNET++ while simulating a message intense flooding model.
The results demonstrated that as the simulation enlarged in terms of number nodes, mobility
level achieved, messages transmitted, environment cells occupied and so forth, JSensor versus
OMNET++ difference in runtime also increased.

In contrast, when simulation scenarios are small the HPC designs of JSensor turn it slower
than OMNET++ and its predecessor, the Sinalgo simulator. The main reason this happens
is that the time spent in creating objects and performing data structure operations is high if
compared to the time running small simulations sequentially. For these scenarios, it may be
faster if you use JSensor configured with only one thread, rather than create multiple threads,
split the simulation elements, and create synchronization barriers.

JSensor future plans include: (i) adoption of tiles, proposed in Sundresh et al. (2004),
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in conjunction with spatial cells; (ii) adoption of battery and energy models proposed in
Chen et al. (2005); (iii) implementation of other wireless and wired network protocol stan-
dards, specially protocols for simulating MAC and physical layers; (iv) implementation of a UI
for large-scale WSN simulations based on a distributed publish-subscribe architectural style,
where developers or any user can observe the simulations remotely; (v) implementation of a
multicomputer version for JSensor ; (vi) implementation of a multicore version for JSensor
where graphical processing units (GPUs) are considered; (vii) implementation of the option
for simulating dynamic ordering during synchronizations. Besides JSensor improvements, we
are interested in evaluating the reproducibility model with other WSN simulators to measure
its integration impact in existing architectural designs.
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