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Abstract

Many real-world optimization problems have multiple interacting
components. Each of these can be anNP-hard problem, and they can
be in conflict with each other, i.e., the optimal solution for one compo-
nent does not necessarily represent an optimal solution for the other
components. This can be a challenge once the influence that each com-
ponent has on the overall solution quality. In this work, we address
four complex routing problems with multiple interacting components:
the Double Vehicle Routing Problem with Multiple Stacks (DVRPMS),
the Double Traveling Salesman Problem with Partial Last-In-First-Out
Loading Constraints (DTSPPL), the Traveling Thief Problem (TTP),
and the Thief Orienteering Problem (ThOP). While DVRPMS and TTP
are already well-known in the literature, DTSPPL and ThOP have
recently been proposed in order to introduce and study more realistic
variants of DVRPMS and TTP, respectively. The DTSPPL has been
proposed as part of this work, while the ThOP has independently
been proposed. We present mathematical models and/or heuristic al-
gorithms for solving these problems. Among the results achieved, we
can highlight that our mathematical model proposed for the DVRPMS
has been able to find better results than those found in the literature.
In addition, we have won the first and second places in two recent
optimization competitions on a bi-objective version of the TTP. In
general, the results achieved by our solutions methods have shown
better than those previously presented in the literature considering
each problem studied in this work.
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Resumo

Muitos problemas de otimização com aplicações reais têm vários
componentes de interação. Cada um deles pode ser um problema
pertencente à classeNP-difícil, e eles podem estar em conflito um com
o outro, ou seja, a solução ótima para um componente não representa
necessariamente uma solução ótima para os outros componentes. Isso
pode ser um desafio devido à influência que cada componente tem
na qualidade geral da solução. Neste trabalho, foram abordados
quatro problemas de roteamento complexos com vários componentes
de interação: o Double Vehicle Routing Problem with Multiple Stacks
(DVRPMS), o Double Traveling Salesman Problem with Partial Last-In-
First-Out Loading Constraints (DTSPPL), o Traveling Thief Problem (TTP)
e Thief Orienteering Problem (ThOP). Enquanto os DVRPMS e TTP já são
bem conhecidos na literatura, os DTSPPL e ThOP foram recentemente
propostos a fim de introduzir e estudar variantes mais realistas dos
DVRPMS e TTP, respectivamente. O DTSPPL foi proposto a partir
deste trabalho, enquanto o ThOP foi proposto de forma independente.
Neste trabalho são propostos modelos matemáticos e/ou algoritmos
heurísticos para a solução desses problemas. Dentre os resultados
alcançados, é possível destacar que o modelo matemático proposto
para o DVRPMS foi capaz de encontrar inconsistências nos resultados
dos algoritmos exatos previamente propostos na literatura. Além
disso, conquistamos o primeiro e o segundo lugares em duas recentes
competições de otimização combinatória que tinha como objetivo a
solução de uma versão bi-objetiva do TTP. Em geral, os resultados
alcançados por nossos métodos de soluções mostraram-se melhores
do que os apresentados anteriormente na literatura considerando cada
problema investigado neste trabalho.
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“Guarda i girasoli: loro si inchinano al sole, ma se uno è troppo inchinato vuol dire che
è morto. Tu sei un servitore, non un servo. Servire è l’arte suprema. Dio è il primo
servitore; Lui è il servitore di tutti gli uomini, ma non è il servo di nessuno.”

— Dal film La vita è bella





Chapter 1

Introduction

Optimization problems are frequently investigated due to their theoretical and practi-
cal relevance. Many studies devoted to solving classical combinatorial optimization
problems can be directly applied to solving real-world problems, such as vehicle
routing problems (Toth and Vigo, 2014), scheduling problems (Pinedo, 2012), and
packing problems (Sweeney and Paternoster, 1992). While this is true, many other
real-world problems exhibit multi-component structures, i.e., they consist of several
combinatorial optimization problems that interact with each other. These problems are
difficult to solve not only because of the contained hard optimization problems, but in
particular, because of the interdependencies between the different components. Inter-
dependence complicates decision-making by forcing each sub-problem to influence
the quality and feasibility of solutions of the other sub-problems (Bonyadi et al., 2019).
These problems are also known and referred to as multi-attribute problems (Vidal
et al., 2013, 2014). Examples of multi-component/multi-attribute problems are vehicle
routing problems under loading constraints (Iori and Martello, 2010; Pollaris et al.,
2015), maximizing material utilization while respecting a production schedule (Cheng
et al., 2016; Wang, 2020), and relocation of containers in a port while minimizing idle
times of ships (Forster and Bortfeldt, 2012; Jin et al., 2015; Hottung et al., 2020).

In this work, we focus on the class of vehicle routing problems once they subjec-
tively appear to be very prominent. Indeed, among the global logistics processes, the
transportation processes of goods and services between the industry and the end-user
stand out due to their high factor in logistics costs in most companies (Aggelakakis
et al., 2015). In general terms, transportation logistics aims to develop optimized route
plans that minimize the costs necessary to meet customer demands, respecting all
constraints imposed by the context of each company.

1



2 Introduction

Dantzig and Ramser (1959) were pioneers to study routing problems. Their study
have considered a problem that concerned to find the shortest routes for a fleet of
trucks in order to serve the demand for oil of several gas stations from a single central
distributor. Nowadays, this problem is known and referenced as the Vehicle Routing
Problem (VRP), which is one of the most studied combinatorial optimization problems.
Since Dantzig and Ramser’s study, many extensions and variations of the problem
have been introduced by the scientific community. The interest in these problems is
due to their logistic importance as well as their theoretical relevance in the field of
combinatorial optimization, which has resulted in a large number of studies about
them (Eksioglu et al., 2009; Vidal et al., 2020). Since transport planning problems have
combinatorial behavior (see Lovász (2007) for useful reference), finding the best plan
among all possibilities is an arduous task in most real situations, especially because
such situations usually involve interdependencies between the different components
in transport logistics.

We tackle four problems with different characteristics and difficulties; however,
they all have multi-components in their structures. The first two problems are pickup
and delivery problems with loading constraints, while the last two problems are
nonlinear problems that combine classic combinatorial optimization problems in their
formulations. These four problems are named as Double Vehicle Routing Problem
with Multiple Stacks (DVRPMS), Double Traveling Salesman Problem with Partial
Last-In-First-Out Loading Constraints (DTSPPL), Traveling Thief Problem (TTP), and
Thief Orienteering Problem (ThOP). While DVRPMS and TTP are already well-known
in the literature, DTSPPL and ThOP have recently been proposed with the aim of
studying more realistic variants of DVRPMS and TTP, respectively. The DTSPPL has
been proposed from this thesis, while the ThOP has independently been proposed
by Santos and Chagas (2018). In the following chapters, we describe in detail these
problems, the investigations in the literature on them, as well as our contributions.

1.1 Contributions

The contribution of this thesis consists of developing computational methods to solve
four combinatorial optimization problems with practical and theoretical relevance. All
problems investigated follow the trends of recent years, which consider increasingly
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realistic, integrated, and complex aspects. In the following, we describe the main
contribution regarding each problem:

• DVRPMS: We have developed a new integer linear programming formulation
and a heuristic algorithm based on the Variable Neighborhood Search (VNS)
metaheuristic. Our solution approaches have been able to find better results than
those previously proposed in the literature.

• DTSPPL: We have introduced this problem and proposed two integer linear pro-
gramming formulations and a heuristic algorithm based on the Biased Random-
Key Genetic Algorithm (BRKGA) to address it. These contributions open perspec-
tives for further research about the DTSPPL and also its variants and extensions.

• TTP: We have developed two heuristic algorithms for a bi-objective formulation
of the TTP. The first algorithm has been based on the BRKGA and the Non-
Dominated Sorting Genetic Algorithm II (NSGA-II). By proposing this algorithm,
we have won the first and second places, respectively, in the competitions held in
2019 at Evolutionary Multi-Criterion Optimization (EMO2019)1 and The Genetic
and Evolutionary Computation Conference (GECCO2019)2. More recently, we
have proposed a weighted-sum method combined with a two-stage heuristic for
solving the problem. This last algorithm has reached significantly better results
than those presented in the competitions.

• ThOP: It has recently been proposed in 2018 at Congress on Evolutionary Com-
putation (CEC2018) as a more realistic formulation of the TTP. We have presented
mathematical formulations for it, as well as heuristic algorithms based on BRKGA,
Iterated Local Search (ILS), and Ant Colony Optimization (ACO) techniques. Our
algorithms have shown able to find high-quality solutions.

The research presented in this thesis has resulted in the following papers:

• J. B. C. Chagas, U. E. F. Silveira, A. G. Santos, and M. J. F. Souza. A variable
neighborhood search heuristic algorithm for the double vehicle routing problem
with multiple stacks. International Transactions in Operational Research, 27.1
(2020): 112-137. Available at https://doi.org/10.1111/itor.12623

1EMO-2019 https://www.egr.msu.edu/coinlab/blankjul/emo19-thief/
2GECCO-2019 https://www.egr.msu.edu/coinlab/blankjul/gecco19-thief/

https://doi.org/10.1111/itor.12623
https://www.egr.msu.edu/coinlab/blankjul/emo19-thief/
https://www.egr.msu.edu/coinlab/blankjul/gecco19-thief/


4 Introduction

• J. B. C. Chagas, T. A. M. Toffolo, M. J. F. Souza, and M. Iori. The double traveling
salesman problem with partial last-in-first-out loading constraints. International
Transactions in Operational Research, (2020). Available at https://doi.org/10.
1111/itor.12876

• J. B. C. Chagas, J. Blank, M. Wagner, M. J. F. Souza, and K. Deb. A non-dominated
sorting based customized random-key genetic algorithm for the bi-objective
traveling thief problem. Journal of Heuristics, (2020). Available at https://doi.
org/10.1007/s10732-020-09457-7

• J. B. C. Chagas, M. Wagner. A weighted-sum method for solving the bi-objective
traveling thief problem. Submitted to a journal.

• J. B. C. Chagas, and M. Wagner. Ants can orienteer a thief in their robbery.
Operations Research Letters, 48.6 (2020): 708-714. Available at https://doi.org/
10.1016/j.orl.2020.08.011

• J. B. C. Chagas, and M. Wagner. Efficiently solving the thief orienteering problem
with a max-min ant colony optimization approach. Submitted to a journal.

1.2 Document organization

The remaining of this document is primarily based on four research papers. Each
paper describes the last results and contributions we have reached on each problem in-
vestigated. Chapters 2, 3, 4, and 5 are compiled from the content of the aforementioned
papers, with some minor changes and reference updates when needed. Specifically,
Chapter 2 covers the DVRPMS, Chapter 3 covers the DTSPPL, while Chapters 4,
and 5 cover, respectively, the TTP and the ThOP. In Chapter 6, we present our final
conclusions and suggest further investigations.

https://doi.org/10.1111/itor.12876
https://doi.org/10.1111/itor.12876
https://doi.org/10.1007/s10732-020-09457-7
https://doi.org/10.1007/s10732-020-09457-7
https://doi.org/10.1016/j.orl.2020.08.011
https://doi.org/10.1016/j.orl.2020.08.011


Chapter 2

The double vehicle routing problem
with multiple stacks

In this chapter1, we address the Double Vehicle Routing Problem with Multiple Stacks
(DVRPMS). It arose in its simplest form as the Double Traveling Salesman Problem
with Multiple Stacks (DTSPMS), proposed by Petersen and Madsen (2009) when a
software company that set up routes in its intermodal traffic encountered this problem
in the context of one of its customers.

In the DTSPMS, a single vehicle, which has its load compartment (container)
divided into rows (horizontal stacks) of fixed depth (horizontal heights), must collect
all items spread in a region known as pickup region and, henceforth, deliver all these
collected items in another region, denominated delivery region. All items have the
same size and shape. The items are stored in the stacks as they are collected. It is
important to state that the items are not stored on top of each other, they are arranged in
the same plane (container base) according to rows (horizontal stacks) and their depths
(horizontal heights). The items’ positions cannot be changed when they are already
inside the container, that is, the items should be stationary until their unloading. The
delivery must then respect the Last-In-First-Out (LIFO) policy. Thus, the delivery
route is limited by the stack configurations set up by the pickup route.

The DTSPMS is a variation of the Pickup and Delivery Traveling Salesman Problem
with Multiple Stacks (PDTSPMS) (Cordeau et al., 2010; Côté et al., 2012; Sampaio and

1It has been compiled from paper “A variable neighborhood search heuristic algorithm for the double
vehicle routing problem with multiple stacks”. J. B. C. Chagas, U. E. F. Silveira, A. G. Santos, and M.
J. F. Souza. International Transactions in Operational Research, 27.1 (2020): 112-137. Available at
https://doi.org/10.1111/itor.12623

5
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6 The double VRP with multiple stacks

Urrutia, 2016), where the pickup and delivery operations must be completely separate.
This is due to the fact that the DTSPMS arises in the context where the pickup and
delivery regions are widely separated. In this way, all items in the pickup region must
be gathered prior to any unloading in the delivery region. The transportation cost
between the two regions is fixed, and it is not considered as part of the optimization
problem. The problem has applicability in deliveries where items are loaded and
unloaded from the rear of the vehicle and item relocation is prohibited due to the fact
that they are heavy, fragile, and/or their handling is dangerous. Its objective is to find
two Hamiltonian cycles, one for the pickup region and the other for the delivery region,
so that the sum of the distances traveled in both regions is the minimum possible,
respecting the precedence constraints imposed by the vehicle’s stacks.

Figure 2.1 depicts a feasible solution for the DTSPMS in a case involving 16 items.
Each item is associated with a pickup client and a delivery client (item 1 is associated
with pickup client 1 and with delivery client 1, item 2 is associated with pickup client
2 and with delivery client 2, and so on). The container of this vehicle is divided into
two stacks of height eight, that is, the container has dimensions (2× 8). The vehicle
always starts its route in the pickup region at the vertex 0 (depot) and, in this example,
the vehicle visits the customer 15, collects and stores the item in the first stack, then
visits the customer 1, storing the item in the first stack (on top of item 15). Next,
customer 7 is visited and his item stored on the (bottom of the) second stack. The
gathering continues as shown in the figure until all customers have been served and
their items stored in the vehicle container. At the end, the vehicle returns to the depot
from where the entire container is transported to the delivery region depot. In the
delivery region, the container is loaded into a vehicle that also always starts its route
at the vertex 0 (depot) and, in this example, from the depot, the vehicle has only two
possible customers to visit since only items 6 and 16 are accessible from the top of the
two stacks. As illustrated in the figure, the vehicle initially satisfies the customer 16,
unloads its item from the second stack, and the customer 12 becomes available to be
served. The process continues as illustrated, always satisfying a customer who has its
item on top of any stack. At the end of delivery, the vehicle returns to the depot in its
respective region (in this case, the delivery region).

Petersen and Madsen (2009) proposed the DTSPMS, presented a mathematical
formulation for the problem, and also proposed four heuristic approaches to solve
it. The four heuristic approaches have been based on the Iterated Local Search (ILS),
Tabu Search (TS), Simulated Annealing (SA), and Large Neighborhood Search (LNS)
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Figure 2.1: DTSPMS example - Adapted from Iori and Riera-Ledesma (2015).

metaheuristics. These heuristics have been tested on a set of instances that became the
reference for future works. Among the proposed heuristics, the one based on the LNS
had a better overall performance.

Since it was presented, the DTSPMS aroused great interest in the academic com-
munity, with several exact and heuristic approaches. Felipe et al. (2009) proposed
a VNS-based heuristic approach, in which six neighborhood structures were used.
Computational results showed that the VNS approach overcame the results presented
by Petersen and Madsen (2009). Petersen et al. (2010) proposed different exact mathe-
matical formulations for the DTSPMS, including a branch-and-cut algorithm to solve
the DTSPMS instances to optimality. Based on these results, it was determined that
the difficulty of a given instance depends not only on the number of items, but also
heavily depends on the height of the stacks. Lusby et al. (2010) presented an exact
method based on matching k-best tours for each of the regions separately. This method
consists of repeatedly finding solutions for the two separate TSP (delivery region and
pickup region) until a feasible loading plan is found. The results showed significant
superiority of this method as compared to the previous one proposed on Petersen
et al. (2010). Carrabs et al. (2010) developed a branch-and-bound algorithm for the
Double Traveling Salesman Problem with Two Stacks (DTSP2S), a special case of the
DTSPMS in which the vehicle has exactly two stacks. The results showed that the
branch-and-bound algorithm performed better than the other exact approaches in the
literature (Lusby et al., 2010; Petersen et al., 2010) in terms of computational time and
number of global optima. According to Carrabs et al. (2010), for the exact approaches
proposed by Lusby et al. (2010) and Petersen et al. (2010), the difficulty of an instance
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depends on the capacity of the stacks, consequently, it depends on the number of
items and on the number of stacks in the container. In this case, the performance of the
algorithms improves when the number of stacks increases. This is probably due to the
fact that the construction of the routes in the pickup region and in the delivery region
becomes less restricted. Casazza et al. (2012) studied the theoretical properties of the
DTSPMS, analyzing the structure of DTSPMS solutions in two separate components:
routes and loading plan. It has been shown that some DTSPMS components can be
solved in polynomial time, considering specific cases of the problem. Alba Martínez
et al. (2013) proposed improvements to the branch-and-cut algorithm of Petersen
et al. (2010), adding new valid inequalities (cut planes) that allowed greater efficiency.
More recently, the exact algorithm proposed by Barbato et al. (2016) was able to solve
instances involving containers of two stacks, which have not been previously solved in
the literature. Hvattum et al. (2020) investigated the effect on transportation costs if an
open side container could be used when transporting the pallets. Their experiments
have shown that the total transportation cost is highly dependent on how the container
is loaded, from the rear or from the side.

The Double Vehicle Routing Problem with Multiple Stacks (DVRPMS), a general-
ization of the DTSPMS, was proposed by Iori and Riera-Ledesma (2015). The DVRPMS
has the same characteristics and constraints as the DTSPMS, except that now there is
a fleet of vehicles available to meet the demand of the customers. According to the
authors, the DVRPMS was motivated by the fact that not always a single vehicle is
enough to transport all items. In addition, using multiple vehicles can be interesting
even if all products could be transported by a single vehicle, as the addition of more
vehicles causes an increase in the flexibility of the loading/unloading process and this
can lead to a reduction in the operating costs of transport.

Figures 2.2 and 2.3 show two feasible solutions for the same instance involving
16 requests. Figure 2.2 represents a solution using three heterogeneous vehicles with
containers of size (2× 4), (1× 4) and (2× 2), where all containers are completely filled.
Figure 2.3 represents a solution using four vehicles with containers of (2× 4), (2× 4),
(2× 2) and (2× 2), but not all containers spaces are filled. In both examples, for each
vehicle are associated a route in the pickup region, a route in the delivery region and a
loading plan of the container. The pickup and delivery route for each vehicle respect
the LIFO policy on the respective container.

Besides proposing the DVRPMS, Iori and Riera-Ledesma (2015) presented three
exact algorithms: branch-and-cut, branch-and-price and branch-and-cut-and-price. As



The double VRP with multiple stacks 9

Figure 2.2: DVRPMS example (completely filled containers) - Adapted from (Iori and Riera-
Ledesma, 2015).

Figure 2.3: DVRPMS example (non-completely filled containers) - Adapted from (Iori and
Riera-Ledesma, 2015).

stated by the authors, the three exact algorithms had different behavior and efficiency
with respect to different instances, created to evaluate the quality of their algorithms.

To the best of our knowledge, only two works have addressed the DVRPMS by
heuristic algorithms. Silveira et al. (2015) proposed three methods based on Iterated
Local Search (ILS), Simulated Annealing (SA) and Variable Neighborhood Descent
(VND) metaheuristics, while Chagas et al. (2016) proposed another method based
on the SA metaheuristic, which outperformed all heuristic algorithms proposed by
Silveira et al. (2015) and was able to find several solutions with the same quality as
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those found by Iori and Riera-Ledesma (2015). Chagas and Santos (2016) introduced
the Double Vehicle Routing Problem with Multiple Stacks and Heterogeneous Demand
(DVRPMSHD), a generalization of the DVRPMS which occurs when customers have
heterogeneous demands and the demand of each customer cannot be divided among
two or more vehicles. The authors have also proposed a simple branch-and-price
algorithm that was able to solve only instances of up to 15 customer requests. A simple
and effective heuristic based on the Simulated Annealing was proposed by the same
authors in Chagas and Santos (2017). Their algorithm has been able to overcome
several results found by the branch-and-price algorithm. Posteriorly, Souza et al.
(2018) proposed a heuristic algorithm based on the Late Acceptance Hill-Climbing
metaheuristic that overcame some results found by the previous works.

Here, we address the DVRPMS, propose an Integer Linear Programming (ILP)
formulation to solve it and a heuristic algorithm for obtaining high quality solutions
on large instances.

The remainder of this chapter is organized as follows. In Section 2.1, we formally
describe the DVRPMS and presents our ILP formulation. In Section 2.2, the details
of the proposed heuristic algorithm are described. The computational experiments
are reported in Section 2.3, in which we make a comparative analysis between our
methods here proposed and the ones already described in the literature. Finally, in
Section 2.4 we present our conclusions and emphasize the contributions of this chapter.

2.1 Problem description and mathematical formulation

As introduced by Iori and Riera-Ledesma (2015), the DVRPMS can be formally de-
scribed as follows. Let I = {1, 2, . . . , n} be the set of customer requests carried by the
vehicles in the pickup and delivery regions. Let also VP

c = {1P, 2P, . . . , nP} be the set of
customers related to the pickup regions and VD

c = {1D, 2D, . . . , nD} the corresponding
customers in the delivery region. Following the region dependencies, each request
i ∈ I corresponds to its iT ∈ VT

c vertex, where T refers to any of the two regions.

It is possible to represent the DVRPMS as a directed graph G = (V, A), where V is
the set of vertices given by V = VP ∪ VD, where VP = {0P} ∪VP

c and VD = {0D} ∪
VD

c . The members 0P and 0D are the depots for the pickup and delivery regions and
members VP

c and VD
c are, respectively, the sets of vertices excluding the depots for the
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pickup and delivery regions. Likewise, the set of arcs is given by A = AP ∪ AD, where
AP = {(iP, jP) ∈ VP×VP | iP 6= jP} and AD = {(iD, jD) ∈ VD×VD | iD 6= jD}. For
each arc (i, j) ∈ AP and (i, j) ∈ AD there is an associated routing cost of cP

ij and cD
ij ,

respectively.

Let K be the set of vehicles available to meet the transportation requirements. The
loading compartment (container) of each vehicle k ∈ K is divided into Rk stacks, all
with the same height Lk. All vehicles in the K set must start and end their routes in
the depots defined in each region. The vehicles must collect all items from customers
located in the pickup region, store those items in their container, and then deliver the
items to the respective customers located in the delivery region.

The routes of each vehicle must satisfy the LIFO policy in all its stacks, that is, if
a client located at the vertex iP (pickup region) is visited before the client located at
vertex jP (pickup region), and the requested item j is stored in the same stack in which
the i item was stored, then the request client j must be visited (vertex jD) before the
client of the requisition i (vertex iD) in the delivery region.

The objective of the DVRPMS is to serve all | I| requests, so that the total distance
traveled by the |K| vehicles is the smallest possible one.

The DVRPMS can be formally modeled as a binary integer linear programming
(ILP) problem. In the rest of this section, we describe an ILP formulation which was
based on the mathematical formulation described by Chagas and Santos (2016) for the
DVRPMSHD which in turn was based on the mathematical formulation of the DTSPMS
proposed by Petersen and Madsen (2009) and on the mathematical formulation for the
DVRPMS proposed by Iori and Riera-Ledesma (2015). For convenience of notation,
we also refer to sets VP

c and VD
c as the set of requests I, i to denote both iP and iD, and

also (i, j) to denote both (iP, jP) and (iD, jD). The variables used in the ILP formulation
are described below:

• xkT
ij : binary variable that gets 1 if the vehicle k crosses the arc (i, j) in the region

T, and 0 otherwise.

• y T
ij : binary variable that gets 1 if the vertex i is visited before the vertex j in region

T, and 0 otherwise.

• wk
i : binary variable that gets 1 if the vehicle k carries out the requested item i,

and 0 otherwise.
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• zk
ir : binary variable that gets 1 if the item referring to the request i is stored in the

r-th stack of the vehicle k, and 0 otherwise.

With these variables, we can describe the following integer linear programming
formulation for the DVRPMS:

min ∑
k∈K

∑
T∈{P,D}

∑
(i,j)∈AT

c T
ij · xkT

ij (2.1)

∑
j∈VT

xkT
0j = 1 k ∈ K, T ∈ {P, D} (2.2)

∑
i∈VT

xkT
i0 = 1 k ∈ K, T ∈ {P, D} (2.3)

∑
j∈VT\{i}

xkT
ji = wk

i k ∈ K, T ∈ {P, D}, i ∈ VT
c (2.4)

∑
j∈VT\{i}

xkT
ij = ∑

j∈VT\{i}
xkT

ji k ∈ K, T ∈ {P, D}, i ∈ VT
c (2.5)

∑
k∈K

wk
i = 1 i ∈ I (2.6)

∑
i∈I

zk
ir ≤ Lk k ∈ K, r = 1, . . . , Rk (2.7)

Rk

∑
r=1

zk
ir = wk

i k ∈ K, i ∈ I (2.8)

y T
ij + y T

ji = 1 T ∈ {P, D}, i ∈ VT
c , j ∈ VT

c \ {i} (2.9)

y T
i` + y T

`j ≤ y T
ij + 1 T ∈ {P, D}, ` ∈ VT

c , i ∈ VT
c \ {`}, j ∈ VT

c \ {i, `} (2.10)

xkT
ij ≤ y T

ij k ∈ K, T ∈ {P, D}, i ∈ VT, j ∈ VT \ {i} (2.11)

y P
ij + zk

ir + zk
jr ≤ 3− y D

ij k ∈ K, i ∈ I, j ∈ I \ {i}, r = 1, . . . , Rk (2.12)

∑
j∈I

j · xkP
0j ≤∑

j∈I
j · xk′P

0j k ∈ K, k′ ∈ K | k < k′, Rk = Rk′ , Lk = Lk′ (2.13)
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xkT
ij ∈ {0, 1} k ∈ K, T ∈ {P, D}, (i, j) ∈ AT ∪ {(0T, 0T)} (2.14)

y T
ij ∈ {0, 1} T ∈ {P, D}, i ∈ VT, j ∈ VT \ {i} (2.15)

zk
ir ∈ {0, 1} k ∈ K, i ∈ I, r = 1, . . . , Rk (2.16)

wk
i ∈ {0, 1} k ∈ K, i ∈ I (2.17)

The objective function of the problem is defined by the Equation (2.1), which
minimizes the total distance traveled by the vehicles. Constraints (2.2) and (2.3)
ensure that each vehicle starts and ends its route in the depot of each region. Note
that for instances where the total capacity of the vehicles is greater than the total
customer demand, a vehicle k may not be used, in this case, we use a additional
variable xkT

00 ∀ T ∈ {P, D} that gets 1 if the vehicle did not serve any customer request.
Constraints (2.4) ensure that each request i is served by a vehicle k only if the vehicle
k reaches the vertex i. Constraints (2.5) guarantee that the same vehicle must arrive
and leave a vertex that represents the location of a client. Constraints (2.6) ensure
that each request is served by one and only one vehicle. Constraints (2.7) ensure that
the capacity of the stacks is not extrapolated. Constraints (2.8) ensure that the item
of a request served by a vehicle k must be stored in its container. Constraints (2.9)
and (2.10) establish a visit order between all vertex pairs in both regions and ensure a
transitivity in this order, respectively. In other words, if i precedes l and l precedes j,
then i precedes j. Constraints (2.11) ensure that if an arc (i, j) is traversed by a vehicle,
then i is strictly visited before j. Constraints (2.12) indicate the restrictions regarding
the LIFO policy applied in all stacks of all vehicles. If the item related to the requests i
and j are stored in the same stack r of vehicle k, being i visited before j in the pickup
region, then i cannot be visited before j in the delivery region. Constraints (2.13) break
the resulting symmetry from the formulation, imposing a lexicographic order on the
routes of vehicles with the same container configuration. And, finally, constraints
(2.14) to (2.17) define the scope and domain of the decision variables.

