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Minas Gerais — for the scholarship.

iii



Abstract

Parsing is pervasive in computing and fundamental in several software artifacts. This
dissertation reports the first step in our ultimate goal: a formally verified toolset for
parsing regular and context free languages based on derivatives. Specifically, we describe
the formalization of Brzozowski and Antimirov derivative based algorithms for regular
expression parsing, in the dependently typed language Agda. The formalization produces
a proof that either an input string matches a given regular expression or that no matching
exists. A tool for regular expression based search in the style of the well known GNU
Grep has been developed using the certified algorithms. Practical experiments conducted
using this tool are reported.
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1 Introduction

Parsing is the process of analysing if a string of symbols conforms to a given set of rules.
It involves in computer science the formal specification of the rules in a grammar and,
also, either the construction of a parsing tree that makes evident which rules have been
used to conclude that the string of symbols can be obtained from the grammar rules or,
otherwise, an indication of an error that represents the fact that the string of symbols
cannot be generated from the grammar rules.

In this work we are interested in the parsing problem for regular languages (RLs) [20],
i.e. languages that can be recognized by (non-)deterministic finite automata and equiv-
alent formalisms. Regular expressions (REs) are an algebraic and compact way of spec-
ifying RLs that are extensively used in lexical analyser generators [22] and string search
utilities [16]. Since such tools are widely used and parsing is pervasive in computing,
there is a growing interest on certified parsing algorithms [12, 10]. This interest is
motivated by the recent development of dependently typed languages. Such languages
are powerful enough to express algorithmic properties as types, that are automatically
checked by a compiler.

The use of derivatives for regular expressions were introduced by Brzozowski [9] as an
alternative method to compute a finite state machine that is equivalent to a given RE
and to perform RE-based parsing. According to Owens et al [30], “derivatives have been
lost in the sands of time” until their work on functional encoding of RE derivatives have
renewed interest on their use for parsing [27, 14]. In this work, we provide a complete
formalization of an algorithm for RE parsing using derivatives [30], and describe a RE
based search tool we developed by using the dependently typed language Agda [29].

1.1 Objectives

The main objective of this dissertation is to formalize, in the dependently typed language
Agda, algorithms for RE parsing using Brzozowski’s derivatives and Antimirov’s partial
derivatives. [9] [3] The certified algorithms should be used in a RE-based text search
tool in the style of the well-known GNU Grep.

1.2 Contributions

Our contributions are:

• A formalization of Brzozowski derivatives based RE parsing in Agda. The certified
algorithm presented produces as a result either a proof term (parse tree) that is
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1 Introduction

evidence that the input string is in the language of the input RE or a witness that
such parse tree does not exist.

• A detailed explanation of the technique used to simplify derivatives using “smart-
constructors” [30]. We give formal proofs that smart constructors indeed preserve
the language recognized by REs.

• A formalization of Antimirov’s partial derivatives and their use to construct a
RE parsing algorithm. The main difference between partial derivatives and Br-
zozowski’s is that the former computes a set of REs using set operators instead
of “smart-constructors”. Producing a set of REs avoids the need of simplification
using smart constructors. [3]

• A command-line search tool in the style of GNU-grep [16] that matches regu-
lar expressions using the certified algorithms based on Brzozowski and Antimirov
derivatives written in Agda.

1.3 Published material

This dissertation builds upon two papers, one published in a peer-reviewed conference
and another submitted to a journal.

• The Brzozowski’s derivative-based parsing algorithm and its formalization in Idris
is described in [23].

• The Antimirov’s partial derivative-based algorithm and its formalization in Agda is
described in a paper submitted to the Science of Computer Programming journal.
This paper is under review.

1.4 Formalization source code

All the source code in this dissertation has been formalized in Agda version 2.5.2 using
Standard Library 0.13 but, for space reasons, we do not present every detail. Proofs of
some properties result in functions with a long pattern matching structure, that would
distract the reader from understanding the high-level structure of the formalization. In
such situations we give just proof sketches and point out where all details can be found
in the source code.

The complete formalization and instructions on how to build it can be found at the
following repository:

https://www.github.com/raulfpl/regex
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1 Introduction

1.5 Dissertation structure

The rest of this dissertation is organized as follows. Chapter 2 provides some necessary
background on formal language theory, needed for understanding regular expression
parsing; type theory, needed for later chapters on Agda programming language and also
presents some related works on verified parsing. Chapter 3 presents a brief introduction
to Agda. We describe derivatives for RE and a parsing algorithm in Chapter 4. The main
results of this dissertation are reported in Chapter 5, which describes the formalization
of the derivative-based RE parsing algorithms. Chapter 6 presents some implementation
details of the developed RE parsing tool and experiments performed. Finally, Chapter 7
outlines some possible future works and presents some conclusions obtained from the
development of this dissertation.
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2 Background

This chapter is concerned with background concepts. We start by reviewing some basic
concepts from formal language theory, as found in classic textbooks [20]. Next, we give
a concise introduction to type theory, focusing on their relation with intuitionistic logic,
known as the Curry-Howard isomorphism [33]. We end this chapter describing some
related work on verified parsing algorithms.

A reader familiar with these topics can safely skip this chapter.

2.1 Formal Language Theory

An alphabet is a non-empty finite set of symbols used to build words in a language.
Following commom practice, we use the meta-variable Σ to denote an arbitrary alphabet.
A string over Σ is a finite sequence of symbols from Σ. We let λ denote the empty string
and if x is a string over some alphabet, notation | x | denote the length of x. We let xn

denote the string formed by n repetitions of x. When n = 0, x0 = λ. A language over
an alphabet Σ is a set of strings over Σ.

Below we present examples of such concepts.

Example 1. Consider the alphabet Σ = {0, 1}. The following are examples of strings
over Σ: λ, 0, 1, 00, 111, 0101. Note that λ is a valid string for any alphabet and, | λ |= 0,
| 0 |= 1, | 0101 |= 4 and 03 = 000.

Example of languages over Σ = {0, 1} are {0, 11, λ} and {0n1n | n > 0}.

Since languages are sets of strings, we can generate new languages by applying stan-
dard set operations, like intersection, union, complement, and so on [20]. In addition to
standard set operations, we can build new languages using some operations over strings.
Given two languages L1 and L2, we define the concatenation, L1L2, as:

L1L2 = {xy | x ∈ L1 ∧ y ∈ L2}

Using concatenation, we can define the iterated concatenation as:

L0 = {λ}
Ln+1 = LnL

Finally, the Kleene closure operator of a language L, L?, can be defined as:

L? =
⋃
n∈N

Ln
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2 Background

Given an alphabet Σ, Σ? denote the set of all possible strings formed using symbols
from Σ.

A theoretical device (often realized in practical implementations) for formal language
processing is the so-called finite state machines. Deterministic finite sate automatas
(DFAs) are the type of language recognizers that are capable of accepting Regular Lan-
guages.

Definition 1. A deterministic finite automata (DFA) M is a 5-tuple M = (S,Σ, δ, i, F ),
where:

• S: non empty set of states.

• Σ: input alphabet.

• δ : S × Σ→ S: transition function.

• i ∈ S: initial state.

• F ⊆ S: set of final states.

In order to define the set of strings accepted by a DFA, we need to extend its transition
function to operate on strings and not only on symbols of its input alphabet as follows:

δ̂(e, λ) = e

δ̂(e, ay) = δ̂(δ(e, a), y)

with e ∈ S, a ∈ Σ and y ∈ Σ?. Using this extended transition function we can define
the language accepted by a DFA M as:

L(M) = {w ∈ Σ? | δ̂(i, w) ∈ F}

Example 2. Consider the following language

L = {w ∈ {0, 1}? | w starts with a 0 and ends with a 1}

A DFA that accepts L is presented below:

A B C

D

0

1

0

1

1

0

0 1

From the previous state diagram, the state set S and the final states F are obvious.
The following table shows the transition function for this DFA.
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2 Background

δ 0 1
A B D
B B C
C B C
D D D

2.1.1 Regular expressions

Regular expressions are an algebraic and widely used formalism for specifying languages
in computer science. In this section we will look at the formal syntax and semantics for
regular expressions.

Definition 2 (Regular expression syntax). Let Σ be an alphabet. The set of Regular
Expressions (REs) over Σ is described by the following grammar:

e → ∅
| λ
| a
| e e
| e+ e
| e?

where a ∈ Σ.

We let the meta-variable e denote an arbitrary RE.
A RE describes a set of strings. This is captured by the following definition:

Definition 3 (Regular expression semantics). Let Σ be an alphabet. We define the
semantics of a RE over Σ using the following function, J K : RE → P(Σ?) (P(x) denotes
the powerset of a set x):

J∅K = ∅
JλK = {λ}
JaK = {a}
Je e′K = JeK Je′K
Je+ e′K = JeK ∪ Je′K
Je?K = (JeK)?

After a precise characterization of RE, we can now use it to define the class of regular
languages.

Definition 4 (Regular language). A language L ⊆ Σ? is a regular language (RL) is
defined as the fact that there is some RE e such that L = JeK.

In order to clarify the previous definitions, we present some examples of REs and
describe their meaning.

Example 3. Consider Σ = {0, 1}.

6



2 Background

• The RE e = 0?10? denotes the following language

L = {w ∈ {0, 1}? | w has just one occurrence of 1}

• The RE e = (1 + λ)0 denotes the language L = {10, 0}.

• The RE e = ∅? denotes the language L = {λ}.

• The RE e = 0(0 + 1)?1 denotes the language

L = {w ∈ {0, 1}? | w starts with a 0 and ends with a 1}

Another way of defining the semantics of REs is as an inductively defined relation
between strings and REs. In our Agda formalization we use the inductive semantics
instead of the functional one. The inductive semantics for REs is presented in the next
definition.

