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In this paper, we show how to build a basic computer program using the Monte Carlo method to display the
hydrogen atomic orbitals. For this, in a heuristic way, we applied a von Neumann acceptance-rejection method
in simple problems of potential wells, and we end with the hydrogen orbitals representation. In this technique,
we spread points uniformly on the 1D and 2D charts of probability density distributions, then we filtered points
under these “curves or surfaces”, and we extended this logic to 3D cases. Throughout the work, we also made
some comments to help beginner students better understand the term “wave function” present in the Schrödinger
equation. Also, we made all source code available at a third-party platform, for any purpose under the MIT license.
Keywords: hydrogen atom, quantum mechanics, Monte Carlo method, Neumann acceptance-rejection method.

1. Introduction

The introduction of quantum mechanics, even in physics
or chemistry undergraduate courses is usually done by a
historical review of several atomic models. Bohr devel-
oped one of these models, and it was essential to explain
concepts of energy quantization and emission of spectral
lines predicted by Rydberg [1]. Although the Bohr model
is obsolete, it can still be used for beginner students to
get acquainted with the quantization theme, and this is
convenient because this model requires relatively simple
conceptual and mathematical treatment as compared to
its successor.

On the other hand, this practice may induce students
to develop a misperception of the most modern and
precise structures of quantum mechanics [2]. Therefore,
researchers in the teaching area have suggested using
computational tools to explain the Schrödinger models,
making the current concepts of quantum mechanics more
understandable [3–7].

In this context, the present study shows how to use a
computer for learning in this area. In more detail, this
project aims to teach undergraduate students to build
their programs using the Monte Carlo technique in order
to picture the hydrogen orbitals in a heuristic1 way.

*Correspondence email address: pedrohflobo@gmail.com
1Heuristic is “a method which, on the basis of experience or judge-
ment, seems likely to yield a reasonable solution to a problem,
but which cannot be guaranteed to produce the mathematically
optimal solution.” – Edward A. Silver (see [8]).

This method is convenient because it induces the stu-
dent to understand the real meaning of probability den-
sity introduced by Born, which derives from the wave
function present in the time-independent version of the
Schrödinger equation. So, we hope that students could
make a suitable link between this function and the con-
cept of particle-wave duality. In that way, we will give a
brief presentation of the Monte Carlo method and quan-
tum mechanics, applying these in some simple systems
and ending up with the hydrogen atom.

2. The Monte Carlo method - MCM

In many science fields like physics [6, 7, 9–12], biology
[9,10,13–17], engineering [9], and finance [18] many prob-
lems are solved today by MCMs. That is, by a broad
class of methods that use random sampling, to obtain
numerical results or provide the probability distributions.

This simple formulation suggests we need a more
proper definition, and indeed, this could come in handy
at this point. However, as these MCMs have quickly be-
come popular and new techniques, ideas, and concepts
continue to appear, then it becomes difficult to establish
an overview.

For this reason, we will introduce the MCM by applying
it to the following problem: take, as an example, the
boundary of an irregular picture on a rectangular sheet
of paper. One way of estimating the inner region of this
figure is by throwing many darts randomly inside this
sheet. The area of this figure is approximately the area
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of paper multiplied by the ratio of darts that hit the
drawing and any other point.

Let us illustrate the process using the method to cal-
culate the area of the circle inscribed in a square, and
also sketch these regions with points. In this case, the
equation of the circumference centered on the origin is
given by:

r2 = x2 + y2 (1)

where r is the radius of the circle, x and y are cartesian
coordinates. Then we will make y dependent on x, keep-
ing the r constant, so we obtain the following expression
with domain Df and range Rf :

y(x) =
√
r2 − x2

Df : {x ∈ R | −r ≤ x ≤ r}
Rf : {y ∈ R | 0 ≤ y ≤ r}

(2)

This function is represented graphically by an arc
above the x-axis. The bottom part is −y(x). In this case,
the range of −y(x) will be Rf : {y ∈ R | −r ≤ y ≤ 0}.
So, we can use a sequence of steps below to draw the
circle and get its area.

