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Abstract  

Humans in industrialized societies have become independent of the natural 

day and night cycle due to the invention and use of artificial light. Colored light is 

an element of everyday life, which affects various human functions. The main aim 

of this PhD thesis is to comprehensively investigate the effects of exposure to 

colored light on cerebral and human physiology. To achieve this goal, 201 healthy 

right-handed adults were recruited for 20 different colored light conditions. By 

using systemic physiology augmented functional near-infrared spectroscopy (SPA-

fNIRS) neuroimaging, each subject was measured 2-4 times on different days 

resulting in 676 single measurements. The SPA-fNIRS approach combines the 

measurement of brain activity and systemic physiological changes. fNIRS is a non-

invasive neuroimaging technique employed to measure changes in cerebral 

hemodynamics and oxygenation. There is an interaction between these and 

changes in systemic physiology: consequently, the SPA-fNIRS generally enables 

us to identify and understand these interactions. We simultaneously assessed the 

effects of colored light exposure (CLE) in the visual cortex (VC), prefrontal cortex 

(PFC) and systemic physiology. Such a comprehensive study has not been carried 

out yet, and an integrative view of how the color of light affects the brain and the 

systemic physiology is lacking. In general, CLE has relatively long-lasting effects 

on cerebral and systemic physiology in humans, and yellow light leads to a higher 

brain activation in the PFC than the other colored lights. Yellow CLE is associated 

with more active and positive emotions, including happiness, joy, hope and 

cheerfulness. We also show that long-term colored light exposures induce 

wavelength-dependent modulations of brain responses in the VC. Violet and blue 

lights elicit higher changes in cerebral parameters compared to the other colored 

lights during the CLE and recovery phase. Our results show that CLE affects 

individual humans differently. In particular, blue light leads to eight different 

hemodynamic response patterns, while the typical hemodynamic response pattern 

(increase in oxygenated ([O2Hb]) and decrease in deoxygenated ([HHb]) 

hemoglobin) is still observed and valid at the group-level analysis. The SPA-fNIRS 

approach is able to show that systemic and cerebral physiology interact. 
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Experimental findings in most parts of this research display that inter-subject 

variability of hemodynamic responses is partially explained by systemic 

physiological changes. The finding of this research that blue light has an 

activating effect in the VC should be taken into consideration when assessing the 

impact of modern light sources such as screens and light-emitting diodes (LEDs) 

on the human body. Our findings that yellow light leads to higher PFC activation 

be tested as a potentially beneficial tool in chromotherapy, i.e., a complementary 

medicine method, to balance “energy” lacking in physical, emotional, and mental 

levels. Although yellow light, i.e., CLE in general term, influences humans in 

several positive ways, it should be noted that each individual reacts differently to 

the CLE, implying that colored light therapy has to be also adjusted to each 

individual. Therefore, further research should clarify which color in CLE benefits 

whom. In a civilization that is rapidly exposed to new and increasing lighting, the 

findings of this research are relevant for the scientific community, medical 

professionals, and society. 
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  Introduction 

1.1. Colored light and human physiology 

Color and colored light have always attracted human attention and played 

vital roles in daily human life. How colored light is formed and how human color 

vision works have been topics widely discussed throughout various fields, from 

physics to medicine and from art to psychology. Colored light exposure is an 

experience of everyday life. It is used in public areas to gain customers’ attention 

or within private settings as functional or decorative lighting. Specifically, in our 

modern society, we are increasingly exposed to various colored light sources, from 

advertisements to computers and from energy-saving light bulbs to smartphones. 

Therefore, the effects of colored light on human physiology are of rising interest in 

both the research community and society. Colored light may influence what we 

appear to see, our emotions and moods, and even performance, but do we really 

understand colored light and its effects on human physiology? While there are a 

number of known interactions between colored light and the human body, still 

many other physiological effects of colored light are unexplored. 

In order to understand the impact of colored light on human physiology, it is 

essential to differentiate between visual and non-visual effects. Visual effects deal 

with the incident light's processing by photoreceptor cells in the retina 

transmitting the signals to bipolar cells, then onto ganglion cells, and ultimately 

by the optic nerve to the visual cortex (VC) [1]. Non-visual effects, mediated by the 

non-image forming system, have increasingly generated interest during the last 

decades and started with the discovery of the light-sensitive protein “melanopsin” 

[2,3]. Non-visual effects are based on different photoreceptors, mainly the 

intrinsically photosensitive retinal ganglion cells (ipRGCs), which contain 

melanopsin. These photoreceptors transmit signals to the hypothalamus, 

epithalamus, limbic system, and the midbrain, i.e., areas involved in regulating 

the autonomic nervous system (ANS) and oscillatory physiological processes [1]. 

The high sensitivity of this non-visual pathway to blue light recently led to an 

increasing number of studies investigating the potential disease-promoting effect 
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of blue light exposure on human physiology [4,5]. This research is of particular 

significance since blue light is increasingly prevalent in our environment due to 

energy-saving LEDs and screens.  

Light striking on the ipRGCs has been shown to modulate brain responses 

during attention and cognitive tasks [6–8]. This knowledge has been transferred 

to several applications, e.g., office lighting [9] or clinical interventions such as the 

treatment of seasonal affective disorder [10,11]. In particular, white and blue light 

were used for the treatment of seasonal affective disorder and depression [12–14]. 

Blue light especially suppresses melatonin secretion, a hormone important for 

initiating sleep [8,15–19], while white light interacts with the plasma cortisol, a 

hormone associated with stress [20]. In close relation to the effect of blue light on 

melatonin, blue light altered the core body temperature [21], and the heart rate 

(HR) [22–24]. However, these variables were only directly affected by light in the 

late evening before sleep, when the melatonin concentration in the blood is rising. 

During the day, only a few studies measured the interaction of light with human 

physiology, and most studies did not show the effects of colored light on heart rate 

[25–29] or body temperature [30]. 

Indeed effects of many physiological parameters were reported in the 

literature. Colored light influenced heart rate variability (HRV) within a short 

period of time and affected the ANS depending on the color as well as the 

emotional status of subjects [29,31–34]. It has also been shown in humans that 

during red light exposure, cardiorespiratory coordination was confined to 4:1 [29]. 

HR was reported to decrease [32,34] and to increase [21] under blue light exposure. 

Under red light exposure HR decreased [34,35], increased [29] or remained 

unchanged [32]. Under green light exposure, HR decreased and did not change 

under white light exposure [34]. No significant color effect was found for the 

respiration rate (RR) [25]. Mean arterial pressure (MAP) increased under blue 

light. Skin conductance response was increased under red and decreased under 

blue, orange, and green light [25,34]. Although some studies show specific effects, 

these studies do not point towards a clear and reproducible effect of colored light 

on the respective variable. 
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Although each light stimulus evokes both visual and non-visual effects, also 

involving systemic physiology, basic research on the visual and non-visual effects 

on the human brain and systemic physiological evoked by colored light exposure 

are surprisingly scarce. What is lacking is an integrative view of how the color of 

a light stimulus affects the brain and the systemic physiology.  

The role of the VC in visual color perception and processing is well investigated 

[36–38]. For example, similar responses in the VC for different visual color (red, 

green, yellow, blue) stimuli were found [36]. Thus, we expect color effects are more 

likely to evolve from the non-visual pathway. Research on the brain regions 

involved in the processing of ipRGC-mediated non-visual effects is increasing 

[39,40]. One brain region of particular interest is the prefrontal cortex (PFC). The 

PFC is not only functionally connected to the VC, enabling higher-order cognitive 

processing of visual/color information [41], but also to the suprachiasmatic nucleus 

in the hypothalamus receiving information from the ipRGCs [1]. These facts 

indicate that investigating the role of the PFC in the processing of colored light 

stimuli is warranted. 

1.2. Functional near-infrared spectroscopy (fNIRS) 

The activity of the VC and PFC can easily be investigated by functional near-

infrared spectroscopy (fNIRS), which is an optical, non-invasive, easy-to-use, and 

portable neuroimaging technique that enables imaging of cerebral hemodynamics 

and oxygenation from cortical layers in the human brain [42,43]. The fNIRS 

technique relies on the light in the near-infrared spectral range (650-950 nm) 

emitted from either laser diodes or LEDs [44]. Near-infrared light relatively deeply 

penetrates into biological tissue following a characteristic Gaussian profile. The 

probability function of the traveling light detected by a detector has a typical 

banana-shaped path (Figure 1) [44,45]. The most important chromophore 

absorbing light at this spectral window is hemoglobin, which can be found in two 

forms, i.e., oxygenated (O2Hb) and deoxygenated (HHb) hemoglobin. O2Hb 

absorption is mainly above 800 nm, while HHb absorption is mainly below 800 nm 

[46,47]. Human tissues are relatively transparent to light in the optical window; 

hence, when near-infrared light is shone onto tissue, the light penetrates the 
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tissue and undergoes absorption and scattering, which both contribute to light 

attenuation [46,48–50]. By measuring the attenuation and time of flight (or phase) 

of the light re-emerging from the tissue for at least two appropriate wavelengths, 

concentrations of O2Hb and HHb as well as total hemoglobin (tHb = O2Hb+HHb) 

and tissue oxygen saturation (StO2 = ([O2Hb]/[tHb]) × 100) can be determined. 

 

 

Figure. 1 Schematic illustration of the optical region of sensitivity (banana-shaped 

region) in the human brain. The illumination (light source) and collection (optical 

detector) points are located on the scalp with a source-detector distance of 3 cm. The 

sensitivity of the optical signal to the tissue is not spatially uniform and decreases with 

depth. But, there are methods to increase the sensitivity to the brain, e.g., by a 

multidistance approach. Figure reprinted from [51] with permission from the journal.  

 

Brain activity leads to an increase in oxygen consumption, causing a decrease 

in [O2Hb] and an increase in [HHb]. This triggers regional changes, inducing an 

increased cerebral blood flow (CBF), which is characteristic of neurovascular 

coupling (NVC). Since the regional supply of oxygen increases more than its 

consumption, i.e., an over-compensation, an increase in [O2Hb] and a decrease in 

[HHb] is observed. This is measured by fNIRS (Figure 2) [44,46,52].  



 

17 

 

 

Figure. 2 (a) Typical hemodynamic response pattern and (b) the effects of cerebral 

hemodynamics and oxygenation changes on the fNIRS signals caused by an increase in 

neural activity. Figure reprinted from [44] with permission from Elsevier (see copyright 

information on page 2). 

 

Non-invasive neuroimaging techniques measure either the activation related 

to the electrical activity (e.g., electroencephalography (EEG), 

Magnetoencephalography (MEG)) or to the hemodynamic response (e.g., positron 

emission tomography (PET), functional magnetic resonance imaging (fMRI), and 

fNIRS of the brain [53]. Compared to the other methods, fNIRS is relatively 

inexpensive, simple to use, portable, and enables continuous and long-term 

measurements (monitoring). This method is also more tolerant to movement 

artifacts, which make it particularly suitable for populations and procedures for 

which other techniques are limited, including the applications in small infants and 

children as well as procedures involving mobility and interactivity even outside of 

the clinical and research setting [49,50]. However, disadvantages of fNIRS are the 

efforts needed to fix optodes in hairy regions, which is similar to EEG, and the 

limited penetration depth; yet the cortex can well be reached [52]. Moreover, the 

possibility of mistakably measuring fNIRS signals contaminated by systemic 

changes can be considered as another significant aspect of fNIRS [54] (but also 

affect fMRI). Table 1 shows in detail the comparison of fNIRS with other 

neuroimaging techniques.  
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Table. 1 Comparison of different neuroimaging techniques 

 fNIRS fMRI EEG MEG PET 

Signal O2Hb & HHb HHb (BOLD)  Electromagnetic Electromagnetic CBF 

Hemodynamic Yes Yes No No Yes 

Neural activity No No Yes Yes No 

Penetration depth Cortex Whole head Cortex Deep structures Whole head 

Temporal resolution >millisecond second milliseconds milliseconds minute 

Spatial resolution 10-20 mm ~ 5 mm 50-90 mm 50-90 mm 5 mm 

Robustness to motion Moderate Limited Limited Limited Limited 

Populations All Limited All All Limited 

Portability Yes No Yes No No 

Sounds Silent Noisy Silent Silent Silent 

Price Low High Low High High 

 

From a methodological point of view, three main modes of NIRS-based optical 

tissue spectroscopy techniques, including continuous wave (CW), frequency 

domain (FD), and time domain (TD) have been developed. The principle of these 

modes is summarized in Figure 3. In brief, CW-NIRS is based on light intensity 

measurement and relies on a few assumptions (e.g., constant differential 

pathlength factor and light scattering). Since there are two unknowns (light 

absorption and light scattering) and only one measurement, this type of NIRS is 

able to determine only changes in [O2Hb] and [HHb], but not absolute values. On 

the other hand, FD-NIRS and TD-NIRS measure not only the light intensity but 

also the time of flight of photons through tissue, which makes them suitable 

devices to quantify absolute values of [O2Hb] and [HHb] [44,55–57]. This enables 

also to calculate the total hemoglobin concentration ([tHb] = [O2Hb] + [HHb]), a 

measure reflection the blood volume and blood flow, and the tissue oxygen 

saturation (StO2=[O2Hb]/[tHb]), a measure of the oxygenation. In this project, the 

FD-NIRS system (Imagent, ISS Inc., Champaign, IL, USA) with a multi-distance 

approach was used. A multi-distance approach enables to minimize the influence 

of superficial layers, e.g., skin. FD-NIRS enables to measure the absolute optical 

properties, namely, the absorption coefficient (µa) and the reduced scattering 

coefficient (µs′), and consequently the absolute concentrations of O2Hb and HHb in 
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human head tissue [58,59]. The determination of optical properties are of great 

importance in practical applications. It also provides valuable information about 

the status and composition of the tissue. Moreover, knowledge of optical properties 

is essential for the accuracy of the fNIRS procedures [60,61]. The FD-NIRS system 

quantifies the optical properties by measuring the amplitude and phase of the 

near-infrared light passing through the tissue and fitting the transmitted phase 

and amplitude in accordance with the diffusion approximation [58,62]. 

 

 

Figure. 3 Schematic of the three NIRS modes. CW-NIRS (left): a continuous light is 

shone onto the tissue and the intensity of the re-emitted light is measured. FD-NIRS 

(middle): a modulated continuous light is shone onto the tissue and the intensity of the 

re-emitted light, as well as the phase shift, are measured. TD-NIRS (right): an ultra-

short light impulse is shone onto the tissue and the arrival times of the photons that 

emerge from the tissue are measured. Figure reprinted from [44] with permission from 

Elsevier (see copyright information on page 2).  

 

1.3. Systemic physiology augmented functional near-infrared 

spectroscopy (SPA-fNIRS) 

Our group pioneered the systemic physiology augmented functional near-

infrared spectroscopy (SPA-fNIRS) approach [1,63], which enables to measure 

brain activity (with fNIRS) along with systemic physiological changes. This 

approach is based on measurements with a multichannel frequency-domain near-

infrared spectroscopy system and simultaneous measurements of systemic 

physiological parameters. These parameters include, for example, the partial 

pressure end-tidal carbon dioxide (PETCO2), HR, RR, pulse-respiration quotient 

(PRQ), MAP, pulse pressure (PP), arterial oxygen saturation (SpO2), skin 

conductance level (SCL), high-frequency (HF; 0.15−0.4 Hz), and low-frequency 

(LF; 0.04−0.15 Hz) component of the HRV. These systemic physiological variables 
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are measured by three devices, including SOMNOtouch NIBP (SOMNOmedics 

GmbH, Randersacker, Germany), NONIN LifeSense (NONIN Medical, Plymouth, 

MN, USA), and an electrodermal activity measurement system (Verim Mind-

Reflection GSR, Poland).  Figure 4 displays the positions of the devices and sensors 

used in the SPA-fNIRS approach on the subject. 

  

 

Figure. 4 Schematic illustration of the placement of the sensors on the subject. The 

SPA-fNIRS approach consists of a combination of fNIRS system (Imagent, ISS Inc., 

Champaign, IL, USA) with devices to measure systemic physiology: The SOMNOtouch 

NIBP measured MAP, PP, HR, SpO2, and HRV. Verim Mind-Reflection GSR was 

employed to determine the SCL. PETCO2 and RR were non-invasively measured by 

NONIN LifeSense [64]. Picture credit: Daniel Guthruf 

 

This approach is ideally suited to enable a better understanding and a reliable 

interpretation of the changes in the fNIRS signals. In our previous studies, we 
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showed that changes in PETCO2 have strong effects on cerebral hemodynamics 

[62,65]. We particularly demonstrated that changes in breathing, i.e., 

hyperventilation during speech tasks caused hypocapnia resulting in decreased 

StO2 [62]. It has also been shown that MAP and SpO2 correlate with the changes 

in the fNIRS signals at the PFC and the motor cortex [64,66]. Caldwell et al. 

designed a model providing valuable information regarding the possible 

confounding factors of fNIRS measurements [67]. They showed that depending on 

the degree of the changes in PETCO2 and MAP, it is possible to induce misleading 

hemodynamic responses [67]. Systemic physiological changes may mask (false 

negative) or mimic (false positive) neuronally induced hemodynamic responses 

[54]. Therefore, using the SPA-fNIRS approach enables to identify, remove and 

understand the effects of systemic physiological changes on fNIRS signals. 

 

1.4. Objectives of the thesis 

The main aim of this PhD thesis was to comprehensively investigate effects of 

colored light on cerebral and systemic physiology in healthy adult humans and to 

implement an integrative approach: the SPA-fNIRS. Therefore, besides fNIRS 

parameters, several physiological parameters were measured concurrently. To 

reliably extract the respective brain and systemic physiological activity, 

expanding and enhancing biomedical signal analysis methods is essential. In the 

measurements, subjects were exposed to the light of different colors and 

intensities. 