Definition 5 (Inductive semantics for REs). Let Σ be an alphabet, s ∈ Σ? and e a RE
over Σ. We define that s is in e’s language to mean that s ∈ e can be proved using the
following rules.

λ ∈ λ
Eps a ∈ Σ

a ∈ a Chr
s ∈ e s′ ∈ e′
ss′ ∈ ee′ Cat

s ∈ e
s ∈ e+ e′

Left
s ∈ e′

s ∈ e+ e′
Right

λ ∈ e? StarBase

s ∈ e s′ ∈ e?
ss′ ∈ e? StarRec

Rule Eps, together with other rules, specifies that only the empty string is accepted
by RE λ, while rule Chr says that a single symbol string is accepted by the RE formed
by it. The rules for concatenation and choice are straightforward. For Kleene star, we
need two rules: the first specifies that the empty string is in the language of RE e? and
rule StarRec says that the string ss′ is in the language denoted by e? if s ∈ e and s′ ∈ e?.

Next, we present a simple example of the inductive RE semantics.

Example 4. The string aab is in the language of RE (aa+b)?, as the following derivation
shows:

a ∈ Σ
a ∈ a Chr

a ∈ Σ
a ∈ a Chr

aa ∈ aa Cat

aa ∈ aa+ b
Left

b ∈ Σ
b ∈ b Chr

b ∈ aa+ b
Right

λ ∈ (aa+ b)?
StarBase

b ∈ (aa+ b)?
StarRec

aab ∈ (aa+ b)?
StarRec

As one would expect, the inductive and functional semantics of REs are equivalent,
as shown in the next theorem.
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2 Background

Theorem 1. For all RE e and strings s ∈ Σ?, s ∈ JeK if, and only if, s ∈ e.

Proof. Let e and s be an arbitrary RE and string, respectively.

(→) : Suppose that s ∈ JeK. We proceed by induction on the structure of e.

– Case e = ∅. We have:

s ∈ J∅K↔
s ∈ ∅ ↔
⊥

which makes the conclusion hold by contradiction.

– Case e = λ. We have

s ∈ JλK↔
s ∈ λ

Since e = λ and s ∈ JλK, we have that s = λ and the conclusion holds by rule
Eps.

– Case e = a, a ∈ Σ. We have:

s ∈ JaK↔
s ∈ a

Since e = a and s ∈ a, we have that s = a and the conclusion follows by rule
Chr.

– Case e = e1 e2. By the definition of the functional semantics, if s ∈ Je1 e2K,
then exists s1, s2 ∈ Σ?, such that s1 ∈ Je1K, s2 ∈ Je2K and s = s1 s2. By the
induction hypothesis, we have that s1 ∈ e1 and s2 ∈ e2 and the conclusion
follows by using rule Cat.

– Case e = e1+e2. By the definition of the functional semantics, if s ∈ Je1+e2K,
then s ∈ Je1K or s ∈ Je2K. Consider the cases:

∗ Case s ∈ Je1K: The conclusion follows by the induction hypothesis and
rule Left.

∗ Case s ∈ Je2K: The conclusion follows by the induction hypothesis and
rule Right.

– Case e = (e1)
?. Here we proceed by strong induction on the structure of s.

Consider the following cases:

∗ s = λ: In this case the conclusion follows by rule StarBase.

8



2 Background

∗ s 6= λ: Since s ∈ (J(e1)K)?, by the definition of the Kleene closure, we
have that there exists s1, s2 ∈ Σ? such that s1 ∈ Je1K, s2 ∈ (Je1K)? and
s = s1 s2. The conclusion follows by the induction hypothesis and the
rule StarRec.

(←) : Suppose that s ∈ e. We proceed by induction on the derivation of s ∈ e by doing
case analysis on the last rule employed to deduce s ∈ e.

– Case Eps: We have that s = λ and e = λ. The conclusion follows by the
definition of the functional semantics.

– Case Chr: We have that s = a = e. The conclusion follows by the definition
of the functional semantics.

– Case Cat: Since the last rule used to deduce s ∈ e was Cat, we have that
must exists s1, s2 ∈ Σ?, e1, e2 such that e = e1 e2, s = s1 s2, s1 ∈ e1 and
s2 ∈ e2. By the induction hypothesis, we have that s1 ∈ Je1K and s2 ∈ Je2K.
The conclusion follows by the definition of the functional semantics.

– Case Left: Since the last rule used to deduce s ∈ e was Left, we have that
must exists e1, e2 such that e = e1 + e2 and s ∈ e1. The conclusion follows by
the definition of functional semantics and the indution hypothesis.

– Case Right: Since the last rule used to deduce s ∈ e was Right, we have that
must exists e1, e2 such that e = e1 + e2 and s ∈ e2. The conclusion follows by
the definition of functional semantics and the indution hypothesis.

– Case StarBase: Since the last rule used to deduce s ∈ e was StarBase, we
have that s = λ and that exists e1 such that e = e?1. The conclusion follows
by the definition of functional semantics and the Kleene closure operator.

– Case StarRec: Since the last rule used to deduce s ∈ e was StarRec, we
have that must exists s1, s2 ∈ Σ∗, e1 such that e = e?1, s = s1 s2, s1 ∈ e1
and s2 ∈ (e1)

?. By the induction hypothesis, we have that s1 ∈ Je1K and
s2 ∈ J(e1)?K and the conclusion follows from the definition of the functional
semantics.

2.2 An introduction to type theory

In this section we set the ground for understanding the adequacy of our formalization (or
any formalization using a dependently typed language). By adequacy we understand the
correspondence between type theoretical objects and other mathematical entities that
they represent. Such relation is informally known as the Curry-Howard isomorphism or
propositions-as-types correspondence [33].

9



2 Background

2.2.1 A whirlwind tour of λ-calculus and types

What is known as the λ-calculus is a collection of formal systems based on the nota-
tion invented by Alonzo Church [6]. Church solved the famous Entscheidungsproblem
(German for decision problem) proposed by Hilbert, in 1928. The challenge consisted in
providing an algorithm capable of determining whether or not a given mathematical fact
is valid in a given language. Church proved that there is no solution for such problem,
that is, it is an undecidable problem.

Church’s main objective was to build a formal system for the foundations of mathe-
matics, just like Martin-Löf’s type theory, which was to be presented much later, around
1970. Church’s original λ-calculus was found to be inconsistent, but later on it was found
that there were ways of making it consistent again, with the help of types.

The notion of type is fundamental for this dissertation. This notion arises when we
want to combine different terms in a given language. For instance, it makes no sense to
try to compute

∫
Ndx. Although syntactically correct, the subterms have different types

and, therefore, are not compatible. A type can be seen as a categorization of terms.
For a proper introduction to λ-calculus, the reader is directed to [6, 19]. The goal

of this chapter is to provide a minimal knowledge of the λ-calculus, which will allow
a better understanding of Martin-Löf’s type theory and how logic is encoded in such
formalism.

λ−calculus

Definition 6 (λ-calculus syntax). Let V be an infinite set of variables and C an infinite
set of constants. The set of terms of the λ-calculus, Λ, is defined by the following
grammar, where v ∈ V , c ∈ C and T denotes an arbitrary term.

T → c
| v
| λv.T
| T T

Let us adopt some conventions that will be useful throughout this document. Terms
will usually be denoted by uppercase letters M,N,O, P, . . . and variables by lower cases
x, y, z, . . .. Following common practice, application is left associative, that is, the term
MNO represents ((MN)O) whereas abstractions are right associative, so, λx.λy.K rep-
resents (λx.(λy.K)).

Suppose we have a term λy.λz.x(yz). We say that variables y and z are bounded
variables and x is a free variable (as there is no visible abstraction binding it). From
now on, we’ll use Barendregt’s convention for variables and assume that terms do not
have any name clashing. In fact, whenever we have two terms M and N that only
differ in the naming of their variables, for instance λx.x and λy.y, we say that they are
α-convertible. Using the concepts of free and bound variables we can define the notion
of substitution.

10



2 Background

Definition 7 (Substitution). Let M and N be λ-terms where x may have free occur-
rences in M . The substitution of x by N in M , denoted by [x 7→ N ]M is, informally,
the result of replacing every free occurrence of x in M by N . Substitution is defined by
induction on M as:

[x 7→ N ]x = N
[x 7→ N ]y = y, x 6= y
[x 7→ N ](M1 M2) = ([x 7→ N ]M1) ([x 7→ N ]M2)
[x 7→ N ](λy.M) = λy.[x 7→ N ]M ,x 6= y
[x 7→ N ](λx.M) = λx.M

Example 5. As an example of substitution, consider the term λx.λy.x(yz) and the
substitution [z 7→ 1]. We calculate:

[z 7→ 1] λx.λy.x(y z) = λx.λy.[z 7→ 1] x(y z)

= λx.λy.([z 7→ 1] x) [z 7→ 1](y z)

= λx.λy.([z 7→ 1] x) (([z 7→ 1] y) ([z 7→ 1] z))

= λx.λy.x (y 1)

β-reduction and confluence

Equipped with both a notion of term and a formal definition of substitution, we can
now model the notion of computation. The intuitive meaning is very simple. Imagine a
normal function f(x) = x+ 1 and suppose we want to compute f(3). All we have to do
is to substitute x for 3 in the body of f(x), resulting in 3 + 1. This intuition is exactly
the notion of computation in the λ-calculus. A term with the form (λx.M)N is called
a β-redex and can be reduced to [x 7→ N ]M . If a given term has no β-redexes we say
that it is a β-normal form.

Definition 8 (β-reduction). Let Λ denote the set of all λ-terms. Suppose thatM,M ′, N ∈
Λ and x is a variable. We let →β be the following binary relation over Λ defined by
induction on M .