1. Set a positive r.
2. Set an amount p-points to plot.
3. Set an integer h-counter and reset it to zero.
4. Set an integer i-counter and reset it to zero.
5. Generate a random x ∈ [−r, r].
6. Generate a random w ∈ [−r, r].
7. If w ∈ [−y(x), y(x)], then x and w are stored in

the first list and add +1 to h. Otherwise, they are
stored in the second list.

8. Add +1 to i.
9. Repeat all steps from the 5th until i equals p.

10. Evaluate a circle area by S = (2r)2 h/p.
11. Make a single chart with the two lists with different

colors.

Note that to chart the whole process can be summed
up in randomly picking a pair of coordinates {x,w}, and
then representing the points in the external and internal
limits in different colors. See the result in Figure 1.

Concerning the calculation of the circle area, the reader
may be wondering: why not calculate it by integration?
Indeed, the exact solution is usually the best choice. Nev-
ertheless, there are cases where integrals are challenging
to manipulate to get a known analytical solution 2, or
even are multidimensional.

In these cases, we must use numerical tools such as
Trapezoidal and Simpson rules or even use the MCM
to solve integrals [19–21]. Although for low dimensions
cases, the fixed numerical quadratures 3 provide better
2It is not always easy to substitute non-elementary integrals for
simple power series anti-derivative functions.
3Numerical quadrature is nothing more than a technique for making
approximations of integrals by sums.

Figure 1: A circle (radius r = 3) inscribed in a square (side
l = 2r), with two thousand points homogeneously distributed,
covering the whole area. The top and bottom are given by the
functions y(x) and −y(x) respectively.

convergence rates, this MCM takes advantage because
its accuracy is almost independent of dimension [19,20].
Also, this MCM avoids technical issues that appear in
the other alternatives [19]. For these reasons and also for
being easily implementable, the MCM is seen as a robust
numerical tool.

However, be careful because there are at least two ways
to calculate areas or volumes by MCMs. The technique
we applied in our algorithmic is called von Neumann
acceptance-rejection method (also known as hit-or-miss
method), while that MCM which works as quadrature
numeric is called sample-mean, also called crude Monte
Carlo (see [21–23] for disambiguation). By the way, com-
paring these two options, only the von Neumann method
can sketch areas and volumes, while getting these results
avoiding the whole calculus formulation [21–23,25].

Furthermore, for the area of simple figures like circles,
it is easy to show that these two types of MCMs, the
more we increase the sample size, the closer we get to
the analytical solution [21–23]. Be that as it may, as we
shall see further on, rather than get numerical results,
we will use the MCM to fill multidimensional spaces with
points.

3. Random numbers and sampling

For these MCMs to work is essential that generators pro-
vide an unpredictable sequence of numbers, and identi-
cally given by some probability distribution [10,24,25]. In
other words, good random number generators must pro-
duce uncorrelated numbers. When random numbers are
produced homogeneously in some range, we describe the
generator as a uniform random number generator [24,25].

Also, when it comes to a programming environment,
pseudo-random numbers are widely used. That is: they
seem to be random, but they appear in deterministic se-
quences initiated by seeds [24–26]. However, for different
sets of values to be provided, i.e., seeming unpredictable,
the actual time given by the CPU clock is used at least
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once to choose a seed [26]. That way, every time the
programs run, they seem to give unique results.

Since random numbers are present at the core of
MCMs, then they have some basic requirements that gen-
erators must satisfy in order to be considered good [24,25].
Some tests suggest that those present in the software
are unreliable, but fortunately, there are adequate pack-
ages ready to be used in more popular programming
languages [27].