Although this formulation does not use advanced optimization methods (e.g.
branch-cut, branch-and-price, among others), it may be used as an alternative to the
exact methods proposed by Iori and Riera-Ledesma (2015).
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2.2 Heuristic approach

Since the DVRPMS is a complex combinatorial problem, for some large-size instance
none of the exact methods proposed by Iori and Riera-Ledesma (2015) and neither
our ILP formulation could solve the problem within an acceptable time. To work
around this difficulty, implementing heuristic algorithms to treat large scale instances
is inevitable. Considering that the VNS metaheuristic is widely used in the literature
to obtain high quality solutions in combinatorial problems (Hansen and Mladenović,
2001), we also have been motivated to propose a method based on VNS to address the
DVRPMS. The remainder of this section describes it in detail.

2.2.1 Solution representation

The solution representation defined by Chagas et al. (2016) is used in this work,
where a solution for the DVRPMS is represented by the items of the | I| customer
requests which are distributed and allocated in the containers of the |K| vehicles in
the fleet. This representation defines the loading plan of the items in each container
and, consequently, defines the loading/unloading constraints that must be obeyed in
order to respect the LIFO policy.

Figure 2.4 shows an example of representation for a solution involving 16 transport
requests and three vehicles with containers of dimensions (2× 4), (1× 4) and (2× 2).
As seen in the figure, the representation of the solution only informs the designation
of the requests and the container loading plan for each vehicle. For each vehicle, the
routes in the pickup and delivery regions are obtained by the evaluation functions
described in Section 2.2.2 in the following.

Figure 2.4: DVRPMS solution representation example (Chagas et al., 2016).



The double VRP with multiple stacks 15

2.2.2 Evaluation function

As previously mentioned, the solution representation does not report the routes
performed by each vehicle. We assign this task to the evaluation function, which is
responsible to evaluate and determine a route in the pickup region and another in the
delivery region for each vehicle from its container (solution representation) and thus
to return the total distance traveled by the vehicles.

Finding the shortest route in the pickup region (or the delivery region) with LIFO
constraints imposed by a known loading plan can be seen as the Traveling Salesman
Problem with Precedence Constraints (TSPPC), proposed by Savelsbergh and Sol
(1995), where the precedence constraints are given by the loading plan. According to
Moon et al. (2002), TSPPC belongs to the NP-Hard class of problems, therefore the
optimal solution to the problem cannot be obtained within a reasonable computational
time when large-size instances are considered, unless P = NP .

In this work, we have developed two different evaluation functions. At first, we
consider the evaluation function, denoted as fopt(.), that consists in applying the
dynamic programming algorithm described by Casazza et al. (2012) in each con-
tainer k ∈ K to determine the shortest pickup (delivery) route that satisfies the LIFO
constraints imposed by the loading plan.

From preliminary tests, we have concluded that evaluating all solutions explored
by the VNS algorithm using the evaluation function fopt(.) is impracticable due to
its exponential complexity, that is, though the number of stacks is small, during the
execution of the algorithm a countless number of solutions are evaluated. Therefore,
we have proposed a simple heuristic evaluation, denoted as fheur(.), in order to find
good quality routes in shorter computational time. This heuristic evaluation can be
divided into two phases that are subsequently performed: a greedy phase and a local
search phase.

In the greedy phase, for each vehicle, a pickup route (respectively a delivery route)
is constructed choosing at each time, among the items at the bottom (top) of each stack,
the item that has the least impact (least distance) on the pickup (delivery) route. In
other words, the pickup route delivery (route) is constructed choosing at each moment
the item collected (delivered) that is the closest one to the partially constructed route.

Figure 2.5 illustrates the greedy phase of the evaluation heuristic when applied to
the pickup region (a) and other in the delivery region (b), considering a vehicle with a
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container of dimensions (2× 4). The dashed positions in the container indicate that
the items already have been inserted in the routes by previous iterations. In the case
shown in Figure 2.5 (a), the last vertex inserted in the pickup route is vertex 9P, which
refers to the request 9. From this vertex, only vertices 3P and 10P, associated with
requests 3 and 10, respectively, are accessible in the pickup region, since the constraints
of the loading plan must be satisfied. Between vertices 3P and 10P, vertex 3P will be
chosen, since vertex 3P is the closest to the vertex 9P. Similarly, in Figure 2.5 (b) the
vertex 2D will be chosen, since, among the candidates 1D and 2D, 2D is the closest to
the last vertex (9D) inserted in the delivery route.

Partial pickup route Partial delivery route

Figure 2.5: Greedy phase of the evaluation heuristic.

Note that the routes assigned to a vehicle can be represented by the order that the
operations are performed on the container stacks. Figure 2.6 illustrates this statement,
where the stacks of a container of size (2× 4) are named s1 and s2 to facilitate the
appropriate referencing of each stack. The sequences SP and SD represent, respectively,
the route assigned to the vehicle in the pickup and delivery regions.

The second phase of the evaluation heuristic consists of applying a refinement
algorithm to the routes determined by the greedy phase. In this phase, a local search
is applied separately in each one of the sequences SP and SD in order to find better
routes. The neighborhood structure defined to perform this local search consists of
exchanging two operations si and sj | i 6= j of their positions. Figure 2.7 shows a

neighbor SP′ from SP, as well as the changes caused in the pickup route.

In the local search procedure, the inspection of neighbors is done casually (a
neighbor is chosen randomly from the neighbors of a neighborhood structure) and the
neighborhood of the current sequence is explored until a sequence that represents a
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Pickup route Delivery route

SP = {s1, s1, s2, s2, s1, s2, s1, s2} SD = {s2, s1, s2, s1, s2, s1, s1, s2}

Figure 2.6: Representation of the routes through the operations carried out in the stacks.

Pickup route

SP = {s1, s1, s2, s2, s1, s2, s1, s2}

Pickup route with swapped operations

SP′ = {s1, s2, s1, s2, s1, s2, s1, s2}

Figure 2.7: Local search phase of the evaluation heuristic.

shorter route is found than the route already known, i.e., we use a first improvement
strategy.

Given the solution representation and a defined strategy to evaluate these solutions,
the next section defines and details the neighborhood structures to be applied to
DVRPMS solutions.
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2.2.3 Neighborhood structures

In order to explore the solution space of the DVRPMS, we define four neighborhood
structures: Item Swap (IS), Item Ejection Chain (IC), Stack Permutation (SP) and Stack
Swap (SS). All these structures are used in our VNS algorithm and are described and
detailed as follows.

Item swap

The Item Swap (IS) neighborhood of a solution of the DVRPMS, defined by Chagas
et al. (2016), contains the solutions that can be obtained by swapping two items of the
containers. The items to be relocated may belong to the same container or to different

container, then the size of IS neighborhood is O

 |I|
2

 = O(|I|2). Figure 2.8

shows an example of a solution s and one of its neighbors s′.

Figure 2.8: An Item Swap (IS) example (Chagas et al., 2016).

Item ejection chain

The Item Ejection Chain (IC) neighborhood of a solution of the DVRPMS contains the
solutions that can be obtained by exchanging three items of the containers by way of
ejection chain, i.e., the first item is relocated in position of second one, the second item
is relocated in position of third one and the third item is relocated in position of the
first one. As in the neighborhood structure IS, the items to be relocated may belong to
the same container or to different container, so the size of IC neighborhood is O(|I|3).
Figure 2.9 shows a solution s and one of its neighbors s′.
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Figure 2.9: An Item Ejection Chain (IC) example.

Stack permutation

The Stack Permutation (SP) neighborhood of a solution of the DVRPMS contains the
solutions that can be obtained by rearranging items from the same row (horizontal
stack) using a permutation of these items. As the total number of stacks of a solution
is ∑k∈K Rk and each stack of size Lk has Lk! permutations, the size of SP neighbor-
hood is O (∑k∈K Lk! Rk). Figure 2.10 shows an example of a solution s and one of its
neighbors s′.

Figure 2.10: A Stack Permutation (SP) example.

Stacks swap

The Stack Swap (SS) neighborhood of a solution of the DVRPMS contains the solutions
that can be obtained by swapping two stacks of the different containers. As the stacks
to be relocated must belong to different containers, the size of SS neighborhood is given
by combination of the total number of stacks grouped in pairs, disregarding the pairs of

stacks which belong to the same vehicle, that is, O

 ∑k∈K Rk

2

−∑k∈K

 Rk

2

.

Figure 2.11 shows an example of a solution s and one of its neighbors s′.
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Figure 2.11: A Stack Swap (SS) example.

For two stacks with different heights, the swap is made only between the items of
the smallest stack and the items loaded in the first (bottom-up) positions of the largest
stack. Figure 2.12 shows an example for this situation.

Figure 2.12: A Stack Swap (SS) example, when the heights of the stacks are different.

2.2.4 Initial solution

The initial solution of our VNS algorithm is created randomly. A random subset of
customer requests is assigned to each vehicle in such way that the number of requests
does not exceed the capacity of each vehicle and that each request is to be served by a
single vehicle.

2.2.5 A variable neighborhood search approach

The Variable Neighborhood Search (VNS) metaheuristic, proposed by Mladenović and
Hansen (1997) (see e.g. Hansen and Mladenović (2014) for a recent description), is a
higher-level procedure widely used to treat a large variety of practical and complex
problems Felipe et al. (2009); Tricoire et al. (2011); Wei et al. (2014, 2015); Pinto et al.
(2018). In its simplest form, known as basic VNS (Hansen and Mladenović, 2001),
the VNS requires a local search procedure and a set of neighborhood structures Nk
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(k = 1, 2, . . . , kmax) which are used to perform shaking moves in order to avoid getting
stuck on local optima solutions found throughout the algorithm.

Algorithm 1 describes our proposed VNS, where fheur(.) and fopt(.) are the func-
tions that run the evaluation heuristics described in Section 2.2.2 for each container and
return the total distance traveled by the vehicles. Initially, we define the set N which
consists of the four neighborhood structures previously described. These neighbor-
hood structures are arranged hierarchically according to their perturbation strength,
i.e., the first neighborhood structure is the IS, followed by the IC, SP and SS ones. The
algorithm’s initial solution (line 3) is generated randomly according to Section 2.2.4.
While the number of iterations without improvement has not reached the established
maximum (iter_max), the algorithm chooses a random neighbor s′ using the k-th
neighborhood structure (initially k = 1) from the current solution s and then applies
a local search in s′, that produces a new solution s′′. The local search (see Algorithm
2) consists of applying a descent method using the IS neighborhood structure with a
first improvement strategy. If the solution s′′ is better than s, s′′ becomes the current
solution and the procedure is repeated using the first neighborhood structure (k is
reset to 1), otherwise the procedure is repeated using the next neighborhood structure
(k + 1). The method stops when the current number of iterations reaches the stopping
criteria, noted by iter_max. Then, the best solution found is evaluated by the function
fopt(.) and then returned. Note that during the internal part of the algorithm (line 5 to
16) all the solutions are evaluated by function fheur(.). This means that throughout the
algorithm, each solution is evaluated heuristically, favouring efficiency, while the last
one is evaluated optimally, favouring quality, so that the functioning of the algorithm
does not become costly (time consuming).

2.3 Computational experiments

The VNS algorithm has been implemented in C/C++ and has been sequentially
(nonparallel) performed on a computer with the same settings as those used in the
experiments reported by Chagas et al. (2016), that is, on an Intel Core i5-3570 @ 3.40
GHz x 4 computer with 16GB of RAM running the operating system Ubuntu 14.04
LTS 64 bits. Since for some instances, the ILP formulation requires a large amount
of memory, we have run it on an Intel(R) Xeon(R) CPU E5-2660 v2 @ 2.20GHz x 40
computer with 384GB of RAM, running the operating system CentOS Release 6.8.
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Algorithm 1: Variable Neighborhood Search (VNS)
1 Let N = {N1,N2,N3,N4} = {IS, IC, SP, SS} be the set of neighborhood

structures
2 kmax ← | N |
3 s← generate a random solution
4 iter ← 0
5 while iter < iter_max do
6 k← 1
7 repeat
8 s′ ← pick a random neighbor in the k-th neighborhood structure of s
9 s′′ ← apply local search in s′ using the IS neighborhood structure // Alg 2

if fheur(s
′′) < fheur(s) then

10 s← s′′

11 k← 1
12 iter ← 0
13 else
14 k← k + 1
15 iter ← iter + 1
16 until k > kmax
17 fopt(s)
18 return s

Algorithm 2: Local Search (LS)
1 Let s be the solution in which the local search will be applied
2 Let IS(s) be the set of solutions in the Item Swap (IS) neighborhood of

solution s
3 improv← true
4 while improv = true do
5 improv← false
6 neighbors← IS(s)
7 while neighbors 6= { } and improv = false do
8 s′ ← pick a random neighbor s′ ∈ neighbors
9 if fheur(s

′) < fheur(s) then
10 s← s′

11 improv← true
12 else
13 neighbors← neighbors \ {s′}
14 return s

Our ILP formulation has been implemented in C/C++ using the Concert Technology
Library of CPLEX 12.5 under an academic license, with all CPLEX default settings,
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except for the runtime that has been limited to 3 hours. It is worth mentioning
that unlike the VNS algorithm, the ILP formulation has been executed on multiple
threads, as defined by the CPLEX default settings. Our code is publicly available at
https://github.com/jonatasbcchagas/ilp_vns_dvrpms.

2.3.1 Benchmarking instances

In order to assess the quality of our solution approaches, we have used the set of
benchmark instances described by Iori and Riera-Ledesma (2015). These authors
have defined 24 different types of instances, where each type contains the number
of customer requests, the number of vehicles available and the configurations of the
vehicle’s loading compartments. These 24 types of instances are divided into two sets.
The first one, denoted by C, contains 15 types of instances for which the total capacity
of the vehicles is equal to the total number of customer requests (number of items),
that is, for all these types of instances the containers must be fully loaded in order to
serve all customers. The second set, denoted by ¬C, contains 9 types of instances for
which the total number of customer requests (number of items) is less than the total
capacity of the vehicles, so the containers do not need to be completely filled in order
to serve customers. Tables 2.1 and 2.2 show, respectively, the specifications of sets C
and ¬C. Each type is described by the number of customer requests |I|, the number
of vehicles |K| and the configuration of the containers of the vehicle fleet (column
(R× L)′s). The last column of each table shows the total capacity of each type of fleet.

Regarding customer locations, for each type of instances previously defined, Iori
and Riera-Ledesma (2015) used the data from 5 DTSPMS benchmark instances (R05,
R06, R07, R08, and R09), giving in total 120 instances. Each of these instances reports
the customers’ locations in the pickup region and in the delivery region. These loca-
tions were chosen at random within two different regions of dimensions 100× 100, and
the depot of each region was fixed in coordinates (50, 50). The distance between any
two points of the same region was calculated using the rounded Euclidean distance.

https://github.com/jonatasbcchagas/ilp_vns_dvrpms
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Table 2.1: Instance specifications of group C.
T | I| |K| (R× L)′s ∑k∈K RkLk

(a) 12 2 (2× 3) (2× 3) 12
(b) 12 2 (2× 2) (2× 4) 12
(c) 12 3 (2× 2) (2× 2) (2× 2) 12
(d) 16 2 (2× 4) (2× 4) 16
(e) 16 3 (2× 2) (2× 3) (2× 3) 16
( f ) 16 4 (2× 2) (2× 2) (2× 2) (2× 2) 16
(g) 18 2 (2× 3) (3× 4) 18
(h) 18 3 (2× 3) (2× 3) (2× 3) 18
(i) 18 4 (2× 2) (2× 2) (2× 2) (2× 3) 18
(j) 20 2 (2× 4) (3× 4) 20
(k) 20 3 (2× 3) (2× 3) (2× 4) 20
(l) 20 4 (2× 3) (2× 3) (2× 2) (2× 2) 20
(m) 24 2 (3× 4) (3× 4) 24
(n) 24 3 (2× 4) (2× 4) (2× 4) 24
(o) 24 4 (2× 3) (2× 3) (2× 3) (2× 3) 24

Table 2.2: Instance specifications of group ¬C.
T | I| |K| (R× L)′s ∑k∈K RkLk

(p) 18 2 (4× 4) (4× 4) 32
(q) 18 3 (3× 4) (3× 4) (3× 4) 36
(r) 18 4 (2× 4) (2× 4) (2× 4) (2× 4) 32
(s) 20 2 (4× 4) (4× 4) 32
(t) 20 3 (3× 4) (3× 4) (3× 4) 36
(u) 20 4 (2× 4) (2× 4) (2× 4) (2× 4) 32
(v) 24 2 (4× 4) (4× 4) 32
(w) 24 3 (3× 4) (3× 4) (3× 4) 36
(x) 24 4 (2× 4) (2× 4) (2× 4) (2× 4) 32

2.3.2 Parameter tuning

The proposed VNS algorithm has only one parameter (number of iterations without im-
provement) that is referenced as iter_max. It is responsible for stopping the execution
of the algorithm (stopping criteria). Naturally, the higher the iter_max value, the wider
the search and, consequently, the algorithm finds better solutions but spends more
time. In order to balance the quality of the solutions and the execution time, for each
instance, we have run 30 times the VNS algorithm with different values of iter_max
and constructed the chart shown in Figure 2.13. The values tested for iter_max are
arranged on the horizontal axis of the chart, such values have been defined in function
of the number of customer requests | I| . For each iter_max value, we plot the average
value of the objective function and also the average execution time.
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Figure 2.13: Analysis of the stopping criteria of the VNS algorithm.

After analyzing the chart, it is inferred that from item_max = 7 | I| the improve-
ment is small in relation to the processing time. Therefore, the final experiments were
performed with item_max = 7 | I| .

2.3.3 Results on test instances

The results obtained by our approaches to solve the DVPRMS is reported in this section.
As pointed before, the execution time of the ILP formulation was limited to 3 hours.
All exact algorithms proposed by Iori and Riera-Ledesma (2015) were limited to 1 hour.
Our VNS algorithm was ran 10 independent times and the average and best value of
the objective function obtained in these 10 runs were used in our analysis.

Tables 2.3 and 2.4 report the results on instances of group C, that is, those in which
the total capacity of the fleet of vehicles is exactly the same as the number of customer
requests. Thus, the containers must be completely filled so that all customers are
served. Table 2.3 shows the results for the 30 instances (ID 001 to ID 030), considered
by Iori and Riera-Ledesma (2015) as small instances and Table 2.4 shows the results
for the 45 large-size instances (ID 031 to ID 075). Table 2.5 reports the results for the 45
instances of group ¬C (ID 076 to ID 120), that is, those in which the total fleet capacity
of vehicles is larger than the number of customers and, therefore, the containers will
not necessarily be completely filled.
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The first three columns of each table describe the instances, being that each instance
is identified by a number (column ID), a name indicating the pickup and delivery
regions (column R), and a type of instance (column T). The best results obtained by
Iori and Riera-Ledesma (2015) are presented in the columns UB and t(s) that indicate,
respectively, the upper-bound and the execution time in seconds. The results obtained
by our ILP formulation are described in columns LB, UB, Gap %, t(s) and Opt. Columns
LB and UB, respectively, indicate the lower-bound and the upper-bound obtained
at the end of the execution. Column Gap % shows the relative gap between UB
and LB which can be calculated as 100× (UB− LB)/UB. Column t(s) informs the
total processing time and column Opt indicates by an asterisk the instances solved to
optimality. The next columns show the best results and the processing time (columns
Best and t(s)) obtained by Silveira et al. (2015). The results obtained by Chagas et al.
(2016) and the proposed VNS algorithm are presented in three columns, Avg, Best and
t(s) that inform, respectively, the average solution value, the best solution value, and
the total processing time consumed by the 10 runs. Note that Silveira et al. (2015) did
not consider instances of group ¬C in their experiments, so Table 2.5 does not show
these results. Although Chagas et al. (2016) do not show the results of instances of
group ¬C, we executed their algorithm and reported the results in Table 2.5.

Tables 2.3 and 2.4 show the superiority of the results reported by Iori and Riera-
Ledesma (2015) when compared to results reached by the ILP formulation, since for
every instance of group C the algorithms developed by Iori and Riera-Ledesma (2015)
runs faster than our ILP formulation and finds better solutions for most instances.
However, although the ILP formulation is not as efficient as the exact methods of
Iori and Riera-Ledesma (2015), as it was solved with no tentative of strengthening or
specialized techniques, it is of fundamental importance for this work and for future
ones that will address the DVRPMS, since through the results of our ILP formulation,
it was possible to notice inconsistencies in the results published by Iori and Riera-
Ledesma (2015).

All results proven to be inconsistent are highlighted in Table 2.3 and 2.4 by the
character †, which is inserted in column UB that relates to the results of Iori and Riera-
Ledesma (2015). Those results were considered inconsistencies due to the lower-bound
(column LB) of the ILP formulation being larger than the upper-bound (column UB)
reported by Iori and Riera-Ledesma (2015). After noticing these inconsistencies, the
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Table 2.3: Comparative analysis on small-size instances of group C.

Instance
Iori and ILP Silveira Chagas

VNSRiera-Ledesma formulation et al. et al.
(2015) (2015 ) (2016)

ID R T UB t(s) UB LB Gap % t(s) Opt Best t(s) Avg Best t(s) Avg Best t(s)
001 R05 (a) 738 2 738 738.0 0.00 46 * 746 31 738.0 738 13 738.0 738 2
002 R06 895 0 895 895.0 0.00 18 * 897 30 895.0 895 13 895.0 895 2
003 R07 761 5 761 761.0 0.00 486 * 761 31 761.0 761 13 761.0 761 2
004 R08 848† 0 851 851.0 0.00 27 * 851 31 851.0 851 13 851.0 851 2
005 R09 771† 0 776 776.0 0.00 20 * 781 31 776.0 776 14 776.0 776 2
006 R05 (b) 716 1 716 716.0 0.00 23 * 728 31 716.9 716 3 716.0 716 1
007 R06 859† 2 866 866.0 0.00 18 * 873 31 866.0 866 3 877.4 866 1
008 R07 733 3 733 733.0 0.00 95 * 733 31 733.0 733 3 733.0 733 1
009 R08 858 3 858 858.0 0.00 31 * 875 31 858.0 858 3 865.5 858 1
010 R09 738† 1 741 741.0 0.00 16 * 760 31 741.5 741 3 752.8 741 1
011 R05 (c) 855 0 855 855.0 0.00 72 * 859 35 855.0 855 5 855.0 855 1
012 R06 1011 0 1011 1011.0 0.00 78 * 1011 35 1011.0 1011 5 1011.0 1011 1
013 R07 894 1 894 894.0 0.00 367 * 894 35 894.0 894 5 894.0 894 1
014 R08 990 1 990 990.0 0.00 146 * 990 35 990.0 990 5 990.0 990 1
015 R09 852 0 852 852.0 0.00 54 * 853 35 852.0 852 5 852.0 852 1
016 R05 (d) 947 329 947 919.0 2.96 3 h 976 32 948.1 948 1 950.2 947 5
017 R06 1036 43 1036 1036.0 0.00 1625 * 1093 32 1040.2 1036 1 1045.1 1036 6
018 R07 925 46 925 925.0 0.00 3303 * 971 32 925.0 925 1 926.6 925 4
019 R08 1006† 52 1010 1010.0 0.00 1632 * 1060 33 1021.5 1020 1 1014.6 1010 6
020 R09 907† 97 921 921.0 0.00 3195 * 3195 10 925.1 925 1 924.1 921 5
021 R05 (e) 1050 21 1050 1050.0 0.00 4225 * 1087 37 1050.0 1050 21 1051.6 1050 5
022 R06 1102† 6 1114 1114.0 0.00 1778 * 1114 37 1114.0 1114 20 1114.0 1114 4
023 R07 1063 29 1072 958.1 10.63 3 h 1089 37 1063.0 1063 20 1066.9 1063 4
024 R08 1117† 10 1126 1126.0 0.00 2785 * 1142 36 1130.8 1126 21 1136.3 1126 4
025 R09 1021 9 1021 1021.0 0.00 2187 * 1046 36 1021.6 1021 21 1026.1 1021 5
026 R05 ( f ) 1217 37 1217 1054.5 13.35 3 h 1223 42 1217.0 1217 10 1217.0 1217 2
027 R06 1290 10 1290 1155.5 10.43 3 h 1290 41 1290.0 1290 10 1290.0 1290 2
028 R07 1230 44 1230 1046.8 14.90 3 h 1230 41 1230.0 1230 10 1230.0 1230 2
029 R08 1261 18 1261 1148.3 8.94 3 h 1262 44 1261.0 1261 10 1261.0 1261 2
030 R09 1127 7 1134 996.9 12.09 3 h 1134 43 1134.0 1134 10 1134.0 1134 2

Average 960.6 25.9 963.0 934.0 2.44 3260.9 23
30 976.0 33.9 963.7 963.2 8.8 965.2 962.7 2.5

authors were notified and after a careful examination of the details of the solution,
we noticed that for some instances the solutions reported by their algorithms were
unfeasible (the routes did not respect the stacks’ LIFO policy). The authors shared
with us their code, but we could not find the reason of the inconsistencies.

Since the results of Iori and Riera-Ledesma (2015) have not been corrected yet, we
will focus the comparative analysis of results of group C considering only the other
methods of resolution. In addition, in order to highlight the solution quality of each
method, best results reached for each instance are shown in bold.

For the small instances of group C, the ILP formulation was able to find the optimal
solution for 23 out of 30 instances, whereas, for the 45 large instances, only 6 of them
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Table 2.4: Comparative analysis on large-size instances of group C.

