
Dynamic Topic Hierarchies and
Segmented Rankings in Textual OLAP

Technology

Aluno: Adriano Neves de Paula e Souza

Orientador: Joubert de Castro Lima
Universidade Federal de Ouro Preto

Dissertação submetida ao

Instituto de Ciências Exatas e Biológicas

Universidade Federal de Ouro Preto

para obtenção do t́ıtulo de Mestre em Ciência da Computação

ii

Dissertação de autoria de Adriano Neves de Paula e Souza, sob o t́ıtulo “Dynamic Topic

Hierarchies and Segmented Rankings in Textual OLAP Technology”, apresentada

ao Departamento de Computação da Universidade Federal de Ouro Preto, para obtenção

do t́ıtulo de Mestre em Ciência da Computação pelo Programa de Pós-graduação em

Ciência da Computação, aprovada em 20 de Julho de 2017 pela comissão julgadora

constitúıda pelos doutores:

Prof. Dr. Ricardo Rodrigues Ciferri

Universidade Federal de São Carlos (UFSCAR)

Prof. Dr. Rodrigo Rocha Silva

Faculdade de Tecnologia de Mogi das Cruzes (FATEC-MC) / Centro de Informática e

Sistemas da Universidade de Coimbra (CISUC)

Prof. Dr. Reinaldo Silva Fortes

Universidade Federal de Ouro Preto (UFOP)

Catalogação: www.sisbin.ufop.br

S895d Souza, Adriano Neves de Paula e .
 Dynamic topic hierarchies and segmented rankings in textual OLAP
technology [manuscrito] / Adriano Neves de Paula e Souza. - 2017.
 82f.: il.: color; grafs; tabs.

 Orientador: Prof. Dr. Joubert de Castro Lima.

 Dissertação (Mestrado) - Universidade Federal de Ouro Preto. Instituto de
Ciências Exatas e Biológicas. Departamento de Computação. Programa de Pós-
Graduação em Ciência da Computação.
 Área de Concentração: Ciência da Computação.

 1. Administração de dados. 2. Dados textuais. 3. Classificação. 4. Cubo de
dados. I. Lima, Joubert de Castro . II. Universidade Federal de Ouro Preto. III.
Titulo.

 CDU: 004.451.5

Dedico este trabalho à minha famı́lia.

iii

iv

Dynamic Topic Hierarchies and Segmented Rankings in

Textual OLAP Technology

Resumo

A tecnologia OLAP tem se consolidado há 20 anos e recentemente foi redesenhada

para que suas dimensões, hierarquias e medidas possam suportar as particularidades

dos dados textuais. A tarefa de organizar dados textuais de forma hierárquica pode

ser resolvida com a construção de hierarquias de tópicos. Atualmente, a hierarquia de

tópicos é definida apenas uma vez no cubo de dados, ou seja, para todo o lattice de

cuboides. No entanto, tal hierarquia é senśıvel ao conteúdo da coleção de documentos,

portanto em um mesmo cubo de dados podem existir células com conteúdos comple-

tamente diferentes, agregando coleções de documentos distintas, provocando potenciais

alterações na hierarquia de tópicos. Além disso, o segmento de texto utilizado na análise

OLAP também influencia diretamente nos tópicos elencados por tal hierarquia. Neste

trabalho, apresentamos um cubo de dados textual com múltiplas e dinâmicas hierar-

quias de tópicos. Múltiplas por serem constrúıdas a partir de diferentes segmentos de

texto e dinâmicas por serem constrúıdas para cada célula do cubo. Outra contribuição

deste trabalho refere-se à resposta das consultas multidimensionais. O estado da arte

normalmente retorna os top-k documentos mais relevantes para um determinado tópico.

Vamos além disso, retornando outros segmentos de texto, como os t́ıtulos mais signifi-

cativos, resumos e parágrafos. A abordagem é projetada em quatro etapas adicionais,

onde cada passo atenua um pouco mais o impacto da construção de várias hierarquias

de tópicos e rankings de segmentos por célula de cubo. Experimentos que utilizam parte

dos documentos da DBLP como uma coleção de documentos reforçam nossas hipóteses.

v

vi

Dynamic Topic Hierarchies and Segmented Rankings in

Textual OLAP Technology

Abstract

The OLAP technology emerged 20 years ago and recently has been redesigned so that

its dimensions, hierarchies and measures can support the particularities of textual data.

Organizing textual data hierarchically can be solved with topic hierarchies. Currently,

the topic hierarchy is defined only once in the data cube, e.g., for the entire lattice of

cuboids. However, such hierarchy is sensitive to the document collection content. Thus,

a data cube cell can contain a collection of documents distinct from others in the same

cube, causing potential changes in the topic hierarchy. Furthermore, the text segment

used in OLAP analysis also changes this hierarchy. In this work, we present a textual

data cube with multiple dynamic topic hierarchies for each cube cell. Multiple hierar-

chies, since the presented approach builds a topic hierarchy per text segment. Another

contribution of this work refers to query response. The state-of-the-art normally returns

the top-k documents to the topic selected in the query. We go beyond by returning

other text segments, such as the most significant titles, abstracts and paragraphs. The

approach is designed in four complementary steps and each step attenuates a bit more

the impact of building multiple topic hierarchies and segmented rankings per cube cell.

Experiments using part of the DBLP papers as a document collection reinforce our

hypotheses.

vii

viii

Declaração

Esta dissertação é resultado de meu próprio trabalho, exceto onde referência expĺıcita é

feita ao trabalho de outros, e não foi submetida para outra qualificação nesta nem em

outra universidade.

Adriano Neves de Paula e Souza

ix

x

Agradecimentos

Agradeço primeiramente à minha famı́lia por ter me apoiado em mais uma etapa

de minha vida, me dando suporte nos momentos cŕıticos em que eu mais precisava.

Agradeço ao meu pai José Silvério de Souza por sempre estar disposto a sair de Ipatinga

e ir a Ouro Preto me dar o suporte necessário, seja em casos de saúde ou apenas saudade.

Agradeço à minha mãe Maria Petronilha de Paula e Souza por ser a chave principal da

minha vida. A pessoa que sempre me incentivou a seguir o caminho do estudo e que

sempre acreditou no meu potencial, até mesmo em momentos em que nem eu acreditava.

Dedico todas as conquistas da minha vida à minha mãe, que sempre investiu em minha

sabedoria sem nunca exigir nada em troca, esperando apenas o meu sucesso. Agradeço

também às minhas irmãs Silvéria Neves de Paula e Souza e Juliana Neves de Paual

e Souza, pela cumplicidade e amor incondicional, sempre servindo como parâmetro de

caráter e sabedoria.

Agradeço também ao meus orientadores Joubert de Castro Lima e Reinaldo Silva

Fortes pela paciência e compreensão neste trabalho. Dois professores excelentes com

ideias geniais que possibilitaram um trabalho digno onde nos orgulhamos. Agradeço ao

Joubert pelas ideias geniais e pelo prazer de trabalhar com OLAP. Mesmo em momentos

conturbados, esteve sempre disposto a me orientar da melhor forma posśıvel, me apoi-

ando e me dando suporte necessário, independente da hora ou do dia. Agradecimento

especial também ao Reinaldo, peça essencial nesta equipe, com ideias geniais e conheci-

mento valioso, sempre somando ao nosso trabalho. Muito obrigado pela disposição em

atender às minhas chamadas independente da hora ou do dia, sempre arrumando um

tempinho para discutirmos dúvidas e ideias novas.

Agradeço ao meu amigo Tales Mota por estar sempre disposto a me ajudar com

qualquer dúvida, seja em um artigo complicado, ou com um código problemático, sua

boa vontade sempre fez a diferença.

xi

Agradeço também à minha namorada Fernanda Camini pelo carinho e compreensão

nos momentos mais dif́ıceis dessa jornada.

Agradeço à CAPES pelo aux́ılio financeiro a este projeto e agradeço à UFOP pela

infraestrutura cedida e conhecimento oferecido.

Muito Obrigado.

xii

Sumário

Lista de Figuras xv

Lista de Tabelas xvii

1 Introduction 1

2 Basic Concepts 5

2.1 Data Warehouse . 5

2.2 Data Cube . 7

2.2.1 Cube Cell . 9

2.2.2 Measures . 10

2.2.3 Concept Hierarchies . 11

2.2.4 Topic Hierarchy . 13

2.3 OLAP . 14

2.3.1 OLAP Operations . 15

2.4 CATHY (Contructing A Topical Hierarchy) 17

2.4.1 Definitions . 18

2.5 Information Retrieval . 20

3 Related Works 23

xiii

4 DTCubing Approach 27

4.1 Text Segments . 27

4.2 Data Cube and Cube Cell Concepts . 28

4.3 Multiple Topic Hierarchies per Cube Cell 29

5 DTCubing Architecture 31

5.1 Indexing . 32

5.2 Filtering . 35

5.3 Hierarchy Generation . 37

5.4 Ranking . 39

6 Hypothesis Validation 41

6.1 Multiple Topic Hierarchies Qualitative and Quantitative Analysis 42

6.2 Segmented Rankings Quantitative Analysis 46

7 Performance Evaluation 49

7.1 Indexing Step Runtime . 49

7.2 Filtering Step Runtime . 50

7.3 Hierarchy Generation Runtime . 52

7.4 Ranking Runtime . 53

8 Conclusion 55

Referências Bibliográficas 57

xiv

Lista de Figuras

2.1 OLAP operation example. 6

2.2 Geometric 3D data cube. 8

2.3 Geometric 4D data cube. 9

2.4 4D data cube lattice. 10

2.5 Location and Time concept hierarchies 12

2.6 Hierarchies build from Location and Time structured dimensions 13

2.7 Literature topic hierarchy. 14

2.8 OLAP operation example. 16

4.1 DTCubing approach . 29

5.1 DTCubing Architecture steps . 32

5.2 Hierarchy Generation example . 37

5.3 Ranking example . 39

6.1 Hierarchies from DTCubing cells versus hierarchies from GH cells 42

6.2 Hierarchies built from the text segments title, abstract, and sentence from

VLDB conference . 43

6.3 Heat maps comparing GH and DTCubing hierarchies 45

6.4 Entropy values of GH and different DTCubing hierarchies 46

xv

6.5 Jaccard ranking values from GH versus DTCubing for ACM conference . 48

7.1 Runtimes of the hierarchy generation algorithm 52

7.2 Runtimes of the segment rankings construction algorithm 53

xvi

Lista de Tabelas

2.1 2-D data cube. 7

2.2 3D data cube. 8

2.3 Inverted Index example. 21

3.1 Comparison of literature approaches with DTCubing 26

5.1 Indexing Step example. 33

5.2 Attribute values . 36

5.3 Aggregation Values . 36

7.1 Runtime for the Indexing step for document collection DOC1, DOC2 and

DOC3 . 50

7.2 Point, range and inquire filters . 50

7.3 Runtimes (seconds) of point, range and inquire filters 51

xvii

xviii

Lista de Algoritmos

5.1 Indexing Step Algorithm . 34

5.2 Filtering Step Algorithm . 37

5.3 Hierarchy Generation Step Algorithm . 38

5.4 Ranking Step Algorithm . 40

xix

xx

“Quando o poder do amor superar o amor pelo poder, o mundo conhecerá a paz.”

— Jimi Hendrix

xxi

xxii

Chapter 1

Introduction

The popularization of social networks (e.g., Facebook, Twitter and Instagram) and mul-

timedia aggregators (e.g., YouTube and Wikipedia) increased in great amount the vol-

ume of textual data (Cuzzocrea, De Maio, Fenza, Loia & Parente 2016). This scenario

turns the work of managers, executives and data analysts very hard , since the volume

of documents has far exceeded the human capacity for understanding texts (Tseng &

Chou 2006). This analysis bottleneck is the starting point to our demand for remodeling

traditional Online Analytical Processing (OLAP) tools, once they become inadequate

for textual data type (Bouakkaz, Loudcher & Ouinten 2016).

The data cube operator (Gray, Chaudhuri, Bosworth, Layman, Reichart, Venkatrao,

Pellow & Pirahesh 1997), being the core of any OLAP tool, faces new challenges and

impossibilities when applied to multidimensional textual databases. Its hierarchies, usu-

ally modeled by a specialist and only once during the cube lifecycle, are not useful, since

they do not consider the semantic relations among documents and the dynamics of the

hierarchical levels of the document collection.

Hierarchies are fundamental in the decision-making process because they allow the

mapping of low level concepts into high level concepts (Gray, Chaudhuri, Bosworth,

Layman, Reichart, Venkatrao, Pellow & Pirahesh 1997). Thus, they reduce the search

space and, usually, streamline and simplify user analysis. It is intuitive to understand

that the year attribute is hierarchically higher than day, but when the attribute is a

collection of documents, how can we detect if a term, a text segment or even the entire

document is hierarchically higher or lower than another one? Different textual cube

approaches emerge to solve the challenge of navigating through structured and textual

1

2 Introduction

data in an integrated manner (Lin, Ding, Han, Zhu & Zhao 2008, EventCube: Multi-

Dimensional Search and Mining of Structured and Text Data 2013, Yu, Lin, Sun, Chen,

Han, Liao, Wu, Zhai, Zhang & Zhao 2009, Zhang, Zhai & Han 2009, Zhang, Zhai &

Han 2011).