(λx.M)N →β [x 7→ N ]M

M →β M
′

λx.M →β λx.M
′

M →β M
′

M N →β M
′ N

M →β M
′

N M →β N M ′

We let →?
β denote the reflexive-transitive closure of →β. We say that M reduces to N

when M →?
β N .

The relation of β-reduction induces an equivalence relation between terms, named
β-equality.

11



2 Background

Definition 9 (β-equality). Let M and N be λ-terms. We say that M and N are β
equal, denoted by M =β N if M →?

β N or N →?
β M .

Several important results about β-reduction can be found elsewhere [6, 19]. To our
objectives the only important property is the unicity of normal forms, i.e., if a term M
has a β-normal form, it is unique.

Simply typed λ-calculus

In this section we present the simply typed λ-calculus which is, essentially, the λ-calculus
in which all terms have a type.

Definition 10 (Types). Let TC be the set of type constants. The syntax of types is
defined by the following grammar:

T → c
| T → T

where c ∈ TC .

In any programming task, one is always surrounded by variable declarations. Some
languages (the strongly-typed ones) expect some information about the type of such
variables. Formally, the information of variables and its types are hold by a typing
context, which consist of a sequence of pairs formed by a variable and its corresponding
type. From now on, we allow ourselves a bit of informality by using set operators on
sequences. We let the meta-variable Γ denote arbitrary typing contexts and the symbol
• to represent empty typing contexts. As usual, we use the following notations:

Γ(x) = T if and only if x : T ∈ Γ
Γ, x : T = (Γ− {Γ(x)}) ∪ {x : T}

Next, we define the type system of simply typed λ-calculus and the concept of derivabil-
ity, which will allow us to formally describe the relation between logic and functional
programming languages.

Definition 11 (Type system for simply typed λ-calculus and derivability). Let ϕ : C →
TC be a function that assigns to an constant its type. The typing relation for the simply
typed λ-calculus, Γ `M : T , is defined by induction on M as follows:

Γ ` c : ϕ(c)
Const

Γ(x) = T

Γ ` x : T
V ar

Γ, x : T ′ `M : T

Γ ` λx : T ′.M : T ′ → T
Abs

Γ `M : T ′ → T Γ ` N : T ′

Γ `M N : T
App

Let Γ be a typing context, M a term and T a type. We say that the sequent Γ `M : T
is derivable if exists a derivation with Γ `M : T in its conclusion.

12
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The intuitive meaning of the previous rules is as follows: Rule (V ar) says that a
variable x has type T only if x : T ∈ Γ. The rule for application says that M N is well
typed only if it its argument (N : T ′) has a type that matches M : T ′ → T argument
type. Finally, we can type an abstraction λx : T ′.M with type T ′ → T if we type M : T
using the additional assumption x : T ′. Next, we present an example that shows how
these rules could be used to type a term.

Example 6. Consider the λ-calculus enriched with integer constants and type I. The
term

λf : I→ I.λx : I.fx

has type I, as deduced by the following derivation, using the empty typing context.

Γ(f) = I→ I

{f : I→ I, x : I} ` f : I→ I
V ar

Γ(x) = I

{f : I→ I, x : I} ` x : I
V ar

{f : I→ I, x : I} ` fx : I
App

{f : I→ I} ` λx : I.fx : I
Abs

• ` λf : I→ I.λx : I.fx : I
Abs

In this case, we can say that • ` λf : I→ I.λx : I.fx : I is derivable.

The Curry-Howard Isomorphism

On one hand we have the models of computation, on the other hand we have the proof
systems. At a first glance, they look like very different formalisms, but, after a closer
look, they turned out to be structurally the same. Let M be a term and Γ a context such
that Γ ` M : T is derivable, for some T . We can look at T as a propositional formula
and to M as a proof of such formula1, in natural deduction [19]. In order to show such
similarity between these formalisms (type theory and logic), let’s put the rules for each
one side-by-side.

Natural deduction Type derivation

T ∈ Γ
Γ ` T Id

Γ(x) = T

Γ ` x : T
V ar

Γ, T ′ ` T
Γ ` T ′ ⊃ T

⊃I

Γ, x : T ′ `M : T

Γ ` λx.M : T ′ → T
Abs

Γ ` T ′ ⊃ T Γ ` T ′
Γ ` T

⊃E
Γ `M : T ′ → T Γ ` N : T ′

Γ `M N : T
App

This seemingly shallow equivalence is a remarkable result in Computer Science, discov-
ered by Curry and Howard [19]. This was the starting point for the first proof checkers,

1Note that, implication, here denoted by ⊃, together with variables and falsity, ⊥, forms a complete
set of connectives, enough to express any formula in propositional logic.
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since checking a proof is the same as typing a λ-term. If the term is typeable, then the
proof is valid. This far we have only presented the simpler version of this connection.
Another layer will be built on top of it and add all ingredients for working over first-order
logic, in the next section. Behind the curtains, all Agda does is type-checking terms.
The understanding of this connection is of major importance for writing proofs and pro-
grams in Agda (or any other proof-assistant based on the Curry-Howard isomorphism,
for that mater).

Martin Löf type theory

Type theory was originally developed with the goal of offering a clarification, or basis, for
constructive Mathematics. However, unlike most other formalizations of Mathematics,
it is not based on first order logic. Therefore, we need to introduce the symbols and rules
we’ll use before presenting the theory itself. The core of this interpretation of proofs as
programs is the Curry-Howard isomorphism, already explained in Section 2.2.1.

Martin-Löf’s theory of types [25] is an extension of regular type theory. This ex-
tended interpretation includes universal and existential quantification. A proposition is
interpreted as a set whose elements are proofs of such proposition. Therefore, any true
proposition is a non-empty set and any false proposition is an empty set, meaning that
there is no proof for such proposition. Apart from sets as propositions, we can look at
sets from a specification angle, and this is the most interesting view for programming.
A given element of a set A can be viewed as: a proof for proposition A; a program
satisfying the specification A; or even a solution to problem A.

Constructive Mathematics

The line between Computer Science and Constructive Mathematics is blurry. The prim-
itive object is the notion of a function from a set A to a set B. Such function can be
viewed as a program that, when applied to an element a ∈ A will construct an ele-
ment b ∈ B. This means that every function we use in Constructive Mathematics is
computable.

Using constructivism to prove things is related to building a computer program. For
example, to prove a proposition ∀x1, x2 ∈ A.∃y ∈ B.Q(x1, x2, y) for a given predicate Q
is equivalent to giving a function that when applied to two elements a1, a2 ∈ A will give
an element b ∈ B such that Q(a1, a2, b) holds.

Propositions as sets

In Classical Mathematics, a proposition is thought of as being either true or false, and
it’s proof it’s a separate matter. On a different angle, a proposition is constructively true
if we have a method for proving it. A classical example is the law of excluded middle,
A∨¬A, which is trivially true since A can only be true or false. Constructively, though,
a method for proving a disjunction must prove that one of the disjuncts holds. Since we
cannot prove an arbitrary proposition A, we have no proof for A ∨ ¬A.
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Therefore, we have that the constructive explanation of propositions is built in terms
of proofs, and not an independent mathematical object. The interpretation we are going
to present here is due to Heyting at [18].

Falsity: ⊥, is identified as the empty set, ∅. That is, a set with no elements or a
propositional without proof.

Conjunction: A ∧B is identified with the cartesian product A×B. A proof of A ∧B
is a pair formed by a proof of A and a proof of B.

Disjuntion: A∨B is identified with the disjoint union A]B. A proof A∨B is either
a proof of A or a proof of B.

Implication: A ⊃ B is the set of functions from A to B, denoted as BA. That is, a
proof of A ⊃ B is a method that build a proof of B from a proof of A.

Negation: ¬A is seen as functions that from a proof of A, produces an absurd, i.e.
¬A ≡ A ⊃ ⊥, as in propositional logic.

We have defined propositional logic using sets (types) that are available in almost every
functional programming language. Quantifications, though, require operations defined
over a family of sets, possibly depending on a given value. The intuitionist explanation
of the existential quantifier is as follows:

Existential quantifier: ∃a ∈ A.P (a) is a pair whose first component is one element
x ∈ A and whose second component is a proof of P (x). More generally, we can identify
it with the disjoint union of a family of sets, denoted by Σ(x ∈ A,B(x)), or just Σ(A,B).
The elements of Σ(A,B) are of the form (a, b) where a ∈ A and b ∈ P (a).

Universal quantifier: ∀a ∈ A.P (a), is a function that gives a proof of P (a) for each
a ∈ A given as input. The correspondent set is the cartesian product of a family of sets
Π(x ∈ A,B(x)). The elements of such set are the aforementioned functions. The same
notation simplification takes place here, and we denote it by Π(A,B). The elements of
such set are of the form λx.b(x) where b(x) ∈ B(x) for x ∈ A.

2.2.2 Epilogue

At this point we have briefly discussed the Curry-Howard isomorphism in both the
simply-typed and the dependently typed flavor. We have presented (the very surface
of) the theory of types and which kind of logical judgments we can handle with it. But
how does all this connect to Agda and verification in general?

Software Verification with a functional language is somewhat different from doing the
same with an imperative language. If one is using C, for example, one would write
the program and annotate it with logical expressions. They are twofold. We can use
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pre-conditions, post-conditions and invariants to deductively verify a program (these are
in fact a variation of Hoare’s logic). Or, we can use Software Model Checking, proving
that for some bound of traces k, our formulas are satisfied.

When considering functional languages, our code is correct by construction. The type-
system provides the annotation language and you can construct a program that either
type-checks, therefore respects its specification, or does not pass through the compiler.
Remember that Agda’s type system is the intensional variant of Martin-Löf’s theory of
types, which was described succinctly in this chapter.

Readers interested in a more recent, revised and detailed presentation of Martin-Löf’s
type theory should consult [36].