Instance
Iori and ILP Silveira Chagas

VNSRiera-Ledesma formulation et al. et al.
(2015) (2015 ) (2016)

ID R T UB t(s) UB LB Gap % t(s) Opt Best t(s) Avg Best t(s) Avg Best t(s)
031 R05 (g) 950 9 950 950.0 0.00 778 * 1083 31 952.5 950 19 964.8 950 16
032 R06 1012† 27 1024 1024.0 0.00 7224 * 1087 31 1038.8 1024 19 1035.6 1024 15
033 R07 932 67 932 932.0 0.00 8592 * 1054 32 936.8 932 21 943.4 932 13
034 R08 1011† 50 1018 1018.0 0.00 3635 * 1128 31 1040.7 1031 20 1037.8 1024 16
035 R09 909† 48 919 919.0 0.00 2860 * 985 31 937.4 919 21 931.5 919 18
036 R05 (h) 1147 60 1147 1021.9 10.91 3 h 1198 41 1147.0 1147 33 1153.9 1147 8
037 R06 1165 8 1177 1100.0 6.54 3 h 1190 42 1177.0 1177 33 1177.0 1177 10
038 R07 1123 32 1140 930.1 18.41 3 h 1136 41 1123.0 1123 33 1123.0 1123 7
039 R08 1184 40 1184 1096.7 7.37 3 h 1214 41 1184.0 1184 33 1188.6 1184 9
040 R09 1080 50 1097 954.0 13.03 3 h 1111 41 1081.4 1080 33 1080.6 1080 9
041 R05 (i) 1269 319 1291 999.4 22.59 3 h 1292 43 1272.0 1269 18 1274.6 1269 5
042 R06 1264 38 1275 1084.8 14.92 3 h 1282 43 1275.1 1275 18 1275.1 1275 6
043 R07 1261 193 1281 936.8 26.87 3 h 1284 43 1261.0 1261 18 1273.7 1261 4
044 R08 1310 504 1312 1109.3 15.45 3 h 1338 44 1310.0 1310 18 1317.1 1310 6
045 R09 1157 62 1157 954.0 17.54 3 h 1196 44 1158.0 1157 18 1162.8 1157 6
046 R05 (j) 1012 115 1013 953.0 5.92 3 h 1126 34 1019.2 1012 6 1024.3 1012 21
047 R06 1018 24 1018 1018.0 0.00 1453 * 1177 33 1043.5 1018 6 1050.3 1018 21
048 R07 1047 290 1056 941.6 10.83 3 h 1162 34 1065.8 1054 6 1075.5 1047 18
049 R08 1040 751 1058 981.7 7.22 3 h 1221 10 1068.8 1050 8 1073.4 1050 18
050 R09 959 55 973 930.4 4.38 3 h 1126 34 985.2 977 7 987.6 974 22
051 R05 (k) 1174 860 1231 981.0 20.31 3 h 1212 45 1180.4 1174 28 1180.4 1174 13
052 R06 1200 66 1234 1064.4 13.74 3 h 1253 44 1209.5 1200 27 1227.0 1200 11
053 R07 1243 1471 1375 942.6 31.45 3 h 1289 44 1247.4 1243 28 1258.0 1243 11
054 R08 1196 915 1266 1050.3 17.04 3 h 1275 44 1210.9 1206 28 1211.3 1206 14
055 R09 1133 268 1178 959.2 18.57 3 h 1196 46 1151.0 1144 27 1154.4 1144 12
056 R05 (l) 1293 1306 1298 961.1 25.96 3 h 1347 49 1294.6 1293 30 1293.0 1293 11
057 R06 1340 202 1341 1043.6 22.18 3 h 1374 49 1340.4 1340 29 1342.4 1340 9
058 R07 1373 2843 1405 914.5 34.91 3 h 1418 49 1373.0 1373 30 1380.0 1373 9
059 R08 1305 460 1345 1049.4 21.98 3 h 1345 49 1311.5 1305 29 1323.6 1305 9
060 R09 1252 832 1261 896.6 28.90 3 h 1310 49 1259.2 1258 30 1262.3 1258 9
061 R05 (m) 1060 2326 1069 924.0 13.56 3 h 1220 35 1089.1 1073 14 1092.4 1071 61
062 R06 1093 70 1093 976.9 10.62 3 h 1324 35 1111.1 1093 14 1120.1 1093 52
063 R07 1096 263 1213 901.4 25.69 3 h 1325 35 1108.8 1103 13 1111.8 1098 51
064 R08 1120 1149 1230 941.5 23.46 3 h 1300 34 1156.6 1133 18 1159.0 1133 67
065 R09 1034 735 1148 863.4 24.79 3 h 1266 34 1074.6 1047 20 1074.6 1047 60
066 R05 (n) 1318 1 h 1407 914.2 35.03 3 h 1387 47 1276.2 1262 3 1275.7 1262 20
067 R06 1289 1 h 1550 1016.3 34.44 3 h 1438 48 1315.6 1304 3 1308.6 1304 21
068 R07 1350 1 h 1501 889.7 40.73 3 h 1429 46 1345.5 1333 3 1347.3 1338 22
069 R08 1297 1 h 1426 975.9 31.56 3 h 1426 47 1320.5 1297 3 1324.2 1297 22
070 R09 1239 1 h 1577 817.0 48.19 3 h 1346 47 1264.5 1243 3 1242.5 1240 24
071 R05 (o) 1518 1 h 1552 912.8 41.19 3 h 1422 53 1373.5 1367 60 1368.6 1367 25
072 R06 1449 1 h 1749 992.3 43.27 3 h 1516 53 1448.2 1448 60 1454.4 1448 25
073 R07 1677 1 h 1716 900.8 47.50 3 h 1509 48 1469.2 1465 61 1473.2 1465 28
074 R08 1463 1 h 1555 975.2 37.29 3 h 1488 52 1448.8 1444 61 1446.0 1444 25
075 R09 1570 1 h 1488 871.1 41.46 3 h 1413 52 1363.5 1362 60 1362.0 1362 23

Average 1198.5 1166.8 1249.6 968.7 20.35 9905.4 6
45 1271.5 41.3 1196.0 1188.0 23.8 1198.7 1187.5 19.6

were proved to have found the optimal solution. The high relative gap values (column
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Table 2.5: Comparative analysis on instances of group ¬C.

Instance
Iori and ILP Chagas

VNSRiera-Ledesma formulation et al.
(2015) (2016)

ID R T UB t(s) UB LB Gap % t(s) Opt Avg Best t(s) Avg Best t(s)
076 R05 (p) 912† 24 913 913.0 0.00 2607 * 938.9 921 34 942.8 921 26
077 R06 945† 138 948 948.0 0.00 7141 * 1006.5 989 53 999.2 989 24
078 R07 793† 43 801 801.0 0.00 1181 * 900.6 804 124 871.4 804 44
079 R08 902 5 902 902.0 0.00 714 * 988.5 909 96 975.7 934 29
080 R09 874 11 874 874.0 0.00 2790 * 893.1 889 17 882.7 880 22
081 R05 (q) 1031[ 31 942 894.6 5.03 3 h 995.0 965 9 960.4 942 25
082 R06 1061[ 46 1010 952.9 5.65 3 h 1025.2 1010 9 1032.4 1010 21
083 R07 978[ 40 931 816.8 12.27 3 h 933.1 931 9 938.9 931 17
084 R08 1060[ 74 995 964.5 3.07 3 h 1013.4 998 9 1006.1 998 20
085 R09 982[ 36 889 867.3 2.44 3 h 908.0 902 10 895.5 889 21
086 R05 (r) 1200[ 2303 1159 887.8 23.40 3 h 1124.5 1116 5 1116.6 1113 12
087 R06 1191[ 302 1121 944.2 15.78 3 h 1135.9 1125 5 1131.4 1121 9
088 R07 1105[ 191 1141 792.5 30.54 3 h 1103.4 1051 5 1093.1 1042 8
089 R08 1191[ 776 1198 971.5 18.91 3 h 1167.4 1147 5 1177.2 1147 10
090 R09 1100[ 2342 1050 861.1 17.99 3 h 1055.6 1048 5 1046.0 1033 10
091 R05 (s) 947 4 950 914.5 3.74 3 h 1001.3 991 36 989.0 950 46
092 R06 1010[ 8 1005 1005.0 0.00 4512 * 1021.2 1005 55 1021.5 1005 38
093 R07 939 8 952 881.2 7.44 3 h 1006.9 963 156 1005.3 963 42
094 R08 953 7 958 937.8 2.11 3 h 1028.2 1009 98 1009.4 963 41
095 R09 945[ 5 940 909.3 3.26 3 h 950.1 942 35 942.7 941 35
096 R05 (t) 1101[ 298 1006 891.8 11.36 3 h 1049.7 1000 12 1018.2 998 36
097 R06 1059[ 17 1017 992.6 2.40 3 h 1105.0 1074 15 1057.3 1017 28
098 R07 1101[ 1911 1053 840.6 20.17 3 h 1028.3 1021 12 1050.5 1021 26
099 R08 1115[ 337 1061 906.5 14.57 3 h 1051.7 1039 16 1050.6 1025 31
100 R09 1002[ 15 957 861.0 10.03 3 h 972.9 957 15 970.6 953 33
101 R05 (u) 1259 1 h 1268 870.6 31.34 3 h 1195.9 1159 6 1165.2 1149 15
102 R06 1225[ 258 1197 977.3 18.36 3 h 1185.1 1179 6 1165.0 1161 14
103 R07 1325 1 h 1329 825.4 37.90 3 h 1241.2 1232 6 1235.2 1232 13
104 R08 1245 1 h 1336 951.0 28.82 3 h 1215.6 1207 6 1194.4 1181 14
105 R09 1169[ 909 1200 863.0 28.08 3 h 1153.1 1136 6 1132.8 1118 15
106 R05 (v) 1033 26 1079 904.8 16.15 3 h 1075.3 1062 112 1051.9 1033 93
107 R06 1051 34 1084 944.9 12.83 3 h 1085.3 1056 274 1074.4 1051 95
108 R07 1058 52 1106 861.5 22.11 3 h 1111.4 1095 75 1086.7 1080 93
109 R08 1076 26 1089 923.5 15.20 3 h 1093.4 1069 717 1102.9 1080 90
110 R09 1019 6 1030 863.9 16.13 3 h 1039.6 1023 420 1038.5 1022 95
111 R05 (w) 1142[ 2826 1289 844.7 34.47 3 h 1216.0 1194 14 1153.2 1073 59
112 R06 1188[ 331 1271 948.1 25.40 3 h 1212.8 1204 16 1166.3 1093 65
113 R07 1186[ 2603 1200 862.5 28.13 3 h 1210.1 1134 19 1189.4 1098 52
114 R08 1174[ 666 1198 907.6 24.24 3 h 1249.8 1159 19 1209.0 1157 82
115 R09 1098[ 2250 1283 814.0 36.56 3 h 1174.3 1087 24 1142.8 1058 64
116 R05 (x) 1333 1 h 1392 850.6 38.89 3 h 1348.9 1300 9 1293.3 1262 29
117 R06 1377 1 h 1700 937.7 44.84 3 h 1359.7 1320 9 1310.7 1304 29
118 R07 1412 1 h 1596 858.8 46.19 3 h 1388.9 1338 9 1359.7 1338 22
119 R08 1367 1 h 1520 909.3 40.18 3 h 1399.9 1361 10 1357.5 1297 27
120 R09 1578 1 h 1448 831.9 42.55 3 h 1314.8 1252 9 1263.1 1240 32

Average 1106.9 1061.3 1119.7 895.2 17.74 9781.1 6
45 1103.9 1075.0 58.0 1086.1 1058.2 36.6
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Gap %) indicate the difficulty of the ILP formulation on finding optimal solutions,
mainly, for the larger-size instances.

It is possible to notice that the VNS algorithm overcomes all results obtained
by Silveira et al. (2015), finding solutions of the same or higher quality with less
computational time. The VNS was also efficient in comparison to the ILP formulation,
because for only three instances (ID 034, 050 and 061) the ILP formulation obtained
better solutions.

We have also noticed that the average solution (column Avg) obtained by the
algorithm proposed by Chagas et al. (2016) presents slightly better results than the
VNS for most instances of group C. However, considering the best solutions obtained
by each method (column Best), it is possible to notice that in 9 instances (ID 016, 019,
020, 034, 048, 050, 061, 063 and 070) the VNS algorithm has been able to find solutions
of higher quality than those found by the algorithm proposed by Chagas et al. (2016).
In the other 65 instances, both methods found the same solution and only in one
instance (ID 068) the VNS has been worse.

Regarding the computation time, the VNS has been more efficient than the algo-
rithm proposed by Chagas et al. (2016) for most instances. On average (last row of the
tables) the VNS was 3.5 times faster than their algorithm in the smaller instances of
group C and 1.2 faster for the larger-size instances also of group C.

Again, for instances of group ¬C, some results (instances with ID 076, 077 and
078) obtained by Iori and Riera-Ledesma (2015) were also found to be unfeasible. In
addition, we noted that several results which are stated by Iori and Riera-Ledesma
(2015) as optimal results are overcome by the ILP formulation and/or by our VNS
and/or by the method proposed by Chagas et al. (2016). These results are highlighted
by the character [ which was inserted in column UB that relates to the results of Iori
and Riera-Ledesma (2015).

For most instances of group ¬C, when comparing the best solution values, the
method based on VNS outperformed the method described in Chagas et al. (2016),
with two exceptions (ID 079 and ID 109). Regarding computational time, comparing
the average execution time of all methods (last row of Table 2.5), the heuristic based
on the VNS metaheuristic was the faster one, proving to be a reliable heuristic.
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2.4 Conclusions

In this chapter, we have addressed the Double Vehicle Routing Problem with Multiple
Stacks (DVRPMS). For solving it, initially, we have introduced a new Integer Linear
Programming (ILP) formulation. As the DVRPMS is a complex combinatorial prob-
lem, and finding an exact solution is time consuming, a heuristic based on Variable
Neighborhood Search (VNS) algorithm has also been proposed to treat large-size
instances.

In order to evaluate the quality of our solution approaches, we have performed
tests with two sets of instances used in previous works that address the DVRPMS. The
first set (named by C) contains instances in which the total capacity of the vehicles is
equal to the total number of customer requests, while the second one (named by ¬C)
contains instances in which the total number of customer requests is less than the total
capacity of the vehicles.

Although the ILP formulation has not solved most larger-size instances of the
group C and most instances of the group ¬C, this exact method was of fundamental
importance for the DVRPMS because it highlighted inconsistencies in the values
encountered in the literature. Since these inconsistencies have been raised in this work
and our ILP formulation has not solved most instances to the optimality, it is hard
to do a statistical analysis with all solutions. Though, when considering the average
values of the best solutions, the VNS algorithm outperformed all methods and spent
less computational time, especially instances of the group ¬C.
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Chapter 3

The double traveling salesman
problem with partial last-in-first-out
loading constraints

In this chapter1, we approach a variant of the DTSPMS (see Chapter 2 for more
details) that was suggested in Petersen’s Ph.D. thesis (Petersen, 2009) (see page 68,
Section 2.5.2.4), which we have named as the Double Traveling Salesman Problem
with Multiple Stack and Partial Last-In-First-Out Loading Constraints (DTSPMSPL).
The DTSPMSPL, like the DTSPMS, arises in transportation companies responsible
for transporting large and fragile items from a pickup area to a delivery area, where
these two areas are widely separated. However, the DTSPMSPL is more general as
rearrangement operations are allowed as long as they obey a partial LIFO policy,
that is, a version of the LIFO policy that may be violated within a given reloading
depth. As stated by Petersen (2009), the reason for a reloading depth is that replacing
all items stored in the vehicle may be impractical due to the handling cost and the
limited space available during reloading, so only a certain number of items may be
placed outside the vehicle at any time. Thus, only the first L items from the top of
each stack may be relocated at any time. Note that rearrangement operations allow
constructing shorter tours than those in which the classical LIFO policy must be
respected. Although the base operation cost of the DTSPMSPL is the total routing cost,
an additional handling cost should be paid for each item rearranged. Therefore, as
stated by Petersen (2009), partial LIFO constraints allow posing the question of what

1It has been compiled from paper “The double traveling salesman problem with partial last-in-first-out
loading constraints”. J. B. C. Chagas, T. A. M. Toffolo, M. J. F. Souza, and M. Iori. International
Transactions in Operational Research, (2020). Available at https://doi.org/10.1111/itor.12876

33

https://doi.org/10.1111/itor.12876


34 The double TSP with partial LIFO loading constraints

price transportation companies would be willing to pay for the opportunity to move
one item.

The objective of the DTSPMSPL is to find a route in each area in such a way that the
total cost is a minimum, and there exists a feasible loading/unloading plan following
the partial LIFO policy. The total cost involves the routing cost, i.e., the sum of traveled
distances in both areas, and the number of reloading operations performed in the
loading/unloading plan, which have their cost is given in terms of the routing cost.

To the best of our knowledge, no study to date investigates the DTSPMSPL. Thus,
in this work, we start this investigation, addressing a particular case of the DTSPMSPL,
where the vehicle has its loading compartment as a single horizontal stack. We have
named this new transportation problem as the Double Traveling Salesman Problem
with Partial Last-In-First-Out Loading Constraints (DTSPPL).

In order to clarify the characteristics of the DTSPMSPL/DTSPPL, we depict in
Figure 3.1 a solution example of an instance with 6 customers, considering a reloading
depth equal to 2, that is, L = 2. The vehicle starts its pickup route from the pickup
depot (gray vertex on the top left part of the figure). It travels to the pickup position of
customer 1, storing its item in the stack. Next, it visits the pickup position of customer
5, storing its item on the top of the horizontal stack. Then, it travels to pickup position
customer 4. At this point, a rearrangement is performed: the item of customer 5 is
removed from the stack, then the item of customer 4 is placed in the stack and finally
the item of customer 5 is replaced into the stack. The vehicle continues its pickup route
as shown in the figure until all items have been collected and stored in the stack, then
the vehicle returns to the pickup depot. Notice that the reloading sequence may be in
any order; thus, items do not need to remain in the same relative positions before their
rearrangements, as occurs when the vehicle visits the pickup location of customer 6.
Upon arrival at the pickup depot, the container is transferred to the depot (gray vertex
on the top right part of the figure) located in the delivery area, from where it is again
transferred to a vehicle that then executes the delivery operations. In our example,
first, the vehicle travels to the delivery position of customer 2 without the requirement
of any rearrangement. Next, it travels to the delivery position of customer 5, where
items 6 and 3 need to be removed before delivering item 5. The delivery operations
continue, as shown in the figure, until all customers are served. In the end, the vehicle
returns to the delivery depot. Note that in this example, there were 3 rearrangements
in the pickup area (loading plan) and 3 ones in the delivery area (unloading plan),
totaling 6 rearrangements.
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Figure 3.1: Solution of a DTSPPL instance involving 6 customers and reloading depth 2.

Figure 3.2 illustrates in a practical way the loading and unloading plan of the
solution described in Figure 3.1. Note that each column in Figure 3.2 indicates the
container configuration after each pickup or delivery operation. Note also that it is
possible to determine which items have been relocated (highlighted in gray) and how
they have been reloaded by analyzing adjacent pairs of container configurations.

No previous work has approached the DTSPMSPL/DTSPPL. Nonetheless, Ladany
and Mehrez (1984) addressed a similar problem in which the reshuffling of all goods
inside a container is allowed and causes costs and time losses. They investigated
a real-world scenario in which identically sized crates should be transported from
metropolitan area A to metropolitan area B using a single vehicle. The authors have
solved small-size instances exactly by using an enumeration procedure. In addition,
Veenstra et al. (2017) also approached a similar problem, named Pickup and Delivery
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Figure 3.2: A practical representation of loading and unloading plans of the solution shown in
Figure 3.1.

Traveling Salesman Problem with Handling Costs (PDTSPH). It is a variant of the
PDTSPL where rearrangement operations are allowed only at delivery locations,
and, as in the problem studied by Ladany and Mehrez (1984), there is no maximum
depth for reloading, i.e., at any delivery location, all items stored in the container
may be relocated. The authors proposed a binary integer program for the PDTSPH,
considering that the reloading sequence is the inverse of the unloading sequence, i.e.,
the items remain in the same relative positions before their rearrangements. They
have also developed a Large Neighborhood Search (LNS) heuristic, which considers
the reloading policy adopted in the binary integer program and another one where
the reloaded items are positioned in the sequence in which they will be delivered.
Their results show that this last reloading policy reduces the number of rearrangement
operations.

It is important to stress that by allowing rearrangement operations in both regions,
a smaller reloading depth may be needed to rearrange items according to a given
pair of tours πP and πD (pickup and delivery tours, respectively). To illustrate this,
consider the two different pairs of tours in Figure 3.3. In the first pair (scenario #1), we
exemplify what might happen when rearrangements are allowed only in the pickup
region. Note that the item of the n-th customer is the last to be collected and also the
last to be delivered. Therefore, a reloading depth equal to n− 1 is needed to allow
unloading all n− 1 items before collecting the n-th item in the pickup region, and
then store it in the first position of the container, thus preparing the container for
all deliveries without any rearrangement operation. In turn, if rearrangements are
allowed only in the delivery region, a reloading depth equal to n − 1 to construct
feasible loading and unloading plans from πP and πD is also needed in the second
pair of tours (scenario #2). This reloading depth is needed since the first item to be
delivered is stored in the first position of the container during collection.
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πP = 〈 0→ 1→ 2→ ...→ n− 1→ n→ 0 〉
πD = 〈 0→ n− 1→ n− 2→ ...→ n→ 0 〉︸ ︷︷ ︸

scenario #1

πP = 〈 0→ 1→ 2→ ...→ n− 1→ n→ 0 〉
πD = 〈 0→ 1→ n→ n− 1→ ...→ 2→ 0 〉︸ ︷︷ ︸

scenario #2

Figure 3.3: Scenarios that justify the importance of allowing rearrangement operations in both
regions.

In both scenarios showed in Figure 3.3, when rearrangement operations are al-
lowed in the pickup and delivery regions, a reloading depth equal to 1 is enough
to construct feasible loading and unloading plans. Therefore, in the context of the
DTSPMSPL/DTSPPL, where rearrangement many items may be impractical due to
the handling cost and the limited space available during reloading, it is crucial to allow
rearrangement operations in both regions. Note that this can be done without any
additional resources regarding those already available in the DTSPMS context. The
same equipment used to load/unload an item can be used to unload and reload other
items at each pickup and delivery point.

As is commonly addressed in the literature, we do not allow rearrangement oper-
ations at the depot. However, we can formulate scenarios in which rearrangements
are also allowed at the depot by considering a fictitious item localized at the depot. If
rearrangements at the depot are interesting, the fictitious item will be used to do them.
It must be stressed that, in this approach, the reloading depth at the depot is limited to
the same one used on the routes.

In the remainder of this chapter, we present our contributions. In Section 3.1, we
formally describe the DTSPPL via two Integer Linear Programming (ILP) formulations.
Section 3.2 describes a heuristic algorithm based on the concept of the Biased Random-
Key Genetic Algorithm (BRKGA), which is able to find high-quality solutions for
the DTSPPL in shorter computational time. Section 3.3 reports the experiments and
analyzes the performance of the proposed solution approaches. Finally, in Section 5.4,
we present the conclusions and give suggestions for further investigations.

3.1 Problem description and mathematical formulations

In this section, we present the necessary notation to mathematically describe the
DTSPPL and then propose two compact ILP formulations. Our mathematical formu-
lations differ from each other in the way that route constraints are imposed. In both
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formulations, it is needed to provide for the other constraints of the models the visiting
order of the customers in order to construct the loading and unloading plans.

An alternative formulation to those described as follows in this section could be
designed based on infeasible path constraints. In this formulation, the problem should
be decomposed into its routing and loading/unloading components. The routing
component goal would be to construct a tour for each region, while loading/unloading
component would aim at solving a packing problem from the fixed pair of tours
found by the routing component. The packing goal would be to construct a complete
feasible solution for the problem or identify cuts that eliminate tours that do not
allow construction feasible loading and unloading plans. This strategy was used, e.g.,
for solving the DTSPMS in a branch-and-cut algorithm proposed by Alba Martínez
et al. (2013). As stated by Alba Martínez et al. (2013), in the DTSPMS context, from
a given pair of tours, it is possible to construct a precedence graph, and then from
it determining whether the tours are compatible with the LIFO constraints. Their
separation algorithms have been developed from this property in order to find cuts for
their branch-and-cut method. Note that our packing problem is much more complex.
Due to partial LIFO constraints, we may not construct a precedence graph and work
on it once items may be rearranged. Therefore, we cannot efficiently solve the DTSPPL
by using this strategy.

3.1.1 Problem description

The DTSPPL can be formally described as follows. Let C = {1, 2, ..., n} be the set
of n customer requests, VP

c = {1P, 2P, ..., nP} the set of pickup locations and VD
c =

{1D, 2D, ..., nD} the set of delivery locations. For each customer request i ∈ C, an item
has to be transported from the pickup location iP to the delivery location iD.

The DTSPPL is defined on two complete directed graphs, GP = (VP, AP) and
GD = (VD, AD), which represent the pickup and delivery areas, respectively. The sets
VP = {0P} ∪ VP

c and VD = {0D} ∪ VD
c represent the vertices in each area, with

0P and 0D denoting the depots of the pickup and delivery areas, respectively. The
sets of arcs in the pickup and delivery areas are defined by AP = {(iP, jP, cP

ij) ∀iP ∈
VP, ∀jP ∈ VP | jP 6= iP} and AD = {(iD, jD, cD

ij ) ∀iD ∈ VD, ∀jD ∈ VD | jD 6= iD},
where cP

ij and cD
ij correspond to the travel distances associated with arcs (iP, jP) and

(iD, jD), respectively. For convenience of notation, when no confusion arises we also
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refer to sets VP
c and VD

c as the set of requests C, and we use i to denote both iP and iD

and (i, j) to denote both (iP, jP) and (iD, jD).

A feasible solution s for the DTSPPL consists of a Hamiltonian cycle on a graph GP

that starts at the pickup depot 0P, another Hamiltonian cycle on graph GD that begins
at the delivery depot 0D, and a loading/unloading plan. Besides, the two Hamiltonian
cycles and the loading and unloading plan must obey the partial LIFO policy, which is
defined by the maximum reloading depth L.

Let us denote by F the set of all feasible solutions for a DTSPPL instance. Each
solution s ∈ F has a cost cs that involves the travel distance on the two Hamiltonian
cycles and the number of rearrangements performed on the loading and unloading
plan, with a cost h associated with a single item rearrangement. The objective of the
DTSPPL is to find a solution s∗ ∈ F , so that cs∗ = mins∈F cs.

3.1.2 Integer linear programming formulation 1

To better explain the first proposed ILP formulation (ILP1) for the DTSPPL, we cat-
egorize the constraints under three groups: (i) routes structuring constraints, (ii)
loading/unloading plan and partial LIFO constraints, and (iii) reloading control con-
straints. Throughout mathematical modeling, we also use the notation [a, b] to denote
the set {a, a + 1, ..., b − 1, b}. Note that for any a > b, [a, b] is an empty set. After
describing all constraints, we present the objective function of the DTSPPL.