Topic hierarchy is a useful alternative to organize a document collection in a hierar-

chy (Zhang, Zhai & Han 2009). A topic consists of specific concepts of a subject area

(Gallinucci, Golfarelli & Rizzi 2013). For instance, let’s consider the topic “economy”,

representing several entries of a document collection, like “the dollar in the world be-

comes high in 2016 ”’, “smartphone sales reach 85% of Brazilian consumers”, “Will USA

change their economy politics?” and many others. The “economy” topic represents all

previous entries, and sometimes a topic is not present in the document collection. There

is a clear advantage in topic concept because it reduces data volume and represents

better the entire document collection. Topic hierarchies are built automatically with

methods like CATHY (Wang, Danilevsky, Desai, Zhang, Nguyen, Taula & Han 2013)

or Hpam (Mimno, Li & McCallum 2007), or manually by domain specialists.

Unfortunately, the literature in textual OLAP, that supports the concept of topic

hierarchy, still suffers from serious limitations since they assume the creation of this

hierarchy only once and for the entire document collection. This way, a topic t1 is

always hierarchically higher than topic t2, regardless the selected cube cell in a query.

The first hypothesis of this work assumed that it is not enough to build a single topic

hierarchy from the entire document collection in order to meet the specific needs of

the users, but rather to build dynamic topic hierarchies from subsets of all documents.

When making a query, the user often defines filters that select cube cells with subsets of

documents of interest. Then, these filters should guide the construction of a new topic

hierarchy, presenting more exclusive and specific topics to the subset selected, improving

the decision-making process.

The textual OLAP query’s results also undergo through advances in order to better

represent the particularities of textual data. The literature computes measures to rank

relevant documents using different strategies (Lin, Ding, Han, Zhu & Zhao 2008, Zhang,

Zhai & Han 2009, Zhang, Zhai & Han 2011, Oukid, Asfari, Bentayeb, Benblidia &

Boussaid 2013, Janet & Reddy 2011, Liu, Tang, Hancock, Han, Song, Xu, Manikonda &

Pokorny 2012, Lee, Kim & Kim 2014). Our second hypothesis is that many queries aim

to return rankings of more specific text segments, such as paragraph, abstract, chapter,

keyword and sentence. Let’s suppose a query returning text segments about Big Data.

The user should define if he wants a list of more relevant paragraphs, a list of more

Introduction 3

relevant book chapters or even a list of the more relevant documents about this topic.

In this work we present a new textual OLAP approach named Dynamic Topic Cubing,

or DTCubing for short, that builds topic hierarchies per textual cube cell instead of a

single hierarchy per cube lattice and it also supports multiple hierarchies per cube cell,

since a document can be partitioned into several text segments (e.g., title, keywords, and

abstract). DTCubing can create multiple top-k rankings according to the defined text

segments.

Experimental evaluations reinforced our hypothesis. Some conferences that compose

the DBLP 1 were used to conduct our performance evaluation. A new algorithm, based

on the qCube approach (Silva, Lima & Hirata 2013), was implemented to compute both

multiple topic hierarchies and multiple segmented rankings.

The main contributions of this work are:

i) a new data cube model for textual OLAP, where each cube cell has several topic

hierarchies and several rankings, both according to different text segments;

ii) a new textual OLAP partial cube algorithm that attenuates the impact of building

multiple topic hierarchies and segmented rankings per cube cell;

iii) qualitative and quantitative evidences to reinforce the hypothesis;

iv) a performance study to validate the algorithm runtimes in the presence of various

collections of documents and queries.

The remainder of this work is organized as follows: Chapter 2 presents the basic

concepts of this work, in Chapter 3, the related work used to produce DTCubing is

presented. Chapter 4 presents the formal definition of a DTCubing cube. In Chapter 5,

the four steps that compose the DTCubing approach are explained. Chapter 6 presents

the experiments conducted for the consolidation of the hypotheses, proving the usefulness

of the DTCubing approach. In Chapter 7 , a performance evaluation, presents the four

DTCubing algorithm steps runtimes. In the Conclusion Chapter, we present the final

discussions and how DTCubing can be improved in future works.

1http://www.dblp.org/

4

Chapter 2

Basic Concepts

In this chapter, the basic concepts related to this dissertation are presented. Section

2.1 presents the main concepts of Data Warehouse. Section 2.2 presents the main con-

cepts of data cubes, presenting its measures, cells and describing the difference between

the hierarchies built for structured and textual dimensions. Section 2.3 brings a brief

description of the OLAP concept, presenting its main operations. Section 2.4 presents

the automatic model for building topic hierarchies named CAHY. Finally, section 2.5

presents a summary of the main stages of the process of Information Retrieval (IR).

2.1 Data Warehouse

A Data Warehouse is a subject-oriented, integrated, time-variant, and nonvolatile collec-

tion of data in support of management’s decision making process (Inmon & Hackathorn

1994). The four keywords, subject-oriented, integrated, time-variant, and nonvolatile,

differentiate DW from other repository systems, such as relational database systems,

transaction processing systems, and file systems.

A DW models, in an integrate manner, important subjects, such as customer, sup-

plier, product and sales, for decision makers and not for the day-to-day operations.

Hence, DWs typically exclude data that are not useful in the decision support process.

Normally, a DW integrates heterogeneous data sources, such as relational tables,

flat-files, serialized objects, and XML files, into a unique analytical data source. Data

cleaning and data integration techniques are applied to ensure consistency in naming

5

6 Basic Concepts

conventions, dimension structures, attribute measure, and so on.

Typically, the DW is maintained separately from the organization’s operational

databases. There are many reasons for doing this. The DW supports on-line ana-

lytical processing (OLAP), the functional and performance requirements of which are

quite different from those of the on-line transaction processing (OLTP) applications

tranditionally supported by the operational databases (Chaudhuri & Dayal 1997).

In (Wu & Buchmann 1997), the authors propose a logical architecture for a DW. Fig-

ure 2.1 illustrate such an architecture. Each layer provides services for the next higher

layer, or for the intralayer process. The Data Store Layer provides the Data Manage-

ment Layer the services for storing the data, building indexes (Bitmap indexes, or special

join indexes), data clustering, etc. The Data Management Layer, in turn, provides ser-

vices for higher level management of warehouse data, e.g., load utilities, data model

transformation between external sources and the logical schema, data cleansing, query

processing, query optimization, etc. Next, the Application Interface Layer provides data

access facilities suitable for specific applications, including data model transformation

between the conceptual multidimensional schema and the logical schema. The Presen-

tation Layer includes graphical presentation and reporting tools. It typically runs on a

desktop environment whereas the other three layers typically exist on the server side.

The presentation layer therefore also includes the desktop resident processes needed for

extract generation (Wu & Buchmann 1997).

Figure 2.1: OLAP operation example.

Basic Concepts 7

2.2 Data Cube

DWs and OLAP tools are based on a multidimensional model. The multidimensional

model views the stored data as a data cube. A data cube allows to be modeled and

viewed in multiple dimensions. It is defined by dimensions and facts. (Han, Kamber &

Pei 2011)

In general terms, dimensions are perspectives of the decision making process. They

are modeled as an entity or a set of entities that encapsulate a concept. For example

UFOP may create a grade DW in order to keep records of the institute grades with

respect to the dimensions time, student, professor, department, and discipline.

The dimensions allow grade analysis from different perspectives. We can obtain the

grades of each semester of the last ten years in the university or the grades of a specific

student in 2008 or the grades of a specific department or discipline.

Each dimension has a set of attributes that describes it. For example, the dimension

student may contain the attributes first-name, last-name, sex, and birth-date. As men-

tioned before, each dimension is modeled as a single entity or a set of entities, so the set

of attributes must be organized in such entity(ies).

A multidimensional data model is typically organized around a central theme, such as

grade. The theme is represented by facts. A fact is the minimum amount of information

to be analyzed, i.e., the quantity by which we want to analyze relationship among

dimensions.

Table 2.1: 2-D data cube.

Discipline

Time Math1 Math2 Physic1 Logic

Q1 78.5 77.8 72.5 87.5

Q2 79 77.5 71.8 78.9

Q3 71.2 78 73 81.6

Q4 78.5 74.8 71.5 86.5

Although we usually think of cubes as 3-D generic structures, in a DW the data

cube is n-dimensional. We start to explain the n-dimensional characteristic of a data

cube looking at a simple 2-D data cube. We consider UFOP grade data cube using only

8 Basic Concepts

dimensions time and discipline. The data cube is shown in Table 2.1. In the 2-D

representation, the grades are shown with respect to the time dimension (organized in

quarters) and the discipline dimension (organizes according to the disciplines offered

at UFOP). The fact or measure displayed is grade (the average grade, for instance).

Now, we extend the initial idea, adding a third dimension to UFOP grade data cube.

We add the dimension department, forming a new data cube with dimensions time,

discipline, and department. The 3-D data cube, presented in Table 2.2, is represented

as a series of 2-D tables. Conceptually, we may also represent the same data as a 3-D

data cube, presented in Figure 2.2.

Table 2.2: 3D data cube.

Department

Aeronautical Eng. Eletric Eng. Computer Science

Discipline Discipline Discipline

Time Math1 Math2 Physic Logic Math1 Math2 Physic Logic Math1 Math2 Physic Logic

Q1 76.5 75.8 73.5 71.2 69.4 74.6 77.1 71 73.1 72.5 74.1 77.9

Q2 72.4 77.7 78.3 82.4 69.3 72.5 77.3 71.9 71.2 71.3 77.5 82.4

Q3 77.2 78 79.3 72 77.1 73.2 74.8 79.6 69.4 72.6 80 80.4

Q4 75.3 77.8 84.5 77.3 72.5 94.7 78.5 75.8 75.6 74.8 71.5 88.5

Figure 2.2: Geometric 3D data cube.

Basic Concepts 9

Extending the 3-D UFOP data cube, we can add a fourth dimension such as pro-

fessor. It is possible to think of a 4-D data cube as being a series of 3-D data cubes, as

shown in Figure 2.3.

Figure 2.3: Geometric 4D data cube.

It is possible to continue in this way, so it is possible to display a n-D data cube as a

series of (n − 1)-D data cubes. In Figure 2.3, the symbol Øis an empty cell, indicating

that a professor does not teach the discipline.

The described tables (2-D and 3-D) show the data at different degrees of summa-

rization. Each summarized table is a cuboid. Given a set of dimensions, it is possible to

generate a cuboid for each of the possible subsets of the given dimensions. The result

forms a lattice of cuboids, each sowing the data at different level of summarization, or

group-by. The lattice of cuboids is the referred to as a data cube. In Figure 2.4, is rep-

resented a 4-D cube as a lattice of cuboids formed from the dimension time, professor,

department, and discipline.

The cuboid that holds the lowest level of summarization is called the base cuboid. For

example, the 4-D cuboid in Figure 2.4 is the base cuboid for the given dimensions time,

professor, department, and discipline. The 0-D cuboid which holds the highest

summarization, is called the apex cuboid. In the UFOP grade DW, this is the average

grade, summarized over all four dimensions. The apex cuboid is typically denoted by

all.

2.2.1 Cube Cell

A data cube has base cells and aggregate cells. A cell in a base cuboid is a base cell. A

cell in a non-base cuboid is an aggregate cell. An aggregate cell aggregates over on or

10 Basic Concepts

more dimensions, where each dimension is indicated by a wildcard all(“*”) in the cell

notation.

Figure 2.4: 4D data cube lattice.

Suppose there is an n-dimensional data cube. Let a = (a1, a2, a3, an,measures) be a

cell from on of the cuboids making up the data cube. Cell a is an m-dimensional cell (that

is, from an m-dimensional cuboid) if exactly (m(m = n)) values among {a1, a2, a3, an}
are not “*”. If m = n, then a is a base cell; otherwise, it is an aggregate cell (i.e., where

m < n).

Consider a data cube with dimensions, time, department and discipline, and

the measure grade . Cells (Q1, ∗, ∗, 78.9) and (∗,comp. science,∗, 81.3) are 1-D cells,

(Q1,Math1, 73.6) is a 2-D cell and (Q1,comp. science,Math1, 78.8) is a 3-D cell. Here,

all base cells are 3-D, whereas 1-D and 2-D cells are aggregate cells.

2.2.2 Measures

A data cube is composed by several cuboids and each cuboid is composed by several

cube cells. Each cube cell can be defined as a pair < {d1, d2, dn},measures > , where

{d1, d2, dn} represents a possible combination of attribute values over the dimensions. A

data cube measure is a numerical function that can be evaluated at each cell in the lattice.

