
Mixed-Integer Linear Programming
Based Approaches for the Resource

Constrained Project Scheduling
Problem

Janniele Aparecida Soares Araujo
Universidade Federal de Ouro Preto

Orientador: Haroldo Gambini Santos

Mixed-Integer Linear Programming
Based Approaches for the Resource

Constrained Project Scheduling
Problem

Janniele Aparecida Soares Araujo
Universidade Federal de Ouro Preto

UNIVERSIDADE FEDERAL DE OURO PRETO

Orientador: Haroldo Gambini Santos

Tese submetida ao Instituto de Ciências Exatas

e Biológicas da Universidade Federal de Ouro

Preto para obtenção do t́ıtulo de Doutora em

Ciência da Computação.

Ouro Preto, Dezembro de 2019

Catalogação: www.sisbin.ufop.br

A111m Araujo, Janniele Aparecida Soares .
 Mixed-integer linear programming based approaches for the resource
constrained project scheduling problem [manuscrito] / Janniele Aparecida
Soares Araujo. - 2019.
 96f.: il.: color; grafs; tabs.

 Orientador: Prof. Dr. Haroldo Gambini Santos.

 Tese (Doutorado) - Universidade Federal de Ouro Preto. Instituto de
Ciências Exatas e Biológicas. Departamento de Computação. Programa de Pós-
Graduação em Ciência da Computação.
 Área de Concentração: Ciência da Computação.

 1. Financiamento de projetos. 2. Orçamento-programa. 3. Programação linear .
I. Santos, Haroldo Gambini . II. Universidade Federal de Ouro Preto. III. Titulo.

 CDU: 004.421

Dedico este trabalho a Deus, aos meus pais José Geraldo e Rosângela, ao meu marido

Ítalo e ao meu orientador Haroldo, pessoas de suma importância em minha vida.

i

Mixed-Integer Linear Programming Based Approaches

for the Resource Constrained Project Scheduling

Problem

Abstract

Resource Constrained Project Scheduling Problems (RCPSPs) without preemption

are well-known NP-hard combinatorial optimization problems. A feasible RCPSP so-

lution consists of a time-ordered schedule of jobs with corresponding execution modes,

respecting precedence and resources constraints. First, in this thesis, we provide im-

proved upper bounds for many hard instances from the literature by using methods

based on Stochastic Local Search (SLS). As the most contribution part of this work, we

propose a cutting plane algorithm to separate five different cut families, as well as a new

preprocessing routine to strengthen resource-related constraints. New lifted versions of

the well-known precedence and cover inequalities are employed. At each iteration, a

dense conflict graph is built considering feasibility and optimality conditions to separate

cliques, odd-holes and strengthened Chvátal-Gomory cuts. The proposed strategies con-

siderably improve the linear relaxation bounds, allowing a state-of-the-art mixed-integer

linear programming solver to find provably optimal solutions for 754 previously open in-

stances of different variants of the RCPSPs, which was not possible using the original

linear programming formulations.

Keywords: resource constrained project secheduling, mixed-integer linear program-

ming, preprocessing, cutting planes, stochastic local search, neigborhood composition.

ii

Declaração

Esta tese é resultado de meu próprio trabalho, exceto onde referência expĺıcita é feita ao

trabalho de outros, e não foi submetida para outra defesa nesta nem em outra universi-

dade. Parte deste trabalho já foi publicado e este texto é uma composição adaptada de

artigos publicados pela autora. Abaixo listo a relação de cada trabalho publicado até a

data desta defesa e o conteúdo relacionado a este documento:

• Araujo, J. A. S., Santos, H. G., Gendron, B., Jena, S. D, Brito, S. S. e Souza D.

S. Strong Bounds for Resource Constrained Project Scheduling: Preprocessing and

Cutting Planes. Computers & Operations Research. 113 (2020) 104782. Qualis

A1. Conteúdo apresentado em todos os caṕıtulos.

• Araujo, J. A. S. e Santos, H. G. Separation Strategies to Chvátal-Gomory Cuts for

the Resource Constrained Project Scheduling Problems: a Computational Study.

The 17th International Conference on Computational Science and Its Applications

- ICCSA2017. (2017) 452-466. Qualis B1. Conteúdo apresentado no caṕıtulo 5.

• Araujo, J. A. S., Santos, H. G., Baltar, D. D., Toffolo, T. A. M. e Wauters, T.

Neighborhood Composition Strategies in Stochastic Local Search. 10th Interna-

tional Workshop on Hybrid Metaheuristics - HM2016. (2016) 118-130. Qualis B3.

Conteúdo apresentado no caṕıtulo 4.

• Soares, J. A., Santos, H. G., Baltar, D. D. e Toffolo, T. A. M. LAHC applied to The

Multi-Mode Resource -Constrained Multi-Project Scheduling Problem, in 7th Mul-

tidisciplinary International Conference on Scheduling : Theory and Applications -

MISTA 2015. (2015) 905-908. Conteúdo apresentado no caṕıtulo 4.

Janniele Aparecida Soares Araujo

iii

Agradecimentos

Primeiramente, eu agradeço a Deus pelas vitórias que obtive, por renovar minhas

forças e me dar proteção sempre. Agradeço ao Divino Esṕırito Santo por iluminar a

minha inteligência em todos os momentos.

Agradeço principalmente ao meu orientador Prof. Dr. Haroldo Gambini Santos pela

impecável orientação, pelas oportunidades concedidas e por sempre ter acreditado em

mim e em meu potencial. Agradeço ainda pelas valiosas contribuições, pela atenção, por

todo o tempo dedicado e pela transmissão de conhecimentos, tudo foi fundamental para

a minha formação acadêmica.

Je remercie les professeurs Bernard Gendron et Sanjay Dominik Jena pour leurs

conseils alors que j’étais au Centre Interuniversitaire de Recherche sur les Reseaux

d’Entreprise, la Logistique et le Transport (CIRRELT), Université de Montréal, Canada.

Agradeço ao Conselho Nacional de Desenvolvimento Cient́ıfico e Tecnológico (CNPq)

pela bolsa concedida e por promover a internacionalização da minha pesquisa. Agredeço

a Universidade Federal de Ouro Preto (UFOP), por prover, enducação pública, gratuita

e de qualidade e especialmente por me conceder a oportunidade de obter o t́ıtulo de

Doutora em Ciência da Computação.

Não poderia deixar de agradecer aos meus pais, José Geraldo Soares e Rosângela

Soares Pessoa, e ao meu marido Ítalo Campos Araújo, que me deram amor, força e

coragem para seguir em frente durante essa caminhada.

Por fim, agradeço a todos que me ajudaram direta ou indiretamente neste trabalho.

iv

Prefácio

Que os vossos esforços desafiem as impossibilidades lembrai-vos de que as grandes coisas

do homem foram conquistadas do que parecia imposśıvel.

Charles Chaplin

v

Contents

List of Figures ix

List of Tables xi

List of Algorithms xiii

List of Abbreviations xvi

1 Introduction 1

1.1 Motivation and Contributions . 3

2 Resource Constrained Project Scheduling Problems 5

2.1 Formal Definition . 5

2.2 Problem Variants . 7

2.3 Objective Function . 9

2.4 Constraints . 10

2.5 Benchmark Datasets Characteristics . 10

3 Background and Literature Review 17

3.1 Background . 17

3.2 Related Works . 19

vi

3.2.1 Formulations . 19

3.2.2 Solution Methods for the SMRCPSP 21

3.2.3 Solution Methods for the MMRCPSP 24

3.2.4 Solution Methods for the MMRCMPSP 24

4 Heuristic Strategies 28

4.1 Solution Representation and Decoding 29

4.2 Neighborhoods . 31

4.2.1 Neighborhoods Operating on π 31

4.2.2 Neighborhoods operating on M 37

4.3 Neighborhood Composition . 40

4.3.1 Offline neighborhood composition 40

4.3.2 Online neighborhood composition 43

5 Mixed-Integer Linear Programming Based Methods 46

5.1 Input Data . 46

5.1.1 Preprocessing Input Data . 47

5.2 Formulation . 49

5.2.1 Preprocessing MILP Formulation 51

5.3 The Cutting Plane Algorithm . 55

5.3.1 Lifted RCPSP Knapsack Cover Cuts (LCV) 57

5.3.2 Lifted Precedence Based Cuts (LPR) 60

5.3.3 Conflict-Based Cuts: Cliques (CL) and Odd-Holes (OH) 62

5.3.4 Strengthened Chvátal-Gomory Cuts (SCG) 64

6 Computational Results 69

vii

6.1 Heuristic Strategies Experiments . 69

6.2 Preprocessing MILP Formulation Experiments 73

6.3 Cutting Plane Algorithm Experiments 75

6.3.1 Results for Different Cut Families 75

6.3.2 Results Removing Cut Families 78

6.4 Branch & Cut Experiments . 81

7 Final Considerations 86

7.1 Future Works . 87

Bibliography 89

viii

List of Figures

2.1 An optimal solution for instance j102 4.mm and its characteristics 8

2.2 Characteristics of the relationship between availability and consumption

of resources . 14

2.3 Characteristics of the network connections 16

4.1 Example of a neighbor s′ generated in the SPE neighborhood of s 32

4.2 Example of a neighbor s′ generated in the SCP neighborhood of s 33

4.3 Example of a neighbor s′ generated in the OP neighborhood of s 33

4.4 Example of a neighbor s′ generated in the CPP neighborhood of s 34

4.5 Example of a neighbor s′ generated in the ISJ neighborhood of s 35

4.6 Example of a neighbor s′ generated in the OJ neighborhood of s 35

4.7 Example of a neighbor s′ generated in the STJ neighborhood of s 36

4.8 Example of a neighbor s′ generated in the CSP neighborhood of s 36

4.9 Example of a neighbor s′ generated in the SSJW neighborhood of s . . . 37

4.10 Example of a neighbor s′ generated in the SIJW neighborhood of s . . . 38

4.11 Example of a neighbor s′ generated in the C1M neighborhood of s 38

4.12 Example of a neighbor s′ generated in the C2M neighborhood of s 39

4.13 Example of a neighbor s′ generated in the C3M neighborhood of s 39

4.14 Example of a neighbor s′ generated in the C4M neighborhood of s 40

ix

4.15 Evolution of the neighborhood selection probabilities over time consider-

ing instances A-10 and online tuning (z = 1, 000 and β = 0.01) 44

4.16 Evolution of the neighborhood selection probabilities over time consider-

ing instances B-9 and online tuning (z = 1, 000 and β = 0.01) 45

4.17 Evolution of the neighborhood selection probabilities over time consider-

ing instances X-10 and online tuning (z = 1, 000 and β = 0.01) 45

5.1 Execution flow of the proposed cutting plane method 55

5.2 An optimal solution for instance j102 4.mm and its characteristics 56

6.1 Solutions improvements results obtained by running the online tuning for

all instances from the benchmark datasets 71

6.2 Solutions improvements results obtained by running different intensities

for all instances from the benchmark datasets 72

6.3 Box plot of the number of cuts for different types and benchmark datasets

to each separation strategy . 77

6.4 Box plot of the number of cuts for different types and benchmark datasets

to all separation strategy together . 80

6.5 Box plot with informations about optimality gap and computing time

(sec.) of instances from PSPLIB, MISTA and MMLIB 84

x

List of Tables

2.1 Benchmark datasets . 11

2.2 Basic characteristics of instances from the benchmark datasets {min, max,

avg} . 12

2.3 Basic characteristics about resources of the instances from benchmark

datasets {min, max, avg} . 13

2.4 Basic characteristics about availability-consumption resources of instances

from the benchmark datasets {min, max, avg} 13

2.5 Basic characteristics about network connections of instances from the

benchmark datasets {min,max,avg} . 15

4.1 Characteristics of the solution pool used for offline neighborhood analysis 41

4.2 Normalized neighborhoods efficiency computed offline, considering the

two stages solution pool . 42

6.1 Quality of results for the offline tuning strategy 70

6.2 Quality of results for online tuning β = 0.01 71

6.3 Average integrality gaps (1.0 = 100%) and the average computing times

(sec.) for solving with the original LP relaxations (LR) and the strength-

ened LR (SLR) . 74

6.4 Average integrality gaps (1.0 = 100%) and average computing times (sec.)

obtained by different cuts for the SMRCPSP and MMRCPSP benckmark

datasets with the time limit of 4 hours 75

xi

6.5 Integrality gaps (1.0 = 100%) and computing times (sec.) obtained by

different cuts to the MMRCMPSP benckmark datasets with the time limit

of 24 hours . 76

6.6 Average integrality gaps (1.0 = 100%) and average computing times (sec.)

obtained by lifting the traditional RCPSP cuts, by strengthening the CG

cuts and their original versions combining with the SLR with time limit

of 24 hours for A group and 4 hours for the others 76

6.7 Average integrality gaps (1.0 = 100%) and the average computing times

(sec.) obtained by the cutting plane using all cut types and then removing

one cut type at a time with time limit of 4 hours 78

6.8 Average number of iterations and the average computing times (sec.)

obtained by the cutting plane comparing with removing some others cuts

with time limit of 4 hours . 79

6.9 Average integrality gaps (1.0 = 100%) and the average computing times

(sec.) obtained by the cutting plane comparing with removing some others

cuts with time limit of 24 hours . 79

6.10 Average integrality gaps (1.0 = 100%) and the average computing times

(sec.) obtained by the cutting plane comparing with the LP relaxation

and its strengthening with time limit of 4 hours 81

6.11 Average and standard deviation for the integrality gaps (1.0 = 100%)

obtained by the B&C with all cuts at root plus LPR in the callback

procedure . 82

6.12 Solutions obtained by the B&C with all cuts at root plus LPR in the

callback procedure . 82

6.13 Solutions obtained by the B&C with all cuts at root plus LPR in the

callback procedure . 83

6.14 Benchmark datasets updated numbers 84

xii

List of Algorithms

4.1 convert vector valid topological sort 30

5.1 strengthening procedure . 54

5.2 lifted precedence based cuts . 61

5.3 creating conflict graph . 63

5.4 finding set constraints . 67

xiii

List of Abbreviations

CG Conflict Graph

B&B Branch and Bound

B&C Branch and Cut

C1M Change One Mode

C2M Change Two Modes

C3M Change Three Modes

C4M Change Four Modes

CG Chvátal-Gomory Cut

CL Clique Cuts

CPD Critical Path Duration

CPM Critical Path Method

CPP Compact Project on Percentage

CP Constraint Programming

CSP Compact Subsequent Projects

CV RCPSP Knapsack Cover Cuts

FBI Forward-Backward Improvement

GRC Greedy Randomized Constructive

ICAPS International Conference on Automated Planning and Scheduling

xiv

ILS Iterated Local Search

IP Integer Programming

ISJ Invert Sequence of Jobs

JSSP Job-Shop Scheduling Problems

LAHC Late Acceptance Hill-Climbing

LCSP Labor Constrained Scheduling Problem

LCV Lifted RCPSP Knapsack Cover Cuts

LPR Lifted Precedence Based Cuts

LP Linear Programming

MILP Mixed-Integer Linear Pro-gramming

MISTA Multidisciplinary International Scheduling Conference: Theory & Applica-

tions

MMLIB Multi-Mode Library

MMRCMPSP Multi-Mode Resource Constrained Multi-Project Scheduling Problem

MMRCPSP Multi-Mode Resource Constrained Project Scheduling Problem

NLP Nonlinear Programming

OH Odd-Holes Cuts

OJ Offset Job

OODDT On/Off Disaggregated Discrete-Time

OODT On/Off Discrete Time

OOE On/Off Event-based

OP Offset Project

PDDT Pulse Disaggregated Discrete-Time

PDT Pulse Discrete Time

xv

LIST OF ALGORITHMS xvi

PR Precedence Based Cuts

PSO Particle Swarm Optimization

PSPLIB Project Scheduling Problem Library

RCPSP Resource Constrained Project Scheduling Problem

SAT Satisfiability Solving

SA Simulated Annealing

SCGC Strengthened Chvátal-Gomory Cut

SCIP Solving Constraint Integer Programs

SCP Swap and Compact Two Projects

SDDT Step Disaggregated Discrete-Time

SDT Step Discrete Time

SGS Schedule Generation Scheme

SIJW Successive Insertions of a Job in a Window

SLS Stochastic Local Search

SMRCPSP Single-Mode Resource Constrained Project Scheduling Problem

SPE Squeeze Project on Extreme

SSJW Successive Swap of a Job in a Window

STJ Swap Two Jobs

TMS Total Makespan

TPD Total Project Delay

URCSP Uniform Resources Constrained Scheduling Problem

VNS Variable Neighborhood Search

Chapter 1

Introduction

Combinatorial optimization problems have received continuous interest from researchers

in computer science, mathematics and operational research. Such problems often oc-

cur in academia, industry and engineering. The non-preemptive Resource Constrained

Project Scheduling Problem (RCPSP) represents an interesting and challenging class

of combinatorial optimization problems, classified as NP-hard (Blazewicz et al., 1983;

Garey and Johnson, 1979) from a theoretical point of view and very hard to solve in

practice. In this problem, a project is composed of a set of jobs, where each job has

precedence relations and requires time and resources to be executed. Each job can have

one or more execution modes with different durations and resource consumption in each

mode; also, jobs can have dependency between them. Some variants of RCPSP also

consider issues that go beyond the dependency between jobs and multiple modes of ex-

ecution, such as the use of renewable and non-renewable resources and the sharing of

some resources between different projects.

These problems cover a wide range of applications, such as particle therapy for cancer

treatment in healthcare (Riedler et al., 2017), civil engineering (Liu and Wang, 2008),

manufacturing and assembly of large products (Liu et al., 2014), as well as development

and launching of complex systems (Demeulemeester and Herroelen, 2002). In academia,

the interest in this class of problems can be observed considering the amount of books

(Artigues et al., 2013; Burke and Pinedo, 2017; Demeulemeester and Herroelen, 2002;

Schwindt and Zimmermann, 2015), the scientific journal Journal of Scheduling1, regular

1https://www.springer.com/journal/10951

1

https://www.springer.com/journal/10951

Introduction 2

conferences such as MISTA2 and ICAPS3 and public benchmark datasets devoted to this

class of problems such as the Project Scheduling Problem Library (PSPLIB) (Kolisch

and Sprecher, 1996), the MISTA Challenge (Wauters et al., 2016) datasets and the

MMLIB (Van Peteghem and Vanhoucke, 2014) datasets. We present in Chapter 2 the

problem of study and its definitions, as well as the benchmark datasets characteristics.

Comprehensive reviews on RCPSPs can be found, for example, in Artigues et al.

(2008), Demeulemeester and Herroelen (2002), Schwindt and Zimmermann (2015), and

Habibi et al. (2018). A background and related works for understanding better this

thesis are presented in Chapter 3. In the literature, incomplete and complete algorithms

were proposed to find solutions for the RCPSPs. Heuristics are incomplete algorithms:

they produce valid feasible solutions and the corresponding upper bounds, but it is not

possible to be sure that the generated solution is the optimal one. Several heuristic

methods, such as Tabu Search (Kochetov and Stolyar, 2003; Nonobe and Ibaraki, 2002;

Skowroński et al., 2013), Monte Carlo (Asta et al., 2014; Chen and Zhang, 2012; Walȩdzik

and Mańdziuk, 2017), Genetic Algorithms (Alcaraz et al., 2004; Hartmann, 2002), Path-

relinking (Berthaut et al., 2018; Muritiba et al., 2018) and others, have been proposed

for the RCPSPs. Unlike heuristics, exact methods are complete algorithms that produce

upper and lower bounds to find provably optimal solutions. Mixed-Integer Linear Pro-

gramming (MILP) methods (Zhu et al., 2006), as well as Constraint Programming (CP)

(Demassey et al., 2005), Satisfiability Solving (SAT) (Coelho and Vanhoucke, 2011; Van-

houcke and Coelho, 2016) and hybrid versions (Schnell and Hartl, 2017), are complete

algorithms and have also been proposed for the RCPSPs.

The generation of good upper bounds is important to improve the performance of

exact methods. Our approach, presented in Chapter 4, produces upper bounds using

Stochastic Local Search (SLS) (Hoos and Stützle, 2005). We propose and computation-

ally evaluate neighborhood composition strategies to obtain tight upper bounds. New

best-known solutions were obtained.

As the most significant contribution of this thesis, in Chapter 5, we propose auto-

matic MILP reformulation strategies for the RCPSPs and its variants. We propose a new

preprocessing technique to improve resource-related constraints by strengthening their

coefficients using known information about different renewable, non-renewable resources

and precedence constraints. We also propose a cutting plane algorithm employing five

different cut separation algorithms. Conflict-based cuts such as cliques and odd-holes

2http://www.schedulingconference.org/
3http://icaps-conference.org/

http://www.schedulingconference.org/
http://icaps-conference.org/

Introduction 3

are generated considering an implicit dense conflict graph, which is updated at each

iteration considering optimality and feasibility conditions. This conflict graph is also

used in a MILP separation of the Chvátal-Gomory cuts to produce stronger inequalities.

Furthermore, new lifted versions of the well-known disaggregated precedence cuts and

cover cuts are separated. The contribution to the linear relaxation bound provided by

each cut family is examined on experiments on a large set of benchmark instances of

the three problem variants considered in this thesis. Overall, stronger bounds were ob-

tained, allowing a state-of-the-art MILP solver to find provably optimal solutions for 754

previously open instances, which was not possible using the original linear programming

formulations. The computational results obtained from the experiments executed, as

well as, our conclusions and future works are presented respectively in Chapters 6 and

7.

The importance of guaranteeing the quality of the solutions and, simultaneously,

reducing the processing time for the production of such solutions allowed us to outline

the objective of this doctoral thesis, which consists of developing improved methods to

solve the aforementioned problems, to improve the quality of the best-known solutions

and the lower bounds available. In this chapter, we provide a brief introduction to the

addressed problem, followed by a discussion about our motivations and our contributions.

1.1 Motivation and Contributions

Considering the digital libraries of problems (PSPLIB, MISTA and MMLIB), several

instances are still open. Of the 5688 instances considered in this work 63% are still

open. The present thesis is motivated by the fact that to find the optimal solutions

for these instances constitutes a challenge for the state-of-the-art methods and the vast

applicability of these models. Our work also includes a very comprehensive experimental

analysis of the methods developed.

The main result of this thesis is the design and development of new and improved

state-of-the-art algorithms for the resolution of the RCPSPs. It was possible to reduce

to 49% the number of open instances in the literature. These algorithms, proposals and

experimental results were documented and disseminated to the scientific community

through publications: firstly with conference articles and in sequence with a scientific

paper in an indexed journal with recognized relevance in the area.

Introduction 4

The algorithms are implemented in the context of systematic MILP search methods.

MILP algorithms, have the advantage of providing a certifiably optimal solution in finite

time.

Chapter 2

Resource Constrained Project

Scheduling Problems

Resource Constrained Project Scheduling Problems (RCPSPs) are of significant aca-

demic and practical importance. From the theoretical point of view, RCPSPs are NP-

hard (Blazewicz et al., 1983; Garey and Johnson, 1979). Some practical applications

were presented in the introduction of this thesis.

Briefly, the RCPSP seeks to carry out scheduling or programming to a project, in

which each job must be allocated at a particular time period over a horizon and assigned

in a specific mode (way of carrying out a job), respecting the constraints imposed for

the problem.

2.1 Formal Definition

One of the first formulations for the problem was proposed by Pritsker et al. (1969).

Therefore, the conceptual formulation of the RCPSP is given. Consider the description

of the input data for the model shown in this section:

J set of all jobs;

R set of renewable resource;

T set of time periods in the planning horizon;

5

Resource Constrained Project Scheduling Problems 6

Tj set of time periods in the planning horizon for job j ∈ J after preprocessing;

S set of direct precedence relationships between two jobs (j, l) ∈ J ×J ;

qrj required amount of resource r to execute job j ∈ J ;

q̆r available amount of renewable resource r ∈ R;

ap artificial job which represents the end of the project.

This basic formulation contains only one type of binary decision variable, xjt, indexed

by job and time, this formulation is known as discrete-time (DT). Decision variables are

defined so that xjt is 1 if job j starts at time t and 0 otherwise.