2.3 Related works

Parsing with derivatives Recently, derivative-based parsing has received a lot of atten-
tion. Owens et al [30]. were the first to present a functional encoding of RE derivatives
and use it to parsing and DFA building. They use derivatives to build scanner generators
for ML and Scheme; no formal proof of correctness was presented.

Might et al. [27] report on the use of derivatives for parsing not only RLs but also
context-free ones. He uses derivatives to handle context-free grammars (CFG) and
develops an equational theory for compaction that allows for efficient CFG parsing using
derivatives. Implementation of derivatives for CFGs is described by using the Racket
programming language [11]. However, Might et al. do not present formal proofs related
to the use of derivatives for CFGs.

Fischer et al. describe an algorithm for RE-based parsing based on weighted automata
in Haskell [14]. The paper describes the design evolution of such algorithm as a dia-
log between three persons. Their implementation has a competitive performance when
compared with Google’s RE library [31]. This work also does not consider formal proofs
of RE parsing.

An algorithm for POSIX RE parsing is described in [35]. The main idea of the article is
to adapt derivative parsing to construct parse trees incrementally to solve both matching
and submatching for REs. In order to improve the efficiency of the proposed algorithm,
Sulzmann et al. [35] use a bit encoded representation of RE parse trees. Textual proofs
of correctness of the proposed algorithm are presented in an appendix.

Certified parsing algorithms Certified algorithms for parsing also received attention
recently. Firsov et al. describe a certified algorithm for RE parsing by converting an
input RE to an equivalent NFA represented as a boolean matrix [12]. A matrix library
based on some “block” operations [24] is developed and used in the Agda formalization
of NFA-based parsing [29]. Compared to our work, a NFA-based formalization requires
much more infrastructure (such as a Matrix library). No experiments with the certified
algorithm were reported.

Firsov describes an Agda formalization of a parsing algorithm that deals with any
CFG (CYK algorithm) [13]. Bernardy et al. describe a formalization of another CFG
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parsing algorithm in Agda [7]: Valiant’s algorithm [37], which reduces a CFG parsing
problem to boolean matrix multiplication. In both works, no experiment with formalized
parsing algorithms were reported.

A certified LR(1) CFG validator is described in [21]. The formalized checking proce-
dure verifies if a CFG and an automaton match. They proved soundness and complete-
ness of the validator in the Coq proof assistant [8]. Termination of the LR(1) automaton
interpreter is ensured by imposing a natural number bound on allowed recursive calls.

Formalization of a parser combinator library was the subject of Danielsson’s work [10].
He built a library of parser combinators using coinduction and provide correctness proofs
of such combinators.

Almeida et al. [2] describe a Coq formalization of partial derivatives and its equivalence
with automata. Partial derivatives were introduced by Antimirov [4] as an alternative
to Brzozowski derivatives, since it avoids quotient resulting REs with respect to ACUI
axioms(Associativity, Commutativity and Idempotence with Unit elements axioms for
REs[9]). Almeida et al. motivation is to use such formalization as a basis for a decision
procedure for RE equivalence.

Ridge [32] describes a formalization, in the HOL4 theorem prover, of a combinator
parsing library. A parser generator for such combinators is described and a proof that
generated parsers are sound and complete is presented. According to Ridge, preliminary
results show that parsers built using his generator are faster than those created by the
Happy parser generator [17].

Ausaf et al. [5] describe a formalization, in Isabelle/HOL [28], of the POSIX matching
algorithm proposed by Sulzmann et al. [35]. They give a constructive characterization
of what a POSIX matching is and prove that such matching is unique for a given RE
and string. No experiments with the verified algorithm have been reported.
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3 The Agda programming language

Agda is an implementation of Martin-Löf’s type theory [25], extended with records and
modules. Thanks to the Curry–Howard isomorphism, it is both a functional program-
ming language and a proof assistant for intuitionistic logic.

This chapter aims to be a short introduction to Agda. We assume that the reader
knows Haskell, which will allow us to avoid explaining some Agda syntatic constructs
that are inspired by Haskell’s.

3.1 Data types in Agda

The most basic example in dependently typed languages, like Agda, involves functions
around natural numbers in Peano notation.

data N : Set where
zero : N
suc : N → N

In Agda, a single colon means “is of type”. So, in the previous source code snipet,
we have that zero has type N and suc has type N → N, i.e. it takes a natural number
argument and returns a new natural number. Also, the type N has a type, which is Set.
In Agda, Set is the type of types: types are first class values.

As in Haskell, we can build functions by pattern-matching. Our first example is the
addition of natural numbers:

+ : N → N → N
zero + m = m
(suc n) + m = suc (n + m)

Notice how we write + for the name of the function, then later drop the underscores.
This notation is referred to as mixfix — in Agda we are allowed to define operators using
underscores to denote where they expect arguments. Other than that, addition is fairly
straightforward, using the inductive style of programming we all know and love.

We will now look at the definition of lists in Agda. This is already starting to look
slightly different to the corresponding Haskell implementation.

data List (A : Set) : Set where
[ ] : List A

:: : A → List A → List A
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The first thing to note is that we are allowed to use Unicode symbols for function and
constructor names — the combination of mixfix and Unicode makes Agda very liberal
in what is accepted as an identifier. The next thing to note is that the List data type is
parameterised by an argument, A, of type Set. Recall that Set is the type of types, so
List is parameterised by a type for the values it should contain.

A useful function on lists is head, which returns the first element of an input list. A
Haskell programmer would write something like:

head : List A → A
head (x :: xs) = x

Unfortunately, this implementation of function head isn’t accepted by Agda’s compiler,
since it isn’t total and do not declare all of its parameters. Next, we present a new
definition of head that defines all of its parameters.

head : (A : Set) → List A → A
head A (x :: xs) = x

In Agda, types are first class citizens, they can passed as arguments to functions
and returned as results. However, this definition is still not accepted by Agda but
it has introduced another inconvenience: Every call of head function must provide, as
argument, the type of the input list elements like: head N (zero :: suc zero :: [ ]). To avoid
such spurious type arguments, Agda allow us to declare them as implicit arguments, i.e.
arguments that can be infered by the compiler using the expression surrounding context.
Implicit arguments are declared using curly braces. The next definition of head defines
A : Set as an implicit argument.

head : {A : Set} → List A → A
head (x :: xs) = x

Again, this definition of head is still not accepted by Agda because it is not total. We
say that a function is total if it terminates and is defined for all possible inputs. In
Agda, all functions are required to be total. Termination is checked by making sure that
recursive calls are always done on structurally smaller arguments — as is the case in the
addition example. Furthermore, a function is considered to be defined on all inputs when
the patterns it matches on cover all the possibilities of its input type. What we mean
by this is that an alternative should be given for each possible constructor — something
which is violated by the head attempt: it is missing a case for the empty list. This is
something Haskell does not care about; it simply smirks and throws an exception if we
try to normalise the expression head [ ]. A solution to make head total is to use the type
Maybe, a standard solution in Haskell.

head : {A : Set} → List A → Maybe A
head [ ] = nothing
head (x :: xs) = just x
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Using type Maybe is something of an annoyance; it would be preferable to guarantee
that the empty list is not valid input to the head function. This is where a dependently
typed language really comes into its own. We will now move on to the hello world
example of dependent types, the vector, or length indexed lists.

data Vec (A : Set) : N → Set where
[ ] : Vec A zero

:: : ∀ {n } → A → Vec A n → Vec A (suc n)

The reader must have noticed that: 1 - Agda allows the overloading of data type
constructors, since Vec and List constructors are denoted by the same identifiers; and 2
- in Vec type definition, we have an argument both to the left and the right of the colon
in the type signature of the data definition. Left-hand arguments are called parameters,
and scope over all the constructors. Right-hand arguments are called indices, and only
scope over single constructors, and as such need to be introduced per constructor. The

:: constructor has a size parameter, which is an example of such an index. This
dependent type has the advantage that we can distinguish vectors of different sizes by
their type, at compile time, without knowing their value.

Using type Vec we can write a safe vector head function without resorting to type
Maybe:

head : ∀ {A n } → Vec A (suc n) → A
head (x :: xs) = x

Note that only vectors with a value n such that suc n is the length of the vector, are
valid inputs. This way, we guarantee that empty vectors cannot be passed as arguments
to head. Agda is also convinced that this function is total, since the empty list cannot
be given the type Vec A (suc n), for any value of n.

Agda data types can be used to define inductive propositions. As example, consider
the following judgement to construct eveness proofs for natural numbers:

Even zero
EvZero

Even n
Even suc (suc n)

EvSuc

The previous rules define the necessary conditions for a natural number n be even:

• n = zero, or

• n = suc(suc m), where m is an even number.

We can achieve the same meaning using an inductive type in Agda. Each rule of
the previous judgment will become a constructor in its corresponding type. Below, we
present type Even that can be used to build eveness proofs for natural numbers in Peano
notation.

data Even : N → Set where
zero : Even zero
suc : ∀ {n } → Even n → Even (suc (suc n))
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Next we present example proofs for eveness both in natural deduction style and Agda
code.

Example 7. Using the previous eveness proof rules we can show that Even6, as follows:

Even 0
EvZero

Even 2
EvSuc

Even 4
EvSuc

Even 6
EvSuc

Using the Even Agda type, the same proof can be represented as the following term:

ev6 : Even 6
ev6 : suc (suc (suc zero))

where suc and zero are the constructors of Even that denote the rules EvSuc and EvZero,
respectively.

Another useful type is the decidable proposition type, which is defined as:

data Dec (P : Set) : Set where
yes : P → Dec P
no : ¬ P → Dec P

Constructor yes stores a proof that property P holds and constructor no an evidence that
such proof is impossible. Some functions used in our formalization use this type. The
type ¬ P is an abbreviation for P → ⊥, where ⊥ is a data type with no constructors
(i.e. a data type for which it is not possible to construct a value, which corresponds to
a false proposition). Note that the decidable type Dec P corresponds to a constructive
interpretation of excluded middle, which obviously holds only for propositions that are
decidable.

