
Decision Trees for the Algorithm
Selection Problem: Integer

Programming Based Approaches

Matheus Guedes Vilas Boas
Federal University of Ouro Preto

PhD thesis submitted to the Institute of Exact and Biological

Sciences of the Federal University of Ouro Preto to obtain the

title of PhD in Computer Science

Vilas Boas, Matheus Guedes.
VilDecision trees for the algorithm selection problem [manuscrito]:
integer programming based approaches. / Matheus Guedes Vilas Boas. -
2019.
Vil70 f.: il.: color., tab..

VilOrientador: Prof. Dr. Haroldo Gambini Santos.
VilTese (Doutorado). Universidade Federal de Ouro Preto. Departamento
de Computação. Programa de Ciência da Computação.
VilÁrea de Concentração: Ciência da Computação.

Vil1. Algoritmos de computador. 2. Mineração de dados (Computação). 3.
Programação inteira. I. Santos, Haroldo Gambini. II. Universidade Federal
de Ouro Preto. III. Título.

Bibliotecário(a) Responsável: Celina Brasil Luiz - CRB6 - 1589

SISBIN - SISTEMA DE BIBLIOTECAS E INFORMAÇÃO

V697d

CDU 004.62

UNIVERSIDADE FEDERAL DE OURO PRETO
MINISTÉRIO DA EDUCAÇÃO

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA

COMPUTAÇÃO

ATA DE DEFESA DE DOUTORADO

Aos 13 dias do mês de dezembro do ano de 2019, às 09:00 horas, nas dependências do
Departamento de Computação (Decom), foi instalada a sessão pública para a defesa de
tese do doutorando Matheus Guedes Vilas Boas, sendo a banca examinadora composta
pelo Prof. Dr. Haroldo Gambini Santos (Presidente - UFOP), pelo Prof. Dr. Christian
Clemens Blum (Membro - Externo), pelo Prof. Dr. Luiz Henrique de Campos
Merschmann (Membro - Externo), pelo Prof. Dr. Rodrigo Cesar Pedrosa Silva (Membro -
UFOP), pelo Prof. Dr. Tulio Angelo Machado Toffolo (Membro - UFOP). Dando início aos
trabalhos, o presidente, com base no regulamento do curso e nas normas que regem as
sessões de defesa de tese, concedeu ao doutorando 60 minutos para apresentação do
seu trabalho intitulado "Optimal Decision Trees for the Algorithm Selection Problem:
Integer Programming Based Approaches". Terminada a exposição, o presidente da
banca examinadora concedeu, a cada membro, um tempo máximo de 30 minutos para
perguntas e respostas ao candidato sobre o conteúdo da tese, na seguinte ordem:
Primeiro Prof. Dr. Christian Clemens Blum; segundo Prof. Dr. Luiz Henrique de Campos
Merschmann; terceiro Prof. Dr. Rodrigo Cesar Pedrosa Silva; quarto Prof. Dr. Tulio
Angelo Machado Toffolo; quinto Prof. Dr. Haroldo Gambini Santos. Dando continuidade,
ainda de acordo com as normas que regem a sessão, o presidente solicitou aos
presentes que se retirassem do recinto para que a banca examinadora procedesse à
análise e decisão, anunciando, a seguir, publicamente, que o doutorando foi aprovado,
sob a condição de que a versão definitiva da tese deva incorporar todas as exigências da
banca, devendo o exemplar final ser entregue no prazo máximo de 60 (sessenta) dias à
Coordenação do Programa. Para constar, foi lavrada a presente ata que, após aprovada,
vai assinada pelos membros da banca examinadora e pelo doutorando. Ouro Preto, 13
de dezembro de 2019.

Prof. Dr. Haroldo Gambini Santos

Presidente

Prof. Dr. Christian Clemens Blum
(Participação por

Videoconferência)

Prof. Dr. Luiz Henrique de Campos
Merschmann

Prof. Dr. Rodrigo Cesar Pedrosa
Silva

Prof. Dr. Tulio Angelo Machado
Toffolo

Doutorando

_______________________________ _______________________________ _______________________________

XXXXXXXXXXXXXXXXXXXXXXXXX

Certifico que a defesa realizou-se com a participação a distância do(s) membros(s) Prof. Dr. Christian Clemens
Blum e que, depois das arguições e deliberações realizadas, cada participante a distância afirmou estar de acordo
com o conteúdo do parecer da banca examinadora, redigido nesta ata.

Prof. Dr. Haroldo Gambini Santos

Presidente

ii

I dedicate to God, my son, my parents, my brother and my dogs.

iii

iv

Decision Trees for the Algorithm Selection Problem:

Integer Programming Based Approaches

Abstract

Even though it is well known that for most relevant computational problems dif-

ferent algorithms may perform better on different classes of problem instances, most

researchers still focus on determining a single best algorithmic configuration based on

aggregate results such as the average. In this thesis, we propose Integer Programming

based approaches to build decision trees for the Algorithm Selection Problem. These

techniques allow the automation of three crucial decisions: (i) discerning the most im-

portant problem features to determine problem classes; (ii) grouping the problems into

classes and (iii) select the best algorithm configuration for each class. We tested our

approach from different perspectives: (i) univariate approach, where for each branch

node, only one cutoff point of a feature is chosen and (ii) multivariate approach, where

for each branch node, weights for multiple features are used (oblique decision trees).

Considering the current scenario where the number of cores per machine has increased

considerably, we also propose a new approach based on recommendation of concurrent

algorithms. To evaluate our approaches, extensive computational experiments were exe-

cuted using a dataset that considers the linear programming algorithms implemented in

the COIN-OR Branch & Cut solver across a comprehensive set of instances, including

all MIPLIB benchmark instances. We also conducted experiments with the scenarios/-

datasets of the Open Algorithm Selection Challenge (OASC) held in 2017. Considering

the first dataset and a 10-fold cross validation experiment, while selecting the single

best solver across all instances decreased the total running time by 2%, our univariate

approach decreased the total running time by 68% and using the multivariate approach,

the total running time is decreased by 72%. An even greater performance gain can be

obtained using concurrent algorithms, something not yet explored in the literature. For

v

our experiments, using three algorithm configurations per leaf node, the total running

time is decreased by 85%. These results indicate that our method generalizes quite well

and does not overfit. Considering the results obtained using the scenarios of the OASC,

the experimental results showed that our decision trees can produce better results than

less interpretable models, such as random forest, which has been extensively used for

algorithm recommendation.

Keywords: Algorithm Selection Problem, Feature Based Parameter Tuning, Data

Mining, Integer Programming, Variable Neighborhood Search, COIN-OR Branch & Cut,

Oblique Decision Trees, Recommendation of Concurrent Algorithms.

vi

Declaration

I declare that this thesis was composed by myself, that the work contained herein is my

own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or processional qualification except as specified.

Matheus Guedes Vilas Boas

vii

viii

Acknowledgements

I thank God for always giving me strength to not give up and mainly, for giving me

the pleasure of living!

I am grateful to Professor Haroldo Gambini Santos, adviser of the work, for dedica-

tion, commitment and above all for the trust placed in me.

I thank all the other teachers who have contributed to my education, always with

pleasure and dedication to teaching.

I thank you for my son Pedro Henrique, everything for me.

I thank my mother Inês Alves Guedes and my father Luiz Carlos Vilas Boas for the

love, care, and support for the teachings given to me.

I thank my brother Lucas Guedes Vilas Boas, for all the help offered in this work and

around the doctorate. In addition to help, thank you for always believe in my success.

I thank my dogs Joe and Princesa, companions for life.

I thank everyone who contributed in any way that I could achieve this goal of great

importance in my life.

Thank you all!

ix

x

Contents

List of Figures xiii

List of Tables xv

Nomenclature 1

1 Introduction 3

1.1 Text organization . 8

2 Background 9

2.1 Algorithm Selection Problem . 9

2.1.1 Algorithm Selector And Pre-scheduler 10

2.1.2 Algorithm Recommender System 12

2.1.3 Random Forest . 12

2.2 Decision Trees . 13

2.2.1 Regression Problems . 15

2.2.2 Classification Problems . 16

2.2.3 Oblique Decision Trees . 17

3 Model 19

3.1 Input data . 19

xi

3.2 Decision variables . 20

3.3 Objective function and constraints . 22

4 Multivariate Model 25

4.1 Input data . 25

4.2 Decision variables . 26

4.3 Objective function and constraints . 27

5 VND to accelerate the discovery of better solutions 31

5.1 Constructive Algorithm . 34

5.2 Neighborhoods . 37

6 Experiments 43

6.1 First dataset: linear programming algorithms from the COIN-OR Linear

Programming solver . 44

6.1.1 Problem instances . 44

6.1.2 Available algorithms . 46

6.1.3 Experiments to evaluate scalability of the integer programming

model . 50

6.1.4 Experiments with the complete dataset 51

6.1.5 Experiment using cross-validation on the complete dataset of prob-

lem instances . 54

6.2 The ICON challenge . 56

7 Discussion and Closing Remarks 61

A Appendix 63

Bibliography 65

xii

List of Figures

1.1 The Algorithm Selection Problem (RICE, 1976) 3

2.1 Features of the Iris flower. Source: http://rafaelsakurai.github.io/

classificacao-iris/ . 13

2.2 Types/Classes of of the Iris flower. Source:https://www.datacamp.com/

community/tutorials/machine-learning-in-r 14

2.3 Decision Tree - Iris flower dataset. 14

5.1 Example of neighborhood N1 variables: variables highlighted in gray are

fixed and variables highlighted in black will be optimized. 40

5.2 Example of neighborhood N2 variables: variables highlighted in gray are

fixed and variables highlighted in black will be optimized. 40

5.3 Example of neighborhood N3 variables: variables highlighted in gray are

fixed and variables highlighted in black will be optimized. 41

5.4 Example of neighborhood N4 variables: variables highlighted in gray are

fixed and variables highlighted in black will be optimized. 41

5.5 Example of neighborhood N5 variables: variables highlighted in gray are

fixed and variables highlighted in black will be optimized. 41

6.1 Features of problem instances of Algorithm Selection Problem: variables,

constraints and coefficients in the constraint matrix. 46

xiii

http://rafaelsakurai.github.io/classificacao-iris/
http://rafaelsakurai.github.io/classificacao-iris/
https://www.datacamp.com/community/tutorials/machine-learning-in-r
https://www.datacamp.com/community/tutorials/machine-learning-in-r

6.2 Performance of the integer programming model and the VND-ASP math-

ematical programming heuristic over sets of problem instances of different

sizes and 50 algorithms. 50

6.3 Decision tree (univariate features) with maximum depth = 3 52

6.4 Decision tree (multivariate features) with maximum depth = 3 52

6.5 Decision tree (multivariate features) with maximum depth = 3 and two

recommended algorithms per leaf node 53

6.6 Decision tree (multivariate features) with maximum depth = 3 and three

recommended algorithms per leaf node 54

6.7 Cross-validation results for all partitions of First Dataset 56

xiv

List of Tables

6.1 Distribution of problem instances according to features 45

6.2 Algorithm primal simplex and parameters values evaluated 47

6.3 Algorithm duals simplex and parameters values evaluated 48

6.4 Algorithm barrier and parameters values evaluated 48

6.5 Scenarios of the OASC (2017) - Runtime Objective 57

6.6 Results of the OASC (2017) - Runtime Objective 58

6.7 Results on the scenarios of the OASC (2017) - Our method vs Random

Forest . 59

xv

xvi

List of Algorithms

1 VND-ASP (r, h, l, D, d, α, m, n, Q, A, P, q, q′) 32

2 GRC-ASP (P, A, r, T, i, D, d, α, m, E, Q) 35

3 MGRC-ASP (P, A, r, T, i, D, d, α, m, E, Q) 37

xvii

xviii

Nomenclature

ASP Algorithm Selection Problem

CART Classification and Regression Trees

CBC COIN-OR Branch & Cut

CLP COIN-OR Linear Programming Solver

IP Integer Programming

GRC Greedy Randomized Constructive

LP Linear Programming

MIP Mixed-Integer Programming

MIPLIB Mixed Integer Programming Library

VND Variable Neighborhood Descent

1

2

Chapter 1

Introduction

In this thesis, we study the Algorithm Selection Problem (ASP). This problem is con-

cerned with selecting the best algorithm to solve a given problem instance on a case-by-

case basis (RICE, 1976; KOTTHOFF, 2012; BISCHL et al., 2016).

Given that different algorithms may perform better on different classes of problems,

Rice (1976) proposed a formal definition of the Algorithm Selection Problem (ASP).

The main components of this problem are depicted in Fig. 1.1.

Problem Space Feature Space Feature
Extraction

Criteria
Space

Algorithm Space

 Selection
Mapping

Performance
Measure Space

Figure 1.1: The Algorithm Selection Problem (RICE, 1976)

3

4 Introduction

Formally the ASP has the following input data:

P : the problem space, a probably very large and diverse set of different problem

instances; these instances have a number of characteristics, i.e. for linear program-

ming, each possible constraint matrix defines a different problem instance;

A : the algorithm space, the set of available algorithms to solve instances of problem P;

since many algorithms have parameters that significantly change their behavior,

differently from Rice (1976), we consider that each element in A is an algorithm

with a specific parameter setting; thus, selecting the best algorithm also involves

selecting the best parameter setting for this algorithm;

F : the feature space; ideally elements of F have a significantly lower dimension than

elements of P, since not every problem instance influences the selection of the

best algorithm; these features are also important to cluster problems having a

common best algorithm, e.g., for linear programming some algorithms are known

for performing well on problems with a dense constraint matrix;

W : the criteria space, since algorithms can be evaluated with different criteria, such

as processing time, memory consumption and simplicity, the evaluation of the

execution results r = Rn produced using an algorithm a to solve a problem instance

p may be computed using a weight vector w ∈ W = [0, 1]n which describes the

relative importance of each criterion.

The objective is to define a function S that, considering problem features, maps

problem instances to the best performing algorithms. This function is a mapping func-

tion that always selects the best algorithm for every instance. Thus, if B is the ideal

function, the objective is to define S minimizing:

∑
p∈P

|wT r(B(f(p), w))− wT r(S(f(p), w))| (1.1)

The main motivation for solving the ASP is that usually there is no best algorithm

in the general sense: even though some algorithms may perform better on average,

usually some algorithms perform much better than others for some groups of instances.

A “winner-take-all” approach will probably discard algorithms that perform poorly on

Introduction 5

average, even if they produce excellent results for a small, but still relevant, group of

instances.

This thesis investigates the construction of S using decision trees. The use of decision

trees to compute S was one of the suggestions included in the seminal paper of Rice

(1976). To the best of our knowledge however, the use of decision trees for algorithm

selection was mostly ignored in the literature. Recent exceptions include the work of

Polyakovskiy et al. (2014) who evaluated many heuristics for the traveling thief problem

and built a decision tree for algorithm recommendation. Polyakovskiy et al. (2014) did

not report which algorithm was used to build this tree, but did note that the MatLabR©

Statistics Toolbox was used to produce an initial tree that was subsequently pruned to

produce a compact tree. This is an important consideration: even though deep decision

trees can achieve 100% of accuracy in the training dataset, they usually overfit, achieving

low accuracy when predicting the class of new instances. Also, the works of King et al.

(2000) and Michie et al. (1995) used decision trees for recommending algorithms. In the

training phase, the system marks each algorithm as applicable or not, depending on its

similarity with the best algorithm. In the test phase, the decision tree is used to predict

whether or not the algorithm is applicable to new instances.

The production of compact and accurate decision trees is an NP-Hard problem

(HYAFIL and RIVEST, 1976). Thus, many greedy heuristics have been proposed, such

as ID3 (QUINLAN, 1986), C4.5 (QUINLAN, 1993) and CART (BREIMAN et al., 1984).

These heuristics recursively analyze each split in isolation and proceed recursively. Re-

cently, Bertsimas and Dunn (2017) proposed Integer Programming for producing optimal

decision trees for classification. Thus, the entire decision tree is evaluated to reach global

optimality. Their results showed that much better classification trees were produced for

an extensive test set. This result was somewhat unexpected since there is a popular

belief that optimum decision trees could overfit at the expense of generalization. Trees

are not only the organizational basis of many machine learning methods, but also an im-

portant structural information (ZHANG et al., 2018). The main advantage of methods

that produce a tree as result is the interpretability of the produced model, an important

feature in some applications such as healthcare.