Minimize: ∑
t∈Tap

t ·xapt (2.1)

Subject to: ∑
t∈Tj

xjt = 1 ∀j ∈ J (2.2)

∑
t∈Tj

t ·xjt ≤
∑
t∈Tj

(t ·xlt − dj) ∀(j, l) ∈ S (2.3)

∑
j∈J

min(t+dj−1,Tj)∑
h=max(t,Tj)

qrj ·xjh ≤ q̆r ∀r ∈ R,∀t ∈ T (2.4)

xjt ∈ {0, 1} ∀j ∈ J ,∀t ∈ Tj (2.5)

The objective function (2.1) in the mathematical formulation minimizes the time

of artificial job completion. Constraints (2.2) ensure that each job executes only once.

Constraints (2.3) ensure the precedence relationships between jobs. Constraints (2.4)

guarantee the feasibility w.r.t. renewable resources consumption. Finally, constraints

(2.5) specify the decision variables as binary.

Kolisch and Sprecher (1996) proposed an approach based on the idea of Pritsker

et al. (1969), with a single type of binary decision variable, controlling the finishing

time instead of the starting time; an additional index has been added to control how

to execute each job. Consider here the set Mj of modes available for job j ∈ J . By

definition, xjmt is equal to 1 if job j runs in m mode and ends in time t and xjmt is

Resource Constrained Project Scheduling Problems 7

equal to 0 otherwise. These formulation models constraints renewable resources and

non-renewable resources.

2.2 Problem Variants

In this thesis, we consider the following problem variants of the RCPSP, from the most

specific one to the most generalized version:

SMRCPSP: single-mode resource constrained project scheduling problem;

MMRCPSP: multi-mode resource constrained project scheduling problem;

MMRCMPSP: multi-mode resource constrained multi-project scheduling problem.

In the literature other variants of the problem considering time lags, time depen-

dent capacities, flexible resource constrained and uncertain job durations are presented:

Resource Constrained Project Scheduling Problem with Minimal and Maximal Time

Lags (RCPSP/max)1, Multi-Mode Resource Constrained Project Scheduling Problem

with Minimal and Maximal Time Lags (MRCPSP/max)2, Resource Investment Problem

with Minimal and Maximal Time Lags (RIP/max)3, Resource Constrained Project Sche-

duling Problem With Time-Dependent Resource Capacities (RCPSP/TDRC)4, Flexible

Resource Constrained Scheduling Problem (FRCPSP)5. Other variations with more spe-

cific modifications can also be found.

The SMRCPSP is the simplest variant and involves only one processing mode for

each job. A feasible solution consists of the assignment of jobs at specific time periods

over a planning horizon, respecting precedence and resource usage constraints. The

resources in the SMRCPSP are renewable at each time period.

In the MMRCPSP, it is possible to choose between different job processing modes,

each of them having different durations and consuming different amounts of resources.

1http://www.wiwi.tu-clausthal.de/en/abteilungen/produktion/forschung/schwerpunkte/

project-generator/rcpspmax/
2http://www.wiwi.tu-clausthal.de/en/abteilungen/produktion/forschung/schwerpunkte/

project-generator/mrcpspmax/
3http://www.wiwi.tu-clausthal.de/de/abteilungen/produktion/forschung/schwerpunkte/

project-generator/ripmax/
4http://www.om-db.wi.tum.de/psplib/newinstances.html
5http://www.om-db.wi.tum.de/psplib/getdatafrcpsp.cgi

http://www.wiwi.tu-clausthal.de/en/abteilungen/produktion/forschung/schwerpunkte/project-generator/rcpspmax/
http://www.wiwi.tu-clausthal.de/en/abteilungen/produktion/forschung/schwerpunkte/project-generator/rcpspmax/
http://www.wiwi.tu-clausthal.de/en/abteilungen/produktion/forschung/schwerpunkte/project-generator/mrcpspmax/
http://www.wiwi.tu-clausthal.de/en/abteilungen/produktion/forschung/schwerpunkte/project-generator/mrcpspmax/
http://www.wiwi.tu-clausthal.de/de/abteilungen/produktion/forschung/schwerpunkte/project-generator/ripmax/
http://www.wiwi.tu-clausthal.de/de/abteilungen/produktion/forschung/schwerpunkte/project-generator/ripmax/
http://www.om-db.wi.tum.de/psplib/newinstances.html
http://www.om-db.wi.tum.de/psplib/getdatafrcpsp.cgi

Resource Constrained Project Scheduling Problems 8

Two types of resources are available: the renewable resources at each time period and

the non-renewable ones available for the entire project execution. While the use of

renewable resources only impacts the delay/speedup of the projects, the use of non-

renewable resources can produce infeasible solutions.

A generalization of the previous problem variants to handle multiple projects and

global renewable resources is the MMRCMPSP. While the previous two problem variants,

in their objective (minimization) functions, consider the makespan, i.e., the total length

of the schedule to finish all jobs, an important modeling feature of this generalization

is an additional objective: the project delays from the Critical Path Duration (CPD).

The CPD is a theoretical lower bound on the earliest finishing time (ĕfp) of project

p, computed by the Critical Path Method (CPM) (Kelley Jr and Walker, 1959) and

disregarding any resource constraints.

Figure 2.1 illustrates the example instance j102 4.mm6, a small instance for the

MMRCPSP variant.

2

3

4

5

6

7

9

10

11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

1

8

2

5

4

2

1

2

6

4

0

0

2

1

0

3

7

0

10

5

10

4

0

0

0

6

10

0

0

4

0

0

0

0

0

0

4

0

4

0

8

6

10

0

0

0

0

0

3

0

0

7

0

0

0

8

4

7

0

0

0

6

3

9

4

3

4

6

8

5

-

-

6

4

0

1

6

0

0

0

0

0

-

-

0

6

5

0

0

4

5

7

4

9

-

-

4

0

3

7

0

0

0

7

6

0

-

-

0

10

0

0

8

3

4

0

0

4

-

-

7

0

7

10

6

5

9

10

8

5

-

-

8

6

0

0

4

2

6

4

9

3

-

-

0

3

4

8

0

0

0

0

0

0

-

-

3

0

0

0

8

1

0

6

0

8

-

-

0

10

7

6

0

0

4

0

3

0

-

-

7

0

�

� ∈ 9 8 35 31 �� �0 �1 �0 �1

 �0�1�2 �0�1�2 �0�1�2 �0�1�2 �0�1�2

��������

���������

 ��������� ��� − ���������

Figure 2.1: An optimal solution for instance j102 4.mm and its characteristics

The instance illustrated in Figure 2.1 has twelve jobs. The first and the last are

artificial jobs representing the start and the end of the project. Each job j can be

processed in three different modes m. Artificial jobs 0 and 11 have only one execution

mode that does not consume resources and have duration 0; thus columns m1 and m2

are filled with “-”. Two renewable resources {r0, r1} with capacities {9, 8} and two non-

renewable resources {k0, k1} with capacities {35, 31} are available. This figure provides

6http://www.om-db.wi.tum.de/psplib/files/j10.mm.tgz

Resource Constrained Project Scheduling Problems 9

information about resource consumption and duration of job j processing on mode m.

The figure shows the characteristics of this instance and one optimal solution. We refer

to this example instance to explain the cutting planes presented in the next chapters.

The Gantt chart in the figure shows the starting time allocation and duration of jobs

for the optimal solution found for this single project. Arcs represent the precedence

relationship between jobs. Values emphasized in grayscale represent the active modes

for this solution. The CPD corresponds to a value of 15. Note that the earliest starting

time (ĕsj) of job 5 corresponds to 2, but due to the availability of resources at this time

period, its allocation had to be postponed. The makespan is 18 time units.

2.3 Objective Function

The most common objective function for the RCPSP is the makespan (Artigues et al.,

2008; Demeulemeester and Herroelen, 2002; Kolisch and Sprecher, 1996; Pritsker et al.,

1969; Zhu et al., 2006) minimizing the total schedule duration required to finish all jobs.

Wauters et al. (2016) proposed a hierarchical objective to minimize the Total Project

Delay (TPD) and the total makespan (TMS). The former, denoted formally in Eq.(2.6),

is the main objective. The latter, given in Eq.(2.7), is a tiebreaker.

TPD =
∑
p∈P

PDp (2.6)

TMS = max
p∈P

fp −min
p∈P

σp (2.7)

The project delay (PDp) for a project p ∈ P is defined as the difference between

its CPDp (which does not consider any resource constraints), and its makespan MSp =

fp − σp, the actual project duration taking into consideration resource constraints, the

finishing time fp and the release date σp of this project.

PDp = MSp − CPDp (2.8)

Resource Constrained Project Scheduling Problems 10

To work with all three problem variants in a unified way, we always report our results

considering the TPD, which is generic enough to handle all problem variants considered

in this thesis.

2.4 Constraints

The RCPSP involves the allocation of jobs at time periods on a horizon and the assign-

ment to a mode, taking into account some constraints that must be satisfied.

In the problems addressed in this work, the following constraints are considered:

• precedence constraint: each job j can not start until all predecessor jobs have been

finalized;

• resources constraint: resource limits must be respected.

The resources are classified as follows:

• renewable resources: the available quantities are renewed from period to period

(hour, day, week, month), availability per period is constant - example: labor,

machines;

• non-renewable resources: the consumption of non-renewable resources is limited

for the whole project - example: money, energy and raw materials;

• global resources: in the case of the multi-project problem, global resources are still

considered, which are renewable and shared among all projects.

2.5 Benchmark Datasets Characteristics

Several public benchmark datasets were established, including realistic, but compu-

tationally challenging problem instances to facilitate the comparison of algorithmic im-

provements. In 1996 a public and well-known repository of benchmark datasets, devoted

to this class of problems, was established: the Project Scheduling Problem Library -

PSPLIB (Kolisch and Sprecher, 1996). In 2013 a new dataset based on PSPLIB in-

stances, considering multiple projects, emerged from the MISTA Challenge (Wauters

Resource Constrained Project Scheduling Problems 11

et al., 2016). Then, in 2014, another dataset based on PSPLIB was proposed for the

multi-mode scheduling problem called MMLIB (Van Peteghem and Vanhoucke, 2014).

For all problem variants, many of those instances are still open. In particular, by the

time of writing this thesis, we found that 729 of the PSPLIB instances, 2842 of the

MMLIB instances, and 27 of the MISTA instances, were still open7.

We now define in Table 2.1 the benchmark datasets used in this work based on

(Schnell and Hartl, 2017; Toffolo et al., 2016; Zhu et al., 2006), composed by instances

from the PSPLIB, MISTA and MMLIB repositories. For each library, the total number

of problem instances defined for each problem variant, the dataset name, the number

of instances used in our benchmark datasets, and the number of instances for which

optimality has not yet been proven in the literature.

Table 2.1: Benchmark datasets

library variant/num. inst. group in dataset open

PSPLIB

SMRCPSP/2040

J60 79 79

J90 105 105

J120 514 514

MMRCPSP/3931 J30 640 31

MMLIB MMRCPSP/4300

J50 540 118

J100 540 176

Jall50+ 1620 1178

Jall100+ 1620 1370

MMRCMPSP/30

A 10 7

MISTA B 10 10

X 10 10

These are the most known and studied instance datasets; the format used by PSPLIB

allows a large number of real problems to be represented. Kolisch et al. (1995) consid-

ered two essential issues to control the characteristics of the instances generated for the

PSPLIB; they are: how restricted is the relationship between resource availability and

consumption and what is the precedence relation factor between jobs. There are proce-

dures for the construction that takes into account: constraints on the network topology,

a resource factor that reflects the density of the consumption, and a resource strength

71339 considering the PSPLIB website and 30 considering the MISTA website. There is no informa-
tion concerning the optimality of the solutions obtained by Schnell and Hartl (2017) and Toffolo et al.
(2016).

Resource Constrained Project Scheduling Problems 12

that measures the availability of resources.

Table 2.2 presents the basic characteristics of the instances from all datasets: the

minimum, maximum and average values of the number of projects |P|, jobs |Jp|, the

average number of modes per job |Mj| and average duration jobs per modes djm. We

can observe that the benchmark consists of instances with varying characteristics, some

with more jobs such as J120, J100, Jall100+, A, B, X datasets, and some with different

modes and duration of executing it, especially Jall50+, Jall100+ datasets.

Table 2.2: Basic characteristics of instances from the benchmark datasets {min,
max, avg}

group |P| |Jp| |Mj | djm

J60 {1.00, 1.00, 1.00} {62.00, 62.00, 62.00} {1.00, 1.00, 1.00} {4.92, 6.29, 5.40}
J90 {1.00, 1.00, 1.00} {92.00, 92.00, 92.00} {1.00, 1.00, 1.00} {4.97, 5.87, 5.45}

J120 {1.00, 1.00, 1.00} {122.00, 122.00, 122.00} {1.00, 1.00, 1.00} {4.64, 6.10, 5.40}
J30 {1.00, 1.00, 1.00} {32.00, 32.00, 32.00} {2.88, 2.88, 2.88} {4.64, 6.01, 5.38}
J50 {1.00, 1.00, 1.00} {52.00, 52.00, 52.00} {2.92, 2.92, 2.92} {4.72, 6.16, 5.41}

J100 {1.00, 1.00, 1.00} {102.00, 102.00, 102.00} {2.96, 2.96, 2.96} {4.91, 6.06, 5.46}
Jall50+ {1.00, 1.00, 1.00} {52.00, 52.00, 52.00} {2.92, 8.69, 5.81} {4.86, 17.03, 12.93}

Jall100+ {1.00, 1.00, 1.00} {102.00, 102.00, 102.00} {2.96, 8.84, 5.83} {4.93, 16.62, 12.89}
A {2.00, 10.00, 6.10} {24.00, 320.00, 144.20} {2.67, 2.88, 2.80} {4.90, 5.62, 5.26}
B {10.00, 20.00, 15.50} {120.00, 640.00, 342.00} {2.67, 2.88, 2.79} {5.15, 5.46, 5.33}
X {10.00, 20.00, 15.50} {120.00, 640.00, 342.00} {2.67, 2.88, 2.79} {4.94, 5.38, 5.24}

Table 2.3 shows information of the number of renewable |R| and non-renewable |K|
resources and the average availability (q̆r,q̆k). For each dataset, we present the minimum,

maximum and average values. We can see that datasets from SMRCPSP (J60, J90 and

J120) do not deal with non-renewable resources; all other datasets deal with this type

of resource. Ideally, instances that have a larger number of jobs could have a higher

resource availability; for non-renewable resources, this feature could ensure the feasibility

of solutions to these problems. However, when availability is lower, either to renewable

or non-renewable resources, these instances can become more restricted concerning the

resource consumption by all jobs. It could be easier to solve this instance if it did not

have such a large number of jobs. These restrictive factors and the small number of jobs

can enable its optimal solution with suitable exact methods.

Resource Constrained Project Scheduling Problems 13

Table 2.3: Basic characteristics about resources of the instances from bench-
mark datasets {min, max, avg}

group |R| q̆r |K| q̆k

J60 {4.00, 4.00, 4.00} {15.25, 21.00, 18.69} {-, -, -} {-, -, -}
J90 {4.00, 4.00, 4.00} {17.50, 24.25, 20.39} {-, -, -} {-, -, -}

J120 {4.00, 4.00, 4.00} {12.00, 57.00, 28.15} {-, -, -} {-, -, -}
J30 {2.00, 2.00, 2.00} {11.00, 57.50, 25.76} {2.00, 2.00, 2.00} {49.50, 195.50, 150.83}
J50 {2.00, 2.00, 2.00} {15.50, 102.00, 40.22} {2.00, 2.00, 2.00} {69.00, 319.50, 201.58}

J100 {2.00, 2.00, 2.00} {10.50, 92.50, 37.43} {2.00, 2.00, 2.00} {145.50, 629.50, 404.55}
Jall50+ {2.00, 4.00, 3.00} {14.25, 384.00, 53.66} {2.00, 4.00, 3.00} {218.00, 953.50, 639.72}

Jall100+ {2.00, 4.00, 3.00} {16.00, 600.50, 53.90} {2.00, 4.00, 3.00} {438.00, 1862.50, 1273.24}
A {2.00, 11.00, 5.30} {11.50, 42.00, 22.82} {4.00, 20.00, 12.20} {44.90, 175.40, 112.13}
B {2.00, 21.00, 11.80} {10.00, 28.45, 19.73} {20.00, 40.00, 31.00} {44.80, 154.83, 100.18}
X {2.00, 21.00, 14.20} {12.50, 28.36, 19.95} {20.00, 40.00, 31.00} {47.60, 167.00, 104.43}

Tables 2.4 display average information about the relationship

(
q̆r

qmr
, q̆k

qmk

)
between the

number of available renewable and non-renewable resources (q̆r,q̆k) and the consumption

(qmr,qmk) indicating how restricted the instances from these dataset are.

Table 2.4: Basic characteristics about availability-consumption resources of
instances from the benchmark datasets {min, max, avg}

group qmr
q̆r

qmr
qmk

q̆k

qmk

J60 {5.18, 5.74, 5.50} {2.94, 3.67, 3.39} {-, -, -} {-, -, -}
J90 {5.00, 6.25, 5.51} {2.84, 4.34, 3.71} {-, -, -} {-, -, -}

J120 {5.07, 5.94, 5.49} {2.23, 10.40, 5.13} {-, -, -} {-, -, -}
J30 {4.94, 6.30, 5.54} {1.91, 9.85, 4.67} {4.74, 6.56, 5.52} {9.26, 33.63, 27.29}
J50 {4.49, 5.90, 5.28} {2.91, 18.88, 7.62} {4.39, 6.03, 5.19} {14.48, 56.97, 38.55}

J100 {2.60, 5.67, 3.20} {3.49, 31.69, 11.74} {4.55, 5.75, 5.20} {31.30, 113.93, 77.30}
Jall50+ {2.41, 17.25, 7.41} {3.13, 144.91, 10.02} {4.64, 17.34, 12.70} {40.47, 59.28, 50.41}

Jall100+ {2.48, 16.05, 4.69} {4.15, 222.06, 14.97} {4.88, 16.80, 12.64} {84.73, 118.96, 100.80}
A {5.15, 5.60, 5.42} {2.05, 8.16, 4.24} {5.38, 5.88, 5.62} {8.17, 31.41, 19.99}
B {5.18, 5.66, 5.53} {1.82, 5.07, 3.57} {5.45, 5.69, 5.57} {8.00, 28.43, 18.05}
X {5.42, 5.79, 5.55} {2.16, 5.09, 3.61} {5.42, 5.68, 5.55} {8.54, 30.05, 18.85}

Instances with the same number of jobs that have a high consumption of resources

Resource Constrained Project Scheduling Problems 14

and low availability are more restricted than others. We can observe by analyzing the

minimum values, that there are really restricted instances with factors lower than 3.00

if we consider renewable resources. For instances with 60 and 90 jobs, it can be seen

that the average relation between renewable resources availability and consumption is

narrower for some sets of parameter instances8, being able to run a maximum of 5 jobs

per time period. Also, by analyzing the minimum values of availability-consumption for

non-renewable resources, we have instances with small factors such as instances from

J30, J50, A, B datasets.

The two box and whisker plots, also called box plots, in Figure 2.2 demonstrate

the relationship between availability and consumption of renewable and non-renewable

resources for all instances from the benchmark datasets.

A B X
J3

0
J6

0
J9

0
J1

20 J5
0

J1
00

Ja
ll5

0+
Ja

ll1
00

+

0

50

100

150
A B X

J3
0

J6
0

J9
0

J1
20 J5

0
J1

00
Ja

ll5
0+

Ja
ll1

00
+

0

50

100

150

Figure 2.2: Characteristics of the relationship between availability and con-
sumption of resources

There are instances of datasets Jall50+ and Jall100+ with high factors when it

comes to the availability-consumption of renewable resources. This specific feature of

some outliers can make it difficult for mathematical models to solve the problem to

optimality. Instances with larger numbers of jobs from MMLIB have a higher availability

of non-renewable resources. Note that instances from MISTA have a large number of

jobs, but a small number of jobs per project, and the non-renewable resources are not

8for example, the factors availability-consumption of renewable resources from set instances
j905, j909, j9021, j9025, j9037, j9041, j9045, j609, j6025, j6029, j6041 and j6045 are less than 4

Resource Constrained Project Scheduling Problems 15

shared between projects.

Table 2.5 shows information about the average number of starting (|s̆|) and finishing

(|f̆ |) jobs connected to the artificial jobs and the average number of predecessors per job

(|p̆j|). The larger number of starting and finishing jobs connected to the artificial jobs,

plus the larger number of the predecessors, can difficult the solution of the models. We

can observe that instances from MMLIB (J50, Jall50+, J100 and Jall100+) have a large

factor concerning the network connections.

Table 2.5: Basic characteristics about network connections of instances from
the benchmark datasets {min,max,avg}

group |s̆| |f̆ | |p̆j |
J60 {3.00, 3.00, 3.00} {3.00, 3.00, 3.00} {1.50, 1.50, 1.50}
J90 {3.00, 3.00, 3.00} {3.00, 3.00, 3.00} {1.50, 1.50, 1.50}

J120 {3.00, 3.00, 3.00} {3.00, 3.00, 3.00} {1.50, 2.11, 1.76}
J30 {3.00, 3.00, 3.00} {3.00, 3.00, 3.00} {1.81, 1.81, 1.81}
J50 {1.00, 22.00, 10.72} {2.00, 22.00, 10.47} {2.88, 5.21, 3.99}

J100 {5.00, 41.00, 19.02} {4.00, 36.00, 18.36} {4.48, 7.97, 6.48}
Jall50+ {1.00, 23.00, 10.41} {2.00, 23.00, 10.49} {2.67, 5.21, 3.95}

Jall100+ {3.00, 41.00, 18.48} {4.00, 37.00, 18.60} {4.48, 7.97, 6.50}
A {3.00, 3.00, 3.00} {3.00, 3.00, 3.00} {1.50, 1.82, 1.72}
B {3.00, 3.00, 3.00} {3.00, 3.00, 3.00} {1.50, 1.82, 1.72}
X {3.00, 3.00, 3.00} {3.00, 3.00, 3.00} {1.50, 1.82, 1.72}

Figure 2.3 presents three box plots that show the characteristics of the network

connections for all instances from the benchmark datasets. Instances from MMLIB have

a higher number of starting and finishing jobs that are directly connected to the artificial

ones; also, they have a higher number of predecessors per job. Instances from PSPLIB

and MISTA have low values that do not vary so much.

R
e
so

u
rce

C
o
n
stra

in
e
d

P
ro

je
ct

S
ch

e
d
u
lin

g
P

ro
b
le

m
s

1
6

A B X
J3

0
J6

0
J9

0
J1

20 J5
0

J1
00

Ja
ll5

0+
Ja

ll1
00

+

0

2

4

6

8

10

A B X
J3

0
J6

0
J9

0
J1

20 J5
0

J1
00

Ja
ll5

0+
Ja

ll1
00

+

0

10

20

30

40

A B X
J3

0
J6

0
J9

0
J1

20 J5
0

J1
00

Ja
ll5

0+
Ja

ll1
00

+

0

10

20

30

40

Figure 2.3: Characteristics of the network connections

Chapter 3

Background and Literature Review

Mixed-Integer Linear Programming (MILP) (Cook and Koch, 2008; Jünger, Naddef,

Pulleyblank, Rinaldi, Liebling, Nemhauser, Reinelt and Wolsey, 2010) is the main tech-

nique used for the exact resolution of difficult problems in combinatorial optimization.

The advances made in the last decades in this area allowed the exact resolution of prob-

lems considered computationally intractable previously. Progress in this area, however,

has not occurred uniformly for different problems. This chapter presents concepts and

techniques for understanding and solving the problems under study. Also, we present a

literature review.

3.1 Background

Quantitative problems can be expressed mathematically through models. There are

methods able to solve these problems, the most common techniques used are those from

the discipline of operational research, a branch of human knowledge highlighted by its

mathematical modeling techniques (Churchman et al., 1957; Luenberger and Ye, 2016;

Wagner, 1969). Shapiro (1993) classifier several categories of mathematical programming

models: linear programming, network optimization, mixed integer programming, nonlin-

ear programming, dynamic programming, multiple criteria optimization, and stochastic

programming. Mathematical programming is of great use for solving optimization prob-

lems (Bradley et al., 1977) including for scheduling applications (Shapiro, 1993).