Colors and colored lights, in addition to space, texture and interior form, are 

major design elements of the physical learning environment. It has been 

demonstrated that colored lights (or colors) have significant effects on students, 

influencing their emotions, mood, performance and systemic physiology [35,68–

70]. In addition, students are nowadays exposed to a considerable amount of 

artificial light when they have to do their tasks using smartphones and tablets, 

known as modern light-emitting devices. Selecting an optimal desktop background 

for such screens may enhance cognitive performance in contexts of education. 
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Picking specific colored light for educational purposes may also affect systemic 

physiology in positive or negative ways. Therefore, the second main objective of 

this PhD is to investigate in detail a mixed-effect of colored light exposure (CLE) 

and a cognitive task (verbal fluency task; VFT) on cerebral hemodynamics, 

oxygenation, and systemic physiology. 

The results of this research facilitate a better understanding of the CLE effects 

on the underlying neuroscientific mechanisms in the brain and body, which in turn 

will pave the way for safe and advantageous applications of colored light in daily 

life and therapeutic settings. Moreover, in a society that is rapidly exposed to new 

and increasing lighting, the findings of this PhD project are relevant and beneficial 

for the scientific community, medical professionals, and society. 

 

1.5. Hypotheses 

The following hypotheses are explored in this PhD thesis. 

Hypothesis 1: Colored light evokes an activation of the VC, which is 

independent of the color. 

Hypothesis 2: Colored light evokes an activation of the PFC, which is 

dependent on the color. 

Hypothesis 3: Colored light has intensity-dependent effects.  

Hypothesis 4: Colored light affects individual humans differently.  

Hypothesis 5: Colored light has relatively long-lasting effects. 

Hypothesis 6: The interaction of cerebral and systemic physiology is 

distinguished by the SPA-fNIRS approach. 
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1.6. Summary of chapters 

This thesis consists of nine chapters in which nine peer-reviewed publications 

are presented. It starts with an introduction and explanation of the objectives of 

this PhD thesis in Chapter 1. A review of the pulse respiration quotient (PRQ) is 

presented in Chapter 2. Chapter 3 shows the SPA-fNIRS approach, and the impact 

of changes in systemic physiology on fNIRS signals is revealed. In Chapter 4, 

optical properties and the effect of CLE on changes in optical properties is 

explained. Effects of six CLE and two-colored light intensities on cerebral 

hemodynamics, oxygenation, and systemic physiology are reported in Chapter 5. 

Long-term blue light exposure effects on the PFC and VC are also studied in this 

chapter at both group and subgroup analysis. Chapter 6 includes a detailed 

investigation of the effects of long-term stimulation involving CLE and VFT, on 

cerebral and human physiology. The findings of this PhD thesis are generally 

discussed in Chapter 7. Finally, conclusions are drawn (Chapter 8), and 

recommendations for future works are given (Chapter 9).  
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Pulse-respiration quotient (PRQ) as an indicator of 

human activity and human health state  

This chapter aims to give a succinct introduction to acquaint the readers with 

one of the systemic physiological parameters, pulse-respiration quotient (PRQ), 

investigated in this PhD thesis. One specific type of cardiorespiratory coupling is 

the interrelation between the HR and the RR. This relationship can be analyzed 

by dividing the HR by the RR, resulting in the PRQ (= HR/RR). The PRQ is a useful 

parameter that reflects basic and emergent properties of the complex interaction 

between the cardiac and respiratory systems, attaining the overall state of human 

physiology [71]. This parameter represents the ANS state and can be used as a 

measure of cardiorespiratory coordination [72]. It is known that during the day, 

various PRQs in the range of 2 to 15 can be observed, while during sleep, the PRQ 

has a peak at around 4, i.e., corresponding to 4:1 HR and RR ratio values, in 

healthy subjects [73]. Our group recently reviewed a detailed description and 

medical characteristics of the PRQ regarding applications for disease classification 

and monitoring [71]. In brief, they showed that PRQ, which is time- and sex-

dependent, changes during human development, physical activity, and body 

posture with specific patterns during sleep [71].   

Publication 1 focuses on understanding the reference values of the PRQ during 

resting-state at day. The PRQ of 134 healthy subjects were measured 2 to 4 times 

on different days resulting in 482 single PRQ values, which is, to the best of the 

author’s knowledge, the most extensive PRQ study conducted in human adults so 

far. This publication shows that the PRQ follows a lognormal distribution (is not 

normally distributed). Moreover,  experimental findings in Publication 1 confirm 

that the PRQ during resting-state at day on a group-level has a high probability 

of having a value of around 4, i.e., where the heart beats four times during one 

breathing cycle. A state of PRQ ~ 4 relates to an ideal functioning of the 

cardiovascular system, a balanced state of the ANS, and the human's healthy 

physiological state. 
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Summary 
The pulse-respiration quotient (heart rate divided by the 
respiration rate, PRQ = HR/RR) is a parameter capturing the 
complex state of cardiorespiratory interactions. We analysed  
482 single PRQ values obtained from measurement on  
134 healthy adult subjects (49 men, 85 women, age: 24.7 ± 3.4, 
range: 20–46 years) during rest. We found that the distribution 
of PRQ values (i) has a global maximum at around a value of 4 
(median: 4.19) and (ii) follows a lognormal distribution function. 
A multimodality of the distribution, associated with several PRQ 
attractor states was not detected by our group-level based 
analysis. In summary, our analysis shows that in healthy humans 
the resting-state PRQ is around 4 and lognormally distributed. 
This finding supports claims about the special role of the 4 to 1 
cardiorespiratory coupling in particular and the PRQ in general for 
physiological and medical views and applications. To the best of 
our knowledge, our study is the largest conducted so far in 
healthy adult humans about reference values of the PRQ during 
a resting-state at day. 
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Two intrinsic oscillatory processes accompany 
each moment of a living human being: cardiac activity 
and respiration. Both oscillations are locally triggered but 
regulated in a complex way as best represented by a non-
linear dynamical system based on two weakly coupled 
oscillators that are coupled by several structural and 
functional types of cardiorespiratory interactions, leading 
to emergent cardiorespiratory coupling phenomena 
(Benarroch 2018, Dick et al. 2014, Elstad et al. 2018, 
Krause et al. 2017, Lotrič and Stefanovska 2000, Moser 
et al. 2008, Schulz et al. 2013, Valenza et al. 2016). Such 
a cardiorespiratory coupling phenomenon is that the heart 
rate (HR) and the respiration rate (RR) have a specific 
frequency relationship. As recently reviewed by our 
group (Scholkmann and Wolf 2019), this relationship is 
given by dividing the heart rate (HR) by the respiration 
rate (RR), resulting in the pulse-respiration quotient 
(PRQ = HR/RR). The PRQ in humans is of physiological 
relevance and depends mainly on the age, sex and 
individual physiological constitution of the subject, as 
well as on the time-of measurement (linked to the 
chronobiological state), physical activity, psychophysical 
and cognitive activity, and body posture (Scholkmann 
and Wolf 2019). 

Two special features of the PRQ are that (i) in 
the resting-state of a healthy human (preferably during 
night, or during resting-periods at day), the PRQ tends to 
have a value of 4, i.e. a state where the heart beats four 
times during one breathing cycle (Bettermann et al. 2000, 
Gutenbrunner and Hildebrandt 1998, Steiner 1989), and 
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that (ii) the PRQ is not normally distributed but seems to 
follow a lognormal distribution (Scholkmann and Wolf 
2019). Furthermore, there are reports indicating that the 
PRQ tends to favour integer values (a quantization) due 
to an in-phase cardiorespiratory coupling effect (termed 
cardiorespiratory coordination) with preferred values of 
the harmonic ratios n/m with n = 3–6 and m = 1 while n 
and m represent the numerator and denominator of the 
equation PRQ = HR/RR = n/m (Bettermann et al. 2000, 
Bettermann et al. 2001, Bettermann et al 2002, 
Scholkmann and Wolf 2019). The relationship between 
the HR and RR is thus not random but is an emergent 
property as a result of complex cardiorespiratory 
interactions. A PRQ of 4 can be regarded as an attractor 
state that is approached during resting-conditions, while 
other attractor states are at other harmonic ratios (but less 
pronounced). 

The aim of the present work was to evaluate 
these three assertions, i.e. the preference of the resting-
state PRQ showing values around 4, being lognormally 
distributed and also exhibiting a quantization of values 
with preferences around integers. To this end, a large data 
set of own measurements has been analysed that was 
obtained during a systemic physiology augmented 
functional near-infrared spectroscopy (SPA-fNIRS) study 
conducted at our institute. The data set comprised of 
resting-state measurement of HR and RR of subjects 
sitting on a chair in a darkened room and wearing a SPA-
fNIRS setup to measure brain and physiological activity. 
HR was measured with a device registering cardiac 
activity as well as continuous blood pressure 
(SOMNOtouch NIBP, SOMNOmedics GmbH, 
Randersacker, Germany; sampling rate: 4 Hz). RR was 
measured with a patient monitor with a capnography 
module (LifeSense, Nonin Medical, Plymouth, MN, 
USA; sampling rate: 1 Hz). The capnograph was 
connected to a small tube with an open end attached 
below the nostrils of the subject. The tube attached did 
not influence the breathing of the subject nor caused any 
discomfort. The PRQ was determined by averaging the 
HR and RR measurement for each experiment for 
a recording period of 5 min (i.e. last 5 min of the baseline 
phase). It was ensured that the subjects were in an awake 
resting-state during the measurements. Measurements 
were conducted in 134 healthy subjects (49 men,  
85 women, age: 24.7 ± 3.4, range: 20–46 years) and were 
repeated 2–4 times for each subject (on different days) 
resulting in 482 single measurements and thus single 
resting-state PRQ values. The subjects did not have an 

acute disease nor a chronic disease affecting the 
cardiovascular, cardiorespiratory or neuronal system. The 
body mass index of the population was 22.08 ± 2.42 
(range: 17.54–31.22) showing that the population 
consisted of subjects of normal weight.  

The measured raw signals were processed in 
Matlab (R2017a, MathWorks, Inc., MA, USA) and the 
statistical analysis was conducted in R (version 3.4.4) 
(R Core Team 2019). For the analysis of the data 
distribution, the R package “fitdistrplus” (Delignette-
Muller and Dutang 2015) was employed. 

In order to investigate assertion 1 (i.e. the 
prevalence of the resting-state PRQ showing values 
around 4) and assertion 2 (i.e. the lognormal distribution 
of the data), the PRQ data were analysed with a Cullen 
and Frey plot (skewness-kurtosis plot) (Cullen and Frey 
1999) involving a nonparametric bootstrap procedure 
(number of bootstraps: 5000) to take into account the 
uncertainty in estimating the kurtosis and skewness 
(Efron and Tibshirani 1994). The empirical distribution 
of PRQ values was compared with the following 
distributions: normal, uniform, exponential, logistic, beta, 
lognormal and gamma. Fig. 1a shows that the lognormal 
distribution is the most suitable one explaining the 
empirical PRQ distribution. To further corroborate this 
finding, the goodness-of-fit was evaluated by fitting 
a lognormal distribution to the data, comparing the 
empirical and theoretical cumulative density functions 
(CDFs), creating a Q-Q plot (theoretical vs. empirical 
quantiles) and a P-P plot (fitted distribution function vs. 
empirical distribution function). Because the Cullen and 
Frey plot analysis found the lognormal distribution 
representing the empirical PRQ distribution at best, and 
since the Weibull distribution is similar to the lognormal 
one (Cain 2002, Kundu and Manglick 2004), the 
goodness-of-fit was evaluated for the lognormal and 
Weibull distribution. The analysis showed that the 
lognormal distribution fits the PRQ data better than the 
Weibull distribution (loglikelihood: -627.7287, Akaike 
information criterion (AIC): 1259.457, Bayesian 
information criterion (BIC): 1267.813 vs. -684.2619, 
AIC: 1372.524, BIC: 1380.88). The fit with the 
lognormal distribution (Fig. 2c) gave a median PRQ 
value of 4.19 with a skewness of the distribution of 1.00 
and a kurtosis of 5.30, respectively. That the lognormal 
distribution fits the data well can be also inferred by 
visually comparing the empirical fit (density estimate) 
with the lognormal fit (Fig. 2a, c). Also the comparison 
with the empirical and theoretical CDFs (Fig. 2d), the 
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Q-Q plot (Fig. 2e) and the P-P plot (Fig. 2f) support the 
finding that the PRQ data follow a lognormal 
distribution. 

To evaluate assertion 3 (i.e. the quantization of 
PRQ values with preferences of integers), the following 
procedure was performed: each single PRQ value of the 
data set was compared to the next integer and the 
difference was calculated, resulting in ΔPRA values 
(ΔPRA = PRQ – [PRQ], with [·] the round-to-nearest 
integer operator), and the distribution of ΔPRQ values 
was analysed.  

 
 

 
 

Fig. 1. Cullen and Frey plots for the PRQ (a) and ΔPRQ (b) data. 
The analysis revealed that the distribution of PRQ data is 
approximated at best by a lognormal distribution and the ΔPRQ 
data by a uniform one. 
 
 

Since a quantization of PRQ values results in 
a distribution with preferred values of integers, the 

resulting ΔPRQ distribution should have a clear maxima 
around 0 and should follow approximately a normal 
distribution. As Fig. 2b shows, no preferred ΔPRQ value 
was evident from the distribution. The Cullen and Frey 
plot of the data (Fig. 1b) further showed that the data can 
be approximated at best with a uniform distribution and 
that a normal distribution does not fit the data well. Both 
results support the conclusion that no quantization of 
PRQ values was evident. 

Our analysis thus confirmed assertion 1 and 2 that 
the resting-state PRQ on a group-level has a high 
probability of having a value of around 4 and being 
lognormally distributed. Our analysis thus agrees with the 
previous publications stating assertions 1 and 2, indicating 
the occurrence of cardiorespiratory coupling in the resting-
state. Assertion 3 about the quantization of PRQ values 
(which would indicate a cardiorespiratory coordination) 
was not supported by our analysis. There are three main 
reasons for not finding the PRQ quantization according to 
our reasoning. First, it could be that the PRQ quantization 
is more/less pronounced in individual subjects and that  
a group-level analysis (as we did) is not able to detect it 
since the effect is weakened by our analysis approach. This 
aspect is especially significant since we calculated the PRQ 
value by dividing the median of the HR by the median of 
the PR (from the 5 min time-series) and not by calculating 
the instantaneous PRQ (from the 5 min time-series) and 
then taking the median of it. The second approach might be 
better characterizing the individual quantized PRQ states. 
Further research is needed to investigate this reasoning. 
Second, the PRQ quantization could be mainly better 
detected by analysing the PRQ values of an individual 
subject during a specific time-interval (during this interval, 
there might be a cardiorespiratory coupling preference, i.e. 
cardiorespiratory coordination, with integer PRQ values, as 
indicated by previous works). Calculating an average over 
all PRQ values for the interval (as we did) might weaken 
the PRQ quantization effect in the data since only the 
average of the PRQ is taken into account in the final 
group-level analysis and not possible additional maxima of 
the PRQ distribution. This conclusion is supported for 
example by the study of Bettermann et al. (2001) who 
detected a PRQ quantization when first analysing the 
individual PRQ distributions for each experiment and then 
performing the group-average; with this approach, the 
presence of local maxima in the PRQ distribution at values 
of 4, 3, 2 and 5 in nightly resting-stated PRQ values of 
women with metastasized breast cancer was detected. 
According to this finding, the PRQ quantization thus might 
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be also related to the health state of a subject, and since our 
study included healthy young subjects, the occurrence of 
this effect might be less likely. Third, the PRQ 
quantization might be only an artefact or phenomena that is 
happening only occasionally so that a generalization is 
unjustified. According to our assessment, the most likely 
conclusions seem to be the first and second ones. Further 
research is needed, and will be conducted by us, to clarify 
this aspect. 

Our finding that the resting-state PRQ of human 
adults is indeed around 4 is not only of interest for basic 
human physiology but has also medical relevance since 
deviations from this norm might be associated with 
pathophysiological processes. Indeed, the usefulness of 
evaluating the resting-state PRQ in patients for diagnosis 
and disease monitoring has been already shown 
(Bettermann et al. 2001, Göbels 2014, Heckmann 2001, 
Hildebrandt 1960, 1980, 1985, 2009, Kümmell and 
Heckmann 1987, Suchantke 1951, Weckenmann 1975, 
1981). For example, a tendency of resting-state PRQ to 
be closer to 4 during the course of an influenza disease 
has been documented (Müller 1972). A state of PRQ ≈ 4 
has been termed “PRQ normalization”, associated with an 
optimal functioning of the cardiovascular system 
a balanced state of the autonomic nervous system, being 
relevant for and being correlated with a healthy 

physiological state of a human (Hildebrandt 1997, 
Scholkmann and Wolf 2019). The significance of 
PRQ ≈ 4 is highlighted by the fact that the resting-state 
PRQ is also around 4.5 for all mammals and thus is not 
following an algometric scaling law as the HR or RR 
(Schmidt-Nielsen 1984, Stahl 1967). 

The finding about the lognormality of the PRQ 
distribution is important for future studies using the PRQ 
since the statistical analysis of PRQ values thus needs to 
be treated accordingly, i.e. taking the log of the PRQ 
value is necessary to transform the data to a normal 
distribution so that the requirements of the classical 
statistical test are fulfilled. 

To the best of our knowledge, our study is the 
largest conducted so far in healthy adult humans about 
reference values of the PRQ during a resting-state at day. 
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Fig. 2. (a, b) Comparison of histograms of PRQ and ΔPRQ values with density estimations. (c-f) Evaluation of the goodness-of-fit for 
fitting the PRQ distribution with a lognormal distribution. CDFs: cumulative density functions. 
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SPA-fNIRS: A promising tool to investigate cerebral 

and physiological changes 

In the previous chapter, the PRQ was introduced, and two special features of 

it were explained. This parameter, along with numerous cerebral and 

physiological parameters, can be measured by the SPA-fNIRS approach. This 

chapter comprises three peer-reviewed publications that aim to investigate with 

SPA-fNIRS whether changes in cerebral parameters, namely StO2 and [tHb], can 

be associated with (or influenced by) systemic physiology. Publication 2 and 3 focus 

on the investigation of frontal cerebral oxygenation asymmetry (FCOA) at rest. 

SPA-fNIRS was employed to assess whether FCOA depends on systemic 

physiology. Results in Publication 2 show that there is no significant linear 

correlation between FCOA and systemic physiology, i.e., PETCO2, HR, and PRQ. 