4. The wave equation

After the introduction of the Bohr model, de Broglie, mo-
tivated by the photoelectric effect, suggested that there
could be a correlation between the electromagnetic equa-
tions with particles in movement (see the English version
of [28] in [29]). Subsequently, Schrödinger, inspired by
de Broglie hypothesis, or the concept we today know
as particle-wave duality, formulated his homonymous
equation below, which was later interpreted by Born,
and which currently represents the primary tool of all
non-relativistic quantum mechanics.

Ĥψ = Eψ (3)

In the previous equation, the Hamiltonian operator Ĥ
is associated with classical mechanics by an analogy to the
combined operators of kinetic and potential energy, while
the term ψ is the eigenfunction or wavefunction, and E
is the eigenvalue or energy, we get both simultaneously
when solving this equation [33,34].

For the terms Ĥ and E, if beginners in quantum me-
chanics understand the concept of Newtonian mechanics
and energy quantization introduced by Bohr, then they
should have no difficulty in assimilating them. However,
if the idea of electrons moving around the nucleus in
precise orbits persists, there is no way to make a correct
connection with ψ.

The explanation comes from the concept of particle-
wave duality. The particles, by their nature, are located in
points, on the other hand, the wavefunction (as the name
suggests) spreads through space [33,34], and consequently,
there is no reason to represent electrons in orbits. Born
made an interpretation that tells us that ψ (~r, t) is a
probability amplitude, although it can often be complex
4, |ψ (~r, t)|2 is probability density and |ψ (~r, t)|2d3r is the
probability dP (~r, t) to find the particle in a volume d3r,
located between ~r and ~r + d~r, at a time t [33, 34].

|ψ (~r, t)|2d3r = dP (~r, t) (4)

If we integrate the previous equation into the whole
space S, then the particles will inevitably be somewhere.
Therefore, the probability of finding them under these
conditions is 100%.

4Complex in this context because it contains the imaginary number
i.

∫
S

|ψ (~r, t)|2d3r = 1 (5)

5. Monte Carlo method to provide
density plots

A common strategy involving MCMs is a von Neumann
acceptance-rejection technique [35]. In his method, pseudo-
random numbers are generated uniformly to produce
other non-uniform distributions. At some stage of this
algorithm, the screening of these numbers is made using
relational operators, which result in the establishment of
acceptance and rejection zones, similarly 5 to the exam-
ple of the circle already introduced. Also, as we propose
in this paper, this same von Neumann technique was
used before to draw hydrogen orbitals [6].

From now on, we will apply this MCM, to produce
images of the qualitative probability density, and the
number of points should be in a subjective range, so that
image is not empty (without contrast) or overloaded. We
will start from typical potential well problems, and end
up with the hydrogen atom.

5.1. The one-dimensional infinite potential well

The Hamiltonian previously introduced (see section 4) is
explicitly given in the following form Ĥ = −~∇2/2m+
V (~r, t), where V (~r, t) is the potential term, ~ is the re-
duced Planck constant, m is the mass of the particle, and
∇2 is the Laplacian operator. Also, the time-independent
version for equation (3) in one dimension, applied to the
problem of the infinite potential well of length L is:

− ~
2m

d2ψ (x)
dx2 + V (x)ψ (x) = Eψ (x) (6)

where V (x) is given by:

V (x) =
{

0, if 0 < x < L

+∞, otherwise.
(7)

In this case, the particle can only occupy the limited
region in the box from 0 to L, and the solution of the
previous differential equation, including the application
of the boundary conditions in this same interval is (see
[31,36,37]):

ψn (x) =
√

2
L

sin
(nπ
L
x
)

(8)

where n is a positive integer (n = 1, 2, 3, ...), also
known as a quantum number, and it comes from the
application of the boundary conditions of this problem.

5In his original work [35], von Neumann created a linear function to
convert one interval of random numbers into another. We thought
this was necessary because, the generators at the time, perhaps
only would provide values from 0 to 1. Today there are tools
in programming languages that provide random numbers in any
desired range, and we can take advantage of this in some cases.