The solution techniques of mathematical programming usually are grouped in the

following subareas:

17

Background and Literature Review 18

• Linear Programming (LP): the variables are continuous and present linear behav-

ior, both in relation to the constraints, and the objective function (Dantzig, 1998);

• Integer Programming (IP): some or all of the variables are restricted to be integers,

IP (Wolsey, 1998a) is an extension of LP;

• Nonlinear Programming (NLP): they can have continuous and integer variables,

but the objective function or the constraints may be non-linear (Bazaraa, 2013).

In optimization, the mathematical models represent a particular decision problem

using a set of equations or mathematical expressions (Bradley et al., 1977). The effec-

tiveness of those techniques can be measured by a mathematical function of the decision

variables, called the objective function. Equations and inequalities express the con-

straints that correspond to the limitations of the values of the variables.

IP allows modeling and solving a wide range of problems, including production plan-

ning (Pochet and Wolsey, 2006), protein structure prediction and drug design (Xu et al.,

2003), communication networks project (Koster et al., 2008), among others. The mod-

eling power, as well as the availability of solver programs (ILO, 2008), including some

open-source (Linderoth and Ralphs, 2005; Lougee-Heimer, 2003), makes IP a handy

tool for operational research applicators in solving countless combinatorial optimization

problems.

Even thought some IP is NP-Hard (Garey and Johnson, 1979), in which the difficult

depends of the structure of the problem, the worst-case analysis, however, did not prevent

progress in the last decades in the development of computational algorithms capable

of consistently solving several relevant instances of various problems in combinatorial

optimization problems. Advances in Linear Programming (Johnson et al., 2000b) and

the study of the polyhedral theory (Aardal and van Hoesel, 1996, 1999) allowed IP to be

applied successfully in large problems. Problems with millions of binary variables have

been solved. These results, however, are related to specific problems. For most of the

problems with relevance in industry and academia, the results still need to be improved.

Cook (2019) has established in his work a wish list of research directions with 5 topics.

The first topic contemplates the importance of improving the simplex method so that re-

optimizing after adding cuts be more faster, a problem we face in this thesis. The second

topic is the language of algorithms; the author understands that the development and

adoption of a more nuanced way of expressing achievements in the analysis of algorithms

are something fundamental. The third topic is about understanding heuristic algorithms;

Background and Literature Review 19

he said that heuristic algorithms are widely used in operations research and many other

areas, but not understood. The fourth topic is about the analysis of exact algorithms

for hard problems; the research in approximation methods and computational methods,

combining heuristic search with lower-bound techniques like cutting planes and the study

exponential-time exact solution algorithms, can provide effective means to handle these

problems. Finally, the fifth topic comprises the complexity of cutting plane methods;

the author says that is fundamental examining bounds on the complexity of the overall

method, investigating algorithms for separation problems to deliver cutting planes for

particular models, and obtaining insights into the selection of cutting planes to speed

the convergence of the process.

3.2 Related Works

In this section, related works that solve RCPSPs through heuristic and exact methods

are presented.

3.2.1 Formulations

Various MILP based formulations have been proposed in the literature to model resource

constrained project scheduling problems. Pritsker et al. (1969) proposed the first binary

programming formulation where variables xjt indicate whether a job j ends at time t

(xjt = 1) or not (xjt = 0). This formulation is known as the discrete-time or time-

indexed formulation. The number of binary decision variables in this formulation is

related to an upper bound t̄ for the number of time periods required to complete the

project. Thus the number of variables is O(n× t̄), where n is the number of jobs.

Kolisch and Sprecher (1996) extended this formulation to handle different execution

modes, adding one additional index m to the binary variables and incorporating this

index in the resource-related constraints. In Kone et al. (2011), a new formulation was

proposed based on events called on/off event-based (OOE) with O(n2) variables.

Time-indexed formulations have been extensively studied and applied to the RCPSP

(see, for example, Baptiste and Demassey (2004); Christofides et al. (1987); de Souza

and Wolsey (1997); Demassey et al. (2005); Hardin et al. (2008); Sankaran et al. (1999)).

Six time-indexed formulations were studied in Artigues (2017). These formulations are

initially categorized into three groups according to the meaning of variables, as follows:

Background and Literature Review 20

Pulse: pulse discrete time - PDT (the most used) formulation with binary variables

xjt ∀j ∈ J , ∀t ∈ T , such that xjt = 1 if job j starts at time t, otherwise xjt = 0;

Step: step discrete time - SDT formulation with binary variables yjt ∀j ∈ J ,∀t ∈ T ,

such that yjt = 1 if job j starts at time t or before, otherwise yjt = 0;

On/Off: on/off discrete time - OODT (the lesser used) formulation with binary vari-

ables zjt ∀j ∈ J ,∀t ∈ T such that zjt = 1 if job j is processed at time t, otherwise

zjt = 0.

For each one of these categories, it is possible to model the precedence constraints

weakly or strongly according to the linear programming (LP) relaxation strength.

Aggregated: this is a weak way to model precedence constraints, using variable co-

efficients greater than or equal to 1; aggregated constraints generate O(n2) in-

equalities, each one with O(t̄×m) variables, where m is the maximum number of

modes;

Disaggregated: this is a stronger way to model precedence constraints, using variable

coefficients equal to {−1, 1}; disagregated constraints generate O(n2× t̄) inequal-

ities, each one with O(t̄×m) variables.

Artigues (2017) concluded that PDDT (pulse disaggregated discrete-time), SDDT

(step disaggregated discrete-time) and OODDT (on/off disaggregated discrete-time),

which are formulations with disaggregated constraints, are all equivalent in terms of

the strength of their LP-relaxations and belong to the family of strong time-indexed

formulations. He also concluded that the formulations with their aggregated counter-

parts, PDT, SDT, and OODT, belong to a family of weak formulations and are also all

equivalent in terms of their LP relaxation.

Even though the aggregated constraints are weaker, they are much less dense than the

disaggregated. For this reason, papers from the literature (see, for example, Christofides

et al. (1987); Zhu et al. (2006)), begin the formulation with the aggregated constraints

and add the disaggregated ones as cutting planes. As in previous works, our algorithm

starts with the weak time-indexed formulation pulse discrete-time (PDT) based on for-

mulations proposed in (Kolisch and Sprecher, 1996; Pritsker et al., 1969) for the MMR-

CMPSP version. In the next paragraphs, we review some computational approaches to

handle MILP formulations for the RCPSPs.

Background and Literature Review 21

Most of the exact algorithms for the RCPSPs (Brucker et al., 1998; Chakrabortty

et al., 2015; Christofides et al., 1987; Demeulemeester and Herroelen, 1992) are built

upon LP-based Branch and Bound (B&B) (Christofides et al., 1987; Land and Doig,

2010) algorithms. A key component in the design of these algorithms is which formu-

lation is employed: compact formulations, with a polynomial number of variables and

constraints, are usually able to quickly provide valid lower bounds since their LP re-

laxations are easily solved. The LP relaxation bounds are relatively weak but can be

significantly improved by adding cutting planes in a Branch-and-Cut (B&C) algorithm.

Cutting planes and strengthening constraints in MILP models are explored for RCPSP

and to other variants of scheduling problems. Applegate and Cook (1991) proposed

clique cuts, half cuts, and other cuts specific to job-shop scheduling problems (JSSP).

Hardin et al. (2008) proposed a lifting procedure to cover-clique inequalities to a resource-

constrained scheduling problem with uniform resources (URCSP) requirement. Cav-

alcante et al. (2001) applied cover cuts to the labor constrained scheduling problem

(LCSP), based on practical requirements arising in industry.

3.2.2 Solution Methods for the SMRCPSP

Sankaran et al. (1999) proposed a cutting-plane algorithm for the SMRCPSP with min-

imal cover inequalities and clique inequalities to test problems provided by Patterson

and Huber (1974). Also, they introduced three preprocessing techniques: reduction of

lower and upper bounds, the identification of redundant constraints between resource

and precedence constraints, and the coefficient strengthening in constraints Johnson

et al. (1985).

Christofides et al. (1987) proposed a B&B algorithm that uses disjunction arcs to

handle resource conflicts. Four lower bounds are examined: the first one is based on

the longest path in the precedence graph; the second one is based on an LP relaxation

strengthened with cuts; the third one is based on Lagrangian relaxation and the fourth

one is based on disjunctive arcs. Their LP-based method incorporated the dynamic in-

clusion of disaggregated precedence constraints and resource-based conflict constraints

for pairs of jobs. The first lower bound, based on precedence constraints, can be com-

puted quickly and was used in the B&B algorithm with other bounds. The second lower

bound was promising but was not used within the B&B method. The Lagrangian relax-

ation technique was found to provide less competitive results. They provide additional

inequalities for the time-indexed version. Finally, the fourth lower bound performed

Background and Literature Review 22

quite well, especially for problems with tight resource constraints. For the SMRCPSP,

Christofides et al. (1987) were able to prove the optimality of instances involving up to

25 jobs and 3 resources.

Rahmania et al. (2015) present a study on the performance of the differential search

algorithm for SMRCPSP; this algorithm is an evolutionary algorithm inspired by the

migration of superorganisms using the Brownian-like random-walk motion concept. The

proposed method provides an initial set of scheduling and attempts to improve using

the migration behavior of the superorganisms. To create a new population, they use

the serial and/or parallel generation scheme. The authors define a rate called ”success”,

in which it shows the number of instances in which they were solved by the proposed

method and also the average deviation of the optimal solution was analyzed. The set of

instances used was PSPLIB. The method was efficient for the benchmark with instances

of 30, 60 and 120 jobs comparing it to the state-of-the-art algorithms for these problems,

including the work of Koulinas et al. (2014), in this case for the benchmark with 60 it

got second place. The authors concluded that for the 60 and 120 jobs, due to the higher

number of jobs, the method had greater difficulty in solving the problems, so the success

rates were lower when compared to the benchmark of 30 jobs.

Koulinas et al. (2014) proposed the Particle Swarm Optimization - PSO algorithm

based on the hyper-heuristic algorithm that works as the high-level algorithm that con-

trols the other heuristics at a lower level operating on a solution space. The authors

construct scheduling from the serial generation scheme. The instance set used on the

experiments are from the PSPLIB, the algorithm proved to be better compared with

others from the state-of-the-art, until then, for all benchmarks.

Brucker et al. (1998) presented a Branch and Bound algorithm for SMRCPSP, based

on a schematic representation of schedules. The branching scheme starts from a graph

representing a set of conjunctions of constraints between predecessors and a set of re-

source constraint disjunctions and represents a set of disjunctions between pairs of jobs

or instants in which these jobs may or may not be in parallel. The authors use a notation

that represents the relations of conjunctions, disjunctions, flexibilities and parallels in a

feasible set of schedules, where each schedule represents a node in the numbering tree.

The priority, in the immediate selection, is to eliminate the flexible relationships by mov-

ing during branching for parallel relations or disjunctions. To correct the disjunctions,

one tries to move the relations to conjunctions. The authors introduced a concept to

allow to move the flexibilities without the branching. Two ideas for immediate selection

were considered: feasibility and dominance criteria. The first is that the movements

Background and Literature Review 23

can lead to infeasibility, so it is necessary to apply a new movement, the second is that

modifications can generate solutions that are dominated by the best current solution, so

a complementary movement is necessary if the current can be improved. To compute the

upper bound was used the Tabu Search. To calculate the lower bound, the procedure

LB2 based on a linear program that relaxes the precedence and allows preemption was

used to compute the best result. They presented computational results for instances of

30 and 60 jobs generated with complexity factor ≥ 1, which represents the average of

immediate successors, resource factor and capacity [0, 1], which treat the average number

of resources limited and the capacity in relation to the demand for resources.

Möhring et al. (2003) propose a method in which a relaxed problem is solved by cal-

culating the minimum cut in a directed graph. The authors based on the idea that La-

grangian relaxation of an integer-indexed programming formulation and schedule-based

relaxation, as well as important approximation algorithms, are efficient methods used

in scheduling. Basically, the authors propose the Lagrangian relaxation for the resource

constraints to calculate the lower limits. The focus of this approach is a straightforward

transformation of the problem into a minimal cut problem in an appropriately defined

directed graph. To solve the problem of the minimum cut, authors use a maximum flow

code. The authors also used a set of instances generated by ProGen, with instances

of size 30, 60 and 90. According to the authors, the limits obtained can be calculated

quickly and are particularly strong for scenarios with scarce resources.

Kochetov and Stolyar (2003) developed an evolutionary algorithm that combines the

genetic algorithm, path-relinking and tabu search. Solutions are evolved by choosing

two solutions and building a path through the connections between the selected ones.

The best solution of the way is chosen and improved by tabu search. The best solution

from the tabu search is added to the population and the worst solution is removed.

Alcaraz et al. (2004) developed a genetic algorithm based on the job list representa-

tion. A gene indicates the SGS (Schedule Generation Scheme) used; SGS defines how to

generate a job schedule. An additional gene indicates the methods between forward and

backward (Toffolo et al., 2016) to be used to time-shift jobs in some list. The crossover

operator for job lists extends so that it can be constructed bidirectionally, by scheduling

jobs backward and forwards.

Background and Literature Review 24

3.2.3 Solution Methods for the MMRCPSP

Among the approaches presented in the literature, we choose the following papers, since

they are a well-known work and consider instances from the same benchmark datasets.

Zhu et al. (2006) presented a B&C algorithm for the MMRCPSP, including cuts

derived from resource conflicts, where all resource constraints are in the form of general-

ized upper bound (GUB) constraints. Besides, disaggregated cuts from the precedence

relationship for pairs of jobs (j, s) in the precedence graph are included. An adaptive

branching scheme, to speed up the solution process, is developed along with a bound

adjustment scheme that is always executed iteratively after branching. To optimize the

solutions found in the first stage, the authors use a high-level neighborhood search strat-

egy called Local Branching (Fischetti and Lodi, 2007). For the MMRCPSP, the authors

were able to prove the optimality of 554 instances with 20-jobs and 506 instances with

30-jobs.

Different techniques such as CP and SAT have also been used to solve the MMRCPSP.

In this context, Demassey et al. (2005) use CP techniques to provide valid inequalities

to strengthen LP relaxations. A recent work using cutting planes as valid clauses for

SAT is presented in Schnell and Hartl (2017). Schnell and Hartl (2017) propose three

formulations based on Constraint Programming to solve the MMRCPSP, using the G12

CP platform and the Solving Constraint Integer Programs (SCIP) as an optimization

framework, both making use of solution techniques combining CP and SAT. They further

combine MILP by inserting a new global constraint on the domain of renewable resources

for SCIP. The authors achieved the same results with better computational times than

Zhu et al. (2006). They also were able to prove the optimality of 1428 instances with

50-jobs and 100-jobs and improve various lower and upper bounds.

3.2.4 Solution Methods for the MMRCMPSP

Among the heuristic approaches presented in the MISTA Challenge, the finalist proposals

are discussed in this section.

Asta et al. (2014), winners of the competition, proposed a approach combining the

Monte-Carlo methods i.e., statistical method, in which a sequence of random numbers is

used to perform a simulation (Metropolis, 1949) and Hyper-Heuristics i.e., heuristic that

can be used to deal with any optimization problem, provided some parameters, such as

Background and Literature Review 25

structures and abstractions, are given, related to the problem considered (Burke et al.,

2003).

In this approach is used a sequence representation defined through the job allocations

in a schedule. So it is possible to build another schedule by allocating jobs one by one

as early as possible. This representation is advantageous because it is easier to obtain

viable schedules. Two steps are required to produce feasible, high-quality solutions.

In the first stage of construction, through inspections on good solutions, Asta et al.

(2014) defined that a proper constructor must create initial sequences that copy partial

programming ordering (start, middle and end). Therefore, a fast method that generates

random schedules was used, where the order of jobs within each partial programming is

chosen by chance, respecting the precedence. These schedules are used as sampling in

decision making.

In the second stage of improvement, movements, also known as neighborhoods, are

controlled by a combination of metaheuristic and hypertext-heuristic, with a population-

based and memetic algorithm (incorporating cultural and learning concepts, allowing

faster precision and convergence (Ong et al., 2010)). All movements generate sequences

that respect precedence relations.

Basically, this approach consists of constructing a method that works the sequence

in which the jobs are passed to a programming constructor. Building a sequence of the

first job is done by a hybrid that generates random schedules and project partitioning.

The improvement phase uses a large number of motions through neighbors controlled

by metaheuristics, memetic and hyper-heuristic algorithms in a multi-thread context.

Geiger (2013), second winner in the competition, proposed a Variable Neighborhood

Search (VNS) (local search method that explores the solution space through systematic

neighborhood structure exchanges (Mladenović and Hansen, 1997)). In this approach

he present a set of viable schedules X associated to two vectors, M = (m1, ...,mn) and

S = (S1, ..., Sn), where M represents the chosen execution mode mj for each job j and

S is the permutation of the job indexes.

The approach generates feasible initial schedules, randomly assigns modes to theM
vector. If M is unviable concerning non-renewable resources, a procedure is applied

that randomly changes the values until viability is guaranteed and an allowed iteration

number is reached. If feasibility is not obtained M is rebuilt again. Subsequently, the

sequence S of the programming is constructed through a scheme of generation in serial.

Background and Literature Review 26

The priority is the job that has the shortest start time.

The local search is applied to the X program constructed, based on the VNS and It-

erated Local Search (ILS), where, through initial programming, neighbors are generated

through several moves and tested for acceptance. If programming that can no longer

be improved is reached, a perturbation in the current solution is made and the search

continues. Four neighborhood moves were proposed.

Local search is performed in parallel. Once the optimal location is reached, the best

alternative found until then is updated and the search continues with this best-known

alternative. Through parallelism, all the nuclei are concentrated in a single solution,

dividing only in the investigation of the neighborhoods.

In work proposed by Toffolo et al. (2013) the MMRCMPSP was approached from the

use of integer programming and a hybrid heuristic. Initially, an exact mode selection

model is created, which evaluates the use of non-renewable resources and enables valid

allocations for jobs, disregarding renewable resources.

The following are the decision variables of the model:

xjm : binary variable that assumes value 1 if job js allocated in mode m and 0

otherwise;

tj : integer variable that indicates the start time of job j;

zp : integer variable that indicates the end time of the project p;

Minimize:

ω1

∑
p∈P

zp + ω2

∑
c∈C

∑
j∈Jc

∑
m∈Mj

djm ·xjm + ω3

∑
j∈J

∑
m∈Mj

djm ·xjm (3.1)

Background and Literature Review 27

Subject to: ∑
m∈Mj

xjm = 1 ∀j ∈ J (3.2)

∑
j∈J

∑
m∈Mj

qkjm ·xjm ≤ qdispk ∀k ∈ K (3.3)

tj +
∑
m∈Mj

djm ·xjm ≤ tl ∀(j, l) ∈ Pred (3.4)

zp ≥ tj ∀p ∈ P, ∀j ∈ Jp (3.5)

The objective function (3.1) is composed of three parts. For each parcel, a weight was

assigned, indicating the priority of the parcel. The weights are defined in a hierarchical

fashion, such that ω1 � ω2 � ω3.

The first part is responsible for minimizing the end time of each project p. The

second and third parts are responsible for minimizing the duration of jobs. The second

installment differs from the third one by prioritizing jobs that appear more often in the

C path set.

The equation (3.2) is responsible for ensuring that each job is allocated only once.

The equation (3.3) is included to ensure the available amount of non-renewable resources.

Finally, the equation (3.5) is responsible for ensuring that the variable zp is equal to the

allocation time of the artificial end-project job p. Artificial jobs have a duration of 0.

Once the modes in which jobs can be executed are defined, a constructive heuristic

based on an exact model was used to generate initial solutions. The authors made use

of a local search hybrid heuristic that combines integer programming with the Forward-

Backward Improvement (FBI) method by applying mode and job perturbations in time

windows through entire programming and non-ascending random search. With the re-

sults, the authors achieved third place in the MISTA Challenge.

Chapter 4

Heuristic Strategies

Stochastic Local Search (SLS) methods obtained the best results for many optimization

problems. In school timetabling, da Fonseca et al. (2014) won the Third International

Timetabling competition with a hybrid Simulated Annealing (SA) algorithm incorpo-

rating eight neighborhoods. In project scheduling, Asta et al. (2014) won the MISTA

Challenge (Wauters et al., 2016) with a Monte Carlo based search method with nine

neighborhoods. In both methods, neighborhoods are explored stochastically instead of

the much popular deterministic best/first fit alternatives where local optimality is usu-

ally reached at every iteration. In these SLS algorithms, a random neighbor is generated

in one of the neighborhoods and its acceptance is immediately decided. In this section,

we focus on SLS algorithms with these characteristics, instead of considering the broader

definition (Hoos and Stützle, 2005) of SLS.

The reasons for the good performance of these methods are the subject of study.

Some insights may come from theoretical models such as in Ochoa et al. (2014) or

experimental studies such as in Hansen and Mladenović (2006). As both studies point

out, more connected search spaces provide a landscape where it is easier to escape from

attractive basins in the search landscape. This is a very favorable point of SLS since

the different neighborhoods and the flexibility used in their exploration contribute to

increased connectivity of the search space graph.

In the remainder of this chapter, we explain the proposed approach to generate

tight upper bounds. Initially, a matheuristic, i.e., a method that uses IP to generate

improved solutions with high time constraints combined with heuristics (Maniezzo et al.,

2010), which produce improved upper bounds are explained. We then focus on the

28

Heuristic Strategies 29

representation and decoding of the solution.

4.1 Solution Representation and Decoding

A solution is represented by an ordered pair (π,M), where π indicates an allocation

sequence and M is a feasible set of modes, i.e. an allocation of modes which respects

the availability of non-renewable resources. A complete solution is decoded with a Serial

SGS algorithm (Demeulemeester and Herroelen, 2002) from (π,M), allocating each job

in the first timeslot where precedence constraints are respected and sufficient renewable

resources are available.

The first step to constructing the initial solution is to build a mode set that satisfies

the consumption of non-renewable resources. The binary program to build this initial set

of modes considers the set J of jobs with its processing times djm and the set K of non-

renewable resources. Each job j has a setMj of possible modes. Also, the consumption

of the non-renewable resource k by job j in mode m is denoted as qkjm. Thus, the

following binary program is solved to select the mode m to execute job j, considering

its respective decision variables xjm and resource availability q̆k for each non-renewable

resource:

Minimize: ∑
j∈J

djm.xjm (4.1)

Subject to: ∑
j∈J

∑
m∈Mj

qkjmxjm ≤ q̆k ∀k ∈ K (4.2)

∑
m∈Mj

xjm = 1 ∀j ∈ J (4.3)

xjm ∈ {0, 1} ∀j ∈ J ,m ∈Mj (4.4)

This binary program corresponds to the NP-hard problem of the 0-1 multidimen-

sional knapsack problem. Fortunately, modern integer programming solvers (Johnson

et al., 2000a; Jünger, Liebling, Naddef, Nemhauser, Pulleyblank, Reinelt, Rinaldi and

Heuristic Strategies 30

Wolsey, 2010) consistently solve this binary program to all instances of MISTA to opti-

mality, always in a fraction of a second.

The feasible mode set is used to build a complete solution by using a greedy ran-

domized constructive (GRC) algorithm do decide the processing order of jobs. The

GRC iteratively selects the next job to be allocated by randomly selecting among all

available jobs. The probability of selecting jobs with shorter earliest starting times ĕsj is

exponentially larger, as in Bresina (1996).

As most of the processing time of this algorithm is spent in the local search phase,

the ability to quickly decode a (π,M) pair is a fundamental aspect in the performance

of the algorithm. We implemented all optimizations proposed in Asta et al. (2014),

such as prefix detection and early exploration of resource insufficiency. Differently from

Asta et al. (2014), we do not guarantee a valid topological sort in π. This speeds up

the generation of valid moves, since some validations may be disabled, but the cost

saved is moved to the decoding phase. To transform the sorting in π into a valid

topological sorting, at each new allocation, one has to check the available job with the

highest priority (smallest desired position), which yields an O(n2) algorithm to decode

π. Fortunately, we devised a simple heap-based algorithm (Algorithm 4.1) to speed up

this to O(n log n).