3.2 Pattern matching in Agda

So far we have seen the very basics of Agda. A few aspects deserve more attention,
though, one prime example being Agda’s pattern matching facilities. One of Haskell’s
best things is the ability to do pattern matching using a very clean syntax. Agda shares
this idiomatic programming style, but has a much more powerful version of pattern
matching, namely dependent pattern matching.

3.2.1 The with construct

Dependently typed pattern matching is built by using the so-called with construct, that
allows for matching intermediate values [26]. If the matched value has a dependent type,
then its result can affect the form of other values. For example, consider the following
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code that defines a type for natural number parity. If the natural number is even, it
can be represented as the sum of two equal natural numbers; if it is odd, it is equal to
one plus the sum of two equal values. Pattern matching on a value of Parity n allows
to discover if n = j + j or n = suc (k + k), for some j and k in each branch of with.
Note that the value of n is specialized accordingly, using information “learned” by the
type-checker.

data Parity : N → Set where
Even : ∀ {n : N} → Parity (n + n)
Odd : ∀ {n : N} → Parity (suc (n + n))

parity : (n : N) → Parity n
parity = -- definition omitted

natToBin : N → List Bool
natToBin zero = [ ]
natToBin k with (parity k)

natToBin (j + j ) | Even = false :: natToBin j
natToBin (suc (j + j )) | Odd = true :: natToBin j

3.2.2 Absurd patterns

Since dependent types allows the reference of values in types, some combinations of
types are simply not allowed, or absurd in Agda terminology. As an example, consider
the task of developing a safe list indexing function. In order to exclude invalid indexes,
we must relate the index type with the size present in Vec A n type. The type Fin n
denotes a type inhabited by exactly n+ 1 values.

data Fin : N → Set where
zero : ∀ {n } → Fin (suc n)
suc : ∀ {n } → Fin n → Fin (suc n)

From Fin data type definition, we can see that there’s no possible value of type Fin zero,
which means that Fin zero is an unprovable (false) proposition. Such impossible situa-
tions are represented in Agda patterns by absurd patterns, written as (). As an example,
consider the safe list indexing function:

! : ∀ {A n } → Vec A n → Fin n → A
[ ] ! ()
(x :: xs) ! zero = x
(x :: xs) ! (suc ix ) = xs ! ix

In the first equation, we matched on the empty Vec which forces the index n to be
equal to zero. In such situation, we have that the second parameter must be a value of
type Fin zero, which is not possible, since it is not possible, from Fin definition, to build
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any value of type Fin zero. Whenever we have a pattern whose type is an empty type,
we can use the absurd pattern to omit the right-hand side of this equation.

Absurd patterns can be used to define a form of reasoning common in formal logic
known as ex falsum quodlibet1, which allows us to deduce anything from a false propo-
sition:

data ⊥ : Set where

exFalsum : ∀ {A : Set} → ⊥ → A
exFalsum ()

In previous source code snipet, we have a definition of type ⊥, with no constructors,
which can be understood as the false proposition. Function exFalsum denotes the ex
falsum quodlibet principle, in Agda code. It will return a value of A from a proof of ⊥.

3.2.3 Inferrable patterns

Another important pattern-matching feature of Agda is the dotted-patterns. Because
pattern matching is dependent, information about certain arguments can often be in-
ferred from others. Using a dotted pattern means certain parameters are inferable or
equal to others.

Consider the type of the so-called propositional equality:

data ≡ {A : Set} (x : A) : A → Set where
refl : x ≡ x

The type ≡ only contains values constructed using refl (which stands for reflexivity),
and refl can only be used when the arguments to ≡ are β-equal. This is because the
same x is used as both first and second argument to ≡ .

We might use the equality type as follows; we are writing a function which is only
defined on equal naturals. Here we pattern match on whether some naturals are equal,
and if so, we can use this information on the left-hand side of the equation too. Note
how repeated variables on the left-hand side are allowed, if their value is inferable.

weird : (n m : N) → n ≡ m → List N
weird .m m refl = [ ]

3.3 Concluding remarks

In this chapter, we presented a small introduction to Agda by telling a tiny bit of what
the language is capable of, both in its programming side and its proof assistant side.
More information on Agda can be found elsewhere [34] [1].

1Latin for “from false, anything follows”.
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4 Derivatives for regular expressions

In this chapter, we present both Brzozowski’s derivatives and Antimirov’s partial deriva-
tives. After defining these operations over REs, we show how they can be used to develop
a parsing algorithm for REs.

4.1 Derivatives, in general

Given a symbol a ∈ Σ and a language over Σ, L ⊆ Σ?, the derivative of L with respect
to a, La, is defined as:

La = {w | aw ∈ L}

We can extend the quotient to operate over words straightforwardly (s denotes an arbi-
trary string from the input alphabet Σ):

Ls = {w | sw ∈ L}

Also, RLs are closed with respect to the quotient operation, as proved by the next
theorem.

Theorem 2. If L is a regular language over Σ and a ∈ Σ then the quotient of L with
respect to a is a regular language.

Proof. Suppose that L is a regular language. Then, exists a DFA M = (E,Σ, δ, i, F )
such that L(M) = L. We need to show that the DFA M ′ = (E,Σ, δ, δ(i, a), F ) accepts
La, i.e. we need to prove that:

aw ∈ L→ δ̂(i, aw) ∈ F ↔ δ̂(δ(i, a), w) ∈ F

which is immediate from the definition of δ̂:

δ̂(e, λ) = e

δ̂(e, ay) = δ̂(δ(e, a), y)

The previous definitions give an element (string) based definition for the quotient
operation. In the next sections we present symbolic procedures that produce REs for
the quotient operation.

24



4 Derivatives for regular expressions

4.2 Brzozowski’s derivatives

The main insight of Brzozowski’s derivative definition is to build a symbolic method
that computes, from a RE and a symbol, a new RE that denotes the quotient of the
input RE with respect to the input symbol [9].

In order to define the derivative of a RE e, we need an auxiliary function, named
nullability test (denoted by ν), which returns λ, when λ ∈ JeK and ∅, otherwise.

ν(∅) = ∅
ν(λ) = λ
ν(a) = ∅

ν(e e′) =

{
λ when ν(e) = ν(e′) = λ
∅ otherwise.

ν(e+ e′) =

{
λ when ν(e) = λ or ν(e′) = λ
∅ otherwise.

ν(e?) = λ

From ν’s definition, we can easily prove the following.

Lemma 1. For all RE e, ν(e) = λ if, and only if, λ ∈ e.

Proof. By induction on e’s structure. In both directions, the cases for e = ∅, e = λ,
e = a or e = e?1 are immediate. For concatenation and union, the result follows by the
induction hypothesis.

Using the nullability test, we can define the function to compute the derivative of an
input RE with respect to a symbol a ∈ Σ as follows:

δa(∅) = ∅
δa(λ) = ∅

δa(b) =

{
λ if b = a
∅ otherwise

δa(e e
′) = δa(e) e

′ + ν(e) δa(e
′)

δa(e+ e′) = δa(e) + δa(e
′)

δa(e
?) = δa(e) e

?

From δ’s definition, we can see that for any e and a, δa(e) is a RE. Next, consider the
following example that illustrates how to use the previous definition to calculate the
derivative of a RE.

Example 8. Consider the RE e = (aa + b)?. The derivative of e with respect to a is
a(aa+ b)?, as demonstrated below:

δa((aa+ b)?) = δa(aa+ b) (aa+ b)?

= [δa(aa) + δa(b)] (aa+ b)?

= [a+ ∅] (aa+ b)?

= a(aa+ b)?
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Derivatives can be extended to strings in the standard way:

δ?λ(e) = e
δ?ay(e) = δ?y(δa(e))

As expected, the derivative operation is sound and complete with respect to the RE
semantics.

Theorem 3. For all RE e, a ∈ Σ and w ∈ Σ?, aw ∈ e if, and only if, w ∈ δa(e).

Proof. Consider arbitrary e, a ∈ Σ and w ∈ Σ?. Both sides proceed by induction on the
inductive RE semantics, using similarity to quotient derivative results.

In practical terms, applying the derivative operation on REs can result in expressions
which can be simplified, while denoting the same language. Owens et al. [30] define a
similarity relation, which can be understood as an approximation of the standard notion
of RE equivalence.

We say that e is equivalent to e′, e ≡ e′, if they denote the same language, i.e.
JeK = Je′K. Let e ≈ e′ be the least relation on RE’s with satisfies the following equations:

e+ e ≈ e e+ e′ ≈ e′ + e
e+ (e′ + e′′) ≈ (e+ e′) + e′′ ∅+ e ≈ e

e (e′ e′′) ≈ (e e′) e′′ ∅ e ≈ ∅
e ∅ ≈ ∅ λ e ≈ e
e λ ≈ e (e?)? ≈ e?

λ? ≈ λ ∅? ≈ λ

When e ≈ e′ holds we say that e and e′ are similar [30]. Evidently, we have that
similarity is compatible with the standard notion of RE equivalence.

Theorem 4. For all REs e and e′, if e ≈ e′ then e ≡ e′.

Proof. Induction on the rules defining e ≈ e′. Base cases are immediate using the
definition of RE semantics and inductive ones are immediate from induction hypothesis.

In our Agda formalization, we use “smart-constructors” [30] to quotient similar REs
using similarity. The intent of such simplification is just for performance reasons and do
not affect the termination or correctness of the parsing algorithm. We leave a detailed
discussion on smart-constructors to Section 5.2.