We tested our approach from two perspectives: (i) univariate approach, where for

each branch node, only one cutoff point of a feature is chosen; (ii) Multivariate approach,

where for each branch node, weights for multiple features are used (oblique decision

trees). Considering the current scenario where the number of cores per machine has

increased considerably, we also propose a new approach based on recommendation of

6 Introduction

concurrent algorithms. Thus, for each leaf node, we tested the recommendation of 1, 2

and 3 algorithm configurations.

At this point it is important to clarify the relationship between decision trees for

the ASP and decision trees for classification and regression, their most common appli-

cations. Although the ASP can be seen as the classification problem of selecting the

best algorithm for each instance, this modeling does not capture some important prob-

lem aspects. Firstly, it is often the case that many algorithms may produce equivalent

results for a given instance, a complication which can be remedied by using multi-label

classification algorithms (TSOUMAKAS and KATAKIS, 2007). Secondly, the evalua-

tion of the individual decisions of a classification algorithm always returns zero or one

for incorrect and correct predictions, respectively. In the ASP each decision is evaluated

according to a real number which indicates how far the performance of the suggested

algorithm is from the performance of the best algorithm, as stated in the objective func-

tion (1.1). Thus, the construction of optimal decision trees for the ASP can be seen as a

generalization of the multi-label classification problem and is at least as hard. Another

approach is to model the ASP as a regression problem, in which one attempts to predict

the performance of each algorithm for a given instance and select the best one (XU et

al., 2008; LEYTON-BROWN et al., 2003; Battistutta et al., 2017). In this approach,

the cost of determining the recommended algorithm for a new instance grows propor-

tionally to the number of available algorithms and the performance of the classification

algorithm. By contrast, a decision tree with limited depth can recommend an algorithm

in constant time. Another shortcoming of regression-based approaches is related to the

loss of precision in solution evaluation: consider the case when the results produced by

a regression algorithm are always the correct result plus some additional large constant

value. Even though the ranking of the algorithms for a given instance would remain cor-

rect and the right algorithm would always be selected, this large constant would imply

an (invalid) estimated error for the regression algorithm.

As discussed in Kotthoff (2012), if an incorrect algorithm is chosen and our perfor-

mance measure is processing time, the system can take more time to solve the problem

instance. This additional time will vary depending on which algorithm was chosen —

it may not matter much if the performance of the chosen algorithm is very close to the

best algorithm, but it also may mean a large difference.

The present thesis therefore investigates the applicability of Integer Programming to

build a mapping S with decision trees using the precise objective function (1.1) of the

ASP.

Introduction 7

It is also important to distinguish the ASP from the problem of discovering improved

parameter settings. Popular software packages such as Irace (LÓPEZ-IBÁÑEZ et al.,

2016) and ParamILS (HUTTER et al., 2014) embed several heuristics to guide the search

of improved parameters to a parameter setting that, ideally, performs well across a large

set of instances. During this search, parameter settings with a poor performance in an

initial sampling of instances may be discarded. In the ASP, even parameter settings

with poor results for many instances may be worth investigating since they may well

be the best choice to a small group of instances with similar characteristics. Thus,

exploring parameter settings for the ASP may be significantly more computationally

expensive than finding the best parameter setting on average, requiring more exhaustive

computational experiments. An intermediate approach was proposed by Kadioglu et

al. (2010): initially the instance set is divided into clusters and then the parameter

settings search begins. One shortcoming of this approach is the requirement of an a

priori distance metric to cluster instances. It can be hard to decide which instance

features may be more influential for the parameter setting phase before the results

of an initial batch of experiments is available. Optimized decision trees for the ASP

provide important information regarding which instance features are more influential to

parameter settings since these parameters will appear in the first levels of the decision

tree. Also, instances are automatically clustered in the leaves. It is important to observe

that an iterative approach is possible: after instances are clustered using a decision tree

for the ASP, a parallel search for better parameters for instance groups may be executed,

generating a new input for the ASP.

Another fundamental consideration is that the ASP is a static tuning technique: no

runtime information is considered to dynamically change some of the suggested algo-

rithm/parameter settings, as in the so called reactive methods (MASCIA et al., 2014).

The static approach has the advantage that usually no considerable additional compu-

tational effort is required to retrieve a recommended setting, but its success obviously

depends on the construction of a sufficiently diverse set of problem instances for the

training dataset to cover all relevant cases. After the assembly of this dataset, a possi-

bly large set of experiments must be performed to collect the results of many different

algorithmic approaches for each instance. Finally, a clever recommendation algorithm

must be trained to determine relevant features for recommending the best parameters

for new problem instances.

Misir and Sebag (2017) tackle the problem of recommending algorithms with incom-

plete data, i.e., if the experiments results matrix is sparse and only a few algorithms were

8 Introduction

executed for each problem instance. In this thesis we consider the more computationally

expensive case, where for the training dataset all problem instances were evaluated on

all algorithms.

This thesis proposes the construction of optimal decision trees for the ASP using

Integer Programming techniques. To accelerate the production of high quality feasible

solutions, a variable neighborhood descent based mathematical programming heuristic

was also developed. To validate our proposal, we set ourselves the challenging task of

improving the performance of the COIN-OR Linear Programming Solver - CLP, which

is the Linear Programming (LP) solver employed within the COIN-OR Branch & Cut -

CBC solver (LOUGEE-HEIMER, 2003). CLP is currently considered the fastest open

source LP solver (MITTELMANN, 2018; GEARHART et al., 2013). The LP solver is the

main component in Integer Programming solvers (ATAMTÜRK and SAVELSBERGH,

2005) and it is executed at every node of the search tree. Mixed-Integer Programing

is one of the most successful technique to optimally solve NP-Hard problems and has

been applied to a large number of problems, from production planning (POCHET and

WOLSEY, 2006) to prediction of protein structures (ZHU, 2007).

To the best of our knowledge, this is the first time that mathematical program-

ming based methods have been proposed and computationally evaluated for the ASP.

As our results demonstrate, not only our algorithm produces more accurate predictions

for the best algorithm with respect to unknown instances, considering a 10-fold valida-

tion process (Subsection 6.1.5) but it also has the distinct advantages of recommending

algorithms in constant time and producing easily interpretable results.

1.1 Text organization

The remainder of the thesis is organized as follows: Chapter 2 is dedicated to literature

review. Chapter 3 presents the Integer Programming formulation for the construction of

optimal decision trees for the ASP. Chapter 4 presents the model proposed for the mul-

tivariate choice of features to exactly one node of a decision tree. Chapter 5 presents a

variable neighborhood descent based mathematical programming heuristic. Our exten-

sive computational experiments and their results are presented in Chapter 6 and, finally,

Chapter 7 presents the conclusions and provides some future research directions.

Chapter 2

Background

2.1 Algorithm Selection Problem

In the area of artificial intelligence, much time has been devoted to developing new

algorithms that outperform previous approaches in solving a class of problem instances.

The problem with this approach is that it surpasses the state of the art only in a specific

class of problem instances. Improved algorithms for subclasses of problems may be

developed since specific assumptions about the instance environment can be considered

and these assumptions may not be valid for the all possible instances (KOTTHOFF,

2012). Considering a set of available algorithms, the Algorithm Portfolio, our objective

is to recommend the best algorithm for new instance considering its characteristics and

the experience acquired while solving other instances.

Researchers have long ago recognized that a single algorithm will not give the best

performance across all problem instances one may want to solve (KOTTHOFF, 2012).

This can be checked in the works of Aha (1992) and Wolpert and Macready (1997).

Some concepts are very important in this problem and described by Kerschke et

al. (2019): an oracle selector or virtual best solver (VBS) is defined as a hypothetical

algorithm selector with perfect performance for all problem instances. This VBS provides

a lower bound on the performance of any realistic algorithm. In turn, the single best

solver (SBS) is one algorithm with the best performance on average among all the

available algorithms.

In the work of Salisu et al. (2017), the authors present different techniques developed

9

10 Background

to solve the Algorithm Selection Problem. The first work presented is StatLog (KING

et al., 2000; MICHIE et al., 1995), where 19 data characteristics and 10 algorithms

were used. In the training phase, the system marked the algorithms as applicable or

not, based on similarity when compared to the best algorithm. A decision tree was built

to predict whether or not the algorithm was applicable to a new data set. Subsequently,

a tool called Data Mining Advisor (DMA) (GIRAUD-CARRIER, 2006) was proposed,

where a ranking was provided for the classification algorithms. For this, the K-Nearest

Neighbor (k-NN) algorithm was used to predict the performance of the algorithms in a

new dataset.

The IDEA - Intelligent Discovery Electronic Assistant (BERNSTEIN et al., 2005)

system is the first data-based planning analysis for data mining capable of building

workflows. In turn, the e-Lico Intelligent Discovery Assistant (eIDA)1 system creates

data mining processes based on input data specification and user objectives. The Auto-

WEKA tool (KOTTHOFF et al., 2017; THORNTON et al., 2012) is designed to help

users automatically search through the learning algorithm set and hyper-parameter set-

tings to maximize a certain measure of performance, such as instance accuracy. For

this, the Bayesian optimization method is used. Finally, the Auto-sklearn (FEURER et

al., 2015) system provides an automated machine learning toolkit, using recent improve-

ments in Bayesian optimization, meta-learning, and ensemble construction.

Many of the current approaches to solve ASP use machine learning. In this context,

a model may be constructed where instances are grouped according to their characteris-

tics, so that similar instances belong to the same class and different instances belong to

different classes. This model is used to predict performance on unknown instances. Ma-

chine learning applied to ASP involves a training phase, where the candidate algorithms

are run on a sample of the problem space to experimentally evaluate their performance.

This training data is used to create a performance model that can be used to predict

the performance on new, unseen instances (KOTTHOFF, 2012).

2.1.1 Algorithm Selector And Pre-scheduler

Algorithm Selector and Pre-scheduler (ASAP) combines Algorithm Selection Problem

(ASP) with Pre-scheduler. A scheduler is defined sequentially launching a few algo-

rithms on a limited computational budget each. The ASAP system relies on the joint

1http://www.e-lico.eu/

Background 11

optimization of a pre-scheduler and a per instance AS (Algorithm Selection) (GONARD

et al. (2016)). Since some instances can be easily resolved by some algorithms, the pre-

scheduler can allocate a portion of the computational budget to solve these instances.

The pre-scheduler can be used to add new features to characterize the problem in ques-

tion. These features are incorporated into the problem instances, indicating whether

such an algorithm solves the instance. After this first phase, the second phase deals

only with instances that have not yet been solve. As Xu et al. (2012), ASP and Pre-

scheduler can be combined in a multistage process, where the scheduler resolves easy

instances and the other instances are handled by ASP. In ASAP, we have two decisions

to make: the first concerns how to split the available runtime between Pre-scheduler and

ASP. The second decision defines how many algorithms (parameter k) will be involved

in the pre-scheduler. Two versions of the ASAP system were considered: ASAP.v1 and

ASAP.v2, which will be discussed in the next paragraphs.

In ASAP.v1, the maximum execution time allocated to the pre-scheduler is fixed

at 10% of the overall computational budget and the number of algorithms in the pre-

scheduler is defined as 3 (k = 3). It is easy to see that the two phases are interdependent:

the AS should focus on the instances that the pre-scheduler was unable to resolve while

the pre-scheduler should focus on the instances where the AS does not behave well -

select an inappropriate algorithm.

In the first phase (pre-scheduler), a mixed optimization problem is solved in order

to balance the overall number of problems solved and the overall computational budget.

As the experiments are carried out in scenarios with a maximum of 31 algorithms, the

value of the parameter k and the maximum time allocated to this phase is determined

by exhaustive search.

In the second phase (algorithm selector), two learning algorithms are considered:

random forests and k-nearest neighbors. Based on preliminary experiments, 35 trees

were used in the Random Forest algorithm and the number of neighbors defined as k

= 3 for the k-nearest neighbors. In the k-nearest neighbors algorithm, the associated

predicted value each instance of the problem is defined as the weighted sum of the

performance of its closest neighbors, weighted by the relative distance to the instance.

The features were normalized before selecting neighbors.

In ASAP.v2, the two phases are not considered sequentially. In other words, there is

a loop for retrofitting the pre-scheduler to the new AS.

12 Background

2.1.2 Algorithm Recommender System

In the work of Misir and Sebag (2017), the authors propose a collaborative filtering

approach to the Algorithm Selection Problem which they give the name Algorithm

Recommender System - ALORS. Such an approach is inspired by the challenge of Netflix:

recommending items you will like based on previous items you like and that other users

like. Two advantages of collaborative filtering (CF) over the algorithm selection problem

are: ASP requires experimental results of all algorithms in all instances of the training

set. This is not the case in CF, where only a portion of the experimental results may

be available. The second advantage is related to the performance model: in CF, latent

factors are created to describe algorithms and instances, and use the associated latent

metrics to recommend algorithms for a particular instance. Still on the second advantage,

the authors state that CF allows to independently analyze the following points: the

representativeness of the set of problem instances in relation to the algorithm portfolio

and; the quality of features used to describe problem instances.

2.1.3 Random Forest

Random forests consist of a set of decision trees. In work of Hutter et al. (2014), the

authors use random forests to solve regression problems to predict algorithm runtimes.

The prediction of algorithm runtimes allows the development of algorithm recommenda-

tion systems, since one can recommend the algorithm with the lowest expected runtime.

Regression trees are extraordinarily flexible predictors, capable of capturing very com-

plex and low bias interactions. Trees are designed to be different: Training takes place

on different sub-samples of training data and/or allowing only a random subset of the

variables as branch variables on each node. The average predictions for a new entry x

are easy to calculate. For each tree, the answer to x is predicted and then the average

of the predictions is calculated.

Still on this paper, the authors proposed new techniques for building predictive mod-

els and advanced state of the art in predicting the performance of algorithms for difficult

combinatorial problems - namely SAT, MIP and TSP. Computational experiments were

performed, predicting the performance of 11 algorithms in 35 instances of SAT, MIP

and TSP, where the techniques proposed by the authors were compared with a set of

literature methods. The results demonstrate the superiority of random forest based

approaches when compared to other methods such as Ridge regression wih 2-phase for-

Background 13

ward selection; SPORE-FoBa (ridge regression with forward-backward selection); Feed-

forward neural network with one hidden layer; Projected process (approximate Gaussian

process) and; Regression tree with cost-complexity pruning. In this sense, we use Ran-

dom Forest to compare performance with our approach to resolving ASP.

2.2 Decision Trees

Decision trees are commonly used to solve classification and regression problems. In this

sense, the Subsections 2.2.1 and 2.2.2 discuss advances in regression tree algorithms and

classification tree algorithms.

A classic example of classification using decision trees considers the Iris flower dataset.

The dataset has 4 features: sepal length (SepalLength); sepal width (SepalWidth); petal

length (PetalLength) and petal width (PetalWidth). Figure 2.1 presents the features of

the Iris flower.

Figure 2.1: Features of the Iris flower. Source:
http://rafaelsakurai.github.io/classificacao-iris/

The decision tree is then built, using the features to classify each flower/example

into one of three possible classes: Versicolor, Setosa and Virginica. Figure 2.2 shows the

three types/classes of the Iris flower.

http://rafaelsakurai.github.io/classificacao-iris/

14 Background

Figure 2.2: Types/Classes of of the Iris flower. Source:https:
//www.datacamp.com/community/tutorials/machine-learning-in-r

An example of a decision tree considering the Iris flower dataset is shown in Figure

2.3.

PetalLength≤2.45 >2.45

38 samples

class = setosa

PetalLength≤4.95 >4.95

41 samples

class = versicolor

33 samples

class = virginica

Figure 2.3: Decision Tree - Iris flower dataset.

Considering a new example/flower, we want to classify it in one of the 3 possible

classes. For this, we verified that in the root node of the tree, the PetalLength feature

was chosen with the cutoff point value equal to 2.45. In this sense, if the value of the

PetalLength feature in the new example is less than or equal to 2.45, we should move

to the left side of the tree. Otherwise, we go to the right side of the tree. Moving to

the left side of the tree, we have already reached the leaf node, which gives the new

example the setosa class. Moving to the right side of the tree, we have to re-evaluate

the PetalLength feature, but now with a new cutoff point value (= 4.95). Thus, if the

value of the PetalLength feature in the new example is less than or equal to 4.95, we

should move to the left side of the tree (class = versicolor). Otherwise, we should move

to the right side of the tree (class = virginica).