Algorithm 4.1: convert vector valid topological sort

Data: J jobs, S+
j successors of each job j, S−j predecessors of each job j and

desired positions π
Result: valid topological sorting π∗ based on π
H ← create heap();1

for j ∈ J do2

add to heap(H, j, |S−j| × |J |+ πj);3

p← 0;4

while H not empty do5

j ← remove first(H);6

for j′ ∈ S+
j do7

decrease value(H, j′, |J |);8

π∗p ← j;9

p← p+ 1;10

return π∗;11

Initially, all jobs are inserted into the heap with priority |S−j | × |J |+πj (line 3). The

operation remove first returns and removes from the heap the element with a smallest

Heuristic Strategies 31

priority value.

4.2 Neighborhoods

Neighborhoods operate either on π orM. Moves that violate precedence relationship and

non-renewable resource consumption constraints are discarded. Fourteen neighborhoods

are considered: Most neighborhoods were proposed by Asta et al. (2014). Some of these

neighborhoods aim at the minimization of the TPD.

4.2.1 Neighborhoods Operating on π

An illustrative example will be used to represent neighborhood moves operating on π

considering the following data: a set of projects P , in which |P| = 5. Each project

p ∈ P contains the following jobs: p1 = {8, 12}, p2 = {3, 13, 1}, p3 = {6, 7}, p4 =

{2, 5, 14, 10, 9} and p5 = {25, 26}.

Squeeze Project on Extreme - SPE

All jobs of a project p are compacted around a reference job, while jobs of other projects

are moved either before or after project p. The project to be compacted, is represented

by project pj in which job j allocated at position i belongs. In the first instance, all

positions are accessed to identify the indexes of the first and last job of pj. The indexes

of these jobs are stored, respectively, in i and i. After setting indexes, it’s possible

compress all jobs in pj around the reference job in position i. The procedure to compact

the project it is simple, just shifting to the right all jobs from pj where i < i < i and to

the left where i < i < i.

Figure 4.1 shows a sample neighbor s′ of s in the SPE neighborhood, with position 4

of π being used as a reference job, thus all jobs pertaining to the same project of job 14

are squeezed immediately at its side these jobs are colored in gray.

Heuristic Strategies 32

s'=SPE(s,4)
s 2 3 5 8 14 10 7 9 12
s' 3 8 2 5 14 10 9 7 12

Figure 4.1: Example of a neighbor s′ generated in the SPE neighborhood of s

Swap and Compact two Projects - SCP

Relative positions of projects are swapped and all jobs of both projects are sequentially

allocated, starting with jobs from the project which was previously starting at a later

timeslot. The neighborhood purpose is to relocate a sequence based on jobs belonging

to two projects p1 and p2, furthermore jobs of p1 and p2 will be compacted. The swap is

done by first allocating all jobs of the project that finishes last. It is necessary to receive

as a parameter the projects p1 and p2.

At the first step, all positions are accessed in reverse order to identify between p1

and p2, which finishing last and what are the early indexes allocations of each project.

During this process, jobs of each projects p1 and p2 are stored, respectively, in vectors

M1 and M2. The second step, comprises the swap of sequence, for this it is needed to

set a index î, representing the first job index between the projects p1 and p2. So, all jobs

not belonging to projects p1 and p2 and with smaller indexes than î are stored in vector

L and those with bigger indexes than î are stored in vector R.

After completing the second step, it is necessary unite all jobs contained in M1,M2, L

and R. Initially the sequence is rebuilt including in the first place all jobs of L, repre-

senting jobs allocated before î and not belonging to projects p1 and p2. Soon after, are

united the project jobs that finishing by last (M1 or M2), then jobs project that finishing

first (M1 or M2). Finally, all jobs of R are added, representing jobs not belonging to

projects p1 and p2 allocated after î.

Figure 4.2 shows a sample neighbor s′ of s in the SCP neighborhood; the method

takes as parameter two projects (2, 3); all jobs belonging to projects p2 and p3 are

colored in different grayscale intensities, 3 and 2 respectively, those jobs are summarized

and swapped, respecting the relative positions.

Heuristic Strategies 33

s'= SCTP (s,2,3)
s 5 9 3 6 13 2 1 7 25
s' 5 9 6 7 3 13 1 2 25

Figure 4.2: Example of a neighbor s′ generated in the SCP neighborhood of s

Offset Project - OP

All jobs of a given project are shifted by the same number of positions. It receives as

a parameter the project p and the size of offset k that can be positive or negative to

represents the direction, where k < 0 represents the offset to the left and any other

number represents the offset to the right.

Before performing the offset is important to establish the limits, identifying the index

pid of the last or first job of p and check following the direction if it is possible to apply

the offset k. The offset to the left is invalid when pid − k < 0, the offset to the right

becomes invalid when pid + k ≥ |s|. In both cases of infeasible move, the size of k is

decremented until it finds a possible size of k, when k is 0. Only after checking the

feasibility of offset all jobs of p are displaced.

Figure 4.3 shows a sample neighbor s′ of s in the OP neighborhood; project p4 and the

right offset size k = 1 are received as parameter, all jobs belonging to p4 are grayscale.

s'=OP(s,4,1,1)
s 2 3 5 8 14 10 7 9 12
s' 3 2 8 5 7 14 10 12 9

Figure 4.3: Example of a neighbor s′ generated in the OP neighborhood of s

Compact Project on Percentage - CPP

A percentage of jobs of a project p are justified to the left, starting from the end of

π. It receives as a parameter the project p and the compaction percentage perc. At

first step, it is calculated the number of jobs α in p that will be compacted relative to

Heuristic Strategies 34

perc, represented by α = | (|N | · perc) |, just after are identified the indexes of the last

i and first i jobs of p allocated, taking into account the number of jobs that will be

compacted starting at the end. Jobs belonging to p allocated at this interval are stored

in the vector M1. All jobs with smaller indexes than i are added to vector L and all

jobs with bigger indexes than i are added to vector R. The other jobs within the range

i and i not belonging to project p are added to vector M2.

After completing this first step, it is necessary to unite all jobs contained inM1,M2, L

and R. Initially, the sequence is rebuilt, including all jobs of L, representing jobs allo-

cated before i. Soon after, are added all jobs of M1, containing jobs compacted of p and

then are added jobs of M2, containing jobs that prevented the compression of project

jobs p. Finally, jobs of R are added, containing all jobs allocated after i.

Figure 4.4 shows a sample neighbor s′ of s in the CPP neighborhood considering

project p4 (jobs shown in shaded cells) and compaction percentage 0.5; note that the

project has 5 jobs, so b5× 0.5c = 2 and thus the last two jobs are contiguously allocated

in π.

s'=CPP(s,4,0.5)
s 2 3 5 8 14 10 7 9 12
s' 2 3 5 8 14 10 9 7 12

Figure 4.4: Example of a neighbor s′ generated in the CPP neighborhood of s

Invert Sequence of Jobs - ISJ

A subsequence of jobs in π is inverted. It receives as a parameter an index i indicating the

beginning of the subsequence L and a parameter k indicating the size of the subsequence

L. After setting the sub-sequence L, all jobs are reversed on the sequence. Due to the

fact it is possible to generate invalid sequences to reverse a sequence of jobs that have

precedence relationships with each other, it is necessary to check the feasibility of the

move.

Figure 4.5 shows a sample neighbor s′ of s in the ISJ neighborhood; parameters

(1,4) represent the position and size to invert the substring shaded; jobs are colored in

grayscales.

Heuristic Strategies 35

s'=ISJ(s,1,4)
s 2 3 5 8 14 10 7 9 12
s' 2 14 8 5 3 10 7 9 12

Figure 4.5: Example of a neighbor s′ generated in the ISJ neighborhood of s

Offset Job - OJ

Shifts the position of one job in the sequence π. It receives as a parameter the index

i of job j to be displaced, the size k of offset and the direction dir, where 1 represents

the offset to the right and any other number represents the offset to the left. Before

performing the offset is important to establish the limits for moving j without violating

precedence constraints. The offset to the left is invalid when i− k < 0, the offset to the

right becomes invalid when i+ k ≥ |s|. In both cases of infeasible move, the size of k is

decremented until it finds a possible size for k or k = 0.

Figure 4.6 shows a sample neighbor s′ of s in the OJ neighborhood; in addition to

the sequence, the method receives the position regarding the job and the size of the

displacement, the position to be shifted is 3 for job 8 and will be pushed right to 3

positions.

s'=OJ(s,3,3)
s 2 3 5 8 14 10 7 9 12
s' 2 3 5 14 10 7 8 9 12

Figure 4.6: Example of a neighbor s′ generated in the OJ neighborhood of s

Swap Two Jobs - STJ

Swaps the position of two jobs in the sequence. It receives as a parameter the jobs j1

and j2 to be swapped. Only after checking the feasibility of offset the swap will occur.

Figure 4.7 shows a sample neighbor s′ of s in the OJ neighborhood and takes as its

parameter the positions 2 and 4, referring to jobs 5 and 14 to be swapped.

Heuristic Strategies 36

s'=STJ(s,2,4)
s 2 3 5 8 14 10 7 9 12
s' 2 3 14 8 5 10 7 9 12

Figure 4.7: Example of a neighbor s′ generated in the STJ neighborhood of s

Compact Subsequent Projects - CSP

Compress a contiguous list of projects in a sequence. It receives as a parameter a

number of projects to be compressed on direction dir and the index of the first project.

Firstly, the subsequent projects are identified, when dir = 0 all subsequent projects are

compacted starting the shift from right to left, otherwise the projects are compacted

starting the shift from left to right. All jobs outside the subsequent projects that are in

the range will be moved to after the last project adjacent allocated.

Figure 4.8 shows a sample neighbor s′ of s in the OJ neighborhood; the method takes

as a parameter the first project p1 and the subsequent project number 1, both projects

will be compressed and sequenced without interfering with other project jobs, jobs of

each project are in different grayscales.

s'=CSP(s,1,1,0)
s 8 3 6 25 13 12 1 7 26
s' 8 12 3 13 1 6 25 7 26

Figure 4.8: Example of a neighbor s′ generated in the CSP neighborhood of s

Successive Swap of a Job in a Window - SSJW

All possible swap positions for a job in a window are explored in a first-fit fashion; The

neighborhood purpose is to find the first swap of position between two jobs that improve

the objective function. For this, the method receives a position i which represents the

job j. Subsequently, a window W is set between the position i of the last predecessor

job of j and position i the first successor job of j. The size of W was limited to l which

Heuristic Strategies 37

is defined by (i− i− 1)/2. Then, job j on position i is sequentially changed with every

job in W , until a first improvement in the objective function occurs. Only after checking

the feasibility of the move it will occur.

Figure 4.9 shows a sample neighbor s′ of s in the OJ neighborhood which takes the

i = 2 position as a parameter and attempts to switch to the first position of the W

window, if no improvement in objective function is reached the method makes a new

exchange with the next job of the W window, the improvement in the objective function

occurs in the second exchange, project jobs are colored in gray, the first predecessor and

last successor of the job are emphasized.

s'=SSJW(s,2)
s 2 3 5 8 14 10 7 9 12
s' 2 5 3 8 14 10 7 9 12

s'=SSJW(s,2)
s 2 3 5 8 14 10 7 9 12
s' 2 3 8 5 14 10 7 9 12

Figure 4.9: Example of a neighbor s′ generated in the SSJW neighborhood of s

Successive Insertions of a Job in a Window - SIJW

Similar to SSJW, but instead of swapping jobs, a job is re-inserted in another position

within the explored window until there is an improvement in the objective function.

Figure 4.10 shows a sample neighbor s′ of s in the OJ neighborhood; the method takes

as its parameter the 2 index for jobs 5 and attempts to insert it into each W position,

an improvement of the objective function occurred in the third insertion, project jobs

are grayed out, boundaries and index are emphasized.

4.2.2 Neighborhoods operating on M

In this subsection, neighborhoods which operate over the mode set are introduced. Since

an indirect representation is employed, as described earlier, the satisfaction of renewable

Heuristic Strategies 38

s'=SIJW(s,2)
s 2 3 5 8 14 10 7 9 12
s' 2 5 3 8 14 10 7 9 12

s'=SIJW(s,2)
s 2 3 5 8 14 10 7 9 12
s' 2 3 8 5 14 10 7 9 12

s'=SIJW(s,2)
s 2 3 5 8 14 10 7 9 12
s' 2 3 8 14 5 10 7 9 12

Figure 4.10: Example of a neighbor s′ generated in the SIJW neighborhood of
s

resources is always guaranteed. The same does not holds for non-renewable resources,

so that the feasibility of these moves must be checked.

Change One Mode - C1M

Changes the mode of one job. This neighborhood verifies if the changes of modes are

valid or not concerning non-renewable resources. Figure 4.11 shows a sample neighbor

s′ of s in the C1M neighborhood; the method receives job 1 and the new mode 0 to be

changed;

s'=C1M(s,1,0)
s 0 1 2 1 1 0 1 2 1
s' 0 0 2 1 1 0 1 2 1

Figure 4.11: Example of a neighbor s′ generated in the C1M neighborhood of s

Heuristic Strategies 39

Change Two Modes - C2M

Changes the mode of two jobs. This neighborhood is similar to C1M, but its purpose

is change two execution modes m1 and m2, which corresponds to two jobs j1 and j2.

Figure 4.12 shows a sample neighbor s′ of s in the C2M neighborhood where it takes as

parameters jobs 1 and 2 and the new modes 0 and 1 for switching;

s'=C2M(s,1,2,0,1)
s 0 1 2 1 1 0 1 2 1
s' 0 0 1 1 1 0 1 2 1

Figure 4.12: Example of a neighbor s′ generated in the C2M neighborhood of s

Change Three Modes - C3M

Changes the mode of three jobs; to reduce the size of this neighborhood only triples

of consecutive jobs in the precedence graph are considered; Figure 4.13 shows a sample

neighbor s′ of s in the C3M neighborhood; jobs 1, 2, 4 were chosen with the respective

new modes 0, 1, 0;

s'=C3M(s,1,2,4,0,1,0)
s 0 1 2 1 1 0 1 2 1
s' 0 0 1 1 0 0 1 2 1

Figure 4.13: Example of a neighbor s′ generated in the C3M neighborhood of s

Change Four Modes - C4M

Changes the mode of four jobs that are consecutive in the precedence graph (similarly to

C3M); Figure 4.14 shows a sample neighbor s′ of s in the C4M neighborhood; the method

takes as its parameters jobs 1, 2, 4 and 5 and the respective new modes 0, 1, 0 and 1.

Heuristic Strategies 40

s'=C4M(s,1,2,4,5,0,1,0,1)
s 0 1 2 1 1 0 1 2 1
s' 0 0 1 1 0 1 1 2 1

Figure 4.14: Example of a neighbor s′ generated in the C4M neighborhood of s

4.3 Neighborhood Composition

Given the set of neighborhoods {N1, . . . ,Nk} and a search method, we define probabil-

ities p = (p1, . . . , pk) of selecting each neighborhood at each iteration as neighborhood

composition. In this work, the search method used is the Late Acceptance Hill Climbing

(LAHC) (Burke and Bykov, 2017), i.e., an SLS based on late acceptance. As k increases,

it gets harder to find the best configuration of p.

Some important considerations are: should p remain fixed during the entire search or

should it be dynamically updated as the search progresses? Is it possible to learn the best

configurations during runtime without sacrificing too much the computational efficiency

of the search method? In the next subsections, we try to answer these questions.

4.3.1 Offline neighborhood composition

In this section, we evaluate a metric to define p a priori, i.e., based on a statistical

analysis of the neighborhood’s efficiency. The performance of all neighborhoods in a

previously generated pool of solutions is considered. We call a neighborhood efficient

when its stochastic exploration produces good results, i.e., if it improves the solution

cost or generates sideways moves1 with minimal computational effort.

In a preliminary set of experiments, we observed that the efficiency of different neigh-

borhoods varied considerably depending on the stage of the search. Neighborhoods,

which were quite efficient at the beginning of the search, did not present the same

functional properties as the search advanced.

We evaluate the efficiency of neighborhoods in two different stages. In the first

stage, low quality (initial) solutions are considered, generated by quick constructive

1Moves which do not change the objective function value but modify the solution.

Heuristic Strategies 41

algorithms. In the second stage, incumbent solutions obtained after 10,000 iterations

without improvement of a state-of-the-art Late LAHC (Soares et al., 2015) algorithm

are selected.

Table 4.1 describes the minimum, maximum and average solution quality2 for solu-

tions of both phases. Higher values of this metric indicate better quality.

Table 4.1: Characteristics of the solution pool used for offline neighborhood
analysis

Solution quality

Iter. Minimum Average Maximum

0 <0.0057 0.3566 0.6666

10000 0.6175 0.8193 1.000

Each value in Table 4.1 considers all instances from the most generalized variant

MMRCMPSP and 10 solutions per instance (300 solutions in total), taking into account

the best known solutions in the literature to compute the quality.

The efficiency of each neighborhood k was computed considering a random sampling

of neighbors (10,000) for each solution in the pool. It was observed that only analyzing

the improvement of neighbors was not enough, so we consider the number of neighbors

corresponding to improved solutions s̃(k), the number of neighbors corresponding to

sideways moves s(k) with factor ϑ ∈ [0, 1], and the total CPU time c̃(k) spent validating

and evaluating neighbors. Thus, the efficiency ẽk of a neighborhood k is given by:

ẽk =

s̃(k) + ϑ s(k)

c̃(k)
if c̃(k) > 0

0 otherwise

(4.5)

To do the comparison, we normalize the efficiency values. Let max(ẽ) be the maxi-

mum ẽk for all k ∈ N . Equation (4.6) shows how the normalized efficiency ek is obtained

for a neighborhood k ∈ N :

2the quality qi = bi
ci

of a solution for instance i with cost ci, considering the best known solution’s
cost bi

Heuristic Strategies 42

ek =
ẽk

max(ẽ)
(4.6)

Table 4.2 presents an efficiency comparison between all neighborhoods in the two

different stages. To illustrate the impact of the sideways moves on the final solution

quality, the first columns are computed with ϑ = 0 and the last ones are computed

with ϑ = 0.1. Note that neighborhoods that operate on entire projects, like OP, CPP,

SCTP, are usually well ranked in the first stage. Their efficiency dramatically decreases

in the second stage, except for the CSP, which has very low efficiency in the first stage,

increasing in the second one due mainly to sideways moves. Neighborhoods that change

one mode, swap, inverts or shifts jobs are the most significant for the second stage,

corresponding to a stage of small adjustments in π and M.

Table 4.2: Normalized neighborhoods efficiency computed offline, considering
the two stages solution pool

ϑ = 0.0 ϑ = 0.1

First stage Second stage First stage Second stage

C1M 1.0000 C1M 1.0000 C1M 1.0000 OJ 1.0000

OP 0.7407 C2M 0.2990 OJ 0.6969 CSP 0.7323

C2M 0.7288 OJ 0.2609 OP 0.6661 STJ 0.6651

OJ 0.5143 STJ 0.2076 C2M 0.6427 C1M 0.5709

CPP 0.4729 ISJ 0.2037 STJ 0.4650 ISJ 0.4345

C3M 0.4716 OP 0.1812 C3M 0.4091 OP 0.3474

STJ 0.3677 C3M 0.0950 CPP 0.4053 CPP 0.1959

SCTP 0.3281 SPE 0.0540 ISJ 0.2824 SCTP 0.1921

C4M 0.3058 SCTP 0.0502 SCTP 0.2753 SPE 0.1789

SPE 0.2725 C4M 0.0167 C4M 0.2578 C2M 0.0865

ISJ 0.2304 CPP 0.0023 CSP 0.2540 C3M 0.0371

SSJW 0.0024 SSJW 0.0019 SPE 0.2327 C4M 0.0029

SIJW 0.0005 SSIW 0.0003 SSJW 0.0016 SSJW 0.0001

CSP 0.0000 CSP 0.0000 SIJW 0.0000 SIJW 0.0000

Heuristic Strategies 43

4.3.2 Online neighborhood composition

In this section we consider the online neighborhood composition. In this approach, all

neighborhoods start with the same probability of being chosen and this probability is

dynamically updated considering results obtained during the search into the LAHC.

While this approach introduces a learning overhead, it can more easily adapt itself if

the neighborhoods’ efficiencies change considerably during the search or vary in different

instances.

Whenever a sample of z neighbors is explored, the normalized efficiency ek (Equations

(4.5) and (4.6)) of each neighborhood k ∈ N is computed and their selection probabilities

are updated according to the results obtained exploring this last batch of neighbors.

The definition of z is a crucial point: while larger values of z provide a more accurate

evaluation of each neighborhood, smaller values offer a more reactive method. The

probability pk of selecting a neighborhood k ∈ N is given by Equation (4.7). Note

that a constant β is included when calculating the probability. This constant prevents

assigning probability zero to a neighborhood, and thus all neighborhoods have a minimal

chance of being selected in any stage of the search. All experiments in this paper employs

β = 0.01.

pk =
ek + β∑

k′∈N

(ek′ + β)
(4.7)

Figure 4.15 shows how the probabilities evolve over time, considering a small instance,

A-10.

The first graph assumes ϑ = 0.0 (sideways moves are not rewarded), while the second

considers ϑ = 0.1 (sideways moves are partially rewarded). Note that, as one would

expect, most improving moves for small instances are executed at the beginning of the

search. Therefore, once a local optimum is reached, the probabilities remain unchanged

when sideways moves are not considered. When sideways moves are considered; however,

the probabilities vary during the entire search. It is noteworthy that more complex and

expensive neighborhoods such as CSP, SSJW and SIJW were given lower probabilities when

ϑ = 0.1.

Figure 4.16 presents similar graphs to those of Figure 4.15, but considering a larger

Heuristic Strategies 44

ϑ = 0.0

0.050

0.100

0.150

0.200

0.250

pr
ob
ab
ili
tie
s

ISJ
OJ
ST J
OP

SCTP
CPP
C1M
C2M
C3M
C4M
SSJ W
SIJ W
SPE
CSP

ϑ = 0.1

0 50 100 150 200 250 300

0.000

0.100

0.200

0.300

time (in seconds)

pr
ob
ab
ili
tie
s

Figure 4.15: Evolution of the neighborhood selection probabilities over time
considering instances A-10 and online tuning (z = 1, 000 and β = 0.01)

instance, B-9.

For this instance, neighborhoods C1M and C2M, which change job execution modes,

were highly rewarded when ϑ = 0.0. This emphasizes the importance of the modes

selection for this particular instance. Additionally, the simple neighborhoods OJ and

OP, which shifts the position of one job and one project, respectively, were also assigned

high probabilities. Note that if ϑ = 0.0 and the current solution is not improved by any

neighborhood within z iterations, all neighborhoods are assigned the same probability.

Figure 4.16 shows that this situation is recurring. When sideways moves are rewarded

(ϑ = 0.1), the neighborhoods ISJ, OJ and STJ, which change the sequence of jobs, were

given high selection probabilities during the entire search.

Figure 4.17 presents how probabilities evolve for a medium size instance, X-10.

We can see that neighborhoods C1M, OJ, OP remain the most significant ones. Other

neighborhoods appear with high probabilities at the beginning, like C2M. When ϑ = 0.1,

the neighborhoods with higher potential to generate sideways moves are assigned higher

probabilities.

Heuristic Strategies 45

ϑ = 0.0

0.000

0.100

0.200

0.300

0.400

pr
ob
ab
ili
tie
s

ISJ
OJ
ST J
OP

SCTP
CPP
C1M
C2M
C3M
C4M
SSJ W
SIJ W
SPE
CSP

ϑ = 0.1

0 50 100 150 200 250 300

0.000

0.050

0.100

0.150

0.200

0.250

time (in seconds)

pr
ob
ab
ili
tie
s

Figure 4.16: Evolution of the neighborhood selection probabilities over time
considering instances B-9 and online tuning (z = 1, 000 and β = 0.01)

ϑ = 0.0

0.000

0.050

0.100

0.150

0.200

0.250

pr
ob
ab
ili
tie
s

ISJ
OJ
ST J
OP

SCTP
CPP
C1M
C2M
C3M
C4M
SSJ W
SIJ W
SPE
CSP

ϑ = 0.1

0 50 100 150 200 250 300

0.000

0.050

0.100

0.150

0.200

time (in seconds)

pr
ob
ab
ili
tie
s

Figure 4.17: Evolution of the neighborhood selection probabilities over time
considering instances X-10 and online tuning (z = 1, 000 and β = 0.01)

Chapter 5

Mixed-Integer Linear Programming

Based Methods

In this chapter, we introduce the time-indexed formulation based upon the discrete-

time formulations proposed in Kolisch and Sprecher (1996) and Pritsker et al. (1969),

as well as the preprocessing approaches. The mixed-integer linear programming ap-

proach, which more contributes to the RCPSP, with preprocessing procedures to gen-

erating stronger lower bounds and strategies of exact resolutions for the problem, are

also presented. We focus on a computational technique called cut generation. We have

developed stronger alternative formulations and their treatment with cut generation to

improve MILP formulations for RCPSP dynamically.