A measure value is computed for a given cell by aggregating the data corresponding to

the attribute values defining the given cell.

Measures can be organized into three categories, based on the kind of aggregate

functions used. The categories are: distributive, algebraic and holistic.

Suppose the data are partitioned into n sets. The function is applied to each partition,

Basic Concepts 11

resulting in n aggregate values. If the result derived by applying the function to the n

aggregate values is the same as that derived by applying the function to the entire data

set (without partitioning), the function can be computed in a distributive manner. For

example, count() can be computed for each subcube, and then summing up the counts

obtained for each subcube. Hence, count() is a distributive aggregate function. For the

same reason, sum(), min(), and max() are distributive aggregate functions. Distributive

measures can be computed efficiently because they can be computed in a distributive

manner.

An aggregate function is algebraic if it can be computed by an algebraic function with

M arguments (where M is a bounded positive integer), each of argument is obtained by

applying a distributive aggregate function. For example,avg() (average) can be computed

by sum()/count(), where both sum() and count() are distributive aggregate functions.

Similarly, it can be shown that min-N() and max-N() (which find the N minimum and

N maximum value, respectively, in a given set) and standard-deviation() are algebraic

aggregate functions. A measure is algebraic if it is obtained by applying an algebraic

function.

An aggregate function is holistic if there is no constant bound on the storage size

needed to describe a sub-aggregate, i.e., there is not an algebraic function with M argu-

ments (where M is a constant) that characterizes the computation. Common examples

of holistic function include median(), mode(), and rank(). A measure is holistic if it is

obtained by applying a holistic aggregate function.

Most of the current data cube technology confines the measure of multidimensional

databases to numerical data. However, measures can also be applied to other kinds of

data, such as spatial, multimedia, or text data.

2.2.3 Concept Hierarchies

A concept hierarchy defines a sequence of mapping from a set of low-level concepts

to higher-level concepts. Month values for time dimension include January, February,

March,..., December. Each month, additionally, can be mapped to the quarter to which

it belongs. For example, January and March can be mapped to quarter one (Q1).

Quarters can in turn be mapped to the semester to which they belong. The maps form

a concept hierarchy for the dimension time, mapping a set of Months to Quarters and a

set of Quarters to Semesters.

12 Basic Concepts

Many concept hierarchies are implicit within the database schema. For example,

suppose that UFOP is composed by several divisions, located at different regions of

Brazil. A new dimension named division location may be required. The new dimension

can be described by the attributes: country, state and city. the attributes are related

by a total order, forming a concept hierarchy such as “country � state � city”. The

hierarchy is show in Figure 2.5(a). Alternatively, the attributes of a dimension may be

organized as a partial order, forming a lattice. An example of a partial order for the

time dimension based on the attributes: year, month, week, and day is“year � month

� week � day”. This lattice structure is shown in Figure 2.5(b).

(a) Location di-
mension concept
hierarchy.

(b) Time dimension concept hi-
erarchy.

Figure 2.5: Location and Time concept hierarchies

A concept hierarchy that is total or partial order among attributes in a database

schema is called a schema hierarchy. There may be more than one concept hierarchy for

a given attribute or dimension, based on different user perspectives. Concept hierarchies

may be provided manually by system users, domain experts, or knowledge engineers, or

may be automatically generated based on statistical analysis of the data distribution.

It is important to note that although there are automatic building strategies for

hierarchies of the structured dimensions, this kind of hierarchy is usually built manually,

being provided by a specialist. Furthermore, these hierarchies are built only once and

kept throughout the life cycle of the cube.

Observe that the attributes of a structured dimension are easily hierarchized. For

example, it is intuitive to know that the attribute Country is hierarchically higher to

Basic Concepts 13

the attribute State, just as it is intuitive to know that Year is hierarchically higher to

Day. However, when we are working with a textual dimension, the hierarchization task

becomes a little more complex. The problem is to know if a document di is hierarchically

higher or lower to a document dj. In order to do that, the most commonly used strategy

in the literature is the utilization of a Topic Hierarchy.

2.2.4 Topic Hierarchy

A Topic Hierarchy is a structure presented as a tree, which allows the semantic mapping

of a set of documents in different nodes, allowing OLAP operations such as drill-down

and roll-up in the textual dimension. Thus, a topic hierarchy hierarchizes documents

through their contents, presenting in each node, a set of topics in which the user is more

likely to be interested.

Figure 2.6 shows a topic hierarchy built on a set of scientific articles that belong

to DBLP. Observe the dynamics offered for the data analysis. The user can navigate

through the nodes of the topic hierarchy analyzing only the scientific articles which are

about data base or only those which are about artificial intelligence.

Figure 2.6: Hierarchies build from Location and Time structured dimensions

The same way as it is done for the hierarchies of structured dimensions, today the

literature presents a static topic hierarchy, built only once, and used by all the cells of

the data cube. This hierarchy can be understood as the illustration of Figure 2.7, which

presents a cube built on a set of scientific articles from the dimensions Conference and

Time. The vertical axis presented in red corresponds to the topic hierarchy. Observe

14 Basic Concepts

that, regardless of the cell in which the user is, the documents aggregated there can only

be analyzed under the perspective of the same four topics t1, t2, t3 and t4.

Since this topic hierarchy has to cover all the cells of the cube, it ends up presenting

very generic topics, as it should present topics that represent all the collections of doc-

uments. This can be understood as a deficiency of textual OLAP, once the user should

be able to choose topics that were relevant only to the context of his/her query instead

of being always limited to the same generic topics.

Figure 2.7: Literature topic hierarchy.

Conference

T
im

eJan 99
Feb 99

Jan 98
Feb 98

Topic Hierarchy

t4

t3

t2

t1

SBSI JCIT VLDB IJCAI

Although it is static, the topic hierarchy can be built both manually and automat-

ically. Manual building is used by most approaches, where the hierarchy is built and

offered by a specialist, requiring time and being subject to errors. As for the automatic

building of a topic hierarchy, it can be consolidated by using approaches such as CATHY

(Wang, Danilevsky, Desai, Zhang, Nguyen, Taula & Han 2013) or HPAM (Mimno, Li &

McCallum 2007), which use the analysis of a network of terms co-occurrence to find the

main topics present in one base.

2.3 OLAP

OLAP is a term created by E.F. Codd & Associates in 1994 with the paper “Providing

OLAP to User-Analysts: An IT Mandate”. This term describes a set of tools that offers

methods to access, visualize, and analyze huge amount of data with high flexibility and

performance. The OLAP tools use consolidated data, normally stored in a DW.

Basic Concepts 15

OLAP tools present multidimensional data from DWs, regardless of how or where

the data are stored. Each OLAP tool must handle a new abstract data type, named

data cube, so it must consider data storage issues. OLAP tools use one of the following

storage strategies: Relational OLAP (ROLAP), Multidimensional OLAP (MOLAP),

Hybrid OLAP (HOLAP).

ROLAP tools use a relational or extended-relational Database Management System

(DBSM) to store and management data cubes. They include optimizations for each

DBMS back-end, implementation of aggregation navigation logic, and additional tools

and services.

MOLAP tools implement multidimensional data structures to store data cubes effi-

ciently, since they allow fast indexing to cube cells. With multidimensional data stores,

the storage utilization may be low if the dataset is sparse. In such cases, reduction

techniques should be explored.

HOLAP tools combine ROLAP and MOLAP. Normally, the detailed data are stored

in relational database (ROLAP) and the aggregations are stored in multidimensional

data structures (MOLAP).

2.3.1 OLAP Operations

In the multidimensional model, data are organized into multiple dimensions, and each

dimension contains multiple levels of abstractions defined by concept hierarchies. This

organization provides users/systems with the flexibility to view data from different per-

spectives. A number of OLAP data cube operations exist to materialize these different

views, allowing interactive querying and analysis of the data at hand (Han, Kamber &

Pei 2011).

Figure 2.8 illustrates some typical OLAP operations for multidimensional data. At

the center of the figure is a data cube for UFOP grade DW. The cube contains the di-

mensions time, department, and discipline, where time is aggregated with respect to

quarters, department is aggregated with respect to department names and discipline

is aggregated with respect to the discipline names. The measure displayed is grade.

The roll-up operation (also called drill-up operation by some DW vendors) performs

aggregation on a data cube, either by climbing up a concept hierarchy for a dimension

or by dimension reduction. Figure 2.8 shows the result of a roll-up operation performed

16 Basic Concepts

Figure 2.8: OLAP operation example.

on the central cube by climbing up the concept hierarchy for time. This hierarchy is

defined by a partial order “year � semester � quarter � month � day”, “year � week �
day”. The roll-up operation shows data aggregations by ascending the time hierarchy

from the level of quarter (Q1, Q2, Q3 and Q4) to semester (S1andS2).

When roll-up is performed by dimension reduction, one or more dimensions are logi-

cally removed from the given cube. For example, consider a grade data cube containing

only the two dimensions department and discipline. Roll-up may be performed by

removing time dimension, resulting in an aggregation of the grade by a department

and discipline, rather than by department, discipline and time.

Drill-down is the reverse of roll-up. It navigates from less detailed data to more

detailed data. Drill-down can be realized either by stepping down a concept hierarchy

for a dimension or introducing additional dimensions. Figure 2.8 shows the result of a

drill-down operation performed on the central cube by stepping down a concept hierarchy

for time. Drill-down occurs by descending the time hierarchy from the level of quarter

Basic Concepts 17

to the more detailed level of month. The resulting data cube details the grade per month

rather than summarizing them by quarter.

Because drill-down adds more details to the given data, it can also be performed

by adding new dimensions to a cube. For example, a drill-down on the central cube

of Figure 2.8 can occur by introducing an additional dimension, such as professor or

student.

The slice operation performs a selection on one dimension of the given cube, resulting

in a subcube. Figure 2.8 shows a slice operation where the grade data are selected from

the central cube using the criterion time = “Q′′
1. The dice operation defines a subcube by

performing a selection on two or more dimensions. Figure 2.8 shows a dice operations on

the central cube based on the following selection criteria that include three dimensions:

(department = “AeronauticalEng.′′) and (discipline = “Math1′′or“Math2′′).

The pivot (rotate) operation rotates the data axes in order to provide an alternative

presentation of the data. Figure 2.8 shows a pivot operation where the department

and discipline axes in a 2-D slice are rotated.

There are other OLAP operations. For example, drill-cross executes queries involving

two or more fact tables of a fact constellation schema. The drill-through operation uses

relational SQL facilities to drill through bottom level of a data cube down to its lower

level. Other OLAP operations may include ranking the top K or bottom K items in

lists, as well as computing growth rates, interests, internal rates of return, depreciation,

and statistical functions.

Traditionally used for an analysis of structured data, OLAP has been developing each

year to meet the needs for the analyses of non-structured data, such as geographical and

textual data. This work focuses on textual OLAP, which has as main characteristic, the

analysis and navigation of structured data together with textual data to assist Informa-

tion Retrieval systems.

2.4 CATHY (Contructing A Topical Hierarchy)

CATHY framework promotes the organization of topics present in a data set through

different levels of granularity. That is, from a collection of documents used as input,

CATHY offers a topic hierarchy as output, containing the main topics existing in the

collection, distributed in a determined set of nodes.

18 Basic Concepts

CATHY works with databases of small texts, in particular, content-representative

documents. A content-representative document serves as a concise representation of the

content of the complete document. For instance, the title of a scientific article is usually

content-representative document, as it is a good representation of the topics found in

the complete article.

Besides serving as a concise representation of a document, content-representative

documents are used for the building of the topic hierarchy in CATHY because they are

small, since the approach is extremely sensitive to the amount of terms. The larger the

number of terms, the longer the time required to build the topic hierarchy.

Topic hierarchies built by CATHY are represented by an ordered list of “topical

phrases”, where each child topic is a subset of the father topic. For example, the topics

query processing and optimization can be described by the phrases {“query process-

ing”, “query optimization”,. . . }, whereas the father topic can be described by {“query

processing”, “database systems”, “concurrency control”,. . . }.

CATHY is a “phrase-centric” framework to generate topic hierarchies via recursive

clustering and ranking. Its main characteristics are:

• Phrase-centric approach: instead of using measures centered in unigrams,

CATHY provides topics represented by phrases, that is, n-grams, as a result of

its execution. The framework is able to mine and rank high quality phrases for

each topic.

• Phrases ranking: a function of phrases ranking is defined, which implements four

criteria that intuitively represent high quality phrases: coverage, purity, phraseness

and completeness. Through this it is possible to compare phrases of different

lengths in order to produce an ordered list of phrases of different lengths.

• Recursive clustering to build the hierarchy: the inference of topics is based

on the clustering of a network of terms based on their co-occurrence. For each topic

it is possible to extract its representative subnet and to apply CATHY recursively

to discover subtopics.