4.2.1 RE parsing using Brzozowski’s derivatives

Note that, s ∈ e if, and only if, λ ∈ δ?s(e), which is true whenever ν(δ?s(e)) = λ. Owens
et al. [30] define a relation between strings and RE, called the matching relation, as:

e ∼ λ ⇔ ν(e)
e ∼ as ⇔ δa(e) ∼ s
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4 Derivatives for regular expressions

A simple inductive proof shows that s ∈ e if, and only if, e ∼ s.

Theorem 5. For all s ∈ Σ? and REs e, s ∈ e if, and only if, e ∼ s.

Proof. Straightforward induction on e in both directions.

Example 9. Suppose e = (aa+ b)? and the string aab. We can show that aab ∈ e using
the previously defined matching relation as follows:

(aa+ b)? ∼ aab⇔ δa(aa+ b)(aa+ b)? ∼ ab

⇔ a(aa+ b)? ∼ ab

⇔ δa(a(aa+ b)?) ∼ b

⇔ (aa+ b)? ∼ b

⇔ δb(aa+ b)(aa+ b)? ∼ λ

⇔ (aa+ b)? ∼ λ

⇔ ν((aa+ b)?) = λ which is true.

The same idea can be used to show that a string isn’t in the language of some RE.
Now consider again the RE e = (aa+ b)? and the string abb:

(aa+ b)? ∼ abb⇔ δa(aa+ b)(aa+ b)? ∼ bb

⇔ a(aa+ b)? ∼ bb

⇔ δb(a(aa+ b)?) ∼ b

⇔ δb(a)(aa+ b)? ∼ b

⇔ ∅ (aa+ b)? ∼ b

⇔ ∅ ∼ b

⇔ δb(∅) ∼ λ

⇔ ν(∅) = λ which is false.

4.3 Antimirov’s partial derivatives

While Brzozowski’s derivatives can be understood as a method for computing deter-
ministic automata from REs, Antimirov’s partial derivatives allows the construction
of non-deterministic automata from a RE [4]. The main insight of partial derivatives
is to build a set of REs which, collectively, accept the same language as Brzozowski’s
derivatives.

Partial derivatives avoid the need of quotient similar REs by using standard set oper-
ations which, by construction, guarantee that some equations of similarity hold. In the
original paper [4], Antimirov uses only smart-constructors for simplifying concatenation.
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4 Derivatives for regular expressions

Below, we present the definition of partial derivative computation, where we consider
that � has greater precedence than ∪.

∇a(∅) = ∅
∇a(λ) = ∅

∇a(b) =

{
{λ} if b = a
∅ otherwise

∇a(e e
′) =

{
∇a(e)� e′ ∪∇a(e

′) if ν(e) = λ
∇a(e)� e′ otherwise

∇a(e+ e′) = ∇a(e) ∪∇a(e
′)

∇a(e
?) = ∇a(e)� e?

Function ∇a(e) uses operator S � e′, which concatenates RE e ′ at the right of every
e ∈ S:

S � e′ = {ee′ | e ∈ S}

Next, we present an example of how to use the previous definition to compute the set
of partial derivatives of an input RE.

Example 10. Consider RE e = (aa+b)?. The set of partial derivatives of e with respect
to a is {a(aa+ b)?} as demonstrated below:

∇a((aa+ b)?) = ∇a(aa+ b)� (aa+ b)?

= [∇a(aa) ∪∇a(b)]� (aa+ b)?

= {[∇a(a)� a ∪ ∅]} � (aa+ b)?

= {[{λ} � a ∪ ∅]} � (aa+ b)?

= {a} � (aa+ b)?

= {a(aa+ b)?}

Next theorem relates Antimirov’s partial derivatives with RE semantics.

Theorem 6. For all REs e, a ∈ Σ and w ∈ Σ?, aw ∈ e if, and only if, there exists
e′ ∈ ∇a(e, w).

Proof. By induction on the definition of RE semantics.

We can also lift partial derivatives to strings as follows:

∇?(S, λ) = S
∇?(S, aw) =

⋃
e∈S∇?(∇a(e), w)

A string w matches a RE e if ∃e′.e′ ∈ ∇?({e}, w) ∧ ν(e′) = λ. Next example shows
how partial derivatives can be used for parsing REs.

Example 11. Suppose e = (aa + b)? and the string aab. We can show that aab ∈ e
using the previously defined matching relation as follows:
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4 Derivatives for regular expressions

∇?({(aa+ b)?}, aab) = ∇?({a(aa+ b)?}, ab)
= ∇?({(aa+ b)?}, b)
= ∇?({∇b(aa+ b)� (aa+ b)?}, λ)
= ∇?([∇b(aa) ∪∇b(b)]� (aa+ b)?, λ)
= ∇?((aa+ b)?, λ)
= {(aa+ b)?}

and, since ∃e′.e′ ∈ ∇?({(aa+ b)?}, w) ∧ ν(e′) = λ, we can say that aab ∈ (aa+ b)?.

4.4 Concluding remarks

In this chapter, we provide definitions of derivatives and partial derivatives as proposed
by Brzozowski and Antimirov, respectively. We have provided some proof sketches of
their main properties and presented some examples.

We want to emphasize that, for our purposes, understanding RE parsing as a matching
relation isn’t adequate because RE-based text search tools, like GNU Grep, shows every
matching prefix and substring of a RE for a given input. Since our interest is determining
which prefixes and substrings of the input string match a given RE, in the next chapter
we adapt the matching algorithm in order to compute prefixes and substrings of a given
input, and present correctness proofs.
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5 Agda formalization

In this chapter we describe the Agda formalization of the parsing algorithms described
briefly in Chapter 4. We start by defining RE syntax as an Agda data type and how
to encode the inductive RE semantics as an inductive proposition (Section 5.1). In
Section 5.2 we define smart-constructors, used to simplify REs during derivative compu-
tation. The functions for computing derivatives, partial derivatives and expressing and
proving their properties are presented in Sections 5.3 and 5.4, respectively. Section 5.5
defines algorithms to compute matching prefixes and substrings for an input RE and its
associated correctness theorems.

5.1 RE syntax and semantics

Definition of RE syntax as an Agda type is straightforward. We represent alphabet
symbols using characters, type Char, and strings as lists of characters.

data Regex : Set where
∅ : Regex
λ : Regex
$ : Char → Regex
• : Regex → Regex → Regex
+ : Regex → Regex → Regex
? : Regex → Regex

Constructors ∅ and λ denote respectively the empty language (∅) and the empty string
(λ). Alphabet symbols are constructed by using the $ constructor. Composite REs are
built by using concatenation (•), union (+) and Kleene star (?).

RE semantics is defined as an inductive data type in which each constructor represents
a rule for the inductive RE semantics.

data ∈ J K : List Char → Regex → Set where
λ : [ ] ∈ J λ K
$ : (a : Char) → [ a ] ∈ J $ a K
• ⇒ : xs ∈ J l K → ys ∈ J r K → zs ≡ xs ++ ys → zs ∈ J l • r K
+ L : (r : Regex) → xs ∈ J l K → xs ∈ J l + r K
+ R : (l : Regex) → xs ∈ J r K → xs ∈ J l + r K
? : xs ∈ J λ + (e • e ?) K → xs ∈ J e ? K

Constructor λ states that the empty string (denoted by the empty list [ ]) is in the
language of RE λ.
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5 Agda formalization

For any single character a, the singleton string [ a ] is in the RL for $ a. Given string
membership proofs for REs l and r , xs ∈ J l K and ys ∈ J r K, constructor • ⇒ can be
used to build a proof for the concatenation of these REs. Note that in the concatenation
constructor we introduce an equality zs ≡ xs ++ ys that seems unnecessary. This
equality simplifies the pattern-matching on proofs of zs ∈ J l • r K. Constructor + L
( + R ) creates a proof for l + r from a membership proof for l (r). Proofs for Kleene
star are built using the following well known equivalence of REs: e? = λ+ e e?.

Several inversion lemmas about RE parsing relation are necessary for derivative-based
parsing formalization. They consist of pattern-matching on proofs of ∈ J K. As an
example, below we present the inversion lemma for choice operator.

+invert : ∀ {xs l r } → xs ∈ J l + r K→ xs ∈ J l K ∨ xs ∈ J r K
+invert (r +L pr) = inj1 pr
+invert (l +R pr) = inj2 pr

Intuitively, function +invert specifies that if it is the case that xs ∈ J l + r K then the
string xs matches the RE l or it matches the RE r . Another inversion lemma (function
charInvert) specifies that if a string x :: xs matches the RE $ y then the input string
must be a single character string, i.e. xs ≡ [ ] and x ≡ y .

charInvert : ∀ {x y xs } → x :: xs ∈ J $ y K→ x ≡ y × xs ≡ [ ]
charInvert ($ c) = refl , refl

In our formalization we defined other inversions lemmas for RE semantics relation.
They follow the same structure of the previously defined lemmas — they produce, as
result, the necessary conditions for a RE semantics proof to hold — and are omitted for
brevity.

5.2 Smart-constructors

In order to define Brzozowski derivatives, we follow Owens et al. [30]. We use smart
constructors to identify equivalent REs modulo identity and nullable elements, λ and ∅,
respectively. The equivalence axioms maintained by smart constructors are:

• For union:
1) e+ ∅ ≈ e 2) ∅+ e ≈ e

• For concatenation:
1) e ∅ ≈ ∅ 2) e λ ≈ e
3) ∅ e ≈ ∅ 4) λ e ≈ e

• For Kleene star:
1) ∅? ≈ λ 2) λ? ≈ λ

These axioms are kept as invariants using functions that preserve them while building
REs. As a convention, we name smart constructors by prefixing a back quote to the
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5 Agda formalization

constructor name. For union, we just need to worry when one parameter denotes the
empty language:

‘ + : (e e ′ : Regex)→ Regex
∅ ‘+ e ′ = e ′

e ‘+ ∅ = e
e ‘+ e ′ = e + e ′

For concatenation, we need to deal with the possibility of parameters being empty (de-
noting the empty language) or λ. If one of them is empty (∅) the result is also empty.
Since the empty string is the identity for concatenation, the other parameter is returned.