In Menickelly et al. (2016), a new formulation of mixed integer programming is

proposed for constructing optimal binary classification trees of specific size. The input

https://www.datacamp.com/community/tutorials/machine-learning-in-r
https://www.datacamp.com/community/tutorials/machine-learning-in-r

Background 15

data are all binary and are considered small decision trees with up to three decision levels.

A special structure of categorical characteristics were considered and thus combinatory

decisions (based on subsets of values of such characteristic) were allowed in each node.

The computational results show that the small trees constructed have much better

accuracy than the popular heuristic methods for building decision trees. The execution

times were not compared, due to the considerable differences in the resolution strategy

of the previously described methods. It can be seen that the classifiers CART and

Random Forest overestimate all datasets used in the experiments. It is suggested as

extensions of the work the treatment of characteristics of real values and the change in the

objective of the resolution of the MIP model, considering the maximization of sensitivity

or specificity. The work of Bertsimas and Dunn (2017) reinforces the conclusions reached

in the work of Menickelly et al. (2016). Experiments with synthetic data were performed

on the method proposed by Bertsimas and Dunn (2017) and when compared to the

results obtained by the state of the art methods, the results are notably better. This

contradicts the popular belief that such optimal methods will just overfit the training

data at the expense of generalization ability.

2.2.1 Regression Problems

The first algorithm for regression trees was published by Morgan and Sonquist (1963)

and named Automatic Interation Detection (AID). From the root node, this algorithm

chooses the division that minimizes the sum of impurities on the two child nodes. Divi-

sion is terminated when the reduction in impurity is less than an a determined fraction

of impurity in the root node. Considering each node and the sample mean of the train-

ing dataset belonging to this node, impurity considers the sum of squared deviations.

Studies in the literature showed that AID had serious problems: the first problem was

overestimating the data, as proved by Einhorn (1972). In work of Doyle (1973), the

author showed that if two or more variables are highly correlated, at most one of them

can appear in the tree structure. This may lead to a hasty conclusion: the variable that

did not appear in the tree structure may be considered unimportant.

Classification and Regression Trees (CART) were proposed by Breiman et al. (1984).

Several improvements to the AID algorithms were considered. One of the improvements

solved the problem of overstimating the data - as noted by Einhorn (1972): there are no

rules to stop splitting a node into two child nodes. Instead, the tree grows and is then

pruned to a size that has the lowest cross-validation estimate of error.

16 Background

2.2.2 Classification Problems

The first algorithm proposed for classification is called THeta Automatica Interaction

Detection (THAID) (MESSENGER and MANDELL, 1972). The algorithm is similar to

the proposed AID algorithm for regression. The difference is in the prediction variable:

in the THAID algorithm we consider the categorical variable and then the objective of

the algorithm is chooses splits to maximize the sum of the number of correct observa-

tions in each modal category. The CART algorithm, already presented in the previous

subsection, is also used in the construction of classification trees. CART (Classification

and Regression Trees) is very similar to C4.5, but it differs in that it supports numerical

target variables (regression) and does not compute rule sets.

The CART algorithm has the following steps:

1. The algorithm starts at the root node of the tree and performs a division, creating

two child nodes at the next level of the tree.

2. After splitting, the same procedure done in Step 1 is done for the two child nodes

generated.

3. Divisions are made successively at the following levels.

4. The algorithm grows a tall tree and prunes some of its branches at the end of the

process.

The division to be carried out is based on that which produces the greatest decrease

in the classification error. The divisions are made until the final subsets are homogeneous

in terms of the result variable (class). As a pruning criterion, all nodes below the lowest

permitted level of the tree are removed. The decision class is the class with the highest

number of cases in the respective node. Other criteria used for pruning are: definition of

the minimum number of observations and the imposition of a minimum rate of diversity.

The algorithm called CHi-squared Automatic Interaction Detector (CHAID) (KASS,

1980) considers three types of variables: categorical, ordered without missing values

(monotonic variables) and ordered with missing values (floating variables). The node is

divided into two or more child nodes, depending on the type of the variable. Pairs of

children nodes are then considered for merging by using Bonferroni-adjusted significance

tests. The merged children nodes are then considered for division, again by means of

Bonferroni-adjusted tests.

Background 17

C4.5 is an algorithm proposed by Quinlan (1993). The algorithm assumes that if X

has m distinct values in one node, then the node will be divided into m child nodes,

with one child node for each value. The algorithm uses a node impurity-based entropy

metric called the gain ratio. While the C4.5 algorithm accepts continuous and categorical

data types, the CART algorithm accepts continuous data types and nominal attributes.

C4.5 performs a pruning, while CART prunes the tree after processing the algorithm.

Regarding missing values, only the C4.5 algorithm can handle this issue.

Classification Rule with Unbiased Interaction Selection and Estimation (CRUISE)

(KIM and LOH, 2001) splits each node into multiple child nodes, this number being

determined by the number of classes. For variable selection, CRUISE uses contingency

table chi-squared tests for variable selection throughout, with the values of Y forming

the rows and the (grouped, if X is ordered) values of X forming the columns of each

table.

More recent works use a set of classifiers for predictions. In this sense, from the

predicted values, the one with the largest number of votes is chosen, that is, the value

that was predicted by the most classifiers. Among these works, Bagging (BREIMAN,

1996) uses an ensemble of unpruned CART trees constructed from bootstrap samples of

the data. Random forest (BREIMAN, 2001) weakens the dependence among the CART

trees by using a random subset of X variables for split selection at each node of a tree.

In the work of Freund and Schapire (1997), the authors propose the Boosting algorithm.

In it, the set of classifiers is constructed sequentially, so that for the incorrectly classified

observations, greater weight is given in the next iterations.

2.2.3 Oblique Decision Trees

Splits considering the choice of only one feature and cut point may not work well for

some problems (BROWN et al., 1996). For example, in the parity function problem

(the n-dimensional generalization of the XOR function) the use of univariate approaches

does not produce good results. Such a problem involves pattern recognition where

the patterns associated with each class can come from separate regions in the feature

space. In this sense, the authors of the work mentioned above presented a new approach

to perform multi-variable splits within the recursive partitioning algorithm based on

linear programming. Two objectives were considered in the proposed approach: the

formulation that minimizes the maximum deviation of the input observations from the

decision surface and the formulation that minimizes the sum of the deviations. The

18 Background

first objective considers, for each class, to minimize the number of input observations

classified incorrectly. The second objective considers solving an LP for all classes, where

the objective is to minimize the sum of the deviations (input observations classified

incorrectly).

The new approach uses linear programming (LP) to find the locally optimal multi-

variate splits for classification problems. On each node of the tree is solved the optimal

linear discriminant that separates one of the classes from all of the other classes. The

solutions for each class are stored in addition to the univariate solution. The best

solution of this set is chosen.

As described in Murthy et al. (1994), the approach described above (named as

CART-LC) has severe limitations: CART-LC is deterministic. In this sense, there is

no mechanism for escaping local optimum; CART-LC produces only a single tree; some

adjustments to escape from some local optimum imply increased impurity of a split and

there is no upper bound on the time spent at any node in the decision tree.

In work of Murthy et al. (1994), the system Oblique Classifier 1 (OC1) is proposed

for the construction of oblique decision trees. The system combines deterministic hill-

climbing with two forms of randomization to find a good oblique split (in the form of

a hyperplane) at each node of a decision tree. The use of randomization improves the

CART algorithm, originally proposed by Breiman et al. (1984), without significantly

increasing the computational cost of the algorithm.

Chapter 3

Model

This chapter presents our integer programming model proposed for the construction of

optimal decision trees for the ASP. The sets and parameters are described in Section

3.1. The corresponding decision variables are described in Section 3.2. The objective

function associated with the problem and the constraints are described in Section 3.3.

3.1 Input data

P set of problem instances = {1, . . . , p};

A set of available algorithms with parameter settings = {1, . . . , a};

F set of instance features = {1, . . . , f};

Cf set of valid branching values for feature f , Cf = {1, . . . , cf}, cf is at most p when all

instances have different values for feature f ;

d maximum tree depth;

τ threshold indicating a minimum number of instances per leaf node;

β penalty incorporated into the objective function when a leaf node contains a number

of problem instances smaller than threshold τ ;

rp,a cost of algorithm a for solving problem instance p;

vp,f value of feature f for problem instance p;

19

20 Model

gl,n indicates which is the parent node of a given node n (considering a child node n

where its parent is at its left);

hl,n indicates which is the parent node of a given node n (considering a child node n

where its parent is at its right);

The maximum allowed tree depth is defined by d. To prevent overfitting, an addi-

tional cost (parameter β) is included into the objective function to penalize the occur-

rence of leaf nodes containing a number of problem instances smaller than threshold

τ .

Parameters vp,f indicate the value of each feature f for each problem instance p.

Parameters gl,n and hl,n indicate the parent node of a given node located at the left or

right, respectively. Thus, if the parent of the node n is at left (n mod 2 = 0), then

gl,n = b(n+ 1)/2c, otherwise gl,n = −1. Similarly, if the parent of the node n is at the

right (n mod 2 = 1), then hl,n = b(n+ 1)/2c, otherwise, hl,n = −1. The id/number of

a node is set from 1 to the number of nodes at a certain level in the tree. Thus, the

second level of a tree has nodes with id = 1 (n = 1) and id = 2 (n = 2).

3.2 Decision variables

The main decision variables xl,n,f,c are related to the feature and branch values at each

branching node of the decision tree. From the choices defined by the model, the problem

instances are grouped (variables yl,n,p) according to the features and the cut-off points

that were imposed on the branches. The model will determine the best algorithm for

each group of problem instances placed on each leaf node (variables zn,a). Variables un

are used to check if there are problem instances allocated to a given leaf node. This set

will be linked to the set of variables mn - explained later in this section.

Model 21

xl,n,f,c =


1, if feature f ∈ F and cut-off point c ∈ Cf is used for node n ∈ {1, . . . , 2l}

of level l ∈ {0, . . . , (d− 1)}.
0, otherwise.

yl,n,p =


1, if problem instance p ∈ P is included for node n ∈ {1, . . . , 2l}

of level l ∈ {1, . . . , d}.
0, otherwise.

zn,a =

{
1, if algorithm a ∈A is used in the leaf node n ∈ {1, . . . , 2d}.
0, otherwise.

un =

{
1, if leaf node n ∈ {1, . . . , 2d} has problem instances.

0, otherwise.

The next two sets of decision variables are used in the objective function. With

the exception of set mn (mn ∈ Z+), all other sets of variables are binary. To penalize

leaf nodes with few instances, which could result in overfitting, variables mn are used

to compute the number of problem instances that are missing for the leaf node n to

reach a pre-established threshold of problem instances per leaf node, determined by the

parameter τ . The set of decision variables wp,n,a is responsible for connecting the sets

of decision variables yl,n,p and zn,a, i.e., to ensure that all problem instances allocated to

a particular leaf node have the same recommended algorithm and that this algorithm is

exactly the one corresponding to zn,a. In addition, the connection between the set wp,n,a

and yl,n,p ensures that the problem instances allocated to leaf nodes respect branching

decisions on parent nodes.

22 Model

mn =

{
number of problem instances missing from the leaf node n to reach

a pre-established threshold of problem instances per leaf node.

wp,n,a =


1, if problem instance p ∈ P is selected for leaf node n ∈ {1, . . . , 2d}

with algorithm a ∈A.

0, otherwise.

3.3 Objective function and constraints

The objective of our model is to construct a tree of pre-defined maximum depth that

minimizes the distance of the performance (cost) obtained using the recommended algo-

rithm from the ideal performance (cost) for each problem p. Here we consider that this

non-negative value is already computed in r. There is an additional cost involved in the

objective function to penalize the occurrence of leaf nodes with only a few supporting

instances. The objective function (3.1) and the set of constraints (3.2-3.17) of our model

are presented below:

min
2
d∑

n=1

P∑
p=1

A∑
a=1

rp,a×wp,n,a +
2
d∑

n=1

β×mn (3.1)

Model 23

subject to∑
f∈F

∑
c∈Cf

xl,n,f,c = 1 ∀ l ∈ {0, . . . , (d− 1)}, n ∈ {1, . . . , 2l} (3.2)

2
d∑

n=1

A∑
a=1

wp,n,a = 1 ∀ p ∈ P (3.3)∑
a∈A

zn,a = 1 ∀ n ∈ {1, . . . , 2d} (3.4)

wp,n,a ≤ zn,a ∀ p ∈ P, n ∈ {1, . . . , 2d}, a ∈A (3.5)

wp,n,a ≤ yd,n,p ∀ p ∈ P, n ∈ {1, . . . , 2d}, a ∈A (3.6)

un ≥ yd,n,p ∀ n ∈ {1, . . . , 2d}, p ∈ P (3.7)∑
p∈P

yd,n,p +mn ≥ τ ×un ∀ n ∈ {1, . . . , 2d} (3.8)

yl,n,p ≤ y(l−1),max(gl,n,hl,n),p
∀ l ∈ {2, . . . , d}, n ∈ {1, . . . , 2l}, p ∈ P (3.9)

yl,n,p ≤ 1− x(l−1),gl,n,f,c ∀ l ∈ {1, . . . , d}, n ∈ {1, . . . , 2l}, (3.10)

p ∈ P, f ∈ F, c ∈ Cf : gl,n 6= −1 ∧ vp,f ≤ c

yl,n,p ≤ 1− x(l−1),hl,n,f,c
∀ l ∈ {1, . . . , d}, n ∈ {1, . . . , 2l}, (3.11)

p ∈ P, f ∈ F, c ∈ Cf : hl,n 6= −1 ∧ vp,f > c

xl,n,f,c ∈ {0, 1} ∀ l ∈ {0, . . . , (d− 1)}, n ∈ {1, . . . , 2l}, f ∈ F, c ∈ C (3.12)

yl,n,p ∈ {0, 1} ∀ l ∈ {1, . . . , d}, n ∈ {1, . . . , 2l}, p ∈ P (3.13)

zn,a ∈ {0, 1} ∀ n ∈ {1, . . . , 2d}, a ∈A (3.14)

un ∈ {0, 1} ∀ n ∈ {1, . . . , 2d} (3.15)

wp,n,a ∈ {0, 1} ∀ p ∈ P, n ∈ {1, . . . , 2d}, a ∈A (3.16)

mn ∈ Z+ ∀n ∈ {1, . . . , 2d} (3.17)

Equations 3.2 ensure that each internal node of the tree must have exactly one feature

and branching value selected. Each problem instance must be allocated to exactly one

leaf node and one algorithm (Equations 3.3) and each leaf node must have exactly one

associated algorithm (Equations 3.4). Inequalities 3.5 guarantee that the recommended

algorithm for a leaf node is the same as the algorithm of the problem instances allo-

cated to this node. Inequalities 3.6 guarantee that allocations of algorithms to problem

instances are performed respecting the leaf node selection for each problem instance.

Constraint set 3.7 ensures that variables un are 1 if and only if there is at least one

24 Model

problem instance associated with leaf node n. Constraints 3.8 ensure that variable mn

is set to the number of problem instances missing from the leaf node n to reach the

threshold τ . If mn = 0, then the leaf node n contains at least τ problem instances.

Constraints 3.9 ensure that any problem instance allocated in a particular node

must belong to the associated parent node. Finally, constraints 3.10 and 3.11 ensure

that problem instances allocated in a particular node respect the feature and branching

values selected at the parent node. Constraints 3.10 are generated when gl,n 6= −1

and vp,f ≤ c and ensure that problem instance p cannot be allocated at node n of

level l (yl,n,p = 0), when feature f and branching value c are chosen for its parent node

(x(l−1),gl,n,f,c = 1). Similarly, Constraints 3.11 are generated when hl,n 6= −1 and vp,f > c

and ensure that problem instance p cannot be allocated at node n of level l (yl,n,p = 0),

when feature f and branching value c are chosen for its parent node (x(l−1),hl,n,f,c
= 1).

Constraints 3.12-3.17 are related to the domain of the decision variables defined in the

model.