5.1 Input Data

The following notation is used throughout this paper to describe the input data:

P : set of all projects;

J : set of all jobs;

Mj : set of modes available for job j ∈ J ;

Jp : set of jobs belonging to project p, such that Jp ⊆ J ∀p ∈ P ;

K : set of non-renewable resources;

46

Mixed-Integer Linear Programming Based Methods 47

R : set of renewable resources;

S : set of direct precedence relationships between two jobs (j, s) ∈ J ×J ;

T ⊂ Z+ : set of time periods in the planning horizon for all projects p ∈ P ;

Tjm ⊂ T : time horizon for each job j ∈ J on mode m ∈ Mj, defined after prepro-

cessing;

djm ∈ Z+ : duration of job j ∈ J on mode m ∈Mj;

qkjm ∈ Z+ : required amount of non-renewable resource k ∈ K to execute job j ∈ J
on mode m ∈Mj;

qrjm ∈ Z+ : required amount of renewable resource r ∈ R to execute job j ∈ J on

mode m ∈Mj;

q̆k ∈ Z+ : available amount of non-renewable resource k ∈ K;

q̆r ∈ Z+ : available amount of renewable resource r ∈ R;

σp ∈ T : release date of project p;

ap ∈ Jp : artificial job belonging to project p ∈ P , which represents the end of the

project.

5.1.1 Preprocessing Input Data

An effective way to reduce the search space is by identifying tight time windows in

which it is valid to process jobs. A basic technique to define the earliest starting time

ĕsj for jobs j ∈ J consists of computing the CPD using CPM (Kelley Jr and Walker,

1959) without considering resource constraints. This method allows to compute the ĕsj

of all jobs, taking into consideration the precedence relationships. The longest path of a

project, also known as the critical path, provides a lower bound for the completion time

of each project.

Consider, for each project p ∈ P , the release date σp, and lower bound based (i.e., the

length of the critical path) λp as input data and the value βp, an upper bound for each

project p, obtained from any feasible solution. Optimality conditions can be used to

restrict the set of valid time periods when a job can be allocated. We initially consider

Mixed-Integer Linear Programming Based Methods 48

the value α computed by Eq.(5.1), that represents an upper bound to the maximum

total project delay allowed.

α =
∑
p∈P

(βp − σp − λp) (5.1)

Thus, the maximum time period t̆ ∈ T that needs to be considered int the planning,

can be obtained by Eq.(5.2).

t̆ = max
p∈P

(σp + λp + α)

T = {0, ..., t̆}
(5.2)

Analogously, upper bounds can be computed for processing times of jobs. The upper

bounds can be strengthened if the selection of modes with different durations is also

considered. The upper bounds are used, along with the duration of each job and without

considering the resource constraints, to define the latest starting times (l̆sj) for jobs j ∈ J .

A job j from a project p when processed at mode m will push forward (i.e., postpone) all

successor jobs by exactly djm time units. Consider set Sj, containing the entire chain of

successors of job j on the longest path from job j to the artificial job ap (indicating the

project completion). Let lower bound Ljm be the total duration in this path, computed

considering only the fastest processing modes for each job in this chain. The maximum

allocation time or latest starting time (l̆sjm) for a job j from a project p when processing

on mode m to Tjm is given by Eq.(5.3).

l̆sjm = σp + λp − Ljm + α

Tjm = {ĕsj , ..., l̆sjm}
(5.3)

Similar bounds can be derived for any two jobs in this path also considering the fastest

processing modes for all jobs except the first one:

d̆jms : the shortest path in the precedence graph considering the length of the arcs

between job j and successor job s ∈ Sj considering mode m ∈Mj;

d̆∗
js : the shortest path in the precedence graph considering the length of the arcs

between job j and successor job s ∈ Sj considering j fastest mode.

Mixed-Integer Linear Programming Based Methods 49

5.2 Formulation

Binary decision variables are used to select the mode and starting times for the jobs.

They are defined as follows:

xjmt =

1 if job j ∈ J is allocated on mode m ∈Mj

at starting time t ∈ Tjm;

0 otherwise.

We introduce in this formulation on/off discrete time variables studied in Artigues

(2017) to allow resources constraints and cutting planes, detailed in the next sections,

to be expressed with fewer variables. The following binary decision variables indicate

during which time periods jobs are being processed:

zjmt =

1 if the job j ∈ J is allocated on mode m ∈Mj and

is being processed during time t ∈ Tjm;

0 otherwise.

The objective function minimizes the total project delay over the project comple-

tion times for projects and their critical paths. Consider the following integer variable

included in the objective function:

h ∈ Z+ : integer variable used to compute the makespan, included in the objective

function with a small coefficient ε to break ties.

Minimize: ∑
p∈P

∑
m∈Map

∑
t∈Tapm

[t− (σp + λp)]xapmt + εh (5.4)

Mixed-Integer Linear Programming Based Methods 50

subject to: ∑
m∈Mj

∑
t∈Tjm

xjmt = 1 ∀j ∈ J (5.5)

∑
j∈J

∑
m∈Mj

∑
t∈Tjm

qkjmxjmt ≤ q̆k ∀k ∈ K (5.6)

∑
j∈J

∑
m∈Mj

qrjmzjmt ≤ q̆r ∀r ∈ R,∀t ∈ T (5.7)

∑
m∈Mj

∑
t∈Tjm

(t+ djm)xjmt −
∑
z∈Ms

∑
i∈Tsz

ixszi ≤ 0

∀j ∈ J , ∀s ∈ Sj (5.8)

zjmt −
t∑

t′=(t−djm+1)

xjmt′ = 0 ∀j ∈ J ,∀m ∈Mj,∀t ∈ Tjm (5.9)

h−
∑

m∈Map

∑
t∈Tapm

txapmt ≥ 0 ∀p ∈ P (5.10)

xjmt ∈ {0, 1} ∀j ∈ J ,∀m ∈Mj,∀t (5.11)

zjmt ∈ {0, 1} ∀j ∈ J ,∀m ∈Mj,∀t ∈ Tjm (5.12)

h ≥ 0 (5.13)

Constraints (5.5) ensure that each job is allocated to exactly one starting time and

one mode. Constraints (5.6) and (5.7) are capacity constraints for non-renewable and

renewable resources, respectively . Constraints (5.8) force precedence relationships to be

satisfied. Constraints (5.9) link variables z and variables x. Constraints (5.10) compute

the total makespan. Finally, constraints (5.11), (5.12) and (5.13) respectively ensure that

variables x and z can only assume binary values and h can only assume nonnegative

values.

Mixed-Integer Linear Programming Based Methods 51

5.2.1 Preprocessing MILP Formulation

Johnson et al. (1985) introduce an interesting preprocessing method to strengthen con-

straint coefficients using the knapsack structure of resource constraints. This preprocess-

ing was used in Sankaran et al. (1999) for the SMRCPSP and analyzes one resource usage

constraint at time. In this paper, we propose a preprocessing technique that considers

various constraints (precedence and the usage of other renewable and non-renewable

resources), besides the renewable resource constraint, which will be strengthened.

The proposed procedure to strengthen resource usage constraints (5.7) was inspired

by Fenchel cutting planes (Boyd, 1994, 1992). Fenchel cutting planes are based on

the enumeration of incidence vectors to find the most violated inequality for a subset of

binary variables. In our paper, we enumerate feasible subsets of jobs and modes to create

a linear problem to find the best possible strengthening of a given resource constraint.

First, it computes, for each t, a set Gt composed of all jobs and modes (j,m) available

for processing at time t ∈ Tjm (see Algorithm 5.1, lines 1–2). Formally, these sets can

be computed as stated in Eq.(5.14).

Gt = { (j,m) ∈ J ×Mj | t ∈ Tjm} (5.14)

To illustrate the coefficient strengthening technique, consider for t = 4, the jobs and

modes that make up the set G4 = {(1, 0), (1, 1), (1, 2), (2, 1), (2, 2), (3, 0), (5, 0), (5, 1),

(5, 2), (6, 1), (6, 2), (9, 1), (9, 2)}. Consider also, the following original constraint restrict-

ing the usage of renewable resource r0 at time t = 4:

0z1,0,4 + 0z1,1,4 + 0z1,2,4 + 0z2,1,4 + 0z2,2,4 + 3z3,0,4 + 0z5,0,4 + 0z5,1,4 +

2z5,2,4 + 0z6,1,4 + 6z6,2,4 + 0z9,1,4 + 9z9,2,4 ≤ 9.

The next step is to enumerate all valid combinations of jobs and modes (j,m) that

can be processed in parallel at time t, i.e., that satisfy all resources constraints and do

not have precedence relations among each other. Mingozzi et al. (1998) designated these

valid combinations as feasible subsets.

Let Et = (ē1, ē2, . . . , ēn) be the set of all these feasible subsets. This set can be

computed by using a simple backtracking algorithm that recursively proceeds, from

level 0 to |Gt|; tentatively fixing the allocation of each respective job and mode to 0 or

Mixed-Integer Linear Programming Based Methods 52

1; proceeding to the next level on the search space only when the partial fixation to the

current level does not violate any resource or precedence constraint.

If we enumerate all the possibilities over G4, we could have 213 = 8192 feasible subsets.

However, due to multiple constraints, there are only 51 feasible subsets in E4:

E4 = [{(1,0)}, {(2,2),(3,0),(1,0)} , {(2,2),(1,0)}, {(3,0),(1,0)}, {(1,1)},
{(2,2),(3,0),(1,1)}, {(2,2),(1,1)}, {(3,0),(1,1)}, {(1,2)}, {(2,1),(3,0),(1,2)},

{(2,1),(1,2)}, {(2,2),(3,0),(1,2)}, {(2,2),(1,2)}, {(3,0),(1,2)}, {(2,1)},
{(3,0),(5,2),(2,1)}, {(3,0),(2,1)}, {(5,2),(2,1)}, {(2,2)}, {(3,0),(5,0),(2,2)},

{(3,0),(5,1),(2,2)}, {(3,0),(5,2),(2,2)}, {(3,0),(2,2)}, {(5,0),(2,2)},
{(5,1),(2,2)}, {(5,2),(2,2)}, {(3,0)}, {(5,0),(9,1),(3,0)}, {(5,0),(3,0)},
{(5,1),(9,1),(3,0)}, {(5,1),(3,0)}, {(5,2),(9,1),(3,0)}, {(5,2),(3,0)},

{(6,1),(3,0)}, {(6,2),(9,1),(3,0)}, {(6,2),(3,0)}, {(9,1),(3,0)}, {(5,0)},
{(9,1),(5,0)}, {(9,2),(5,0)}, {(5,1)}, {(9,1),(5,1)}, {(9,2),(5,1)}, {(5,2)},

{(9,1),(5,2)}, {(6,1)}, {(9,2),(6,1)}, {(6,2)}, {(9,1),(6,2)}, {(9,1)}, {(9,2)}].

As an example of the impact of considering multiple constraints for reducing the num-

ber of valid incidence vectors, if we do not consider precedence constraints and we just

consider one renewable resource constraint in the enumeration process, 182 feasible sub-

sets would be built. For the maximal feasible subset {(2,2),(3,0),(1,0)}, highlighted

above inside the box, if we do not consider all resources and precedence constraints, it

will be extended to {(2,2),(3,0),(5,2),(1,0)}, {(2,2),(3,0),(6,2),(1,0)}.

The ith feasible subset ēi contains ordered pairs (j,m) ∈ Gt. For each renewable

resource r with capacity c and time t the following linear program (Wrt) can be used to

strengthen constraints (5.7) if the enumeration process is successful, i.e., a pre-defined

maximum number of iterations (it) was not reached, (see Algorithm 5.1, lines 5–9). Con-

sider the continuous variables ujm, indicating the number of consumed units of resource

r by job j at mode m in the strengthened constraint of the following linear programming

(Wrt model):

Maximize: ∑
(j,m)∈Gt

ujm (5.15)

Mixed-Integer Linear Programming Based Methods 53

Subject to: ∑
(j,m)∈ē

ujm ≤ c ∀ē ∈ Et (5.16)

qrjm ≤ ujm ≤ c ∀(j,m) ∈ Gt (5.17)

Consider ∀(r, t) ∈ R×T : q̄rjmt = u∗jm from Wrt, where u∗jm is the optimal solution

in Wrt. This value is introduced as a new input data for the main formulation:

q̄rjmt : new values for required amount of renewable resource r ∈ R to execute job

j ∈ J on mode m ∈Mj at time t.

Constraints (5.18) are created with the new values q̄rjmt, yielding improved capacity

constraints for renewable resources.

∑
j∈J

∑
m∈Mj

q̄rjmtzjmt ≤ q̆r ∀r ∈ R, ∀t ∈ T (5.18)

Due to the bounds on variables u, constraints (5.18) always dominate the original

constraints (5.7), since q̄rjmt ≥ qrjm. In particular, whenever ujm > qrjm it dominates

strictly. The following defines dominance between two generated cuts (Wolsey, 1998b):

Definition 5.2.1. Let c1Tx ≤ r1 and c2Tx ≤ r2 be two inequalities. We say c1Tx ≤ r1

dominates c2Tx ≤ r2 if c1
i ≥ c2

i ∀i and r1 ≤ r2; if at least one of these inequalities is

satisfied as an strict inequality, then there is a strict dominance.

An interesting property of this procedure is that it may strengthen constraints of

resources that are not scarce, given the scarceness of other resources and/or precedence

constraints.

Example By solving the MILP model W0,4 to our example introduced above, the co-

efficient of the emphasized variable z5,2,4 corresponding to job 5 on mode 2 processed

at t = 4 can be strengthened to 6, without excluding any feasible integer solution. We

Mixed-Integer Linear Programming Based Methods 54

can generate the following strengthened constraint:

0z1,0,4 + 0z1,1,4 + 0z1,2,4 + 0z2,1,4 + 0z2,2,4 + 3z3,0,4 + 0z5,0,4 + 0z5,1,4 +

6z5,2,4 + 0z6,1,4 + 6z6,2,4 + 0z9,1,4 + 9z9,2,4 ≤ 9.

For the SMRCPSP and MMRCPSP, the original constraints (5.7) can be replaced

by new constraints presented in (5.18) in the case that the latter are stronger. For the

MMRCMPSP, the new constraints (5.18) are created to strengthen renewable resources

for each project separately, and the original constraints remain in the model.

The strengthening procedure is presented in Algorithm 5.1. We consider a time limit

tl, which will be checked after the subset enumeration procedure for each t. If the

time limit is reached, the remaining time periods t will be skipped and the algorithm is

terminated (see Algorithm 5.1, lines 10–11). We continue to find feasible subsets while it

does not reach the last element of Gt. If the maximum number of iterations it is reached,

we stop the process (by returning ∅, see Algorithm 5.1, lines 4–5) and continue to the

next value of t on the strengthening algorithm.

Algorithm 5.1: strengthening procedure

Data: RCPSP model M, it iteration limit, tl time limit, set J , set Mj, set T ,
set R, set K, set Sj

for (each t ∈ T) do1

Gt ← compute by Eq.5.14(J ,M,t);2

Et ← ∅; ite← 0;3

Et ← subset bt(it,ite,tl,Gt,R,K,Sj,Et);4

if (Et 6= ∅) then5

for (each r ∈ R with capacity c) do6

Wrt ← create strengthening MIP(r,c,Gt,Et);7

q̄rjmt ←; opt(Wrt);8

create replace constraints(Ineq.(5.7), q̄rjmt, Ineq.(5.18));9

if time limit tl is reached then10

break;11

Mixed-Integer Linear Programming Based Methods 55

5.3 The Cutting Plane Algorithm

The performance of general purpose MILP solvers on a given formulation strongly de-

pends on how tight is the LP relaxation (dual bound) to the optimal solution (Wolsey,

1998b). Cutting planes are commonly used to improve this bound by iteratively adding

violated cuts.

The proposed cutting plane algorithm uses traditional RCPSP cuts enhanced with

new lifting techniques (see Subsections 5.3.1 and 5.3.2, respectively for cover and prece-

dence cuts), conflict-based cuts (see Subsection 5.3.3 for clique and odd-holes cuts) and

strengthened Chvátal-Gomory cuts (see Subsection 5.3.4) generated from an implicit

dense conflict dynamic graph.

Start

M

Create Mixed Integer
Programming

M = F1(D)

x*,o*

optimize_as_continuous(M)

UU =
compute_variable_set(x*,o*,θ,0)

F1 is the time-index formulation PDT

optimize the linear programming relaxation

C
PU

 -S
er

ia
l P

ro
ce

ss

U
Separation Strategies

U U U,CG U,CG U,CG

Thread #1 Thread #2 Thread #3 Thread #5

Cover Precedence Clique Chvátal
Gomory

C
PU

 -
O

pe
nM

P
Th

re
ad

s

C' = update_cut_pool(Q,C,ι)

merge non-repeated cuts

activates/deactivates cuts add_cuts_to_model(C',M)

C1 C2

C'

Found Cuts and
Runtime is not over?

yes

D
Instance Data

obj_value(x*), M
no

End

no yes
is_integer(x*)

Thread #4

Odd-holes

U,CG

CG = create_conflict_graph(D,U)

non-dominated cuts C3 C4 C5

C

Figure 5.1: Execution flow of the proposed cutting plane method

Mixed-Integer Linear Programming Based Methods 56

An outline of the proposed method is depicted in Figure 5.1. After the instance data

is read, we create the mathematical programming model (M) explained in Section 5.2

and execute the preprocessing routines. Then, the optimal LP relaxation is computed

and if a fractional solution is obtained, different search methods are started to separate

violated inequalities. Since the separation of these inequalities may involve the solution

of NP-hard problems, we execute the separation procedures in parallel. This allows us

to save some processing time in order to process a larger number of iterations in the

cutting plane algorithm within the given time limit.

All generated cuts are inserted into a cut pool where repeated inequalities are dis-

carded. Our algorithm quickly discards repeated cuts by using a hash table. While

checking for repeated cuts is very fast, the dominance check is slower since it requires

checking the contents of the cuts. We only check the dominance in the pool of cover

separation since they generated less cuts compared with other types of cuts.

If new cuts have been found after the separation procedure, a stronger formulation

is obtained, and the process is repeated. When the time limit is reached or when no

further cut is generated, the strengthened model and its objective function value are

returned. In the following, we present the different inequalities that are separated as

well as the algorithmic aspects involved in their separation.

To better understand the separation strategies, remember the example introduced

in Chapter 2, in which Figure 5.2 illustrates the example instance j102 4.mm, a small

instance for the MMRCPSP variant.

2

3

4

5

6

7

9

10

11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

1

8

2

5

4

2

1

2

6

4

0

0

2

1

0

3

7

0

10

5

10

4

0

0

0

6

10

0

0

4

0

0

0

0

0

0

4

0

4

0

8

6

10

0

0

0

0

0

3

0

0

7

0

0

0

8

4

7

0

0

0

6

3

9

4

3

4

6

8

5

-

-

6

4

0

1

6

0

0

0

0

0

-

-

0

6

5

0

0

4

5

7

4

9

-

-

4

0

3

7

0

0

0

7

6

0

-

-

0

10

0

0

8

3

4

0

0

4

-

-

7

0

7

10

6

5

9

10

8

5

-

-

8

6

0

0

4

2

6

4

9

3

-

-

0

3

4

8

0

0

0

0

0

0

-

-

3

0

0

0

8

1

0

6

0

8

-

-

0

10

7

6

0

0

4

0

3

0

-

-

7

0

�

� ∈ 9 8 35 31 �� �0 �1 �0 �1

 �0�1�2 �0�1�2 �0�1�2 �0�1�2 �0�1�2

��������

���������

 ��������� ��� − ���������

Figure 5.2: An optimal solution for instance j102 4.mm and its characteristics

Mixed-Integer Linear Programming Based Methods 57

5.3.1 Lifted RCPSP Knapsack Cover Cuts (LCV)

Resource usage constraints present a knapsack structure which was exploited in Zhu

et al. (2006) to generate GUB cover (CV) cuts. Consider the general case of a constraint

in the form
∑
j∈N

bjzj ≤ c, (b, c) ∈ N+n×N+ for a set N of binary variables. The following

knapsack problem can be solved to generate a valid inequality that cuts fractional point

z∗:

Minimize

γ(z∗) =
∑
j∈N

(1− z∗j)vj (5.19)

subject to: ∑
j∈N

bjvj > c (5.20)

vj ∈ {0, 1}∀j ∈ N (5.21)

Whenever a solution with γ(z∗) < 1 is found involving a set V = {j ∈ N : vj = 1} a

violated inequality in the form
∑
j∈V

zj ≤ |V| − 1 is generated. Since only active variables

(z∗j > 0) are considered in this separation, many dominated inequalities can be generated

in different iterations.

While general purpose lifting strategies (Gu et al., 2000) can be used, specific problem

information can provide an effective procedure to produce lifted cover inequalities. A

variable in a traditional cover inequality represents whether a job j and mode m were

allocated or not at time t. The proposed lifted RCPSP knapsack cover cut (LCV)

separation routine may include, for each job j, variables of additional processing modes

without increasing the right-hand-side, producing much stronger cuts. In the single-

mode case the strengthening will be similar to the one obtained with traditional lifting

(see Balas (1975); Balas and Zemel (1978); Nemhauser and Vance (1994)) techniques.

The new lifted knapsack cover separation problem for the RCPSP is solved for each

renewable resource and each time period. Consider period t∗, resource r with capacity

q̆r and a fractional solution with variable values z∗jmt∗ . The decision variables are:

Mixed-Integer Linear Programming Based Methods 58

vjm ∈ {0, 1} : if variable of job j at mode m is selected (1) or not (0);

oj ∈ {0, 1} : if at least one mode for job j is included in the cut (1) or not (0);

wjm ∈ {0, 1} : if job j has m as the selected mode with the smallest resource con-

sumption from the selected ones (1) or not (0);

e ∈ Z+ : resource consumption excess if modes with smallest resource consumption

are selected.

v ∈ R+ : cut violation.

The LCV separation problem is given by:

Maximize

ωv +
∑
j∈J

∑
m∈Mj

µvjm (5.22)

subject to:

oj =
∑

m∈Mj

wjm ∀j ∈ J (5.23)

e =
∑
j∈J

∑
m∈Mj

qrjmwjm − q̆r (5.24)

vjm ≤
∑

m′∈Mj :qrjm′≤qrjm

wjm′ ∀j ∈ J ,m ∈Mj (5.25)

v =
∑
j∈J

∑
m∈M

z∗jmt∗vjm −
∑
j∈J

oj + 1 (5.26)

0.005 ≤ v ≤ ∞ (5.27)

1 ≤ e ≤ ∞ (5.28)

oj, vjm, wjm ∈ {0, 1} ∀j ∈ J , ∀m ∈Mj (5.29)

The objective function (5.22) maximizes a hierarchical objective function composed

of, first, the cut violation and, second, the inclusion of additional jobs and modes in

the generated inequality to produce stronger cuts (ω � µ). These weights cannot be

too large or too small to prevent numerical instability in the solvers. Constraints (5.23)

ensure that oj is only activated when some mode is selected for job j as the mode with

Mixed-Integer Linear Programming Based Methods 59

lower resource usage. Constraints (5.24) and (5.28) ensure that a cover is produced.

Constraints (5.25) ensure that only modes with resource usage greater than or equal

to the mode with the smallest resource usage selected are allowed for lifting. Equality

(5.26) computes the cut violation and constraint (5.27) ensures that a violated cut is

produced. Finally, constraints (5.29) ensure that variables oj, vjm and wjm can only

assume binary values.