DOI: http://dx.doi.org/10.1590/1806-9126-RBEF-2019-0073 Revista Brasileira de Ensino de Física, vol. 41, nº 4, e20190073, 2019



e20190073-4 A smooth path to plot hydrogen atom via Monte Carlo method

When we calculate the density of probability, we obtain
the following expression.

|ψn (x)|2 = 2
L

sin2
(nπ
L
x
)

Df : {x ∈ R | 0 ≤ x ≤ Lx}

Rf :
{

|ψn(x)|2 ∈ R | 0 ≤ |ψn(x)|2 ≤ 2/L
} (9)

In a similar way to the example of the circle, we will
use the function |ψn (x)|2 as the filter to draw only the
points within the domain, and ranges of the previous
expression, by following the steps below:

1. Set a positive quantum number n.
2. Set an amount p-points to plot.
3. Set an integer i-counter and reset it to zero.
4. Generate a random x ∈ [0, L].
5. Generate a random w ∈ [0, 2/L].
6. If w ≤ |ψn(x)|2, then x and w are stored in the list

and add +1 to i.
7. Repeat all steps from the 4th until i equals p.
8. Draw a graph with {x,w} from the list.
9. Draw the curve |ψn(x)|2 (optional).

The typical result is available in Figure 2.

5.2. The two-dimensional infinite potential well

In the two-dimensional stationary version of the same
problem, the equation (3) is given by:

− ~
2m

(
∂2ψ (x, y)
∂x2 + ∂2ψ (x, y)

∂y2

)
V (x, y)ψ (x, y)

= Eψ (x, y) (10)

The potential V (x, y) in this case is:

Figure 2: Two thousand points below the probability density
function |ψ(x)|2, for a well of infinite potential of dimension
L = 7, and quantum number n = 3.

V (x, y) =
{

0, if 0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly

+∞, otherwise.
(11)

where Lx and Ly are the dimensions of the well, and the
solution of equation (10) is (see [36,38]):

ψnxny
(x, y) = 2√

LxLy

sin
(
nxπ

Lx
x

)
sin
(
nyπ

Ly
y

)
(12)

In the last expression, the numbers nx and ny are
the positive integers that appear when the boundary
conditions are applied. When calculating the probability
density, we obtain the following relation:

|ψnxny (x, y)|2 = 4
LxLy

sin2
(
nxπ

Lx
x

)
sin2

(
nyπ

Ly
y

)
Df : {(x, y) ∈ R | 0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly}

Rf :
{

|ψnxny
(x, y)|2 ∈ R | 0 ≤ |ψnxny

(x, y)|2 ≤ 4
LxLy

}
(13)

From this point on, the one-dimensional case algorithm
is reproduced again for the function |ψnxny

(x, y)|2, mak-
ing some adaptations. In the 1st item we set the values
of nx and ny, in the 4th and 5th items, we generate the
x, y, and w in the intervals defined in domain Df and
range Rf , and then we make changes in the 6th and 8th
items to plot the points that satisfy w ≤ |ψnxny

(x, y)|2.
The typical result is shown in Figure 3.

5.3. The three-dimensional infinite potential
well

In the three-dimensional stationary version of the poten-
tial well, the equation (3) is given by:

Figure 3: Five thousand points distributed below the probability
density function |ψ(x, y)|2, for a infinite potential well of dimen-
sions Lx = 25, Ly = 30, and quantum numbers nx = 3, and
ny = 2.
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(
− ~

2m∇2 + V (x, y, z)
)
ψ (x, y, z) = Eψ (x, y, z) (14)

where the potential V (x, y, z) is:

V (x, y, z) =


0, if 0 ≤ x ≤ Lx,

0 ≤ y ≤ Ly, 0 ≤ z ≤ Lz

+∞, otherwise.
(15)

and the solution of the equation (14) is (see [34,39]):

ψnxnynz (x, y, z) =
√

8
LxLyLz

sin
(
nxπ

Lx
x

)
sin
(
nyπ

Ly
y

)
sin
(
nzπ

Lz
z

)
(16)