Chapter 4

Multivariate Model

In this chapter an integer programming model is proposed to find locally optimal mul-

tivariate splits, i.e. to define feature weights so that the best possible multivariate split

can be found for one node of the decision tree. This model is different from the model

presented in the previous chapter for the following reasons: (i) in the new model, the

cutoff value is not defined a priori (that is, the model itself will optimize this value); (ii)

For each division of a node, several features with various weights can be used. Therefore,

a given instance problem is attributed to the left child node if the sum of its feature val-

ues is multiplied by the features weights generated by the model is less than or equal to

the cut-off point optimized by the model; otherwise, this instance problem is attributed

to the right child node and; (iii) since we only optimize the division of one node into

two nodes, we do not penalize leaf nodes with few instances.

The sets and parameters are described in Section 4.1. The corresponding decision

variables are described in Section 4.2. The objective function associated with the prob-

lem and the constraints are described in Section 4.3.

4.1 Input data

P set of problem instances = {1, . . . , p};

A set of available algorithms with parameter settings = {1, . . . , a};

F set of instance features = {1, . . . , f};

25

26 Multivariate Model

rp,a cost of algorithm a for solving problem instance p;

vp,f normalized [0,1] numeric value for feature f for problem instance p;

Parameters vp,f indicate the value of each feature f for each problem instance p.

Since the integer programming model decides the branching value (cut-off point) and

this value is between 0 and 1, all features values must be normalized between 0 and 1.

4.2 Decision variables

The decision variables af are related to the weights of the features. The branch value

(cut-off point) is associated with the decision variable b. Thus, the left leaf node (vari-

ables ylp) will group all problem instances where the sum of the weight of features (af)

multiplied by the feature values vp,f is less than the cutoff point b. Similarly, the right

leaf node (variables yrp) will group the remaining problem instances.

The model will determine the best algorithm for each group of problem instances

placed on the two leaf nodes: left leaf node (variables zlp) and right leaf node (variables

zrp).

Multivariate Model 27

ylp =

{
1, if problem instance p ∈ P is at left leaf node

0, otherwise.

yrp =

{
1, if problem instance p ∈ P is at right leaf node

0, otherwise.

zla =

{
1, if algorithm a selected is at left leaf node

0, otherwise.

zra =

{
1, if algorithm a selected is at right leaf node

0, otherwise.

wp,a =

{
1, if algorithm a is recommended for problem instance p

0, otherwise.

af =
{

weight (real value between 0 and 1) of feature f .

b =
{

branching value (cut-off point).

With the exception of variables af and variable b, all other variables are binary.

4.3 Objective function and constraints

The objective of our model is to divide problem instances into two groups that minimizes

the distance of the performance obtained using the recommended algorithm from the

ideal performance for each problem p. Here we consider that this non-negative value is

already computed in r. Follows the objective function (4.1) and the set of constraints

28 Multivariate Model

(4.2-4.11) of our model:

min
∑
p∈P

wp,a× rp,a (4.1)

subject to

ylp + yrp = 1 ∀ p ∈ P (4.2)∑
f∈F

af × vp,f ≤ b+ 1− ylp ∀ p ∈ P (4.3)∑
f∈F

af × vp,f ≥ b+ ε− 1 + yrp ∀ p ∈ P (4.4)∑
a∈A

zla = 1 (4.5)∑
a∈A

zra = 1 (4.6)∑
a∈A

wp,a = 1 ∀ p ∈ P (4.7)

wp,a ≥ ylp + zla − 1 ∀ p ∈ P, a ∈A (4.8)

wp,a ≤ −ylp + zla + 1 ∀ p ∈ P, a ∈A (4.9)

wp,a ≥ yrp + zra − 1 ∀ p ∈ P, a ∈A (4.10)

wp,a ≤ −yrp + zra + 1 ∀ p ∈ P, a ∈A (4.11)

Equations 4.2 ensure that each problem instance must be allocated to exactly one

leaf node. Constraints 4.3 and 4.4 ensure that problem instances allocated to the left

and right leaf nodes respect the feature(s) and branching values selected at the parent

node. The parameter ε is defined as smallest difference between two different values of

features. Equation 4.5 ensures that the left leaf node of the tree must have exactly one

associated algorithm. Similarly, Equation 4.6 ensures that the right leaf node of the tree

must have exactly one associated algorithm. Equations 4.7 ensure that each problem

instance must be allocated to exactly one algorithm.

Inequalities 4.8 and 4.9 guarantee that the recommended algorithm for the left leaf

node is the same as the algorithm of the problem instances allocated to this node and

that allocations of algorithms to problem instances are performed respecting the left leaf

node selection for each problem instance. Similarly, Inequalities 4.10 and 4.11 guarantee

Multivariate Model 29

that the recommended algorithm for the right leaf node is the same as the algorithm

of the problem instances allocated to this node and that allocations of algorithms to

problem instances are performed respecting the right leaf node selection for each problem

instance.

30

Chapter 5

VND to accelerate the discovery of

better solutions

The model proposed in Chapter 3 can be optimized by standalone Mixed-Integer Pro-

gramming (MIP) solvers and in finite time the optimal solution for the ASP will be

produced. Despite the continuous evolution of MIP solvers (JOHNSON et al., 2000;

GAMRATH et al., 2015), the optimization of large MIP models in restricted times, in

the general case, is still challenging. Thus, we performed scalability tests (Section 6.1.3)

to check how practical it is the use of the complete model to create optimal decision

trees for the ASP in datasets of different sizes in limited times. Since our objective is to

produce a method that can tackle large datasets of experiment results, we also propose

a mathematical programming heuristic (FISCHETTI and FISCHETTI, 2016) based on

Variable Neighborhood Descent (VND) (MLADENOVIĆ and HANSEN, 1997) to speed

up the production of feasible solutions. VND is a local search method that consists of

exploring the solution space through systematic change of neighborhood structures. Its

success is based on the fact that different neighborhood structures do not usually have

the same local minimum.

Algorithm 1 shows the pseudo-code for our approach called VND-ASP.

31

32 VND to accelerate the discovery of better solutions

Algorithm 1 VND-ASP (r, h, l, D, d, α, m, n, Q, A, P, q, q′)
Input. matrix r: algorithm performance matrix; set D: all different branching values for all features

(F×Cf); set A: set of algorithms; set P: set of problems.

Parameters. h: matheuristic execution timeout; l: MIP search execution timeout; d: maximum depth;

α: represents a continuous value between 0.1 and 1.0 that controls the greedy or random construction

of the solution; m: maximum number of trees; n: maximum number of iterations without improvement;

q: defines the number of algorithms of the set A, q
′: minimum number of algorithms to cover each

problem instance.

1: E ← {}; T ← {}; st← time()

2: Q ← algsubset (r, A, P, E, q, q′)

3: GRC-ASP (P, A, r, T, 0, D, d, 1.0, m, E, Q)

4: i ← 0

5: while (i < n) do

6: T ← {}
7: GRC-ASP (P, A, r, T, i, D, d, rand (0.1, 1.0), m, E, Q)

8: if (PerformanceDegradation (T) < HigherPerformanceDegradation (E)) then

9: if (PerformanceDegradation (T) < LowerPerformanceDegradation (E)) then

10: i ← -1

11: end if

12: i ← i + 1

13: if (T /∈ E) then

14: if (|E| < m) then

15: E ← E ∪ {T}
16: else

17: s ← SimilarityTrees (E, T); Es ← T

18: end if

19: Q ← Q ∪ AlgorithmsLeafNodes(T)

20: end if

21: else

22: i ← i + 1

23: end if

24: end while

25: Let s be the best solution of the set E

26: Let J be the list of all subproblems in all neighborhoods

27: J ← Shuffle(); k ← 1; ft← time(); et← ft− st
28: while (k ≤ |J| and et ≤ h) do

29: s
′

← MIPSearch (s, k, l, Q. J)

30: if (f(s
′

) < f(s)) then

31: s← s
′

; k ← 1; J ← Shuffle(J)

32: else

33: k ← k + 1

34: end if

35: ft← time(); et← ft− st
36: end while

37: Return s;

VND to accelerate the discovery of better solutions 33

Line 1 initializes set E and structure tree T as empty. elite set E represents the set of

trees/solutions. Structure tree T represents the tree that will be built at each iteration

of the algorithm. In Line 2, the function algsubset (r, A, P, E, q, q′) is called. This

function adds a subset of promising algorithms to the set Q as follows. The algorithms

are selected according to the following MIP model: a covering like model to select q

algorithms is solved where each instance should be covered by at least q′ < q algorithms,

minimizing the cost of covering each problem instance with the selected algorithm. The

function GRC-ASP (P, A, r, T, 0, D, d, 1.0, m, E, Q) is called in Line 3,

where a Greedy Randomized algorithm is employed to generate initial feasible solution

(GRC-ASP - Algorithm 2). A initial feasible solution is a decision tree that respects the

constraints imposed on the integer programming model presented in Chapter 3. As we

can see in the function call in Line 3, the first initial feasible solution built is totally

greedy (α = 1.0).

Multiple runs of this constructive algorithm are used to construct an elite set E of

solutions (Lines 5-24). The repetition structure (i < n) is conditioned to at most n

iterations without updates in the elite set. The function GRC-ASP (P, A, r, T, i,

D, d, rand (0.1, 1.0), m, E, Q) is called in Line 7. For the elite set E to have different

solutions, the parameter α is used. This parameter controls the randomization of the

greedy algorithm, varying between 0.1 and 1.0 for each function call.

In Line 8 we check if the solution obtained T is better than the worst solution in the

elite set E of solutions. If yes, this solution will be included in the elite set E. In Line 9,

we check if the solution T is better than the best solution of the elite set E. If yes, then

we update the counter i. To prevent the elite set E from containing the same solutions,

the current solution T is only included in the set if it is not already in it (Line 13). If

the elite set E is not yet complete (|E| < m), then we add the solution T. If we already

have m solutions in the elite set E, then we call the function SimilarityTrees (E, T)

which looks for the solution most similar to the solution T and then removes it and adds

solution T to the elite set E. The similarity between two trees is verified by calculating

for each internal node how many features and cutoff point values are equal in the two

trees. The subset Q includes all algorithms that appear in the elite set E (line 19).

The best solution of elite set E is used in our VND local search (MIPSearch) - Line

25, where parts of this solution are fixed and the remaining parts are optimized with

the MIP model presented previously. The list J contains all sub-problems that can be

obtained by fixing solution components in all neighborhoods (Line 26). We shuffle these

sub-problems (Line 27) in a list so that there is no priority for searching first in one

34 VND to accelerate the discovery of better solutions

neighborhood relative to another. This strategy is inspired by Souza et al. (2010), where

several neighborhood orders were in tested in a VND algorithm and the randomized

order obtained better results. In Line 29, the function MIPSearch (s, k, l, Q. J) is

called where our MIP based neighborhoods (Section 5.2) are explored. The parameter

l indicates the time limit for a single exploration of a sub-problem in the MIP based

neighborhood search. Whenever the incumbent solution is updated, the list J is shuffled

again (Line 31) and the algorithm starts to explore it from the beginning.

Additionally, our matheuristic has the following parameters: h indicates the time

limit for running the entire algorithm; d is the maximum tree depth; Set D represents the

different features and cut-off points of the problem instances. To control the execution

time of the algorithm, we use the function time() which returns the current time and

also the variables st and ft that represent the start time and the final time respectively.

In the following sections we describe in more details the algorithm used to generate

initial feasible solutions (Section 5.1) and the MIP based neighborhoods employed in

our algorithm (Section 5.2).

5.1 Constructive Algorithm

The initial solution s is obtained from the best solution of the elite set of trees E. These

trees is obtained using a hybrid approach inspired by Quinlan (1993)’s C4.5 algorithm

to generate a decision tree and the Greedy Randomized Constructive (GRC) search

(RESENDE and RIBEIRO, 2014) . GRC searches to a certain randomness in the greedy

criterion adopted by the C4.5 algorithm. Algorithm 2 shows the hybrid approach. Lines

7-16 of Algorithm 2 (GRC-ASP) show the adaptation made in the C4.5 algorithm for

use of the restricted candidate list of the GRC search.

Another adaptation considers the metric to split the nodes. Algorithm C4.5 uses

information gain metric. This metric aims to choose the attribute that minimizes

the impurity of the data. Information gain measures how much information a feature

gives us about the class. Thus, the feature with the highest information gain will be

tested first. In a data set, it is a measure of the lack of homogeneity of the input data

in relation to its classification. In our case, we used the performance degradation

metric to split the nodes. This metric searches for the attribute that minimizes the

degradation of performance obtained using the recommended algorithm from the ideal

VND to accelerate the discovery of better solutions 35

performance for each problem instance p.

Algorithm 2 GRC-ASP (P, A, r, T, i, D, d, α, m, E, Q)

1: if (current depth = d) then

2: terminate

3: end if

4: for all (f, c) in D do

5: κf,c ← PerformanceDegradationTree (T, r, f , c)

6: end for

7: RCL ← ∅
8: a ← max(κf,c)

9: a ← min(κf,c)

10: pdt ← a + α × (a - a)

11: for all (f, c) in D do

12: if κf,c ≤ pdt then

13: RCL ← RCL ∪ (f, c)

14: end if

15: end for

16: arcl = Randomly select a (f, c) from the RCL list.

17: t = Create a decision node in T that tests arcl in the root

18: Dl = Induced sub-dataset of r whose value of feature f are less than or equal to the

cut-off point arcl

19: Dr = Induced sub-dataset of r whose value of feature f are greater cut-off point arcl

20: Tl = GRC-ASP (P, A, r, T, i, Dl, d, α, m, n, E, Q)

21: Attach Tl to the corresponding branch of t

22: Tr = GRC-ASP (P, A, r, T, i, Dr, d, α, m, n, E, Q)

23: Attach Tr to the corresponding branch of t

Each tree generated is limited by parameter d, which indicates the maximum depth

of the tree. In this sense, the condition imposed on Line 1, verifies that the current depth

is equal to d and if yes, terminates the algorithm. The repetition structure included in

Line 4 calculates the performance degradation of each feature f and cut-off point value

c of set D and this value is assigned to matrix κf,c.

Variables a and a receive the worst and best performance degradation value from

matrix κ respectively (Lines 8 and 9). As already mentioned, the parameter α controls

36 VND to accelerate the discovery of better solutions

the randomization of the greedy algorithm, varying between 0.1 and 1.0. Therefore,

when α = 1.0, we consider adding to the list RCL (Restricted Candidate List), initially

empty - Line 7, only the best solution, that is, the solution with the least performance

degradation (pdt = a). We consider varying the value of the parameter α between 0.1

and 1.0 so that it would not be possible for all solutions to be included in the list RCL.

This case occurs when α = 0.0 and then pdt = a. The value of the variable pdt is set on

Line 10 and the list RCL is updated on Lines 11-15.

In Line 16, a pair of feature and cutoff value from the list RCL is chosen at random.

From there, the decision tree T is built and two subsets are induced (Lines 17-19). The

subset Dl contains only problem instances whose feature value f is less than or equal the

value of the cutoff point arcl. The subset Dr contains the remaining problem instances,

that is, those in which the value of feature f is greater than the value of the cutoff point

arcl. Lines 20 and 22 call the algorithm recursively, where the branch of the tree on the

left (Tl) and the branch of the tree on the right (Tr) are considered.

We also included the multivariate model presented in Chapter 4 within the construc-

tive algorithm presented in Algorithm 2. Thus, for each node of the decision tree we use

the model to consider multivariate divisions, that is, for a given node, several features

with different weights can be chosen from the augmented list of features that includes

hybrid features created with our MIP model. The value of this new feature for each

problem instance p is calculated as follows: sum of the multiplication of the weight of

each feature f by the value of each feature f for problem p.

We consider running the model for only one decision tree node. In this sense, we

first consider the root node with all instances of the data set. We run the model for

the root node and so now we have two subproblems related to the left child node of

the root node and the right child node of the root node. We run the model again for

each of the subproblems and so on, considering only a subset of the problem instances

according to the cutoff values of the parent nodes. The multivariate model receives as

input parameters the matrix r of performance algorithms, the set of problems P, the

set of algorithms A, the set of features F and the set of all different branch values for

all features D. All values of this last set are normalized between 0 and 1 to make the

execution of the model viable. In normalization, we ensure that the shortest nonzero

distance between two values of a given feature is at least 0.001.

Algorithm 3 (MGRC-ASP) shows the adaptations made in the constructive algo-

rithm. As we can see, Lines 3 and 4 are added when we compare with Algorithm

VND to accelerate the discovery of better solutions 37

2.