‘ • : (e e ′ : Regex) → Regex
∅ ‘• e ′ = ∅
λ ‘• e ′ = e ′

e ‘• ∅ = ∅
e ‘• λ = e
e ‘• e ′ = e • e ′

For Kleene star both ∅ and λ are replaced by λ.

‘? : Regex→ Regex
∅ ‘? = λ
λ ‘? = λ
e ‘? = e ?

Since all smart constructors produce equivalent REs, they preserve the parsing relation.
This property is stated below as a soundness and completeness lemma of each smart
constructor with respect to RE membership proofs.

Lemma 2 (Soundness and completeness of union). For all REs e, e ′ and all strings xs,
xs ∈ J e ‘+ e ′ K holds if and only if xs ∈ J e + e ′ K also holds.

Proof.

(→) : By case analysis on the structure of e and e ′. The only interesting cases are
when one of the expressions is ∅. If e = ∅, then ∅ ‘+ e ′ = e ′ and the desired
result follows. The same reasoning applies for e ′ = ∅.

(←) : By case analysis on the structure of e, e ′. The only interesting cases are when one
of the REs is ∅. If e = ∅, we need to analyse the structure of xs ∈ J e + e ′ K. The
result follows directly or by contradiction using xs ∈ J ∅ K. The same reasoning
applies when e ′ = ∅.

Lemma 3 (Soundness and completeness of concatenation). For all REs e, e ′ and all
strings xs, xs ∈ J e ‘• e ′ K holds if and only if, xs ∈ J e • e ′ K also holds.
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Proof.

(→) : By case analysis on the structure of e, e ′. The interesting cases are when e or
e ′ are equal to λ or ∅. When some of the REs are equal to ∅, the result follows by
contradiction. If one of the REs are equal to λ the desired result is immediate, from the
proof term xs ∈ J e ‘• e ′ K, using list concatenation properties.

(←) : By case analysis on the structure of e, e ′. The interesting cases are when e or
e ′ are equal to λ or ∅. When some of the REs are equal to ∅, the result follows by
contradiction. If one of the REs are equal to λ the desired result is immediate.

Lemma 4 (Soundness and completeness of Kleene star). For all REs e and string xs,
xs ∈ J e ‘? K holds if and only if, xs ∈ J e ? K also holds.

Proof. Both directions follows by straightforward case analysis on e’s structure.

5.3 Brzozowski’s derivatives formalization

Brzozowski’s definition of derivative uses a nullability test, ν.
Decidability of ν(e) is proved by function ν[ ], which is defined by induction over the

structure of the input RE e and returns a proof that the empty string is accepted or
not, using Agda type of decidable propositions, Dec P .

ν[ ] : ∀ (e : Regex)→ Dec ([ ] ∈ J e K)
ν[ ∅ ] = no (λ ())
ν[ λ ] = yes λ
ν[ $ x ] = no (λ ())
ν[ e • e ′ ] with ν[ e ] | ν[ e ′ ]
ν[ e • e ′ ] | yes pr | (yes pr1 ) = yes (pr • pr1 ⇒ refl)
ν[ e • e ′ ] | yes pr | (no ¬pr1 ) = no (¬pr1 ◦ π2 ◦ •invert)
ν[ e • e ′ ] | no ¬pr | pr1 = no (¬pr ◦ π1 ◦ •invert)
ν[ e + e ′ ] with ν[ e ] | ν[ e ′ ]
ν[ e + e ′ ] | yes pr | pr1 = yes (e ′ +L pr)
ν[ e + e ′ ] | no ¬pr | (yes pr1 ) = yes (e +R pr1 )
ν[ e + e ′ ] | no ¬pr | (no ¬pr1 ) = no ([ ¬pr , ¬pr1 ] ◦ +invert)
ν[ e ? ] = yes ((e • e ? +L λ) ?)

The definition of ν[ ] uses some of the inversion lemmas about RE semantics. Lemma
•invert states that if the empty string is in the language of l • r (where l and r are
arbitrary REs) then the empty string belongs to l and r ’s languages. Lemma +invert is
defined similarly for union. Note that the definition of nuuu[ ] ensures, by construction,
its correctness (Lemma 1).

The definition of derivative function has an immediate translation to Agda. Notice
that it uses smart constructors to quotient resulting REs with respect to the equivalence
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axioms presented in Section 5.2 and RE nullability test. In the symbol case (constructor

$ ), function
?
= is used, which produces an evidence for equality of two Char values.

δ[ , ] : Regex→ Char→ Regex
δ[ ∅ , c ] = ∅
δ[ λ , c ] = ∅
δ[ $ c , c ′ ] with c

?
= c ′

...| yes refl = λ

...| no prf = ∅
δ[ e • e ′ , c ] with ν[ e ]
δ[ e • e ′ , c ] | yes pr = (δ[ e , c ] ‘• e ′) ‘+ δ[ e ′ , c ]
δ[ e • e ′ , c ] | no ¬pr = δ[ e , c ] ‘• e ′

δ[ e + e ′ , c ] = δ[ e , c ] ‘+ δ[ e ′ , c ]
δ[ e ? , c ] = δ[ e , c ] ‘• (e ‘?)

From this definition we prove the following important properties of the derivative
operation. Soundness of δ[ , ] ensures that if a string xs is in the language of δ[ e , x ],
then (x :: xs) ∈ J e K holds. Completeness ensures that the other direction of implication
holds.

Theorem 7 (Derivative operation soundness). For all REs e, all strings xs and all
symbols x , if xs ∈ J δ[ e , x ] K holds then (x :: xs) ∈ J e K holds.

Proof. By induction on the structure of e, using the soundness lemmas for smart con-
structors and decidability of the emptiness test.

Theorem 8 (Derivative operation completeness). For all REs e, all strings xs and all
symbols x , if (x :: xs) ∈ J e K holds then xs ∈ J δ[ e , x ] K holds.

Proof. By induction on the structure of e using the completeness lemmas for smart
constructors and decidability of the emptiness test.

5.4 Antimirov’s partial derivatives formalization

A key point in Antimirov’s partial derivatives is how to represent sets of REs. Aiming
for simplicity, we represent a set of REs as a list:

Regexes = List Regex

The operator that concatenates a RE at the right of every e ∈ E is defined by induction
on E:

� : Regexes→ Regex→ Regexes
[ ] � e = [ ]
(e ′ :: es ′) � e = (e ′ • e) :: (es ′ � e)
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Definition of a function to compute partial derivatives for a given RE is defined as a
direct translation of mathematical notation to Agda code:

∇[ , ] : Regex→ Char→ Regexes
∇[ ∅ , c ] = [ ]
∇[ λ , c ] = [ ]

∇[ $ x , c ] with x
?
= c

∇[ $ x , .x ] | yes refl = [ λ ]
∇[ $ x , c ] | no p = [ ]
∇[ e • e ′ , c ] with ν[ e ]
∇[ e • e ′ , c ] | yes p = (e ′ � ∇[ e , c ]) ++ ∇[ e ′ , c ]
∇[ e • e ′ , c ] | no ¬p = e ′ � ∇[ e , c ]
∇[ e + e ′ , c ] = ∇[ e , c ] ++ ∇[ e ′ , c ]
∇[ e ? , c ] = (e ?) � ∇[ e , c ]

In order to prove relevant properties about partial derivatives, we define a relation that
specifies when a string is accepted by some set of REs.

data ∈ 〈〈 〉〉 : List Char → Regexes → Set where
here : s ∈ J e K → s ∈ 〈〈 e :: es 〉〉
there : s ∈ 〈〈 es 〉〉 → s ∈ 〈〈 e :: es 〉〉

Essentially, a value of type s ∈ 〈〈 E 〉〉 indicates that s is accepted by some RE in S .
The next lemmas on the membership relation s ∈ 〈〈 E 〉〉 and list concatenation are
used to prove soundness and completeness of partial derivatives.

Lemma 5 (Weakening left). For all sets of REs E, E ′ and all strings s, if s ∈ 〈〈 E 〉〉
holds then s ∈ 〈〈 E ++ E ′ 〉〉 holds.

Proof. Straightforward induction on the derivation of s ∈ 〈〈 E 〉〉.

Lemma 6 (Weakening right). For all sets of REs E, E ′ and all strings s, if s ∈ 〈〈 E ′ 〉〉
holds then s ∈ 〈〈 E ++ E ′ 〉〉 holds.

Proof. Straightforward induction on the derivation of s ∈ 〈〈 E ′ 〉〉.

Lemma 7. For all sets of REs E, E ′ and all strings s, if s ∈ 〈〈 E ++ E ′ 〉〉 holds then
s ∈ 〈〈 E 〉〉 or s ∈ 〈〈 E ′ 〉〉 holds.

Proof. Induction on the derivation of s ∈ 〈〈 E ++ E ′ 〉〉 and case analysis on the
structure of E and E ′.

Lemma 8. For all sets of REs E, all REs e and all strings s, s ′; if s ∈ 〈〈 E 〉〉 and
s ′ ∈ J e K holds then s ++ s ′ ∈ 〈〈 e � E 〉〉 holds.

Proof. Induction on the derivation of s ∈ 〈〈 E 〉〉.
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Lemma 9. For all sets of REs E, all REs e and all strings s, if s ∈ 〈〈 e � E 〉〉 holds
then there exist s1 and s2 such that s ≡ s1 ++ s2 , s1 ∈ 〈〈 E 〉〉 and s2 ∈ J e K holds.

Proof. Induction on the derivation of s ∈ 〈〈 e � E 〉〉.