The constant Lz is the additional dimension of the
box, and nz is the third quantum number. When we cal-
culate the density of probability, we obtain the following
expression:

|ψnxnynz
(x, y, z)|2 = 8

LxLyLz

sin2(nxπ

Lx
x) sin2(nyπ

Ly
y) sin2(nzπ

Lz
z)

Df : {(x, y, z) ∈ R | 0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly,

0 ≤ z ≤ Lz}

Rf : {|ψnxnynz (x, y, z)|2 ∈ R | 0

≤ |ψnxnynz (x, y, z)|2 ≤ 8
LxLyLz

}

(17)

Once again, we will change the algorithm in the one-
dimensional case to include new coordinates, box di-
mensions, and quantum numbers. In this case, the pro-
gram will provide x, y, z, and the term w. Although,
there is no way to graph these four variables simulta-
neously, and we will represent the points that satisfy
w ≤ |ψnxnynz (x, y, z)|2. We show a typical result in Fig-
ure 4:

5.4. The hydrogen atom

In previous problems involving particle in boxes, the
potential V (~r) is responsible for the confinement of the
particle, being infinite outside of limits and null in its
interior. However, for the hydrogen atom alone6, i.e., a
system with a single proton and its electron, the Coulomb
force between them combined with the kinetic energy is
responsible for the entire motion of the electron around

6The same applies to hydrogen-like ions such as He+, Li2+, Be3+,
B4+, and so on. The only difference is that the atomic number Z
must be changed in each case.

Figure 4: Fifty thousand points distributed in three-dimensional
space, whose values of w are below the probability density func-
tion |ψ(x, y, z)|2, for a infinite potential well, with dimensions
Lx = 90, Ly = 30, Lz = 60, and quantum numbers nx = 2,
ny = 1, nz = 4.

the nucleus7. We show this relation mathematically in
the following equation (see [32]):

−
(

~
2m∇2 + e2

4πε0r

)
ψ (r, θ, φ) = Eψ (r, θ, φ) (18)

The terms e and m are charge and mass of the electron,
ε0 is the constant of electrical permittivity in the vacuum.
In this problem, we use spherical coordinates, i.e., r is
the radius, φ e θ are the azimuthal and polar angles
respectively (see Figure 5). The previous equation has
the following analytical solution (see [40]):

ψ (r, θ, φ) = R(r)Y (θ, φ) (19)

where the radial part R(r) is:

Rnl(r) = −

√(
2Z
na0

)3 (n− l − 1)!
2n [(n+ l)!]3

e−ρ/2ρlL2l+1
n+l (ρ) (20)

and,

ρ(r) := 2Zr
na0

. (21)

The term n is the radial quantum number, which
allows values n = {1, 2, 3, ...}. The index l corresponds to
the azimuthal quantum number, which can assume
the values l = {0, .., n− 1}. The constant a0 is known as
the Bohr radius, Z is the atomic number (Z := 1 for the
hydrogen atom), and the term L2l+1

n+l (ρ) is the associated
Laguerre polynomial, expressed as follows:

7If we were strict, we should consider these two bodies could vibrate,
rotate around the center mass of the system, and along to their
axis, or even interact with externals fields. Although, all these
effects are minimal and are usually neglected to ensure that the
problem has an analytical solution [32].
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Figure 5: Spherical coordinates, where the radial distance is r,
the polar angle is θ, and the azimuth angle is φ.

L2l+1
n+l (ρ) =

n−l−1∑
k=0

(−1)k+1

[(n+ l)!]2

(n− l − 1 − k)! (2l + 1 + k)!k!ρ
k (22)

In the angular part, we use the following relation:

Y m
l (θ, φ) =

√
(2l + 1) (l − |m|)!

4π (l + |m|)! P
|m|
l (cos (θ)) eimφ (23)

where the constant m is an integer, it represents the
magnetic quantum number and can assume the val-
ues m = {−l, ...,+l}. The term P

|m|
l (cos(θ)) comes from

the next two relations (24) and (25), respectively known
as polynomials of Legendre associated and Legendre poly-
nomials.