Let C be the set of selected jobs and modes (with vjm = 1) in the solution of the

problem above. Further, let oj indicate its corresponding solution values. We may

generate they following LCV cut:

∑
(j,m)∈C

zjmt ≤
∑
j∈J

oj − 1 ∀t ∈ T (5.30)

For a valid cover cut the value on the right-hand-side would be the size of the set

minus 1, with the lifting strategy whenever it chooses more than one mode per job

the sum of the right-hand-side will be strictly smaller than the size of the set minus 1,

generating a stronger cut as in the example below.

Example Consider the following cut for resource r0 on t = 8, and jobs {4,8} processing

respectively on modes {0,2} from Figure 2.1, generated using the separation described

in (5.19)-(5.21):

(CV) = z4,0,8 + z8,2,8 ≤ 1.

This cut can be lifted since job 8 has other modes {0, 1}, each of them consuming

6 units of resource r0, more than the current mode {2} that consumes 3 units, forming

still a valid inequality:

(LCV) = z4,0,8 + z8,0,8 + z8,1,8 + z8,2,8 ≤ 1.

It is important to emphasize that the first component of the objective function max-

imizes the violation considering the consumption of the other modes, and the second

component, even for the single-mode version, will add additional variables that do not

contribute to the cut violation but which contribute to generate a stronger inequality.

Mixed-Integer Linear Programming Based Methods 60

5.3.2 Lifted Precedence Based Cuts (LPR)

In addition to the cover cut introduced above, it is possible to further strengthen the

formulation by analyzing the precedence between jobs and using precedence (PR) cuts

similar to those used by Zhu et al. (2006). Consider a job j, its (direct or indirect)

successor s and a time t. Also, consider the following constants ej = minm∈Mj
(Tjm) and

lj = maxm∈Mj
(Tjm) to limit the time period. We introduce a new lifted version for the

precedence cuts, shown in Eq.(5.31). Consider the lengths of the shortest paths on the

precedence graph, d̆jms and d̆∗js, introduced in Section 5.1.1. The following inequalities

are valid:

∑
m∈Mj

t+d̆∗js−d̆jms∑
t′=ej

x∗jmt′ ≥
∑

m∈Ms

min(ls,t+d̆∗js)∑
t′=es

x∗smt′

∀j ∈ J , s ∈ Sj, t ∈ {max (ej, es − d̆∗js), . . . ,min(lj, ls − d̆∗js)} (5.31)

Example Consider the following two cuts. The first one, (PR), was generated with the

RCPSP precedence cut as proposed in Zhu et al. (2006). The second one, (LPR), is the

lifted inequality (5.31) to predecessor job 5 and its successor 10 at time period 9:

(PR) = −x5,0,2 − x5,0,3 − x5,0,4 − x5,0,5 − x5,0,6 − x5,0,7 − x5,0,8 − x5,0,9 −

x5,0,10 − x5,0,11 − x5,1,2 − x5,1,3 − x5,1,4 − x5,1,5 − x5,1,6 − x5,1,7 −

x5,1,8 − x5,1,9 − x5,1,10 − x5,1,11 − x5,2,2 − x5,2,3 − x5,2,4 − x5,2,5 −

x5,2,6 − x5,2,7 − x5,2,8 − x5,2,9 + x10,0,11 + x10,2,11 ≤ 0;

(LPR) = −x5,0,2 − x5,0,3 − x5,0,4 − x5,0,5 − x5,0,6 − x5,0,7 − x5,0,8 − x5,0,9 −

x5,1,2 − x5,1,3 − x5,1,4 − x5,1,5 − x5,1,6 − x5,1,7 − x5,1,8 − x5,2,2 −

x5,2,3 − x5,2,4 − x5,2,5 − x5,2,6 + x10,0,11 + x10,2,11 ≤ 0.

Notice the change in the coefficients of the variables on the left-hand-side of the

lifted cut (LPR), based on Eq.(5.31) and corresponding to the variables of job 5. In the

case of different durations for processing modes of a job j, there will be an increase in

the sum of the coefficients of the left-hand-side of (LPR) since we use d̆jms instead of

just considering the fastest mode given by d̆∗js (as proposed in Zhu et al. (2006)). The

original cut variant (PR) from Zhu et al. (2006) considers the fastest time. The variables

highlighted in the boxes in the (PR) cut are not included in our cut approach (LPR).

Mixed-Integer Linear Programming Based Methods 61

The lifted cut therefore strictly dominates the original cut, given that the highlighted

variables have coefficients 0 (instead of −1) in the cut stated as ≤ inequality.

Our separation procedure (see Algorithm 5.2) therefore selects different paths (line

2) that connect job j and the artificial project completion job ap. In particular, it is

desirable to avoid redundant constraints, i.e., constraints of predecessor/successor jobs

belonging to the same path in the dependency graph with a similar meaning, for jobs on

subpaths that have already been used in previously added precedence cuts. Whenever

a violated precedence cut is found on this path (lines 8–13), the remaining jobs in this

path are skipped (line 15). We limit the number ζ of precedence cuts that can be added

per round and only add the most violated cuts (line 18).

Algorithm 5.2: lifted precedence based cuts

Data: set of jobs J , artificial project completion job ap, maximum number of
cuts ζ

for (each j ∈ J) do1

P̆ ← compute paths(j,ap);2

pos← 0;3

for (each p̆ ∈ P̆) do4

s← successor(j,p̆,pos);5

found← 0;6

for (t ∈ {max (ej, es − d̄∗js), . . . ,min(lj, ls − d̄∗js)}) do7

c← init cut();8

(V,C)←identifies a set of variables and their coefficients that generate9

a violated precedence cut for the predecessor j and successor s at time
period t;
if (V 6= ∅) then10

add set var(c, V, C);11

C ← C ∪ {cut(c,≥, 0)};12

found← 1;13

if (found) then14

skipp the remaing jobs in the path from j to ap;15

else16

pos← pos+ 1;17

sort cuts by highest violation and filters(C, ζ);18

return C;19

Mixed-Integer Linear Programming Based Methods 62

5.3.3 Conflict-Based Cuts: Cliques (CL) and Odd-Holes (OH)

According to Padberg (1973), LP relaxations for problems that mostly contain binary

variables linked to generalized upper bound (GUB) constraints can be significantly

strengthened by the inclusion of inequalities derived from the set packing polytope

(SPP). Generally, clique and odd-holes cuts can be generated using Conflict Graphs

(CG). The denser the CG, the more inequalities can be generated. The disadvantage of

having dense CG is that they can be prohibitively large (Atamtürk et al., 2000), so our

algorithm creates the CG dynamically at each iteration by considering a set (U) that

contains the variables of interest, i.e., variables that have a non-zero value in the LP

relaxation or variables set to zero but with a small reduced cost.

Several well-known inequalities can be generated considering pairwise conflicts be-

tween binary variables stored in CG. Some conflicts can be easily detected by solvers

considering constraints such as (5.5). Other conflicts can be implied from optimality

conditions or by analyzing problem specific structures. Overall, the denser is the CG,

stronger are the produced cuts.

The dynamic dense CG created is used in a separation procedure for inequalities

derived from a common class of cuts for the SPP: cliques and odd-holes. A clique

inequality for a set C of conflicting variables has the form
∑

j∈C xj ≤ 1 and an odd-hole

inequality for a cycle C can be defined as:
∑

j∈C xj ≤ b
|C|
2
c (Santos et al., 2016).

Santos et al. (2016) present a clique separation routine that separates all violated

cliques into a conflict subgraph induced by fractional variables. The authors then present

a lifting that extends generated cliques considering the original CG. They also present a

strengthening of odd-holes inequalities by the inclusion of a so-called wheel center. For

an odd-hole with variables C and W being the set of candidates to be included as wheel

centers of C, the inequality (5.32) is valid:

∑
j∈W

b|C|
2
cxj +

∑
j∈C

xj ≤ b
|C|
2
c (5.32)

Our approach presented in Algorithm 5.3 considers four conflict types for variables

xjmt:

1. conflicts between variables of the same job (lines 6–7);

Mixed-Integer Linear Programming Based Methods 63

2. conflicts involving jobs that if allocated at the same time exceed the capacity of

available renewable resources (lines 8–10);

3. conflicts based on precedence relations, in which the time window between the

predecessor job j on mode m and some s ∈ Sj is smaller than d̆jms (lines 11–14);

4. conflicts considering jobs of different projects, where the sum of the delays gener-

ated by allocating these jobs in specific positions implies a total delay greater than

α (lines 15–16).

Algorithm 5.3: creating conflict graph

Data: variables set U , set R, set S̄, delay α
Result: Conflict Graph CG
CG ← ∅;1

for (v1 ∈ U) do2

j1 ← job(v1); m1 ← mode(v1); t1 ← time(v1);3

for (v2 ∈ U) do4

j2 ← job(v2); m2 ← mode(v2); t2 ← time(v2);5

if (j1 = j2) then6

add var conf(CG, v1, v2); continue;7

if (t1 = t2) then8

for (r ∈ R : (qrj1m1 + qrj2m2 > q̆r)) do9

add var conf(CG, v1, v2); continue;10

if (j2 ∈ S̄j1) then11

w ← d̄∗j1,j2 − job min dur(j1);12

if ((end time(j1) > t2) or (t2 − end time(j1) < w)) then13

add var conf(CG, v1, v2); continue;14

if (proj(j1) ! = proj(j2) & (delay(j1,m1, t1) + delay(j2,m2, t2)) > α)15

then
add var conf(CG, v1, v2);16

return CG;17

After the creation of the CG, cuts can be generated considering the current fractional

solution. In this paper, we use the routines described in Brito et al. (2015), where cliques

and odd-holes are exactly separated and lifted.

Mixed-Integer Linear Programming Based Methods 64

Example Considering the following clique cut:

(CL) = x5,0,12 + x5,1,11 + x5,2,9 +

x10,0,11 + x10,0,12 + x10,0,13 + x10,2,11 + x10,2,12 + x10,2,13 ≤ 1.

It is possible to observe, from Figure 2.1, that the variables corresponding to jobs 5

and 10 have conflicts at different time periods considering different modes, given that

they have a precedence relation.

Example Consider the following odd-hole cut:

(OH) = x1,0,0 + x1,0,5 + x2,1,0 + x2,1,3 + x5,0,3 ≤ 2.

Still referring to job 5 in Figure 2.1, we can observe conflicts from the precedence re-

lationship with job 1. Also, a low amount of resources available at times when jobs 5 and

2 intersect on the variables of the example above reflect conflicts between them. Thus,

these three jobs can not be allocated in parallel, considering the amount of resources

consumed by their modes.

5.3.4 Strengthened Chvátal-Gomory Cuts (SCG)

Chvátal-Gomory (CG) (Chvátal, 1973) cuts are well-known cutting planes for MILP

models. The inclusion of these cuts allows to significantly reduce the integrality gaps,

even when only rank-one cuts are employed, i.e., those obtained from original problem

constraints (Fischetti and Lodi, 2007).

Consider the integer linear programming (ILP) problem as min{~cT~x : A~x ≤ ~b, ~x ≥ 0

integer}, where A ∈ Rmxn, ~b ∈ Rm, and ~c ∈ Rn, with the two associated polyhedra

P := {~x ∈ Rn
+ : A~x ≤ ~b} and PI := conv{~x ∈ Zn

+ : A~x ≤ ~b} = conv(P ∩ Zn)

with ~x being integer variables. Consider I and H the sets of constraints and variables,

respectively.

A CG cut is defined as a valid inequality for PI : b~uTAc~x ≤ b~uT~bc, where ~u ∈ Rm
+

is a multiplier vector. The choice of ~u ∈ R+ is crucial to deriving useful inequalities.

Fischetti and Lodi (2007) propose the MILP model for CG separation. The maximally

violated
∑

j∈H(x∗) ajxj ≤ a0 inequality can be found by optimizing the following separa-

Mixed-Integer Linear Programming Based Methods 65

tion MILP model:

Maximize: ∑
j∈H(x∗)

ajx
∗
j − a0 (5.33)

subject to:

fj = ~uTAj − aj, ∀j ∈ H(x∗) (5.34)

f0 = ~uT~b− a0 (5.35)

0 ≤ fj ≤ 1− δ ∀j ∈ H(x∗) ∪ {0} (5.36)

−1 + δ ≤ ui ≤ 1− δ ∀i = 1, . . . ,m (5.37)

aj ∈ Z, ∀j ∈ H(x∗) (5.38)

where H(x∗) := {j ∈ 1, . . . , n̆ : x∗j > 0} and x∗ are fractional values for all n̆ variables

of an LP solution for a general problem fixed in the MILP. To strengthen the cut, a

penalty term
∑

iwiui, with wi = 10−4 for all i, is applied to the objective function. To

improve the numerical accuracy of the method, multipliers too close to 1 are forbidden

(ui ≤ 0.99,∀i).

Example Consider the following cut generated with the CG for jobs from Figure 2.1:

(CG) = 3x1,0,8 + x5,0,5 + 2x5,0,6 + 4x6,1,4 + 2x6,1,8 + 2x8,1,7 + 2x9,1,7 ≤ 5.

On the one hand, the larger the set of non-redundant and tight constraints considered

in the Chvátal-Gomory separation the more likely it is that violated inequalities will be

found. On the other hand, large separation problems can be hard to solve and the

overall performance of the cutting plane method can degrade. The following subsection

will therefore consider specific strategies to find suitable sets of constraints.

Finding a Set of Constraints

In our approach we consider a tuple (s̄, f̄) to indicate the starting time and the finishing

time of a given interval with size η to filter the constraints and variables sets. We com-

Mixed-Integer Linear Programming Based Methods 66

pute, for different intervals (s̄, f̄), the summation of all infeasibilities for the integrality

constraints for all their variables xjmt where s̄ ≤ t ≤ f̄ , x∗jmt are the fractional values

for the RCPSP variables. The value f̂ is composed of the sum of the nearest integer

distance, to indicate how fractional the variables in that interval are.

f̂(s̄,f̄) =
∑
j∈J

∑
m∈Mj

f̄∑
t=s̄

|round(x∗jmt)− x∗jmt| ∀ (s̄, f̄) ∈ T (5.39)

To find the most fractional interval f̂(s̄,f̄) in the scheduling, in which the constraints

with their respective variables will be chosen, we start from the beginning of the sche-

duling, and we slide the interval (s̄, f̄) until the end of the scheduling (see Algorithm

5.4, line 2). The parameters on the algorithm indicate the interval size η, the jump size

ι to go to the next interval and a percentage ζ that allows sliding the interval. The slide

only occurs if the violation is greater than the current value, plus the percentage of ζ.

Another input data is the dynamic conflict graph CG.

Preliminary experiments showed that cuts separated using constraints from the be-

ginning of the time horizon were more effective for improving the dual bound, jobs

allocated in the first time period are responsible for pushing the allocations of the others

in the precedence graph. It is therefore desirable to find integer values for the first ones.

Once the most fractional interval is found, the most important constraints are identified

to compose the set for the Chvátal-Gomory separation.

The renewable resources directly impact the duration of the projects; therefore, all

the variables of these constraints into the interval (s̄, f̄) are considered in the set V
(see Algorithm 5.4, lines 3-7). Further constraints from the original problem are in-

cluded in the separation problem whenever they are related to the current time win-

dow: constraints that restrict the choice of only job (lines 8-12) and non-renewable

resource constraints (lines 13-17). Functions nonrenewable resources(V) and jobs(V)

returns, respectively, the set of non-renewable resources and jobs where variables of

V appear. A good strategy is to find additional constraints that represent conflicts

between the variables of set V . A main conflict is analyzed, whereby the time win-

dow comprising variables coming from the conflict graph CG generated dynamically at

each iteration of the cutting plane received as input parameter (lines 18-22). Function

pairs of conflicting variables(CG,V) returns the pairs of these conflicting vari-

Mixed-Integer Linear Programming Based Methods 67

Algorithm 5.4: finding set constraints

Data: fractional RCPSP solution x∗, rows set I, conflict graph CG, size interval
η, size jump ι, percentage allowed to slide the interval ζ

Result: Set Z of selected rows
V ← ∅;1

(s̄, f̄)← identify interval(x∗, η, ι, ζ);2

for ((r1 ∈ I) and is in interval(r1, s̄, f̄))) do3

type← type row(r1);4

if (type = Ineq.5.7) then5

add row(Z, r1);6

V ← V ∪ vars row(r1);7

O ← jobs(V);8

for (j ∈ O) do9

Vj ← vars jobs(V , j);10

r2 ← create constraints(≤, 1);11

add set var(r2,Vj); add row(Z, r2);12

K ← nonrenewable resources(V);13

for (k ∈ K) do14

Vk ← vars nonrenewable resources(V , k);15

r3 ← create constraints(≤, capacity(k));16

add set var(r3,Vk); add row(Z, r3);17

C ← pairs of conflicting variables(CG,V);18

for (c ∈ C) do19

Vc ← vars conflicts(V , c);20

r4 ← create constraints(≤, 1);21

add set var(r4,Vc); add row(Z, r4);22

return Z;23

ables.

Strengthening Procedure

To produce strengthened CG cuts, a strategy similar to the proposal of Letchford et al.

(2016) is employed. The key idea is to take violated CG cuts and then strengthen the

right-hand-sides (rhs). Letchford et al. (2016) solve the maximum weight stable set

problem for the conflict graph induced by the binary variables of the CG cut to find a

(hopefully smaller) new valid rhs. Our approach solves the same problem augmented by

additional constraints involving these variables. Consider here that set H contains all

variables of the cut to be strengthened. AH is the matrix of coefficients of H including

Mixed-Integer Linear Programming Based Methods 68

non-renewable and renewable resource constraints, job allocation constraints and conflict

constraints, with rhs values specified in a vector ~b. The vector ~c contains the coefficients

of the variables that appear in the cut. Consider vector ~x as variables of H and the

integer linear programming as max{~cT~x : AH~x ≤ ~b}. If the optimal solution value of

this MILP is smaller than the original rhs of the cut, the original CG can be strengthened

with this new value on the rhs.

Example Considering the previous example. It is possible to strengthen the Chvátal-

Gomory cut by tightening the value on the right side to 4 based on the MILP presented

before. Notice that by applying the strengthening, due to renewable, non-renewable

resource constraints and conflicts for these variables, it was possible to reduce the rhs

value by 20%:

(SCG) = 3x1,0,8 + x5,0,5 + 2x5,0,6 + 4x6,1,4 + 2x6,1,8 + 2x8,1,7 + 2x9,1,7 ≤ 4.

Chapter 6

Computational Results

This chapter presents the results of the experiments obtained by the proposed cutting

plane algorithm and the preprocessing routine to strengthen resource-related constraints.

All computational experiments for the MILP based approaches have been carried out on

a computing cluster (Compute Canada) composed by Intel R© Xeon X5650 Westmere

processors with 2,67 GHz and 512 GB of RAM running Scientific Linux release 6.3. All

algorithms were coded in ANSI C 99 and compiled with GCC version 5.4.0, with flags

-Ofast and solver Gurobi version 8.0.1 (Gurobi Optimization, 2016). For the heuristic

strategies experiments an Intel R©Core i7-4790 processor with 3.6 GHz and 16 GB of

RAM running SUSE Leap Linux was used during the experiments. All algorithms were

coded in ANSI C 99 and compiled with GCC 4.8.3 using flags -Ofast and -flto.

6.1 Heuristic Strategies Experiments

We evaluated the performance of offline and online tuning strategies by using the LAHC

algorithm and the overall quality was evaluated over the instances from MMRCMPSP.

After the approaches’ evaluation, we also run the LAHC to determinate upper bounds

to instances from PSPLIB and MMLIB datasets on the Compute Canada. At each

iteration, a random neighborhood is chosen considering the probabilities p in a roulette

scheme (Baker, 1987). Offline and online tuning strategies were considered over a single

value for this parameter1 so that both strategies receive the same tuning effort.

Each neighborhood composition strategy was evaluated on instances from MMR-

1LAHC list size value was fixed to 1,000

69

Computational Results 70

CMPSP datasets using five independent executions on each instance. The quality qi of

a solution obtained for an instance i is calculated as qi = bi
ai

, where bi is the best known

solution for i and ai is the average solution costs. Therefore, the quality ω ∈ [0, 1] of

solutions for an instance set I is computed as the average value of qi for all i ∈ I. The

standard deviation σ is also included.

Table 6.1 presents the results obtained with offline tuning. Best average results

are shown in bold. The first column presents results with uniform probabilities (1/k)

for selecting all neighborhoods during the entire search. The second column shows the

results when probabilities are defined using a single stage, and the third column presents

results obtained with the two stages tuning approach.

Table 6.1: Quality of results for the offline tuning strategy

Offline tuning

Uniform Single stage Two stages

ωϑ=0 0.935 0.949 0.955

σϑ=0 0.041 0.039 0.039

ωϑ=0.1 0.935 0.952 0.953

σϑ=0.1 0.041 0.038 0.037

As can be seen, the efficiency metric used to tune the probabilities of selecting each

neighborhood produced good results: better average results were produced, in addi-

tion to a smaller standard deviation. The best results were obtained in the two stages

approach. These results indicate that it would be probably beneficial to update the

computational effort invested in each neighborhood in different phases of the search pro-

cess. A natural extension of our proposal would be a more granular approach, i.e., the

definition of more than two search phases to more properly adjust the probabilities of

selecting each neighborhood as the search progresses.

After evaluating the offline approach, we evaluated the online approach. Table 6.2

shows the average quality and standard deviation obtained with the online approach

using the metric ẽ and different values of z (interval in which probabilities are updated).

The best results were obtained with z = 1000 and ϑ = 0. Online tuning approaches

can be beneficial to simplify the tuning process and to define the best neighborhood

composition strategies during runtime. While this approach significantly improves the

Computational Results 71

uniform probabilities strategies, it performs slight worse (1% in our tests) than the best

configuration obtained with offline tuning.

Table 6.2: Quality of results for online tuning β = 0.01

Online tuning

z=1000 z=10000 z=50000 z=100000

ωϑ=0 0.9468 0.9428 0.9431 0.9462

σϑ=0 0.0438 0.0415 0.0444 0.0437

ωϑ=0.1 0.9339 0.9358 0.9309 0.9330

σϑ=0.1 0.0420 0.0422 0.0411 0.0428

Once we understand that the online approach is beneficial to the problems of the

generalized MMRCMPSP variant, experiments were performed on Compute Canada for

the entire benchmark datasets, including instances from PSPLIB and MMLIB. Figure

6.1 shows two box plots representing the improvements obtained by applying the online

method to all benchmark datasets.

A B X
J3

0
J6

0
J9

0
J1

20 J5
0

J1
00

Ja
ll5

0+
Ja

ll1
00

+

0.0

0.2

0.4

0.6

0.8

1.0

Initial Solution Improvements

A B X
J3

0
J6

0
J9

0
J1

20 J5
0

J1
00

Ja
ll5

0+
Ja

ll1
00

+

−1.0

−0.5

0.0

0.5

1.0

Best Solution Improvements

Figure 6.1: Solutions improvements results obtained by running the online
tuning for all instances from the benchmark datasets

Computational Results 72

The values [0,1] from the first box plot, represents a factor of improvement comparing

the initial solution, built using the binary program and greedy allocation, with the

obtained solution. The values [-1,1] from the second box plot, represents a factor of

improvement comparing the best-known solution from the literature with the obtained

solution.

It can be observed that the online method can better, on average more than 40% the

values of greedily designed initial solutions. The improvements obtained in groups J30

and J50 were more significant than other datasets. The online method was able to obtain

similar values to the best-known solutions in the literature from PSPLIB and MISTA

datasets. For the MMLIB datasets, values similar to those found in the literature were

also obtained on average. However, we can observe some lower outliers below than 0,

but also outliers representing an improvement in the literature solutions.

Figure 6.2 shows two box plot representing the improvements obtained by applying

different intensities, including intensities obtained by offline and online methods, to all

benchmark datasets.

A B X
J3

0
J6

0
J9

0
J1

20 J5
0

J1
00

Ja
ll5

0+
Ja

ll1
00

+

0.0

0.2

0.4

0.6

0.8

1.0

Initial Solution Improvements

A B X
J3

0
J6

0
J9

0
J1

20 J5
0

J1
00

Ja
ll5

0+
Ja

ll1
00

+

−1.0

−0.5

0.0

0.5

1.0

Best Solution Improvements

Figure 6.2: Solutions improvements results obtained by running different in-
tensities for all instances from the benchmark datasets

The values [0,1] from the first box plot, represents a factor of improvement comparing

Computational Results 73

an improved initial solution with the obtained solution. The values [-1,1] from the second

box plot, represents a factor of improvement comparing the best-known solution from

the literature with the obtained solution. Looking at the similarity between the two

box plots about the best solution improvements plotted in Figures 6.1 and 6.2, we can

understand that the online method can obtain satisfactory results and learn to tune

the neighborhoods properly. Besides, even though receiving a better initial solution, the

first box plot has outliers with an improvement in these solutions.