Using these previous results about ∈ 〈〈 〉〉, we can enunciate the soundness and
completeness theorems of partial derivatives. Let e be an arbitrary RE and a an arbitrary
symbol. Soundness means that if a string s is accepted by some RE in ∇[ e , a ] then
(a :: s) ∈ J e K. Completeness theorems shows that the other direction of the soundness
implication also holds.

Theorem 9 (Partial derivative operation soundness). For all symbols a, all strings s
and all REs e, if s ∈ 〈〈 ∇[ e , a ] 〉〉 holds then (a :: s) ∈ J e K holds.

Proof. Induction on the structure of e, using Lemmas 7 and 9.

Theorem 10 (Partial derivative operation completeness). For all symbols a, all strings
s and all REs e, if (a :: s) ∈ J e K holds then s ∈ 〈〈 ∇[ e , a ] 〉〉 holds.

Proof. Induction on the structure of e, using Lemmas 5, 6 and 8.

5.5 Computing prefixes and substrings

For our purposes, understanding RE parsing as a matching relation isn’t adequate be-
cause RE-based text search tools, like GNU Grep, shows every matching prefix and
substring of a RE for a given input. Since our interest is determining which prefixes and
substrings of the input string match a given RE, we define datatypes that represent the
fact that a given RE matches a prefix or a substring of some string.

We say that RE e matches a prefix of string xs if there exist strings ys and zs such
that xs ≡ ys ++ zs and ys ∈ J e K. Definition of IsPrefix datatype encodes this concept.
Datatype IsSubstring specifies when a RE e matches a substring in xs : there must exist
strings ys , zs and ws such that xs ≡ ys ++ zs ++ ws and zs ∈ J e K hold. We could
represent prefix and substring predicates using dependent products, but for code clarity
we choose to define the types IsPrefix and IsSubstring.

data IsPrefix (xs : List Char) (e : Regex) : Set where
Prefix : ∀ (ys zs) → xs ≡ ys ++ zs → ys ∈ J e K → IsPrefix xs e

data IsSubstring (xs : List Char) (e : Regex) : Set where
Substring : xs ≡ ys ++ zs ++ ws → zs ∈ J e K → IsSubstring xs e

Using these datatypes we can define the following relevant properties of prefixes and
substrings.

Lemma 10 (Lemma ¬IsPrefix). For all REs e, if [ ] ∈ J e K does not hold then neither
does IsPrefix [ ] e.

Proof. Immediate from the definition of IsPrefix and properties of list concatenation.
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Lemma 11 (Lemma ¬IsPrefix− ::). For all REs e and all strings xs, if [ ] ∈ J e K and
IsPrefix xs δ[ e , x ] do not hold then neither does IsPrefix (x :: xs) e.

Proof. Immediate from the definition of IsPrefix and Theorem 8.

Lemma 12 (Lemma ¬IsSubstring). For all REs e, if IsPrefix [ ] e does not hold then
neither does IsSubstring [ ] e.

Proof. Immediate from the definitions of IsPrefix and IsSubstring.

Lemma 13 (Lemma ¬IsSubstring− ::). For all strings xs, all symbols x and all REs e, if
IsPrefix (x :: xs) e and IsSubstring xs e do not hold then neither does IsSubstring (x :: xs) e.

Proof. Immediate from the definitions of IsPrefix and IsSubstring.

Function IsPrefixDec decides if a given RE e matches a prefix in xs by induction on
the structure of xs , using Lemmas 10, 11, decidable emptyness test ν[ ] and Theorem 7.
Intuitively, IsPrefixDec first checks if current RE e accepts the empty string. In this case,
[ ] is returned as a prefix. Otherwise, it verifies, for each symbol x , whether RE δ[ e , x ]
matches a prefix of the input string. If this is the case, a prefix including x is built from
a recursive call to IsPrefixDec or if no prefix is matched a proof of such impossibility is
constructed using lemma 11. Note that function ∂ − sound is the soundness theorem for
derivatives (theorem 7).

IsPrefixDec : ∀ (xs : List Char) (e : Regex)→ Dec (IsPrefix xs e)
IsPrefixDec [ ] e with ν[ e ]
IsPrefixDec [ ] e | yes p = yes (Prefix [ ] [ ] refl p)
IsPrefixDec [ ] e | no ¬p = no (¬IsPrefix ¬p)
IsPrefixDec (x :: xs) e with ν[ e ]
IsPrefixDec (x :: xs) e | yes p = yes (Prefix [ ] (x :: xs) refl p)
IsPrefixDec (x :: xs) e | no ¬p with IsPrefixDec xs (δ[ e , x ])
IsPrefixDec (x :: xs) e | no ¬p | (yes (Prefix ys zs eq wit))

= yes (Prefix (x :: ys) zs (cong ( :: x ) eq) (∂ − sound wit))
IsPrefixDec (x :: xs) e | no ¬pn | (no ¬p) = no (¬IsPrefix− :: ¬pn ¬p)

Function IsSubstringDec is also defined by induction on the structure of the input
string xs , using IsPrefixDec to check whether it is possible to match a prefix of e. In this
case, a substring is built from this prefix. If there’s no such prefix, a recursive call is
made to check if there is a substring match, returning such substring or a proof that it
does not exist.

IsSubstringDec : ∀ (xs : List Char) (e : Regex)→ Dec (IsSubstring xs e)
IsSubstringDec [ ] e with ν[ e ]
IsSubstringDec [ ] e | yes p = yes (Substring [ ] [ ] [ ] refl p)
IsSubstringDec [ ] e | no ¬p = no (¬IsSubstring (¬IsPrefix ¬p))
IsSubstringDec (x :: xs) e with IsPrefixDec (x :: xs) e
IsSubstringDec (x :: xs) e | yes (Prefix ys zs eq wit)
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= yes (Substring [ ] ys zs eq wit)
IsSubstringDec (x :: xs) e | no ¬p with IsSubstringDec xs e
IsSubstringDec (x :: xs) e | no ¬p | (yes (Substring ys zs ws eq wit))

= yes (Substring (x :: ys) zs ws (cong ( :: x ) eq) wit)
IsSubstringDec (x :: xs) e | no ¬p1 | (no ¬p)

= no (¬IsSubstring− :: ¬p1 ¬p)

Previously defined functions for computing prefixes and substrings use Brzozowski
derivatives. Functions for building prefixes and substrings using Antimirov’s partial
derivatives are similar to Brzozowski derivative based ones. The main differences be-
tween them are in the necessary lemmas used to prove decidability of prefix and substring
relations. Such lemmas are slighly modified versions of Lemmas 10 and 11 that consider
the relation ∈ 〈〈 〉〉 and are omitted for brevity.

5.6 Concluding remarks

In this chapter we describe the main points in the formalization of the derivative-based
parsing algorithms formalized. We present the main Agda definitions, discuss our design
decisions and present proof sketches of the relevant properties.

The complete formalization and instructions on how to build it can be found at the
following repository:

https://www.github.com/raulfpl/regex
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6 Implementation details and
experiments

From the formalized algorithm we built a tool for RE parsing in the style of GNU
Grep [16]. We have built a simple parser combinator library for parsing RE syntax,
using the Agda Standard Library and its support for calling Haskell functions through
its foreign function interface.

Experimentation with our tool, named verigrep, involved a comparison of its perfor-
mance with GNU Grep [16] (grep), Google regular expression library re2 [31] and Haskell
RE parsing algorithms haskell-regexp, described in [14]. We run RE parsing experiments
on a machine with an Intel Core I7-4500U 1.8 GHz, 8GB RAM running Windows 10;
the results were collected and the median of several test runs was computed.

We use the same experiments as those used in [35]; these consist of parsing files con-
taining thousands of occurrences of symbol a, using the RE (a+b+ab)?; and parsing files
containing thousands of occurrences of ab and files containing thousands of occurrences
of c followed by a single a, using the same RE. Results are presented in Figures 6.1, 6.2,
and 6.3 respectively.

Figure 6.1: Results of experiment 1.
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6 Implementation details and experiments

Figure 6.2: Results of experiment 2.

Figure 6.3: Results of experiment 3.

Our tool behaves poorly when compared with all other options considered. The cause
of this inefficiency needs further investigation, but we envisaged that it can be due to the
following: 1) Our algorithm relies on the Brzozowski’s definition for RE parsing, which
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6 Implementation details and experiments

needs to quotient resulting REs. 2) We use lists to represent sets of Antimirov’s partial
derivatives. We believe that usage of better data structures to represent sets and using
appropriate disambiguation strategies like greedy parsing [15] and POSIX [35] would
be able to improve the efficiency of our algorithm without sacrificing correctness. We
leave the formalization of disambiguation strategies and the use of more efficient data
structures for future work.

All scripts needed to replicate the experiments and instructions on how to compile
the verigrep tool are available at the following repository:

https://www.github.com/raulfpl/regex

41

https://www.github.com/raulfpl/regex


7 Conclusion and future works

We gave a complete formalization of a derivative-based parsing for REs in Agda. To the
best of our knowledge, this is the first work that presents a complete certification and
that uses the certified program to build a tool for RE-based search.

In our view, this work provides an incentive for the adoption of dependently typed
programming languages for software development tasks. The possibility of combining
programs and proofs allow us to enforce the desired properties of a function during its
construction, reducing the necessary costs to debug and test code. In Andrew Appel’s
words:

“Purely functional programming, inductive proofs and an expressive type
system are the main ingredients for producing correct software.”

The developed formalization has 1145 lines of code, organized in 20 modules. We have
proven 39 theorems and lemmas to complete the development. Most of them are imme-
diate pattern matching functions over inductive datatypes and were omitted from this
text for brevity.

As future work, we intend to work on the development of a certified program of
greedy and POSIX RE parsing using Brzozowski derivatives [35, 15], using derivatives
and partial derivatives to build finite state automata for RE parsing and investigate
other approaches to obtain a formalized but simple and efficient RE parsing tool.
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