Route structuring constraints

In order to characterize the pickup and delivery routes, we define constraints (3.1)-
(3.7), which use a binary decision variable xkr

ij , ∀r ∈ {P, D}, k ∈ [1, n + 1], (i, j) ∈ Ar,
that assumes value 1 if arc (i, j) is the k-th traveled arc by the vehicle in the area r, and
value 0 otherwise.

∑
j : (0, j) ∈ Ar

x1r
0j = 1 r ∈ {P, D} (3.1)

∑
i : (i, 0) ∈ Ar

xn+1,r
i0 = 1 r ∈ {P, D} (3.2)
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∑
(i, j) ∈ Ar

xkr
ij = 1 r ∈ {P, D}, k ∈ [2, n] (3.3)

∑
k ∈ [1, n]

∑
i : (i, j) ∈ Ar

xkr
ij = 1 r ∈ {P, D}, j ∈ Vr

c (3.4)

xkr
ij ≤ ∑

i′ : (i′, i) ∈ Ar
xk−1,r

i′i r ∈ {P, D}, k ∈ [2, n + 1], (i, j) ∈ Ar (3.5)

xkr
ij ∈ {0, 1} r ∈ {P, D}, k ∈ [1, n + 1], (i, j) ∈ Ar (3.6)

Constraints (3.1) and (3.2) force the vehicle to leave from the depot and return to it
using, respectively, the first and the last arc in each area. Constraints (3.3) guarantee
that only a single arc may be the k-th one of each route. Constraints (3.4) guarantee
that every customer is served. Constraints (3.5) establish the flow conservation for
each vertex, and constraints (3.6) define the domain of the decision variables used to
represent the routes.

Loading/unloading plan and partial LIFO constraints

For the purpose of representing the loading plan, we define a binary decision variable
ykP

j` , ∀k ∈ [1, n], ` ∈ [1, k], j ∈ C, that assumes value 1 if the item referring to the
customer request j is stored in position l on the k-th container configuration in the
pickup area, and value 0 otherwise. We also define other binary decision variables
ykD

j` , ∀k ∈ [1, n], ` ∈ [1, n− k + 1], j ∈ C, to represent the unloading plan, which has
the same meaning as the previous variable but considers the delivery area. With these
variables, we can ensure the feasibility of the loading and unloading plans throughout
constraints (3.7)-(3.15), which are next explained in detail.

∑
j ∈ C

ykP
j` = 1 k ∈ [1, n], ` ∈ [1, k] (3.7)

∑
j ∈ C

ykD
j` = 1 k ∈ [1, n], ` ∈ [1, n− k + 1] (3.8)
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∑
l ∈ [1, k]

ykP
j` = ∑

k′ ∈ [1, k]
∑

i : (i, j) ∈ AP

xk′P
ij k ∈ [1, n], j ∈ C (3.9)

∑
l ∈ [1, n−k+1]

ykD
j` = ∑

k′ ∈ [k, n]
∑

i : (i, j) ∈ AD

xk′D
ij k ∈ [1, n], j ∈ C (3.10)

Constraints (3.7) and (3.8) ensure that only one item must occupy each container
position in each of its configurations. Constraints (3.9) establish that in the pickup
area the k-th container configuration has to contain all items collected at the vertices
vi, ∀i ≤ k. In turn, constraints (3.10) guarantee that in the delivery area the k-th
container configuration has to contain all items that have not yet been delivered at the
vertices vi, ∀i ≥ k. Figure 3.4 depicts the operation of constraints (3.9) and (3.10) for
an instance with 6 customer requests.

Figure 3.4: Graphical representation of constraints (3.9) and (3.10). Dashed arrows indicate
which items must be in each container configuration according to the pickup and
delivery tours, which are represented by the continuous lines that connect the
vertices.

Constraints (3.11) certify that the first container configuration in the delivery area
must be the same as the last container configuration in the pickup area. In other words,
these constraints ensure that there is no rearrangement of items between the transfer
from the pickup depot to the delivery depot.

y1D
j` = ynP

j` ` ∈ [1, n], j ∈ C (3.11)
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Figure 3.5 illustrates the operation of constraints (3.11) for an instance with 6
customer requests. It also illustrates the operation of constraints (3.12) and (3.13)
that ensure the loading plan obeys the partial LIFO policy, taking as example L = 2.
Note that constraints (3.12) and (3.13) establish which items (represented by different
geometric shapes) have to remain in their previous container positions in order not to
violate the partial LIFO policy.

ykP
j` = ynP

j` k ∈ [1, n− 1], ` ∈ [1, k− L], j ∈ C (3.12)

ykD
j` = y1D

j` k ∈ [2, n], ` ∈ [1, n− k− L + 1], j ∈ C (3.13)

Figure 3.5: Graphical representation of constraints (3.11)-(3.13).

Finally, constraints (3.14) and (3.15) define the domain of the decision variables
used to represent the loading and unloading plan.

ykP
j` ∈ {0, 1} k ∈ [1, n], ` ∈ [1, k], j ∈ C (3.14)

ykD
j` ∈ {0, 1} k ∈ [1, n], ` ∈ [1, n− k + 1], j ∈ C (3.15)

Reloading control constraints

To determine how many rearrangements are performed from the loading and unload-
ing plans, we define decision variables zkr, ∀r ∈ {P, D}, k ∈ [1, n− 1], that indicate the
number of rearrangements made in the k-th container configuration in area r. We also
define constraints (3.16) and (3.17), which are responsible for determining the number
of rearrangements in the loading and unloading plans, respectively. Constraints (3.16)
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analyze every pair of adjacent container configurations (k and k+1-th) of the loading
plan to determine the number of rearrangements made in the k-th container config-
uration according to the k+1-th configuration. Figure 3.6 illustrates the operation of
constraints (3.16) by exemplifying the calculation of the number of rearrangements
made in the 3-th container configuration. In this example, the first (` = 1) item is not
rearranged, as shown in the 4-th container configuration; while the second (` = 2)
and third (` = 3) items are. Note that the number of rearrangements is given from
the deeper change in the k-th container configuration. Constraints (3.17) are similar
to constraints (3.16), but they count the rearrangements made in the delivery area.
Finally, constraints (3.18) define the domain of these decision variables.

zkP ≥
(

ykP
j` − yk+1,P

j`

)
·
(

k− `+ 1
)

k ∈ [1, n− 1], ` ∈ [1, k− 1], j ∈ C

(3.16)

zkD ≥
(

yk+1,D
j` − ykD

j`

)
·
(

n− k− `+ 1
)

k ∈ [1, n− 1], ` ∈ [1, n− k], j ∈ C

(3.17)

zkr ∈ Z
+ r ∈ {P, D}, k ∈ [1, n− 1]

(3.18)

Figure 3.6: Graphical representation of constraints (3.16).

Objective function

Constraints (3.1)-(3.18) are enough to represent all feasible solutions of the DTSPPL.
Therefore, to complete the first mathematical model, we define the objective function
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(3.19), which minimizes the total cost. It involves the distance traveled in both areas,
as well as the cost of all rearrangements performed.

min ∑
r∈ {P, D}

∑
(i, j)∈ Ar

c r
ij · ∑

k∈ [1, n+1]
xkr

ij + h · ∑
r ∈ {P, D}

∑
k ∈ [1, n−1]

zkr (3.19)

3.1.3 Integer linear programming formulation 2

Our second ILP formulation (ILP2) uses binary decision variables χr
ij, ∀r ∈ {P, D}, (i, j) ∈

Ar, to describe the vehicle route in each area. More specifically, each variable χr
ij as-

sumes value 1 if arc (i, j) is traveled by the vehicle in area r, and value 0 otherwise.
Moreover, we use an integer variable ur

j , ∀r ∈ {P, D}, j ∈ [0, n], that gives the posi-
tion of vertex j in the route of area r. With these new decision variables, we can use
constraints (3.20)-(3.25), instead of (3.1)-(3.6) adopted for ILP1, to define the routes of
the vehicle.

∑
j : (i, j) ∈ Ar

χr
ij = 1 r ∈ {P, D}, i ∈ Vr (3.20)

∑
i : (i, j) ∈ Ar

χr
ij = 1 r ∈ {P, D}, j ∈ Vr (3.21)

ur
j ≥ ur

i + 1− n ·
(

1− χr
ij

)
r ∈ {P, D}, (i, j) ∈ Ar : j 6= 0 (3.22)

χr
ij ∈ {0, 1} r ∈ {P, D}, (i, j) ∈ Ar (3.23)

ur
0 = 0 r ∈ {P, D} (3.24)

ur
j ∈ {a ∈ Z

+ : a ≤ n} r ∈ {P, D}, j ∈ C (3.25)

Constraints (3.20), (3.21) and (3.23) ensure that each pickup and delivery location
is visited exactly once, whilst constraints (3.22), (3.24) and (3.25) impose the subcycle
elimination.

To complete ILP2, we define constraints (3.26) and (3.27), and the objective function
(3.28). Moreover, we also include constraints (3.7), (3.8) and (3.11)-(3.18), which have
been previously defined for ILP1.
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1 ≥ ∑
l ∈ [1, k]

ykP
j` ≥

k− uP
j + 1

k k ∈ [1, n], j ∈ C (3.26)

1 ≥ ∑
l ∈ [1, n−k+1]

ykD
j` ≥

uD
j − k + 1

n− k + 1 k ∈ [1, n], j ∈ C (3.27)

Note that constraints (3.26) and (3.27) have the same aim as constraints (3.9) and
(3.10), which ensure the correct assignment of items to the loading compartment
throughout the pickup and delivery routes. Note also that equation (3.28), similarly to
(3.19), describes the total DTSPPL cost to be minimized.

min ∑
r∈ {P, D}

∑
(i, j)∈ Ar

c r
ij · χr

ij + h · ∑
r ∈ {P, D}

∑
k ∈ [1, n−1]

zkr (3.28)

3.1.4 Providing the ILP models with a feasible initial solution

We have solved models ILP1 and ILP2 using Gurobi Optimizer, which is currently one
of the best ILP optimization solvers. However, we have noticed that, even for small
instances, Gurobi had difficulties in solving both models within a reasonable time.
Therefore, in order to help the optimization process, we compute a feasible DTSPPL
solution and initialize both models with it. For the initial solution, we consider the case
where rearrangements are not allowed (i.e., L = 0). Thus, as every loading/unloading
operation must verify the classic LIFO principle, the pickup and delivery routes must
be exactly opposite each other, since the vehicle has its loading compartment as a
single stack. Therefore, we can solve the initial solution by solving a TSP instance
on a graph where each arc (i, j) is associated a cost cij = c P

ij + c D
ji . This strategy was

also used by Felipe et al. (2009) to compute an initial solution for the DTSPMS. In this
work, we solve a TSP instance via the classical two-index model for the TSP (see. e.g.,
Gutin and Punnen (2006)) by adding subtour elimination constraints iteratively until
the incumbent solution does not contain subtours.
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3.2 A biased random-key genetic algorithm

In this section, we describe a heuristic algorithm based on the Biased Random-Key
Genetic Algorithm (BRKGA) (Gonçalves and Resende, 2011). Although metaheuristic
algorithms based on local search such as Tabu Search, Variable Neighborhood Search
and Iterated Local Search, among others (see, e.g., (Talbi, 2009)) are more often applied
to address vehicle routing problems, we have chosen an evolutionary algorithm
that works with an indirect representation of its individuals (where each individual
represents a problem solution). The justification for this choice is that the DTSPPL has
a high dependency on routes and loading/unloading plans. So, working with direct
solutions may not be practicable, since defining efficient moves that can navigate
between feasible solutions, and, especially, escape from infeasible solution space is
extremely hard. In turn, an indirect representation of DTSPPL solutions allows us
to navigate in the feasible solution space through simple genetic operators, quickly
producing a high number of feasible solutions. This representation strategy has
been successfully applied to several complex optimization problems in recent years
(Gonçalves and Resende, 2012; Resende, 2012; Gonçalves and Resende, 2013; Lalla-
Ruiz et al., 2014; Gonçalves and Resende, 2015; Santos and Chagas, 2018).

In the remainder of this section, we present the main components of the proposed
BRKGA (Sections 3.2.1-3.2.6) and then describe how these components are combined
together (Section 3.2.7).

3.2.1 Encoding structure

BRKGAs, as well as classic Genetic Algorithms (GAs) (see Mitchell (1998) for a refer-
ence), are evolutionary metaheuristics that mimic the processes of Darwinian Evolu-
tion. Basically, a GA maintains a population of individuals, each encoding a solution
to the problem at hand. Through the use of stochastic evolutionary processes (selec-
tion, recombination, and diversification) over the population, individuals with higher
fitness tend to survive, thus guiding the algorithm to explore more promising regions
of the solutions space.

Each individual in BRKGAs is represented by a vector of random-keys, i.e., a vector
of real numbers that assume values in the continuous interval [0, 1]. This represen-
tation is generic because it is independent of the problem addressed. Therefore, a
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deterministic procedure (to be presented later) is necessary to decode each individual
(a vector of random-keys) to a feasible solution of the problem at hand (the DTSPPL in
our case).

In Figure 3.7, we show the structure defined to represent each BRKGA individual
for the DTSPPL. We divide this structure into three partitions: pickup route, loading
plan, and unloading plan and delivery route. The first one consists of n random-keys,
which are responsible for determining the pickup route. The next ∑n

k=1 min(k, L + 1)
random-keys determine the loading plan carried out along the pickup route. Finally,
the last ∑n

k=1 min(n− k + 1, L + 1) random-keys define the entire unloading plan and
also the delivery route.

n
random-keys

���� · · ·�︸ ︷︷ ︸
pickup route

∑n
k=1 min(k, L + 1)

random-keys

����������� · · ·�︸ ︷︷ ︸
loading plan

∑n
k=1 min(n− k + 1, L + 1)

random-keys

����������� · · ·�︸ ︷︷ ︸
unloading plan and

delivery route

Figure 3.7: Chromosome structure.

3.2.2 Decoding procedure

As stated before, each individual p ∈ P has a generic representation in a BRKGA.
Therefore, to determine the fitness of p, we developed a procedure that generates a
feasible solution s from p. The fitness of p is then defined proportionally to the quality
of s.

Our decoding procedure consists of three stages, which must be sequentially
performed due to the dependency among them. Figure 3.8 depicts how these stages
are performed in order to decode the solution shown in Figure 3.1 from a vector of
random-keys. Initially, the n pickup locations are mapped on the first n random-keys.
Then, we sort the pickup locations according to the values of the mapped random-keys.
The sorted pickup locations define the pickup route πP performed by the vehicle. In
Figure 3.1, the first n random-keys produce the pickup route πP = 〈0, 1, 5, 4, 2, 3, 6, 0〉.

We characterize the loading plan from πP and the next ∑n
k=1 min(k, L + 1) random-

keys. The loading plan is created iteratively in n steps, where each of them depends on
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the previous one. Iteratively, for each k ∈ {1, 2, ..., n}, we map the min(k, L + 1) items
that may be relocated without violating the partial LIFO constraints to min(k, L + 1)
random-keys. Next, we sort the items in non-decreasing order according to the values
of the mapped random-keys to define the k-th container configuration in the pickup
area. For the sake of clarity, consider the steps shown in Figure 3.8. At first, the
container is empty, so we just store in it the item (highlighted in gray) of the first
customer visited according to πP. Notice that, though unnecessary, we kept a random-
key (0.48 in this example) to decode the first operation of the loading plan. We have
decided to keep it for simplicity, to follow the same pattern used for the other loading
operations. To define the second container configuration, we map item 1 (it may be
relocated from the previous container configuration) to the random-key 0.59 and item
5 (the second customer visited according to πP) to the random-key 0.61. After sorting
these items according to the values of the mapped random-keys, items 1 and 5 are
stored in the container following the sorted order. The decoding process continues by
mapping the items that may be relocated at each time to the random-keys, and then
sort them to define each remaining pickup container configuration.

Finally, the unloading plan and the delivery route are defined from the loading
plan and the last random-keys. Similarly as before, it is created iteratively in n steps,
where each of one is dependent on the previous one. For each k ∈ {1, 2, ..., n} we
map the min(n − k + 1, L + 1) items that may be delivered without violating the
partial LIFO constraints to min(n − k + 1, L + 1) random-keys. Then, we sort the
items in non-decreasing order according to the values of the mapped random-keys.
The min(n − k + 1, L + 1) − 1 first items in the order to define the k-th container
configuration in the delivery area and the last item is then delivered, iteratively
making up the delivery route. In Figure 3.8, take for example the first step (k = 1),
where we map items 6, 3 and 2 (only these items may be relocated because in this
case, the reloading depth is 2) to the random keys 0.68, 0.94 and 0.95, respectively.
After sorting these random-keys, item 2 (highlighted in gray), which is mapped to the
greatest random-key (0.95 in this example) is delivered. The other items are stored in
the container following the order of their random-keys. This process is repeated until
the whole unloading plan has been completed.
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Figure 3.8: Decoding of the vector of random-keys 〈 0.04, 0.57, 0.78, 0.33, 0.27, 0.98, 0.48, 0.59, 0.61,
0.12, 0.43, 0.29, 0.54, 0.84, 0.87, 0.10, 0.81, 0.99, 0.94, 0.78, 0.57, 0.68, 0.94, 0.78, 0.57, 0.68, 0.94,
0.78, 0.57, 0.68, 0.94, 0.95, 0.82, 0.01, 0.14, 0.07, 0.35, 0.47, 0.53, 0.85, 0.95, 0.80, 0.47, 0.96 〉 to
the solution shown in Figure 3.1.

3.2.3 Initial population

Our BRKGA maintains a population P of N individuals throughout the evolutionary
process. To make the initial population, we create N − 1 random individuals, where
each random-key of each individual is generated independently at random in the real
interval [0, 1]. Furthermore, to introduce an orientation (hopefully a good one) to the
search procedure of the BRKGA, we create and insert into the initial population an
individual that represents the initial solution computed to initialize the mathematical
models, i.e., the optimal DTSPPL solution in which no rearrangements of items are
performed. This last individual is created following the reverse process of the decoding
procedure previously described.
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3.2.4 Biased crossover

In order to combine the genetic information from the parents and generate new off-
springs, a BRKGA uses a biased crossover operator. This crossover always involves
two parents, where one is randomly selected from the elite group Pe, and the other
is randomly chosen from the non-elite group Pē. The groups Pe and Pē are formed
at each generation of the algorithm after all individuals of population P have been
decoded. Group Pe is formed by the individuals with greater fitness, while Pē is
formed by the other individuals, i.e., Pē = P \ Pe. Moreover, the biased crossover
operator has a parameter ρe that defines the probability of each random-key of the
elite parent to be inherited by the offspring individual. More precisely, from an elite
parent a and a non-elite parent b, we can generate an offspring c according to the
biased crossover as follows:

ci ←

 ai if random (0, 1) ≤ ρe

bi otherwise
∀i ∈ {1, 2, ..., M}

where M is the number of random-keys of the individuals and ai, bi and ci are, respec-
tively, the i-th random-key of individuals a, b and c.

3.2.5 Mutant individuals

Unlike most GAs, BRKGAs do not contain mutation operators. Instead, to maintain
population diversity, they use mutant individuals, which are merely new individuals
generated by choosing for each random-key a real number between 0 and 1.

3.2.6 Next generation

In the BRKGA scheme, from any generation k, a new population is formed based on
the current population P . First, all elite individuals of generation k in Pe are copied
into the new population (generation k + 1) without any modification. Next, some
mutant individuals are added to the new population to maintain high population
diversity. Finally, to complete the new population, new individuals are added by using
the biased crossover operator.
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3.2.7 Overall BRKGA

The previous components are organized as described in Algorithm 3. Initially (line 1),
the best solution found by the algorithm is initialized as an empty solution. Then,
at line 2, the initial population is generated. While the stopping criterion is not
achieved, the algorithm performs its evolutionary cycle (lines 3 to 11). At lines 4 to
6, all individuals in the current population are decoded and the best solution found
is possibly updated. After selecting the individual elites (line 7) and generating the
mutant individuals (line 8) as well as the offspring individuals (line 9), the algorithm
updates the population of individuals (line 10). At the end of the algorithm (line 12),
the best solution found is returned.

Algorithm 3: Biased Random-Key Genetic Algorithm (BRKGA).

1 sbest ← ∅
2 P ← initial population with N individuals
3 repeat
4 foreach p ∈ P do
5 s← individual p decoded
6 if s is better than sbest then sbest ← s end
7 Pe ← set of the Ne best individuals (elite) from P
8 Pm ← set of Nm mutant individuals
9 Po ← set of N − Ne − Nm offspring individuals

10 P ← Pe ∪ Pm ∪ Po
11 until time limit is reached
12 return sbest

3.3 Computational experiments

In this section, we present the computational experiments performed to study the
performance of the proposed solution approaches. As there is no previous work on
the DTSPPL, we compare the proposed approaches. Here, we graphically present
the results obtained, whereas all numerical results for each instance can be found at
https://github.com/jonatasbcchagas/ilps_brkga_dtsppl, where is also available our
code, as well as all best solutions (tours and loading/unloading plans) found by each
solution approach.

https://github.com/jonatasbcchagas/ilps_brkga_dtsppl
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Our solution approaches have been coded in C/C++ language. Mathematical
models have been solved using Gurobi solver version 9.0.1. The proposed BRKGA
has been coded from the framework developed by Toso and Resende (2015). All
experiments have been sequentially (nonparallel) performed on an Intel(R) Xeon(R)
E5-2660 (2.20GHz), running under CentOS Linux 7 (Core).

3.3.1 Benchmarking instances

To assess the quality of the proposed solution methods, we have defined a compre-
hensive set of 1080 DTSPPL instances. The instances are divided into 216 different
types in order to analyze the solution methods on different instance characteristics.
Each type is described by the number of customers n, the reloading depth L, and the
cost of each rearrangement h. The number of customers n varies in {6, 8, 10, 12, 15, 20},
while the reloading depth L and the cost h vary in {1, 2, 3, 4, 5, n} and {0, 1, 2, 5, 10, 20},
respectively. Note that for h = 0, we allow rearrangements according to the reloading
depth L without any reloading cost. In turn, for L = n, we allow any rearrangement of
the items, regardless of the number of items introduced in the container. Although this
last configuration seems very unpractical in real-world applications, we have consid-
ered it in our computational experiments so as to have an interesting comparison term.
For each type of instances, we have used the areas R05, R06, R07, R08, and R09 defined
by Petersen and Madsen (2009) for the DTSPMS. Each of these areas consists of two
sets, where one defines the pickup locations (pickup region), and the other defines the
delivery locations (delivery region). The locations of each region have been generated
randomly in a 100× 100 square. The distance between any two points of each region
is the Euclidean distance rounded to the nearest integer, following the conventions
from the TSPLIB. The first point of each region, which is fixed in coordinates (50, 50),
corresponds to the depot, while the next n points define the n customer locations.

3.3.2 Parameter settings

Our mathematical models ILP1 and ILP2 have been solved by using Gurobi solver
with all its default settings. The exceptions are the runtime, which has been limited to
one hour, and the optimization process, which has been limited to use only a single
processor core. Regarding the parameters of the BRKGA, we have used as stopping
criterion the same execution time that both mathematical models have been limited, i.e.,
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one hour. For the other BRKGA parameters, we have used the automatic configuration
method I/F-Race (Birattari et al., 2010) to find the most suitable configuration. We
have used the implementation of I/F-Race provided by the Irace package (López-
Ibáñez et al., 2016b), which is implemented in the R language and is based on the
iterated racing procedure. In our tuning experiments, we have used all Irace default
settings, except for the parameter maxExperiments, which has been set to 5000. This
parameter defines the stopping criterion of the tuning process. We refer the readers to
López-Ibáñez et al. (2016a) for a complete user guide of the Irace package.

In Table 3.1, we describe the BRKGA parameters as well as the tested values for
them. Note that the population size N is given in terms of the size of each individual.
Moreover, the elite population size Ne and mutant population size Nm are granted in
terms of N. After a vast experiment that used a sample of 10% of all 1080 instances,
Irace pointed out the parameters highlighted in bold in Table 3.1 as the best ones.

Table 3.1: BRKGA parameters.

Parameter Description Tested values

N population size 1M, 2M, 5M, 10M, 20M, 50M, 100M, 200M, 500M
Ne elite population size 0.05N, 0.10N, 0.15N, 0.20N, 0.25N, 0.30N
Nm mutant population size 0.05N, 0.10N, 0.15N, 0.20N, 0.25N, 0.30N
ρe elite allele inheritance probability 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90

M is the number of random-keys of each individual.

3.3.3 ILP1 vs. ILP2

Our first analysis of results contrasts the mathematical models ILP1 and ILP2. We
begin by comparing the performance of each model regarding the optimal solutions
found. The results that we obtained are shown in Figure 3.9, where each cell represents
a single test instance (horizontal axis informs L and h, and vertical axis informs area
and n). We indicate with markers which of the instances have been solved to proven
optimality by each model. Empty cells indicate for those instances that no model has
been able to prove optimality within one hour of processing time, while markers �
and ◦ evince those solved by models ILP1 and ILP2, respectively. We point out with H

when both models have been solved to proven optimality.

It can be noticed from Figure 3.9 that the proposed mathematical models have
been able to solve all instances with 6 customers, and almost all instances with 8
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Figure 3.9: Instances solved to proven optimality.

customers. Both models have presented difficulties in solving instances with 10 or
more customers, especially with the increase of the reloading depth (L) and the cost
of each rearrangement (h). However, we can observe that for instances when there are
no rearrangement costs, i.e., h = 0, both models perform better with the increase of
the reloading depth. Indeed, note that the optimal solutions for instances with h = 0
tend to approximate the solution formed by the pickup and delivery optimal tours as
the reloading depth increases. This trend results in an easier combinatorial problem,
which has been verified in the performance of our models.

To better investigate the behavior of the mathematical models ILP1 and ILP2,
we measure the percentage variation of their lower bounds (ILP1_LB and ILP2_LB,
respectively) reached at the end of computation by calculating (ILP1_LB - ILP2_LB)

/ max(ILP1_LB, ILP2_LB) × 100%. The percentage variations obtained between the
lower bounds are graphically shown in Figure 3.10, where we have used a heatmap
visualization to emphasize larger variations. Note that positive variation values
(highlighted in shades of red) indicate that model ILP1 has reached higher lower
bounds than those reached by the model ILP2. In contrast, negative variation values
(highlighted in shades of blue) indicate the opposite behavior. Besides, the higher
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the absolute value (more intense color), the higher the difference between the lower
bounds.
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Figure 3.10: Percentage variation between the lower bounds ILP1_LB and ILP2_LB.