However, comprehensive investigations on a large number of healthy humans 

confirm that FCOA is nonlinearly associated with RR and PRQ, as explained in 

Publication 3. It is also shown in this publication that StO2 correlates significantly 

with PETCO2, while [tHb] is dependent on HR, RR, and PRQ. In Publication 4, the 

contribution of systemic physiology (HR, RR and PETCO2) to StO2 and [tHb] was 

investigated with a novel signal-processing method, i.e., oblique subspace 

projections signal decomposition. Experimental findings in Publication 4 display 

that cerebral parameters contain components related to changes in systemic 

physiology, and the contribution from systemic physiology varies strongly between 

subjects. 
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Right-Left Asymmetry of Prefrontal 
Cerebral Oxygenation: Does it Depend 
on Systemic Physiological Activity, 
Absolute Tissue Oxygenation 
or Hemoglobin Concentration?

Felix Scholkmann, Hamoon Zohdi, and Ursula Wolf

Abstract Background: We have repeatedly observed a right-left asymmetry (RLA) 
of prefrontal cerebral oxygenation of subjects during the resting state. Aim: To clar-
ify if the RLA is a reliably observable phenomenon at the group level and whether 
it is associated with systemic physiology, absolute tissue oxygen saturation (StO2) 
or total hemoglobin concentration ([tHb]). Material and Methods: StO2 and [tHb] 
values at the right and left prefrontal cortex (PFC) were calculated for two 5- min 
resting phases based on data from 76 single measurements (24 healthy adults, aged 
22.0 ± 6.4 years). StO2 and [tHb] were measured with an ISS OxiplexTS frequency 
domain near-infrared spectroscopy device. In addition, end-tidal CO2 (PETCO2), 
heart rate (HR), respiration rate (RR) and the pulse-respiration quotient (PRQ = HR/
RR) were measured and analyzed for the two phases. Results: On the group level it 
was found that i) StO2 was higher at the right compared to the left PFC (for both 
phases), ii) RLA of StO2 (∆StO2  =  StO2 (right)–StO2 (left) was independent of 
PETCO2, HR and PRQ, and iii) ∆StO2 was associated with absolute StO2 and [tHb] 
values (positively and negatively, respectively). Discussion and Conclusion: This 
study shows that i) RLA of StO2 at the PFC is a real phenomenon, and that ii) ∆StO2 
at the group level does not depend on PETCO2, HR, RR or PRQ, but on absolute StO2 
and [tHb]. We conclude that the RLA is a real effect, independent of systemic physi-
ology, and most likely reflects genuine properties of the brain, i.e. different activity 
states of the two hemispheres.
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1  Introduction

In several functional near-infrared spectroscopy (NIRS) studies performed by our 
group in recent years, we observed a tendency of a right-left asymmetry (RLA) of 
prefrontal cerebral oxygenation during the resting-state phases of the subjects. 
Since the aims of the studies were to investigate task and stimulus evoked cerebral 
brain activity [1–5], we did not analyze RLA in detail. Therefore, this study aimed 
to investigate these phenomena in detail based on a large dataset from one of our 
previous studies. In particular, we aimed to clarify if the RLA is a reliably observ-
able phenomenon on the group level and if it is associated with cardiorespiratory 
activity, absolute tissue oxygenation (StO2) or total hemoglobin concentration 
([tHb]).

2  Materials and Methods

Resting-state StO2 and [tHb] values were calculated for two baseline phases from a 
dataset of our previous study [1] comprising 76 single measurements performed on 
24 healthy subjects (aged 22.0 ± 6.4 years). Median StO2 and [tHb] values at the 
right and left prefrontal cortex (PFC) were calculated for two 5-min resting-state 
phases (one during the pre-task baseline and the other from the post-task phase). 
Only data of high signal quality (i.e. StO2 in the range of 40–100%, no movement 
artifacts) were included.

StO2 and [tHb] were measured with an ISS OxiplexTS frequency domain NIRS 
device enabling StO2 measurements relatively immune against oxygenation and 
hemodynamics in the superficial tissue layers. In addition, systemic physiology 
variables were assessed by measuring end-tidal CO2 (PETCO2) (N1000 gas analyzer, 
Nellcor, Boulder, CO, USA), heart rate (HR) (Medilog AR12, Schiller AG, Baar, 
Switzerland), respiration rate (RR) and the pulse-respiration quotient (PRQ = HR/
RR). The RR was determined from the capnography signal by extracting the instan-
taneous frequency based on wavelet time-frequency decomposition.

Data were analyzed with Bayesian statistics (JASP, v.0.8.6) to assess whether i) 
RLA of StO2 was detectable (Bayesian t-test, Cauchy scale: 0.4, hypothesis: StO2 
(right)  >  StO2 (left), and whether ii) ΔStO2 was correlated with HR, RR, PRQ, 
PETCO2, mean of absolute StO2 (⟨StO2⟩) or the mean of absolute [tHb] (⟨[tHb]⟩) 
(Bayesian linear regression; Cauchy prior width 1; tested hypothesis: correlated, 
correlated positively, or correlated negatively, depending on visual inspection of the 
scatter plot). Furthermore, it was assessed how well the ΔStO2 values from both 
phases agreed (Bayesian linear regression).

F. Scholkmann et al.



107

3  Results

The distributions of StO2 values for the left and right PFC and for both phases are 
depicted in Fig. 1. Also shown is the correlation between StO2 (phase 1) and StO2 
(phase 2) as well as the distribution of ΔStO2 values for both phases. The results of 
the correlation analysis are shown in Figs. 2 and 3.

The results of the analysis can be summarized as follows:

• At the group level, StO2 measured on the right PFC was higher compared to the 
left PFC. This was true for both measurement times (median, interquartile range 
(IQR), phase 1 StO2 (right) = 68.9% (63.7–72.3%), StO2 (left) = 57.5% (52.7–
62.9%); phase 2 StO2 (right) = 68.3% (63.1–73.3%), StO2 (left) = 56.8% (53.4–
63.8%), as well as for the combined data set (i.e., phase 1 and 2 combined): StO2 
(right) = 68.6% (63.5–72.4%) vs. StO2 (left) = 56.8% (52.9–63.4%). All three 
right-left comparisons yielded Bayes factors (BF10) higher than 100 (with a 
Cauchy prior width of 0.4), i.e. indicating extreme evidence for the hypothesis 
StO2 (right) > StO2 (left).

• ΔStO2 (phase 1) and ΔStO2 (phase 2) were correlated to a high degree (r = 0.949 
(% confidence interval, CI 0.916–0.967), BF10 = 4.29 × 1034 for the hypothesis of 
a positive correlation), indicating that the RLA of StO2 is a stable phenomenon 
for each subject during the whole experiment.

• For both phases, the correlation analysis between ΔStO2 and HR, RR, PRQ and 
PETCO2 (|r|  <  0.2) delivered BF10 values associated with strong to substantial 

Fig. 1 (a, b) StO2 for the right and left PFC measured at two different times (phase 1 and 2). (c) 
Correlation between ΔStO2 (phase 1) with ΔStO2 (phase 2). (d, e) Distribution of ΔStO2 for both 
phases. (f) Visualization of the RLA of StO2 observed in this study
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evidence (BF10 = 0.03–0.3) for the hypothesis of no correlation (see Table 1 for 
individual values and Fig. 2 for a visualization).

• ΔStO2, was found to be correlated with absolute StO2 and [tHb] (Table 1, Fig. 2). 
These correlations are most evident when analyzing the combined data (phase 1 
and 2 combined), resulting in a positive correlation of ΔStO2 with StO2 (r = 0.247, 
BF10 = 19.40) and a negative correlation with [tHb] (r = −0.230, BF10 = 10.69) 
(Fig. 3). With BF10 > 10 there is strong evidence for the hypothesis that the vari-
ables are correlated. A Bayes factor robustness check (BF vs. Cauchy prior 
width) confirmed that the evidence of correlation does not change substantially 
when changing the Cauchy prior width from 0.25 to 1.5 (see Fig. 3).

Fig. 2 Scatter plots showing ΔStO2 vs. HR, RR, PRQ, PETCO2, ⟨StO2⟩ and ⟨[tHb]⟩ for both phases 
of the resting-state time series. Correlations between the data are indicated by a linear fit
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Fig. 3 Bayes factor robustness check (BF vs. Cauchy prior width) for the correlations ΔStO2 vs. 
⟨StO2⟩ and ⟨[tHb]⟩, respectively. For the analysis, the data from period 1 and 2 were combined to 
increase the robustness of the analysis

Table 1 Correlations between the right-left asymmetry of prefrontal cerebral oxygenation 
(ΔStO2) and HR, RR, PRQ, PETCO2, ⟨StO2⟩ and ⟨[tHb]⟩

Parameter 1 Parameter 1
Correlation  
coefficient (r), 95% CI

Bayes  
factor (BF10)

∆StO2 (phase 1) HR (phase 1) 0.017 [-0.207, 0.238] 0.146
∆StO2 (phase 2) HR (phase 2) 0.039 [-0.188, 0.260] 0.153
∆StO2 (phase 1) RR (phase 1) 0.129 [-0.154, 0.385] 0.129
∆StO2 (phase 2) RR (phase 2) -0.084 [-0.367, 0.218] 0.220
∆StO2 (phase 1) PRQ (phase 1) -0.076 [-0.340, 0.204] 0.203
∆StO2 (phase 2) PRQ (phase 2) 0.071 [-0.230, 0.355] 0.212
∆StO2 (phase 1) PETCO2 (phase 1) -0.124 [-0.352, -0.10] 0.420
∆StO2 (phase 2) PETCO2 (phase 2) -0.077 [-0.326, -0.007] 0.271
∆StO2 (phase 1) ⟨StO2⟩ (phase 1) 0.196 [0.023, 0.400] 1.107
∆StO2 (phase 2) ⟨StO2⟩ (phase 2) 0.289 [0.073, 0.478] 6.171
∆StO2 (phase 1) ⟨[tHb]⟩ (phase 1) -0.218 [-0.418, -0.031] 1.570
∆StO2 (phase 2) ⟨[tHb]⟩ (phase 2) -0.240 [-0.437, -0.040] 2.257
∆StO2 (combined) ⟨StO2⟩ (combined) 0.247 [0.090, 0.389] 19.40∗
∆StO2 (combined) ⟨[tHb]⟩ (combined) -0.230 [-0.374, -0.074] 10.69∗
∗BF10 > 10
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4  Discussion and Conclusion

This study shows that i) RLA of StO2 at the PFC is a real phenomenon, and that ii) 
∆StO2 at the group level does not depend on PETCO2, HR, RR or PRQ, but on abso-
lute StO2 and [tHb].

The absolute StO2 values at the human PFC measured in our study (StO2 
(right) = 68.6 (IQR 63.5–72.4), StO2 (left) = 56.8% (IQR 52.9–63.4%), combined 
values for both phases) are in the range of values reported by previous studies, e.g. 
64.5 ± 10% (Invos 3100; measurement avoiding contributions from the extracere-
bral layer, but obtained without using a frequency domain NIRS instrument) [6], 
or slightly lower, e.g., 75.19 ± 8.3% (Imagent, ISS; combined values for the right 
and left PFC; measurement avoiding contributions from the extracerebral layer) 
[7] and 75.5 ± 4.5% (NIRO300, 4 cm source-detector separation, average over 2 
channels and left and right PFC) [8]. The reason for the differences in StO2 values 
between studies might be a difference in the age or physiological state of the sub-
jects and the measurement methodology. For example, according to the manufac-
turer, the Invos NIRS device is not intended for measuring absolute values, 
provides slightly lower values than the ISS instrument, and the StO2 values depend 
on the tHb concentration [9].

Our finding that on the group level during rest the right PFC has a higher oxygen-
ation than the left, i.e. a RLA of StO2 at the PFC, has seldom been investigated with 
NIRS. The only NIRS studies that investigated this aspect found no difference (right 
vs. left PFC (extracerebral tissue): 71.7 ± 3.03% vs. 71.7 ± 3.86%, and right vs. left 
PFC (cerebral tissue): 74.8 ± 5.83% vs. 75.6 ± 5.86%; 15 subjects, aged 20–50 years, 
using an ISS Imagent device [7] and right vs. left PCF (cerebral and extracerebral 
tissue combined, 4 cm source-detector separation): 75.6 ± 4.2% vs. 75.4 ± 4.9%, 16 
subjects, using a NIRO300 device [8]. In these studies, much larger distances were 
employed, which leads to a substantially lower SNR. The explanation for this dif-
ference may be that the SNR was not high enough to show the RLA. In addition, the 
measurements of Quaresima et al. [8] were also sensitive to the extracerebal tissue 
layer whereas our measurements avoided this confounding effect.

To exclude a simple artifact, we tested whether our NIRS measurements were 
dependent on the specific NIRS optode by switching the right optode with the left 
and vice versa. Since the StO2 difference persisted (data not shown; for the test the 
ISS Imagent was used; also here the RLA was observed), we conclude that the StO2 
RLA measured is not simply due to a measurement error.

That task or stimulus evoked brain activity shows a laterality in the PFC has been 
shown by many electroencephalography (EEG) studies linking the asymmetry to 
side-specific activities of behavior regulation, especially reflecting the activity of a 
“moderator of emotional responding for both approach and withdrawal related emo-
tions”, as summarized in a recent review [10]. The right PFC in particular seems to 
be “crucially involved in a regulatory control system that supervises the motiva-
tional systems of approach and avoidance” [11].
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Studies applying functional NIRS (fNIRS) to investigate the frontal asymmetry 
by Sakatani et al. are generally in line with these EEG studies and also with our 
finding of a RLA of StO2: several studies showed a higher increase in the concentra-
tion of oxyhemoglobin ([O2Hb]) in the right PFC during mental stress tasks, medi-
ated by the individual psychological state (anxiety level) [12–14] and the age [15]. 
However, a decrease in [O2Hb] in the right PFC, and a decrease in EEG activity at 
the same side, during a mental arithmetic task was reported in an fNIRS-EEG by 
others [16]. A stronger response (increase) in the left compared to the right PFC to 
a continuous colored light exposure (10 min) of the subjects was observed in a study 
by our group [17]. From this it can be concluded that the activity-dependent RLA of 
frontal NIRS-signal changes was observed by several fNIRS studies, and the mag-
nitude and sign varied, probably depending on the task, individual subjects and 
differences in methodology.

Our study is the first to investigate whether the RLA of StO2 during the resting 
state was dependent on the state of the cardiorespiratory system of the subjects; 
however, such a dependence was not observed in our study. This finding supports 
the notion that the degree of RLA of frontal oxygenation does not simply reflect 
systemic physiological (i.e. cardiorespiratory) activity, but rather constitutes real 
frontal asymmetry of brain activity (neurovascular coupling). The reason for the 
observed ∆StO2 depends on absolute StO2 and [HHb] and needs further research.
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Frontal cerebral oxygenation asymmetry:
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Abstract

Significance: Our study reveals that frontal cerebral oxygenation asymmetry (FCOA), i.e.
a difference in the oxygenation between the right and left prefrontal cortex (PFC), is a real
phenomenon in healthy human subjects at rest.

Aim: To investigate FCOA, we performed a study with 134 healthy right-handed subjects with the
systemic physiology augmented functional near infrared spectroscopy (SPA-fNIRS) approach.

Approach: Subjects were measured 2 to 4 times on different days resulting in an unprecedented
number of 518 single measurements of the absolute values of tissue oxygen saturation (StO2) and
total hemoglobin concentration ([tHb]) of the right and left PFC. Measurements were performed
with frequency-domain functional near-infrared spectroscopy. In addition, the cardiorespiratory
parameters were measured simultaneously.

Results:We found that (i) subjects showed an FCOA (higher StO2 on the right PFC), but not for
tHb; (ii) intrasubject variability was excellent for both StO2 and tHb, and fair for FCOA;
(iii) StO2 correlated significantly with blood CO2 concentration, [tHb] with heart rate, respiration
rate (RR), and the pulse–respiration quotient (PRQ), and FCOAwith RR and PRQ; (iv) FCOA
and StO2 were dependent on season and time of day, respectively; (v) FCOA was negatively
correlated with the room temperature; and (vi) StO2 and tHb were not correlated with the sub-
jects mood but with their chronotype, whereas FCOA was not dependent on the chronotype.

Conclusion: Our study demonstrates that FCOA is real, and it provides unique insights into this
remarkable phenomenon.

© The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License.
Distribution or reproduction of this work in whole or in part requires full attribution of the original pub-
lication, including its DOI. [DOI: 10.1117/1.NPh.7.2.025006]

Keywords: functional near-infrared spectroscopy; prefrontal cortex; right–left asymmetry; tis-
sue oxygenation; systemic physiology.
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1 Introduction

Our own preliminary measurements suggested that cerebral oxygenation differed between the
right and left prefrontal cortex (PFC) in healthy human adults at rest.1 This phenomenon, which
we named frontal cerebral oxygenation asymmetry (FCOA), is characterized by higher tissue
oxygenation over the right PFC compared to the left.

Hemispheric specialization has been reported for a wide range of cerebral functions.2 For
example, it is known that the regions in the left hemisphere are usually dominant for language
and logical processing, whereas regions in the right hemisphere are specialized for spatial rec-
ognition and emotional control.3,4 Lateralization of function was first reported in the domain of
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language functions, which is widely accepted as a fundamental feature of neural organization,
where it was revealed that the left hemisphere is dominant in language processing.5,6 Additionally,
more than 90% of the population prefers the right hand for manual activities, with superior fine
motor control and motor strength, which is controlled by the left hemisphere.4 Research has dem-
onstrated that neural organization exists for the control motor actions, where each brain hemi-
sphere contributes exclusive control mechanisms to the movement of each arm.7 Mutha et al.7

suggested that the left hemisphere provides predictive control mechanisms, whereas the right one
contributes positional control mechanisms during movement of either arm. In addition to later-
alization of language and motor control, face processing has also been shown to have laterality to
neural activity and connectivity. It has been demonstrated that areas in the right hemisphere are
more anatomically connected, more synchronized during rest, and more actively communicating
with each other during face perception compared to the left hemisphere.8 Interestingly, numerous
electroencephalography (EEG) studies have demonstrated a right–left asymmetry in brain activity
during the resting state. Frontal EEG asymmetry (FEA) activity has been explained using the
approach-withdrawal model suggesting that there are two different types of motivation.9,10

The approach motivation signifies the propensity to move toward the desired stimulus and is
associated with a higher left frontal activity, whereas the withdrawal/avoidance motivation indi-
cates a propensity to move or stay away from an undesired stimulus and is associated with higher
right frontal activity.11–13 However, only a few studies on the asymmetry of brain tissue oxygena-
tion and metabolism have been performed so far.1,14 This prompted us to investigate this fasci-
nating phenomenon in many subjects using functional near-infrared spectroscopy (fNIRS).