Many new best-known solution was obtained, in addition to improved average so-

lution costs for many instances considering Asta’s results. Note that in Asta et al.

(2014), the best-known results were obtained by running 2,500 independent executions

in a computer cluster. All new best solutions were sent to the official website2 of MISTA

Challenge.

6.2 Preprocessing MILP Formulation Experiments

In order to evaluate the performance of the proposed cutting plane in relation to the

specific problem cuts and the linear relaxation, preliminary experiments have been per-

formed on the benchmark datasets with α > 0 totaling 782 instances3 from PSPLIB

and MISTA. These two sets include instances of the versions SMRCPSP, MMRCPSP

and MMRCMPSP. Instances from MMLIB, that contemplate a larger number of varied

instances for the MMRCPSP version, were introduced only in experiments carried out

using the complete version of our approach. The impact of adding the cuts for instances

where α = 0 could not be measured, since the LP bound remains at the same value even

when the formulation has been improved. We used a time limit of 24 hours for each

instance from the MMRCMPSP and 4 hours for each instance from the SMRCPSP and

MMRCPSP.

The first experiment was conducted to evaluate the preprocessing MILP formulation

by analyzing the LP relaxation (LR) and the strengthened LP relaxation (SLR) using

the coefficient strengthening MILP presented in Section 5.2.1 to renewable resources

constraints. The reported computing time for the SLR includes the time spent to find the

successful feasible sets with parameters to stop the enumeration process as it = 200, 000

and tl as the maximum allowed time defined above to run the approach. Table 6.3

2https://gent.cs.kuleuven.be/mista2013challenge/
3α > 0 is an upper bound to the maximum TPD with value higher then its CPD.

https://gent.cs.kuleuven.be/mista2013challenge/

Computational Results 74

shows the average integrality gaps 4 and the average computing times in seconds that

have been obtained with the original LP relaxations and the strengthened LR for the

instances from PSPLIB and MISTA.

Table 6.3: Average integrality gaps (1.0 = 100%) and the average computing
times (sec.) for solving with the original LP relaxations (LR) and the strength-
ened LR (SLR)

LR SLR

group n gap time gap time

A 10 0.441 85.9 0.438 683.6

J30 245 0.663 0.3 0.658 2.8

J60 57 0.825 1.0 0.816 5.3

J90 80 0.822 2.1 0.818 26.9

J120 390 0.840 3.3 0.835 37.2

total 782 0.718 18.5 0.713 151.2

The results in Table 6.3, shown in bold numbers, indicate that the strengthening

formulation slightly improves the integrality gaps. As expected, solving only the weak

initial formulation is faster than solving the formulation with the preprocessing routines.

However, we note that even small improvements in the root node can result in a large

number of nodes pruned later in the search tree. For this reason, and given that the

additional computing times are still quite reasonable, we use this strengthening strategy

in all further experiments.

According to Kolisch (1995), network precedence relationships and the factor between

availability-consumption of resources are the two critical characteristics of the instances.

When pruning is applied considering these two characteristics, we note that even for

instances with 120 jobs, there are time periods for which it is possible to enumerate the

feasible subsets. For example, it is possible to enumerate until t = 102 for the large

instance j1201 1. This instance is composed of 120 jobs and has restricted relationship

between the availability and consumption of renewable resources.

4given the best known upper bound b, from PSPLIB and MISTA websites, and an obtained dual

bound b, the integrality gap is computed as follows: (b−b)

b
, b > 0

Computational Results 75

6.3 Cutting Plane Algorithm Experiments

In order to devise an effective cutting plane strategy, we next evaluate the different

separation strategies.

6.3.1 Results for Different Cut Families

In Section 6.2, it has been shown that using the SLR instead of the original LR strength-

ens the formulation while only marginally increasing computing times. We now explore

the bound improvement when combining the SLR with each of the different cut types.

Tables 6.4 and 6.5 show the average integrality gaps and the average computing times

for different approaches. In both tables, the first column SLR presents results obtained

by the strengthened LP relaxation without cuts. The LCV5, LPR, CL, OH ad SCG

columns indicate, respectively, results6 obtained by combining the SLR with one addi-

tional cut type: lift operations to cover and precedence cuts, clique cuts, odd-hole cuts

and strengthened Chvátal-Gomory cuts.

Table 6.4: Average integrality gaps (1.0 = 100%) and average computing times
(sec.) obtained by different cuts for the SMRCPSP and MMRCPSP benckmark
datasets with the time limit of 4 hours

SLR +{LCV} +{LPR} +{CL} +{OH} +{SCG}
group n gap time gap time gap time gap time gap time gap time

J30 245 0.658 3 0.644 6 0.549 5 0.567 101 0.657 3 0.551 14200

J60 57 0.816 5 0.814 11 0.712 88 0.806 1093 0.816 12 0.812 14401

J90 80 0.818 27 0.816 45 0.672 454 0.807 3251 0.818 35 0.815 14400

J120 390 0.835 37 0.820 114 0.714 2111 0.817 7265 0.835 56 0.832 14423

total 772 0.781 18.1 0.774 43.9 0.661 665 0.749 2928 0.781 27 0.780 14408

The results in Table 6.4 suggest that the best average values (in bold numbers) of the

integrality gaps were obtained by adding the lifted precedence cuts. Those cuts offered

the best bound improvement (about 15%), while requiring only additional computing

time. For the complete cutting plane, in the final experiment, we execute the separation

procedures in parallel, but if a hierarchical implementation approach was used, one

5ω = 100000 and µ = 0.1
6the maximum number of precedence and clique cuts added to the LP at each iteration corresponds

to 20% of the amount of the LP rows

Computational Results 76

would add the cut families based the order of their integrality gap improvements: LPR,

CL, LCV, SCG and OH.

The results of instances from MMRCMPSP are presented in Table 6.5. The results

summarized indicate that the LPR cuts are also effective for the multi-project problem

variant, even for large instances. SCG cuts have been found to be particularly useful

for this class of problem. Experiments for instances as from A-7 typically exceeded the

given time or memory limits to insertion of cuts such as CL, OH, and SCG.

Table 6.5: Integrality gaps (1.0 = 100%) and computing times (sec.) obtained
by different cuts to the MMRCMPSP benckmark datasets with the time limit
of 24 hours

SLR +{LCV} +{LPR} +{CL} +{OH} +{SCG}
inst. gap time gap time gap time gap time gap time gap time

A-1 1.000 0 1.000 0 0.875 0 0.875 0 1.000 0 0.000 1793

A-2 1.000 1 1.000 4 0.987 4 0.989 2 1.000 2 0.935 86007

A-3 0.000 8 0.000 9 0.000 15 0.000 15 0.000 15 0.000 62097

A-4 0.414 4 0.411 35 0.333 39 0.366 1297 0.414 10 0.396 86005

A-5 0.305 32 0.299 1743 0.273 1168 0.301 6157 0.305 254 0.302 86028

A-6 0.428 596 0.427 4118 0.317 3303 0.413 34106 0.428 1724 0.424 86005

total 0.5245 221 0.523 985 0.464 755 0.491 6930 0.525 334 0.343 40983

In Table 6.6 we evaluate the lifting strategies of the traditional RCPSP cuts proposed

by Zhu et al. (2006) and the strengthening strategy for Chvátal-Gomory cuts, also

combining with the SLR.

Table 6.6: Average integrality gaps (1.0 = 100%) and average computing times
(sec.) obtained by lifting the traditional RCPSP cuts, by strengthening the CG
cuts and their original versions combining with the SLR with time limit of 24
hours for A group and 4 hours for the others

+{CV} +{LCV} +{PR} +{LPR} +{CG} +{SCG}
group n gap time gap time gap time gap time gap time gap time

A 6 0.526 59.9 0.523 984.8 0.518 555.9 0.464 754.8 0.342 71825 0.343 67989

J30 245 0.660 0.7 0.644 5.6 0.653 3.7 0.549 4.9 0.548 14092 0.551 14200

J60 57 0.825 2.1 0.814 11.2 0.794 30.1 0.712 87.5 0.811 14402 0.812 14401

J90 80 0.821 4.3 0.816 44.9 0.780 131.8 0.672 454.3 0.815 14402 0.815 14400

J120 390 0.839 66.2 0.820 113.9 0.809 1516.2 0.714 2111.4 0.832 14402 0.832 14423

total 782 0.734 26.6 0.723 232.1 0.711 447.5 0.622 682.6 0.670 25825 0.671 25083

Computational Results 77

The lifting strategies were able to improve the average integrality gaps of all bench-

mark datasets when comparing with the traditional RCPSP cuts (CV and PR). The

results in bold numbers suggest that the lifting strategy is generally successful, substan-

tially improving the average integrality gaps while increasing computing times. Note that

even for the benckmark datasets of SMRCPSP, improved lower bounds were achieved,

since lifting tends to use more variables in the cut apart from those that contribute to

the cover violation. The strengthened CG cuts did not improve upon the original CG

cuts, which can be explained by the large computing times spent by the strengthening

procedure. When analyzing the average number of iterations for both procedures, the

CG without lift did 3118 iterations in the average, while SCG did just 2450 iterations.

Even with a reduced number (21%) of iterations it was able to achieve basically the

same results.

To analyze the cut generation for each separation strategy, we have computed the

number of unique cuts for each strategy to the previous experiment. Figure 6.3 shows

box plot of the number of cuts for different instance types and benchmarks.

LC
V

LP
R CL O
H

LC
G

1e+00

1e+02

1e+04

1e+06

Group A

LC
V

LP
R C
L

O
H

LC
G

1e+00

1e+02

1e+04

1e+06

Group J30

LC
V

LP
R C
L

O
H

LC
G

1e+00

1e+02

1e+04

1e+06

Group J120

LC
V

LP
R C
L

O
H

LC
G

1e+00

1e+02

1e+04

1e+06

Group J90

LC
V

LP
R CL O
H

LC
G

1e+00

1e+02

1e+04

1e+06

Group J60

Figure 6.3: Box plot of the number of cuts for different types and benchmark
datasets to each separation strategy

The lifted precedence strategy LPR finds a reasonable number of cuts for almost

Computational Results 78

all benchmark datasets. The strengthened Chvátal-Gomory SCG strategy seems to

find cuts for all the benchmark datasets, including J30 and J90 in which LPR finds

less. Another peculiarity of SCG is that although it finds few cuts at each iteration it

remains to find cuts for a larger number of iterations. It is also possible to observe that

a small number of odd-holes cuts are generated, which explains the little impact on the

integrality gaps. Finally, the quantities of both cliques and lifted precedence cuts are

relatively high. However, their separation requires more time.

6.3.2 Results Removing Cut Families

While the previous experiments explored the impact of adding each cut type, we now

explore the impact of omitting each cut type. To this end, we use all cut types, separated

in parallel in the cutting plane, and then individually remove each type for the bench-

mark datasets SMRCPSP and MMRCPSP. Table 6.7 summarizes the results of these

experiments, where column pair All Cuts represents the strategy using all cut families,

and the other column pairs represent the strategy without each of the cut types.

Table 6.7: Average integrality gaps (1.0 = 100%) and the average computing
times (sec.) obtained by the cutting plane using all cut types and then removing
one cut type at a time with time limit of 4 hours

All Cuts -{LCV} -{LPR} -{CL} -{OH} -{SCG}
group n gap time gap time gap time gap time gap time gap time

J30 245 0.458 13546 0.471 13631 0.485 13640 0.459 13645 0.461 13661 0.518 8

J60 57 0.702 14402 0.703 14401 0.798 14401 0.702 14401 0.702 14402 0.71 107

J90 80 0.666 14403 0.667 14403 0.8 14402 0.665 14403 0.666 14403 0.669 545

J120 390 0.668 14409 0.713 14436 0.774 14425 0.667 14429 0.67 14429 0.667 4779

Total 772 0.624 14190 0.639 14218 0.714 14217 0.623 14219 0.625 14224 0.641 1360

By removing the LPR cuts, results worsen by about 13%. The results also get a little

worse by removing OH, LCV, and SCG respectively. The results using all cuts performed

generally well. In addition, removing the clique cuts further improved the gaps on larger

instances. This can be explained by the fact that separating cliques requires more time.

When these cuts are removed the numbers of iterations increases, as one can observe in

Table 6.8. Based on these results, one may define a new hierarchical sequence of the cut

types based on the gap increase when the cut type is removed: LPR, SCG, LCV, OH,

and CL.

Computational Results 79

Table 6.8: Average number of iterations and the average computing times (sec.)
obtained by the cutting plane comparing with removing some others cuts with
time limit of 4 hours

All Cuts -{LCV} -{LPR} -{CL} -{OH} -{SCG}
group n round time round time round time round time round time round time

J30 245 2077 13546 1946 13631 1796 13640 2486 13645 2035 13661 12 8

J60 57 618 14402 618 14401 877 14401 832 14401 452 14402 16 107

J90 80 294 14403 300 14403 476 14402 401 14403 293 14403 22 545

J120 390 265 14409 271 14436 347 14425 469 14429 284 14429 170 4779

Total 772 814 14190 784 14218 874 14217 1047 14219 766 14224 55 1360

Table 6.9 shows the results for the same experiments for the MMRCMPSP. Again,

column All Cuts represent the strategy were all cut types are used. Instead of reporting

the results when each of the other cut types is removed, we only report on removing

the cut types that consumed most of the computing time: cliques and odd-holes cuts,

or the strengthened CG cuts. The bold numbers show the best average integrality gaps

achieved for instances that did not run out of memory.

Table 6.9: Average integrality gaps (1.0 = 100%) and the average computing
times (sec.) obtained by the cutting plane comparing with removing some others
cuts with time limit of 24 hours

All Cuts -{CL&OH} -{SCG}
instance gap time gap time gap time

A-1 0.000 52.5 0.875 0.7 0.875 0.4

A-2 0.781 86015.2 0.924 4.2 0.924 5.6

A-3 0.000 86368.5 0.000 11.0 0.000 9.4

A-4 0.316 86001.1 0.327 31.1 0.327 104.2

A-5 0.263 86010.4 0.267 832.2 0.266 1280.4

A-6 0.313 86089.2 0.314 2130.2 0.314 2660.6

Total 0.279 71756.2 0.451 501,6 0.451 676.8

Even though the results are better on average when using all cuts, by removing the

cuts, the time was reduced significantly. Even though using all cut types significantly

increases the computing times, the gap improvement on some of the instances may still

justify their use.

To analyze the number of generated cuts for all separation procedures, we also com-

Computational Results 80

puted the number of non-repeated cuts to the previous experiments (All Cuts). Figure

6.4 shows the box plot representing the number of cuts for different types and bench-

marks.

LC
V

LP
R CL O
H

LC
G

1e+00

1e+02

1e+04

1e+06

Group A
LC

V
LP

R C
L

O
H

LC
G

1e+00

1e+02

1e+04

1e+06

Group J30

LC
V

LP
R CL O
H

LC
G

1e+00

1e+02

1e+04

1e+06

Group J120

LC
V

LP
R C
L

O
H

LC
G

1e+00

1e+02

1e+04

1e+06

Group J90

LC
V

LP
R CL O
H

LC
G

1e+00

1e+02

1e+04

1e+06

Group J60

Figure 6.4: Box plot of the number of cuts for different types and benchmark
datasets to all separation strategy together

Figure 6.4 shows that LPR cuts are effective for all datasets mainly in the case of the

SMRCPSP, where it found, on average, more cuts than others. For the MMRCMPSP,

the LPR cuts are still the most effective ones. CL and SCG cuts seem to be effective

mainly for instances with multiple modes. The average number of generated LCV cuts

seems to be stable for all benchmarck dataset. Few OH cuts are found for all benchmarck

datasets.

After analyzing the best strategy for the MMRCPSP obtained through experiments

on the PSBLIB instances, we run the experiment with all cuts for the instances from

MMLIB, comparing the LP relaxation and the strengthened linear relaxation. The

results are presented in Table 6.10. The results show that the cutting plane was very

effective for all benchmark datasets, improving the average values by approximately 15%.

As in earlier comparisons, the SLR slightly improves the integrality gaps for MMLIB

instances too. However, 135 of the JA11 instances ran out of memory, which have been

Computational Results 81

removed from the results presented in the table to provide a fair comparison.

Table 6.10: Average integrality gaps (1.0 = 100%) and the average computing
times (sec.) obtained by the cutting plane comparing with the LP relaxation
and its strengthening with time limit of 4 hours

LR SLR +{All Cuts}
group n gap std time gap std time gap std time

J50 540 0.750 0.309 0.6 0.749 0.309 6.4 0.654 0.367 9669.4

J100 540 0.768 0.293 11.0 0.768 0.293 35.6 0.688 0.354 11536.6

JAll50+ 1616 0.586 0.250 6.6 0.584 0.277 30.1 0.463 0.227 13746.8

Jall100+ 1489 0.644 0.272 54.8 0.644 0.272 144.0 0.530 0.265 14221.9

Total 4185 0.687 0.281 18.2 0.686 0.288 54.0 0.584 0.303 12293.7

6.4 Branch & Cut Experiments

We now explore how the different cut types can be added dynamically in a Branch-and-

Cut manner, to improve the solution process using the general purpose MILP solver

Gurobi. Experiments were executed in order to compare the results achieved by solving

the model with the inclusion of cuts into the root plus precedence cuts into a callback7

procedure when the lower bound is improved and the results achieved by solving the

model without cuts just with the preprocessing input data and Gurobi cuts.

Table 6.11 summarizes the integrality gaps8 (average and standard deviation), for

open instances with α > 0 from PSPLIB and MISTA. The experiments for our approach

have been limited to 24 hours of computing time. For Gurobi cuts, the first experiments

have been limited to 24 hours and the second have been limited to 48 hours, in order to

ensure a fair comparison since we not consider the time spent to insert all cuts into the

root node for our approach. Initial solutions available at MISTA website were inserted

only for the A dataset.

By analyzing Table 6.11 we can see that better results are obtained with the intro-

duction of cuts into the root and with the LPR cut into the callback procedure. The

average integrality gaps are reduced. Also, for some particular instances like j12049 8,

7a callback is a user function that is called periodically by the Gurobi optimizer in order to allow
the user to query or modify the state of the optimization Gurobi Optimization (2016)

8the integrality gaps are computed as in the previous experiments, since it was not possible to
generate an incumbent solution for all instances, so it is not possible to obtain the optimality gap for
some instances

Computational Results 82

Table 6.11: Average and standard deviation for the integrality gaps (1.0 =
100%) obtained by the B&C with all cuts at root plus LPR in the callback
procedure

Gurobi cuts +{Our appr.}
gap (24h) gap (48h) gap (24h)

group n avg std avg std avg std

A 10 0.210 0.165 0.158 0.139 0.139 0.124

J30 245 0.007 0.022 0.006 0.022 0.005 0.020

J60 57 0.252 0.115 0.237 0.103 0.184 0.084

J90 80 0.268 0.162 0.253 0.139 0.201 0.084

J120 390 0.299 0.253 0.292 0.252 0.249 0.224

j12021 1, j12022 8, j3037 1, j3037 7, j6046 5, j6030 2, among others, the average op-

timality gap achieved within 24 hours of computing time was quite low (0.09%) when

adding the cuts. Almost all open instances with α = 0 from PSPLIB have been easily

solved to optimality, except for some instances in set with 120 jobs.

We now explore how the two settings compare throughout the optimization process

to find feasible solutions and to prove optimality. Table 6.12 summarizes the results for

datasets from MISTA and PSPLIB for the three problem variants, also including those

instances with α = 0. Comparing to Toffolo et al. (2016), we solve to optimality, for the

first time, 1 instance from A set. Comparing to Schnell and Hartl (2017) we solve the

J30 set, for the first time, 13 instances to optimality, and prove infeasibility for 88 of

the instances.

Table 6.12: Solutions obtained by the B&C with all cuts at root plus LPR in
the callback procedure

Gurobi cuts +{Our appr.}
group n opt fea inf opt fea inf

A 10 4 6 0 4 6 0

J30 640 530 6 88 532 15 88

J60 79 24 0 0 26 2 0

J90 105 27 0 0 27 0 0

J120 514 160 2 0 181 3 0

Computational Results 83

The results indicate that our approach has been able to prove optimality for more

instances than using Gurobi without our cuts. For some specific instances the optimal

value is found only when cuts are added to the model. In addition, Gurobi solver proves

that some instances are infeasible.

Table 6.13 summarizes the results for our approach on the MMLIB datasets. The

table shows the number of instances that have been solved to optimality (opt) and the

number of instances for which a feasible solution has been found, but optimality has

not been proven (fea). Further, the table shows the number of instances for which

our solutions improve (imp) upon those reported by the website9 and those reported in

Schnell and Hartl (2017), as well the number of instances for which optimality has been

proven for the first time (new opt).

Table 6.13: Solutions obtained by the B&C with all cuts at root plus LPR in
the callback procedure

all cuts at root + LPR callback

group n opt new opt fea imp imp S&H

J50 540 450 29 32 0 48

J100 540 410 48 43 7 114

JAll50+ 1620 689 252 159 59 401

JAll100+ 1620 482 177 205 174 440

Figure 6.5 presents box plot of the optimality gaps10 and computing times for our

B&C approach for instances from PSPLIB, MISTA and MMLIB for which feasible or

optimal solutions have been found.

The results presented in the first figure suggest that the gap values equals to 0 are

represented by the median in the box plot for almost all datasets, except for the A

and Jall100+ datasets. The high outliers for the datasets J120, J50, J100, Jall50+ and

Jall100+ indicate that the presented algorithms still require improvement in order to

deliver robust results on all instances. Analyzing the computing times it can be observed

that our approach quickly proves optimality for all but dataset A. Finally, we also note

that some of the instances between the second and third quartile hit the time limit.

Table 6.14 shows updated open instance values for the benchmark dataset defined in

Chapter 2.

9http://mmlib.eu/solutions.php
101.0 = 100%

Computational Results 84

A
J3

0
J6

0
J9

0
J1

20 J5
0

J1
00

Ja
ll5

0+
Ja

ll1
00

+

0.0

0.2

0.4

0.6

0.8

1.0

 Optimality Gap

A
J3

0
J6

0
J9

0
J1

20 J5
0

J1
00

Ja
ll5

0+
Ja

ll1
00

+

0

20000

40000

60000

80000

 Time

Figure 6.5: Box plot with informations about optimality gap and computing
time (sec.) of instances from PSPLIB, MISTA and MMLIB

Table 6.14: Benchmark datasets updated numbers

library variant/num. inst. group in dataset open updated open

PSPLIB

SMRCPSP/2040

J60 79 79 53

J90 105 105 78

J120 514 514 333

MMRCPSP/3931 J30 640 31 20

MMLIB MMRCPSP/4300

J50 540 118 90

J100 540 176 130

Jall50+ 1620 1178 931

Jall100+ 1620 1370 1138

MMRCMPSP/30

A 10 7 6

MISTA B 10 10 10

X 10 10 10

In summary, optimality was proven for the first time, for 247 instances from PSPLIB,

Computational Results 85

for 1 instance from MISTA and for 506 instances from MMLIB, totaling 754 instances.

The LP and solution files for all benchmark datasets are available for download at

http://professor.ufop.br/janniele/downloads.

http://professor.ufop.br/janniele/downloads

Chapter 7

Final Considerations

The main contribution of this thesis was to improve the state-of-the-art in formulations

and mixed-integer linear programming methods to solve the non-preemptive resource

constrained project scheduling problems. We proposed strong formulations for the prob-

lem of interest, combining cut generation strategies for the management of the possibly

exponential amount of rows of the developed models. A careful experimental design to

evaluate the optimality gaps provided by the formulations and algorithms in a function

of runtime for the benchmark datasets available in the literature was provided. All

methods were extensively evaluated in three RCPSP variants.

An effective preprocessing procedure to strengthen renewable resource constraints

was devised. This procedure was capable of improving the lower bounds produced at

the root node without any increase in the size of the linear programs.