From the results reported in Figure 3.10, we can observe that model ILP2 is more
effective than ILP1 for most of the instances regarding the lower bounds achieved.
It must be stressed that the most instances where the model ILP1 has found tighter
lower bounds are those in which have been solved to proven optimality only by
that model, as shown previously in Figure 3.9. Besides, we can see that the ab-
solute value of the negative variation is higher than the positive variation, thus
indicating, in general, a better performance of model ILP2 concerning the lower
bounds. Interestingly, we have noted in our experiments that for many larger in-
stances even the linear relaxation of model ILP2 is tighter than the lower bound
reached at the end of one hour of processing time of the model ILP1. We recall the
readers interested in the detailed numerical results that we made them available at
https://github.com/jonatasbcchagas/ilps_brkga_dtsppl along with our code and
solutions.

We compare now the models ILP1 and ILP2 regarding their upper bounds (ILP1_UB
and ILP2_UB, respectively) reached at the end of computing. Figure 3.11 reports a
similar heatmap visualization to the one shown in Figure 3.10. However, each cell now

https://github.com/jonatasbcchagas/ilps_brkga_dtsppl
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represents the calculated value as (ILP2_UB - ILP1_UB) / min(ILP1_UB, ILP2_UB)

× 100%. Note that cells with more intense colors indicate a higher difference between
the upper bounds. While positive values (highlighted in shades of red) indicate that
model ILP2 has found better solutions than those found by the model ILP1, negative
values (highlighted in shades of blue) indicate the opposite behavior.
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Figure 3.11: Percentage variation between the upper bounds ILP1_UB and ILP2_UB.

Although the models have shown substantial differences concerning their lower
bounds, the results reported in Figure 3.11 show that both models have obtained
solutions with the same and similar quality (white and light blue/red cells), i.e., same
and similar upper bounds, for several instances. Disregarding the smaller instances
where both models have found optimal solutions, this fact has befallen on many
instances that involve large rearrangement costs because the models have not even
been able to improve their initial incumbent solution (which we recall is the optimal
solution obtained when reloading operations are not allowed). It indicates that in these
instances the customers are located in such a way that no rearrangement is attractive
or that both models have difficulty finding a way to accomplish them.

For the cases where the models showed significant differences between their upper
bounds, we can observe that model ILP1 has performed better for those instances with
smaller rearrangement depth. On the other hand, model ILP2 has achieved better
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solutions for more cases. Furthermore, it has also reached higher absolute differences
between the upper bounds found by the model ILP1.

We conclude the analysis of our models by examining the gap, which is computed
as (UB - LB) / UB × 100%, between the best lower and upper bounds (LB and UB,
respectively) reached by both models. To be clear, the LB and UB values are calculated
as max(ILP1_LB, ILP2_LB) and min(ILP1_UB, ILP2_UB), respectively. In Figure 3.12,
we compare these values for all types of instances, except for those types that involve
6 customers. For these cases, both models have been able to solve all instances to
proven optimality, and, consequently, gap values are zeros. The results reported in the
figure consist of the average for all five instances of each type, i.e., average over five
instances (R05, R06, ..., R09). better analyze the results, we plot them into six different
lines, wherein each of them contains all instances with the same rearrangement cost.
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Figure 3.12: Relative gap between the best lower and upper bounds.

As can be seen from the gaps reported in Figure 3.12, the models’ performance is
strongly influenced by the rearrangement cost. Note that the higher the rearrangement
cost, the larger the gap is, with few exceptions. For larger instances, the gap exceeds
the value of 30%, thus indicating the models’ difficulty to solve these instances. A
closer look reveals, in general, that for rearrangement cost up to 5, that gap decreases as
the reloading depth increases. This befalls because rearrangement operations are more
attractive in these cases to minimize the total operation costs, reducing the difference
between lower and upper bounds.
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3.3.4 ILPs vs. BRKGA

We focus now on the computational analysis of the proposed heuristic algorithm. For
this purpose, we have run our BRKGA 10 independent times on each instance, and
then used the average value (BRKGAavg) of the objective function in these runs in our
analysis. To assess the quality of our BRKGA, we compare the BRKGAavg values with
the best upper bound (UB) found by the mathematical models by means of a heatmap
schema to emphasize the difference between the quality of the solutions obtained.

In Figure 3.10, a heatmap is reported, where each one of its cells reports the percent-
age difference between BRKGAavg and UB of a specific instance, which is identified as in
the heatmaps previously presented. The value of each cell is calculated as (BRKGAavg
- UB) / min(BRKGAavg, UB) × 100%. Now, cells with negative values (highlighted
in shades of blue) indicate that BRKGA has found, on average, better solutions than
those found by mathematical models. In turn, cells with positive values (highlighted
in shades of red) indicate a better performance of the models. The higher the abso-
lute value (more intense color) the higher the difference between the quality of the
solutions.
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Figure 3.13: Percentage variation between BRKGAavg and UB.
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It can be noticed from Figure 3.13 that our BRKGA has been able to find better
solutions than those found by the mathematical models for almost all types of instances
that involve reloading depth up to 3. On the other hand, the BRKGA has difficulty
dealing with larger reloading depths. For these cases, the models have performed
significantly better than our proposed heuristic, although there are some exceptions
(see e.g. instances with L = 5, h = {2, 5, 10}, and n = 20). Note that the models have
performed better for those instances with no limited reloading depth (L = n) and
smallest rearrangement costs (h = {0, 1, 2}). As stated before, for these instances, we
have an easier combinatorial problem. Our models, especially the ILP2, take advantage
of this behavior, while the BRKGA does not.

Now, we compare the quality of solutions reported in Figure 3.13 according to the
time spent from reaching them. To this end, Figure 3.14 shows the average time spent
over the five instances of each type. To better analyze, we plot these results into six
separate charts, wherein each of them contains all instances with the same reloading
depth.

From Figure 3.14, we can note that BRKGA has had a faster convergence for most
of the instances when compared with the models, which has had a positive behavior
for instances with reloading depth up to 3 where it has been able to find several
better solutions. In general, we can affirm that all our solution approaches have faster
convergence behavior as the rearrangement cost increases, which was expected as few
or no rearrangements would be interesting for these cases.

Finally, we analyze the percentage improvement of the best solution achieved
concerning the optimal solution that does not perform any rearrangement, i.e., when
the classic LIFO policy is met. In Figure 3.15, we show for each type of instance (a
combination of L, n, and h) the percentage improvement in terms of costs obtained by
allowing rearrangement items within a reloading depth L and paying a cost h for each
item rearranged. Note that all types of instances with the same rearrangement cost are
described together in a single line (same color). For example, note that for the type of
instance with L = 2, n = 8, and h = 5, we have obtained around 10% of improvement
concerning the optimal solution without rearrangements. As expected, the lower
the cost of rearrangement, the higher the percentage of improvement is. Besides, a
closer look at the improvement rates shows that when rearrangements are less costly,
a deeper reloading limit also implies more significant gains since a higher number
of items may be rearranged. Note also that, even when rearrangements are more
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Figure 3.14: Computational time to reach BRKGAavg and UB for their solution approaches.

expensive, some improvements have been reached, especially for smaller instances
where our approaches have been able to find solutions with better-proven quality.

3.4 Conclusions and open perspectives

We have approached the Double Traveling Salesman Problem with Partial Last-In-
First-Out Loading Constraints (DTSPPL), a pickup-and-delivery single-vehicle routing
problem. In this problem, the vehicle has its loading compartment as a single stack,
and all pickup and delivery operations must obey a version of the LIFO policy that
may be violated within a given reloading depth. We have presented two Integer Linear
Programming (ILP) formulations, and we have developed a heuristic algorithm based
on the Biased Random-Key Genetic Algorithm (BRKGA) metaheuristic.
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Figure 3.15: Percentage improvement with partial LIFO loading.

The performance of the ILP formulations and the BRKGA has been studied on a
comprehensive set of instances built from the DTSPMS benchmark instances. Both ILP
formulations have been able to solve to proven optimality only the smaller instances
within one hour of processing time. One of them has had tighter lower bounds for
almost all instances, although both formulations have shown similar performance
concerning their upper bounds found at the end of the computation. The BRKGA
found good quality solutions for all instances, requiring on average short computing
times.

There are many possibilities for extending this work. Maybe the most relevant one
would be to model and solve the DTSPMSPL, the version of the DTSPPL where the
loading compartment of the vehicle is divided into multiple stacks instead of a single
one. Because of the increased computational complexity, we expect metaheuristic
techniques to be the best option to find good solutions for moderate size instances.
Similarly as proposed by Chagas et al. (2020a) for the DVRPMS, it is possible to repre-
sent a DTSPPL/DTSPMSPL solution from only the container configuration with all
items stored in it. Then, we can determine the optimal pickup and delivery routes from
a dynamic programming algorithm. Thus, the search space of a heuristic algorithm
would be just the container configurations, while the dynamic programming would
find, for each container configuration, the pair of tours, and, consequently, how to
rearrange items throughout the tours if it is needed. Another important extension
of the DTSPPL/DTSPMSPL would be to consider a fleet of vehicles to serve the cus-
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tomers. A larger number of vehicles would cause an increase in the flexibility of the
loading/unloading operations, which could lead to a reduction in operating costs. In
order to formulate more general problems, would also be interesting to consider partial
LIFO loading in situations where backhaul deliveries are dropped, i.e., situations when
deliveries are allow without the need to perform all pickup operations before, as in
(Côté et al., 2009; Cordeau et al., 2010). Finally, as multi-objective formulations provide
a more powerful optimization tools for decision making, it would be opportune to
formulate pickup-and-delivery problems with partial LIFO as bi-objective problems
by minimizing the total routing cost and the number of rearrangement operations.



Chapter 4

The bi-objective traveling thief
problem

In this chapter1, we address the Traveling Thief Problem (TTP) (Bonyadi et al., 2013), an
academic multi-component problem. It is particularly important because it combines
the classical traveling salesperson problem (TSP) and the knapsack problem (KP) –
both of which are very well studied in isolation – and because of the interaction of
both components can be adjusted. In brief, the TTP comprises a thief stealing items
with weights and profits from a number of cities. The thief has to visit all cities once
and collect items such that the overall profit is maximized. The thief uses a knapsack
of limited capacity and pays rent for it proportional to the overall travel duration. To
make the two components (TSP and KP) interdependent, the speed of the thief is made
non-linearly dependent on the weight of the items picked so far. The interactions of
the TSP and the KP in the TTP result in a complex problem that is hard to solve by
tackling the components separately.

Basically, the TTP seeks to optimize the overall traveling time and the profit made
through stealing items. Most of the research focused on the single-objective problem,
where the objectives are composed by using a weighted sum. To be more precise,
the profit is reduced by the costs due to renting the knapsack, which is calculated by
multiplying the overall traveling time by a renting rate.

The TTP has been gaining fast attention due to its challenging interconnected
multi-components structure, and also propelled by several competitions2 organized

1It has been compiled from paper “A weighted-sum method for solving the bi-objective traveling thief
problem”. J. B. C. Chagas, M. Wagner. Submitted to a journal.

2https://cs.adelaide.edu.au/~optlog/research/combinatorial.php

63

https://cs.adelaide.edu.au/~optlog/research/combinatorial.php


64 The bi-objective traveling thief problem

to solve it, which have led to significant progress in improving the performance of
solvers. Among these, are iterative and local search heuristics (Polyakovskiy et al.,
2014; Faulkner et al., 2015; Maity and Das, 2020), solution approaches based on co-
evolutionary strategies (Bonyadi et al., 2014; El Yafrani and Ahiod, 2015; Namazi
et al., 2019), memetic algorithms (Mei et al., 2014; El Yafrani and Ahiod, 2016), swarm-
intelligence based approaches (Wagner, 2016; Zouari et al., 2019), simulated annealing
algorithm (El Yafrani and Ahiod, 2018) and evolutionary strategy with probabilistic
distribution model to construct high-valued solution from low-level heuristics (Martins
et al., 2017). Exact approaches have also been considered, however they are limited to
address very small instances (Wu et al., 2017).

As the TTP’s components are interlinked, multi-objective considerations that inves-
tigate the interactions via the idea of “trade-off”-relationships have been becoming
increasingly popular. For example, Yafrani et al. (2017) created a fully-heuristic ap-
proach that generates diverse sets of solutions, while being competitive with the
state-of-the-art single-objective algorithms. Wu et al. (2018) considered a bi-objective
version of the TTP, which used dynamic programming as an optimal subsolver, where
the objectives were the total weight and the TTP objective score. At two recent com-
petitions3,4, a bi-objective TTP (BITTP) variant has been used that trades off the total
profit of the items and the travel time. The same BITTP variant was investigated by
Blank et al. (2017), who proposed a simple algorithm for solving the problem. More
recently, Chagas et al. (2020b) proposed a customized NSGA-II with biased random-
key encoding. The authors have evaluated their algorithm on 9 instances, the same
ones used in the aforementioned BITTP competitions. Their algorithm has shown to
be effective according to the competition results.

In this work, we also address the BITTP variant used in competitions with a simple
and effective heuristic approach. Specifically, our contributions with this work are:

1. We have realized that we can decompose the multi-objective problem into a num-
ber of single-objective ones using a simple weighted-sum method (Zadeh, 1963),
which is one of the oldest strategies for addressing multi-objective optimization
problems (Ramanathan, 2006; Marler and Arora, 2010; Stanimirovic et al., 2011;
Galand and Spanjaard, 2012).

3EMO-2019 https://www.egr.msu.edu/coinlab/blankjul/emo19-thief/
4GECCO-2019 https://www.egr.msu.edu/coinlab/blankjul/gecco19-thief/

https://www.egr.msu.edu/coinlab/blankjul/emo19-thief/
https://www.egr.msu.edu/coinlab/blankjul/gecco19-thief/
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2. We tackle each single-objective problem through a two-stage heuristic by con-
structing a tour for the thief and then from it, we determine the packing plan
with the stolen items. We use well-known efficient strategies for finding good
tours and a problem-specific packing heuristic, which is a randomized version of
a popular deterministic heuristic for the single-objective TTP, for determining the
items stolen by the thief.

3. We incorporate into our algorithm the concepts of exploration and exploitation,
which are aspects of effective search procedures (Črepinšek et al., 2013; Qi et al.,
2015) by combining with our two-stages strategy, efficient local search operators
already used in the single-objective TTP.

4. To investigate the contributions that our algorithmic components have, we tune
our solution method on 96 groups of instances and characterize the resulting
configurations.

5. We compare our approach with the tuned variant of Chagas et al. (2020b), with
the competition entries of the two competitions, and with single-objective TTP
solvers.

In the remainder of this chapter, we first define the BITTP in Section 4.1. Then,
in Section 4.2, we describe our weighted-sum method, where the decomposition is
based on the respective influence of the two interacting components. There, we also
introduce a randomized version of a popular packing strategy. Section 5.3 contains
the computational evaluation: the tuning of configurations and their characterisation,
and the comparison with a range of (tuned) approaches from the literature, with the
entries for two recent BITTP competitions, and with single-objective TTP solvers.

4.1 Problem definition

The Bi-objective Traveling Thief Problem (BITTP) can be formally described as follows.
There is a set of m items {1, 2, . . . , m} distributed among a set of n cities {1, 2, . . . , n}.
For any pair of cities i, j ∈ {1, 2, . . . , n}, the distance d(i, j) between them is known.
Every city, except the first one, contains a subset of the m items. Each item j ∈
{1, 2, . . . , m} has a profit pj and a weight wj associated. There is a single thief who
has to visit all cities exactly once starting from the first city and returning back to it in
the end (TSP component). The thief can make a profit by stealing items and storing
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them in a knapsack with a limited capacity W (KP component). As stolen items are
stored in the knapsack, it becomes heavier, and the thief travels more slowly, with a
velocity inversely proportional to the knapsack weight. Specifically, the thief can move
with a speed v = vmax − w× (vmax − vmin) / W, where w is the current weight of their
knapsack. Consequently, when the knapsack is empty, the thief can move with the
maximum speed vmax; when the knapsack is full, the thief moves with the minimum
speed vmin.

Any feasible solution for the BITTP can be represented through a pair 〈π, z〉, where
π = 〈π1, π2, . . . , πn〉 is a permutation of all cities in the order they are visited by the
thief, and z = 〈z1, z2, . . . , zm〉 is a binary vector representing the packing plan (zj = 1
if item j is collected, and 0 otherwise) adopted by the thief throughout their robbery
journey. We can formally express the space of feasible solutions for the BITTP by
constraints (4.1) to (4.5).

πi 6= πj i ∈ {1, 2, . . . , n}, j ∈ {i + 1, i + 2, . . . , n} (4.1)

πi ∈ {1, 2, . . . , n} i ∈ {1, 2, . . . , n} (4.2)

π1 = 1 (4.3)
m

∑
j=1

zj · wj ≤W (4.4)

zj ∈ {0, 1} j ∈ {1, 2, . . . , m} (4.5)

Constraints (4.1) and (4.2) ensure that each city is visited exactly once, while
constraint (4.3) establishes that the thief must start their journey from city 1. Con-
straints (4.4) and (4.5) ensure, respectively, that the knapsack capacity is not exceeded,
and that each item may be collected only once.

The objectives of the BITTP are to maximize the profit of the collected items and
to minimize the total traveling time spent by the thief to conclude their journey.
These objectives are mathematically defined according to Equations (4.6) and (4.7),
respectively.
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max g(z) =
m

∑
j=1

pj · zj (4.6)

min h(π, z) =
n−1

∑
i=1

d(πi, πi+1)

vmax − v ·ω(i, π, z)
+

d(πn, π1)

vmax − v ·ω(n, π, z)
(4.7)

Note that while the objective (4.6) is calculated directly from the packing plan z,
the calculation of the objective (4.7) is more complex. Since the speed of the thief
depends on the current weight of their knapsack, it may change after visiting each
city. Therefore, it is necessary to know the traveling speed between each pair of
cities in order to calculate the total traveling time. For this purpose, it is necessary
to determine the total weight of the knapsack after visiting each city i according to
the tour π and the packing plan z, which is denoted by ω(i, π, z) and is calculated as
described in Equation (4.8). Hence, all speeds of the thief throughout their journey,
and, consequently, the total traveling time can be computed.

ω(i, π, z) =
i

∑
k=1

m

∑
j=1

wj · zj ·

 1 if item j is localized in city πk

0 otherwise
(4.8)

It is important to note that the objectives of the BITTP are conflicting with each
other, as optimizing each one of them independently does not necessarily produce a
good solution in terms of the other objective. Indeed, for faster tours, the thief should
not collect items or collect a few items with small weights. On the other hand, for
collecting sets of items with high profit, the thief travels slowly due to the weight of the
collected items. Therefore, there is no single solution that simultaneously optimizes
both objectives, but a set of solutions, called Pareto-optimal solutions, in which each
solution is non-dominated in terms of their objective values by any other solution.

4.2 Problem-solving methodology

Throughout this section, we discuss the methodology we have adopted in order to
find high-quality non-dominated solutions for the BITTP. We describe in detail all
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components of our proposed algorithm as well as all the decisions made during its
design development.

4.2.1 The overall algorithm

Our proposed algorithm is based on the weighted-sum method (WSM) (Zadeh, 1963),
a well-known strategy for addressing multi-objective optimization problems (Marler
and Arora, 2010). Basically, its core idea consists of converting the multi-objective
problem at hand into several single-objective problems by using different convex
combinations of the original objectives. Then, each one of the created single-objective
problems is solved in order to generate non-dominated solutions for the multi-objective
problem (Das and Dennis, 1997). Note that the optimal solution for each single-
objective problem is a Pareto-optimal solution for the multi-objective problem, because,
if this were not the case, then there must exist another feasible solution with an
improvement on at least one of the objectives without worsening the others. Hence,
that solution would have a better value according to the weighted-sum objective
function.

According to Marler and Arora (2010), the WSM is often used for addressing real-
world applications, especially for those with just two objective functions, not only
to provide multiple solutions widely spread across the space of the objectives, but
also to provide a single solution that reflects preferences presumably incorporated
in the selection of a single set of weights for the objectives. WSM has also given rise
to very popular multi-objective decomposition-based optimization algorithms like
MOEA/D (Zhang and Li, 2007).

Limitations of WSMs include their inability to capture Pareto-optimal solutions
that lie in non-convex portions of the Pareto-optimal curve, and also that they do not
necessarily generate a dispersed distribution of solutions in the Pareto-optimal set,
even with a consistent change in weights attributed to the objectives. Throughout the
chapter, we point out why these limitations do not affect our algorithm.

For the BITTP, our proposed WSM converts the objective functions (4.6) and (4.7)
into the weighted-sum objective function (4.9) by including a scalar value α that may
assume any real number between 0 and 1. In addition, we have included in weighted-
sum objective function the renting rate R defined by Polyakovskiy et al. (2014) for the
set of TTP instances, which is widely used as benchmarking in TTP related researches.
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As stated by Polyakovskiy et al. (2014) the renting value has been tailored to each TTP
instance, and its value establishes the connection between both TTP components. It is
important to emphasize that the renting values vary widely among the benchmarking
TTP instances. Thus, by varying the α values, we will be creating new TTP instances
with different weights/importance for their components, but they will still have the
tailored influence of the renting rate.

max f (π, z, α) = α · g(z)− (1− α) · R · h(π, z) (4.9)

Although exact algorithms exist for the TTP, they are limited to solving very
small instances within a reasonable computational time (Wu et al., 2017). In fact,
unless P = NP , it is not possible to develop an exact strategy able to solve general
TTP instances in polynomial time. Therefore, we solve each new TTP instance by
using concepts of effective heuristic approaches proposed for the TTP over the years.
Consequently, there is no guarantee that our WSM finds Pareto-optimal solutions. On
the other hand, it is able to find solutions possibly located in non-convex portions of
the Pareto-optimal curve. Indeed, there is no convex combination of the two objectives
whose global optimal value corresponds a solution located in non-convex portions.
However, since each single-objective problem is approached with a heuristic strategy,
these solutions can be achieved when the heuristic fails to find the global optimal
value.

As the TTP has gained increasing attention since its proposition, several approaches
have emerged to solve it. Some of them use techniques that require higher compu-
tational effort, whereas others bet on low-level search operators, which can also
produce high-quality solutions with shorter computation time (Polyakovskiy et al.,
2014; Faulkner et al., 2015; Wagner et al., 2018). As the BITTP demands a set of non-
dominated solutions instead of a single solution, a higher computational effort is
required to find high-quality solutions. Thus, we have designed our solution strategy
with low-level search operators in mind with the purpose of develop an efficient and
scalable solution approach that balances the concepts of exploration and exploitation
in order to find high-quality and high-diversity non-dominated BITTP solutions.

In Algorithm 4, we present in detail the steps performed in our WSM for solv-
ing the BITTP. It starts (Line 1) by initializing the set that stores all non-dominated
solutions found throughout the algorithm. By non-dominated solutions, we refer
to solutions S ⊆ S ′, from the set of solutions S ′ that our algorithm found, where
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none of the solutions from S ′ \ {S} dominates the solutions from S . Our algorithm
performs iterative cycles (Lines 2 to 23) while its stopping criterion is not achieved.
At each iteration, we carry out exploration and exploitation mechanisms. During the
exploration phase (Lines 3 to 7), our algorithm generates η feasible solutions for the
BITTP as follows. Initially (Line 3), a tour π is generated by using the well-known
Chained-Lin-Kernighan heuristic (Applegate et al., 2003).

Afterwards, we construct a feasible packing plan z at a time (Line 6) by using
a randomized packing heuristic we have developed. Then, each packing plan z is
combined with tour π in order to compose a feasible solution 〈π, z〉 for the BITTP,
which is used to update the set of non-dominated solutions S (Line 7). The update of
S is done in order to keep only non-dominated solutions in the set. Thus, if a solution
〈π, z〉 is dominated by any solution in S , it is discarded. Otherwise, 〈π, z〉 is added in
S and all solutions dominated by it are then removed. All the details of our packing
heuristic strategy will be presented later in Algorithm 5. For now, we would like to
only stress that each packing plan is constructed based upon the tour π and also on the
real number α used to define the current weighted-sum objective function. Note that,
in our algorithm, a value for α is randomly generated from a probability distribution
D (Line 5). Thus, we can control and emphasize in which intervals of values α should
be chosen by using different probability distributions.

The exploitation phase (Lines 8 to 22) begins by generating a new α value (Line 8)
and selecting the best non-dominated solution 〈π′, z′〉 in S according to the weighted-
sum objective function formed from this new α. The solution 〈π′, z′〉 is considered as
a pivot for applying two local operators: 2-opt and bit-flip. Basically, a 2-opt move
removes two non-adjacent edges and inserts two new edges by inverting two parts of
the tour in such a way that a new tour is formed. In turn, a bit-flip move inverts the
state of an item j in the packing plan z′, i.e., if j is in z′ then it is removed; otherwise, it
is inserted if its inclusion does not exceed the knapsack capacity. These operators have
been successfully incorporated to solve various combinatorial optimization problems,
including the single-objective TTP (Faulkner et al., 2015; El Yafrani and Ahiod, 2016;
Chand and Wagner, 2016; El Yafrani and Ahiod, 2018), and also the BITTP (Chagas
et al., 2020b).

In our algorithm, first, we apply the operator 2-opt over the tour π′ while the
packing plan z′ remains unchanged in order to find a faster tour that is still able to
collect the same set of items. As the number of all tours Π (Line 10) obtained from
2-opt moves may be huge for some instances, it is impracticable to analyze them all.
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In addition, significantly longer tours have less potential to be faster. For that reason,
our algorithm has been restricted to analyze only those tours that are longer than π′

up to a limited distance (Lines 13 to 15). The maximum tolerance for accepting a tour
is given by the average of the distance ` among all pair of cities multiplied by a factor
β (Line 14). After analyzing all selected tours, we chose the fastest tour π′′, if any,
among those that are faster than π′, to compose a new solution, and then the set of
non-dominated solutions S is updated from it (Line 16).

Afterwards, bit-flip operations are applied to the packing plan z′ in order to find
new packing plans that when combined with the tour π′ produce new solutions.
Because generating all bit-flip moves and evaluating all solutions formed from them
may be impracticable for instances with many items, we decided that each bit-flip move
is done according to a probability λ (Lines 17 to 22). The solutions generated from
bit-flip moves are used to update, if applicable, the set of non-dominated solutions S
(Line 22). At the end of the algorithm (Line 24), all non-dominated solutions found
throughout its execution are returned.

4.2.2 A randomized packing strategy

In order to complete the description of the proposed WSM, we now present the strategy
used to generate a packing plan from a given tour π. It is important to highlight that
even for this scenario, the task of finding the optimal packing configuration remains
NP-hard (Polyakovskiy and Neumann, 2015), which makes it impractical for medium
and large-size instances due to the time of computing required, especially because this
procedure is a subroutine of our entire algorithm that is called many times. For this
reason, our proposed strategy is a heuristic approach with the aim of quickly obtaining
a packing plan from a tour. Before presenting its details, we would like to emphasize
that our strategy is a non-deterministic packing algorithm, i.e., even for the same input
parameters, it may exhibit different behaviors on different runs. Our design decision
for that has been based on the fact that a non-deterministic mechanism introduces a
more broadly exploration of the packing plan space, which may be effective to find
regions with high-quality solutions.