From a methodological point of view, three main types of NIRS-based optical tissue
spectroscopy techniques have been developed so far: continuous wave (CW-NIRS), frequency
domain (FD-NIRS), and time domain (TD-NIRS). CW-NIRS can provide information on con-
centration changes of oxyhemoglobin (½O2Hb�) and deoxyhemoglobin ([HHb]) but cannot deter-
mine absolute baseline values. Therefore, it is appropriate for applications in cognitive
neuroscience as absolute values are not crucial and functional activity is relatively assessed with
respect to the baseline.15 FD-NIRS and TD-NIRS measure not only the light intensity as CW
NIRS but also the time of flight of photons through tissue. Therefore, time resolved techniques
such as TD-NIRS and FD-NIRS are able to provide absolute ½O2Hb�, [HHb], and total
hemoglobin ([tHb]) concentrations as well as absolute tissue oxygen saturation ½StO2 ¼
ð½O2Hb�∕½tHb�Þ × 100�.16,17 This is relevant additional information, e.g., the [tHb] is strictly
proportional to cerebral blood volume by the hematocrit. Thus these systems have widely been
used in many diverse fields and applications including clinical monitoring, traumatic brain
injury, anesthesiology, neonatology, and psychiatry.18 A comprehensive review on the history
of fNIRS development, methodology, and imaging instrumentation has been published by
Scholkmann et al.19 In this study, we performed optical neuroimaging using multidistance
FD-NIRS. This approach is also able to reduce the sensitivity to extracerebral tissue. It is known
that the oxygenation of the brain depends on its activity state, and the metabolic changes in the
brain are interrelated with systemic parameters.20–22 Therefore, it is essential to employ the sys-
temic physiology augmented (SPA) fNIRS approach, which additionally and simultaneously
measures absolute values of cardiorespiratory parameters including the end-tidal carbon dioxide
(PETCO2), heart rate (HR), respiration rate (RR), and the pulse-respiration quotient (PRQ).

The main goal of this study was to investigate FCOA in a large number of healthy humans at
rest to elucidate whether FCOA is a real and robust phenomenon. To facilitate a better under-
standing of this phenomenon, we employed SPA-fNIRS to assess whether FCOA depends on
systemic physiological activity, absolute tissue oxygenation, or hemoglobin concentration. We
also aimed to explore the effects of chronobiological and psychological variables on FCOA, as
well as cerebral hemodynamics and oxygenation at the PFC during the resting state.

2 Subjects and Methods

2.1 Subjects

The study was carried out with 134 healthy subjects (85 female, 49 male, age 24.7� 3.4 years,
and range 20 to 46 years). The subjects were all right-handed, according to the Edinburgh
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Handedness Inventory.23 Subjects were nonsmoking and indicated neither current nor previous
history of neurological and psychiatric disorders or alcohol and drug abuse. Subjects were asked
to refrain from consuming caffeine and eating 2 h prior to the experiment. The study protocol
was approved by the Ethics Committee of the Canton of Bern. Informed consent was obtained
from all subjects before the measurements. Subjects were also informed of their right to dis-
continue participation at any time.

2.2 Experimental Protocol

The resting state data were taken from a set of studies with different stimuli. Each measurement
began with a baseline phase lasting 8 min, during which the subjects sat upright in a comfortable
chair in a dark room. For this study, we examined only the last 5 min of this baseline period. Each
subject was measured on four different days but at the same time of day to prevent chronobio-
logical artifacts. They were asked to keep their eyes open throughout the entire measurement and
to move their head or body as little as possible during the measurement to avoid movement
artifacts. Additionally, the subjects were asked to fill out two questionnaires before and after
each measurement in order to assess their mood: the positive affect negative affect schedule
(PANAS)24 and the self-assessment manikin test (SAM; five points scale).25 The PANAS and
SAM questionnaires are used as tools to measure state influence. Trait influence evaluation was
not performed in our study. Additionally, we determined the chronotype by the Horne and
Östberg morningness-eveningness questionnaire.26 Measurements were performed between
7:00 am and 9:00 pm. The mean room temperature was 22.8°C� 0.6°C.

2.3 Measurement Setup

The Imagent (ISS Inc., Champaign, Illinois, USA), a multichannel FD-NIRS system, which
employs a multidistance approach, was used to determine absolute values of the ½O2Hb�,
[HHb], [tHb], and StO2 at a sampling rate of 2.5 Hz on the PFC. The Imagent’s light source
consists of 16 laser diodes at 760 nm and 16 laser diodes at 830 nm. Four highly sensitive photo-
multiplier tubes serve as detectors. The sensors were placed bilaterally on the left and right pre-
frontal cortex (L-PFC and R-PFC) of subjects at position Fp1 and Fp2, according to the
international 10 to 20 system.27 Each of the two ISS sensors had four light emitters and one
light detector connected to an optical fiber delivering the light to the photomultiplier tube.
The source–detector separations (d) were ∼2.0, 2.5, 3.5, and 4.0 cm with the sources and detec-
tors arranged collinearly.

HR was measured by SOMNOtouch™ NIBP (SOMNOmedics GmbH, Randersacker,
Germany) with a sampling rate of 4 Hz. This device calculated the HR from the ECG data
by calculating the R − R intervals. RR and end-tidal carbon dioxide (PETCO2) were measured
noninvasively by a NONIN LifeSense (NONIN Medical, Plymouth, Minnesota, USA). Data
were recorded at a sampling rate of 1 Hz. All data were recorded simultaneously.

2.4 Signal Processing and Statistical Analysis

One subject was excluded from data analysis due to the perceived discomfort of the fNIRS
sensors. 126 subjects completed all four measurements; only for seven subjects, the number
of experimental sessions was lower. Therefore, the entire data for the current analysis comprised
518 single measurements. All signal processing was performed in MATLAB (R2017a,
MathWorks, Inc., Massachusetts, USA).

2.4.1 Cerebral oxygenation and hemodynamics

Prior to analysis, data with extremely low (StO2 < 40%) or improper high values (StO2 > 100%)
were removed by visual inspection. Movement artifacts in the StO2 and [tHb] signals were
removed by the movement artifact reduction algorithm (MARA) based on moving standard
deviation and piecewise-interpolation.28 For 86% of the signal time series, no processing with
MARA was necessary. To remove high-frequency noise, signals were low pass filtered using a
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robust second-degree polynomial moving average (RLOESS) with a span of 2 min. This method
assigns zero weight to data outside six mean absolute deviations (MAD). For each measurement,
the 5-min median of the baseline phase was calculated for each cerebral parameter. Absolute
values of StO2 and [tHb] from the L-PFC and R-PFC were averaged to obtain a single value for
the whole PFC. Moreover, the laterality index—defined as the difference between the absolute
values for the R-PFC and L-PFC—was determined and is indicated by a “Δ.” Finally, median
values and the interquartile range (IQR) of StO2 and [tHb] were calculated for each individual
subject.

2.4.2 Cardiorespiratory parameters

All cardiorespiratory parameters, including HR, PETCO2, and RR, were also denoised by the
RLOESS method with a window length of 3, 1, and 2 min, respectively. Additionally, the
PRQ (= HR/RR) was calculated to quantify the coupling between HR and RR. The 5-min
median of the baseline phase was determined for all systemic physiology data. The IQR of
parameters was calculated for each individual subject.

2.4.3 Statistical analysis

Outliers (defined as exceeding three scaled MAD from the median) of each dataset were
removed prior to the correlation analysis. The best nonlinear curve fitting (from many models
including line, poly, cubic, degree 4 and 5 polynomial, piecewise linear function with 2 segments,
and exponential) was estimated with R statistical software (R 3.5.2, Performance Analytics
package, r-project.org) and OriginPro (version 2018b, OriginLab Corporation, Northampton,
Massachusetts, USA) for each pair of parameters (8 parameters and 28 pairs) and a robust non-
linear regression was then calculated with MATLAB using the least absolute residuals method in
order to avoid false-positive correlation detection. P-values were then obtained from goodness-of-
fit results of each parameter pair. A false discovery rate (FDR) correction was subsequently applied
to the p-values in order to correct for the multiple comparison situation. The bootstrapped evidence
(BSE) test was conducted to find bootstrapped correlations between all parameters (28 pairs). This
nonparametric method is an actual resampling procedure that takes the precision with which both
the experimental (H1) and null (H0) hypothesis can be estimated into account.29 This test is also
more robust compared to classical statistics by minimizing false positives while maintaining sen-
sitivity. To investigate the dependence of cerebral parameters on seasonal changes, we applied the
analysis of covariance (ANCOVA) by JASP (jasp-stats.org, version 0.9.2.0). ANCOVA is appro-
priate to test the main and interaction effects of categorical variables (covariates) on a continuous
dependent variable. In this analysis, age and sex were selected as covariates, and a cerebral param-
eter and season were chosen as dependent and fixed factors, respectively. Since ANCOVA
(Kruskal–Wallis nonparametric test; Dunn’s post hoc comparisons; Holm correction) showed that
the covariates (sex and age) have interaction effects on most cerebral variables, the effect of sea-
sonal changes, time of day, and temperature on cerebral parameters were investigated separately for
both female and male groups. For this analysis, eight subjects aged over 30 years were excluded
from these evaluations in order to have a sample in a small age range (20 to 30 years of age).
Finally, Cosinor analysis [Eq. (1)] and the sum of 2 cosine functions [Eq. (2)] were applied in
order to find the best chronobiological fit model of the cerebral parameters:

EQ-TARGET;temp:intralink-;e001;116;194fðtÞ ¼ M þ A cos

�
2πðtþ φÞ

24

�
; (1)

where fðtÞ denotes the value of the function at time t (e.g., a cerebral parameter), M is the
midline estimating statistic of rhythm, A is the amplitude, t is measured in hours, and φ is the
acrophase:

EQ-TARGET;temp:intralink-;e002;116;113fðtÞ ¼ baseþ A1 cos

�
2πðtþ φÞ

24

�
þ A2 cos

�
2πðtþ φÞ

12

�
: (2)
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where fðtÞ represents the value of the function at time t, base is the cerebral parameter baseline
value, A1 and A2 are the amplitudes of the cosine functions, and φ is the acrophase.

2.4.4 Reliability analysis

The intrasubject variability of all data, including cerebral and cardiorespiratory parameters were
analyzed by the intraclass correlation coefficient (ICC) using the R statistical software (R 3.5.2,
ICC package, r-project.org). ICC is a more desirable measure of reliability, reflecting both
degrees of correlation and agreement between measurements. According to Fleiss,30 ICC values
<0.4, between 0.4 and 0.6, in the range of 0.6 and 0.75, and >0.75 are indicative of poor, mod-
erate, good, and excellent reliability, respectively.

3 Results

3.1 Cerebral Oxygenation and Perfusion: Higher StO2 of Right PFC

For StO2, we found right-dominant activity (ΔStO2 > 0), i.e., a highly significant (p < 0.0001)
FCOA was detected in the resting state [Fig. 1(a)]. No significant (p ¼ 0.324) asymmetry was
found for [tHb] [Fig. 1(b)]. The intersubject mean value representing the normal value of StO2

and [tHb] was (mean� SD) 73.0%� 5.9% and 41.4� 9.3 μM, respectively [Figs. 1(c) and
1(d)]. For the right and left PFC the normal values of StO2 were 73.7%� 6.9% (right) and
72.3%� 6.1% (left), and of [tHb] 41.4� 10.8 (right) and 41.4� 10.1 (left) [Figs. 2(a) and
2(b)]. The absolute values of StO2 and [tHb] during the resting state are shown in Figs. 2(c)
and 2(d). All data were normally distributed. From this point on, the outliers were removed and
not considered for subsequent evaluations. After removal of the outliers, FCOA remained highly
significant (p < 0.0001) [nonsignificant for [tHb] (p ¼ 0.218)].

3.2 Cardiorespiratory Activity

Figures 1(e)–1(h) and 2(e), 2(h)–2(j) show the absolute values of PETCO2, HR, RR, and PRQ for
the individual subjects during resting state. On the group level, mean absolute and SD values of
cardiorespiratory parameters were as follows (data were normally distributed): PETCO2:
39.2� 4.4 mmHg, HR: 68� 11 beats/min (BPM), RR: 16.5� 2.9 breaths/min (BrPM), and
PRQ: 4.2� 0.9. These values were all in the normal range for healthy adults at rest.

3.3 Relationships with Systemic Physiology

A correlation matrix of ΔStO2, ΔtHb, StO2, [tHb], PETCO2, HR, RR, and log(PRQ) variables
during the resting state is depicted in Fig. 3(a). In detail, Table S1 in the Supplementary Material
shows curve fitted models, goodness-of-fit results, BSE parameter, and a significance level
for each pair of variables. Statistically significant correlations were found between cerebral
and cardiorespiratory parameters for six pairs of variables: ΔStO2 versus RR (pFDR ¼ 0.022,
p ¼ 0.010), ΔStO2 versus log(PRQ) (pFDR ¼ 0.024, p ¼ 0.012), StO2 versus PETCO2

(pFDR < 0.0001, p < 0.0001), [tHb] versus HR (pFDR ¼ 0.001, p < 0.0004), [tHb] versus RR
(pFDR ¼ 0.029, p ¼ 0.016), and [tHb] versus log(PRQ) (pFDR < 0.0001, p < 0.0001).

Correlations were also observed between the cerebral parameters: ΔStO2 versus ΔtHb
(pFDR ¼ 0.008, p ¼ 0.003), ΔStO2 versus StO2 (pFDR < 0.0001, p < 0.0001), ΔStO2 versus
[tHb] (pFDR ¼ 0.020, p ¼ 0.008), and StO2 versus [tHb] (pFDR < 0.0001, p < 0.0001). A rel-
atively strong correlation between cardiorespiratory parameters was also present: PETCO2 versus
HR (pFDR < 0.0001, p < 0.0001), PETCO2 versus RR (pFDR ¼ 0.039, p ¼ 0.022), PETCO2 ver-
sus log(PRQ) (pFDR < 0.0001, p < 0.0001), HR versus RR (pFDR ¼ 0.001, p < 0.0005), HR
versus log(PRQ) (pFDR < 0.0001, p < 0.0001), and RR versus log(PRQ) (pFDR < 0.0001,
p < 0.0001). Since PRQ was calculated from HR and RR, we expected a linear correlation
of HR versus log(PRQ), and RR versus log(PRQ). Additionally, Fig. 3(b) illustrates the coef-
ficient of correlation “r” and BSE parameter “ε” for each pair. The order of correlation starting
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from strongest (r-value close to 1 and ε > 0.5) is as follows: (1) StO2 versus PETCO2, (2) StO2

versus [tHb], (3) PETCO2 versus HR, (4) [tHb] versus log(PRQ), (5) PETCO2 versus log(PRQ),
(6) ΔStO2 versus StO2, (7) HR versus RR, and (8) [tHb] versus HR.

3.4 Intrasubject Variability: ICC Values Indicate Good-to-Excellent Reliability
of Most Parameters

Figure 3(c) presents the ICC values of all variables. The ICC of StO2, [tHb], StO2 (left),
[tHb] (right), [tHb] (left), PETCO2, HR, and RR indicates excellent reliability. The ICC of

Fig. 1 (a) FCOA of StO2 at the PFC sorted in descending order on the individual subjects.
(b) Asymmetry of [tHb] and absolute values of (c) StO2, (d) [tHb], (e) PETCO2, (f) HR, (g) RR,
and (h) PRQ displayed according to the ΔStO2 sorting, at the PFC for individual subjects during
resting state. The median and the IQR are shown for each subject.
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Fig. 3 (a) Correlation matrix of bivariate scatter plots of ΔStO2, ΔtHb, StO2, [tHb], PETCO2, HR,
RR, and log(PRQ). The best nonlinear fit is presented for pairs with a significant correlation (red:
significant correlation proved by both FDR-corrected and uncorrected p values; blue: only uncor-
rected p value). The level of significance is calculated from goodness-of-fit results. The red and
blue shaded areas show 95% of confidence intervals. Outliers are not displayed. (b) Bar chart of r -
and ε values for each pair of ΔStO2, ΔtHb, StO2, [tHb], PETCO2, HR, RR, and log(PRQ) param-
eters (sorted in descending order of r -values). ε values < − 0.5, near-zero (−0.5 < ε < 0.5),
between 0.5 and 1, and >1 are indicative of no, inconclusive, moderate, and strong correlation,
respectively. (c) Bar chart of ICC values for all cerebral and cardiorespiratory parameters. Error
bars represent the 95% confidence interval. The reliability of the ICC is indicated.

Fig. 2 Diamond box plots showing distributions of absolute (a) StO2 and (b) [tHb] values at the R-
PFC and L-PFC, (c) StO2, (d) [tHb], (e) PETCO2, (f) ΔStO2, (g) ΔtHb, (h) HR, (i) RR, and (j) PRQ
values in resting state. The diamond spans the first quartile to the third quartile (IQR). A segment
inside the diamond shows the median and whiskers above and below the box plots represent the
95% prediction interval. The asterisks indicate the level of high significance between absolute
StO2 values of the R-PFC and L-PFC (*p < 0.001, Wilcoxon signed-rank test). Outliers are not
displayed.
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the PRQ, StO2 (right), and ΔtHb shows good and the ICC of ΔStO2 represents moderate
reliability.