Algorithm 3 MGRC-ASP (P, A, r, T, i, D, d, α, m, E, Q)

1: if (current depth = d) then

2: terminate

3: end if

4: (f , c) ← modelMultivariate(r, P, A, F, D)

5: D ← D ∪ (f, c)

6: for all (f, c) in D do

7: κf,c ← PerformanceDegradationTree (T, r, f , c)

8: end for

9: RCL ← ∅
10: a ← max(κf,c)

11: a ← min(κf,c)

12: pdt ← a + α × (a - a)

13: for all (f, c) in D do

14: if κf,c ≤ pdt then

15: RCL ← RCL ∪ (f, c)

16: end if

17: end for

18: arcl = Randomly select a (f, c) from the RCL list.

19: t = Create a decision node in T that tests arcl in the root

20: Dl = Induced sub-dataset of r whose value of feature f are less than or equal to the

cut-off point arcl

21: Dr = Induced sub-dataset of r whose value of feature f are greater cut-off point arcl

22: Tl = GRC-ASP (P, A, r, T, i, Dl, d, α, m, n, E, Q)

23: Attach Tl to the corresponding branch of t

24: Tr = GRC-ASP (P, A, r, T, i, Dr, d, α, m, n, E, Q)

25: Attach Tr to the corresponding branch of t

5.2 Neighborhoods

Since optimizing the complete MIP model may be too expensive (according to experi-

ments that will be presented in the next chapter), five neighborhoods have been designed

38 VND to accelerate the discovery of better solutions

to be employed in a fix-and-optimize context. Each neighborhood defines a set of sub-

problems to be optimized. These neighborhoods are explained in what follows, together

with examples shown in Figs. 5.1-5.5. Examples consider a decision tree with 4 levels:

variables in gray are fixed and variables highlighted in black will be optimized. These

neighborhoods are explored in a Variable Neighborhood Descent using the MIP solver

in a fix-and-optimize strategy. Not only the neighborhoods, but the sub-problems of all

neighboorhoods, are explored in a random order.

We will explain how the decision variables xl,n,f,c, yl,n,p and zn,a are optimized in each

of the neighborhoods. The following neighborhoods were developed:

• Neighborhood N1: optimizes the selection of the feature and the cut-off point

of an internal node and consequently optimizes the allocation of problems in child

nodes as well as optimizes the choice of the recommended algorithm in the respec-

tive leaf nodes.

In the example of Figure 5.1, we consider optimizing the feature and cut-off point

of internal node 2 at level 1 of the tree (binary variables x1,2,1,...,f ,1,...,Cf
). Since

these variables determine the problems that will be allocated to the left and right

child nodes, the binary variables y2,3,1,...,p, y2,4,1,...,p, y3,5,1,...,p, y3,6,1,...,p, y3,7,1,...,p and

y3,8,1,...,p will also be optimized. Moreover, the recommended algorithm to the

problems allocated in all child nodes in relation to the chosen node - internal node

2 of level 1 of the tree - which are leaf nodes should also be optimized. In our

example, these would be the binary variables z5,1,...,a, z6,1,...,a, z7,1,...,a and z8,1,...,a of

the leaf nodes 5,. . . ,8 of level 3 of the tree.

• Neighborhood N2: optimizes the selection of the feature and the cut-off point

of an internal node (this node cannot be the root node) and optimizes the choice of

the feature and the cut-off point of the associated parent node, it consequently

optimizes the allocation of problems in child nodes of associated parent node as

well as the choice of the recommended algorithm in the respective leaf nodes.

In the example of Figure 5.2, we consider optimizing the feature and cut-off point

of internal node 2 of level 2 of the tree (binary variables x2,2,1,...,f ,1,...,Cf
) and op-

timizing the feature and cut-off point of associated parent node (binary variables

x1,1,1,...,f ,1,...,Cf
). Since these variables determine the problems that will be allocated

to the left and right child nodes, the binary variables y2,1,1,...,p, y2,2,1,...,p, y3,1,1,...,p,

y3,2,1,...,p, y3,3,1,...,p and y3,4,1,...,p will also be optimized. Moreover, the recommended

algorithm to execute the problems allocated in all child nodes in relation to the

VND to accelerate the discovery of better solutions 39

associated parent node - internal node 1 of level 1 of the tree - which are leaf nodes

should also be optimized. In our example, these would be the binary variables

z1,1,...,a, z2,1,...,a, z3,1,...,a and z4,1,...,a of the leaf nodes 1,. . . ,4 at level 3 of the tree.

• Neighborhood N3: optimizes the selection of the feature and the cut-off point

of all nodes at one level (the level of the root node cannot be chosen) of the

decision tree. Consequently optimizes the allocation of the problems in the nodes

of the subsequent levels to the chosen level, it in addition to the choice of the

recommended algorithm in the respective leaf nodes.

In the example of Figure 5.3, we consider optimizing the feature and cut-off point

of all nodes of level 2 of the tree (binary variables x2,1,1,...,f ,1,...,Cf
, x2,2,1,...,f ,1,...,Cf

,

x2,3,1,...,f ,1,...,Cf
and x2,4,1,...,f ,1,...,Cf

). Since these variables determine the problems

that will be allocated at subsequent levels, the binary variables y3,1,1,...,p, y3,2,1,...,p,

y3,3,1,...,p, y3,4,1,...,p, y3,5,1,...,p, y3,6,1,...,p, y3,7,1,...,p and y3,8,1,...,p will also be optimized. In

addition, the recommended algorithm to execute the problems allocated in all leaf

nodes should also be optimized. In our example, these would be binary variables

z1,1,...,a, z2,1,...,a, z3,1,...,a, z4,1,...,a, z5,1,...,a, z6,1,...,a, z7,1,...,a, and z8,1,...,a of leaf nodes

1,. . . ,8 at level 3 of the tree.

• Neighborhood N4: optimizes the selection of the feature and the cut-off point

of the root node and the choice of the feature and the cut-off point of an internal

node, so that this node is at least at the third level of the tree (l = 2). Consequently

it optimizes the allocation of problems in all nodes of the tree as well as the choice

of the recommended algorithm in the respective leaf nodes.

In the example of Figure 5.4, we consider optimizing the feature and cut-off point

of both the root node (binary variables x0,1,1,...,f ,1,...,Cf
) and optimizing internal

node 2 at level 2 of the tree (binary variables x2,2,1,...,f ,1,...,Cf
). Since these variables

determine the problems that will be allocated to all other nodes of the tree, binary

variables y1,1,1,...,p, y1,2,1,...,p, y2,1,1,...,p, y2,2,1,...,p, y2,3,1,...,p, y2,4,1,...,p, y3,1,1,...,p, y3,2,1,...,p,

y3,3,1,...,p, y3,4,1,...,p, y3,5,1,...,p, y3,6,1,...,p, y3,7,1,...,p and y3,8,1,...,p will also be optimized. In

addition, the recommended algorithm to execute the problems allocated to all leaf

nodes should also be optimized. In our example, these would be binary variables

z1,1,...,a, z2,1,...,a, z3,1,...,a, z4,1,...,a, z5,1,...,a, z6,1,...,a, z7,1,...,a, and z8,1,...,a of leaf nodes

1,. . . ,8 at level 3 of the tree.

• Neighborhood N5: optimizes the selection of the feature and the cut-off point

of a particular path from the root node to one of the tree’s leaf nodes. Consequently

40 VND to accelerate the discovery of better solutions

it both optimizes the allocation of problems in all nodes of the tree and the choice

of the recommended algorithm in the respective leaf nodes.

In the example of Figure 5.5, we consider the path from the root node to leaf

node 8. We consider optimizing the feature and cut-off point of both the root

node (binary variables x0,1,1,...,f ,1,...,Cf
), internal node 2 at level 1 of the tree (binary

variables x1,2,1,...,f ,1,...,Cf
), and internal node 4 at level 2 of the tree (binary variables

x2,4,1,...,f ,1,...,Cf
). Since these variables determine the problems that will be allocated

to all other nodes of the tree, binary variables y1,1,1,...,p, y1,2,1,...,p, y2,1,1,...,p, y2,2,1,...,p,

y2,3,1,...,p, y2,4,1,...,p, y3,1,1,...,p, y3,2,1,...,p, y3,3,1,...,p, y3,4,1,...,p, y3,5,1,...,p, y3,6,1,...,p, y3,7,1,...,p

and y3,8,1,...,p will also be optimized. In addition, the recommended algorithm to

execute the problems allocated to all leaf nodes should also be optimized. In our

example, these would be binary variables z1,1,...,a, z2,1,...,a, z3,1,...,a, z4,1,...,a, z5,1,...,a,

z6,1,...,a, z7,1,...,a, and z8,1,...,a of leaf nodes 1,. . . ,8 at level 3 of the tree.

x0,1,1,...,f,1,...,Cf

x1,1,1,...,f,1,...,Cf

y1,1,1,...,p

x2,1,1,...,f,1,...,Cf

y2,1,1,...,p

y3,1,1,...,p

w1,...,p,1,1,...,a

z1,1,...,a
u1

m1

y3,2,1,...,p

w1,...,p,2,1,...,a

z2,1,...,a
u2

m2

x2,2,1,...,f,1,...,Cf

y2,2,1,...,p

y3,3,1,...,p

w1,...,p,3,1,...,a

z3,1,...,a
u3

m3

y3,4,1,...,p

w1,...,p,4,1,...,a

z4,1,...,a
u4

m4

x1,2,1,...,f,1,...,Cf

y1,2,1,...,p

x2,3,1,...,f,1,...,Cf

y2,3,1,...,p

y3,5,1,...,p

w1,...,p,5,1,...,a

z5,1,...,a
u5

m5

y3,6,1,...,p

w1,...,p,6,1,...,a

z6,1,...,a
u6

m6

x2,4,1,...,f,1,...,Cf

y2,4,1,...,p

y3,7,1,...,p

w1,...,p,7,1,...,a

z7,1,...,a
u7

m7

y3,8,1,...,p

w1,...,p,8,1,...,a

z8,1,...,a
u8

m8

Figure 5.1: Example of neighborhood N1 variables: variables highlighted in
gray are fixed and variables highlighted in black will be optimized.

x0,1,1,...,f,1,...,Cf

x1,1,1,...,f,1,...,Cf

y1,1,1,...,p

x2,1,1,...,f,1,...,Cf

y2,1,1,...,p

y3,1,1,...,p

w1,...,p,1,1,...,a

z1,1,...,a
u1

m1

y3,2,1,...,p

w1,...,p,2,1,...,a

z2,1,...,a
u2

m2

x2,2,1,...,f,1,...,Cf

y2,2,1,...,p

y3,3,1,...,p

w1,...,p,3,1,...,a

z3,1,...,a
u3

m3

y3,4,1,...,p

w1,...,p,4,1,...,a

z4,1,...,a
u4

m4

x1,2,1,...,f,1,...,Cf

y1,2,1,...,p

x2,3,1,...,f,1,...,Cf

y2,3,1,...,p

y3,5,1,...,p

w1,...,p,5,1,...,a

z5,1,...,a
u5

m5

y3,6,1,...,p

w1,...,p,6,1,...,a

z6,1,...,a
u6

m6

x2,4,1,...,f,1,...,Cf

y2,4,1,...,p

y3,7,1,...,p

w1,...,p,7,1,...,a

z7,1,...,a
u7

m7

y3,8,1,...,p

w1,...,p,8,1,...,a

z8,1,...,a
u8

m8

Figure 5.2: Example of neighborhood N2 variables: variables highlighted in
gray are fixed and variables highlighted in black will be optimized.

VND to accelerate the discovery of better solutions 41

x0,1,1,...,f,1,...,Cf

x1,1,1,...,f,1,...,Cf

y1,1,1,...,p

x2,1,1,...,f,1,...,Cf

y2,1,1,...,p

y3,1,1,...,p

w1,...,p,1,1,...,a

z1,1,...,a
u1

m1

y3,2,1,...,p

w1,...,p,2,1,...,a

z2,1,...,a
u2

m2

x2,2,1,...,f,1,...,Cf

y2,2,1,...,p

y3,3,1,...,p

w1,...,p,3,1,...,a

z3,1,...,a
u3

m3

y3,4,1,...,p

w1,...,p,4,1,...,a

z4,1,...,a
u4

m4

x1,2,1,...,f,1,...,Cf

y1,2,1,...,p

x2,3,1,...,f,1,...,Cf

y2,3,1,...,p

y3,5,1,...,p

w1,...,p,5,1,...,a

z5,1,...,a
u5

m5

y3,6,1,...,p

w1,...,p,6,1,...,a

z6,1,...,a
u6

m6

x2,4,1,...,f,1,...,Cf

y2,4,1,...,p

y3,7,1,...,p

w1,...,p,7,1,...,a

z7,1,...,a
u7

m7

y3,8,1,...,p

w1,...,p,8,1,...,a

z8,1,...,a
u8

m8

Figure 5.3: Example of neighborhood N3 variables: variables highlighted in
gray are fixed and variables highlighted in black will be optimized.

x0,1,1,...,f,1,...,Cf

x1,1,1,...,f,1,...,Cf

y1,1,1,...,p

x2,1,1,...,f,1,...,Cf

y2,1,1,...,p

y3,1,1,...,p

w1,...,p,1,1,...,a

z1,1,...,a
u1

m1

y3,2,1,...,p

w1,...,p,2,1,...,a

z2,1,...,a
u2

m2

x2,2,1,...,f,1,...,Cf

y2,2,1,...,p

y3,3,1,...,p

w1,...,p,3,1,...,a

z3,1,...,a
u3

m3

y3,4,1,...,p

w1,...,p,4,1,...,a

z4,1,...,a
u4

m4

x1,2,1,...,f,1,...,Cf

y1,2,1,...,p

x2,3,1,...,f,1,...,Cf

y2,3,1,...,p

y3,5,1,...,p

w1,...,p,5,1,...,a

z5,1,...,a
u5

m5

y3,6,1,...,p

w1,...,p,6,1,...,a

z6,1,...,a
u6

m6

x2,4,1,...,f,1,...,Cf

y2,4,1,...,p

y3,7,1,...,p

w1,...,p,7,1,...,a

z7,1,...,a
u7

m7

y3,8,1,...,p

w1,...,p,8,1,...,a

z8,1,...,a
u8

m8

Figure 5.4: Example of neighborhood N4 variables: variables highlighted in
gray are fixed and variables highlighted in black will be optimized.

x0,1,1,...,f,1,...,Cf

x1,1,1,...,f,1,...,Cf

y1,1,1,...,p

x2,1,1,...,f,1,...,Cf

y2,1,1,...,p

y3,1,1,...,p

w1,...,p,1,1,...,a

z1,1,...,a
u1

m1

y3,2,1,...,p

w1,...,p,2,1,...,a

z2,1,...,a
u2

m2

x2,2,1,...,f,1,...,Cf

y2,2,1,...,p

y3,3,1,...,p

w1,...,p,3,1,...,a

z3,1,...,a
u3

m3

y3,4,1,...,p

w1,...,p,4,1,...,a

z4,1,...,a
u4

m4

x1,2,1,...,f,1,...,Cf

y1,2,1,...,p

x2,3,1,...,f,1,...,Cf

y2,3,1,...,p

y3,5,1,...,p

w1,...,p,5,1,...,a

z5,1,...,a
u5

m5

y3,6,1,...,p

w1,...,p,6,1,...,a

z6,1,...,a
u6

m6

x2,4,1,...,f,1,...,Cf

y2,4,1,...,p

y3,7,1,...,p

w1,...,p,7,1,...,a

z7,1,...,a
u7

m7

y3,8,1,...,p

w1,...,p,8,1,...,a

z8,1,...,a
u8

m8

Figure 5.5: Example of neighborhood N5 variables: variables highlighted in
gray are fixed and variables highlighted in black will be optimized.

42

Chapter 6

Experiments

To evaluate our approach, we built a dataset with the runtime of a set of exact algo-

rithms in linear programming. These algorithms will be detailed in the next section.

The experiments and details on this dataset, such as problem instances, features and

algorithms, are presented in Section 6.1. After that, the experiments are presented con-

sidering the complete dataset and also considering use cross-validation and then divide

the complete dataset into 10 partitions, where training and test partitions are used.

These experiments consider only our mathematical programming heuristic.

In Section 6.2, we used the scenarios of the Open Algorithm Selection Challenge -

which took place in 2017 - to compare our approach with the Random Forest algorithm.