2.4.1 Definitions

A phrase is defined as a non-ordered set of terms appearing in the same document.

Basic Concepts 19

• DEFINITION 1 – PHRASE: A phrase P with length n is a non-ordered set of

terms: P = {wx1, ..., wxn|wxi ∈ W}, where W is the set of all the unique terms in

a content-representative document collection. The frequency f (P) of a phrase is

the number of documents in the collection that contain all its n tems.

Phrases are used as basic units to build the topic hierarchy.

• DEFINITION 2 – TOPIC HIERARCHY: a topic hierarchy is defined as a tree

T in which each node is a topic. The root topic is denoted as o. Each topic different

from the root, with a father topic par (t) is represented by an ordered list of phrases{
P t, rt

(
P t
)}

, where P t is the set of phrases for topic t, and rt
(
P t
)

is the ordered

list of weights for the phrases in topic t. For each node t different from the root

node, all its subtopics comprise the set of children nodes Ct = {z ∈ T, par (z) = t}.
One phrase may appear in multiple topics, however, with different values of weight

for each topic.

The frequency of a phrase in each topic is a necessary measure in order to characterize

the concepts of coverage, purity, phraseness and completeness.

• DEFINITION 3 – TOPICAL FREQUENCY: topical frequency of a phrase is

the count of the number of times that the phrase is attributed to topic t. For the

root node, fo (P) = f (P). For each node t different from the root node, with the

set of subtopics comprised in Ct, ft (P) =
∑

z∈Ct fz (P), that is, the topic frequency

of t is equal to the sum of the topic frequencies of its subtopics (children).

The topic inference and the estimate of topic frequency are carried out through the

analysis of the co-occurrence terms network of the database. Precisely, each topic node

t belonging to the hierarchy is associated to a co-occurrence network Gt. The root node

o is associated with the co-occurrence network Go built from the content-representative

document collection. Go consists of a set of nodes W and a set of edges E. A node

wi ∈ W represents a term, and one edge
(
wi, wj

)
between two nodes represents the

co-occurrence of the terms in a document. The number of edges eij ∈ E between two

nodes wi and wj is equal to the number of documents containing both terms. For each

node t different from the root node, a subnet Gt is built through the clustering of the

co-occurrence network of its father node par (t). Gt has all the nodes from Gpar(t), but

only the connections belonging to subtopic t.

20 Basic Concepts

2.5 Information Retrieval

Information Retrieval (IR) is an area of Computer Science focused on supplying infor-

mation of interest to its users (Baeza-Yates, Ribeiro-Neto et al. 1999). It is important

that the information is expressed in an easy manner. To make this possible, information

retrieval works with the stages of representation, storage, organization and access to

the elements of information, such as documents, Web pages, multimedia objects, etc.

Since the basis of this work is related only to textual OLAP, the focus of this section is

retrieving information applied to text documents.

Since the textual OLAP can work with textual multidimensional databases of large

proportions, it is necessary to build specialized data structures for fast retrieval of rel-

evant information – the indexes. Modern information retrieval systems use indexes as

fundamental objects in their structures, favoring fast access to data and making the

consultation processes quicker.

Basically, the information retrieval process starts with the indexing of an input col-

lection. The documents of this collection are indexed aiming at a fast retrieval and

an efficient classification. The mostly used indexing structure is the inverted index,

composed of all distinct words belonging to the collection of documents, and for each

word, the list of documents where such word occurred.

Imagine the collection DOC = {d1, d2, d3} presented in Table 2.3(a), having only

three documents with their respective terms. Table 2.3(b) shows the inverted index

generated from the documents belonging to DOC. Observe that for each term ti, the list

of documents where it occurred is stored. For example, term t1 occurred in documents

d1 and d2, term t2 occurred in documents d2 and d3 and so forth.

After the indexation of the documents belonging to the collection, the retrieval pro-

cess can be started. To perform a research, the user first specifies a query qi, which

reflects his/her need of information. Then the query qi is processed together with the

inverted index to retrieve a subset Dj of all documents belonging to the collection.

The subset Dj contains only documents belonging to the collection that meets the

restrictions imposed by the query performed by the user. Let us assume that qi =

keyword : Database, so, set Dj corresponds to all documents of the database that

contain the term “database”. More sophisticated retrieval systems have more efficient

strategies to retrieve documents, being possible to return documents that deal with

Basic Concepts 21

Table 2.3: Inverted Index example.

(a) Document collec-
tion

DOC Terms

d1 {t1, t2, t3}
d2 {t1, t3, t4}
d3 {t2, t3, t4, t3}

(b) Inverted index

DOC Terms

t1 {d1, d2}
t2 {d2, d3}
t3 {d1, d2, d3}
t4 {d2, d3}
t5 {d3}

topics relevant to the information needed by the user, even though it does not satisfy

directly the query performed. For example, for the query qi, the system may return

documents that do not have the term “database” but do mention “query processing” or

“xml”.

The next stage of the process of information retrieval is to rank the result obtained,

presenting to the user an ordered list of documents according to the relevance presented

in the query that was performed. Different metrics may be used to rank documents

according to a specific query, such as the vector space model (Lee, Chuang & Seamons

1997), boolean model (Lee, Kim & Lee 1994), page ranking (Baeza-Yates & Davis 2004)

and several probability models such as the Probability Latent Semantic Analysis (PLSA)

(Hofmann 1999).

As a result of a query in an Information Retrieval system, the user always obtains

a set of documents more relevant to the terms present in his/her query. This can be

understood as a limitation of the current systems, since the users should be able to

receive sets of more relevant text segments, such as titles, abstracts and paragraphs, in

order to facilitate the user’s final process of analysis.

22

Chapter 3

Related Works

Over the years, different strategies have been started to integrate structured and textual

data in OLAP analysis. They can be classified according to the way they build their

textual hierarchies. There are many works using external knowledge resources and spe-

cialists to build manually their textual hierarchy. Others adopt automatically hierarchy

construction strategies.

Manual textual hierarchies: Text Cube (Lin, Ding, Han, Zhu & Zhao 2008) was

the first work for building a textual hierarchy in OLAP technology. This work defines

the term hierarchy as a tree where the root node has all the terms of all documents and

the leaf nodes have a single term. Intermediate nodes are organized according to the

semantics of lower level nodes. Tools like WordNet (Kilgarriff & Fellbaum 2000) can

help the union of similar terms in each tree level. Important to notice that the hierarchy

tree topology is manually built, including the number of levels in the tree.

Cube Index (Janet & Reddy 2010, Janet & Reddy 2011) adopt the Text Cube con-

cepts to implement three indexes: next-word, directed and inverted indexes. Word and

term have identical meaning in these works. The document hierarchy, presented in (Janet

& Reddy 2011), does not specify any semantic relation among the terms, but rather a

relation between a term and a document. The hierarchical document tree has exactly

five levels: (i) word; (ii) word pair; (iii) sentence; (iv) paragraph; and (v) document.

In (Oukid, Asfari, Bentayeb, Benblidia & Boussaid 2013) a Text Cube approach based

on contexts and named CXT-Cube is presented, in which each dimension is related to

a contextual factor (Document context and User context). The authors proposed an

aggregation operator, named OLAP rank (Orank), to aggregate a set of documents

23

24 Related Works

by ranking them in a descendant order using a vector space representation. CXT-

Cube presented a new measure, where each document is represented by weighted vector,

composed of the weight of the terms computed according to their occurrences and a

relevance propagation method. The relevance propagation uses the concept hierarchy

extracted from an external knowledge source, i.e., a domain ontology related to the

dimension area.

There are many works in textual OLAP improving textual measures. They are

normally based on Text Cube (Lin, Ding, Han, Zhu & Zhao 2008) concepts. The work

(Ding, Zhao, Lin, Han, Zhai, Srivastava & Oza 2011) presented a solution for the problem

of finding the top-k most relevant cells in a Text Cube, reducing the search space,

estimating higher limits of relevance in order to explore the smallest number of cells to

answer the query. The work (Zhang, Zhai & Han 2011) presented a new approach, named

MicroTextCluster Cube (MiTexCube), that includes the concept of “micro-clusters” of

documents as a compact representation of the document collection. The documents

associated to each cube cell are grouped according to their similarities, where each

cluster of documents is considered a pseudo-document. The works (Liu, Tang, Hancock,

Han, Song, Xu, Manikonda & Pokorny 2012, Lee, Kim & Kim 2014) extend the Text

Cube approach, developing more specialized measures to their areas of interest. In (Liu,

Tang, Hancock, Han, Song, Xu, Manikonda & Pokorny 2012), the approach organizes

social media data, generating a new measure named Human Social Cultural Behavior

(HSCB), which performs a linguistic analysis in the documents. In the work (Lee, Kim

& Kim 2014), it is adopted more popular Information Retrieval (IR) measures, such as

term frequency-inverted document frequency (tf-idf) and Language Model (LM).

Topic Cube (Zhang, Zhai & Han 2009) presents an improvement of the Text Cube

approach, using the concept of topics for the creation of textual hierarchy. The hierarchy

no longer aggregates all the terms of the document collection, but only adds the topics

that the user may be most interested in, offering a simpler and more accurate repre-

sentation named topic hierarchy. Topic Cube adopts the Probabilistic Latent Semantic

Analysis (PLSA) model (Hofmann 1999) to calculate the probability of each document

belongs to a node of a previous defined topic tree.

Automatic Textual Hierarchies: The approaches iNextCube (Yu, Lin, Sun,

Chen, Han, Liao, Wu, Zhai, Zhang & Zhao 2009) and EventCube (EventCube: Multi-

Dimensional Search and Mining of Structured and Text Data 2013) implement the tex-

tual measures proposed in both Text Cube and Topic Cube approaches, thus it gathered

many IR measures and PLSA parameters. iNextCube adopts NetClus (Sun, Yu &

Related Works 25

Han 2009) method for helping building automatic hierarchies. The hierarchy works for

specific areas of the DBLP database and the hierarchy levels are known a priori, since

they are extracted from an external knowledge source, but the levels associations in a hi-

erarchy are built automatically using information network analysis. EventCube adopts

CATHY (Wang, Danilevsky, Desai, Zhang, Nguyen, Taula & Han 2013) method to

build a topic hierarchy automatically.

In short, the literature presents strategies to manually and automatically build their

topic hierarchies, however, all the studied approaches presented static topic hierarchies,

that is, build only once and used by all the cube structure. DTCubing is the only

approach that proposes the building of automatic and dynamic hierarchies, at each new

cell of the data cube, in order to produce different and more relevant topics to the user.

As discussed in Section 2.4.1, automatic methods of topic hierarchization are ex-

tremely sensitive to the number of terms, so, approaches which apply such methods

opt for using only one text segment in the stage of building their topic hierarchy, the

title. DTCubing proposes the building of topic hierarchies from different segments (title,

abstract, keywords, etc.), in order to promote greater variety of topics to the user, since

different text segments may have different topics.

Other limitation of the current textual OLAP is in the return of the multidimen-

sional queries. Just like in the current Information Retrieval systems, the textual OLAP

approaches found in the literature present a list of most relevant documents as a result

of their multidimensional queries. Because it uses different text segments to build its

hierarchies, DTCubing presents a list of most relevant text segments as a result of its

queries, facilitating the user’s final process of analysis.

Table 3.1 presents a comparison between the approaches found in the literature with

DTCubing following the four main characteristics discussed in this Chapter: Automatic

Hierarchies, Dynamic Hierarchies, Hierarchies built for multiple text segments and mul-

tiple segment rankings as return of a multidimensional query.

Observe that only the approach EventCube (EventCube: Multi-Dimensional Search

and Mining of Structured and Text Data 2013) is able to supply one of the characteristics

analyzed, as it is the only approach in the literature that proposes a really automatic

building of a topic hiearchy. DTCubing is the only approach that can supply all the

needs presented in the textual OLAP.

26 Related Works

Table 3.1: Comparison of literature approaches with DTCubing

Approach Automatic
Hierarchy

Dynamic
Hierarchy

Hierarchies
by Segments

Multiple
Segmented
Rankings

TextCube × × × ×
Cube Index × × × ×
CXTCube × × × ×
TopCells × × × ×

MiTexCube × × × ×
SocialCube × × × ×
TopicCube × × × ×
iNextCube × × × ×
EventCube X × × ×
DTCubing X X X X

Chapter 4

DTCubing Approach

In this Chapter, the DTCubing approach is described in details. Section 4.1 presents the

concept of text segments, used in the building of topic hierarchies. Section 4.2 presents

the formal definition of a DTCubing cube, as well as the DTCubing cell and measure.

Finally, Section 4.3 details the topic hierarchies built in DTCubing.