3.5 Dependence of Cerebral Parameters on Sex and Seasonal Changes

The impact of sex and seasons (infradian changes) on cerebral parameters is depicted in Fig. 4. A
significant difference due to sex (p < 0.0001) was observed in both StO2 and [tHb]. In addition,
Δ½tHb� was higher for males compared to females (p < 0.001), but not for ΔStO2 (p ¼ 0.635).
We found that FCOA showed the same trend of seasonal changes for both female and male
groups and was higher in autumn and winter compared to spring and summer (spring versus
autumn, p ¼ 0.001; spring versus winter, p < 0.001; summer versus autumn, p ¼ 0.024;
summer versus winter, p < 0.001 and autumn versus winter, p ¼ 0.011). Interestingly, a
Cosinor model fitted to [tHb] data represents completely contrary patterns for male and female
groups. Absolute [tHb] values of males were higher in spring and summer than that of in autumn
and winter. Conversely, the [tHb] values of females were observed at higher levels in autumn and
winter in comparison with spring and summer.

3.6 Dependence of Cerebral Parameters on Time of Day

The effect of time of day (circadian changes) on cerebral parameters is also shown in Fig. 4. A
sum of 2 cosine functions was applied to fit the circadian rhythm of the data. The same trend of
higher StO2 values in the morning was observed for males and females (p < 0.001). Males dem-
onstrated very high [tHb] values in the early morning and late evening (p < 0.001), but the trend
was almost opposite in females (p < 0.05). The highest FCOA for [tHb] values were found at
10:00 and 14:00 for males and females, respectively. Regardless of sex, a highly significant
difference was found between StO2 values of morning and afternoon (p < 0.001). There was
also a significant difference between StO2 values of morning and evening (p ¼ 0.011). No sig-
nificant changes were found for [tHb] (morning versus afternoon: p ¼ 0.061; morning versus
evening: p ¼ 0.17).

3.7 Dependence of Cerebral Parameters on Temperature

Figure 5 shows the changes in room temperature with respect to season 5(a) and time of day 5(b),
and the temperature dependency of cerebral parameters [5(c)–5(f)]. The mean room temperature

Fig. 4 Changes in StO2, [tHb], ΔStO2, and ΔtHb due to time of year [infradian changes (a)–(d)]
and time of day [circadian changes (e)–(h); morning: 7:00–9:30 and 9:30–12:00; afternoon: 12:00–
14:30 and 14:30–17:00; evening: 17:00–19:30 and 19:30–22:00] for females (orange) and males
(green). Cosinor model and the sum of 2 cosines function are fitted to infradian and circadian
changes, respectively (female, dark orange lines; male, dashed green lines). Error bars represent
the 95% confidence interval.
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was 22.8°C� 0.6°C (range: 20.8°C to 24.8°C). Since the room was not air-conditioned, time of
day and seasonal changes had an impact on the room temperature. As expected, the maximum
room temperatures were recorded in summer and during the late evening. There was no signifi-
cant linear correlation between room temperature and cerebral. The only exception was ΔStO2,
which decreased with increasing room temperature (females: r ¼ −0.35, p < 0.0001; males:
r ¼ −0.30, p < 0.0002).

3.8 Dependence of Cerebral Parameters on Mood and Chronotype

The mean valence, arousal, and dominance ratings during resting state assessed by SAM scales
(ranging from 1 to 5) was 4.02� 0.69, 2.92� 0.91, and 3.24� 0.77, respectively. The depend-
ence of cerebral parameters on mood and chronotype is displayed in Fig. 6. No correlation
was observed between the cerebral parameters and the positive affect scale of the PANAS

Fig. 5 Changes in temperature with (a) time of year and (b) time of day. Dependence of (c) StO2,
(d) [tHb], (e) ΔStO2, and (f) ΔtHb on temperature. The lines represent a linear fit and the shaded
areas and error bars show 95% confidence intervals. Outliers are not displayed.

Fig. 6 The scatter plots show the dependence of StO2, [tHb], ΔStO2, and ΔtHb on chronotype
(Horne-Östberg index) and mood (positive affect scale of PANAS). Correlations between the data
are indicated by a linear fit, and the red shaded areas indicate 95% confidence intervals. Outliers
are not displayed.
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questionnaire. The Horne and Östberg index was calculated for each subject to measure the
chronotype. The highest numbers (score: 59 to 86) indicate morningness and the lowest numbers
(score: 16 to 41) eveningness. Scores from 42 to 58 indicate neither morningness nor evening-
ness. We found a linear correlation between StO2 versus chronotype (r ¼ −0.1, p ¼ 0.03), and
[tHb] versus chronotype (r ¼ −0.09, p ¼ 0.04).

4 Discussion

4.1 Absolute Values of Tissue Oxygenation and Hemoglobin Concentration

The normal range of StO2 and [tHb] of the brain was investigated for medical applications. These
absolute values are approximately in accordance with the literature.31,32 The absolute StO2 values
of the PFC are in good agreement with Choi et al. (R-PFC: 74.75%� 5.83% versus. L-PFC:
75.63%� 5.86%; N ¼ 30, age: 20 to 50 years, device: Imagent, ISS Inc.).33 However, our
absolute [tHb] values at the PFC are lower in comparison with their findings (R-PFC:
79.68� 12.15 μM, L-PFC: 76.93� 14.98 μM). Our [tHb] values are similar to those of
Vernieri et al. (left versus right frontal region: 46.2� 11.9 μM versus 44.0� 12.9 μM; 30 sub-
jects, age: 63.9� 8.2, device: Oximeter, ISS Inc.).34 Moreover, our StO2 values are a bit higher
compared to our previous study [StO2 (right) = 68.6% (IQR: 63.5% to 72.4%), StO2 (left) =
56.8% (IQR: 52.9% to 63.4%); 24 subjects, age: 22.0� 6.4 years, device: OxiplexTS, ISS Inc.].1

The reasons for the difference between studies may be the age, physiological state of subjects,
or methodology.

4.2 Absolute Values of Cardiorespiratory Parameters

Arterial partial pressure of carbon dioxide (PaCO2) is one of the strongest parameters that affect
CBF and [tHb].19 Therefore, PaCO2 has been included in functional brain studies to ensure a
correct interpretation of the signals.35–37 We measured PaCO2 by the PETCO2 method, which also
provides continuous and noninvasive RR. Our PETCO2 values were in agreement with the
literature.38–41

Our findings showed that the mean value of HR was 68� 11 BPM (range: 41 to 116 BPM,
females: 69� 11 BPM, males: 66� 11 BPM; p ¼ 0.036). In 35,000 healthy subjects, a mean
HR of 72 BPM (age: 20 and over, females: 74� 0.2 BPM, males: 71� 0.3 BPM; p < 0.05) was
determined, which is close to our results.42

The mean RR value measured in our study was 16.5� 2.9 BrPM, which is within typical RR
for adults (range: 6.9 to 27.1 BrPM, females: 16.8� 2.8 BPM, males: 16.1� 3.1 BPM;
p ¼ 0.015).

The PRQ is a parameter to attain the overall current state of human physiology.43 PRQ rep-
resents the state of the ANS and is a measure of cardiorespiratory coordination. PRQ is time- and
sex-dependent, and changes during human development, physical activity, and body posture
with specific patterns during sleep.43 The resting state PRQ distribution has a peak at ∼4.44–46

We also found a mean resting state PRQ of ∼4 (4.2� 0.9, ranging from 2.1 to 9.0).

4.3 Relationships with Systemic Physiology

Although systemic physiological activity affects the absolute values of StO2 and [tHb],
FCOA was not influenced. The reason is that both R-PFC and L-PFC are affected in the
same way by systemic physiology.1,21 Although we generally confirmed this finding, we found
nonlinear correlations between ΔStO2 versus RR (p ¼ 0.022) and ΔStO2 versus PRQ
(p ¼ 0.024).

As expected, we found a highly significant (R2 ¼ 0.10, p < 0.0001) positive linear corre-
lation between StO2 and PETCO2. Our finding is in agreement with the study carried out by
Miller and Mitra.47 and with the physiologically well-known CO2-response, i.e., a decrease
in PETCO2 (hypocapnia) reduces the CBF by cerebral vasoconstriction.48 This reduced oxygen
supply leads to a lower StO2.

35,36 Hence, PETCO2 is positively correlated with StO2
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4.4 Frontal Cortex Oxygenation Asymmetry

In EEG studies, activity in left frontal regions is mostly associated with appetitive motivation
and approach-related affect such as hope, happiness, and joy (positive affect). Conversely, the
right frontal regions are related to vigilant attention and behavioral inhibition that regularly
occurs during certain withdrawal-related affect such as depression and nervousness (negative
affect).11,12,49–51 In general, the right frontal cortex reflects motivational systems of approach
and avoidance, whereas the left frontal cortex inhibits the amygdala and downregulates negative
affect.52,53 Higher right frontal activity is attributed to greater negative affect (e.g., film-induced
fear and disgust), whereas positive affect (e.g., film-induced happiness) elicits a higher left fron-
tal activity.54,55

We hypothesized that the FCOA reveals asymmetry of the PFC neuronal activity at rest. The
StO2 was higher at the R-PFC than the L-PFC, indicating that the R-PFC is more activated than
the L-PFC and this indicates a higher inhibitory activity or withdrawal motivation. This is rea-
sonable considering that the subjects were in the resting state. Such rightward lateralization has
also been found in the literature.56,57 Although our findings are in line with several studies indi-
cating that the right cortices have a stronger response compared to the left ones, some studies
have reported no hemispheric differences or even leftward regional lateralization.33,58 Liu et al.6

demonstrated that right or left regional laterality could be observed across different brain systems
depending on multiple genetic or environmental mechanisms.

4.4.1 FCOA as an indicator of human health

The R-PFC plays a vital role in the brain’s response to stress because this area is a primary part of
both the emotion and vigilance networks. Neurons that are either the target or the releasing site of
an array of stress mediators (neurotransmitter and hormone) have been recognized in this area.59

Thus FCOA is associated with specific emotional responses to mental stress and personality
traits (state influence versus trait influence).14,52,60 High left frontal brain activity is more psycho-
logically and physically healthy than relatively less left frontal brain activity.53,61 Individuals
with higher L-PFC activity have lower concentrations of the stress hormone cortisol and the
corticotrophin-releasing hormone, higher activity of natural killer cells, and higher antibody con-
centration in response to influenza vaccines.53,62 It was also demonstrated that subjects with
higher L-PFC activity, recover more quickly from a negative occurrence with higher levels
of psychological well-being.53,63 Conversely, dominant R-PFC activity is associated with
increased activation of the hypothalamic–pituitary–adrenal axis59,64–66 and higher secretion of
corticotrophin-releasing hormone and adrenal steroid hormones (e.g., glucocorticoids and adre-
nal androgens).66–69 Higher R-PFC activity may occur during stressful situations, such as a test or
job interview.70 An EEG study showed that FEAwas shifted from the left during an easy exami-
nation session to the right during a stressful examination session.71 A higher change in FEA from
the easy to the stressful session was associated with more adverse health conditions. Further
research suggested that subjects with more R-PFC activity compared to L-PFC are sensitive
to mental stress and prone to exhibit various stress-induced somatic disorders.56,64 Moreover,
it was found that higher levels of R-PFC activation predict a reduced immune response in
humans.59,62 The more an individual’s FEA is changed during periods of stress, the more
negative health consequences are likely to be experienced.49

We observed no correlation between cerebral parameters; in particular, FCOA and the
positive affect scale of the PANAS questionnaire.

Depression is associated with an under-activation of the approach system and/or over-
activation of the withdrawal system.72 Research provides support for an association between
FEA and depression12,73,74 and may predict the emotional state in depression disorders.72

Although there is a small number of studies linking FEA with psychopathology, the research
suggests FEA may be a promising marker of depression vulnerability.49 Decreased relative left-
frontal activity during resting state was attributed to increased vulnerability to depression.75 In
adolescent boys without a history of depression, right-sided frontal activation predicted depres-
sive symptoms 1 year later.76 Many studies indicate that FEA is a valid marker for depression
vulnerability. Regardless of whether anxiety was used as a covariate or not, frontal alpha
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asymmetry indicative of relatively higher right frontal activity predicts depression, whereas the
opposite is not true.77

Thus the measurement of such an FEA and FCOA may have considerable clinical value.

4.4.2 Anatomic, physiologic, and genetic influences

The corpus callosum provides a neuroanatomical correlation in the asymmetry of the frontal
cortices.78 Negative affect generally leads to activation in the R-PFC, amygdala, inferior frontal
gyrus, and insula, whereas the L-PFC may play a role in the downregulation of amygdala and is
associated with reward-related cortical regions.53,65,79 The neural correlates of vigilance and sus-
tained attention are primarily localized in the right prefrontal and parietal lobe and the
thalamus.80 The link between left frontal and left amygdala activity is crucial for emotional
regulation.73

Genetic models have been proposed to account for cerebral dominance, and anatomical
asymmetries are likely influenced by genetic factors. However, no gene or pathway has yet been
identified as a determinant of lateralization, although there are a number of candidates including
LMO4, STMN4, BAI1, and IGFBP5, which were highly expressed in the right regions.3,81,82

4.4.3 FEA as a promising marker of subject characteristics and emotions

It was demonstrated that asymmetry in PFC neuronal activity during the resting state, measured
with EEG, predicts the emotional state.72

Table 1 shows a summary of the emotions and characteristics of individuals with FEA.

4.4.4 Environment and certain situational variable

Experimental, environmental, and situational factors that influence approach or withdrawal moti-
vation may affect FCOA. These variables include body posture, experimental conditions, trait

Table 1 A summary of subject characteristics and emotions with left and right dominant
activity

Left dominant activity Right dominant activity References

Anxious apprehension (e.g., worry) Anxious arousal (e.g., panic) 72, 73, and 83–86

Maniacs Phobias (social phobics) 50, 83, 87 and 88

Extrovert Introvert (neuroticism) 89 and 90

Promotion (a need for growth and
advancement)

Prevention (a need for safety and security) 91 and 92

Anger, joy, and jealousy Disgust and depression 12 and 93–97

Hostility to social rejection Isolation to social rejection 60 and 98

Higher socioeconomic status Lower socioeconomic status 99

— Defensiveness 100 and 101

— Hopelessness 75 and 102

— Less risk-taking 103

— Ostracism 104

— Obsessive-compulsive disorder 105

— More concerned with making mistakes
and punishment

106
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variables, and timing. Thus the seasons and time of day play essential roles in FCOA scores.
We found higher R-PFC activity (higher StO2) associated with more depression in autumn and
winter compared to spring and summer. These findings are in line with a previous study.107

Indeed, it is known that the population experiences a worsening of their mood and stronger
depressive symptoms (seasonal affective disorder) in winter.108–110 This is also visible in the
highly significant seasonal variation in cortisol levels in winter and autumn compared to spring
and summer.111 Thus it is reasonable that we found a significant influence of the seasons
on FCOA.

We also found a significant dependence of the StO2 on the time of day (Fig. 4). Higher StO2

values were observed in the morning compared to the afternoon and evening. Since [tHb] was
not significantly changed during the day, such an increase in StO2 may imply that more oxy-
genated blood was present in the brain tissue during the morning hours compared to the evening
and afternoon. We can interpret this increase as reduced oxygen consumption and, thus, energy
metabolism in the morning, which would be in agreement with the synaptic homeostasis
hypothesis.112 This increase could also be linked to circadian effects, e.g., cortisol rhythm exert-
ing its wake-promoting effect in the morning hours.113,114 Moreover, the present findings indi-
cated that the time of day has no significant influence on FCOA, which is in line with the
literature.115

It was also shown in this study that FCOA in StO2 decreased with increasing room temper-
ature. In other words, we found that the lower the room temperature, the higher the R-PFC
activation. Lower room temperature increased whole-body cooling sensation and reduced ther-
mal comfort, especially after prolonged exposure.116 Our findings are in line with the approach-
motivational model, which links higher R-PFC activation to greater withdrawal-related affect
(negative affect) such as uncomfortableness, nervousness, and depression. It is known that
increasing the length of daylight and temperature results in a decrease in the depression
score,110,117 which indirectly confirms our findings in terms of the effects of both seasons and
temperature on FCOA.

5 Conclusion

We found highly significant (p < 0.0001) FCOA, which was correlated to room temperature,
RR, and PRQ but was not affected by mood or chronotype of the subject. This higher
right PFC activity may be due to the more prominent inhibition activity during the resting
state.

The absolute values of StO2 and [tHb] were influenced by systemic physiological activity,
such as PETCO2, HR, RR, and PRQ, and gender.

FCOA and StO2 were dependent on season and time of day, respectively. FCOAwas higher
in autumn/winter compared to spring/summer, whereas StO2 was higher in the morning than in
the afternoon/evening.

These relevant findings were only achievable using FD-fNIRS instrumentation that enabled
the measurement of absolute values while using a SPA-fNIRS approach.

Our study demonstrates that FCOA is real, while providing unique insights to understand this
remarkable phenomenon.
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Impact of Changes in Systemic 
Physiology on fNIRS/NIRS Signals: 
Analysis Based on Oblique 
Subspace Projections 
Decomposition

Nassim Nasseri, Alexander Caicedo, 
Felix Scholkmann, Hamoon Zohdi, 
and Ursula Wolf

Abstract

Measurements of cerebral and muscle 
oxygenation (StO2) and perfusion ([tHb]) 
with functional near-infrared spectroscopy 
(fNIRS) and near infrared spectroscopy 
(NIRS), respectively, can be influenced by 
changes in systemic physiology. The aim of 
our study was to apply the oblique subspace 
projections signal decomposition (OSPSD) to 
find the contribution from systemic physiol-
ogy, i.e. heart rate (HR), electrocardiography 
(ECG)-derived respiration (EDR) and partial 
pressure of carbon dioxide (pCO2) to StO2 

and [tHb] signals measured on the prefron-
tal cortex (PFC) and calf muscle. OSPSD 
was applied to two datasets (n1 = 42, n2 = 79 
measurements) from two fNIRS/NIRS speech 
studies. We found that (i) all StO2 and [tHb] 
signals contained components related to 
changes in systemic physiology, (ii) the con-
tribution from systemic physiology varied 
strongly between subjects, and (iii) changes 
in systemic physiology generally influenced 
fNIRS signals on the left and right PFC to a 
similar degree.