The Random Forest algorithm has been the most used technique for recommending al-

gorithms, including in the winner of the last algorithm selection competition, as detailed

in Subsections 2.1.1 and 2.1.3. Thus, we describe the performance metrics used by the

competition to evaluate the algorithms, as well as presenting the 8 scenarios/datasets

used.

43

44 Experiments

6.1 First dataset: linear programming algorithms from

the COIN-OR Linear Programming solver

6.1.1 Problem instances

Computational experiments were performed for a diverse set of 905 problem instances

including the MIPLIB 3, 2003, 2010 and 2017 (KOCH et al., 2011) benchmark sets.

Additional instances from Nurse Rostering (SANTOS et al., 2016), School Timetabling

(FONSECA et al., 2017) and Graph Drawing (SILVA and SANTOS, 2017) were also

included. We extracted 36 features associated to variables, constraints and coefficients

in the constraint matrix for problem instances. These features are similar to the ones

used in Hutter et al. (2014) with the notable exception that features that are computa-

tionally expensive to extract were discarded to ensure that our approach would incur no

overhead when incorporated into an algorithm. When building the problem instances

dataset, special care was taken to ensure that no application was over-represented. Table

6.1 shows the minimum (min), maximum (max), average (avg) and standard deviation

(sd) of each feature over the complete set of problem instances. The density feature

was computed as (nz
rows

)× 100. The feature nz represents the number of non-zeros in

the constraints and feature rows represents the number of constraints of the problem

instance.

Fig. 6.1 summarizes the 36 features for ASP, grouped by features related to variables,

constraints and coefficients in the constraint matrix.

Experiments 45

Table 6.1: Distribution of problem instances according to features

feature min max avg sd

cols 18 2277736 37481.15 126378.81

bin 0 2277736 26875.62 109002.76

int 0 440899 2519.47 17174.05

cont 0 799416 8086.07 49595.67

objMin -172440000000 5084550 -191047068.15 5732090405.53

objMax -400.07 1125210000 4877773.15 62464466.42

objAv -25388000000 50035400 -28135134.91 843951825.78

objMed -155250000 40212300 -213435.87 7520569.32

objAllInt 0 1 0.72 0.45

objRatioLSA -1 2241420000000 2726084829.79 74729265604.54

rows 4 2897380 38935.69 152421.32

rpart 0 18431 275.87 1136.30

rpack 0 773664 4378.65 42031.43

rcov 0 88452 417.72 3667.38

rcard 0 430 10.87 35.36

rknp 0 103041 202.93 3541.62

riknp 0 547200 2240.30 31213.63

rflowbin 0 381806 2453.88 20335.27

density 0.00018 99.18 4.33 15.14

rflowint 0 120201 474.07 4274.16

rflowmx 0 410733 1926.49 18136.89

rother 0 2365080 26554.92 115161.44

rhsMin -29989100 1324 -46520.02 1035978.83

rhsMax -6.47 1E+100 1.55E+98 1.23E+99

rhsAv -28274700 6.24E+95 7.78E+93 6.31E+94

rhsMed -29961800 121388 -41940.55 1032770.66

rhsAllInt -1 1E+100 1.55E+98 1.23E+99

rhsRatioLSA -1 1.01E+103 2.02E+100 4.50E+101

equalities 0 416449 6254.27 28930.67

nz 46 27329856 414018.01 1647890.27

aMin -4208540000 1 -5031709.32 140038859.24

aMax -1 370795000 2102736 16366322.98

aAv -107447000 1148410 -116070.46 3577572.84

aMed -5590.14 10000 14.79 423.70

aAllInt 0 1 0.71 0.45

aRatioLSA 1 5786940000000 6773500440.57 192475581841.59

46 Experiments

 Variable features:
1. Number of variables: cols.
2 – 4. Number of variables of type: bin, int and cont.
5 – 10. Variation of the objective function coefficient: objMin, objMax,

objAv, objMed, objAllInt and objRatioLSA.
11 – 12. Number of non-zeros and density: nz and density.

 Constraint features:
11 – 12. Number of non-zeros and density: nz and density.
13. Number of constraints: rows.
14 – 24. Number of constraints of type: rpart, rpack, rcov, rcard, rknp,

riknp, rflowbin, rflowint, rflowmx, rother and equalities.
25 – 30 Right-hand Side Features: rhsMin, rhsMax, rhsAv, rhsMed,

rhsAllInt and rhsRatioLSA.

 Coefficients in the constraint matrix features:
31 – 36. Variation of the coefficients: aMin, aMax, aAv, aMed, aAllInt and

aRatioLSA.

Figure 6.1: Features of problem instances of Algorithm Selection Problem:
variables, constraints and coefficients in the constraint matrix.

6.1.2 Available algorithms

The definition of the solution method for the LP solver in CBC involves selecting the

algorithm, such as dual simplex or the barrier and defining several parameters, such as

the perturbation value and the pre-solve effort. Overall 550 different algorithm configu-

rations were evaluated for each one of the 905 problem instances. A timeout T = 4000

seconds was set for each execution. The computational results matrix r was filled with

the execution time for regular executions, i.e. executions that finished before the time

limit and provided correct results. Executions for a given problem instance p and algo-

rithm a that crashed, exceeded the time limit or produced wrong results were penalized

by setting rpa = 8000 seconds. This large batch of experiments was executed in comput-

ers with 32 Gb of RAM and 10 Intel R©i9-7900X processing cores. Tasks where scheduled

in parallel (7 threads simultaneously) with the GNU Parallel package (TANGE, 2011).

Tables 6.2-6.4 show the algorithms and parameter values evaluated. The default value of

each parameter is shown in parentheses right after the parameter name. Following each

table, we put details about the primal, dual and barrier algorithms. This experiment

to generate the experimental results dataset produced some interesting results itself: a

new better single parameter setting was discovered that decrease the solution time by

26% in average, a remarkable improvement considering that CLP is already the fastest

open source linear programming solver.

Experiments 47

Table 6.2: Algorithm primal simplex and parameters values evaluated

parameters values

idiot (-1) {3, 4, 5, 6, 7, 9, 10, 11, 15, 20, 25, 30, 35, 40, 50, 60, 80, 100}
crash (off) {idiot1, idiot2, idiot3, idiot4, idiot5, idiot6, idiot7, lots, on, so}
pertv (50) {-3500, -3157, -3000, -2395, -2000, -1483, -1000, 61}
psi (-0.5) {-0.84, -0.62, -0.35, 0.62, 0.66, 0.84, 0.91}
sprint (-1) {1217, 1557, 1804, 3384, 4826}
subs (3) {1, 57, 251, 270, 294}
passp (5) {-138, 22, 40, 80, 138}

dualize (3) {0, 1, 2, 4}
primalp (auto) {change, exa}
presolve (on) {off, more}
scal (auto) {geo, off}

perturb (on) {off}
spars (on) {off}

The primal simplex method exploits objective linearity and viable region convexity

(PLP) to move efficiently along a sequence of extreme points until it reaches an optimal

extreme point (DANTZIG, 1963). The method is generally implemented in two phases.

In the first phase, an augmented system is initialized with an easily identifiable extreme-

point solution using artificial variables to measure infeasibilities, and then optimized

using the simplex algorithm with a view to obtaining an extreme-point solution to the

augmented system that is feasible for the original system. If a solution without artificial

variables cannot be found, the original linear program is infeasible. Otherwise, the

second phase of the method uses the original problem formulation (without artificial

variables) and the feasible extreme-point solution from the first phase and moves from

that solution to a neighboring, or adjacent, solution.

The dual simplex method works implicitly on the dual problem (DLP) while oper-

ating on the constraints associated with the primal problem (PLP) (LEMKE, 1954). It

does so by constructing a dual basic feasible solution, and then working to remove the

primal infeasibilities. In that sense, the two algorithms are symmetric. By contrast, one

can also explicitly solve the dual problem (DLP) by operating on the dual constraint set

with either the primal or dual simplex method. In all cases, the algorithm moves from

one adjacent extreme point to another to improve the objective function value (assuming

48 Experiments

Table 6.3: Algorithm duals simplex and parameters values evaluated

parameters values

crash (off) {idiot1, idiot2, idiot3, idiot4, idiot5, idiot6, idiot7, lots, on, so}
dualize (3) {0, 1}

dualp (auto) {pesteep, steep}
passp (5) {-167, -81, -67, -33, 0, 36, 66, 67, 93}

perturb (on) {off}
pertv (50) {-4900, . . . , 820}

presolve (on) {more, off}
psi (-0.5) {-1.1, . . . , 1.1}

scal (auto) {equi, geo, rows}
spars (on) {off}
sprint (-1) {0, 468, 620, 1612, 2228}
subs (3) {3, 37, 40, 41, 297, 4288, 4354, 4932}

non-degeneracy) at each iteration.

By default, CPLEX uses the dual simplex method. Experiments on a wide variety

of linear programs have shown that this method provides the best overall performance.

However, as IBM support1, the primal simplex method may outperform the dual

simplex method on problems where the number of variables is dramatically larger than

the number of constraints. This can occur because the dual simplex method requires

full pricing, while the primal does not.

Table 6.4: Algorithm barrier and parameters values evaluated

parameters values

cholesky (native) {dense, univ}
passp (5) {83}
pertv (50) {-208, 208}
scal (auto) {geo, off}

subs (3) {132}

1https://www.ibm.com/support/pages/deciding-which-cplexs-numerous-linear-programming-
algorithms-fastest-performance

Experiments 49

The idea of the barrier algorithm is to generate a sequence of positive primal and

dual solutions to a problem. Barrier method performance frequently depends upon the

structure of the constraint matrix. The algorithm is very efficient for large and sparse

problems. In particular, if the product of the constraint matrix and its transpose is

sparse, the barrier method will probably outperform the simplex method.

According to CPLEX, the barrier method currently makes better use of multiple

threads then any of CPLEX’s other linear programming algorithms. So, when moving

from serial machine to a parallel machine, the barrier method should be considered even

if the simplex method (primal and dual) outperformed it running on only one thread.

The differences between primal, dual and barrier algorithms are as follows:

• In cases where there are several global optimals, the nature of the solutions may

differ greatly when considering barrier and primal and dual methods.

• The non-crossover barrier method prevents problem optimization based on ad-

vanced start information.

• Problems that are numerically difficult for one method may be easier to solve by

the other.

• The barrier optimizer works well on problems where the AAT remains sparse. In

contrast, the simplex optimizers will probably perform better on problems where

the AAT and the resulting Cholesky factor are relatively dense.

Gurobi Optimizer2 provides two main algorithms to solve continuous models and

the continuous relaxations of mixed-integer models: barrier and simplex. The barrier

algorithm is usually faster for large, difficult models. However, it is also more numerically

sensitive. And even when the barrier algorithm converges, the crossover algorithm that

usually follows can stall due to numerical issues. The simplex method is often a good

alternative, since it is generally less sensitive to numerical issues.

2https://www.gurobi.com/documentation/8.1/refman/numerics choosing the righ.html

50 Experiments

6.1.3 Experiments to evaluate scalability of the integer program-

ming model

To evaluate the performance and the scalability of the proposed formulation in a stan-

dalone MIP solver, models for generating trees with different depths (d = {1, . . . , 3})
with datasets of different sizes built by randomly selecting subsets of results of the

complete experimental results of the COIN-OR CBC solver were solved with the state-

of-the-art CPLEX 12.9 MIP solver on a computer with 32GB of RAM and 6 Intel R©i7-

4960X cores. In this experiment, we measured the final gap reported by the solver

between the best lower and upper bound at the end of execution with one hour time

limit. Additionally, we use our mathematical programming heuristic in order to compare

the performance obtained by the heuristic in relation to the performance of the integer

programming model. These experiments considered generating trees with a minimum

number of 10 instances per leaf node (τ = 10) and penalty of (β = 50) for leaf nodes

violating this constraint. Our experiments considered datasets with 50 algorithms and

problem instances ranging from 50 to 500. Considering d = 1, we found the optimal

solution for all experiments. Considering d = 2, Fig. 6.2 shows the performance of our

integer programming model. Considering d = 3, a feasible solution was not found in the

time limit.

	1000

	10000

	100000

	1x106

	50 	100 	150 	200 	250 	300 	350 	400 	450 	500

co
st

problem	instances

Performance	on	Datasets	of	Different	Sizes

lower	bound
upper	bound

VND-ASP

Figure 6.2: Performance of the integer programming model and the
VND-ASP mathematical programming heuristic over sets of problem instances

of different sizes and 50 algorithms.

Experiments 51

As it can be seen, optimal or near optimal decision trees were generated for models

with up to 200 problem instances. For larger datasets the execution terminated with

increasingly larger gaps for the produced bounds, at the point that for models with

more than 300 instances a feasible solution was not found within the time limit. For

the model with 500 problem instances not even the LP relaxation of the MIP model

was computed in the time limit and no lower bound was available. From another point

of view, we can see that the proposed heuristic obtains solutions close to the optimal

solution even considering the scenario with the highest number of instances (P = 500).

Thus, for the complete dataset, experiments in the next sections were performed only

with the proposed VND-ASP heuristic.

6.1.4 Experiments with the complete dataset

To create optimized decision trees considering the entire experimental results dataset

is quite challenging: there are approximately half million observations3, far beyond the

limits indicated in the previous section. Thus, only experiments with our mathematical

programming heuristics were conducted for this dataset.

Fig. 6.3 presents the decision tree constructed with VND-ASP using the following

parameters: maximum tree depth d = 3, total time limit h = 72000 seconds, MIP search

timeout l = 4000 seconds, elite set size m = 20, initial algorithms subsetsize q = 100,

q′ = 20, minimum number of instances per leaf node τ = 50 and penalty cost β = 1 .

The estimated performance improvement with this decision tree is 68%, a remarkable

improvement.

An inspection in the contents of our decision tree shows that the range of the co-

efficients in the constraint matrix plays an important role for determining the best

algorithm. The feature selected for the root node aRatioLSA is computed as the ratio

between the largest and the smallest absolute non-zero values in the constraint matrix.

Each leaf node has a set of instances allocated to it, depending on the the decision

on all parent nodes and a recommended algorithm, which is the algorithm with bet-

ter results on these instances. As an example, for the left-most branch of the tree, the

best algorithm configuration select used the Duals simplex algorithm setting the “pertv”

parameter to value 50 considering 105 LP problems allocated to this node.