4.1 Text Segments

A text segment can be defined as any set of subsequent terms belonging to a document,

following a pattern for its structuring. In a collection formed by scientific articles, for

example, each document (i.e., article) can be segmented into smaller units, such as title,

abstract, sentence, paragraph or any other type of segmentation desired. Each unit of

representation of a document can be defined as text segment. It is possible to notice

that an equivalence relation between two sets of segments where the union of the terms of

each set separately corresponds to the same final content. The union of all paragraphs of

a document must be equivalent to the union of all sentences in this document, considering

that both segments represent the same term’s set, since all sentences are present in some

of the paragraphs. One-time segments are named unique segments, such as scientific

article’s title or abstract.

27

28 DTCubing Approach

4.2 Data Cube and Cube Cell Concepts

A data cube is composed of base cells and aggregate cells. A multidimensional aggre-

gate cell contains at least one dimension attribute value that equals ALL(*). A base

cell contains only attribute values different from ALL. The ALL wildcard represents

all attribute values of a specific dimension attribute. In range cubes (Silva, Hirata &

de Castro Lima 2015), the wildcard ALL can represent some attribute values, so a single

wildcard is not enough for full range cubes.

DTCubing is composed of structured dimensions, topic hierarchies and ranking mea-

sures. It also has base cells and aggregate cells, but the ALL is adopted only in structured

dimensions, producing a lattice of cuboids in the same way a traditional and structured

data cube does. Bottom up, top down or hybrid computations can be performed in the

same way they occur in non-textual OLAP.

A DTCubing DTC = {D1, D2, ..., Dn, T, R} where Di is the i-th structured dimen-

sion in a data cube. A dimension Di is composed of multiple hierarchies, so Di =

{{A1, A2, A4, ...}, {A3, A5, ...}, ..., {A1, A34, ...}} orDi = {{A1, A2, A3, A4, ..., A34...}}, where

each {Ai, Aj} is a hierarchy of a structured dimension of DTC (e.g., time dimen-

sion composed of several attribute hierarchies {{year,month},{year,month,hour},. . . }).
The dimension T = {DOC, TH1, TH2, ..., THn} is the text dimension, i.e., the doc-

ument collection DOC and all possible topic hierarchies {TH1, TH2, ..., THn}. R =

{R1, R2, ..., Rn}, stands for all possible rankings built in DTCubing where Ri refers to

the ranking built from the THi hierarchy.

A DTCubing cell is represented as C = (a1, a2, a3, ..., an,HS1
,HS2

, ...,HSm
,R), where

each ai is a structured attribute value of any dimension. Each ai attribute value is

associated with a unique dimension. Each DTCubing cell aggregates a text segments’

set {[S1], [S2], ..., [Sm]} obtained from DOC and presented hierarchically , where eachHSi

is the topic hierarchy built from the set of text segments [Si]. The set [Si] represents

the set of segments from the type i, which may be equal to abstract, reference, keyword,

sentence or title of a scientific article, for example. A DTC is composed of cells as any

data cube.

R is the C measure, composed of: {RS1
,RS2

, ...,RSm
}, where RSi

is the i-th segment

ranking built from [Si] (e.g., sentence ranking, title ranking, keyword ranking and abstract

ranking, as a query result to users). In the example, there are m segment types per

document in DOC.

DTCubing Approach 29

Each DTCubing hierarchy is a tree data structure, where each tree node is a distri-

bution θj of topics. This way, HSi
= {θ1, θ2, ..., θt}, where θj represents the j-th topic

distribution of HSi
, and t is the number of nodes in HSi

. Each distribution can be

represented as θj = {t1, t2, ..., tz}, where each ti represents a topic.

4.3 Multiple Topic Hierarchies per Cube Cell

Figure 2.7 of section 2.2 presents a good illustration of how the textual OLAP cubes cur-

rently structured. Observe that the cube presents two structured dimensions (Conference

and Time) and only one topic hierarchy, presented as a vertical dimension highlighted

in red. Figure 4.1 below presents an illustration of the DTCubing cube for the same

dimensions Conference and Time. Observe that now there is no longer that only topic

hierarchy represented by the vertical axis. Now the hierarchies are dynamic and built

at each new cell of the cube.

As a criterion of simplification, only the hierarchies of cells (Conference = SBSI,Year =

FEB98) and (Conference = JCIT,Year = FEB98) were illustrated, however, mul-

tiple hierarchies are built for any other cell of the cube.

Figure 4.1: DTCubing approach
m Hierarquias

SBSI
JCIT

JAN 99

FEB 99

JAN 98

FEB 98

Conference

Tim
e

VLDB

Hs1
Hs2

Hsm

Each DTCubing hierarchy is presented in the form of a tree, where each node is

represented by a list of most relevant topics using the document collection of the topic

tree. The topology of the tree can be specified according to the user’s need by updating

the number of hierarchical levels.

The number of hierarchies per cell depends on the type of query performed by the

30 DTCubing Approach

user. Let ci be a specific data cube cell and Sci = {[S1], [S2], ..., [Sm]} the set of text

segments associated with this cell. If ci were obtained from the query q1 = (Conference =

IJCAI,Year = 2010), therefore containing filters only in the structured dimensions

(Conference and Year, respectfully), DTCubing builds a topic hierarchy for each [Si] ∈
Sci that has no equivalence relation with any other set of segments. For those sets

that have an equivalence relation, only one set is selected, giving rise to one more topic

hierarchy. As an example, the topic hierarchy for sentences would not be computed

because the hierarchy for paragraphs has already been computed.

Formally, the setHci
= {HS1

, ...,HSk
} represents the K hierarchies built for ci, where

HSi
is the hierarchy built from the text segments [Si]. The value K is always less than

m because some of the segments of Sci are pruned. For the case where ci is obtained

from a query q2 = (Conference = V LDB,Keyword = ”textual and spatial OLAP”),

presenting a filter in the textual dimension, DTCubing builds a topic hierarchy for each

[Si] ∈ Sc1 without pruning. The difference is that only the segments that have the

terms textual, spatial and OLAP are used to build the hierarchies. If a paragraph has a

particular term occurrence, it does not mean that all of its sentences have the occurrence

of the same term. In this case, the set of hierarchies Hci
= {HS1

, ...,HSm
} is built for

ci.

Chapter 5

DTCubing Architecture

In this Chapter, the DTCubing Architecture is described in details. The DTCubing

approach is partitioned into four steps: Indexing, Filtering, Hierarchy Generation and

Ranking. The solution computes range cubes, i.e., data cubes composed of cells that

represent full or partial aggregations, so the traditional ALL value exists, but also several

other partial ALL values, originated from filters, such as between, similar, less than,

some, contains and many more. The exponential behavior turns impractical full range

cube strategies.

Supose an ABC relation with cardinalities CA, CB and CC equal to 2. Only with this

small relation, there are (CA + 1)× (CB + 1)× (CC + 1) = 27 tuples in a traditional full

data cube. These tuples can be represented as t1 = (A1, B1, ∗,m), t2 = (A2, B1, ∗,m),

t3 = (A1, B2, ∗,m), t4 = (A2, B2, ∗,m), t5 = (A1, ∗, C1,m), ..., t27 = (∗, ∗, ∗,m), onde

A1, A2, B1, B2, C1 and C2 are dimension attributes, m is a numerical value representing

a measure and ”*” is a wildcard representing all values of a cube dimension.

Now consider a new wildcard ”**” representing two attributes of one same dimension,

enabling tuples in the form t28 = (A1A2, B1, C1,m), t30 = (A1, B1B2, C1,m) and many

others. Instead of ((CA+1)× (CB+1)× (CC+1) computed tuples, a range cube can have

2CA × 2CB × 2CC tuples. In our example, the range cube would have 22× 22× 22 = 64

tuplas from the ABC relation. This behavior can be better detailed in (Silva, Hirata &

de Castro Lima 2015, Silva, Hirata & de Castro Lima 2016).

The four steps of DTCubing algorithm are organized as Figure 5.1 illustrates. Ini-

tially, the input document collection is traversed and indexed by the Indexing step,

resulting in the 1D-cuboid, i.e., all the dimensions are aggregated individually. The

31

32 DTCubing Architecture

Indexing step is only performed again if there is a relation update, otherwise, it is only

executed once.

Figure 5.1: DTCubing Architecture steps

Document
Collection

Indexing Dimension A TIDs

Dimension B TIDs

Dimension n TIDs

Partial Cubes

Filtering

Fill = {f1, f2, ..., fn}

Result Cells

C = {[S], [S], ..., [S]}i 1 2 m

Hierarchy
Generation

{H , H Hs s s1 2 p, ..., }

θi,j

Ranking

Start

Finish

Hsj

[C C C]1, 2, ..., n

After Indexing the partial cubes, it is possible to perform the other steps repeatedly,

where the iterative behavior is illustrated by the dashed arrows of Figure 5.1. The

Filtering step starts with the definition of a set of filters Fil = {f1, f2, ..., fn} applied to

the dimensions of the cube. In response to this step, a set named resultCells is obtained,

containing all the cube cells that meet the restrictions imposed by the application of the

filters.

For the next step to be started, the user must select one of the cells ([c1, c2, , ..., cn])

returned by the Filtering step. Each cell returned by the Filtering has a set of text seg-

ments {[S1], [S2], ..., [Sm]}, so in Hierarchy Generation step a hierarchy is built for each

set of segments associated with the selected cell, originating the set {HS1
,HS2

, ...,HSp
},

where p = m if there is at least one filter applied to the textual dimension or p < m oth-

erwise. The last step starts when the user selects a node θj from hierarchy HSi
, starting

the Ranking step. The Ranking step presents the top-k text segments most relevant to

the user. After the Ranking step, the user can start a new query pipeline or return to a

previous step. In the next sections, the algorithms that make up each step are detailed.

5.1 Indexing

In the Indexing step a document collection DOC is defined as a set of tuples, where each

tuple t is formalized as t = (TID,D1, D2, ..., Dn, doc1, doc2, ..., docd), where n is equal to

the number of structured dimensions and d is the number of documents associated with

DTCubing Architecture 33

Table 5.1: Indexing Step example.

(a) Document collection

TID A B C DOC

1 a1 b1 c1 doc1 = {w1, w2, w3}
2 a1 b2 c2 doc2 = {w2, w3}
3 a2 b2 c3 doc3 = {w3, w4, w5}
4 a3 b3 c3 doc4 = {w1, w2, w5}

(b) dtc - Partial Cube

Att Values TIDs List

a1 1,2

a2 3

a3 4

... ...

c3 3,4

w1 1,4

w2 1,2,4

w3 1,2,3

w4 3

w5 3,4

tuple t. Each structured dimension is in the form Dj = {at1,j + at2,j + ...+ atC,j}, where

C is the cardinality of the dimension and ati,j corresponds to the i-th attribute of the

dimension j. The symbol + corresponds to the logical operator OR. TID corresponds

to a single identifier, ensuring that there is no other equal tuple in DOC.

Table 5.1 presents an example of the Indexation process in DTCubing. The DOC

collection illustrated in Table 5.1(a) is used as input for the Indexing process, which

produces as output a data cube in the form dtc = (...(iTat1,j , iTat2,j , ..., iTatn,j
)..., T, R)

represented in table 5.1(b). Each internal element (iTat1,j , iTat2,j , ..., iTatn,j
) corresponds

to the set of inverted tuples of a specific dimension. Each iTat1,j = (ati,j, T ID1, ..., T IDP)

represents the inverted list of tuples of the attribute ati,j, storing a set of tuple identifiers

(TID1, ..., T IDP), representing the P occurrences of ati,j in DOC.

For example, the attribute a1 presented in Table 5.1(a) occurred in tuples 2 and 3,

whereas the attribute a2 occurred only in tuple 3, and so on. Observe that when reaching

the textual dimension, its documents are only broken in terms and indexed in the same

manner as the structured attributes Considering the document terms as attributes and

storing them individually in an inverted index facilitates the application of filters such

as ends-with, different, contains or similar in the textual dimension.

T represents the textual dimension of the cube and R a set of rankings built from

34 DTCubing Architecture

the text segments considered, as described in Section 4.2.

The Algorithm 5.1 presents the routine of the Indexing step implemented in this

work. The variable sortedC (line 1) stores the cardinality of each dimension, useful for

optimize the aggregations computation in the subsequent steps. The variable invertedT

(line 2) stores all the attributes of DOC, as well as their TID lists. Besides the attributes

of the structured dimensions, document terms of each tuple are also indexed and stored

in invertedT.