Algorithm 5 describes all the steps of our packing heuristic strategy. It seeks to find
a good packing plan zbest from multiple attempts for the same tour π. At each attempt
(Line 3 to 19), a packing plan z is constructed. Due to the non-deterministic nature
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Algorithm 4: Weighted-Sum Method - WSM(D, η, ρ, γ, β, λ)

1 S ← ∅ // set of non-dominated solutions

2 repeat
// exploration phase:

3 π ← solve the TSP component by the Chained-Lin-Kernighan heuristic♠

4 for k← 1 to η do
5 α← generate a random number from the probability distribution D
6 z← RANDOMIZEDPACKINGALGORITHM(π, ρ, α, γ) // Algorithm 5

7 update S with the solution 〈π, z〉
// exploitation phase:

8 α← generate a random number from the probability distribution D
9 〈π′, z′〉 ← get from S the best solution according to α

10 let Π be the set of all 2-opt tours obtained from π′

11 let ` be the average of the distance among all pair of cities
12 π′′ ← π′

13 foreach π′′′ ∈ Π do
14 if d(π′′′)− d(π′) ≤ `× β then
15 if f (π′′′, z′, α) > f (π′′, z′, α) then π′′ ← π′′′

16 if π′′ 6= π′ then update S with the solution 〈π′′, z′〉
17 foreach item j ∈ {1, 2, . . . , m} do
18 if rand(0, 1) ≤ λ then
19 if j ∈ z′ then
20 update S with the solution 〈π′, z′ \ {j}〉
21 else if weight of z′ ∪ {j} is lower than W then
22 update S with the solution 〈π′, z′ ∪ {j}〉
23 until stopping condition is fulfilled
24 return S
♠ http://www.math.uwaterloo.ca/tsp/concorde/downloads/downloads.htm

of our packing algorithm, multiple attempts increase the chance of finding a better
packing plan. The number of attempts can be controlled by the parameter ρ (Line 2).
Before any of these attempts (Line 1), zbest is defined with no items. Afterwards, at
the beginning of each attempt, we uniformly select three random values (a, b, and c)
between 0 and 1 (Line 3), and then normalize them (Line 4) so that their sum is equal
to 1. These values are used to compute a score sj for each item j ∈ {1, . . . , m} (Line 5),

http://www.math.uwaterloo.ca/tsp/concorde/downloads/downloads.htm
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Algorithm 5: RANDOMIZEDPACKINGALGORITHM(π, ρ, α, γ)

1 zbest ← ∅
2 for ρ′ ← 1 to ρ do
3 a← rand(0, 1), b← rand(0, 1), c← rand(0, 1)
4 normalize a, b, and c so that their sum is equal to 1
5 compute score for each item using a, b, and c according to Eq. (4.10)
6 ϕ← dm/γ · α + εe
7 z← z′ ← ∅
8 newPackingPlan← false
9 k← k′ ← 1

10 while k′ ≤ m and ϕ ≥ 1 do
11 j← get item with the k′-th largest score
12 if weight of z′ ∪ {j} is lower than W then
13 z′ ← z′ ∪ {j}, newPackingPlan← true
14 if k′ mod ϕ = 0 and newPackingPlan = true then
15 if f (π, z′, α) > f (π, z, α) then
16 z← z′, k← k′

17 else z′ ← z, k′ ← k, ϕ← bϕ/2c
18 newPackingPlan← false
19 k′ ← k′ + 1
20 if f (π, z, α) > f (π, zbest, α) then zbest ← z
21 return zbest

where a, b, and c define, respectively, exponents applied to profit pj, weight wj, and
distance dj in order to manage their impact. The distance dj is calculated according to
the tour π by summing all the distances from the city where item j is located to the
final city of the tour. Equation 4.10 shows how the score of item j is calculated:

sj =
(pj)

a

(wj)
b · (dj)

c (4.10)

From the foregoing equation, we can note that each score sj incorporates a trade-off
among a distance that item j has to be carried over, its weight, and also its profit.
Equation 4.10 is based on the heuristic PACKITERATIVE that has been developed for
the TTP (Faulkner et al., 2015). However, unlike these last authors, we have also
considered an exponent for the term of distance to vary the importance of its influence.
Furthermore, the values of all exponents are randomly selected drawn between 0
and 1, and then they are normalized in such a way that each of them establishes a
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percentage of importance in the calculation of the score. After computing all scores,
our algorithm uses their values to define the priority of each item in the packing
strategy. The higher the score of an item, the higher its priority.

As described in the following, each packing plan z is constructed by selecting items
iteratively according to their priorities. After including any item in z, it would be
necessary to calculate the objective value of the solution 〈π, z〉 to be sure about its
quality. However, since evaluating the objective function many times may be time-
consuming, especially for large-size instances, we have introduced a parameter ϕ

for controlling the frequency of the objective value re-computation. In other words,
the objective value of the current solution 〈π, z〉 is only evaluated each time that ϕ

items are analyzed. Initially (Line 6), ϕ is defined as dm/γ · α + εe, which depends
on the number of items m, a parameter γ and the value α, and also a small value
ε = 10−5 to avoid that ϕ assumes 0 when α is 0. Thus, the lower α, the lower ϕ and,
consequently, the higher the frequency of the objective value re-computation. Note
that for values close to zero, we look for solutions with faster tours, which requires a
packing plan without or with few items. Therefore, for this scenario, a high frequency
of re-computation of the objective function is needed in order to select many items
without checking whether they improve the quality of the solution.

Each packing plan z is constructed as follows. At first, z and an auxiliary packing
plan z′ are both defined as empty sets (Line 7). Other auxiliary variables are used to
control if there is a new packing plan to be evaluated (Line 8) and also to management
which item is currently being analyzed (Line 9). The iterative packing construction
process of our algorithm (Lines 10 to 19) start by selecting the item j with the k′-th
largest score (Line 11). If the addition of item j does not exceed the knapsack capacity
(Line 12), then j is inserted into packing plan z′, and it is marked that there is a new
packing configuration (Line 13). Every time that ϕ items have been considered and
that the current packing plan z′ has not been evaluated (Line 14), we compute the
objective function of the solution 〈π, z′〉 and confront its quality against quality of
the solution 〈π, z〉. If the solution 〈π, z′〉 is better (Line 15), ϕ remains the same and
z is updated to z′. Otherwise (Line 17), the packing plan z′ is updated to z and the
algorithm returns to consider the items again starting with the item whose score is
the k-th largest (Line 17). In addition, ϕ is halved in order to provide the chance to
improve the solution by collecting fewer items before an evaluation. Each construction
of a packing plan terminates either when there is no more items to collect or because
no further improvement is possible following our strategy. After completing the
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construction of each packing plan z, the best solution 〈π, zbest〉 found so far is updated
to the solution 〈π, z〉 if it is to improve (Line 20). At the end of the algorithm (Line 21),
the packing plan of the best solution found is returned.

4.3 Computational experiments

In this section, we present the experiments performed to study the performance of
the proposed algorithm. First, we have conducted an extensive comparison with the
algorithm proposed by Chagas et al. (2020b). In addition, we compare our results
with those submitted to BITTP competitions, which have been held in 2019 at the
Evolutionary Multi-Criterion Optimization (EMO2019) and The Genetic and Evolutionary
Computation Conference (GECCO2019). Lastly, we contrast our results with the sin-
gle TTP objective scores obtained from efficient algorithms already proposed in the
literature for the TTP.

Our algorithm has been implemented in Java. Each run of it has been sequentially
(nonparallel) performed on a machine with Intel(R) Xeon(R) CPU X5650 @ 2.67GHz
and Java 8, running under CentOS 7.4. Our code, as well as all numerical results can
be found at https://github.com/jonatasbcchagas/wsm_bittp.

4.3.1 Benchmarking instances

To assess the quality of the proposed WSM, we have used instances of the compre-
hensive set of TTP instances defined by Polyakovskiy et al. (2014). These authors
have created 9720 instances in such a way that the two components of the problem
have been balanced so that the near-optimal solution of one sub-problem does not
dominate over the optimal solution of another sub-problem. For a complete and
detailed description of how these instances have been created, we refer the interested
reader to (Polyakovskiy et al., 2014) and also to (Wagner et al., 2018), which presents a
study on the instance features. In our experiments, we have used a subset of the 9720
TTP instances with the following characteristics:

• numbers of cities: 51, 152, 280, 1000, 4461, 13509, 33810, and 85900 (the layout
of cities is given according to the TSP instances Reinelt (1991) eil51, pr152, a280,
dsj1000, usa13509, pla33810, and pla85900, respectively);

https://github.com/jonatasbcchagas/wsm_bittp
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• numbers of items per city: 01, 03, 05, and 10 (all cities of a single TTP instance
have the same number of items, except for the city in which the thief starts and
ends their journey, where no items are available);

• types of knapsacks: weights and values of the items are bounded and strongly
correlated (bsc), uncorrelated with similar weights (usw), uncorrelated (unc);

• sizes of knapsacks: 01, 02, . . ., 09 and 10 times the size of the smallest knapsack,
which is defined by summing the weight of all items and dividing the sum by 11;

By combining all the different characteristics described above, we have 960 in-
stances that compose a broad and diverse sample of all 9720 instances. In the remain-
der of this chapter, each instance will be identified as XXX_YY_ZZZ_WW, where XXX, YY,
ZZZ, and WW indicate the different characteristics of the instance at hand. For example,
a280_03_bsc_01 identifies the instance with 280 cities (TSP instance a280), 3 items per
city with their weights and values bounded and strongly correlated with each other,
and the smallest knapsack defined.

4.3.2 Parameter tuning

In order to find suitable configuration values for the algorithm’s parameters among all
possible ones, we have used the Irace package (López-Ibáñez et al., 2016b), which is an
implementation of the method I/F-Race (Birattari et al., 2010). The Irace package im-
plements an iterated racing framework for the automatic configuration of algorithms,
which has been used frequently due to its simplicity to use and its performance.

Table 5.1 shows the parameter values of our algorithm we have considered in the
Irace tuning. These values have been selected following preliminary experiments.
Note that for β = −∞ and λ = 0, our algorithm does not perform, respectively, any
2-opt and bit-flip moves. Regarding the stopping criterion of the algorithm, we have
set its runtime to 10 minutes. This choice is very often used in TTP research, thus
following a pattern already established that allows fairer comparisons among different
solution approaches. In addition, as stated by Wagner et al. (2018), this computation
budget limit is motivated by a real-world scenario, where a 10-minutes break is enough
for a decision-maker, who is interested in what-if analyses, to have a cup of coffee.
After this time, the decision-maker analyses the computed results, and then he/she
can make the possible next changes to the system to investigate other alternatives.
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Table 4.1: Parameter values considered during the tuning experiments.

Parameter Tested values

D U (0, 1), N (0.5, 0.2), B(3, 1.5), B(1.5, 3)

η 1, 2, . . . , 200

ρ 1, 2, . . . , 100

γ 1, 2, . . . , 200

β −∞, 0, 0.000001, 0.00001, 0.0001, 0.001, 0.01, 0.1, 10, 100

λ 0, 0.01, 0.02, . . . , 0.5

For WSM, to generate α values, we have chosen probability distributions in such
a way that some ideas could be tested (Figure 4.1). Firstly, the most natural idea is
to use a uniform distribution U (0, 1) that generates values between 0 and 1 with the
same probability. Using a normal distribution with mean 0.5 and standard deviation
0.2, denoted as N (0.5, 0.2), we lay emphasis on generating values close to 0.5 in
order to focus on weighted-sum objective functions equivalent to the original TTP
objective function. Note that the closer to 0.5 the value is, the greater is the interaction
between the two components of the problem, and perhaps we should concentrate
the algorithm’s efforts on these values. On the other hand, maybe we should focus
on values close to 0 or 1 when it is the case that one of the components is more
easily solved. For example, note that for α values closer to 0, we are looking for TTP
solutions with good TSP components (few or no items should be stolen). As we are
using the Chained-Lin-Kernighan heuristic, one of the most efficient algorithms for
generating near-optimal TSP solutions (Wu et al., 2018), our algorithm might not
need to exploit these values much to find good TTP solutions concerning good TSP
component. Thus, we can use, for example, a beta distribution B(3, 1.5) that does
not generate many values close to 0. In addition, we have also considered in our
experiments a beta distribution B(1.5, 3) with their parameters swapped concerning
the previous distribution to address scenarios where the Chained-Lin-Kernighan
heuristic combined with our packing algorithm is able to find good TTP solutions with
a high collected profit without the need for a high emphasis on α values close to 1. For
a reference on probability distributions, we refer to Krishnamoorthy (2016).

To ensure better performance of the proposed algorithm, we have analyzed the
influence of its parameters on different types of instances. More precisely, we have
divided all 960 instances into 96 groups and then execute Irace on each of them. Each
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Figure 4.1: Different probability distributions to generate α values.

group contains all 10 instances defined with different sizes of knapsacks. These groups
are identified as XXX_YY_ZZZ, in the same way as we have identified the instances,
except for the lack of WW. With this approach, we would like to know whether there
exist similar behaviors among the best parameter configurations from different groups
of instances. As we have selected 96 groups with a large difference in characteristics
among them, it is reasonable to think that whether such behaviors exist, they may also
apply to unknown instances.

As Irace evaluates the quality of the output of a parameter configuration using
a single numerical value, we should use for multi-objective problems some unary
quality measure (López-Ibáñez et al., 2016b), such as the hypervolume indicator or the
ε-measure (Zitzler et al., 2003). In our experiments, we have used the hypervolume
indicator. In addition, we have used all Irace default settings, except for the parameter
maxExperiments, which has been set to 1000. This parameter defines the stopping
criteria of the tuning process. We refer the readers to (López-Ibáñez et al., 2016a) for a
complete user guide of Irace package.

From the tuning experiments, we have obtained the results shown in Figure 5.2.
Each parallel coordinate plot lists for each of the 96 groups (listed in the left-most
column) the configurations returned by Irace (plotted in the other columns). As Irace
can return more than one configuration that are statistically indistinguishable given
the threshold of the statistical test, multiple configurations are sometimes shown. Each
vertical axis indicates a parameter and its range of values, and each configuration of
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parameters is described by a line that cuts each parallel axis in its corresponding value.
Through the concentration of the lines, we can see which parameter values have been
most selected among all tuning experiments. We have used different colors and styles
for lines in order to emphasize the results obtained for each group individually. All
logs generated by the Irace executions, as well as their settings can be found at the
GitHub link along with our code.

We can make several observations from the tuning results. First, we notice that for
almost all groups of instances the uniform distribution U (0, 1) has been chosen. For
some groups, especially those that contain larger instances, other distributions have
been returned by Irace. Regarding the parameter η, we can observe a strong trend
in increasing its value as the number of cities increases. This is not too surprising, as
the Chained-Lin-Kernighan heuristic, in general, requires more computational time
to address larger TSP instances. Thus, computing a higher number of packing plans
from each tour may generate better BITTP solutions than resolve the TSP component
many times. We can also observe from the values obtained for the parameter ρ that
only a few attempts of our packing strategy are needed to reach good results, which is
especially true for larger instances. The low values obtained for the parameter γ for
most groups of instances indicate that the frequency of re-computation of the objective
function in the packing algorithm may begin with low values without interfering in
the quality of the packing plan computed. Although the values of the parameter β do
not follow a clear trend, they are strongly related to the number of cities and mainly to
the layout that the cities are arranged. For example, when many cities are uniformly
arranged, the trend is towards low β values as, for this scenario, higher β values would
probably not be efficient, since the algorithm would spend most of the time processing
too many tours obtained from 2-opt moves. Finally, we can see that, in general, higher
λ values are concentrated in smaller-size instances, which is not surprising since the
bit-flip operator would perform too many moves on instances with many items and
higher λ values.

With a closer look, we can make additional observations by combining different
parameters and characteristics of the instances. For example, η values are low for
medium and large knapsack capacities (red and yellow) of eil51, while the opposite is
true for the dsj1000 instances, and other large instances. Across almost all instances, the
η values are the lowest or among the lowest for instances with uncorrelated (dotted)
knapsacks. For ρ, it is difficult to extract patterns, however, we can observe that the
tuned configurations for instances with strongly correlated knapsacks (dashed) have
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Figure 4.2: Irace results for the 96 groups of instances. Blue, green, red, and yellow lines
represent, respectively, groups of instances with 1, 3, 5, and 10 items-per-city.
Dashed, solid, and dotted lines are used, respectively, to emphasize the groups of
instances with items where their weights and values are bounded and strongly
correlated (bsc), uncorrelated with similar weights (usw), and uncorrelated (unc).

the highest ρ values for the groups eil51 (red), pr152 (blue), and fnl4661 (blue). For
γ, small knapsacks (blue) with uncorrelated but similar weights (solid) result in high
or the highest values for eil51, pr152, and pla33810, but for example not for a280. For
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β, we cannot observe clear trends for the knapsack type, however, sometimes the
knapsack capacity stands out. For example, for a280, the smallest knapsacks (blue)
resulted in the highest values, while blue has the lowest values for dsj1000, and the
largest knapsacks resulted in the highest values (yellow) for the tuning experiments
for the pla33810 group. We can observe similar ‘inversions’ also for γ. There, for
example the smallest knapsacks with uncorrelated and similar weights (blue, solid)
result in the smallest values on some instance groups, but for the largest values on
others.

In summary, we can observe many consistent as well as inconsistent patterns
for the different groups of instances, and depending on the knapsack type and the
knapsack capacity. In combination with instance features (e.g. the ones from Wagner
et al. (2018)), this might make for an interesting challenge for per-instance-algorithm-
configuration (Hutter et al., 2006), however, this is beyond the scope of the present
study.

4.3.3 WSM vs. NDSBRKGA

In the first analysis that assesses the quality of our WSM, we compare the solutions
obtained by it with the solutions obtained by NDSBRKGA proposed by Chagas et al.
(2020b). In order to make a fair comparison, we have tuned the parameters of the
NDSBRKGA following the same procedure used in the tuning of the parameters of
WSM. The parameter values considered for these experiments have been chosen based
on the insights reported in (Chagas et al., 2020b). These parameter values, as well as
the results obtained in the experiment are available at the GitHub link along with our
other files.5

Due to the randomized nature of both algorithms, we have performed 30 indepen-
dent repetitions on each instance. Each run has been executed for 10 minutes with the
best parameter values found in the tuning experiments.

As in (Chagas et al., 2020b), we have used the hypervolume indicator (HV) (Zitzler
and Thiele, 1998) as a performance indicator to compare and analyze the results

5As neither the HPI algorithm nor the HPI implementation are available, we could not include HPI in
this tuning-based comparison. HPI has been the result of a classroom setting and their actual results
have been (to some extent) aggregated across multiple teams (and hence implementations), which
has been legal w.r.t. the competition rules (as said competition required only the solution files, not
any implementations).
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obtained. This indicator is one of the most used indicators for measuring the quality of
a set of non-dominated solutions by calculating the volume of the dominated portion
of the objective space bounded from a reference point. To make the hypervolume
suitable for the comparison of objectives with greatly varying ranges, a normalization
of objective values is commonly done beforehand. Therefore, before computing
the hypervolume, we have first normalized the objective values between 0 and 1
according to their minimum and maximum value found during our experiments.
Although maximizing the hypervolume might not be equivalent to finding the optimal
approximation to the Pareto-optimal front (Bringmann and Friedrich, 2013; Wagner
et al., 2015), we have assumed that the higher the hypervolume indicator, the better
the solution sets are, as is commonly considered in the literature.

We compare the performance of the solutions obtained by measuring for each
instance the percentage variation of the average hypervolume obtained considering
the independent runs of each algorithm. More precisely, for each instance, we have
estimated the reference point as the maximum travel time and the minimum profit
obtained from the non-dominated solutions, which have been extracted from all solu-
tions returned by the algorithms. Then, we have computed the hypervolume covered
by the non-dominated solutions found by each run of each algorithm according to the
estimated reference point. Thereafter, we can compute the percentage variation as

(
HVWSM

avg −HVNDSBRKGA
avg

)
/ max

(
HVWSM

avg , HVNDSBRKGA
avg

)
· 100%

, where HVWSM
avg and HVNDSBRKGA

avg are, respectively, the average hypervolumes ob-
tained by WSM and NDSBRKGA in their independent executions.

In Figure 4.3, we visualise the percentage variations of the average hypervolumes
using a heatmap to emphasize larger variations. Each cell of the heatmap informs the
results obtained for a specific instance. Note that the vertical axis depicts the charac-
teristics XXX and YY of instances, while the horizontal axis depicts the characteristics
ZZZ and WW. Note also that positive variation values (highlighted in shades of orange
and red) indicate that our WSM has reached a higher hypervolume, while negative
variation values (highlighted in shades of blue) indicate the opposite behavior. Besides,
the higher the absolute value (more intense color), the higher the difference between
the hypervolumes.

From Figure 4.3, we can observe that our WSM is clearly more effective than
NDSBRKGA for larger instances. This is especially true for instances with the smallest
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Figure 4.3: Percentage variation of the average hypervolumes. Shades of orange and red
indicate in which instances our WSM has reached a higher hypervolume than
NDSBRKGA, while shades of blue indicate the opposite.

knapsack capacities. Note that, in general, the smaller the size is of the knapsack, the
higher the performance is of WSM concerning the NDSBRKGA.

Note that, although our solutions still cover a higher hypervolume for larger
instances with uncorrelated (unc) items, it must be stressed that our WSM has obtained
the worse performance regarding the NDSBRKGA for these instances. This behavior
could be explained by the fact that our packing heuristic might present difficulties in
dealing with those items because when there is no correlation between their profits
and weights and the weights present a large variety, our packing algorithm may not
be able to create a good order of the items for our packing strategy. This is interesting,
as unc knapsacks are not necessarily seen as difficult (Martello et al., 1999); but in our
algorithm, they might end up being due to our strategy for solving the KP component.
Another fact that could explain the worse performance of WSM on instances with
uncorrelated items would be that NDSBRKGA has a good performance for these
instances, making the performance of our algorithm less prominent.
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Regarding the smaller-size instances, both algorithms have achieved similar per-
formance (almost blank cells). However, with a closer look at Figure 4.3, we can
see a slightly better performance of NDSBRKGA. To better analyze these results, we
have used another performance measure. For each instance we have merged all the
solutions found in order to extract from them a single non-dominated set of solutions.
Then, we have computed how many non-dominated solutions have been obtained by
each algorithm. Our purpose of this analysis is to evaluate both algorithms regarding
their ability to find non-dominated solutions with different objective values. Therefore,
duplicate solutions regarding their objective values have been removed, i.e., we have
regarded a single non-dominated solution with the same values in both objectives. In
Figure 4.4, we present these numbers in percentages according to the total number of
non-dominated solutions following the heatmap scheme used previously.

The results shown in Figure 4.4 corroborate those shown in Figure 4.3. As was
expected, our algorithm has found more non-dominated solutions especially for
those instances where it obtained a higher hypervolume. However, even for the
instances in which the NDSBRKGA found better solutions, the difference between the
hypervolumes of both algorithms remains low.

To statistically compare the performance of the algorithms, we have used the
Wilcoxon signed-rank test on the hypervolumes achieved in the 30 independent runs.
With a significance level of 5%, there is no statistical difference between both algorithms
in 27 instances (2.8%), our algorithm is significantly better in 789 instances (82.2%) and
worse in 144 (15%) ones when compared to NDSBRKGA.

4.3.4 WSM vs. competition results

Next, we compare WSM to the results of the BITTP competitions held at EMO20196

and GECCO20197. Both competitions have used the same rules and criteria. There
were no regulations regarding the running time and the number of processors used.
The final ranking used for the competitions was solely based on the solution set
submitted by each participant for nine medium/large TTP instances chosen from the
TTP benchmark (Polyakovskiy et al., 2014). More precisely, the final ranking was
defined according to the hypervolume covered by the solutions. To calculate the

6https://www.egr.msu.edu/coinlab/blankjul/emo19-thief/
7https://www.egr.msu.edu/coinlab/blankjul/gecco19-thief/

https://www.egr.msu.edu/coinlab/blankjul/emo19-thief/
https://www.egr.msu.edu/coinlab/blankjul/gecco19-thief/
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Figure 4.4: Percentage of non-dominated solutions found by each algorithm.

hypervolumes, the reference points have been defined as the maximum time and the
minimum profit obtained from the non-dominated solutions, which have been built
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from all submitted solutions. In order to make a fair ranking, the maximum number of
solutions allowed for each instance has been limited. In Table 4.2, we list the instances
used as well as the maximum number of solutions allowed.

Table 4.2: Maximum number of solutions allowed by each TTP instance used in the BITTP
competitions.

Instance
Maximum number of

solutions allowed

a280_01_bsc_01 100

a280_05_usw_05 100

a280_10_unc_10 100

fnl4461_01_bsc_01 50

fnl4461_05_usw_05 50

fnl4461_10_unc_10 50

pla33810_01_bsc_01 20

pla33810_05_usw_05 20

pla33810_10_unc_10 20

As our algorithm can return a higher number of solutions than those reported in
Table 4.2, we have used the dynamic programming algorithm developed by Auger
et al. (2009) in order to find a subset of limited size of the returned solutions such that
their hypervolume indicator is maximal. As stated by Auger et al. (2009), this dynamic
programming can be solved in time O(| A| 3), where A would be the set of solutions
returned by our algorithm. Note that the application of this strategy has also been
used in (Chagas et al., 2020b) for NDSBRKGA, and it is only part of a post-processing
needed to fit both algorithms to the competition criteria.

In both competitions, preliminary versions of NDSBRKGA have been submitted
as jomar, a reference to the two authors (Jonatas and Marcone) who first worked on
that algorithm. These preliminary versions are presented in (Chagas et al., 2020b) as
well as their results achieved in both competitions. In short, jomar has won the first
and second places, at EMO2019 and GECCO2019 competitions, respectively. After the
competitions, some improvements have been incorporated in the preliminary versions
of NDSBRKGA, resulting in its final version as is described in (Chagas et al., 2020b).
In the following, we compare our WSM with that final version as it presents slightly
better results concerning its previous ones.



The bi-objective traveling thief problem 87

In Table 4.3, we present for each instance the best results submitted for the compe-
titions and also the results obtained by our WSM. The results of all submissions can be
found at web pages previously reported. As the final results of NDSBRKGA have been
obtained with 5 hours of processing, we have executed our algorithm for 5 hours as
well to make a fair comparison. We would like to mention that we have no information
on how the other participants have obtained their results. As we stated before, there
were no regulations regarding the running time and the number of processors used. In
both competitions, their rankings have been solely based on the solution set submitted
by each participant. Furthermore, to the best of our knowledge, there is no description
available of the solution approaches submitted.

From Table 4.3, we can notice that WSM has obtained better performance on
large-size instances. For the three smallest instances, it has presented the worst
results concerning the other results, especially, for those reached by the first (HPI)
and second (NDSBRKGA) places at GECCO2019 competition. For the other instances,
our results have surpassed all other submissions with a larger difference compared to
NDSBRKGA.