P
|m|
l (x) = (−1)|m| (1 − x2)|m|/2 d|m|

dx|m|Pl(x) (24)

Pl(x) = 1
2ll!

dl

dxl

(
x2 − 1

)l (25)

At this point, we have all the terms of the equation
(19) available, and we can proceed by calculating the
probability density numerically. Moreover, as an alter-
native, at least for the first quantum numbers, it is also
possible to perform the calculations by the wave func-
tions present in Table 1. Therefore, whichever path we
choose, we must obtain the following probability density:

Table 1: First normalized wave functions of the hydrogen atom.
This is an adaptation of the table 6.1 from [31].

n l m ψn,l,m (r, θ, φ)
1 0 0 1

√
πa

3/2
0

e−r/a0

2 0 0 1
4

√
2πa

3/2
0

(
2 − r

a0

)
e−r/2a0

2 1 0 1
4

√
2πa

3/2
0

r
a0
e−r/2a0cos θ

2 1 ±1 1
8

√
3πa

3/2
0

r
a0
e−r/2a0sin θ e±iφ

3 0 0 1
81

√
3πa

3/2
0

(
27 − 18 r

a0
+ 2 r2

a2
o

)
e−r/2ao

3 1 0 1
81

√
3πa

3/2
0

(
6 − r

a0

)
r

a0
e−r/3a0 cos θ

3 1 ±1 1
81

√
3πa

3/2
0

(
6 − r

a0

)
r

a0
e−r/3a0 sin θ e±iφ

3 2 0 1
81

√
6πa

3/2
0

r2

a2
0
e−r/3a0

(
3 cos2 θ − 1

)
3 2 ±1 1

81
√

πa
3/2
0

r2

a2
0
e−r/3a0 sin θ cos θ e±iφ

3 2 ±2 1
162

√
πa

3/2
0

r2

a2
0
e−r/3a0 sin2 θ e±2iφ

|ψnlm (r, θ, φ)|2 = |Rnl(r)|2|Y l
m(θ, φ)|2 (26)

Note that in the equation (23) there is an exponen-
tial term that carries the imaginary number i, making
ψnlm (r, θ, φ) non-measurable, but |Y l

m(θ, φ)|2 does not
contain the imaginary number 8 and independent of φ.
So, |ψnlm (r, θ, φ)|2 is also real and is a function only of
the coordinates r and θ.

Now we got |ψnlm (r, θ, φ)|2 already explained, and we
can determine its domain and the range to apply the
MCM, as we have done before. So, the first thing we need
to do is to be able to switch from cartesian to a spherical
coordinate system. To achieve this, we can extract this
information from Figure 5 to get the relation (27) below.

r =
√
x2 + y2 + z2

θ = arc cos

(
z√

x2 + y2 + z2

)
(27)

For the domain of equation (26), we know that θ ∈
[0, π], and r ∈ [0,+∞). Since the radius r has no upper
limit, it is impossible to search the electron in the entire
space. Alternatively, we will check all volume by an arbi-
trary box which contains the location most likely to find
the single electron.

Therefore, we place a box of dimensions ∆x, ∆y,
∆z, centralized at the origin of the coordinate sys-
tem. Then we use the relation (27) to evaluate rL =
(1/2)

√
∆x2 + ∆y2 + ∆z2. This rL is the magnitude of a

vector that goes from the origin to any corner and will
be used as the upper limit of the domain.

In respect of range, |ψnlm (r, θ, φ)|2 is lower bounded
by 0, and it reaches different top values depending on
the quantum numbers. Unfortunately, finding a generic
function that calculates the global maximum for each set
8The product between a number and its conjugate always gives a
non-negative real number: z · z∗ = |z|2
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involving all of them is no easy task. A first alternative
would be to find a solution analytically for each case, but
this process becomes increasingly tedious as quantum
numbers grow. Another option would be to use some
searching process to seek global maximum numerically
[41], after all, we have the computer available. Instead,
let us proceed more smoothly.