Algoritmo 5.1: Indexing Step Algorithm

input: DOC

int[]sortedC;1

Map 〈att, Set 〈TID〉〉 []invertedT ;2

Map 〈docID, segments〉 []S;3

while DOC has tuples do4

i = 1;5

tuple t = DOC.tuples;6

while t has dimensions do7

if t.dimension.isStructured() then8

update or create new entrance in invertedT for each attribute;9

else10

d = removeStopWords(t.getDoc());11

segments = splitSegments(d);12

S.put(i, segments);13

i+ +;14

foreach term in d do15

update or create new entrance in invertedT for each term;16

update sortedC to mantain dimensions according to their cardinalities;17

return dtC;18

With the variable invertedT it is possible to obtain the relation “attribute”-“ tuple”

and “term”-“tuple”, however, for the step where the hierarchies are built, it is necessary

to efficiently obtain the text segments belonging to the documents associated with each

tuple. Therefore, the variable S (line 3) stores the text segments of each document

belonging to DOC, establishing the relation “document”-“segments”. For each tuple

of DOC, the algorithm initially indexes the structured dimensions (lines 7-9). If an

DTCubing Architecture 35

attribute ati has been read for the first time, a new input is created in the variable

invertedT. Otherwise, the TID list of ati is updated with a new occurrence. When it

is a textual dimension, the algorithm removes the stopWords from each document (line

11), separating its text segments (line 12) and adding them to the variable S (line 13).

In sequence, the algorithm indexes all the document terms, as it does for the structured

dimensions (lines 15-16).

5.2 Filtering

The Filtering step in DTCubing covers the application of point filters, range filters

and a combinatorial filter, named inquire (Silva, Lima & Hirata 2013, Silva, Hirata &

de Castro Lima 2015, Li, Han & Gonzalez 2004). In this step, the user selects the cells

that are used for the topic hierarchies building. A point filter has only the equality

operator. A range filter can be classified in: greater than, less than, between, different,

contains, some and similar. All the range filters include the attribute ALL in its result.

Lastly, an inquire filter has only one operator that gathers all the attribute values of a

dimension plus ALL, resulting in a sub-cube. One or more cube cells are obtained from

the Filtering step.

The Algorithm 5.2, presented for the Filtering process in DTCubing, has as input

the partial cube dtc, obtained from the Indexing step, and the set Fil = {f1, f2, ..., fn}
of filters defined by the user. Each filter fi ∈ Fil is applied to a specific dimension of

the cube, so the algorithm first obtains the attribute values of each dimension, storing

them in the variable attValues (lines 3-5).

Suppose that the set of filters applied is the set Fil : (Author = Jiawei Han,

Conference = ALL,Ano = 2014−2017,Keyword ≈ “OLAP”). Table 5.2 corresponds

to the values of attributes obtained from each dimension that meet the restrictions of

the filters contained in Fil.

After defining the attribute values of each dimension, the algorithm produces all

the possible aggregations with the values contained in attValues (line 6). Table 5.3

corresponds to all possible aggregations formed with the values of attributes present in

Table 5.2.

The implemented aggregation strategy is bottom-up, starting with 1D cuboids to

produce the 2D cuboids, then adopts 2D to produce 3D cuboids and so on. It is im-

36 DTCubing Architecture

portant to stress that the aggregation process uses external memory and can generate

empty tuples that do not exist in the document collection.

Table 5.2: Attribute values

Author Conference Year Keyword

Jiawei Han VLDB 2014 OLAP

IJCAI 2015

SIGIR 2016

AAAI 2017

ICIP

...

Table 5.3: Aggregation Values

Apex 1-D 2-D 3-D 4-D

ALL J. Han J. Han, VLDB J. Han, VLDB, 2014 J. Han, VLDB, 2014,
OLAP

VLDB J. Han, 2014 J. Han, VLDB, OLAP J. Han, IJCAI, 2015, RO-
LAP

IJCAI VLDB, 2014 ... J. Han, VLDB, 2014,
OLAPING

2014 J. Han, OLAP VLDB,2015,OLAP ...

... J. Han, IJCAI, 2014,
OLAP

...

Up to this step, the aggregations have been processed and stored in disc. For each

attribute value of a tuple, its TIDs list is retrieved. From left to right an attribute value

of the tuple and its TIDs are retrieved and intersected with the TIDs that represent

the final result of the tuple (line 7). If a partial intersection is empty, the method

interrupts its execution. There is a cache mechanism for storing the partial results of

the intersections being performed. Many partial intersections are avoided with cache.

A thread pool was adopted to consume the results of the line 7 and to calculate the

aggregated cells that make up the Filtering step (line 8).

DTCubing Architecture 37

Algoritmo 5.2: Filtering Step Algorithm

input: dtC, Fill

Set〈attribute〉[] attValues;1

File aggFile;2

foreach fi in Fill do3

atts = attributeValues(dtc, fi);4

attValues.add(atts);5

generateAggregations(attValues, aggFile);6

resultCells = parallelIntersection(aggFile, dtc);7

return resultCells ;8

5.3 Hierarchy Generation

The Hierarchy Generation step starts when the user selects one of the cells returned by

the Filtering step. The sets of text segments in the selected cell are used for the build

of several hierarchies.

This step can be illustrated according to Figure 5.2. The cell ci = (JiaweiHan ,

V LDB, 2014) corresponds to the cell chosen by the user from the set of cells returned as

an answer to the Filtering step. Each cell aggregates one set of text documents, which,

in turn are related to a set of text segments. So, in this step, one hierarchy is built for

each set Si related to ci, taking into account the restrictions presented in Section 4.3.

Figure 5.2: Hierarchy Generation example

38 DTCubing Architecture

As described in Section 4.2, each hierarchy HSi
is organized as a tree, where each

node of the tree is represented by a distribution θj of topics. Furthermore, each hierarchy

stores a set [Si] of segments and a probability matrix P , that presents the probability of

each topic ti for each distribution θj. Therefore, the matrix P represents the probability

of each topic belonging to each node of the tree hierarchy.

The Algorithm 5.3 represents the creation of the topic hierarchies in DTCubing. The

algorithm input is a cell ci containing a TID list, the variable S containing the mapping

of each document to its sets of text segments, and a boolean textF ilter, which assumes

the value TRUE when ci is obtained by at least one filter in the textual dimension and

FALSE otherwise. Topic Hierarchies (line 1) is a vector responsible for storing the set

of topic hierarchies built for ci.

The function getSegments (line 2) traverses all the text segments of ci, storing in

Sci the sets of related text segments. Each position of Sci stores different text segment

aggregations, so, for instance, the first position of Sci can return all title grouped in ci,

the second position can return all abstracts aggregated in ci and so on. Then, for each

set [Si] of segments belonging to Sci , a new hierarchy HSi
is built. If the value of the

variable textF ilter is FALSE, some segments are pruned, as explained in the Section

4.3.

The function createHierarchy, presented in line 5, is responsible for calling the

CATHY method (Wang, Danilevsky, Desai, Zhang, Nguyen, Taula & Han 2013). The

probability matrix P is obtained from CATHY and it is associated with each hierarchy

HSi
. In line 6, each HSi

is added to the vector Topic Hierarchies which at the end of

the process contains the hierarchies built from all the sets of segments of Sci . Finally,

the hierarchies set is added to the cell ci (line 8), thereby allowing the user to browse

Algoritmo 5.3: Hierarchy Generation Step Algorithm

input: ci, S, textFilter
Topic Hierarchies[];1

Sci = getSegments(ci, S, textFilter);2

i=0;3

foreach [S〉] in Sci do4

HSi
= createHierarchy([Si]);5

Topic Hierarchies[i] = (HSi
);6

i++;7

ci.setHierarchies(Topic Hierarchies);8

DTCubing Architecture 39

through multiple topic hierarchies partitioned according to the defined text segments.

In this step the user can evaluate the textual content to improve his analytical decisions.

5.4 Ranking

The Ranking step starts from the moment the user selects a particular node from one of

the topic hierarchies given in return by the system on the previous step. The result of

the Ranking step is a ranking of the most relevant text segments to the topic distribution

selected.

In the previous stage the user received as an answer a set of topic hierarchies, built

from different text segments. Suppose that he/she has chosen to navigate through the

node of the hierarchy Habs, built from the abstracts of the aggregated documents in ci.

Figure 5.3 illustrates the moment when the user clicks on node n2 of Habs, receiving a

ranking of the more relevant abstracts to the topics presented there. To receive a ranking

of a different text segment, the user should choose to navigate through the nodes of other

hierarchy, built from the segments title, abstract, or any other existing one.

Figure 5.3: Ranking example

As in (Zhang, Zhai & Han 2009), DTCubing adopts a probability distribution in order

to obtain the coverage measure of each segment for the topic distributions presented by

the nodes of the selected hierarchy.

A topic belongs to a text segment, and therefore, it is possible to calculate a coverage

measure of a determined text segment sx for a given distribution θj, by simply adding

40 DTCubing Architecture

the probability values of the topics found in sx. Thus, let p(θj|sx) =
∑

ti∈sx p(ti|θj) the

probability of the segment sx to cover the distribution θj, represented by the sum of the

probability of each ti ∈ sx according to the distribution θj. Each p(ti|θj) distribution is

obtained through P matrix resulting from the CATHY’s method execution.

The Algorithm 5.4 calculates the coverage of each segment belonging to [Si] (set of

aggregated type i segments in the selected cell) according to the distribution θj (line 3).

At the end, the algorithm sorts the coverage values to present the ranking of segments

(line 5), where the segments with the highest coverage value is presented first.

Algoritmo 5.4: Ranking Step Algorithm

input: θj, [Si], P
Map 〈SegmentID, cover〉 ranking;1

foreach sx in [Si] do2

cover = Covering(θj, sx, P);3

ranking.put(sx.getID, cover);4

sort(ranking);5

return ranking ;6

Chapter 6

Hypothesis Validation

This Chapter validates the hypothesis introduced in the beginning of this work (Chapter

1). In the first hypothesis we assumed that, in order to meet the specific needs of the

users, it is not enough to build a single topic hierarchy from the entire document collec-

tion, but rather to create, as filters are applied to the query, dynamic topic hierarchies

built from subsets of the documents from the collection. Thus, we assume that the dy-

namic hierarchies offer exclusive topics to the user, totally different from those presented

by the literature, formalized as General Hierarchy (GH). In addition, we assume that

the topics listed by the DTCubing hierarchies become much more relevant to the current

data set, tending to become more specific as the query becomes more specialized.

The second hypothesis is that many queries aim to return more specific text segment

rankings, such as paragraph, abstract, chapter, keyword, sentence, or any other. For this,

we demonstrated that the segment rankings obtained by DTCubing are very different

from the rankings presented in the literature, since the relevance of each segment/doc-

ument is affected by the topics presented by each hierarchy.

The database used for the experiments was obtained from (Tang, Zhang, Yao, Li,

Zhang & Su 2008). The database contains a set of scientific articles of DBLP. Each

article contains: title, author, year, conference and abstract. The text attributes title

and abstract are indexed as textual dimensions and the other attributes are indexed as

structured dimensions. We considered the 30 conferences with the largest number of

articles, summing up 90.000 scientific articles.

Each topic hierarchy was built following an identical tree topology, containing 13

nodes organized into three hierarchical levels, similar to (Zhang, Zhai & Han 2009).

41

42 Hypothesis Validation

The first level aggregates only the root node, which has 4 children nodes that build the

second level. Each child of the root node has a total of 2 children, totaling 8 nodes in

the third and last level. Each hierarchy node has a total of 10 topics, minus the root

node that represents the union of all the topics contained in the tree. A prototype of

the DTCubing approach is available in http://www.dtcubing.programo.com.br/.

6.1 Multiple Topic Hierarchies Qualitative and Quanti-

tative Analysis

The objective is to compare the difference among the topics listed for GH versus the

multiple dynamic hierarchies proposed in DTCubing. We considered that the hierarchy

of EventCube (EventCube: Multi-Dimensional Search and Mining of Structured and

Text Data 2013) can be built from any text segment so that the comparisons can be

fair. From 30 conferences selected there were 60 hierarchies produced for DTCubing,

being 30 hierarchies for title and 30 for abstract text segments. Only two GH hierarchies

were built, one for title and the other for abstract text segment. All the topics from

DTCubing hierarchies were compared with GH hierarchies.

Figure 6.1 presents a set of hierarchies built from two different returned cells. The

cells were obtained using point filters where the conference is equal to VLDB or GECCO.

The first column represents two GH hierarchies, the second column the VLDB hierarchies

and the third column the GECCO ones.

Figure 6.1: Hierarchies from DTCubing cells versus hierarchies from GH cells

data
system /

HG HVLDB HGECCO

Hypothesis Validation 43

The text segments were title and abstract. The conferences selected belong to different

research areas, emphasizing the differences among the topics of the trees. The highlighted

topics (green, blue, and yellow) represent identical topics using different text segments.

The conference VLDB has no topics in common with GH and GECCO, regardless the

text segment used. The same occurs to GECCO conference. Furthermore, the number

of equal topics using different text segments was small. Finally, the topics presented

for VLDB and GECCO are more specific to these conferences areas and GH topics

presented computer science general topics. All these results reinforce our hypothesis

that the topics become more specific and different. The same evidences were detected

using other conferences and text segments.