1  Introduction

When interpreting functional near infrared spec-
troscopy (fNIRS) signals, it is often assumed that 
the signal reflects an evoked/neural/cerebral 
response in the brain. However, it is known that at 
least 6 different components contribute to fNIRS 
signals [1, 2]. Among these components, evoked 
changes in systemic physiology make a consider-
able contribution to fNIRS signals. For example, 
task-evoked changes in partial pressure of carbon 
dioxide (pCO2) can have a significant effect on 
fNIRS signals [3–6]. Despite several attempts to 
remove the influence of systemic physiology on 
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fNIRS signals, there is insufficient knowledge 
yet about the quantitative contribution of sys-
temic physiology on fNIRS signals.

The aim of our study was to apply a novel 
signal-processing method to find the contribu-
tion of heart rate (HR), respiration (quantified 
by the electrocardiography (ECG)-derived res-
piration, EDR), and pCO2 to cerebral and mus-
cle oxygenation (StO2) and perfusion ([tHb]). 
We aimed to investigate the inter-trial variabili-
ties in the contribution of these parameters and 
at analyzing a possible laterality in the contribu-
tions with respect to the left and right prefrontal 
cortex (PFC).

2  Methods

Two datasets were employed for this analysis. 
Dataset 1 included fNIRS signals which were 
measured on the left PFC (LPFC), NIRS signals 
on the calf muscle as well as HR and EDR. In this 
dataset, a NIRO 300 continuous-wave NIRS 
device (Hamamatsu Photonics, Hamamatsu, 
Japan) was used to record fNIRS and NIRS sig-
nals. This dataset included data from 17 subjects 
(8 male, 9 female, age 36.6 ± 12.7  years). Each 
subject was measured a maximum of three times, 
performing three different speech tasks 
(Alliteration, Hexameter, Prose). The dataset 
comprised 42 measurements (not all subjects 
completed all measurement sessions) from which 
one was excluded because not all the fNIRS/
NIRS and/or physiological signals were available. 
The measurement protocol of this dataset was: 
5 min baseline, 10 min intervention (speech task), 
and 20 min recovery (for further details see [5]).

Dataset 2 included fNIRS signals of the LPFC 
and right PFC (RPFC), HR, EDR, and, addition-
ally pCO2. fNIRS signals were measured by an 
OxiplexTS frequency-domain NIRS device (ISS, 
USA). pCO2 was measured by a Nellcor N1000 
gas analyzer (Medtronic, USA). This dataset 
included data from 24 subjects (13 male, 11 
female, age 22 ± 6.4  years). Each subject was 
measured a maximum of four times, perform-
ing three different speech tasks (Alliteration, 

Hexameter, Prose) and mental arithmetic. The 
dataset comprised 79 measurements (not all 
subjects completed all measurement sessions) 
from which 17 were excluded because not all 
the fNIRS and/or physiological signals were 
available. The measurement protocol was: 8 min 
baseline, 5  min intervention (speech or mental 
arithmetic task), 5  min recovery, 5  min inter-
vention (speech or mental arithmetic task), and 
20 min recovery (for further details see [3]).

We applied the oblique subspace projections 
signal decomposition (OSPSD) method [7] to 
decompose StO2 and [tHb] on the LPFC, RPFC, 
and the calf muscle. Input signals for the decom-
position were HR and EDR (dataset 1) as well as 
HR, EDR, and pCO2 (dataset 2). From the com-
puted contribution signals by OSPSD, we calcu-
lated a contribution factor (CF) for each 
physiological signal according to:
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SNIRS the fNIRS/NIRS signal, Cn the contribution 
of each physiological signal computed by 
OSPSD, CFn the contribution factor of each phys-
iological signal (0–100%), n the number of phys-
iological signals, and μn the mean value of Cn.

Both NIRS oximeters applied a multi-dis-
tance approach to calculate StO2 and [tHb] 
and were, therefore, sensitive to deep tissue. 
Signal processing and statistical analysis were 
performed using Matlab (version 2017a, The 
Mathworks, USA). Dataset 1 and 2 were pre-
processed as described in [3, 5]. We tested 
the significance of the difference between the 
contribution factors due to different tasks by a 
Kruskal-Wallis test. The significance of the cor-
relation between the contribution factors was 
quantified by the linear correlation coefficient 
(r) and the p-value for testing the hypothesis 
of no correlation. For the brain (dataset 2), we 
defined laterality as the difference between the 
contribution factor of physiological parameters 
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in the LPFC and RPFC: CF  Laterality  =  CFn, 

left − CFn, right, with CFn,left and CFn,right the contri-
bution factors of systemic physiology to fNIRS 
signals measured on the LPFC and RPFC. For 
the CF laterality analysis, we applied a t-test to 
calculate the p-value for the null hypothesis that 
the CF laterality results from a normal distribu-
tion with mean value (μ) of 0.

3  Results and Discussion

An exemplary fNIRS signal from the LPFC and 
the corresponding contributions from HR, EDR, 
and pCO2 are shown in Fig. 1. Here, the CEDR and 
CpCO2 signals changed during the stimulation and 
returned to baseline after the stimulation. All 
StO2 and [tHb] signals measured on the LPFC, 
RPFC, and the calf muscle contained compo-
nents related to systemic physiology, and the 
contributions of these components varied strongly 
between trials. The standard deviations of the 
contribution factors are shown in Table 1.

Figure 2 visualizes the inter-trial variability of 
the contribution factors from systemic physiol-
ogy on StO2 and [tHb] measured on LPFC and 
separately for different speech tasks. This shows 
that the inter-trial variability of the contribution 
factors is not solely due to the type of the task. No 
significant difference, due to the type of task, was 
found between the contribution factors (p > 0.05).

The contributions from systemic physiology 
correlated significantly between LPFC and RPFC 
(p < 0.01). Figure 3 presents scatter plots of the 
contribution factors (CFHR, CFEDR, CFpCO2) in 
LPFC vs. RPFC and Fig.  4 scatter plots of the 
contribution factors (CFHR, CFEDR) in LPFC vs. 
calf muscle.

Figure 5 shows that there was no significant 
laterality in the brain (p  >  0.01). However, the 
p-value for laterality of CFHR in [tHb] was much 
lower than the other 5 CFs and was shifted 
towards negative values. This indicates that HR 
contributed on average more in [tHb] in RPFC 
compared to LPFC.  The reason for this differ-
ence needs to be clarified in future studies.

Fig. 1 Example of an fNIRS signal (StO2 in %, [tHb] in 
μM) during a speech task (alliteration task; period marked 
with gray area) and the corresponding HR [BPM], EDR 
[a.u.], and pCO2 [mmHg]) and contribution signals (CHR 
HR contribution, CEDR EDR contribution, CpCO2 pCO2 

 contribution). For better readability, the StO2 signal was 
smoothed by a Savitzky-Golay smoothing filter of order 2 
and a window length (w) of 100 s. CHR, CEDR, and CpCO2 are 
smoothed with w = 25 s
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4  Conclusion

We conclude that (i) OSPSD is a valuable tool for 
multimodal fNIRS signal analysis and that (ii) 
changes in systemic physiology affect fNIRS/
NIRS signals to a varying degree depending on 
the trial conditions, e.g. measurement paradigm, 
instrumentation and subjects. Recording physio-

logical signals during fNIRS measurements 
enables better understanding and interpreting of 
fNIRS readings. We also conclude that (iii) sys-
temic physiology may generally contribute dif-
ferently to the NIRS signals recorded on the brain 
compared to the muscle tissue, and that (iv) the 
fNIRS recordings at the LPFC and RPFC may be 
influenced to a similar degree by changes in sys-
temic physiology.

Table 1 The standard deviation (σ) of contribution factor of systemic physiology in StO2 and [tHb] in the LPFC, 
RPFC, and calf muscle. σHR = σ(log(CFHR)), σEDR = σ(log(CFEDR)), σpCO2 = σ(log(CFpCO2))

StO2 [tHb]
Dataset 1 σHR σEDR σHR σEDR

LPFC 0.555 0.508 0.689 0.600
Calf 0.672 0.604 0.588 0.537

Dataset 2 σHR σEDR σpCO2 σHR σEDR σpCO2

LPFC 0.502 0.484 0.632 0.542 0.553 0.659
RPFC 0.444 0.506 0.606 0.501 0.485 0.681

Fig. 2 Contribution factor (CF) of HR, EDR, and pCO2, 
in (a) StO2 and (b) [tHb], measured on LPFC for different 
speech (Alliteration, Hexameter, Prose) and Arithmetic 
tasks. (c) CF averaged over all subjects ± standard error of 

mean for different speech (Alliteration (A), Hexameter 
(H), Prose (P)) and Arithmetic (R) tasks. Results from 
measurements in which one or more of the signals (fNIRS 
or systemic physiology) were not available, are not shown
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Fig. 3 Contribution factor (CF) of HR, EDR, and pCO2 in RPFC vs. LPFC. Data points (rings), linear fits (solid lines), 
and 95% confidence intervals (dashed lines). Left column: StO2, right column: [tHb]
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Fig. 4 Contribution factor (CF) of HR and EDR in calf muscle vs. LPFC. Data points (rings), linear fits (solid lines), 
and 95% confidence intervals (dashed lines). Left column: StO2, right column: [tHb]
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Individual changes in optical properties of cerebral 

tissue during and after colored light exposure 

Identifying the optical properties of head tissue is the first step toward suitably 

designing devices, correctly interpreting measurements, and properly planning 

protocols [74]. Therefore, we were convinced to investigate the optical properties 

of human head tissue in this PhD project thoroughly. This chapter consists of two 

publications. Publication 5 describes that the optical properties of head tissue 

depend on the head region, individual subject, and age. It is also stated that the 

optical head tissue properties are like a “fingerprint” for the individual subject. In 

Publication 6, the effects of the CLE on changes in optical properties of human 

head tissue are shown. The findings demonstrate that all optical properties change 

during and after the CLE. Although no clear overall trend is visible at the group-

level analysis, a clear long-term trend is obvious in almost all of the single 

measurements.    
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Abstract

Background: Absolute optical properties (i.e., 
the absorption coefficient, μa, and the reduced 
scattering coefficient, ¢ms ) of head tissue can 
be measured with frequency-domain near- 
infrared spectroscopy (FD-NIRS). Aim: We 
investigated how the absolute optical proper-
ties depend on the individual subject and the 
head region. Materials and Methods: The data 
set used for the analysis comprised 31 single 
FD-NIRS measurements of 14 healthy sub-
jects (9 men, 5 women, aged 33.4 ± 10.5 years). 
From an 8-min measurement (resting-state; 
FD-NIRS device: Imagent, ISS Inc.; bilateral 
over the prefrontal cortex, PFC, and visual 
cortex, VC) median values were calculated for 
μa and ¢ms  as well as the effective attenuation 
coefficient (μeff) and the differential pathlength 
factor (DPF). The measurement was done for 
each subject one to three times with at least 

24 h between the measurements. Results: (i) A 
Bayesian ANOVA analysis revealed that head 
region and subject were the most significant 
main effects on μa, ¢ms  and μeff, as well as DPF, 
respectively. (ii) At the VC, μa, ¢ms  and μeff had 
higher values compared to the PFC. (iii) The 
differences in the optical properties between 
PFC and VC were age-dependent. (iv) All 
optical properties also were age-dependent. 
This was strongest for the properties of the 
PFC compared to the VC.  Discussion and 
Conclusion: Our analysis demonstrates that 
all optical head tissue properties (μa, ¢ms , μeff 
and DPF) were dependent on the head region, 
individual subject and age. The optical proper-
ties of the head are like a ‘fingerprint’ for the 
individual subject. Assuming constant optical 
properties for the whole head should be care-
fully reconsidered.

1  Introduction

Frequency-domain near-infrared spectroscopy 
(FD-NIRS) enables to measure absolute optical 
tissue properties (i.e., the absorption coefficient, 
μa, and the reduced scattering coefficient, ¢ms ) of 
the human head non-invasively [1]. From those, 
two additional parameters can be calculated:  
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the effective attenuation coefficient 

( m m m meff a a s= + ¢( )3 ) and differential path-

length factor DPF s a= ¢( )1 2 3/ /m m . In a previ-

ous study (also included in this volume, see [2]), 
we showed that the assumption of the time- 
independence of ¢ms  and DPF values during a 
functional neuroimaging experiment is not nec-
essarily valid – both parameters change substan-
tially, which is evident especially when analyzing 
the time-course of individual subjects.

The aim of this study was to investigate how 
the absolute optical properties of the human head 
depend on the individual subject and the head 
region.

2  Material and Methods

The FD-NIRS data analyzed comprised 31 single 
datasets of μa, ¢ms

, μeff and DPF values (at wave-
lengths 760 and 834 nm) from the prefrontal cor-
tex (PFC) and visual cortex (VC) obtained by 
resting-state measurements on 14 healthy subjects 
(9 male, 5 female, aged 33.4 ± 10.5 years, range 
24–57 years); 1–3 single measurement were per-
formed on each subject with at least 24 h between 
the measurements. A detailed description of the 
FD-NIRS data acquisition, experimental protocol 
and signal preprocessing can be found in [2].

Three data analyses were performed: (i) A 
2 × 2 × 2 × 14 (head region × wavelength × gender × 

subject) Bayesian ANOVA (jasp-stats.org, version 
0.8.1.1) was performed on the optical property val-
ues. Age was included in the analysis as a random 
factor. (ii) The dependence of the optical tissue 
properties on the head region was investigated fur-
ther by testing whether the values were different for 
the PFC compared to those of the VC. To this end, 
for each single measurement the differences of the 
optical properties with respect to the head region 
were calculated (∆μa (PFC-VC), D ¢ms  (PFC-VC), 
∆μeff (PFC-VC) and ∆DPF (PFC-VC)) and it was 
tested if the mean was <0 (Bayesian t-test, Cauchy 
prior width: 0.3). Data from two wavelengths were 
averaged in this case. (iii) In the third analysis, it 
was evaluated whether the optical tissue parame-
ters were dependent on the age of the subject. A 
regression analysis using linear or quadratic func-
tions was employed. The regression was performed 
on combined data for both wavelengths.

3  Results

 (i) The Bayesian ANOVA analysis revealed as 
the most significant main factors the head 
region (for μa, ¢ms  and μeff) and subject (for 
DPF) (Table 1, Fig. 1a–d).

 (ii) At the VC, μa, ¢ms  and μeff had higher values 
compared to the PFC. The strongest differ-
ence between VC and PFC was seen for μeff. 
No difference was evident for the DPF 
(Table 2, Fig. 1e–h).

Table 1 Results of the Bayesian ANOVA

Variable Head region Wavelength Gender Subject
μa 511.074 0.196 6.971 20.071

¢ms
7.735 × 1011 0.816 0.550 0.287

μeff 1.092 × 1012 0.253 0.472 0.274
DPF 3.394 0.673 14.082 17.576

The numbers refer to the Bayesian factors (BF10) obtained. Bold numbers refer to the highest BF10 values for each 
variable
Note: A BF10 value of 10–30 represents moderate evidence for the alternative hypothesis (H1), 10–30 strong evidence 
for H1, 30–100 very strong evidence for H1, and > 100 extreme evidence for H1

F. Scholkmann et al.
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Fig. 1 (a–d) Dependence of the optical head properties on the individual subjects. The median and the IQR is shown. 
(e–h) Subject-specific difference in optical properties between the PFC and VC
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Table 2 Results of the Bayesian t-test

∆μa (PFC-VC) D ¢ms  (PFC-VC) ∆μeff (PFC-VC) ∆DPF (PFC-VC)
Mean ± SD −0.021 ± 0.035 −1.416 ± 1.392 −0.286 ± 0.240 −0.185 ± 1.049
BF10 18.86 2476.25 20342.87 0.834

Given are the mean and standard deviation (SD) value for each of the four datasets as well as the BF values (BF10)

 (iii) The differences in the optical properties 
between PFC and VC were age-dependent. 
The dependency was linear (∆μa (PFC-VC) 
and ∆DPF (PFC-VC)) and U-shaped (D ¢ms  
(PFC-VC) and ∆μeff (PFC-VC)), respec-
tively (Fig. 2e–h).

 (iv) The absolute values of the optical properties 
were also age-dependent while this depen-
dence was strongest for the properties of 
the PFC compared to the VC (Table  2, 
Fig.  1a–d). A strong U-shaped correlation 
was observed for μa, ¢ms  and μeff for the PFC 
but not for the VC.

4  Discussion and Conclusions

Our finding that the optical properties depend on 
the head region, the individual subject as well as 
the age has also been shown by others [3–6]. In 
particular, differences in the optical properties of 
the PFC compared to the VC were also observed 
by Chiarelli et al. [3] (μeff (VC) > μeff (PFC)) and 
by Katagiri et al. [6] ¢ ( ) > ¢ ( )( )m ms sVC PFC , and 
correspond to our finding. A large inter-subject 
variability of the absolute μeff values of the head, 
as observed in our study, was also described in 
[3]. Structural anatomical differences (i.e., 
regional differences of vascularization and neu-
ronal tissue composition, as well as the scalp and 
skull layer thickness [7]) between these two 
regions might be the reasons for this region- 
specific difference.

We observed that the DPF values were strongly 
dependent on the individual subject (Fig. 1d), yet 
with high reproduciblity as shown by the small 
error bars in (Fig. 1d) compared to (Fig. 1a–c).

Our finding that the absolute optical proper-
ties were age-dependent also confirms other 
investigations [4, 5]. In a previous analysis [5] 
based on multiple datasets, we found a positive 
relationship between DPF and age; this generally 
agrees with our present findings (increasing trend 
for DPF with age on the PFC, but not on the VC). 
This result may indicate that the age-dependence 
might be head region dependent. That the differ-
ences of the optical properties with respect to the 
PFC and VC are also age-dependent is a novel 
finding in the present study and (to the best of our 
knowledge) has not previously been reported. 
The reasons for this observation are not yet clear 
but are probably caused by different age- 
dependent changes in the optical properties of the 
head regions.

Our findings are not only of relevance from 
the perspective of basic research but also with 
regard to a proper interpretation of measured 
optical properties of the head due to changes in 
the neurovascular state of the brain, i.e. during 
stroke [8].