A parallel cutting plane algorithm was developed, including five families of cuts:

lifted precedence and cover cuts, cliques, odd-holes and strengthened Chvátal-Gomory

cuts. A dense conflict graph, considering feasibility and optimality conditions, was cre-

ated at each iteration and used by these cut generators in strengthening procedures. All

cuts contributed to improving the lower bounds, especially when they are together in the

cutting plane. The lifted precedence cuts were the most effective for all variants. The

strengthened Chvátal-Gomory cuts were especially useful in a group of multi-project

instances. These results indicate that an instance feature-based tuning of the cut gen-

erators may be beneficial.

With the improved linear programming formulations produced with our methods,

754 open instances from the literature were solved for the first time: 247 instances from

86

Final Considerations 87

PSPLIB, 1 instance from the MISTA Challenge and for 506 instances from MMLIB.

The experiments confirm the hypothesis raised in this thesis. It is possible to handle the

RCPSP formulations with better solvers and produce improved dual limits and solutions

closer to the optimal gap.

For the production of upper bounds, a heuristic method, which produces tight upper

bounds in limited computational time, was developed. When dealing with composition

strategies to generate tight upper bounds, we evaluated different strategies to define the

best neighborhood composition in stochastic local search methods. The first important

observation was that the trivial implementation with uniform neighborhood selection

probabilities performed worse than versions with more elaborated strategies to define

these values. We provided some valuable insights: while some neighborhoods were

quite useful at the beginning of the search, they may prove themselves ineffective when

improved solutions were being processed; others remained active during the entire search.

Many new best-known solution have been obtained.

7.1 Future Works

Regarding the problems explored in this thesis, some aspects may be further investigated:

• the exact proposed approaches could be hybridized with constraint propagation,

as proposed in previous studies;

• the separation of some inequalities, such as the strengthened Chvátal-Gomory cuts

and the re-optimization of the large linear programs, are still quite expensive; the

development of new procedures to accelerate the separation and re-optimization

process and to improve the creation of the dynamic conflict graph could be bene-

ficial;

• the development of a B&C with improved branch and node selection strategies

for the RCPSP, including our preprocessing and cutting planes routines, is also a

promising future path since the root node resolution time is still substantial, this is

an obstacle to the development of a B&C; continued advances in MILP solver are

likely to allow the effective use of these formulations in methods where branching

is used most intensively;

Final Considerations 88

• the experiments could be extended with all combinations of cuts, and also the use

of machine learning could help to select cuts during the cutting plane;

• understand what makes some neighborhoods special and try to create new neigh-

borhoods inspired in a way that they preserve these good characteristics or discard

some insignificant neighborhoods;

• apply additional intensification and diversification strategies based on machine

learning techniques;

• resetting the neighborhood application probabilities could help the search when

improvements are no longer obtained;

• finally, the presented neighborhood composition may be employed in other heuris-

tics.

Bibliography

Aardal, K. and van Hoesel, C. P. M.: 1996, Polyhedral techniques in combinatorial
optimization I: Theory, Statistica Neerlandica 50(1), 3–26.

Aardal, K. and van Hoesel, C. P. M.: 1999, Polyhedral techniques in combinatorial
optimization II: applications and computations, Statistica Neerlandica 53(2), 131–
177.

Alcaraz, J., Maroto, C. and Ruiz, R.: 2004, Improving the performance of genetic
algorithms for the rcps problem, Proceedings of the Ninth International Workshop on
Project Management and Scheduling, pp. 40–43.

Applegate, D. and Cook, W.: 1991, A computational study of the job-shop scheduling
problem, ORSA Journal on Computing 3, 149–1556.

Artigues, C.: 2017, On the strength of time-indexed formulations for the resource-
constrained project scheduling problem, Operations Research Letters 45, 154––159.

Artigues, C., Demassey, S. and Néon, E.: 2008, Resource-Constrained Project Scheduling:
Models, Algorithms, Extensions and Applications, ISTE Ltd and John Wiley & Sons,
Inc.

Artigues, C., Demassey, S. and Néron, E.: 2013, Resource-Constrained Project Schedu-
ling: Models, Algorithms, Extensions and Applications, ISTE, Wiley.

Asta, S., Karapetyan, D., Kheiri, A., Ozcan, E. and Parkes, A. J.: 2014, Combining
Monte-Carlo and Hyper-heuristic methods for the Multi-mode Resource-constrained
Multi-project Scheduling Problem, Journal of Scheduling (in review.

Atamtürk, A., Nemhauser, G. L. and Savelsbergh, M. W. P.: 2000, Conflict graphs
in solving integer programming problems, European Journal of Operational Research
121(1), 40–55.

Baker, J.: 1987, Reducing bias and inefficiency in the selection algorithm, Proc. of the
2nd Intl Conf on GA, Lawrence Erlbaum Associates, Inc. Mahwah, NJ, USA, pp. 14–
21.

Balas, E.: 1975, Facets of the knapsack polytope, Mathematical Programming 8(1), 146–
164.

89

BIBLIOGRAPHY 90

Balas, E. and Zemel, E.: 1978, Facets of the knapsack polytope from minimal covers,
SIAM Journal on Applied Mathematics 34(1), 119–148.

Baptiste, P. and Demassey, S.: 2004, Tight lp bounds for resource constrained project
scheduling, OR Spectrum 26(2), 251–262.

Bazaraa, M. S.: 2013, Nonlinear Programming: Theory and Algorithms, 3rd edn, Wiley
Publishing.

Berthaut, F., Pellerin, R., Hajji, A. and Perrier, N.: 2018, A path relinking-based scatter
search for the resource-constrained project scheduling problem, International Journal
of Project Organisation and Management 10(1), 1–36.

Blazewicz, J., Lenstra, J. and Rinnooy Kan, A.: 1983, Scheduling subject to resource
constraints: classification and complexity, Discrete Appl. Math 5, 11–24.

Boyd, E.: 1994, Solving 0/1 integer programs with enumeration cutting planes, Annals
of Operations Research 50, 61–72.

Boyd, E. A.: 1992, Fenchel cutting planes for integer programming, Operations Research
42, 53–64.

Bradley, S. P., Hax, A. C. and Magnanti, T. L.: 1977, Applied Mathematical Program-
ming, Addison-Wesley.

Bresina, J. L.: 1996, Heuristic-biased stochastic sampling, Proceedings of the thirteenth
national conference on Artificial intelligence - Volume 1, AAAI’96, AAAI Press,
pp. 271–278.

Brito, S. S., Santos, H. G. and Poggi, M.: 2015, A computational study of conflict graphs
and aggressive cut separation in integer programming, Electronic Notes in Discrete
Mathematics 50, 355–360.

Brucker, P., Knust, S., Schoo, A. and Thiele, O.: 1998, A branch and bound algorithm for
the resource-constrained project scheduling problem, European Journal of Operational
Research 107, 272–288.

Burke, E. K. and Bykov, Y.: 2017, The late acceptance hill-climbing heuristic, European
Journal of Operational Research 258(1), 70 – 78.

Burke, E. K. and Pinedo, M. L.: 2017, Journal of scheduling.
URL: https://link.springer.com/journal/10951

Burke, E., Kendall, G., Newall, J., Hart, E., Ross, P. and Schulenburg, S.: 2003,
Hyper-Heuristics: An Emerging Direction in Modern Search Technology, Springer US,
pp. 457–474.

Cavalcante, C. C. B., de Souza, C. C., Savelsbergh, M. W. P., Y, W. and Wolsey,
L. A.: 2001, cheduling projects with labor constraints, Discrete Applied Mathematics
112(1), 27–52.

BIBLIOGRAPHY 91

Chakrabortty, R. K., Sarker, R. A. and Essam, D. L.: 2015, Resource constrained project
scheduling: A branch and cut approach, International Conference on Computers and
Industrial Engineering, Vol. 45, pp. 552–559.

Chen, W.-n. and Zhang, J.: 2012, Scheduling multi-mode projects under uncertainty to
optimize cash flows: A monte carlo ant colony system approach, Journal of Computer
Science and Technology 27, 950–965.

Christofides, N., Alvarez-Valdes, R. and Tamarit, J. M.: 1987, Project scheduling with
resource constraints: A branch and bound approach, European Journal of Operational
Research 29, 262–273.

Churchman, C. W., Ackoff, R. L. and Arnoff, E. L.: 1957, Introduction to Operations
Research, John Wiley & Sons.

Chvátal, V.: 1973, Edmonds polytopes and a hierarchy of combinatorial problems, Dis-
crete Mathematics 4, 305––337.

Coelho, J. and Vanhoucke, M.: 2011, Multi-mode resource-constrained project sche-
duling using RCPSP and SAT solvers, European Journal of Operational Research
213(1), 73–82.

Cook, W.: 2019, Computing in Combinatorial Optimization, Springer International Pub-
lishing, pp. 27–47.

Cook, W. and Koch, T.: 2008, Mathematical programming computation: A new mps
journal, Optima pp. 1,7–8,11.

da Fonseca, G. H. G., Santos, H. G., Toffolo, T. A. M., Brito, S. S. and Souza, M. J. F.:
2014, GOAL solver: a hybrid local search based solver for high school timetabling,
Annals of Operations Research .

Dantzig, G.: 1998, Linear Programming and Extensions, Princeton University Press.

de Souza, C. C. and Wolsey, L. A.: 1997, Scheduling projects with labour constraints,
Technical report, Instituto de Computação, Universidade Estadual de Campinas .

Demassey, S., Artigues, C. and Michelon, P.: 2005, Constraint propagation based cut-
ting planes : an application to the resource-constrained project scheduling problem,
INFORMS Journal on Computing 17, 52–65.

Demeulemeester, E. L. and Herroelen, W. S.: 1992, Recent advances in branch-and-
bound procedures for resource-constrained project scheduling problems, Paper pre-
sented at the Summer School on Scheduling Theory and Its Applications, pp. 1–32.

Demeulemeester, E. L. and Herroelen, W. S.: 2002, Project Scheduling: A Research
Handbook, Kluwer Academic Publishers.

Fischetti, M. and Lodi, A.: 2007, Optimizing over the first Chvátal closure, Mathematical
Programming 110(1), 3–20.

BIBLIOGRAPHY 92

Garey, M. R. and Johnson, D. S.: 1979, Computers and Intractability: A Guide to the
Theory of NP-Completeness, W. H. Freeman & Co., New York, NY, USA.

Geiger, M. J.: 2013, Iterated variable neighborhood search for the resource constrained
multi-mode multi-project scheduling problem. some comments on our contribution
to the mista 2013 challenge, Multidisciplinary International Scheduling Conference
(MISTA) 2013 Proceedings, Vol. 27-29, pp. 807–811.

Gu, Z., Nemhauser, G. L. and Savelsbergh, M. W. P.: 2000, Sequence independent lifting
in mixed integer programming, Journal of Combinatorial Optimization 4(1), 109–129.

Gurobi Optimization, I.: 2016, Gurobi optimizer: Reference manual.
URL: http://www.gurobi.com/documentation/7.0/refman.pdf

Habibi, F., Barzinpour, F. and Sadjadi, S. J.: 2018, Resource-constrained project sche-
duling problem: review of past and recent developments, Journal of Project Manage-
ment 3, 55–88.

Hansen, P. and Mladenović, N.: 2006, First vs. best improvement: An empirical study,
Discrete Applied Mathematics 154(5), 802–817.

Hardin, J. R., Nemhauser, G. L. and Savelsbergh, M. W.: 2008, Strong valid inequalities
for the resource-constrained scheduling problem with uniform resource requirements,
Discrete Optimization 5, 19–35.

Hartmann, S.: 2002, A self-adapting genetic algorithm for project scheduling under
resource constraints., Naval Research Logistics pp. 433–448.

Hoos, H. H. and Stützle, T.: 2005, Stochastic Local Search: Foundations & Applications,
Morgan Kaufmann Publishers Inc.

ILO: 2008, CPLEX 11.0 User’s Manual.

Johnson, E. L., Kostreva, M. M. and Suhl, U. H.: 1985, Solving 0-1 integer programming
problems arising from large scale planning models, Operations Research 33, 803–819.

Johnson, E. L., Nemhauser, G. and Savelsbergh, W. P.: 2000a, Progress in Linear
Programming-Based Algorithms for Integer Programming: An Exposition, INFORMS
Journal on Computing 12.

Johnson, E., Nemhauser, G. and Savelsbergh, W.: 2000b, Progress in linear
programming-based algorithms for integer programming: An exposition, INFORMS
Journal on Computing 12.

Jünger, M., Liebling, T. M., Naddef, D., Nemhauser, G. L., Pulleyblank, W. R., Reinelt,
G., Rinaldi, G. and Wolsey, L. A.: 2010, 50 Years of Integer Programming 1958-2008:
From the Early Years to the State-of-the-Art, Springer.

BIBLIOGRAPHY 93

Jünger, M., Naddef, D., Pulleyblank, W. R., Rinaldi, G., Liebling, T. M., Nemhauser,
G. L., Reinelt, G. and Wolsey, L. A.: 2010, 50 Years of Integer Programming 1958-
2008: From the Early Years to the State-of-the-Art, Springer.

Kelley Jr, J. and Walker, M. R.: 1959, Critical-path planning and scheduling, Eastern
Joint IRE-AIEE-ACM Computer Conference, ACM, pp. 160–173.

Kochetov, Y. A. and Stolyar, A. A.: 2003, Evolutionary local search with variable
neighborhood for the resource constrained project scheduling problem, Proceedings of
the 3rd International Workshop of Computer Science and Information Technologies.

Kolisch, R.: 1995, Project Scheduling under Resource Constraints: Efficient Heuris-
tics for Several Problem Classes, number IX, 212 in Production and Logistics, 1 edn,
Physica-Verlag Heidelberg.

Kolisch, R. and Sprecher, A.: 1996, PSPLIB - a project scheduling problem library,
European Journal of Operational Research 96, 205–216.

Kolisch, R., Sprecher, A. and Drexl, A.: 1995, Characterization and generation of a gen-
eral class of resource-constrained project scheduling problems, Management Science
41(10), 1693–1703.

Kone, O., Artigues, C., Lopez, P. and Mongeau, M.: 2011, Event-based MILP mod-
els for resource-constrained project scheduling problems, Computers and Operations
Research 38, 3–13.

Koster, A. M. C. A., Orlowski, S., Raack, C., Baier, G. and Engel, T.: 2008, Single-layer
Cuts for Multi-layer Network Design Problems, Vol. 44, Springer-Verlag, chapter 1,
pp. 1–23. Selected proceedings of the 9th INFORMS Telecommunications Conference.

Koulinas, G., Kotsikas, L. and Anagnostopoulos, K.: 2014, A particle swarm opti-
mization based hyper-heuristic algorithm for the classic resource constrained project
scheduling problem, Information Sciences .

Land, A. H. and Doig, A. G.: 2010, An Automatic Method for Solving Discrete Pro-
gramming Problems, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 105–132.

Letchford, A. N., Marzi, F., Rossi, F. and Smriglio, S.: 2016, Strengthening Chvátal-
Gomory Cuts for the Stable Set Problem, Combinatorial Optimization, Springer In-
ternational Publishing, pp. 201–212.

Linderoth, J. T. and Ralphs, T. K.: 2005, Noncommercial software for mixed-integer
linear programming, in J. Karlof (ed.), Integer Programming: Theory and Practice,
Vol. 3 of Operations Research Series, CRC Press.

Liu, M., Shan, M. and Wu, J.: 2014, Multiple R&D projects scheduling optimization
with improved particle swarm algorithm, The Scientific World Journal 2014.

BIBLIOGRAPHY 94

Liu, S.-S. and Wang, C.-J.: 2008, Resource-constrained construction project scheduling
model for profit maximization considering cash flow, Automation in Construction
17(8), 966–974.

Lougee-Heimer, R.: 2003, The common optimization interface for operations research:
Promoting open-source software in the operations research community, IBM Journal
of Research and Development 47, 57–66.

Luenberger, D. G. and Ye, Y.: 2016, Linear and Nonlinear Programming, 4 edn, Springer
International Publishing.

Maniezzo, V., Stutzle, T. and Vo, S.: 2010, Matheuristics: Hybridizing Metaheuristics
and Mathematical Programming, Vol. 10, Springer.

Metropolis, N.; Ulam, S.: 1949, The monte carlo method, Journal of the American
Statistical Association 44, 335–341.

Mingozzi, A., Maniezzo, V., Ricciardelli, S. and Bianco, L.: 1998, An Exact Algorithm
for the Resource-Constrained Project Scheduling Problem Based on a New Mathe-
matical Formulation, Management Science 44(5), 714–729.

Mladenović, N. and Hansen, P.: 1997, Variable neighborhood search, Comput. Oper.
Res. 24(11), 1097–1100.

Möhring, R. H., Schulz, A. S., Stork, F. and Uetz, M.: 2003, Solving project scheduling
problems by minimum cut computations, Management Science 49(3), 330–350.

Muritiba, A. E. F., Rodrigues, C. D. and da Costa, F. A.: 2018, A Path-Relinking algo-
rithm for the multi-mode resource-constrained project scheduling problem, Computers
& Operations Research 92, 145–154.

Nemhauser, G. L. and Vance, P. H.: 1994, Lifted cover facets of the 0–1 knapsack
polytope with GUB constraints, Operations Research Letters 16(5), 255–263.

Nonobe, K. and Ibaraki, T.: 2002, Formulation and Tabu Search Algorithm for the
Resource Constrained Project Scheduling Problem, Springer US, pp. 557–588.

Ochoa, G., Verel, S., Daolio, F. and Tomassini, M.: 2014, Local optima networks: A
new model of combinatorial fitness landscapes, Recent Advances in the Theory and
Application of Fitness Landscapes 6, 233–262.

Ong, Y.-S., Lim, M. H. and Chen, X.: 2010, Research frontier: memetic computation-
past, present & future, Comp. Intell. Mag. 5(2), 24–31.

Padberg, M. W.: 1973, On the facial structure of set packing polyhedra, Mathematical
Programming 5(1), 199–215.

Patterson, J. and Huber, W.: 1974, A horizon-varying zero-one approach to project
scheduling, Management Science 20, 990–998.

BIBLIOGRAPHY 95

Pochet, Y. and Wolsey, L. A.: 2006, Production Planning by Mixed Integer Programming,
Springer.

Pritsker, A. A. B., Watters, L. J. and Wolfe, P. M.: 1969, Multi project scheduling with
limited resources: A zero-one programming approach, Management Science 3416, 93–
108.

Rahmania, N., Zeighami, V. and Akbari, R.: 2015, A study on the performance of
differential search algorithm for single mode resource constrained project scheduling
problem.

Riedler, M., Jatschka, T., Maschler, J. and Raidl, G. R.: 2017, An iterative time-bucket
refinement algorithm for a high resolution resource-constrained project scheduling
problem, International Transactions in Operational Research pp. 1–41.

Sankaran, J. K., Bricker, D. L., and Juang, S.: 1999, A strong fractional cutting plane
algorithm for resource-constrained project scheduling, International Journal of Indus-
trial Engineering - Applications and Practice 6, 99–111.

Santos, H. G., Toffolo, T. A. M., Gomes, R. A. M. and Ribas, S.: 2016, Integer pro-
gramming techniques for the nurse rostering problem, Annals of Operations Research
239(1), 225–251.

Schnell, A. and Hartl, R. F.: 2017, On the generalization of constraint programming
and boolean satisfiability solving techniques to schedule a resource-constrained project
consisting of multi-mode jobs, Operations Research Perspectives 4, 1–11.

Schwindt, C. and Zimmermann, J.: 2015, Handbook on Project Management and Schedu-
ling, Vol. 1 of International Handbooks on Information Systems, Springer International
Publishing.

Shapiro, J. F.: 1993, Mathematical programming models and methods for production
planning and scheduling, Elsevier Science Publishers B.V.

Skowroński, M. E., Myszkowski, P. B., Adamski, M. and Kwiatek, P.: 2013, Tabu
search approach for multi-skill resource-constrained project scheduling problem, 2013
Federated Conference on Computer Science and Information Systems, pp. 153–158.

Soares, J. A., Santos, H., Baltar, D. D. and Toffolo, T. A. M.: 2015, Lahc applied to
the multi-mode resource constrained multi-project scheduling problem, 7th Multidis-
ciplinary International Conference on Scheduling: Theory and Applications (MISTA
2015).

Toffolo, T. A. M., Santos, H. G., Carvalho, M. A. M. and Soares, J. A.: 2013, An
integer programming approach for the multi-mode resource-constrained multi-project
scheduling problem, Multidisciplinary International Scheduling Conference (MISTA)
2013 Proceedings, Vol. 27-29, pp. 840–847.

BIBLIOGRAPHY 96

Toffolo, T. A. M., Santos, H. G., Carvalho, M. A. M. and Soares, J. A.: 2016, An
integer programming approach to the multimode resource-constrained multiproject
scheduling problem, Journal of Scheduling 19, 295–307.

Van Peteghem, V. and Vanhoucke, M.: 2014, An experimental investigation of meta-
heuristics for the multi-mode resource-constrained project scheduling problem on new
dataset instances, European Journal of Operational Research 235(1), 62–72.

Vanhoucke, M. and Coelho, J.: 2016, An approach using SAT solvers for the RCPSP
with logical constraints, European Journal of Operational Research 249(2), 577–591.

Wagner, H. M.: 1969, Principles of operations research, with applications to managerial
decisions, Prentice-Hall.

Walȩdzik, K. and Mańdziuk, J.: 2017, Applying hybrid monte carlo tree search methods
to risk-aware project scheduling problem, Information Sciences .

Wauters, T., Kinable, J., Smet, P., Vancroonenburg, W., Vanden Berghe, G. and Ver-
stichel, J.: 2016, The multi-mode resource-constrained multi-project scheduling prob-
lem, Journal of Scheduling 19, 271–283.

Wolsey, L.: 1998a, Integer Programming, Wiley-Interscience series in discrete mathe-
matics and optimization, Wiley.

Wolsey, L.: 1998b, Integer Programming, Interscience series in discrete mathematics and
optimization, Wiley.

Xu, J., Xu, Y., Kim, D. and Li, M.: 2003, Raptor: Optimal protein threading by linear
programming, Journal of Bioinformatics and Computational Biology 1, 95–117.

Zhu, G., Bard, J. F. and Yu, G.: 2006, A branch-and-cut procedure for the multimode
resource-constrained project-scheduling problem, INFORMS Journal on Computing
18(3), 377–390.

	List of Figures
	List of Tables
	List of Algorithms
	List of Abbreviations
	1 Introduction
	1.1 Motivation and Contributions

	2 Resource Constrained Project Scheduling Problems
	2.1 Formal Definition
	2.2 Problem Variants
	2.3 Objective Function
	2.4 Constraints
	2.5 Benchmark Datasets Characteristics

	3 Background and Literature Review
	3.1 Background
	3.2 Related Works
	3.2.1 Formulations
	3.2.2 Solution Methods for the SMRCPSP
	3.2.3 Solution Methods for the MMRCPSP
	3.2.4 Solution Methods for the MMRCMPSP

	4 Heuristic Strategies
	4.1 Solution Representation and Decoding
	4.2 Neighborhoods
	4.2.1 Neighborhoods Operating on pi
	4.2.2 Neighborhoods operating on M

	4.3 Neighborhood Composition
	4.3.1 Offline neighborhood composition
	4.3.2 Online neighborhood composition

	5 Mixed-Integer Linear Programming Based Methods
	5.1 Input Data
	5.1.1 Preprocessing Input Data

	5.2 Formulation
	5.2.1 Preprocessing MILP Formulation

	5.3 The Cutting Plane Algorithm
	5.3.1 Lifted RCPSP Knapsack Cover Cuts (LCV)
	5.3.2 Lifted Precedence Based Cuts (LPR)
	5.3.3 Conflict-Based Cuts: Cliques (CL) and Odd-Holes (OH)
	5.3.4 Strengthened Chvátal-Gomory Cuts (SCG)

	6 Computational Results
	6.1 Heuristic Strategies Experiments
	6.2 Preprocessing MILP Formulation Experiments
	6.3 Cutting Plane Algorithm Experiments
	6.3.1 Results for Different Cut Families
	6.3.2 Results Removing Cut Families

	6.4 Branch & Cut Experiments

	7 Final Considerations
	7.1 Future Works

	Bibliography