Tests were performed with textual filters, as shown in Figure 6.2. The term “OLAP”

was used at Filtering step to build the topic hierarchies from different text segments of

VLDB conference. The first hierarchy presented, built from the title text segment,

has topics related to the VLDB conference, but does not present a good specificity to

the term “OLAP”. The justification is because the title has few terms to represent

the core innovations of a paper where “OLAP” is not frequently present. In contrast,

the topics presented by the hierarchies built from the abstract and from the sentence

text segments are much more specific, being the topics “olap”, “rolap”, “molap”, “data

cube”, and “star queries” totally related to the filter applied to the textual dimension.

Figure 6.2 analysis gives reinforcement evidences for the first hypothesis presented on

this work and demonstrates that the topics selected by DTCubing hierarchy are getting

more relevant to the current data set.

Figure 6.2: Hierarchies built from the text segments title, abstract, and
sentence from VLDB conference

base mvs /
business sql /

olap
functionality /
base refresh /

relational
olap /

buffer
one-pass /

multidimensional
data /

data molap /
data size/

buffer molap

rolap /
hierarchies

rolap/
lattice /

hierarchies
construction /

relational
efficient

data
transactions /
warehouse

data /
hierarchical

transformation /
star queries /

queries olap /
data olap /

olap
aggregation /

imprecise
queries /

rolap /
molap /

olap
functionaties

relational
olap /

sql olap /
olap

applications /
relational sql

data olap /
cube data /
olap cube /
cube space

data streams /
xml queries /

nearest
neighbor /
keyword
search

database
systems /
relational

database /
query

processing /
recovery

transactions

management
system /
database
design /

large base /
selectivity
estimation

data streams /
search
engine/

web services /
clustering

data /
dynamic data
hierarchical

data

Title Abstract Sentence

The cosine (Huang 2008) and entropy (Bendersky, Croft & Diao 2011) metrics where

used to make a quantitative analysis of the multiple DTCubing hierarchies and analyze

44 Hypothesis Validation

selected topics’ exclusivity and specificity.

The cosine metric (Huang 2008) quantifies the similarity between two sets, being

defined within interval [0, 1]. The closer to zero, the smaller the similarity value between

the sets and the closer to 1, the greater the similarity value. Let −→na and −→nb be two nodes

represented by their term vectors. The cosine similarity between them is given by:

SIMc(
−→na,
−→nb) =

−→na · −→nb

|−→na| × |−→nb|
(6.1)

where −→na and −→nb are multidimensional vectors, with each dimension representing a term

with its weight (non-negative) in the document. Each node ni of GH is compared to

all the nodes of the DTCubing hierarchies, generating a set of similarity matrices. For

better visualization, the similarity matrices are presented as heat maps.

Let GHT and GHA be the general hierarchies built from the title and abstract text

segments, respectively. Figure 6.3 illustrates the comparison of the DTCubing hierar-

chies which presented the largest (color red) and the smallest (color blue) similarities

if compared to GHT and GHA. The VLDB and IEICE hierarchies (letters a and b)

had the most different and the most similar topics if compared with GHT using the

title text segment. If the text segment is the abstract, the DTCubing hierarchies built

for conferences AAAI and IEICE (letters c and d) are the most different and the most

similar when compared with GHA.

Most cosine results illustrated in Figure 6.3 are close to zero, what produces a white

heat map. Even the HIEICET
and HIEICEA

hierarchies (letters b and d), considered

the most similar ones, had very small cosine values. The highest similarity value using

cosine metric is equal to 0.1445, what means that DTCubing and GH hierarchies are

very different. Applying cosine metric is possible to verify the low similarity of the

selected DTCubing hierarchy topics when compared to literatures selected topics. This

is shown on Figure 6.3 and proves this work’s first hypothesis.

The metric entropy (Bendersky, Croft & Diao 2011) is applied in order to obtain

mathematical proof that besides generating different topics, the dynamic hierarchies

built in DTCubing become more specific according to the user’s query. The entropy is

applied separately to obtain the level of cohesiveness of a set. The smaller the value

of the entropy, the more cohesive the analyzed set is, tending to be more focused on a

Hypothesis Validation 45

single topic (Bendersky, Croft & Diao 2011).

Figure 6.3: Heat maps comparing GH and DTCubing hierarchies

Let Hi be a topic hierarchy in DTCubing. The entropy metric was calculated for

the concatenation of the topics of all the nodes of Hi. Each topic is composed of one or

more terms, therefore, let D = {t1, t2, ..., tn} be the set of all the terms that make up

all the topics listed in Hi. The entropy is calculated according to the Equation 2:

−
∑
ti∈D

pD(ti) log pD(ti) (6.2)

where the probability of a term ti is calculated by pD(ti) =
tfti,D∑

tj∈D tftj ,D
. Figure 6.4

presents the entropy values for several hierarchies built in DTCubing. All the hierarchies

were built from the segment title. The first value of entropy, represented in orange,

corresponds to the value calculated for GHT . The second entropy value is represented

46 Hypothesis Validation

in blue and corresponds to the entropy value calculated for the hierarchy built from the

titles belonging to the cell obtained by the filter (Conference = ICC). The other entropy

values are represented in gray, referring to the hierarchies built from cells obtained by

the filters (Conference = ICC,Year = 2007), (Conference = ICC,Year = 2008), . . . ,

(Conference = ICC,Year = 2015). It is possible to observe that the entropy values

become smaller as filter becomes more specific.

The same behavior was observed when the text segments changed, i.e. when abstract

and sentence were used. Thus, it is possible to prove that the DTCubing hierarchies not

only present exclusive topics but also built more specific context when the user performs

a query. That being said it is possible to finish proofing our first hypothesis

Figure 6.4: Entropy values of GH and different DTCubing hierarchies

6.2 Segmented Rankings Quantitative Analysis

Let HciT
and HciA

be the hierarchies built from the title and abstract text segments in

a specific cell ci. How different are the rankings of HciT
and HciA

nodes when compared

with GHT and GHA nodes? The comparison of the rankings was done with the metric

jaccard (Huang 2008). The jaccard coefficient is a similarity metric calculated by the

Hypothesis Validation 47

intersection of two sets, divided by the union of the same sets (Huang 2008). The metric

is calculated by the Equation 3:

SIMj(A,B) =
|A ∩B|
|A ∪B|

(6.3)

Just like cosine, jaccard is contained in the interval [0, 1], so the closer to 1, the

greater the similarity between the compared rankings, which means high redundancy.

Each ranking returned by HciT
nodes is compared to all the other rankings obtained by

the GHT nodes. The result is a similarity matrix, where each value corresponds to the

jaccard value obtained by the comparison of the rankings returned by the node ni of

HciT
and by the node nj of GHT . The same idea is valid for the hierarchies HciA

and

GHA. Furthermore, we investigate the impact of k size, where k represents the number

of text segments presented in each ranking.

The jaccard values obtained with rankings’ comparisons for k = 10 were very low,

being 0.1764 the highest value obtained among all the comparisons. Figure 6.5 presents

a set of jaccard similarity matrices represented in heat maps. Each one of these cor-

responds to jaccard values gotten from HACMT
and GHT nodes rankings comparison,

where HACMT
is the hierarchy built from ACM’s conference documents. HACMT

was

selected for having greatest jaccard’s values among observed results.

Even presenting the highest jaccard values, the rankings obtained by the nodes of

HACMT
still differ greatly from the rankings presented by GHT . As we increase the value

of k, the rankings tend to contain more and more equal documents, becoming more and

more similar. However, even for k = 100 it is possible to observe that the majority

of the cells represented in the heat maps of Figure 6.5 had very light tonality. More

precisely, only four cells have a jaccard value greater than 0.3, with the largest jaccard

value obtained being equal to 0.57.

These results prove that the documents considered more relevant by DTCubing are

different from those considered more relevant by the literature which validates the second

hypothesis of this work.

Besides the results were different, the DTCubing rankings tend to be more accurate,

thus better serving the expectations of the users. We can conclude that always classifying

the documents of each cell in the same nodes of the GH may not be the best strategy

48 Hypothesis Validation

for presenting the results. This is because the GH has very generic topics, which makes

documents important to specific contexts, having their relevance reduced in the ranking

process.

Figure 6.5: Jaccard ranking values from GH versus DTCubing for ACM con-
ference

Chapter 7

Performance Evaluation

In this Chapter, we present the performance evaluation of the algorithms created for

the Indexing, Filtering, Hierarchy Generation and Ranking steps. The algorithms were

developed in Java 64 bits (version 8). All the experiments were conducted on a quadcore

computer Intel(R) Core(TM) i5-4200M with 2.5GHz, 8GB of memory RAM DDR3 800

MHz. The operating system used for the execution was the Windows 10 pro. All the

tests were performed five times and the longest and shortest times were removed with

allowed computing the arithmetic average for the remaining values.

The data cube used for performance evaluation was the same data cube described in

Section 5.1 and contains a total of 90.000 scientific articles. Each tuple of the document

collection aggregates only one document. The cube has three structured dimensions

(conference, year and author) with cardinalities 30, 54 and 80.892, respectively. The

dimensions title and abstract were indexed as textual dimensions. Both textual dimen-

sions have the same cardinality, containing 90.000 entries each. The textual dimension

title indexes a total of 53.281 different terms even if the dimension abstract indexes a

total of 288.869 terms.

7.1 Indexing Step Runtime

As described in Chapter 5, if there is no update in the document collection used as

input for DTCubing, the Indexing step is performed only once. The indexing algorithm

was tested with three different document collection sizes, those being DOC1, DOC2 and

DOC3. The collection DOC1 has a total of 22.500 tuples yet the collection DOC2 has

49

50 Performance Evaluation

Table 7.1: Runtime for the Indexing step for document collection DOC1, DOC2

and DOC3

DOC1 DOC2 DOC3

Time(s) 8,706 16,6888 38,4434

a total of 45.000 tuples and the collection DOC3 has a total of 90.000 tuples.

The three indexed collections had duplicated the number of tuples and according to

Table 7.1 the runtime also duplicates, evidencing that the indexing algorithm degrades

linearly according to a linear increase of the number of tuples of a document collec-

tion. This behavior is expected in the indexing of partial cubes, as presented in (Silva,

Lima & Hirata 2013, Silva, Hirata & de Castro Lima 2015, Li, Han & Gonzalez 2004).

DTCubing indexes only the 1D cuboids of the relation, including the textual dimensions

with numerous terms, therefore it is fast even in scenarios where massive relations are

considered.

7.2 Filtering Step Runtime

This section evaluates three types of filter in three different queries: point filter, range

filter and inquire filter. Table 7.2 illustrates nine types of experimented queries, where

each row illustrates the type of the filter (point (P), range (R) or inquire (I)) and each

column corresponds to the number of dimensions filtered.

Table 7.2: Point, range and inquire filters

1D 2D 3D

P Conf=VLDB Conf = VLDB, Year = 2007 Conf = VLDB, Year = 2007, Author = Jiawei Han

R Title ≈ “data” Title ≈ “data” Abstract ≈ “information,retrieval” Title ≈ “data” Abstract ≈ “information retrieval”,Year > 1990

I Conf = inquired Conf=inquired,Year = inquired Conf = inquired,Year = inquired, Author = inquired

Table 7.3 illustrates the runtime obtained with the nine queries of Table 7.2. The first

line illustrates the runtime of the point filters. With only one point filter the runtime

did not exceed 0,006 seconds. However, 3 point filters made this behavior degrade by

almost 20 times, reaching close to 0,1 seconds. This behavior demonstrated that even

Performance Evaluation 51

point filters took time, since DTCubing calculates the aggregated cells for those queries.

For 3 dimensions, for example, besides the cell that satisfies the filters, there will be 7

other cells where VLDB, 2007 and Jiawei Han are replaced by ALL values. In summary,

the exponential behavior of data cubes occurs even when point filters are used in queries.

The second line of the table illustrates the runtime, in seconds, of the range filters.

The stable behavior of DTCubing means that selecting a set of TIDs or several sets

of TIDs did not make the runtime exponential. The runtimes varied between 0,06 and

0,2 seconds. The filters were computationally expensive since they were applied to each

term of each text segment.

Table 7.3: Runtimes (seconds) of point, range and inquire filters

1D 2D 3D

P 0,0054 0,0324 0,1068

R 0,0604 0,126 0,2008

I 0,0584 0,3008 48,9602

Finally, the third line illustrates the runtime of the inquire filters. The wildcard in-

quired means all attribute values of a specific dimension plus the ALL value. If textual

dimensions are filtered, all terms of all the text segments plus the wildcard ALL are

considered. Thus, the exponential behavior of data cubes was achieved. The justifi-

cation is because the following 8 cuboids must be computed in the third inquire filter:

{(Conference–Year–Author), (Conference–Year), (Conference–Author), (Year–Author),

(Conference), (Year), (Author), (ALL)}. With 1 inquire filter the runtime was less than

0,06 seconds, with 2 inquired filters it had gone up to approximately 0,3 seconds and

with 3 inquired filters we reached more than 48 seconds. The inquire filter in the di-

mension author degraded more than the others, since this dimension has the highest

cardinality. The same exponential behavior using multiple inquire filters has already

been reported in other approaches for partial cubes using inverted indexes (Silva, Lima

& Hirata 2013, Silva, Hirata & de Castro Lima 2015, Li, Han & Gonzalez 2004), how-

ever, they are still considered alternatives of viable solutions when the dimensionality,

the cardinality and the number of tuples become really large.