If our algorithm had been submitted, it would win first place with 21 points
against 17 points obtained by HPI and 14 by NDSBRKGA. These final scores would
be computed according to the ranking criteria: after sorting all submissions for each
instance according to the hypervolume achieved in decreasing order, the 1st place
takes 3 points, 2nd place takes 2 points, 3rd place a single point. According to this final
scoring criterion, we classify our algorithm when it runs for the least amount of time.
In the following, we present how the final ranking would be, considering different
runtimes for our WSM. We compare the results obtained by WSM in each runtime
limitation against the final results obtained by HPI and NDSBRKGA:

♦ 10 minutes: HPI 22 points | WSM 15 points | NDSBRKGA 15 points

♦ 20 minutes: HPI 22 points | WSM 15 points | NDSBRKGA 15 points

♦ 30 minutes: HPI 20 points | WSM 17 points | NDSBRKGA 15 points

♦ 1 hour: WSM 19 points | HPI 19 points | NDSBRKGA 14 points

♦ 2 hours: WSM 19 points | HPI 19 points | NDSBRKGA 14 points

♦ 3 hours: WSM 20 points | HPI 18 points | NDSBRKGA 14 points
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Table 4.3: Best BITTP competitions results vs. WSM.

Instance Participant/Algorithm HV

a280_01_bsc_01

HPI 0.898433
NDSBRKGA 0.895708

WSM 0.887205
shisunzhang 0.886576

a280_05_usw_05

NDSBRKGA 0.826879
HPI 0.825913

shisunzhang 0.820893
WSM 0.820216

a280_10_unc_10

NDSBRKGA 0.887945
WSM 0.887680
HPI 0.887571

ALLAOUI 0.885144

fnl4461_01_bsc_01

WSM 0.934685
NDSBRKGA 0.933942

HPI 0.933901
NTGA 0.914043

fnl4461_05_usw_05

WSM 0.820481
HPI 0.818938

NDSBRKGA 0.814492
NTGA 0.803470

fnl4461_10_unc_10

WSM 0.882932
HPI 0.882894

NDSBRKGA 0.874688
SSteam 0.856863

pla33810_01_bsc_01

WSM 0.930580
HPI 0.927214

NTGA 0.888680
ALLAOUI 0.873717

pla33810_05_usw_05

WSM 0.819743
HPI 0.818259

NDSBRKGA 0.781009
SSteam 0.776638

pla33810_10_unc_10

WSM 0.876805
HPI 0.876129

NDSBRKGA 0.857105
SSteam 0.853805

ALLAOUI is formed by Mohcin Allaoui and Belaid Ahiod; HPI is formed by Tobias Friedrich, Philipp
Fischbeck, Lukas Behrendt, Freya Behrens, Rachel Brabender, Markus Brand, Erik Brendel, Tim Cech,
Wilhelm Friedemann, Hans Gawendowicz, Merlin de la Haye, Pius Ladenburger, Julius Lischeid,
Alexander Löser, Marcus Pappik, Jannik Peters, Fabian Pottbäcker, David Stangl, Daniel Stephan,
Michael Vaichenker, Anton Weltzien, and Marcus Wilhelm; NTGA is formed by Maciej Laszczyk and
Pawel Myszkowski; shisunzhang is formed by Jialong Shi, Jianyong Sun, and Qingfu Zhang; and
SSteam is formed by Roberto Santana, and Siddhartha Shakya.
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One can note that with 10 and 20 minutes of processing time, we would be in
2nd place tied with NDSBRKGA. With exactly 30 minutes, we would occupy the 2nd
position alone. With one and two hours, we would share the first position with the
HPI team. Then, after 3 hours of processing, we would occupy the 1st place alone.

4.3.5 Dispersed distribution of the non-dominated solutions

We now analyze the dispersion over the objective spaces of the solutions found by our
algorithm. As we have stated before, a limitation of WSMs is the fact that, even with
a consistent change in weights attributed to the objectives, they may not generate a
dispersed distribution of non-dominated solutions found. This limitation does not
affect our WSM, as it can be seen in Figure 4.5, where we have plotted the objective
values of all non-dominated solutions found by WSM with 10 minutes of runtime for
the nine medium/large-size instances used in the aforementioned BITTP competitions.
In addition, we have highlighted which α has been used when finding each solution.
One can notice dispersed distributions of the solutions as well as the α values. More-
over, as expected, lower α values produce solutions with faster tours, with higher ones
produce solutions with good packing plans.

4.3.6 Single-objective comparison

Since BITTP is a bi-objective formulation created from the TTP without introducing
any new specification or removing any original constraint, any feasible BITTP solution
is also feasible for the TTP. Thus, we can measure the performance of the solutions
obtained by our algorithm according to their single-objective TTP scores. However, it
is important to emphasize that our algorithm has not been developed with a single-
objective purpose. Therefore, we should be careful when comparing it with other
algorithms for the TTP.

A fairer comparison can be achieved between our results and those reached by
NDSBRKGA, as both approaches have been developed with the same ambition. For
this purpose, we have calculated for each instance the Relative Percentage Difference
(RPD) between the best TTP scores achieved by WSM and NDSBRKGA, referenced
as SWSM

best and SNDSBRKGA
best , respectively. It is important to emphasize that no additional

tests have been performed, we only choose the solution with the best TTP score among
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Figure 4.5: Non-dominated points found by WSM. Colors indicate the α values used when
finding each point.

the non-dominated solutions found by each algorithm on each instance. The RPD
metric has been calculated as

(
SWSM

best − SNDSBRKGA
best

) / ∣∣SNDSBRKGA
best

∣∣ · 100%
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, and we plot its values using a heatmap in order to highlight higher differences as
depicted in Figure 4.6. Note that positive values (highlighted in shades of orange and
red) indicate that our WSM has found higher TTP scores.
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Figure 4.6: WSM vs. NDSBRKGA according to their obtained single-objective TTP scores.
Shades of orange and red indicate in which instances our WSM has reached better
single-objective TTP scores than NDSBRKGA, while shades of blue indicate the
opposite.

We can note that the heatmap show in Figure 4.6 has characteristics similar to
those in Figure 4.4b, where higher percentages of the number of non-dominated
solutions found by our algorithm are highlighted. Therefore, this behavior is not
surprising, since dominated solutions have essentially lower TTP scores compared
to the non-dominated solutions. Thus, we can confirm a better efficiency of WSM
also concerning the TTP scores for larger instances, while its worst performance on
smaller-size instances is less expressive.

Although it may not be fair, as we stated earlier, we conclude our analysis by
comparing the best TTP scores obtained by WSM with the best single TTP objective
scores reported in (Wagner et al., 2018), where the authors have made a comprehensive
comparison of 21 algorithms proposed for the TTP over the years. In this comparison,



92 The bi-objective traveling thief problem

we use again the RPD metric, which now is calculated for each instance as

(
SWSM

best − S21ALGS
best

) / ∣∣S21ALGS
best

∣∣ · 100%

, where S21ALGS
best indicates the best TTP score found among all 21 algorithms analyzed

in (Wagner et al., 2018). In Figure 4.7, we plot the calculated RPD values following
the same visualization scheme adopted previously. In addition, we highlight with a
diamond symbol the instances for which our algorithm has found better solutions.
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Figure 4.7: WSM vs. TTP algorithms according to their obtained single-objective TTP scores.
Shades of orange and red indicate in which instances our WSM has reached better
single-objective TTP scores than the best algorithm among 21 ones reported in
(Wagner et al., 2018), while shades of blue indicate the opposite. Diamond symbols
highlight in which the instances our WSM has found better results.

One can note that, in general, our results presented worse performance, which
is especially true for the smaller-size instances. However, for many instances our
results have outperformed all 21 TTP algorithms. This shows that our WSM can also
be competitive to solve the TTP.
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4.4 Conclusions

In this work, we have addressed a bi-objective formulation of the Traveling Thief
Problem (TTP), an academic multi-component problem that combines two classic
combinatorial optimization problems: the Traveling Salesperson Problem and the
Knapsack Problem. For solving the problem, we have proposed a heuristic algorithm
based on the well-known weighted-sum method, in which the objective functions are
summed up with varying weights and then the problem is optimized in relation to the
single-objective function formed by this sum. Our algorithm combines exploration
and exploitation search procedures by using efficient operators, as well as known
strategies for the single-objective TTP; among these are deterministic strategies that
we have randomized here. We have studied the effects of our algorithmic components
by performing extensive tuning of their parameters over different groups of instances.
This tuning also shows that different configurations are needed depending on the
instance group, the knapsack type, and the knapsack capacity. Our comparison with
multi-objective approaches shows that we could have won the recent optimization
competitions, and we have furthermore found new best solutions for the single-
objective case along the way.

For future research, we would like to point out as a promising direction the investi-
gation of the influence of different algorithmic components already proposed in the
literature over different instance characteristics by investigating tuned configurations.
Studies in this data-driven direction have achieved important insights to design better
single-objective solvers for fundamental problems and real-world problems (see, e.g.
Section “Research Directions” of Agrawal et al. (2020)). Another interesting direction
would be to use our algorithm core idea for solving other multi-objective problems
with multiple interacting components. By core idea, we refer to how to explore and
exploit the space of solutions once efficient operators and strategies are known for
solving different components of a multi-objective problem.
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Chapter 5

The thief orienteering problem

In this chapter1, we tackle the Thief Orienteering Problem (ThOP) (Santos and Chagas,
2018), a academic multi-component problem that was proposed based on the Traveling
Thief Problem (TTP) (see Chapter 4 for more details), but with different interactions
and constraints in mind. It combines the Orienteering Problem (OP) and the Knapsack
Problem (KP). The OP is a well-studied problem in operational research (Golden et al.,
1987; Chao et al., 1996; Vansteenwegen et al., 2011; Gunawan et al., 2016), where a
person starts on a given point, travels through a region visiting checkpoints, and has
to arrive at a control point within a given limited time. Each checkpoint has a score,
and the objective of the participant is to find the route that maximizes the total score,
i.e., whose sum of scores of the checkpoints visited is maximal. In the ThOP context,
the person, i.e., the thief does not score points (steal items) by just visiting a checkpoint
but has to steal them and carry them in their knapsack until the end of their robbery
journey. As in the TTP, in the ThOP, the thief has a capacitated knapsack to carry the
items. Moreover, as items are collected, the knapsack becomes heavier, and the speed
of the thief decreases. There is no knapsack rental fee and the thief only aims to find a
route and a set of items that maximizes their total stolen profit.

Although the ThOP and the TTP appear to be similar due to the KP as a component,
the ThOP appears to be more practical due to two key differences: in the ThOP there is
(A) no need to visit all the cities, and (B) the interaction is not through a time-dependent
rent for the knapsack, but through a constraint that imposes on the thief a time limit
to complete the route. While the relaxation of difference (A) might appear trivial, the
consideration of this constraint, i.e., to visit all cities, is typically reflected in the design

1It has been compiled from paper “Efficiently solving the thief orienteering problem with a max-min
ant colony optimization approach”. J. B. C. Chagas, and M. Wagner. Submitted to a journal.
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of heuristic (Wagner et al., 2018) and exact (Wu et al., 2017; Neumann et al., 2019)
approaches to the TTP, with Chand and Wagner (2016)’s Multiple Traveling Thieves
Problem (MTTP) being the only exception known to us. Regarding the difference (B),
applications with routing time limit frequently arise in real-world scenarios, where
there is no enough time and/or capacity to visit/met all possible locations. Examples
of this include tourists planning their sight-seeing trips (Fang et al., 2014), rescue teams
planning the visit in case of emergencies (Baffo et al., 2017), and politicians or music
bands planning their routes (Aksen and Shahmanzari, 2016; Freeman et al., 2018).

For the ThOP, Santos and Chagas (2018) have proposed a Mixed Integer Non-
Linear Programming formulation, but no computational results have been presented
due to the formulation’s complexity. Instead, the authors have proposed two simple
heuristic algorithms, one based on Iterated Local Search (ILS) and one based on a
Biased Random-Key Genetic Algorithm (BRKGA). The BRKGA outperformed ILS on
large instances, and the authors have attributed this to the diversification introduced of
the mutant individuals. Afterwards, Faêda and Santos (2020) have proposed a genetic
algorithm that is able to overcome the results reported in (Santos and Chagas, 2018) for
most instances. We have also addressed the ThOP in a preceding article (Chagas and
Wagner, 2020) with a two-phase swarm intelligence approach based on Ant Colony
Optimization (ACO) and a new greedy heuristic, to construct, respectively, the route
and the packing plan (stolen items) of the thief. Our ACO is able to find better solutions
than other aforementioned algorithms for almost all instances. The efficiency of our
ACO algorithm is due to the efficient routes found by the ants which allowed their
random packing routine to collect items more efficiently.

In this work, we describe a number of improvements that we incorporated into our
ACO algorithm, which made it more substantially effective with regard to the quality
of the solutions found. In our computation experiments, we have investigated the
importance of the parameters of our ACO algorithm considering these improvement
changes. In addition, to make a fairer comparison among the other algorithms already
proposed for the ThOP, we have also investigated the parameters of those algorithms
and then evaluate their performances on a broad set of instances according to the
results already presented in the literature.

The remainder of this paper is structured as follows. In Section 5.1, we formally
describe the ThOP and present detailed solution examples to demonstrate the inter-
wovenness characteristic of the multi-components of the problem. In Section 5.2, we
present our new solution approach for addressing the ThOP. Section 5.3 reports the
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experiments and analyzes the performance of the proposed solution approach against
previous ones already proposed in the literature. Finally, in Section 5.4, we present the
conclusions of this work.

5.1 Problem definition

The Thief Orienteering Problem (ThOP) can be formally described as follows. There
is a set I = {1, 2, . . . , m} of m items and a set C = {1, 2, . . . , n} of n cities. Each item
k ∈ I has a profit pk and weight wk associated. In addition, each item is associated
with only a single city, but a city can have multiple items. Let us denoted by Ii the set
of items localized at city i. From the foregoing definition,

⋃
i∈C Ii = I and

⋂
i∈C Ii = ∅.

The items are scattered among all cities, except cities 1 and n (I1 = In = ∅). Cities
1 and n are, respectively, the cities where the thief starts and ends their journey. Let
us denote by A = {(i, j), ∀i ∈ C \ {n}, ∀j ∈ C \ {1} | i 6= j} the set of arcs in
which the thief can travel. For any pair of cities i and j with (i, j) ∈ A, the distance
dij between them is known. The thief can make a profit throughout their journey by
stealing items and storing them in a knapsack with a limited capacity W. Moreover,
the thief has a maximum time T to complete their whole robbery journey. As stolen
items are stored in the knapsack, it becomes heavier, and the thief travels more slowly,
with a velocity inversely proportional to the knapsack weight. Specifically, when the
knapsack is empty, the thief can move with their maximum speed vmax. However,
when the knapsack is full, the thief moves with the minimum speed vmin. In general
terms, the thief can move with a speed v = vmax − w · (vmax − vmin) / W, where w is
the current weight of their knapsack. The objective of the ThOP is to find a path for
the thief that starts from city 1 and ends at city n, as well as a robbery plan, i.e., a set of
items chosen from the cities visited that maximizes the total profit stolen, ensuring
that the capacity of the knapsack W is not surpassed and the total traveling time of the
thief is within the time limit T.

We can represent any solution for the ThOP through a pair 〈π, z〉, where π =

〈1, . . . , n〉 is a list of visited cities by the thief, and z = 〈z1, z2, . . . , zm〉 is a binary vector
representing the packing plan (zj = 1 if item j is collected, and 0 otherwise) adopted
by the thief throughout their robbery journey. Note that the first and last cities are
fixed for any feasible solution. In addition, the number of cities visited may differ for
different solutions.
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It is important to note that nothing prevents the thief from visiting a city more
than once. In this scenario, the thief should collect all items of a city at once on the
last visit from that city to minimize their travel time and consequently has more time
to collect other items. One more aspect that should be pointed out is that a solution
that visits some cities without collecting any items would only be advantageous if
the distances between cities do not respect the triangular inequality because it may
be convenient that the thief visits a city just to shorten their route. Nevertheless, as
Santos and Chagas (2018) have defined the test problems for the ThOP – which we
have also used in this work – in such a way that the distances between cities respect
triangular inequality, it can be considered as an implicit optimization that any solution
is formed by a list of cities π without repetition.

In order to clarify the characteristics of the ThOP, we depict in Figure 5.1 a small
worked example of a ThOP instance that involves 4 cities and 5 items. Note that there
are no items in the start (1) and end (4) cities, whereas there are some items of different
weights and profit distributed in the other cities (2 and 3). The distances from each pair
of cities are given in the edges. In the following, we present in detail some solutions
for this instance. For this purpose, let us consider vmin = 0.1, vmax = 1.0, W = 3, and
T = 75.

Figure 5.1: A ThOP instance involving 4 cities and 5 items (Santos and Chagas, 2018).

According to the solution representation 〈π, z〉, let us consider the following ThOP
solutions for the instance previously described:

• 〈〈1, 2, 3, 4〉, 〈1, 0, 0, 1, 0〉〉: it is a feasible solution with a total profit of 20 + 40 = 60.
The total weight of stolen items is 3 and the total traveling time is 75, which
satisfies both limits W and T. The total traveling time is calculated as:
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– travel from the start city to city 2 at maximum speed: time is computed as
d12/vmax = 5/1.0 = 5;

– at city 2 the thief steals item 1: the speed decreases to v = 1.0− 2× (1.0−
0.1) / 3 = 0.4;

– travel from city 2 to city 3: total traveling time is 5 + d23/v = 5 + 8/0.4 =

5 + 20 = 25;
– at city 3 item 4 is collected: the speed drops to v = 1.0− 3× (1.0− 0.1) / 3 =

0.1;
– travel from city 3 to the end city: total traveling time is 5 + 20 + d34/v =

5 + 20 + 5/0.1 = 5 + 20 + 50 = 75.

• 〈〈1, 3, 2, 4〉, 〈1, 0, 0, 1, 0〉〉: it is an infeasible solution. Although the stolen items are
the same as in the previous solution, the total traveling time (77.43) exceeds the
time limit:

– travel from the start city to city 3 at maximum speed: time is computed as
d13/vmax = 6/1.0 = 6;

– at city 3 the thief steals item 4: the speed decreases to v = 1.0− 1× (1.0−
0.1) / 3 = 0.7;

– travel from city 3 to city 2: total traveling time is 6 + d32/v = 6 + 8/0.7 =

6 + 11.43 = 17.43;
– at city 2 item 1 is collected: the speed drops to v = 1.0− 3× (1.0− 0.1) / 3 =

0.1;
– travel from city 2 to the end city: total traveling time is 6 + 17.43 + d24/v =

6 + 17.43 + 6/0.1 = 6 + 11.43 + 60 = 77.43.

• 〈〈1, 3, 4〉, 〈0, 0, 1, 0, 0〉〉: it is the optimal solution for this instance with a total profit
of 100. The total weight is 3 ≤W and the total traveling time is 56 ≤ T:

– travel from the start city to city 3 at maximum speed: time is computed as
d13/vmax = 6/1.0 = 6;

– at city 3 the thief steals item 3: the speed decreases to v = 1.0− 3× (1.0−
0.1) / 3 = 0.1;

– travel from city 3 to the end city: total traveling time is 6 + d34/v = 6 +

5/0.1 = 6 + 50 = 56.

Note that the packing plan of the optimal ThOP solution for the example instance
happens to be the same as the optimal solution for the knapsack problem. However,
it is not always that the thief can steal the best knapsack configuration within the
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time limit T. To exemplify this, let us now consider a tighter time limit equal to
20 for the previous instance. For this case, the optimal ThOP solution would be
〈〈1, 3, 4〉, 〈0, 0, 0, 1, 1〉〉, which has a total profit of 80 and total traveling time of 18.5.

In order to formally describe the ThOP through a mathematical formulation, we
have proposed an alternative Mixed Integer Non-Linear Programming (MINLP) for-
mulation to that proposed by Santos and Chagas (2018). In contrast to Santos and
Chagas’ formulation, the following formulation uses a polynomial number of decision
variables in terms of the number of cities and items. These decision variables are
detailed bellow:

• xij : binary variable that gets 1 if the thief crosses arc (i, j) ∈ A, and 0 otherwise.

• yi : binary variable that gets 1 if the thief visits city i ∈ C, and 0 otherwise.

• zk : binary variable that gets 1 if the thief collects item k ∈ I, and 0 otherwise.

• qi : variable that reports the weight of the knapsack after leaving city i ∈ C.

• ti : variable that informs the thief’s arrival time at city i ∈ C.

With these variables, we can describe the following MINLP formulation for the
ThOP.

max ∑
k∈ I

pk · zk (5.1)

∑
k∈I

wk · zk ≤W (5.2)

yi ≥ zk i ∈ C, k ∈ Ii (5.3)

yi ≤ ∑
k∈Ii

zk i ∈ C \ {1, n} (5.4)

y1 = yn = 1 (5.5)
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∑
j:(i,j) ∈ A

xij = yi i ∈ C \ {n} (5.6)

∑
i:(i,j) ∈ A

xij = yj j ∈ C \ {1} (5.7)

qj ≥
(

qi + ∑
k∈Ij

wk · zk

)
· xij (i, j) ∈ A (5.8)

tj ≥
(

ti +
dij

vmax − ν · qi

)
· xij (i, j) ∈ A (5.9)

xij ∈ {0, 1} (i, j) ∈ A (5.10)

yi ∈ {0, 1} i ∈ C (5.11)

zk ∈ {0, 1} k ∈ I (5.12)

0 ≤ qi ≤W i ∈ C (5.13)

0 ≤ ti ≤ T i ∈ C (5.14)

The objective (5.1) is to maximize the total profit of items collected. Constraint (5.2)
ensures that the total weight of items collected does not exceed the knapsack capacity.
While constraints (5.3) guarantee that the thief must visit a city to collect any item
from it, constraints (5.4) ensure that the thief does not visit cities where no items are
selected. Note that constraints (5.4) are not needed for the model to produce feasible
solutions. However, these constraints strengthen the model by removing unprofitable
route combinations. Constraint (5.5) simply imposes that cities 1 and n have to be
visited once they are, respectively, the fixed start and end points of any feasible route.
Constraints (5.6) and (5.7) guarantee route connectivity. Constraints (5.8) and (5.9)
guarantee that the knapsack weight and the route time is properly increasing along the
route according to the items, which also avoid subcycles. Note that constraints (5.8)
and (5.9) are non-linear. Finally, constraints (5.10)-(5.14) define the scope and domain
of the decision variables. Note that, as constraints (5.13) ensure that the knapsack
weight must be always less than knapsack capacity W throughout the route, con-
straint (5.2) could be removed. However, constraints (5.13) may be weaker for the
purpose expressed by constraint (5.2) due to the multiplication by the variable xij,
which allows that weak fractional solutions to be considered during the resolution of
the formulation.
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It is worth mentioning that constraints (5.8) can be linearized by rewriting them
using Big-M constants as shown in (5.15). On the other hand, we cannot linearize
constraints (5.9) as they involve divisions and multiplications of decision variables.
Nevertheless, we have also rewritten them using Big-M constants, as shown in (5.16),
to remove their non-linear multiplications. In constraints (5.15) and (5.16), we have
used different Big-M constants M′j and M′′ij, which should assume any sufficiently large
number that is greater than or equal to W + ∑i∈Ij

wi and T + dij/vmin, respectively.

qj ≥ qi + ∑
k∈Ij

wk · yk −M′j ·
(
1− xij

)
(i, j) ∈ A (5.15)

tj ≥ ti +
dij

vmax − ν · qi
−M′′ij ·

(
1− xij

)
(i, j) ∈ A (5.16)

Although the foregoing mathematical formulation may be used for solving the
ThOP, we have not considered it in our experiments due to its complexity. As con-
straints (5.16) are still non-linear, they greatly increase the complexity of the formu-
lation, making it impracticable to solve even the smallest-size instance defined in
the literature for the ThOP (Santos and Chagas, 2018). Therefore, we have bet in a
heuristic strategy for helping the thief in their robbery, leaving an improved math-
ematical formulation and exact algorithms for future investigation. As our MINLP
formulation might be used as a starting point for other investigations, we have made
it publicly available at https://github.com/jonatasbcchagas/minlp_thop, which has
been implemented using PySCIPOpt (Maher et al., 2016), a Python interface for the
SCIP Optimization Suite (Gamrath et al., 2020).

5.2 Problem-solving methodology

Throughout this section, we describe our heuristic approach, called ACO++, for solving
the ThOP. Our ACO++ is an improved version of the ACO algorithm previously
presented in (Chagas and Wagner, 2020). At the end of this section, we highlight the
differences between both algorithms.

https://github.com/jonatasbcchagas/minlp_thop
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5.2.1 The overall algorithm

Our solution approach has been loosely based on Wagner’s TTP study (Wagner, 2016).
As in (Wagner, 2016), we consider the use of swarm intelligence based on Ant Colony
Optimization (ACO) (Dorigo and Di Caro, 1999) technique as the core of our algorithm.
In brief, ACO algorithms consist of an essential class of probabilistic search techniques
that are inspired by the behavior of real ants. These algorithms have proven to
be efficient in solving a range of combinatorial problems (Dorigo and Blum, 2005).
The basic idea behind ACOs is that ants construct solutions for a given problem by
carrying out walks on a so-called construction graph. These walks are influenced
by the pheromone values that are stored along the edges of the graph. During the
optimization process, the pheromone values are updated according to good solutions
found during the optimization, which should then lead the ants to better solutions
in further iterations of the algorithm. We refer the interested reader to the book by
Dorigo and Birattari (2010) for a comprehensive introduction on ACO concepts.

As in (Wagner, 2016), we have used the ACO for determining the thief’s route,
while another algorithm for determining their packing plan for each route found
by the ants. We have used the MAX-MIN ant system by Stützle and Hoos (2000),
which restricts all pheromones to a bounded interval in order to prevent pheromones
from dropping to arbitrarily small values. In our implementation, we have used
Stützle’s ACOTSP 1.0.3 framework2 for constructing the thief’s route. The ACOTSP is
an efficient framework that implements several ACO algorithms for the symmetric
TSP. The overall logic of the ACOTSP framework remains unchanged in our proposed
algorithm. Some minimal modifications have been performed to adapt it to the ThOP
specifications. To construct the feasible routes for the thief, we have established that the
first and last cities must be those where the thief begins and ends their robbery journey.
Unlike the TSP, the ThOP does not require that all cities are visited, therefore we have
made an adaptation so that the ants built their routes until the thief’s destination city,
that is, city n has been visited. Thus, the ants are able to build routes of varying sizes.