3497750 execution results produced by solving 905 LP problems with 550 different algorithm config-
urations each

52 Experiments

f=rows≤12099 >12099

f = aAllInt≤0 >0

f = aAv≤1.291490 >1.291490

105 problems

Duals Simplex
pertv 50

56 problems

Primals Simplex
idiot 60

f = equalities≤2394 >2394

358 problems

Primals Simplex
idiot 11

50 problems

Barrier
cholesky univ

f = aRatioLSA≤646.40 >646.40

f = rhsAv≤0.182386 >0.182386

63 problems

Duals Simplex
crash idiot5
dualp pesteep

pertv 71

149 problems

Primals Simplex
idiot 50

f = objRatioLSA≤29 >29

68 problems

Primals Simplex
idiot 60

56 problems

Duals Simplex
crash idiot5
dualp pesteep

pertv 71

Figure 6.3: Decision tree (univariate features) with maximum depth = 3

Fig. 6.4 presents the decision tree constructed with MVND-ASP (oblique decision

trees). The estimated performance improvement with this decision tree is 72%. The

parameter values used were the same as those described above.

f=vfeature1≤1 >1

f = vfeature5≤1.049789 >1.049789

f = aMin≤-1001 >-1001

71 problems

Duals Simplex
dual pesteep

psi -1.0
pertv 71
scal geo

255 problems

Primals Simplex
idiot 7

f = rhsRatioLSA≤393 >393

262 problems

Primals Simplex
idiot 50

51 problems

Primals Simplex
idiot 60

f = rows≤18439 >18439

f = objMed≤1 >1

86 problems

Primals Simplex
idiot 30

pertv -1483

84 problems

Barrier
pertv -208

cholesky univ

f = cols≤1472039 >1472039

96 problems

Duals Simplex
crash idiot5
dualp pesteep

psi -1.0
pertv 70

0 problems

Duals Simplex
dualize 1

crash idiot5

feature/weights rows nz density int cont rpart rknp rflowmx

vfeature1
0.145568 0.059260 0.028605 0.045253 0.018778 0.063069 0.034485 0.018388
rother objMin objMax objAllInt objRatioLSA rhsMin aAv aRatioLSA
0.105879 0.096289 0.096512 0.017031 0.150023 0.641356 0.248940 0.175072

feature/weights cols rows equalities bin rpart rother objMin

vfeature5
0.028135 0.013005 0.104403 0.100460 0.000411 0.226801 0.166909
objMax objAv rhsMin aMin aMed aAllInt
0.553704 0.016188 1.000000 0.048103 0.324919 0.039324

Figure 6.4: Decision tree (multivariate features) with maximum depth = 3

Fig. 6.5 presents the decision tree constructed with MVND-ASP (oblique decision

trees) considering two recommended algorithms. The estimated performance improve-

Experiments 53

ment with this decision tree is 83%.

f=vfeature1≤1 >1

f = vfeature5≤1.049789 >1.049789

f = aMin≤-1001 >-1001

71 problems

Duals Simplex
dual pesteep

psi -1.0
pertv 71
scal geo

Duals Simplex
dual pesteep

psi -1.0
pertv 71

255 problems

Primals Simplex
idiot 60

Primals Simplex
idiot 7

pertv 61

f = rhsRatioLSA≤393 >393

262 problems

Primals Simplex
idiot 50

Primals Simplex
idiot 11
pertv 50

51 problems

Primals Simplex
idiot 100

Duals Simplex
dualize 0

crash idiot7
dualp pesteep

perturb on
presolve more

scal equi
spars off

subs 4288
psi 0.40

pertv -136
passp 66

f = rows≤18439 >18439

f = objMed≤1 >1

86 problems

Primals Simplex
idiot 10

crash idiot4
primalp change

psi 0.62
Duals Simplex

ccrash idiot5
dualp pesteep

psi 1.0
pertv 100

84 problems

Barrier
cholesky native

Primals Simplex
idiot 11

pertv -1483

f = cols≤1472039 >1472039

96 problems

Duals Simplex
crash idiot5

dualp pesteep
psi 0.9

pertv 50
Duals Simplex

dual pesteep
psi -0.87
pertv 4

0 problems

Duals Simplex
crash idiot1

Duals Simplex
crash idiot1

pertv 61

feature/weights rows nz density int cont rpart rknp rflowmx

vfeature1
0.145568 0.059260 0.028605 0.045253 0.018778 0.063069 0.034485 0.018388
rother objMin objMax objAllInt objRatioLSA rhsMin aAv aRatioLSA
0.105879 0.096289 0.096512 0.017031 0.150023 0.641356 0.248940 0.175072

feature/weights cols rows equalities bin rpart rother objMin

vfeature5
0.028135 0.013005 0.104403 0.100460 0.000411 0.226801 0.166909
objMax objAv rhsMin aMin aMed aAllInt
0.553704 0.016188 1.000000 0.048103 0.324919 0.039324

Figure 6.5: Decision tree (multivariate features) with maximum depth = 3
and two recommended algorithms per leaf node

Fig. 6.6 presents the decision tree constructed with MVND-ASP (oblique decision

trees) considering three recommended algorithms. The estimated performance improve-

ment with this decision tree is 85%.

Please note, however, that this improvement does not reflects the expected perfor-

mance improvement of this tree in unknown instances, which is the really important

estimate. The estimated results of the decision trees produced with our method on un-

known instances is computed in the next section in 10-fold cross validation experiments.

54 Experiments

f=vfeature1≤1 >1

f = vfeature5≤1.049789 >1.049789

f = aMin≤-1001 >-1001

71 problems

Duals Simplex
crash idiot7

dualp pesteep
pertv 61
psi 1.0

Duals Simplex
dual pesteep

psi 0.30
pertv 3

Duals Simplex
dual pesteep

psi 0.31
pertv 74

255 problems

Duals Simplex
dualp pesteep

psi 0.7
Primals Simplex

idiot 3
pertv 61

Primals Simplex
idiot 7

pertv 61

f = rhsRatioLSA≤393 >393

262 problems

Primals Simplex
idiot 50
Barrier

pertv -208
cholesky univ

Primals Simplex
idiot 11

pertv -2000

51 problems

Primals Simplex
idiot 100
Barrier
passp 83

cholesky univ
Duals Simplex

dualize 0
crash idiot7

dualp pesteep
perturb on

presolve more
scal equi
spars off

subs 4288
psi 0.40

pertv -136
passp 66

f = rows≤18439 >18439

f = objMed≤1 >1

86 problems

Primals Simplex
idiot 10

crash idiot4
primalp change

psi 0.62
Duals Simplex

ccrash idiot5
dualp pesteep

psi -0.4
pertv 61

Duals Simplex
crash idiot5

dualp pesteep
psi 1.0

pertv 102

84 problems

Barrier
cholesky native

Primals Simplex
idiot 11

pertv -1483
Barrier
scal geo

cholesky univ
pertv 208
passp 83
subs 132

f = cols≤1472039 >1472039

96 problems

Primals Simplex
idiot 50

Duals Simplex
crash idiot5

dualp pesteep
psi 0.9

pertv 50
Duals Simplex

dual pesteep
psi -0.87
pertv 4

0 problems

Duals Simplex
crash idiot1

Duals Simplex
crash idiot1

pertv 61
Primals Simplex

crash idiot1

feature/weights rows nz density int cont rpart rknp rflowmx

vfeature1
0.145568 0.059260 0.028605 0.045253 0.018778 0.063069 0.034485 0.018388
rother objMin objMax objAllInt objRatioLSA rhsMin aAv aRatioLSA
0.105879 0.096289 0.096512 0.017031 0.150023 0.641356 0.248940 0.175072

feature/weights cols rows equalities bin rpart rother objMin

vfeature5
0.028135 0.013005 0.104403 0.100460 0.000411 0.226801 0.166909
objMax objAv rhsMin aMin aMed aAllInt
0.553704 0.016188 1.000000 0.048103 0.324919 0.039324

Figure 6.6: Decision tree (multivariate features) with maximum depth = 3
and three recommended algorithms per leaf node

6.1.5 Experiment using cross-validation on the complete dataset of

problem instances

To evaluate the predictive power of our method, i.e. the expected performance on

unknown instances, a 10-fold cross validation experiment was performed: a randomly

shuffled complete dataset was divided into 10 partitions and at each iteration 9 of the

partitions were used to create the decision tree (training dataset) and the remaining

partition used for evaluating the decision tree (test dataset). Each partition had 448250

examples (815 problem instances × 550 available algorithms), with the exception of

the last five partitions that contained 447700 examples (814 problem instances × 550

Experiments 55

available algorithms). The results of the cross-validation are given in Fig. 6.7. This figure

shows the average performance degradation considering the ideal performance to solve

the LP relaxation of all problem instances (the virtual best solver). Results of UVND-

ASP (univariate features) and MVND-ASP (multivariate features/oblique decision trees)

with maximum tree depth 3 (UVND-ASP(D=3) and MVND-ASP(D=3)), maximum

tree depth 4 (UVND-ASP(D=4) and MVND-ASP(D=4)) and maximum tree depth 5

(UVND-ASP(D=5) and MVND-ASP(D=5)) are included. The remaining parameters

of UVND-ASP and MVND-ASP are the same described in the previous subsection. We

also compare our results with the results produced by the best configuration of the

Random Forest (RF) algorithm implemented in Weka (HALL et al., 2009) (RF(T=40),

where T is the number of trees)). We tested parameter T at the following values: 1, 3,

5, 10, 20, 30, 40, 50, 100, 120 and 150. Results obtained selecting a single best algorithm

(SBA) are also included. Default CBC settings (Default) and results obtained selecting

the virtual best algorithm (vba) are also included.

We also consider testing our model, using not only the decision tree recommended

algorithm for each leaf node, but the two best or three best algorithms for instance

problems allocated on that leaf node. Thus, in the decision tree built for each partition,

we choose the 2 (or 3) best configurations for each leaf node and evaluate them in

the test partition. The results are presented in MVND-ASP(D=4;RA=2) and MVND-

ASP(D=4;RA=3).

As can be seen, our results indicate performance gains of 72.5% compared against

default settings. This value is obtained by the formula (1 - (27954.4
101816.8

))× 100%. More-

over, they are noticeably better than those obtained when selecting only the single best

algorithm (2%). UVND-ASP and MVND-ASP results are also mostly superior to the

ones obtained with RF with 40 trees. We believe that this is a very positive result,

since the result produced by our algorithm (a single tree) is more easy to interpret than

those produced by RF. More importantly, algorithms can be recommended much faster

(in constant time) with our approach since the processing cost does not depend on the

number of available algorithms as in RF, where a series of regression problems must be

solved in order to recommend an algorithm for each new instance.

56 Experiments

SB
A

UV
ND

-A
SP

(D
=3

)

UV
ND

-A
SP

(D
=4

)

UV
ND

-A
SP

(D
=5

)

M
VN

D-
AS

P(
D=

3)

M
VN

D-
AS

P(
D=

4)

M
VN

D-
AS

P(
D=

5)

M
VN

D-
AS

P(
D=

4;
RA

=2
)

M
VN

D-
AS

P(
D=

4;
RA

=3
)

De
fa

ul
t

RF
(T

=4
0)

algorithms

0

20000

40000

60000

80000

100000

120000

to
ta

l t
im

e

99875.2

78622.4
86895.2

101372.0

55236.8

46086.4

74482.4

27954.4

41815.2

101816.8

120491.2
vba

Figure 6.7: Cross-validation results for all partitions of First Dataset

6.2 The ICON challenge

In this section, we use the Algorithm Selection Benchmark Library - ASlib (BISCHL

et al., 2016) to compare our method with the Random Forest algorithm. Aslib con-

sists of many scenarios for which performance data for all algorithms in all instances

is available. Two competitions were held based on the Aslib: the ICON Challenge on

Algorithm Selection (2015) and the Open Algorithm Selection Challenge - OASC (2017).

We consider our experiments only with the scenarios of the Competition held in 2017.

We were motivated by being the last competition, which suggests improvements in the

algorithms that competed in 2015 and also the inclusion of new algorithms.

In the 2017 competition, participants sent only predictions made by the system to

new test instances. In this case, 2/3 of the instances were assigned to the training

Experiments 57

partition and 1/3 of the instances were assigned to the test partition. Only the values

of the features of the test instances were provided. In addition, there is no limit on the

computational resources that can be used.

In the competition, benchmarks for the selection of algorithms from different domains

were used, in a total of 11 scenarios: 8 of the 11 scenarios were completely new and

were not disclosed to the participants before the competition. In our experiments, we

considered only 8 out of 11 scenarios. The 3 scenarios not considered deal with the

objective of the quality of the solution - we are interested in the runtime. Table 6.5

describes the 8 scenarios, showing the name, the number of instances, features and

algorithms.

Table 6.5: Scenarios of the OASC (2017) - Runtime Objective

scenario instances features algorithms

BNSL-2016 (Bado) 1179 87 8

CSP-Minizine-Obj-2016 (Caren) 100 95 8

MAXSAT-PMS-2016 (Magnus) 601 37 19

MAXSAT-WPMS-2016 (Monty) 630 37 18

MIP-2016 (Mira) 218 143 5

QBF-2016 (Quill) 825 46 24

SAT12-ALL (Svea) 1614 115 31

SAT03-16 INDU (Sora) 2000 483 10

It is important to note that the competition allowed different types of algorithm

selection systems, namely: selection of a single algorithm; selection of a schedule of al-

gorithms; use of pre-solving schedules and; use of different instance feature sets (e.g.,

on a per-instance base). Participants in the competition sent systems considering the

selection of a schedule of algorithms, which makes a fair comparison with our algo-

rithm, which recommends only one algorithm for each instance (selection of a single

algorithm).

We performed experiments with our method UVND-ASP considers just univariate

features. We decided not to test the approach MVND-ASP that considers multivariate

features. As the participants of the Competition OASC-2017 did not add new features

to existing ones, we think it is fair not to include new features. We tested trees with

58 Experiments

maximum depth varying between 3 and 5 (d = 3, 4, 5). We compared our method with

the 8 methods used in the competition. The results are shown in the Table 6.6.

In results, the score measures the proportion of gap closed in terms of PAR10 defined

as (1 - PAR10) where PAR10 is defined as in equation (F (S)− F (oracle))/(F (SB)−
F (oracle)). F (S) represents the performance of the method. F (SB) represents the

performance of the algorithm with the best performance on average when running the

instances. F (oracle) represents the performance of the optimal case, that is, the case

where for each instance, is chosen algorithm with better performance. The gap closed

measure is 1 if the system reaches the oracle performance and 0 if performance is the

same as SB.

Table 6.6: Results of the OASC (2017) - Runtime Objective

scenario A
S
A
P
.v
2

A
S
A
P
.v
3

U
V
N
D
-A

S
P
(d

=
3
)

U
V
N
D
-A

S
P
(d

=
4
)

U
V
N
D
-A

S
P
(d

=
5
)

S
u
n
n
y
-f
k
v
a
r

S
u
n
n
y
-a

u
to

k

st
a
r
-z
il
la

d
y
n

sc
h
e
d

st
a
r
-z
il
la

A
S
-R

F

A
S
-A

S
L

Bado 0.761 0.808 0.833 0.890 0.911 0.847 0.748 0.484 0.707 0.836 0.681

Caren 0.588 0.590 0.372 0.372 0.180 0.945 0.783 0.777 -0.001 -0.659 -1.068

Magnus 0.508 0.506 0.248 0.722 0.263 0.581 0.502 0.590 0.583 -1.012 -1.013

Monty 0.833 0.763 0.628 0.622 0.622 -0.910 0.632 0.487 0.173 -7.482 -6.973

Mira 0.505 0.509 0.029 0.029 0.029 0.432 -0.014 -1.337 0.033 0.495 -0.407

Quill 0.698 0.580 0.334 0.246 0.456 0.569 0.850 0.459 0.308 -0.328 -0.299

Svea 0.677 0.688 0.315 0.393 0.416 0.658 0.579 0.171 0.171 0.457 0.439

Sora 0.350 0.225 0.371 0.363 0.354 0.179 0.173 0.313 0.313 -0.135 -0.383

Average 0.615 0.584 0.391 0.455 0.404 0.413 0.532 0.243 0.286 -0.979 -1.128

The ASAP.v2 and ASAP.v3 techniques achieved the best results, followed by the

Sunny-autok technique. We can see that our method, considering d = 4, ranked fourth in

the overall ranking. An adjustment in the values of parameters used in our method, such

as a minimum number of problems per leaf node (parameter τ) and penalty (parameter

β) for leaf nodes with few instances could contribute to a better result, which we certainly

place as future work on this thesis.

For a better evaluation of our method, we consider experiments with Random Forest

algorithm on 8 scenarios of the competition. We considered the selection of the best

algorithm for each instance and tested 3 different values for the parameter (named as

parameter t) related to the number of decision trees generated by the method. The

Experiments 59

results of our method and the Random Forest method are shown in Table 6.7.

Table 6.7: Results on the scenarios of the OASC (2017) - Our method vs
Random Forest

scenario R
F

(t
=

5
0
)

R
F

(t
=

1
0
0
)

R
F

(t
=

1
5
0
)

U
V

N
D

-A
S
P

(d
=

3
)

U
V

N
D

-A
S

P
(d

=
4
)

U
V

N
D

-A
S
P

(d
=

5
)

Bado 0.854 0.910 0.874 0.833 0.890 0.911

Caren 0.387 0.173 -0.224 0.372 0.372 0.180

Magnus 0.160 0.177 0.159 0.248 0.722 0.263

Monty -0.488 -0.347 -0.276 0.628 0.622 0.622

Mira -0.433 0.953 0.521 0.029 0.029 0.029

Quill 0.427 0.577 0.484 0.334 0.246 0.456

Svea 0.671 0.685 0.701 0.315 0.393 0.416

Sora 0.217 0.308 0.313 0.371 0.363 0.354

Average 0.224 0.429 0.319 0.391 0.455 0.404

The results presented indicate that our algorithm has a better performance than

the Random Forest algorithm. In addition, our method provides better interpretability,

since we limit the maximum depth of the tree. Another positive point is that in all

scenarios our results are better than the single best algorithm - which is not the case

with Random Forest.

60

Chapter 7

Discussion and Closing Remarks

This thesis introduced a new mathematical programming formulation to solve the Al-

gorithm Selection Problem (ASP). This formulation produces globally optimal decision

trees with limited depth. The main advantage of this approach is that, despite the

construction of the tree itself potentially being computationally expensive, once the tree

has been constructed, algorithm recommendations can be made in constant time.