The simplest way is to split the space 9 into a 2D
regular grid, over the r and θ “axis”, and for each node
(grid point) we calculate |ψnlm (r, θ, φ)|2. Then we update
a variable that stores the highest value M found, and
then increase it to ensure it is above the global maximum
of this function. The Figures 6, 7, and 8 exemplify this
method.

Figure 6: The probability density as a function of r and θ for
the hydrogen atom, with quantum numbers n = 1, l = 0,m = 0.
The points are projections of nodes in the function |ψ(r, θ, φ)|2.

Figure 7: The probability density as a function of r and θ for
the hydrogen atom, with quantum numbers n = 3, l = 2,m = 0.
The points are projections of nodes in the function |ψ(r, θ, φ)|2.

9For example, r and θ starts at 0 and reaches rL and π respectively,
so if the length rL is divided by 5 and angle π by 4, then we have
30 nodes (30 = (5 + 1) × (4 + 1)) to check.

Figure 8: The probability density as a function of r and θ for
the hydrogen atom, with quantum numbers n = 3, l = 2,m = 1.
The points are projections of nodes in the function |ψ(r, θ, φ)|2.

This procedure may not be elegant, but it is practical.
If the reader is uncomfortable about this, do the same
with the problem in 1D, then he will realize that the
method will discard points above the function |ψn (x)|2
in any way.

The final comment should be made about the Legendre
associated polynomials presented in the equation (24).
Some environments operate with algebraic or symbolic
computations to interpret equations like that, but to re-
produce this method in several programming languages,
we must soften this step. In this case, it is better to
use suitable libraries for this purpose, because the im-
plementation of simpler algorithms may cause problems
of numerical instability [42]. A good choice for the C++
programming language is the BOOST library [43] and
the SHTOOLS [44] for FORTRAN and Python.

Finally, with all this information gathered, we have
the conditions to represent the orbitals of the hydrogen
atom. For that, we will adapt the algorithm seen in the
examples of the confined particle in boxes, presented in
the following.

1. Set the quantum numbers n ∈ [1,+∞),
l ∈ [0, n− 1], m ∈ [−l, l].

2. Set the box dimensions ∆x, ∆y e ∆z.
3. Estimate an upper limit forM above of |ψnlm (r, θ, φ)|2.
4. Set an amount p-points to plot.
5. Start an integer i-counter and reset it to zero.
6. Generate a random x ∈ [−∆x/2,∆x/2],
y ∈ [−∆y/2,∆y/2] e z ∈ [−∆z/2,∆z/2].

7. Evaluate r and θ as the functions of x, y e z.
8. Generate a random w ∈ [0,M ].
9. If w ≤ |ψnlm(r, θ, φ)|2, them x, y and z are stored

in the list, and add +1 to i.
10. Repeat all steps from the 6th until i equals p.
11. Make a graph with the coordinates from the list.

To estimate the upper limit M , we calculate rL to set
up the grid, then we scan it to get an approximate global
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maximum of |ψnlm (r, θ, φ)|2, and finally, we add 5% over
this value found. To make this grid, we suggest that use
nearly 50 nodes per Angström along of the r radius, and
160 nodes over the θ angle.

For plotting the orbitals in 2D, turn the box into a
rectangle by choosing the null value for some side. For
example, if the interest is in the x−y plane, then ∆z = 0,
and so on. We show some orbitals in Figures 9, 10 and
11.

Figure 9: The simulated hydrogen atom with fifteen thousand
points.

Figure 10: The simulated hydrogen atom with fifteen thousand
points.

Figure 11: The simulated hydrogen atom with fifteen thousand
points.

6. Conclusion

This paper shows in a heuristic way that it is easy to
represent the orbitals of the hydrogen atom using basic
quantum mechanics and coding skills.

We also made all source code available at a third-party
platform [45], for any uses under the MIT license.
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