In conclusion, we found that all optical brain 
tissue properties (μa, ¢ms , μeff and DPF) were 
dependent on the brain region, individual subject 
and age. These optical properties of the head are 
like a ‘fingerprint’ for the individual subject. The 
DPF depends strongly on the individual subject 
and the μeff on the head region. Further research 
should investigate the underlying physiological/
anatomical reasons for these findings, and envis-
age potential medical diagnostic applications of 
optical tissue imaging (besides analyzing μa). 
The usual assumption of constant optical proper-
ties for the whole head should also be 
reconsidered.

F. Scholkmann et al.
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Fig. 2 Age-dependence of the absolute tissue optical 
properties (a–d) and the differences between the PFC and 
VC (e–h). Each plot shows also the regression lines, the 

confidence bounds, the correlation strength (r) and the 
result of the statistical testing (n.s. not statistically signifi-
cant, * p < 0.05, ** p < 0.01, *** p < 0.001)
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Abstract

Frequency-domain near-infrared spectroscopy 
(FD-NIRS) enables to measure absolute opti-
cal properties (i.e. the absorption coefficient, 
μa, and the reduced scattering coefficient, ′µs ) 
of the brain tissue. The aim of this study was 
to investigate how the optical properties 
changed during the course of a functional 
NIRS experiment. The analyzed dataset com-
prised of FD-NIRS measurements of 14 
healthy subjects (9 males, 5 females, aged: 
33.4 ± 10.5  years, range: 24–57  years old). 
Each measurement lasted 33 min, i.e. 8 min 
baseline in darkness, 10 min intermittent light 
stimulation, and 15 min recovery in darkness. 
Optical tissue properties were obtained bilat-

erally over the prefrontal cortex (PFC) and 
visual cortex (VC) with FD-NIRS (Imagent, 
ISS Inc., USA). Changes in μa and ′µs  were 
directly measured and two parameters were 
calculated, i.e. the differential pathlength fac-
tor (DPF) and the effective attenuation coeffi-
cient (μeff). Differences in the behavior of the 
optical changes were observed when compar-
ing group-averaged data versus single datas-
ets: no clear overall trend was presented in the 
group data, whereas a clear long-term trend 
was visible in almost all of the single measure-
ments. Interestingly, the changes in ′µs  statis-
tically significantly correlated with μa, 
positively in the PFC and negatively in the 
VC. Our analysis demonstrates that all optical 
brain tissue properties (μa, ′µs , μeff and DPF) 
change during these functional neuroimaging 
experiments. The change in ′µs  is not random 
but follows a trend, which depends on the sin-
gle experiment and measurement location. 
The change in the scattering properties of the 
brain tissue during a functional experiment is 
not negligible. The assumption ′µs  ≈ const 
during an experiment is valid for group- 
averaged data but not for data from single 
experiments.
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1  Introduction

Functional near-infrared spectroscopy (fNIRS) 
is a non-invasive neuroimaging technique mea-
suring cerebral blood oxygenation and perfu-
sion [1]. An absolute quantitation of the 
concentration of oxyhemoglobin ([O2Hb]) and 
deoxyhemoglobin ([HHb]) is possible applying 
the frequency- domain near-infrared spectros-
copy (FD-NIRS) technique. The optical proper-
ties of tissue, namely the absorption coefficient 
(μa) and reduced scattering coefficient ( ′µs ), 
provide information on the state and composi-
tion of the investigated tissue. Two additional 
parameters characterizing the optical properties 
of the tissue are the effective attenuation coeffi-
cient (μeff) and differential pathlength factor 
(DPF). While μeff  is sufficient for determining 
light attenuation in the diffusion regime and is 
proportional to the geometric mean of μa and ′µs

, DPF is defined as the scaling factor that relates 
source-detector separations (SDS) to the aver-
age path length light travels between the source 
and detector. To date, most fNIRS studies in 
humans using continuous- wave near-infrared 
spectroscopy (CW-NIRS) devices rely on an 
assumed constant DPF and ′µs  during the mea-
surement, an assumption not necessarily true in 
reality. Any fNIRS quantification of tissue oxy-
gen saturation and hemodynamics that assumes 
a constant DPF and ′µs  will be erroneous when 
the DPF and ′µs  change over time.

The aim of this study was to monitor changes 
in absolute optical properties in human head tis-
sue during a neuroimaging experiment.

2  Material and Methods

The dataset for the present analysis comprised 
FD-NIRS measurements of 14 healthy subjects 
(9 males, 5 females, aged 33.4 ± 10.5 years, range 
24–57 years old) obtained during a neuroimaging 
study recently conducted [2]. The study investi-
gated stimulus-evoked changes in cerebral hemo-
dynamics and oxygenation elicited by wide-field 
visual color stimulation with three different col-
ors. Each measurement lasted 33 min (i.e. 8 min 

baseline in darkness, 10  min intermittent light 
stimulation, and 15 min recovery in darkness).

A multi-channel FD-NIRS system with multi- 
distance approach (Imagent, ISS Inc., Champaign, 
IL, USA) was employed to measure absolute μa 
and ′µs  of tissue bilaterally at the prefrontal cor-
tex (PFC; Fp1 and Fp2) and the visual cortex 
(VC; RVC and LVC).

For the present analysis, data from the whole 
data set were selected that did not contain move-
ment artifacts and had a high signal-to-noise ratio 
(indicated by the absolute light intensity values 
recorded at the detectors) of the μa and ′µs  signals 
for both measurements at the PFC and VC. A 
total of 31 single experiments were analyzed. For 
the analysis, the ∆μa and ∆ ′µs  signals were 
downsampled to 1.25  Hz to reduce the high- 
frequency noise. From the μa and ′µs  signals, two 
additional signals were calculated afterward to 
quantify the tissue optical properties with two 
additional parameters: DPF and μeff, given as 

DPF s a= ′1 2 3/ /µ µ  and µ µ µ µeff a a s= + ′( )3 .

All the subsequent processing steps were per-
formed for μa, ′µs , μeff and DPF. Signals from the 
left and right PFC as well as VC were averaged to 
obtain signals for the whole PFC and VC, respec-
tively. To analyze the long-term (i.e. minute) trend 
of the signals, the signals were first normalized 
(by subtracting the median value of the first 3 min 
from each time point), and then a group- average 
(median ± confidence intervals) of all experi-
ments was calculated. The normalized signals are 
indicated by a ‘Δ’. Changes in the signals were 
quantified (stimulus interval vs. baseline, recov-
ery vs. stimulus interval, and recovery vs. base-
line) by calculating the median values during the 
specific time intervals and by performing a statis-
tical analysis (Wilcoxon signed-rank test, cor-
rected for multiple comparisons). Individual 
changes in the signals were also analyzed.

Finally, the correlations of the long-term 
changes in the optical signals were determined 
(Spearman correlation) for the following signal 
combinations (for both PFC and VC and for both 
wavelengths): ∆ ∆′µ µs avs. , ∆ ∆′µ µs effvs. , 
∆ ∆′µs vs. DPF , ∆μa vs. ∆DPF, ∆μa vs. ∆μeff, and 
∆μeff vs. ∆DPF.
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3  Results

The group-averaged long-term changes of the 
optical signals, μa, ′µs , μeff and DPF, exhibited 
mainly three features (Fig. 1): (i) no clear overall 
trend was present (the analysis of the compari-
sons of signal intervals revealed no statistically 
significant trend; Fig. 3a–d), (ii) stimulus-evoked 
changes in ′µs  and μeff were visible at the onset of 
the visual stimulation block (increase in 
′ ≈ −µs cm0 02 1.  and increase in μeff ≈ 0.01 cm−1, 

at 760 nm), and (iii) evoked changes were only 
visible in the signals from the PFC and not from 
the VC.

When looking at the changes in μa, ′µs , μeff 
and DPF in the single datasets the following fea-
tures were evident (Fig. 2): (i) a clear long-term 
trend was visible in almost all of the datasets; (ii) 
non- random i.e., physiological changes were 
present in the data of the PFC and the VC; and 
(iii) the changes varied in a non-systematic man-
ner between subjects.

Concerning the correlations of the long-term 
changes of optical parameters an interesting phe-
nomenon was observed: (Fig.  3e–f): ∆ ′µs  and 
∆μa correlated statistically significantly posi-
tively in the PFC and negatively at the VC. The 
difference was statistically significant by itself 
for both wavelengths. The other correlations 
were positive (∆ ∆′µ µs effvs. , ∆ ∆′µs vs. DPF , 
∆μa  vs. ∆μeff) and negative (∆μa  vs. ∆DPF, 
∆μeff vs. ∆DPF).

4  Discussion and Conclusions

The assumption that ′µs  as well as the DPF do 
not change systematically during a neuroimaging 
experiment with fNIRS is not valid. There is a 
large variability of ′µs  discernable when analyz-
ing individual datasets from single experiments. 
The variability is greatly reduced by group- 
averaging of the data; however, stimulus-evoked 
changes in ′µs  and μeff were also clearly detected 
in this case at the PFC. Changes in ′µs  are not 
surprising during a period of increased tissue 

hemoglobin content (intermittent light stimula-
tion) since the changes in the shape of the blood 
vessels (e.g. diameter) and the increased number 
of red blood cells lead to an increase in the scat-
tering properties of the tissue [3]. But changes in 
scattering were not necessarily accompanied by 
significant changes in the absorption (Fig. 1). In 
addition, changes in glucose in the tissue may 
lead to changes in ′µs  [4]. Differences in ′µs  vari-
ability between PFC and VC (Fig.  1) may be 
attributed to differences in the brain activation 
and other physiological processes between these 
regions, structural anatomical differences (vessel 
density and skull thickness) and the smaller light 
intensity at the detector in the VC compared to 
the PFC due to hair, which leads to a lower 
signal- to-noise ratio and hence higher variability 
in the VC.  The predominant error of the ISS 
Imagent is the shot noise and the error of mea-
surement thus depends on the number of photons 
measured. The lower penetration depth of NIRS 
at the VC due to a higher ′µs  is expected to even 
reduce the variability in the VC.  Fast transient 
increases in ′µs  at the onset of visual stimulation 
have been reported by various research groups 
[3]. The changes in μeff observed can be attributed 
to changes in ′µs  and μa. Concerning the varia-
tion of DPF, it has been reported that the DPF at 
761 nm depends on oxygenation and is positively 
related to the arterial oxygen saturation (SaO2) 
and sagittal sinus venous oxygen saturation 
(SvO2) [5]. The finding in our study that ′µs  
changes were positively correlated with μa 
changes at the PFC and negatively at the VC is 
unexpected and requires further investigation.

Concerning the question whether the magnitude 
of the changes in ′µs  is relevant for the correct 
determination of [O2Hb] and [HHb], in CW-fNIRS 
studies it can be concluded that a stimulus-evoked 
changing of 0.02 in ′µs  (as observed in our study, 
Fig. 1a) corresponds to a 0.12 μM change in [O2Hb] 
assuming an absolute O2Hb concentration of 
60 μM. Since a normal stimulus-evoked change of 
[O2Hb] during a  neuroimaging experiment is in the 
order of 0.1 μM, such a change in ′µs  is  relevant. 
The long-term changes of ′µs , having an even 
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Fig. 1 Time-series of the group-averaged relative 
changes in the optical properties 
( ∆ ∆ ∆ ∆′µ µ µs eff a, , ,DPF ) of the prefrontal cortex 
(PFC) and the visual cortex (VC) at 760  nm. Data are 

shown as median values and the 95% confidence interval 
(blue area). One segment of (a) is zoomed in, indicating a 
stimulus-evoked change in ∆ ′µs
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Fig. 2 Time series of the single dataset relative 
changes from four trials (with a different subject each; 
trials: #3, #5, #13, and #25) in the optical properties 

( ∆ ∆ ∆ ∆′µ µ µs eff a, , ,DPF ) of the prefrontal cortex 

(PFC) and the visual cortex (VC) at 760 nm
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Fig. 3 Overview of the changes in the optical signals 
( ∆ ∆ ∆ ∆′µ µ µs eff a, , ,DPF ) of the prefrontal cortex 
(PFC) and the visual cortex (VC) at two wavelengths 
(λ1  = 760 nm, λ2 = 830 nm) quantified by calculation of 
the  median values during the specific time intervals  

(t1: baseline; t2: stimulus interval; t3: recovery) (a–d). 
Correlations of the long-term changes in the optical 
parameters for both measurement locations (PFC and 
VC) and at two wavelengths (e–f)

H. Zohdi et al.
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higher magnitude (especially when looking on 
individual measurements), are relevant for 
CW-fNIRS studies that investigate the long-term 
changes in [O2Hb] and [HHb] (i.e. resting-state 
fNIRS studies or NIRS- oximetry applications for 
patient monitoring). In conclusion, we found that 
changes in the scattering properties of the brain tis-
sue during a functional experiment are not negligi-
ble, especially in single datasets; the assumption 
′µs  ≈ const during an experiment is valid for 

group-average data but not for data from single 
experiments. Moreover, in this particular type of 
functional NIRS experiments, we recommend 
using FD-NIRS or time- domain NIRS systems 
instead of CW-NIRS, since these techniques are 
able to measure the time-dependence of ′µs  
directly. Finally, the authors believe that further 
research is warranted to understand the exact 
effects of changes in optical properties on the 
changes in [O2Hb] and [HHb].
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Yellow and short-wavelength light lead to higher brain 

activation in the PFC and VC, respectively 

Light can be decomposed into a spectrum of six distinct colors, including violet, 

blue, green, yellow, orange and red. In this PhD thesis, the effects of the six types 

of aforementioned colored lights of two different intensities (illuminance: 30 lux 

and 120 lux at eye level) were investigated how they affect cerebral 

hemodynamics, oxygenation, and systemic physiology. To this end, the SPA-fNIRS 

approach was employed. The research was conducted with 141 (85 female, 56 

male) healthy right-handed subjects. They were measured four times on different 

days for the abovementioned conditions resulting in 547 single measurements 

(seven subjects did not complete all four experimental sessions). Each subject was 

exposed to the light of different colors and intensities in a randomized crossover 

protocol for 15 minutes continuously. Before (baseline, 8 min) and after (recovery, 

20 min) the CLE, subjects were in darkness.  

In this chapter, the effects of light of different colors and intensities on cerebral 

and physiological parameters at the group level are shown. Then, the most 

promising findings of this research are presented, and the effects of specific colored 

light on some parameters are displayed and discussed. Finally, this chapter will 

close by showing the effects of the most disputable colored light − blue light − on 

the PFC and VC in the form of Publication 7.    

Figures 5, 6, and 7 depict block-average changes in cerebral hemodynamics, 

oxygenation, and systemic physiology evoked by six colored light at two intensities 

(12 conditions). These conditions include blue 30 lux, blue 120 lux, red 30 lux, red 

120 lux, green 30 lux, green 120 lux, yellow 30 lux, yellow 120 lux, violet 30 lux, 

violet 120 lux, orange 30 lux, and orange 120 lux.  
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In order to better understand the effects of various types of colored light and 

to compare different conditions, 210 significance matrices were created. These 

include 70 (Size: 12 × 12) matrices for 35 cerebral and physiological parameters at 

two phases (CLE and recovery), and 140 (Size: 6 × 6) matrices (35 parameters × 2 

phases × 2 intensities).  An example of a 12 × 12 matrix for one of the physiological 

parameters (mean arterial pressure, MAP) during the CLE is shown in Figure 8. 

This matrix aims to show if there are any significant differences between different 

conditions. The matrix consists of three parts. All 12 conditions investigated in 

this study are depicted on the diagonal. The lower triangular portion of the matrix 

displays p values, and it can be found if there is a significant difference between 

the two specific conditions. The upper triangular portion of the matrix shows 

which condition leads to a higher activation. In other words, it illustrates which of 

the two conditions has a higher area under the curve value (AUC). For example, 

this figure presents that orange 120 lux evoked significantly higher changes in 

MAP during the CLE compared to almost all conditions except orange 30 lux and 

violet 30 lux. It means that no significant differences were observed between orang 

120 lux and orange 30 lux (p = 0.49) as well as orange 120 lux and violet 30 lux (p 

= 0.60). In another example, it was found that there is a significant difference 

between blue and green colored light at 120 lux (p = 0.026), i.e., MAP changes 

during the CLE were significantly higher for the green in comparison with blue 

colored light. Such a significant difference was also obvious between blue and 

green colored light at 30 lux (p = 0.010), this time in favor of blue light.  

The aim of this chapter is not to represent and discuss all the created matrices 

in detail. In the following, some findings of this research are shown. Figure 9 

displays a significance matrix of [O2Hb] in the PFC for six colored light conditions 

at low-intensity levels (30 lux) in both CLE and recovery phases. Yellow light leads 

to higher [O2Hb] changes in the PFC compared to the other colored light. This 

effect was also found in other cerebral and oxygenation parameters, including 

[HHb], [tHb], and StO2. In the VC, we found that, in general, the shorter 

wavelength, the higher brain activation, i.e., violet and blue evoked higher 

changes in [O2Hb], [HHb], and StO2 during the CLE and recovery phase (Figure 

10).        
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Figure. 8 Significance matrix of MAP for 12 conditions during the CLE. Colored light 

conditions are shown on the diagonal of the matrix. The lower triangular part of the 

matrix displays p values (Wilcoxon signed-rank test). The upper triangular part of the 

matrix shows which of the two conditions leads to a higher activation.  
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Specific intensity-dependent effects and explicit order between different colors 

are hardly seen in this study for all parameters. For example, oxygenation changes 

in the VC were higher for orange and green and lower for blue and violet at 120 

lux compared to the low intensity (30 lux). No significant differences were observed 

between 30 lux and 120 lux for red and yellow. On the other hand, activation of 

the PFC was higher for blue and green at low intensity in comparison with high 

intensity, and no differences between low and high intensity were found for the 

others (red, orange, yellow, violet). In another example, low intensity elicited 

higher changes in HR during the CLE for red, orange, and violet, while high 

intensity evoked HR only during the blue light exposure. 