A dataset containing the experimental results of many linear programming solver

configurations of the COIN-OR Branch-&-Cut linear programming solver (CLP) was

built solving a comprehensive set of instances from various applications. This initial

batch of experiments itself already revealed improved parameter settings for the LP

solver, including the discovery of a new algorithm configuration which was 26% faster

than default CLP settings.

Scalability tests were performed in increasingly larger datasets to check up to which

size it was possible to optimally solve this problem until it was no longer possible to

generate provably optimal decision trees with a state of the art standalone MIP solver.

Given that, at a certain point, the resulting MIP model becomes too difficult to opti-

mize exactly, a mathematical programming-based VND local search heuristic was also

proposed to handle larger datasets.

To evaluate the predictive power of our method, a 10-fold cross validation exper-

iment was conducted. The results were very promising: executions with multivariate

tree using three algorithms recommendations per leaf node were 85% faster than CLP

default settings, almost doubling the improvement that could be obtained using a single

best parameter setting. Considering the first dataset, our results are much better than

61

62 Discussion and Closing Remarks

those obtained after tuning the Random Forest algorithm, with the advantage that the

predictive model produced by our method (a single tree) is easily interpretable and,

more importantly, the cost of recommending an algorithm is not dependent upon the

number of available algorithms.

We performed additional experiments using 8 scenarios that were used in the Open

Algorithm Selection Challenge 2017. The competition allowed different types of algo-

rithm selection systems, so that the participants sent systems considering the selection

of a schedule of algorithms, which makes a fair comparison impossible with our method

(selection of a single algorithm). Still, our results are comparable to the competition’s

winning system. For a better evaluation of our method, we consider experiments with

Random Forest algorithm on the scenarios of the competition. The results indicate that

our method has a better performance than the RF algorithm and in all scenarios our

results are better than the single best algorithm.

Future directions include evaluating stronger alternative integer programming for-

mulations for this problem given that, as the scalability test showed, there is still a

significant gap between the lower and upper bounds produced for the larger datasets.

The positive results for the ASP are also a good indicator that the application of our

methodology to classification and regression problems represents a promising future re-

search path. In addition, we will conduct further experiments on the bases studied in

this thesis to verify the impacts of parameter values, such as the penalty value for poorly

representative leaf nodes and/or the threshold value that indicates whether a leaf node

is with little representation of problem instances.

Appendix A

Appendix

This appendix lists the papers developed during the course of the doctoral thesis.

Vilas Boas, M. G., Santos, H. G., Merschmann, L. H. and Vanden Berghe, G. (2019).

Optimal Decision Trees for the Algorithm Selection Problem: Integer Pro-

gramming based Approaches. International Transactions in Operational Research.

Vilas Boas, M. G., Santos, H. G., Martins, R. S. O. & Merschmann, L. H. C. (2017).

Data Mining approach for feature based parameter tunning for mixed inte-

ger programming solvers. Procedia Computer Science, 108: 715 - 724. International

Conference on Computational Science. ICCS 2017, 12-14 June 2017. Zurich, Switzer-

land.

63

64

Bibliography

Aha, D. W.: 1992, Generalizing from case studies: A case study, In Proceedings of the

Ninth International Conference on Machine Learning, Morgan Kaufmann, pp. 1–10.

Atamtürk, A. and Savelsbergh, M. W.: 2005, Integer-programming software systems,

Annals of operations research 140(1), 67–124.

Battistutta, M., Schaerf, A. and Urli, T.: 2017, Feature-based tuning of single-stage

simulated annealing for examination timetabling, Annals of Operations Research

252(2), 239–254.

Bernstein, A., Provost, F. and Hill, S.: 2005, Toward intelligent assistance for a data min-

ing process: An ontology-based approach for cost-sensitive classification, Knowledge

and Data Engineering, IEEE Transactions on 17, 503 – 518.

Bertsimas, D. and Dunn, J.: 2017, Optimal Classification Trees, Machine Learning

106(7), 1039–1082.

Bischl, B., Kerschke, P., Kotthoff, L., Lindauer, M., Malitsky, Y., Fréchette, A., Hoos,

H., Hutter, F., Leyton-Brown, K., Tierney, K. and Vanschoren, J.: 2016, Aslib: A

benchmark library for algorithm selection, Artificial Intelligence 237, 41 – 58.

Breiman, L.: 1996, Bagging predictors, Machine Learning 24(2), 123–140.

Breiman, L.: 2001, Random forests, Machine Learning 45(1), 5–32.

Breiman, L., Friedman, J. H., Olshen, R. A. and Stone, C. J.: 1984, Classification and

Regression Trees, Statistics/Probability Series, Wadsworth Publishing Company,

Belmont, California, U.S.A.

Brown, D. E., Pittard, C. L. and Park, H.: 1996, Classification trees with optimal

multivariate decision nodes, Pattern Recognition Letters 17(7), 699 – 703.

65

66 BIBLIOGRAPHY

Dantzig, G.: 1963, Linear programming and extensions, Rand Corporation Research

Study, Princeton Univ. Press, Princeton, NJ.

Doyle, P.: 1973, The use of automatic interaction detector and similar search procedures,

Journal of The Operational Research Society - J OPER RES SOC 24, 465–467.

Einhorn, H.: 1972, Alchemy in the behavioral sciences, Public Opinion Quarterly -

PUBLIC OPIN QUART 36.

Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M. and Hutter,

F.: 2015, Efficient and robust automated machine learning, in C. Cortes, N. D.

Lawrence, D. D. Lee, M. Sugiyama and R. Garnett (eds), Advances in Neural In-

formation Processing Systems 28, Curran Associates, Inc., pp. 2962–2970.

Fischetti, M. and Fischetti, M.: 2016, Matheuristics, Handbook of Heuristics pp. 1–33.

Fonseca, G. H., Santos, H. G., Carrano, E. G. and Stidsen, T. J.: 2017, Integer pro-

gramming techniques for educational timetabling, European Journal of Operational

Research 262, 28–39.

Freund, Y. and Schapire, R. E.: 1995, A Decision Theoretic Generalization of On-

Line Learning and an Application to Boosting, in P. M. B. Vitányi (ed.), Second

European Conference on Computational Learning Theory (EuroCOLT-95), pp. 23–

37.

Gamrath, G., Koch, T., Martin, A., Miltenberger, M. and Weninger, D.: 2015, Progress

in Presolving for Mixed Integer Programming, Mathematical Programming Compu-

tation 7, 367–398.

Gearhart, J. L., Adair, K. L., Detry, R. J., Durfee, J. D., Jones, K. A. and Martin,

N.: 2013, Comparison of open-source linear programming solvers, Technical report,

Sandia National Laboratories.

Giraud-Carrier, C.: 2006, The data mining advisor: meta-learning at the service of

practitioners, Vol. 2005, p. 7 pp.

Gonard, F., Schoenauer, M. and Sebag, M.: 2017, Algorithm Selector and Prescheduler

in the ICON challenge, in E.-G. Talbi and A. Nakib (eds), Bioinspired heuristic

optimization , Computational Intelligence, Springer Verlag.

BIBLIOGRAPHY 67

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P. and Witten, I. H.: 2009,

The weka data mining software: an update, ACM SIGKDD explorations newsletter

11(1), 10–18.

Hutter, F., Hoos, H., Leyton-Brown, K. and Stützle, T.: 2009, Paramils: An automatic

algorithm configuration framework, J. Artif. Intell. Res. (JAIR) 36, 267–306.

Hutter, F., Xu, L., H., H. H. and Leyton-Brown, K.: 2014, Algorithm runtime prediction:

Methods evaluation, Artificial Intelligence 206, 79 – 111.

Hyafil, L. and Rivest, R. L.: 1976, Constructing Optimal Binary Decision Trees is NP-

Complete, Information Processing Letters 5(1), 15 – 17.

Johnson, E., Nemhauser, G. and Savelsbergh, W.: 2000, Progress in Linear

Programming-Based Algorithms for Integer Programming: An Exposition, IN-

FORMS Journal on Computing 12.

Kadioglu, S., Malitsky, Y., Sellmann, M. and Tierney, K.: 2010, Isac –instance-specific

algorithm configuration, Proceedings of the 2010 Conference on ECAI 2010: 19th

European Conference on Artificial Intelligence, IOS Press, Amsterdam, The Nether-

lands, The Netherlands, pp. 751–756.

Kass, G. V.: 1980, An exploratory technique for investigating large quantities of cate-

gorical data, Journal of the Royal Statistical Society: Series C (Applied Statistics)

29(2), 119–127.

Kerschke, P., Hoos, H. H., Neumann, F. and Trautmann, H.: 2019, Automated algorithm

selection: Survey and perspectives, Evolutionary Computation 27(1), 3–45. PMID:

30475672.

Kim, H. and Loh, W.-Y.: 2001, Classification trees with unbiased multiway splits, Jour-

nal of the American Statistical Association 96(454), 589–604.

King, R., Feng, C. and Sutherl, A.: 2000, Statlog: Comparison of classification algo-

rithms on large real-world problems, Applied Artificial Intelligence 9.

Koch, T., Achterberg, T., Andersen, E., Bastert, O., Berthold, T., Bixby, R. E., Danna,

E., Gamrath, G., Gleixner, A. M., Heinz, S. et al.: 2011, MIPLIB 2010, Mathemat-

ical Programming Computation 3(2), 103.

Kotthoff, L.: 2012, Algorithm selection for combinatorial search problems: A survey, AI

Magazine 35.

68 BIBLIOGRAPHY

Kotthoff, L., Thornton, C., Hoos, H. H., Hutter, F. and Leyton-Brown, K.: 2017, Auto-

weka 2.0: Automatic model selection and hyperparameter optimization in weka,

Journal of Machine Learning Research 18(25), 1–5.

Lemke, C. E.: 1954, The dual method of solving the linear programming problem, Naval

Research Logistics Quarterly 1(1), 36–47.

Leyton-Brown, K., Nudelman, E., Andrew, G., McFadden, J. and Shoham, Y.: 2003, A

portfolio approach to algorithm selection, IJCAI, Vol. 3, pp. 1542–1543.

López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Stützle, T. and Birattari, M.:

2016, The irace Package: Iterated Racing for Automatic Algorithm Configuration,

Operations Research Perspectives 3, 43–58.

Lougee-Heimer, R.: 2003, The Common Optimization Interface for Operations Research:

Promoting Open-Source Software in the Operations Research Community, IBM

Journal of Research and Development 47(1), 57–66.

Mascia, F., Pellegrini, P., Birattari, M. and Stützle, T.: 2014, An Analysis of Parameter

Adaptation in Reactive Tabu Search, International Transactions in Operational

Research 21(1), 127–152.

Menickelly, M., Gunluk, O., Kalagnanam, J. and Scheinberg, K.: 2016, Optimal gener-

alized decision trees via integer programming.

Messenger, R. and Mandell, L.: 1972, A modal search technique for predictive nom-

inal scale multivariate analysis, Journal of the American Statistical Association

67(340), 768–772.

Michie, D., Spiegelhalter, D. J., Taylor, C. C. and Campbell, J. (eds): 1995, Machine

Learning, Neural and Statistical Classification, Ellis Horwood, USA.

Mittelmann, H.: 2018, Benchmark of simplex LP solvers, http://plato.asu.edu/ftp/

lpsimp.html. Accessed: 2018-10-03.

URL: http://plato.asu.edu/ftp/lpsimp.html

Mladenović, N. and Hansen, P.: 1997, Variable Neighborhood Search, Computers and

Operations Research 24(11), 1097–1100.

Morgan, J. N. and Sonquist, J. A.: 1963, Problems in the analysis of survey data, and

a proposal.

http://plato.asu.edu/ftp/lpsimp.html
http://plato.asu.edu/ftp/lpsimp.html

BIBLIOGRAPHY 69

Murthy, S. K., Kasif, S. and Salzberg, S.: 1994, A system for induction of oblique

decision trees, J. Artif. Int. Res. 2(1), 1–32.

Mısır, M. and Sebag, M.: 2017, Alors: An algorithm recommender system, Artificial

Intelligence 244, 291 – 314. Combining Constraint Solving with Mining and Learn-

ing.

Pochet, Y. and Wolsey, L. A.: 2006, Production Planning by Mixed Integer Programming

(Springer Series in Operations Research and Financial Engineering), Springer-

Verlag New York, Inc., Secaucus, NJ, USA.

Polyakovskiy, S., Bonyadi, M. R., Wagner, M., Michalewicz, Z. and Neumann, F.: 2014,

A comprehensive benchmark set and heuristics for the traveling thief problem, Pro-

ceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation,

ACM, pp. 477–484.

Quinlan, J. R.: 1986, Induction of Decision Trees, Machine Learning 1(1), 81–106.

Quinlan, J. R.: 1993, C4.5: Programs for Machine Learning, Morgan Kaufmann Pub-

lishers Inc., San Francisco, CA, USA.

Resende, M. and Ribeiro, C.: 2014, GRASP: Greedy randomized adaptive search proce-

dures, Springer US, pp. 287–312.

Rice, J. R.: 1976, The algorithm selection problem, Vol. 15 of Advances in Computers,

Elsevier, pp. 65 – 118.

Salisu, M., Abdulrahman, Adamu, A., Ado, Y. and Rilwan, A.: 2017, An overview of

the algorithm selection problem, International Journal of Computer (IJC) .

Santos, H. G., Toffolo, T. A., Gomes, R. A. and Ribas, S.: 2016, Integer programming

techniques for the nurse rostering problem, Annals of Operations Research 239, 225–

251.

Silva, C. and Santos, H.: 2017, Drawing graphs with mathematical programming and

variable neighborhood search, Electronic Notes in Discrete Mathematics 58, 207 –

214.

Souza, M., Coelho, I., Ribas, S., Santos, H. and Merschmann, L.: 2010, A hybrid

heuristic algorithm for the open-pit-mining operational planning problem, European

Journal of Operational Research 207(2), 1041 – 1051.

70 BIBLIOGRAPHY

Tange, O.: 2011, Gnu parallel-the command-line power tool, The USENIX Magazine

36(1), 42–47.

Thornton, C., Hutter, F., Hoos, H. and Leyton-Brown, K.: 2012, Auto-weka: Combined

selection and hyperparameter optimization of classification algorithms, KDD .

Tsoumakas, G. and Katakis, I.: 2007, Multi-label classification: An overview, Interna-

tional Journal of Data Warehousing and Mining (IJDWM) 3(3), 1–13.

Wolpert, D. H. and Macready, W. G.: 1997, No free lunch theorems for optimization,

IEEE Transactions on Evolutionary Computation 1(1), 67–82.

Xu, L., Hutter, F., Hoos, H. H. and Leyton-Brown, K.: 2008, Satzilla: portfolio-based

algorithm selection for sat, Journal of artificial intelligence research 32, 565–606.

Xu, L., Hutter, F., Shen, J., Hoos, H. H. and Leyton-brown, K.: n.d., Satzilla2012:

Improved algorithm selection based on cost-sensitive classification models.

Zhang, H., Wang, S., Xu, X., Chow, T. W. and Wu, Q. J.: 2018, Tree2vector: learning

a vectorial representation for tree-structured data, IEEE transactions on neural

networks and learning systems (99), 1–15.

Zhu, Y.: 2007, Mixed-Integer Linear Programming Algorithm for a Computational Pro-

tein Design Problem, Industrial & Engineering Chemistry Research 46(3), 839–845.

	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Text organization

	Background
	Algorithm Selection Problem
	Algorithm Selector And Pre-scheduler
	Algorithm Recommender System
	Random Forest

	Decision Trees
	Regression Problems
	Classification Problems
	Oblique Decision Trees

	Model
	Input data
	Decision variables
	Objective function and constraints

	Multivariate Model
	Input data
	Decision variables
	Objective function and constraints

	VND to accelerate the discovery of better solutions
	Constructive Algorithm
	Neighborhoods

	Experiments
	First dataset: linear programming algorithms from the COIN-OR Linear Programming solver
	Problem instances
	Available algorithms
	Experiments to evaluate scalability of the integer programming model
	Experiments with the complete dataset
	Experiment using cross-validation on the complete dataset of problem instances

	The ICON challenge

	Discussion and Closing Remarks
	Appendix
	Bibliography