In the ACOTSP framework, the pheromone trail updates are performed based on
the quality of the TSP routes found by ants. Since the objective of the TSP is to find
the shortest possible route visiting each city, the fitness of a given route is inversely
proportional to its total distance. In our ACOTSP adaptation, the fitness of each route
is set in terms of the quality of the stolen items throughout the route, because stolen

2Publicly available online at http://www.aco-metaheuristic.org/aco-code

http://www.aco-metaheuristic.org/aco-code
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items define the quality of ThOP solutions, which are defined by our proposed packing
routine (to be described later). As the ACOTSP framework is developed explicitly for
the TSP, a minimization problem where its solutions have positive objective values, we
consider that the fitness of a ThOP’s route π is inversely proportional to UB+ 1− p(z),
where UB is an upper bound for the ThOP and p(z) is the total profit of packing plan
z. Note that in this way we can maintain the same behavior of fitness of the TSP
solutions, without modifying the ACOTSP framework structure. The upper bound UB
is defined as the optimal solution for the KP version that allows selecting fractions of
items. This KP version can be easily solved in O(m log2 m) (Toth and Martello, 1990).

In Algorithm 6, we show the simplified overview of our ACO++. Initially (Line 1),
the best ThOP solution (route and packing plan) found by the algorithm is initialized
as an empty solution. The algorithm performs its iterative cycle (Lines 2 to 14) as long
as the stopping criterion is not fulfilled. At Line 3, each ant constructs a candidate
route for the thief. For each route π (Line 4), a packing plan is created (Line 5). The
ACOTSP framework allows us to apply on the routes found by the ants some classic
local search procedures: 2-opt, 2.5-opt, and 3-opt (Aarts et al., 2003). If any local search
is enabled in our algorithm (Line 6), that local search procedure is done on each route
π, thus generating a route π′ (Line 7), which may be better than π regarding the
distance costs. Next, a packing plan z′ is created from π′ (Line 8). If z′ is better than z
(Line 9), π and z are replace by π′ and z′ (Line 10). At Lines 11 to 12, the best solution
found is possibly updated. Note that we remove from π all cities where no items
have been stolen according to the packing plan z (Line 12) in order to get a faster
route. As we have stated before, this is only true as all ThOP instances use distances
that preserve the triangular inequality. After every route has been considered, ACO
statistics and the pheromone values are updated according to the quality of the ThOP
solutions found (Line 13). At the end of the algorithm (Line 21), the best solution
found is returned.

5.2.2 Randomized packing heuristic

In order to complete the description of the proposed ACO++ algorithm, we now
present our strategy used for constructing a packing plan from a given route π. As
stated by Polyakovskiy and Neumann (2015), even when the route of the thief is kept
fixed, finding the optimal packing configuration is NP-hard. Therefore, we have
used the core idea of the randomized heuristic presented for solving the ThOP in our
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Algorithm 6: ACO++ algorithm for the ThOP

1 πbest ← ∅, zbest ← ∅
2 repeat
3 Π← construct routes using ants
4 foreach route π ∈ Π do
5 z← construct a packing plan from π
6 if local search procedure is activated then
7 π′ ← perform a local search procedure on route π

8 z′ ← construct a packing plan from π′

9 if profit of z′ is higher than profit of z then
10 π ← π′, z← z′

11 if profit of z is higher than profit of zbest then
12 πbest ← ζ(π), zbest ← z
13 update ACO statistics and pheromone trail
14 until stopping condition is fulfilled
15 return πbest, zbest

ζ(π) removes from π all cities where no items are stolen according to the packing plan z.

preliminary work (Chagas and Wagner, 2020). Our packing heuristic algorithm has
been developed based on a heuristic strategy used as subroutine in the PACKITERATIVE,
an efficient packing algorithm developed for the TTP (Faulkner et al., 2015). In contrast
to the deterministic PACKITERATIVE and its subroutine, we have decided to design
our packing algorithm in a non-deterministic way. This decision has been motivated
once in our preliminary experiments, we have observed that ants for many times
have been able to find identical or very similar routes throughout the iterations of the
ACO++ algorithm. Thus, with a non-deterministic strategy, we increase the exploration
of the packing plan space even for a fixed route, which can lead to finding better
configurations.

In Algorithm 7, we present in detail the steps performed in our packing heuristic
algorithm. It starts by creating a set of all items that can be stolen by the thief from
their route π (Line 1), and initializes the best packing plan found without any items
(Line 2). Our packing heuristic algorithm seeks to find a good packing plan z from
multiple attempts for the same route π. The number of attempts is defined by ptries.
Each attempt is described between Lines 4 to 20. At the beginning of each attempt
(Line 5), we uniformly select three random values (θ, δ, and γ) between 0 and 1, and
then normalize them so that their sum is equal to 1 (Line 6). These values are used to
compute a score si (Line 8) for each candidate item to be selected (Line 7), where θ, δ,
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and γ define, respectively, exponents applied to profit pi, weight wi, and distance di in
order to manage their impact. The distance di is calculated according to the route π

by sum all distances from the city where the item i is to the end city. Equation (5.17)
shows as the score of item i is calculated.

si =
(pi)

θ

(wi)
δ · (di)

γ
(5.17)

Algorithm 7: Randomized Packing Algorithm
1 I ← create a set of all items located in any city in π
2 z← ∅
3 try← 1
4 repeat
5 θ ← rand(0, 1), δ← rand(0, 1), γ← rand(0, 1)
6 normalize θ, δ, and γ so that θ + δ + γ = 1
7 foreach i ∈ I do
8 si ← compute score for item i using θ, δ, and γ // Eq. (5.17)
9 sort the items of I in non-decreasing order of their scores

10 z′ ← ∅
11 for i ∈ I do
12 z′ ← z′ ∪ {i}
13 if weight of z′ is higher than W then z′ ← z′ \ {i}
14 else
15 t← compute the travel time to steal z′ following the order of the

route π by visiting only cities with items selected
16 if t is longer than T then z′ ← z′ \ {i}
17 if profit of z′ is higher than profit of z then
18 z← z′

19 try← try + 1
20 until try > ptries
21 return z

Note that each score si incorporates a trade-off between a distance that item i has
to be carried over, its weight, and its profit. Equation (5.17) is based on the heuristic
PACKITERATIVE that has been developed for the TTP (Faulkner et al., 2015). However,
unlike in (Faulkner et al., 2015), we consider an exponent for the term of distance to
vary the importance of its influence. Furthermore, the values of all exponents are
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randomly drawn between 0 and 1 for each attempt (and then normalized) to search
the space for greedy packing plans.

After computing scores for all candidate items, we sort them in non-decreasing
order of their scores (Line 9). The scores of items are used to define their priority in
the packing strategy. The higher the score of an item, the higher its priority. Between
Lines 11 and 16, we create the packing plan for the current attempt by considering
the items according to their priorities. If an item violates the constraints of the ThOP
(Lines 13 and 16), it is not selected. Note that we calculate travel time (Line 15) from
the cities listed on route π, but we ignore those cities where no items are selected.
After completing the current attempt’s packing plan, its quality is compared to the
best packing plan so far (Line 17), which is then possibly updated (Line 18). At the
end of all attempts, the best packing plan found is returned (Line 21).

5.2.3 Differences between the ACO++ and ACO approaches

Compared to the ACO described in (Chagas and Wagner, 2020), we have incorporated
two new features into our ACO++. These features are described in the following:

1. The ants of ACO++ construct routes that do not necessarily visit all cities, while
in our previous ACO the ants always construct complete TSP tours, i.e., all cities
are visited. Note that, although both algorithms remove from the route all cities
in which no item is selected, there is now a higher consistency with respect to the
ThOP’s definition, because ants do not have to visit all cities. Note that this allows
ants to construct routes that might not be easily constructed from our previous
ACO. In addition, when a route visits fewer cities fewer items are available to
be collected from that route, which reduces the search space to find a packing
plan, thus making our packing routines more computationally efficient. It is also
because of this last point, that we had to adapt our randomized packing heuristic
algorithm to consider only the items that can be selected from each constructed
route. However, its core idea remains unchanged.

2. There is now the possibility to apply different local searches on each route con-
structed by the ants in our ACO++. While this results in a TSP-bias toward shorter
routes, finding shorter routes may help the thief to better plan their robbery
journey.
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5.3 Computational Study

In this section, we present the experiments performed to study the performance of
the proposed algorithm against other algorithms proposed for the ThOP (Santos and
Chagas, 2018; Faêda and Santos, 2020; Chagas and Wagner, 2020). As the computa-
tional budget of all ThOP algorithms are based on wallclock time, in order to enable a
fair comparison, we have rerun all ThOP codes, except for Faêda and Santos (Faêda
and Santos, 2020)’s algorithm because we have not had access to their code. In our
experiments, each run of each algorithm has been sequentially (nonparallel) performed
on a machine with an Intel(R) Xeon(R) CPU X5650 @ 2.67GHz, running CentOS 7.4.

Our algorithm has been implemented based on Thomas Stützle’s ACOTSP 1.0.3
framework, which is in C programming language. Our code, as well as all raw results
and solutions (tours and packing plans), are publicly available at
https://github.com/jonatasbcchagas/acoplusplus_thop.

5.3.1 Benchmarking instances

In order to evaluate the different ThOP approaches, we use all 432 ThOP instances
from (Santos and Chagas, 2018). These have been created based on the TTP in-
stances (Polyakovskiy et al., 2014) by removing the items in city n and by adding
a maximum travel time. The instances have the following characteristics:

• numbers of cities: 51, 107, 280, and 1000 (TSP instances: eil51, pr107, a280, dsj1000);

• numbers of items per city: 01, 03, 05, and 10 (all cities of a single ThOP instance
have the same number of items, except for the cities in which the thief starts and
ends their journey, where no items are available);

• types of knapsacks: weights and values of the items are bounded and strongly
correlated (bsc), uncorrelated (unc), or uncorrelated with similar weights (usw);

• sizes of knapsacks: 01, 05 and 10 times the size of the smallest knapsack, which is
defined by summing the weight of all items and dividing the sum by 11;

• maximum travel times: 01, 02, and 03 classes. These values refer to 50%, 75%,
and 100% of instance-specific reference times defined in the original ThOP pa-
per (Santos and Chagas, 2018).

https://github.com/jonatasbcchagas/acoplusplus_thop
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The 432 ThOP instances can be obtained by combining the different characteristics
described above. In the remainder of this chapter, each instance is identified as
XXX_YY_ZZZ_WW_TT, where XXX, YY, ZZZ, WW and TT indicate the different characteristics
of the instance at hand. For example, pr107_05_bsc_01_01 identifies the instance with
107 cities (TSP instance pr107), 5 items per city with their weights and values bounded
and strongly correlated with each other, and the smallest knapsack and time limit
defined.

5.3.2 Parameter tuning

The ACOTSP framework allows us to set a large number of parameters. We consider
the following: ants defines the number of ants used; alpha controls the relative impor-
tance of pheromone trails in the construction of routes; beta defines the influence of
distances between cities for construction the routes; rho sets the evaporation rate of the
pheromone trail; and localsearch controls whether and what local search procedure is
applied to tours. Besides, we analyze the influence of our parameter ptries, which is
used for deciding how many attempts our randomized packing algorithm performs to
determine the set of stolen items. Regarding the stopping criterion of our algorithm, as
in the previous work on the ThOP, we have defined as stopping criteria the execution
time equal to d0.1me seconds, which is given in terms of the number of items m of
each particular instance.

In order to find suitable configuration values for these parameters, we have fol-
lowed the same tuning experiments used in (Chagas and Wagner, 2020), i.e., we have
used the Irace package (López-Ibáñez et al., 2016b), which implements an iterated
racing framework for the automatic configuration of algorithms (Birattari et al., 2010),
for analyzing the influence of parameter values across different types of instances. We
have divided all 432 instances into 48 groups and then execute Irace on each of them.
Each group is identified as XXX_YY_ZZZ, where XXX informs the TSP base group, YY
the number of items per city and ZZZ the type of knapsack. Each group XXX_YY_ZZZ

contains all nine instances defined with different sizes of knapsacks and maximum
travel time.

Table 5.1 shows the parameter values we have considered in our analysis. These
values have been selected following preliminary experiments. In our experiments, we
have used all Irace default settings, except for the parameter maxExperiments, which



110 The thief orienteering problem

has been set to 5000. This parameter defines the stopping criteria of the tuning process.
We refer the readers to (López-Ibáñez et al., 2016a) for a complete user guide of the
Irace package.

Table 5.1: Parameter values considered during the tuning experiments.

Parameter Investigated values

ants {10, 20, 50, 100, 200, 500, 1000}
alpha {0.00, 0.01, 0.02, . . . , 10.00}
beta {0.00, 0.01, 0.02, . . . , 10.00}
rho {0.00, 0.01, 0.02, . . . , 1.00}

ptries {1, 2, 3, 4, 5}
localsearch {no local search, 2-opt, 2.5-opt, 3-opt}

In Figure 5.2, we plot for each group all configurations returned by Irace at the
end of its run. Each parallel coordinate plot lists for each of the 48 groups (shown
in the left-most column) the configurations returned by Irace (shown in the other
columns). As Irace can return more than one configuration, multiple configurations
are sometimes shown. Each axis indicates a parameter and its range of values, and
each configuration of parameters is described by a line that cuts each parallel axis in
its corresponding value. Through the concentration of the lines, we can see which
parameter values have been most selected among all tuning experiments. We have
used different colors and styles for lines in order to emphasize the results obtained for
each group individually. All logs generated by the Irace executions, as well as their
settings can be found at the GitHub link along with our code.

We can make several observations. Firstly, we notice that the number of ants is
typically higher than 100. The importance of the pheromone trail (α) is typically
low, especially for the groups of instances that consider the TSP bases eil51, and
a280. In turn, the importance of distances between cities (β) varies depending on the
underlying TSP instance. This is not too surprising, as the underlying TSP instances
are different in nature and not normalized, hence requiring different values of beta.
The evaporation rate of the pheromone trail has had a behavior more spread, although
it seems to have a compensation correlation between the parameter beta: the higher the
influence of distances between cities, the lower the evaporation rate of the pheromone
trail. We can also observe that nearly all tuned configurations require the multiple
invocation of our randomized packing heuristic, with the number of packing attempts
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Figure 5.2: Irace results for the 48 groups of instances. Blue, green, red, and yellow lines
represent, respectively, groups of instances with 1, 3, 5, and 10 items-per-city.
Dashed, solid, and dotted lines are used, respectively, to emphasize the groups of
instances with items where their weights and values are bounded and strongly
correlated (bsc), uncorrelated with similar weights (usw), and uncorrelated (unc).

widely spread among each other. Regarding the application of local searches on routes,
one can note that for most groups of instances the use of 2-opt moves produces better
ThOP solutions. However, some configurations do not include the use of any local
search. Note that there are no configurations that indicate the use of 2.5-opt and 3-opt
moves. Potentially, this is because high-quality TSP routes do not necessarily result in
high-quality ThOP routes. Therefore, there may be no need to use local searches with
larger neighborhood moves based solely on route distances as an improvement phase
for ThOP routes.
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5.3.3 Comparison of ThOP solution approaches

We compare the quality of the solutions obtained by ACO++ with the quality of the
solutions obtained by other algorithms (ILS (Santos and Chagas, 2018), BRKGA (Santos
and Chagas, 2018), GA (Faêda and Santos, 2020), ACO (Chagas and Wagner, 2020))
already proposed for the ThOP. In order to make a fair comparison, we have tuned the
parameters of the BRKGA and ACO following the same procedure used in the tuning
of the parameters of ACO++, i.e., we have individually executed the Irace for each 48
diferent groups of instances. The ILS algorithm has no parameters to be tuned (Santos
and Chagas, 2018), while for the GA, we have not investigated its parameters because
we have not had access to its code. Therefore, for the GA, we have made our analysis
based on the results reported in (Faêda and Santos, 2020).

Due to the randomized nature of all algorithms, we have performed 30 independent
repetitions on each instance. Each run has been executed with the parameter values
with the best mean performance among those returned by Irace. ILS, BRKGA, and
ACO codes, as well as their tuned configurations, raw results and solutions found, are
also available at the GitHub link along with our ACO++.

In the first analysis, we compare the performance of the solutions obtained by mea-
suring for each instance the approximation ratio of each algorithm. More precisely, for
each instance and algorithm, we take the average objective value obtained considering
the independent runs of that algorithm and compute the ratio between that average
objective value and the best objective value found among all algorithms. Note that the
higher the approximation ratio, the higher the average performance of that particular
algorithm. In Figure 5.3, we plot for every instance and algorithm the approximation
ratio as a heatmap in order to highlight larger differences. In addition, we highlight
with a diamond symbol the instances for which each algorithm has found best known
solutions.

From Figure 5.3, we can make several observations. As stated by Santos and
Chagas (2018), we can also confirm that their BRKGA has outperformed their ILS
for most instances, with higher prominence on the larger-size instances. In addition,
one can note that their algorithms perform better for instances that involve only one
item per city. Regarding the best-known solutions, we can see that their algorithms
have not been able to find many of them. The GA proposed by Faêda and Santos
(2020) has outperformed, in general, both BRKGA and ILS solution approaches. Al-
though BRKGA has found more best-known solutions, the GA has a more uniform
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usw_10_03Figure 5.3: Approximation ratio of the solution approaches. Diamond symbols highlight in

which the instances each algorithm has found the best solutions.

behavior regarding the dimensions of the instances. Note that our previous ACO
algorithm (Chagas and Wagner, 2020) has reached a better approximation ratio for
almost all instances when compared to GA and also to ILS and BRKGA. In turn, our
current ACO++ algorithm has presented a better or equal performance regarding the



114 The thief orienteering problem

other algorithms for almost all instances. Similarly, it has typically found the best
solutions for most of the instances.

In order to compare each pair of algorithms as to the best solutions found by
them, we show in Table 5.2 the percentage of the number of instances in which every
algorithm found better or equal quality solutions than another algorithm. The results
shown in this table corroborate with those shown in Figure 5.3. In addition to showing
that the ACO++ algorithm outperformed all other algorithms by more than 96% of the
total of instances, we can also see that our previous ACO also is more efficient than
ILS, BRKGA, and GA by over 88% of instances. In turn, GA is more efficient than ILS
and BRKGA, and BRKGA overcomes ILS.

Table 5.2: Percentage of the number of instances in which algorithm i found better or equal
quality solutions than algorithm j.

i ↓ j→ ILS BRKGA GA ACO ACO++

ILS - 3.01% 20.37% 4.63% 2.55%

BRKGA 99.54% - 37.50% 14.58% 8.56%

GA 81.71% 64.58% - 2.78% 2.31%

ACO 96.99% 88.89% 98.61% - 5.32%

ACO++ 99.54% 96.06% 99.54% 98.15% -

As both algorithms based on ACO metaheuristics have had the best and most
similar performances, we statistically compare the quality of their solutions by using
the Wilcoxon signed-rank test on the results achieved in the 30 independent runs.
At a significance level of 5%, the performance of ACO++ has been statistically worse
than ACO in only 11 instances, in 12 instances there is no difference between the
performance of both algorithms, while in 409 instances (about 95% of total) ACO++

has been better than ACO.

In Table 5.3, we summarize the results obtained with a closer analysis of the
solutions found by ACO and ACO++. For each TSP base instance (XXX) and number of
items per city (YY), which resulted in 27 instances each, we show averaged information
concerning all the best solutions achieved by both approaches. Column D shows the
ratio between the total distance traveled and the number of cities visited by the thief,
while columns %T and %W report, respectively, the percentage spent of the time limit
and the percentage used of the knapsack capacity. If values in these last two columns
are close to 100%, then these indicate limiting factors. Note that both algorithms have
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a similar use of the time limit. On the other hand, the solutions found by ACO++ have
used more the knapsack capacity, especially for instances with more cities and items.
From the values in column D, we can understand this behavior. Note that the ratio
between the total distance traveled and the number of cities visited of the solutions
found by ACO is higher than those found by ACO++. Note that the solutions found by
ACO have a ratio between the total distance traveled and the number of cities visited
higher than those solutions found by ACO++, which indicates that ACO has found
the most spread-out routes and/or with more edge crossings. Therefore, as the routes
found by ACO++ are more condensed and/or efficient, the thief is able to travel more
effectively and, consequently, uses better the knapsack capacity, thus managing to
collect a better set of items. To illustrate this behavior, Figure 5.4 shows, for some
instances where the resulting quality differs significantly, the best solution found by
each algorithm.

In summary, we can see that our ACO++ has been able to find significantly more
efficient routes, which allows achieving better packing plans, and, consequently,
achieving higher profits.

5.4 Conclusions

In this chapter, we have proposed a swarm-based approach to the Thief Orienteering
Problem (ThOP), an academic multi-component problem that combines the Orienteer-
ing Problem and the Knapsack Problem. For solving the problem, we have combined
a heuristic approach based on Ant Colony Optimization with a randomized packing
heuristic. Using extensive tuning on groups of instances, we have studied the effects of
our algorithmic components. Furthermore, we have evaluated the performance of the
algorithm on the complete set of instances available in the literature. The experiments
show that our solution strategy is able to find better solutions with large improvements
when compared to the other solution methods proposed for the problem. Based on
our analysis, the efficiency of our algorithm is due to the fact that ants have been able
to find more efficient routes, which has allowed our packing heuristic to select a better
set of items.

For future research, we can point out as a promising direction the investigation
of a version of the problem that considers multiple thieves in order to provide the
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Table 5.3: Information on the structure of the best solutions found. D is the ratio between the
total distance traveled and the number of cities visited; %T and %W denote the
percentage spent of the time limit and the percentage used of the knapsack capacity.

TSP base Number of items ACO ACO++

(XXX) per city (YY)
D %T %W D %T %W

eil51 01 10.91 98.60 78.06 10.46 99.00 79.55

03 9.46 99.60 83.85 8.63 99.55 85.34

05 9.26 99.62 83.39 8.53 99.78 85.48

10 9.12 99.84 85.26 8.20 99.88 86.57

pr107 01 718.92 99.66 79.58 680.85 99.74 81.82

03 498.71 99.85 81.78 476.67 99.85 83.84

05 471.77 99.93 83.22 445.23 99.95 83.79

10 449.09 99.95 84.95 417.47 99.93 84.40

a280 01 16.52 99.61 79.57 14.23 99.80 83.94

03 12.60 99.74 81.83 10.45 99.76 85.68

05 11.84 99.95 82.72 9.61 99.93 86.27

10 11.17 99.92 83.02 9.22 99.92 86.26

dsj1000 01 44632.08 74.72 79.31 37015.71 72.08 86.16

03 26635.61 99.90 82.91 18943.46 99.89 89.57

05 25648.23 99.85 82.43 18064.09 99.82 89.91

10 23795.22 99.92 84.03 17700.59 99.68 90.35

more general problem of team orienteering. Another interesting direction would be to
approach the problem in a bi-objective version, where are to maximize the total profit
and minimize the total distance traveled. By combining both foregoing directions, a
very interesting, challenging, and general problem would be created, with potential
applications in real-world scenarios with routing problems under time-dependent
limitations.
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profit = 68653 distance = 429 profit = 70830 distance = 340

profit = 180879 distance = 34258 profit = 195716 distance = 33796

profit = 422948 distance = 2640 profit = 441530 distance = 2348

Figure 5.4: The graphical representation of the solutions found by ACO (left) and ACO++
(right) for instances eil51_10_bsc_01_03 (top), pr107_05_usw_10_02 (middle), and
a280_10_unc_01_03 (bottom). The cities are plotted in their respective coordinates.
The initial and final cities are represented by a green triangle and a red square,
respectively, while black points represent the other cities. The continuous lines
connecting pairs of cities represents the route performed by the thief. The line
thickness increases according to the total weight picked by the thief.



118



Chapter 6

Conclusions and open perspectives

We have addressed four combinatorial problems with multiple interacting components.
Two of them are pickup and delivery problems with loading constraints: the Double
Vehicle Routing Problem with Multiple Stacks (DVRPMS), and the Double Traveling
Salesman Problem with Partial Last-In-First-Out Loading Constraints (DTSPPL). The
other two are nonlinear problems that combine classic combinatorial optimization
problems in their formulations: the Traveling Thief Problem (TTP), and the Thief
Orienteering Problem (ThOP). The DTSPPL and ThOP are more realistic variants of
the DVRPMS and TTP, respectively. All these problems have practical and theoretical
relevance as they follow the realistic and integrated trends on current real-world
optimization problems.

For each of the problems studied here, we have developed mathematical models
and/or heuristic algorithms for treating it. Specifically, for the DVRPMS, a new
Integer Linear Programming (ILP) formulation and a heuristic algorithm basead on
the Variable Neighborhood Search (VNS) have been proposed. For the DTSPPL, we
have mathematically formulated it by means two ILPs and also proposed a heuristic
algorithm based on the Biased Random-Key Genetic Algorithm (BRKGA). We have
approached a bi-objective formulation of the TTP with two heuristic algorithms; the
first one is based on the BRKGA and the Non-Dominated Sorting Genetic Algorithm
II (NSGA-II), while the second algorithm is a weighted-sum method combined with a
two-stage heuristic. With respect to ThOP, we have formulated it through mathematical
nonlinear models, and also developed heuristic algorithms based on BRKGA, Iterated
Local Search (ILS), and Ant Colony Optimization (ACO) algorithms.

Our main contributions have consisted of proposing solution approaches able to
improve the results of problems already known in the literature, and also proposing
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more realistic variations of these problems. As they are all highly complex problems,
our heuristic algorithms have generally been able to find better solutions than those
found by our mathematical models. Indeed, our mathematical models played a major
role in the formulation of the problems and/or in the validation of the results.

Regarding the DVRPMS, from the results of our mathematical model, we have
found new upper-bound values for many instances. In addition, our VNS algorithm
proposed for the DVRPMS has found solutions with higher quality in shorter com-
putational time for most instances when compared to the methods already present
in the literature. For the DTSPPL, both ILP formulations have been able to solve to
proven optimality only the smaller instances, while the BRKGA has found high-quality
solutions for all instances, requiring on average short computing times. Regarding
the TTP, with our algorithm based on the BRKGA and NSGA-II, we have won the
first and second places, at EMO2019 and GECCO2019 competitions,1,2 respectively. In
addition, our last proposed algorithm based on the weighted-sum method combined
with a two-stage heuristic has reached significantly better results than those presented
in the competitions. Finally, for the ThOP, we have not presented the results of our
mathematical models due to their high complexity. However, the results of our heuris-
tic algorithms have shown able to find high-quality solutions, especially those based
on the ACO technique.

There are many possibilities for extending this work. With respect to the DVRPMS,
one could investigate better ways to evaluate and represent the solutions in order to
address large instances of the problem. For the DTSPPL, maybe the most relevant
study is to model and solve the Double Traveling Salesman Problem with Multiple
Stacks and Partial Last-In-First-Out Loading Constraints (DTSPMSPL), the version of
the DTSPPL where the loading compartment of the vehicle is divided into multiple
stacks. For the TTP and ThOP, it would be interesting to investigate the influence
of different algorithmic components over different instances. With this knowledge,
one could develop customized algorithms based on the instance characteristics, thus
achieving better solutions.

1EMO-2019 https://www.egr.msu.edu/coinlab/blankjul/emo19-thief/
2GECCO-2019 https://www.egr.msu.edu/coinlab/blankjul/gecco19-thief/

https://www.egr.msu.edu/coinlab/blankjul/emo19-thief/
https://www.egr.msu.edu/coinlab/blankjul/gecco19-thief/
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