52 Performance Evaluation

7.3 Hierarchy Generation Runtime

In this experiment, we analyze the time spent with the Hierarchy Generation step.

The algorithm was evaluated with title, sentence and abstract text segments. The cells

returned from the three query types of the second line of Table 7.2, i.e. queries using

range filters, were adopted to generate topic hierarchies. The sentence text segment is

considered because the filters are applied in textual dimensions. Some filters return a

huge number of cells, therefore just the more aggregated cells are evaluated. These cells

were selected because they have high number of text segments associated with them,

turning the hierarchy generation a cost operation.

The three most aggregated cells (c1, c2 and c3) are illustrated in Figure 7.1. The x

axis represents the text segments. The blue line represents the topic hierarchy creation

for the most aggregated cell returned from filter rf1 = (Title ≈ “data”). There are three

runtime values, since three text segments were adopted: title, abstract and sentence. The

same idea is considered for cells c2 and c3. The cell c2 (green line) represents the more

aggregated cell returned from filter rf2 = (Title ≈ “data”,Abstract ≈ “information

retrieval”) and cell c3 (purple line) represents filter rf3 = (Title ≈ “data”,Abstract ≈
“information retrieval”,Year > 1990).

Figure 7.1: Runtimes of the hierarchy generation algorithm

Performance Evaluation 53

The runtimes to build topic hierarchies from the abstract text segment were higher

than others. This behavior is justified by the CATHY method, used to build automatic

topic hierarchies, since it is sensitive to the number of terms in the text segment collection

and the abstract is the first in number of terms.

The cell c1 runtimes were worse than c2 and c3 because c1 aggregates more text

segments than others. It aggregated 5.031 documents, while c2 and c3 aggregated only

1.785 and 537 documents, respectively. In general, the topic hierarchy creation took

less than 2 seconds, a feasible response time. Some runtimes were unrealistic, since the

user cannot wait for 17 seconds for building a tree. Therefore, improvements must be

considered for aggregated cells using text segments with many terms.

7.4 Ranking Runtime

In this experiment, we analyze the time spent with the creation of the segment rankings

presented by DTCubing. The same three c1, c2 and c3 were considered and the same

title, sentence and abstract text segments were adopted. As described in Section 4.4,

the ranking construction algorithm starts from the moment the user selects a particular

node from one topic hierarchy.

Figure 7.2: Runtimes of the segment rankings construction algorithm

54 Performance Evaluation

Thus, the runtimes presented in Figure 7.2 correspond the average runtimes obtained

with the execution of the algorithm for the 12 nodes of each tree returned in the Hierarchy

Generation step.

The behavior of Ranking step is similar to Hierarchy Generation step. The third

cell had the worse runtimes and the reason for that is again the number of terms, since

DTCubing Ranking step is term sensitive. The positive aspect is that the algorithm

took less than 0,3 seconds in the worst case, so Ranking is very fast.

Chapter 8

Conclusion

In this work, a new textual OLAP approach called DTCubing was presented. It proposes

an automatic and dynamic creation of multiple topic hierarchies per cube cell. The

rankings based on top-k documents are also improved in DTCubing. The idea of several

segments is also performed in ranking step, so DTCubing produces several top-k results.

The implementation proposed in this work illustrates that it is feasible and opportune

to implement OLAP solutions that adopt text segments for different purposes, i.e.,

topic hierarchization or generation of rankings. The validation of the hypotheses and

the experimental evaluation chapters showed that DTCubing can aid in the process of

multidimensional analysis of a data set, however, the user can collect cells with many

segments and segments with many terms, so high runtimes may occur for a complete

analysis.

There are several improvements to be made in DTCubing. First, we need to improve

the runtime of topic hierarchy generation step. The parallelism of this step requires

CATHY method redesign; however, such an initiative can reduce the current runtimes.

Another possible improvement for the topic hierarchy generation step is the adoption

of cache for text segment identifiers (document IDs). Another alternative would be to

process the hierarchy only for the most relevant k documents from the returned data

set. Instead of using all the documents returned by the application of filters, only the

most relevant documents should be used, where relevance can be calculated with metrics

such as Page-Rank (Page, Brin, Motwani & Winograd 1999).

55

56

Referências Bibliográficas

Baeza-Yates, R. & Davis, E. (2004). Web page ranking using link attributes, Proceedings

of the 13th international World Wide Web conference on Alternate track papers &

posters, ACM, pp. 328–329.

Baeza-Yates, R., Ribeiro-Neto, B. et al. (1999). Modern information retrieval, Vol. 463,

ACM press New York.

Bendersky, M., Croft, W. B. & Diao, Y. (2011). Quality-biased ranking of web docu-

ments, Proceedings of the fourth ACM international conference on Web search and

data mining, ACM, pp. 95–104.

Bouakkaz, M., Loudcher, S. & Ouinten, Y. (2016). OLAP textual aggregation approach

using the google similarity distance, IJBIDM 11(1): 31–48.

URL: http://dx.doi.org/10.1504/IJBIDM.2016.076425

Chaudhuri, S. & Dayal, U. (1997). An overview of data warehousing and olap technology,

ACM Sigmod record 26(1): 65–74.

Cuzzocrea, A., De Maio, C., Fenza, G., Loia, V. & Parente, M. (2016). Olap analysis

of multidimensional tweet streams for supporting advanced analytics, Proceedings

of the 31st Annual ACM Symposium on Applied Computing, SAC ’16, ACM, New

York, NY, USA, pp. 992–999.

URL: http://doi.acm.org/10.1145/2851613.2851662

Ding, B., Zhao, B., Lin, C. X., Han, J., Zhai, C., Srivastava, A. & Oza, N. C. (2011).

Efficient keyword-based search for top-k cells in text cube, IEEE Transactions on

Knowledge and Data Engineering 23(12): 1795–1810.

EventCube: Multi-Dimensional Search and Mining of Structured and Text Data (2013).

ACM – Association for Computing Machinery.

URL: http://research.microsoft.com/apps/pubs/default.aspx?id=226367

57

58 REFERÊNCIAS BIBLIOGRÁFICAS

Gallinucci, E., Golfarelli, M. & Rizzi, S. (2013). Meta-stars: multidimensional modeling

for social business intelligence, Proceedings of the sixteenth international workshop

on Data warehousing and OLAP, ACM, pp. 11–18.

Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venkatrao, M., Pellow,

F. & Pirahesh, H. (1997). Data cube: A relational aggregation operator generalizing

group-by, cross-tab, and sub-totals, Data mining and knowledge discovery 1(1): 29–

53.

Han, J., Kamber, M. & Pei, J. (2011). Data Mining: Concepts and Techniques, 3rd edn,

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Hofmann, T. (1999). Probabilistic latent semantic analysis, Proceedings of the Fifteenth

conference on Uncertainty in artificial intelligence, Morgan Kaufmann Publishers

Inc., pp. 289–296.

Huang, A. (2008). Similarity measures for text document clustering, Proceedings of the

sixth new zealand computer science research student conference (NZCSRSC2008),

Christchurch, New Zealand, pp. 49–56.

Inmon, W. H. & Hackathorn, R. D. (1994). Using the data warehouse, Wiley-QED

Publishing.

Janet, B. & Reddy, A. V. (2010). Article: Cube index: A text index model for retrieval

and mining, International Journal of Computer Applications 1(9): 88–92. Published

By Foundation of Computer Science.

Janet, B. & Reddy, A. V. (2011). Cube index for unstructured text analysis and mining,

Proceedings of the 2011 International Conference on Communication, Computing

& Security, ICCCS ’11, ACM, New York, NY, USA, pp. 397–402.

URL: http://doi.acm.org/10.1145/1947940.1948023

Kilgarriff, A. & Fellbaum, C. (2000). Wordnet: An electronic lexical database.

Lee, D. L., Chuang, H. & Seamons, K. (1997). Document ranking and the vector-space

model, IEEE software 14(2): 67–75.

Lee, J. H., Kim, M. H. & Lee, Y. J. (1994). Ranking documents in thesaurus-based

boolean retrieval systems, Information Processing & Management 30(1): 79–91.

REFERÊNCIAS BIBLIOGRÁFICAS 59

Lee, S., Kim, N. & Kim, J. (2014). A multi-dimensional analysis and data cube for

unstructured text and social media, Big Data and Cloud Computing (BdCloud),

2014 IEEE Fourth International Conference on, IEEE, pp. 761–764.

Li, X., Han, J. & Gonzalez, H. (2004). High-dimensional olap: A minimal cubing

approach, Proceedings of the Thirtieth international conference on Very large data

bases-Volume 30, VLDB Endowment, pp. 528–539.

Lin, C. X., Ding, B., Han, J., Zhu, F. & Zhao, B. (2008). Text cube: Computing ir

measures for multidimensional text database analysis, Proceedings of the 8th IEEE

International Conference on Data Mining (ICDM 2008), IEEE Computer Society,

pp. 905–910.

URL: http://research.microsoft.com/apps/pubs/default.aspx?id=173807

Liu, X., Tang, K., Hancock, J., Han, J., Song, M., Xu, R., Manikonda, V. & Pokorny,

B. (2012). Socialcube: A text cube framework for analyzing social media data,

Social Informatics (SocialInformatics), 2012 International Conference on, IEEE,

pp. 252–259.

Mimno, D., Li, W. & McCallum, A. (2007). Mixtures of hierarchical topics with pachinko

allocation, Proceedings of the 24th international conference on Machine learning,

ACM, pp. 633–640.

Oukid, L., Asfari, O., Bentayeb, F., Benblidia, N. & Boussaid, O. (2013). Cxt-cube:

Contextual text cube model and aggregation operator for text olap, Proceedings of

the Sixteenth International Workshop on Data Warehousing and OLAP, DOLAP

’13, ACM, New York, NY, USA, pp. 27–32.

URL: http://doi.acm.org/10.1145/2513190.2513201

Page, L., Brin, S., Motwani, R. & Winograd, T. (1999). The pagerank citation ranking:

Bringing order to the web., Technical report, Stanford InfoLab.

Silva, R. R., Hirata, C. M. & de Castro Lima, J. (2015). A hybrid memory data cube

approach for high dimension relations., ICEIS (1), pp. 139–149.

Silva, R. R., Hirata, C. M. & de Castro Lima, J. (2016). Computing big data cubes with

hybrid memory, Journal of Convergence Information Technology 11(1): 13.

Silva, R. R., Lima, J. d. C. & Hirata, C. M. (2013). qcube: efficient integration of range

query operators over a high dimension data cube.

60 REFERÊNCIAS BIBLIOGRÁFICAS

Sun, Y., Yu, Y. & Han, J. (2009). Ranking-based clustering of heterogeneous information

networks with star network schema, Proceedings of the 15th ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data Mining, KDD ’09, ACM,

New York, NY, USA, pp. 797–806.

URL: http://doi.acm.org/10.1145/1557019.1557107

Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L. & Su, Z. (2008). Arnetminer: Extraction

and mining of academic social networks, KDD’08, pp. 990–998.

Tseng, F. S. C. & Chou, A. Y. H. (2006). The concept of document warehousing for

multi-dimensional modeling of textual-based business intelligence, Decis. Support

Syst. 42(2): 727–744.

URL: http://dx.doi.org/10.1016/j.dss.2005.02.011

Wang, C., Danilevsky, M., Desai, N., Zhang, Y., Nguyen, P., Taula, T. & Han, J. (2013).

A phrase mining framework for recursive construction of a topical hierarchy, Proce-

edings of the 19th ACM SIGKDD international conference on Knowledge discovery

and data mining, ACM, pp. 437–445.

Wu, M.-C. & Buchmann, A. P. (1997). Research issues in data warehousing, Daten-

banksysteme in Büro, Technik und Wissenschaft, Springer, pp. 61–82.

Yu, Y., Lin, C. X., Sun, Y., Chen, C., Han, J., Liao, B., Wu, T., Zhai, C., Zhang, D. &

Zhao, B. (2009). inextcube: Information network-enhanced text cube, Proceedings

of the VLDB Endowment 2(2): 1622–1625.

Zhang, D., Zhai, C. & Han, J. (2009). Topic cube: Topic modeling for olap on multidi-

mensional text databases, In Proc. of the SIAM International Conference on Data

Mining (SDM, pp. 1123–1134.

Zhang, D., Zhai, C. & Han, J. (2011). Mitexcube: Microtextcluster cube for online

analysis of text cells., CIDU, pp. 204–218.