 

 

Figure. 9 Significance matrix of O2Hb in the PFC for six conditions (30 lux) in both (a) 

CLE and (b) recovery phases. Colored light conditions are shown on the diagonal of the 

matrix. The lower triangular part of the matrix displays p values (Wilcoxon signed-rank 

test). The upper triangular part of the matrix shows which of the two conditions leads 

to a higher activation. 
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Figure. 10 Significance matrix of O2Hb in the PFC for 12 conditions during the 

recovery. Colored light conditions are shown on the diagonal of the matrix. The lower 

triangular part of the matrix displays p values (Wilcoxon signed-rank test). The upper 

triangular part of the matrix shows which of the two conditions leads to a higher 

activation.  
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Exposure to blue light can influence many physiological functions, and it can 

be used to treat circadian and sleep dysfunctions and seasonal affective disorder 

as well as boosting alertness, helping cognitive function, and elevating mood 

[75,76]. In the following, Publication 7 focuses particularly on investigating the 

impact of blue light exposure on frontal and occipital human cerebral 

hemodynamics and oxygenation. Our findings depict that blue light affects 

individual humans differently. Despite the typical hemodynamic response pattern 

(an increase of [O2Hb] and a decrease of [HHb]) observed at group-level analysis, 

this pattern was found in only 8 out of 32 cases. It is also observed that blue light 

exposure leads to eight different hemodynamic response patterns, which, in 

particular, should be taken into consideration when assessing the impact of blue 

light on society.    
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Abstract

Background: In modern society, we are 
increasingly exposed to numerous sources of 
blue light, including screens (e.g., TVs, com-
puters, laptops, smartphones, tablets) and light 
from fluorescent and LED lamps. Due to this 
wide range of applications, the effects of blue 
light exposure (BLE) on the human physiol-
ogy need to be thoroughly studied. Aim: To 
investigate the impact of long-term BLE on 
frontal and occipital human cerebral hemody-
namics and oxygenation using functional 
near-infrared spectroscopy (fNIRS) neuroim-
aging. Materials and Methods: 32 healthy 
right-handed subjects (20 females, 12 males; 
age: 23.8 ± 2.2 years) were exposed to blue 
LED light for 15  minutes. Before (baseline, 
8 min) and after (recovery, 10 min) the BLE, 
subjects were in darkness. We measured the 
concentration changes of oxyhemoglobin 
([O2Hb]) and deoxyhemoglobin ([HHb]) at 

the prefrontal cortex (PFC) and visual cortex 
(VC) by fNIRS during the experiment. 
Subjects were then classified into different 
groups based on their hemodynamic response 
pattern of [O2Hb] at the PFC and VC during 
BLE.  Results: On the group level (32 sub-
jects), we found an increase in [O2Hb] and a 
decrease in [HHb] at both cortices during 
BLE. Evoked changes of [O2Hb] were higher 
at the VC compared to the PFC. Eight differ-
ent hemodynamic response patterns were 
detected in the subgroup analysis, while an 
increase of [O2Hb] in both cortices was the 
most common pattern (8 out of 32 cases, 25%) 
during BLE. Discussion and Conclusion: Our 
study showed that the hemodynamic and oxy-
genation changes at the PFC and VC during 
BLE (i) were generally higher in the VC com-
pared to the PFC, (ii) showed an intersubject 
variability with respect to their magnitudes 
and shapes, and (iii) can be classified into 
eight groups. We conclude that blue light 
affects humans differently. It is essential to 
consider this when assessing the impact of the 
BLE on society.
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34.1  Introduction

Blue light is increasingly prevalent in our modern 
society due to modern light sources such as light- 
emitting diodes (LEDs) and fluorescent lamps 
and the omnipresence of screens (e.g., TVs, com-
puters). The adverse effect of blue light exposure 
(BLE) on human physiology is increasingly rec-
ognized [1–3]. But BLE can also be beneficial, 
for example, treating circadian and sleep dys-
function and seasonal affective disorder, as well 
as boosting alertness, helping cognitive function, 
and elevating mood [4, 5].

Functional near-infrared spectroscopy 
(fNIRS) is a technology for cost-effective and 
noninvasive neuroimaging in research and clini-
cal practice. This technique measures cerebral 
blood oxygenation and perfusion [6, 7]. Absolute 
quantitation of the concentration of oxyhemoglo-
bin ([O2Hb]) and deoxyhemoglobin ([HHb]) is 
possible by applying the frequency-domain near- 
infrared spectroscopy (FD-NIRS) technique [8].

The effects of BLE on the visual and nonvi-
sual pathway can be distinguished by the mea-
surement of the visual cortex (VC) and prefrontal 
cortex (PFC). We measured both cortices in par-
allel in order to investigate the effects of BLE in 
the visual and nonvisual pathways associated 
with the processing of visual information. 
Moreover, it is known that colors may affect the 
emotional status and mood, and thus, we expected 
modulation of PFC activation by BLE.

In this study, we aimed to investigate the 
impact of long-term wide-angle BLE on frontal 
and occipital human cerebral hemodynamics 
using fNIRS. The results of the current study are 
expected to facilitate a better understanding of 
the beneficial and detrimental effects of BLE on 
society.

34.2  Material and Methods

Thirty-two healthy right-handed subjects (20 
females, 12 males; age: 23.8 ± 2.2 years, range: 
20–28  years) were assessed in this study. They 
were asked to sit upright in a comfortable chair 
while their feet were on the ground and a white 

wall was in front of them (distance eyes- 
wall:160 ± 5 cm). The blue LED light (six LED 
PAR headlights: each has 12  ×  35  mm RGBW 
LEDs; peak wavelength: 450  nm; illuminance: 
120 lux at eye level) was continuously exposed to 
the white wall (width: 2.5  m, height: 3  m) for 
15  minutes. Before (baseline, 8  min) and after 
(recovery, 10  min) the BLE, subjects were in 
darkness.

The focus of this study was on the intersubject 
variability of the hemodynamic responses.

The concentration changes of [O2Hb] and 
[HHb] were measured bilaterally over the PFC 
and VC by FD-NIRS (Imagent, ISS Inc., 
Champaign, IL, USA). The PFC optodes were 
placed over the left (Fp1) and right (Fp2) PFC and 
over the right (O2) and left (O1) VC, respectively, 
according to the international 10–20 system. The 
source-detector separations of the optodes were 
2.0, 2.5, 3.5, and 4.0 cm over the PFC and 2.0, 
2.5, 3.0, and 3.5 cm over the VC. Movement arti-
facts in [O2Hb] and [HHb] signals were detected 
and removed by the movement artifact reduction 
algorithm (MARA) [9]. To further remove high- 
frequency noise, signals were low pass filtered 
using a robust second-degree polynomial moving 
average (RLOESS) filter with a span of 4  min. 
Signals from the left and right PFC and VC were 
subsequently averaged to obtain signals for the 
whole PFC and VC, respectively. The signals 
were then normalized to the last 5 minutes of the 
baseline period to analyze the changes of [O2Hb] 
and [HHb] for each subject. To compare the 
changes of [O2Hb] and [HHb] between PFC and 
VC at the group level, the BLE phase was seg-
mented into 60 parts, and the median of [O2Hb] 
and [HHb] values for each segment was calcu-
lated for each subject. Then, the median value of 
each segment among all subjects was calculated. 
Finally, the median values obtained for all seg-
ments were averaged.

Subjects were finally classified into different 
groups based on their hemodynamic response 
pattern of [O2Hb] at the PFC and VC during 
BLE. The BLE phase of normalized [O2Hb] sig-
nal was segmented into 60 parts, and the median 
value for each segment was calculated. Then, the 
One-Sample Wilcoxon Signed Rank Test was 
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applied to all median values of segments. 
Inconclusive (−) pattern indicates a failure to 
reject the null hypothesis (median is zero) at the 
5% significant level (p > 0.05), while increase (↑) 
and decrease (↓) patterns indicate a rejection of 
the null hypothesis (p < 0.05).

34.3  Results

Group-Level Analysis The group-averaged 
long-term changes of [O2Hb] and [HHb] at the 
PFC and VC are depicted in Fig. 34.1. We found 
an increase in [O2Hb] and a decrease in [HHb] at 
both cortices during BLE.  Evoked changes of 
[O2Hb] were higher at the VC compared to the 
PFC (p < 0.001; effect size (Cohen’s d): d = 1.03), 
while [HHb] changes at the PFC were more 
prominent than that of the VC (p  <  0.001; 
d = 1.15). This change was observed, especially 
after light exposure in the recovery period.

Subgroup Analysis We observed a large inter-
subject variability of the hemodynamic responses. 
Nevertheless, the hemodynamic responses were 
assigned to eight groups according to the changes 
of [O2Hb] at the VC and PFC, i.e., eight different 
response pattern could be defined. Figure  34.2 
and Table  34.1 show the classification of 
stimulus- evoked hemodynamic responses based 
on [O2Hb] pattern at the PFC and VC during 
BLE. The most common fNIRS response pattern 
during BLE was an increase of [O2Hb] associated 
with a decrease of [HHb] in both cortices (8 out 
of 32 cases, 25%). An increase and a decrease in 

[O2Hb] at the PFC and VC, respectively, were the 
second most common pattern (6 out of 32 cases, 
19%). In contrast to the latter pattern, we found a 
decrease in [O2Hb] at the PFC and an increase in 
[O2Hb] at the VC as the third pattern (5 out of 32 
cases, 16%). Although the number of males 
investigated in this study was lower than females 
(20 females, 12 males), the frequency of the third 
most common pattern in the male group was con-
siderably higher compared to female group 
(Group 3: 1 female, 4 males).

34.4  Discussion and Conclusions

Neuronal activation generally leads to an increase 
in [O2Hb] with a concurrent decrease in [HHb] 
due to changes in cerebral hemodynamics and 
metabolism. At the group level, we observed in 
our study the typical hemodynamic changes in 
the PFC and VC during BLE. The mean increases 
in [O2Hb] during BLE were less pronounced in 
the PFC than that in the VC. That the BLE also 
led to a change in the PFC is indicative for an 
activity increase of higher cognitive processes 
related to increase in activity of the PFC [10]. 
The reasons for the continued increase in the 
recovery phase are not yet clarified. Our hypoth-
esis is that the BLE leads to long-lasting effects. 
Nevertheless, it is a valuable observation because 
it may have implications on the applications of 
blue light.

In spite of the typical hemodynamic response 
pattern observed at the group-level analysis, this 
pattern ([O2Hb] increase in both cortices) was 
found in only 8 out of 32 cases. Different patterns 

Fig. 34.1 Group-averaged changes in hemodynamic response ([O2Hb] and [HHb]) of the PFC and VC. The gray- 
shaded areas represent the BLE. Median ± standard error of median (SEM) is shown

34 Long-Term Blue Light Exposure Changes Frontal and Occipital Cerebral Hemodynamics: Not All…
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Fig. 34.2 Subgroup analysis (eight classes) of stimulus-evoked hemodynamic responses at the PFC and VC. The gray- 
shaded areas represent the BLE. Median ± SEM is shown

H. Zohdi et al.
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of cortical activation (characterized by the lack of 
[O2Hb] increased or even decreased [O2Hb]) 
were observed in the remaining subjects. In total, 
eight different hemodynamic response patterns 
were detected. Atypical changes in fNIRS signals 
can be triggered by systemic physiological noise, 
partial volume effects, or the presence of specific 
pathophysiological changes [11, 12]. Negative 
responses may also be explained by the interac-
tion between neural activity, CBF, and cerebral 
metabolic rate of oxygen (CMRO2). The decrease 
in [O2Hb] may result from a further increase in 
oxygen consumption (CMRO2) with a conse-
quent mismatch between CBF and CMRO2 
increase, this time in favor of CMRO2 [13]. 
Another possible reason for atypical patterns 
could be attributed to individual anatomical vari-
ability (e.g., diverse neuroanatomy) [12, 13]. 
Additionally, variations in CBF or arterial blood 
oxygenation, changes in intracranial pressure, 
hyper- or hypocapnia, and decreases of systemic 
blood pressure may alter the relationship between 
neuronal activity and fNIRS signals [14].

In conclusion, we found that blue light affects 
individual humans differently. Although a typi-
cal cortical activation pattern (an increase of 
[O2Hb] associated with a decrease of [HHb]) 
was found for group-level analysis, such a pat-

tern was observed in only eight subjects. 
However, we discovered eight different hemody-
namic response patterns, which, in particular, 
should be taken into consideration when assess-
ing the impact of BLE on society. We assume 
that the underlying reasons for the different pat-
terns lie in individual changes in systemic 
physiology.
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CLE-VFT: Differences in hemodynamic response 

patterns for the blue and red light exposure 

The aim of this chapter is to thoroughly investigate a mixed-effect of CLE and 

VFT on behavioral performance as well as cerebral hemodynamics, oxygenation, 

and systemic physiology with the SPA-fNIRS approach. At the group-average 

analysis, Publication 8 was aimed to study how CLE-VFT interacts and affects 

cerebral hemodynamics, oxygenation, and systemic physiology. Subjects’ VFT 

performance was also investigated during CLE. It is shown that SPA-fNIRS 

enables to understand of the interaction of cerebral and systemic parameters. No 

significant difference in the subjects’ VFT performance was found between blue 

and red light exposure. In general, blue light exposure elicited stronger responses 

in cerebral hemodynamics and oxygenation in the VC. Additionally, significant 

differences between red and blue light exposure were observed in the recovery 

phase of systemic physiological parameters (namely, HRV). This shows that the 

CLE has relatively long-lasting effects (at least 15 min after cessation of the CLE), 

which underlines the importance of considering the persistent influence of colored 

light on brain function, cognition, and systemic physiology in everyday life. The 

group-average analysis, although commonly used, only displays the most 

prominent tendency between subjects. Therefore, the subgroup or subject-specific 

analysis is needed to completely understand the effects of the CLE-VFT. Thus, the 

aim of Publication 9 is to investigate a mixed-effect of CLE and VFT on 

hemodynamic and systemic physiological responses, this time at the subgroup 

level analysis. Our study finds that there is substantial intersubject-variability of 

cerebral hemodynamic responses, which is partially explained by subject-specific 

systemic physiological changes induced by the CLE-VFT. This publication shows 

that despite the typical hemodynamic response pattern normally observed at the 

group level (as shown in Publication 8), the subgroup analysis revealed that this 

pattern was found in only ~50% of the cases, and the number of patterns was 

different between red and blue light exposure. 
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Color‑dependent changes 
in humans during a verbal fluency 
task under colored light exposure 
assessed by SPA‑fNIRS
Hamoon Zohdi1, Rahel Egli1, Daniel Guthruf1, Felix Scholkmann1,2,3 & Ursula Wolf1,3*

Light evokes robust visual and nonvisual physiological and psychological effects in humans, such as 
emotional and behavioral responses, as well as changes in cognitive brain activity and performance. 
The aim of this study was to investigate how colored light exposure (CLE) and a verbal fluency 
task (VFT) interact and affect cerebral hemodynamics, oxygenation, and systemic physiology as 
determined by systemic physiology augmented functional near‑infrared spectroscopy (SPA‑fNIRS). 
32 healthy adults (17 female, 15 male, age: 25.5 ± 4.3 years) were exposed to blue and red light for 
9 min while performing a VFT. Before and after the CLE, subjects were in darkness. We found that 
this long‑term CLE‑VFT paradigm elicited distinct changes in the prefrontal cortex and in most 
systemic physiological parameters. The subjects’ performance depended significantly on the type 
of VFT and the sex of the subject. Compared to red light, blue evoked stronger responses in cerebral 
hemodynamics and oxygenation in the visual cortex. Color‑dependent changes were evident in 
the recovery phase of several systemic physiological parameters. This study showed that the CLE 
has effects that endure at least 15 min after cessation of the CLE. This underlines the importance 
of considering the persistent influence of colored light on brain function, cognition, and systemic 
physiology in everyday life.

Light is essential not only for vision but also for the regulation of sleep and wakefulness, neurobehavioral, and 
neuroendocrine  functions1–7. Among these nonvisual (i.e., non-image-forming) functions, light exposure has a 
direct impact on alertness and cognitive  abilities8,9. Cognition is modulated by circadian rhythms and the non-
visual effects of  light10. Short-wavelength (e.g. blue) monochromatic light affects the circadian rhythms of cogni-
tive functions mediated by a melanopsin-based photoreceptor  system11. One main class includes the intrinsically 
photosensitive retinal ganglion cells (ipRGCs), which are most sensitive to blue light (~ 460–480 nm)1,12. Thus, 
exposure to blue light influences many physiological functions, and it is applied to treat circadian and sleep dys-
functions, seasonal affective disorder as well as to boost alertness, help cognitive function, and elevate  mood13–15.

Whether exposure to colored light has an effect on cognition in humans is a current research question. 
Neuroimaging studies devoted to this topic employed electroencephalography (EEG)11,16,17, positron emission 
tomography (PET)18, and functional magnetic resonance imaging (fMRI)1,12,19–22. These human studies showed 
that light exposure affects cortical areas involved in the cognitive process and improves alertness and cognitive 
performance. In particular, the influence of brain responses (e.g., functional connectivity between hypothala-
mus and amygdala) and the cognitive performance were higher during blue light in comparison with longer 
 wavelengths1,20,22.

Among numerous cognitive tasks to assess cognitive functioning, the verbal fluency task (VFT) is a com-
mon neuropsychological test, which challenges the cognitive functioning during the arduous retrieval and ver-
bal articulation of  words23. In this test, subjects are instructed to produce as many words as possible within a 
restricted time, beginning with a certain letter (phonemic task) and/or belonging to a certain category of words 
(semantic task). The performance of these tasks is attributed to indicators of vocabulary size, lexical access 
speed, inhibition ability, and  updating24. The performance of the test is mainly mediated by temporal, frontal, 
and parietal  cortices25–27.
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These cortices can easily be investigated by functional near-infrared spectroscopy (fNIRS), a neuroimaging 
technique, which measures changes in cerebral tissue hemodynamics and oxygenation related to alterations in 
neuronal  activity28–30. One of the key advantages of fNIRS compared to fMRI is the relative insensitivity of this 
method to speech-related movement  artefacts31–33. fNIRS is able to non-invasively and continuously determine 
concentrations of oxygenated  ([O2Hb]) and deoxygenated ([HHb]) hemoglobin of the cortical layers of the 
human  brain34,35. It is known that cognitive activation leads to an increase in oxygen consumption, which is 
accompanied by an increase in cerebral blood flow (CBF) and total hemoglobin concentration ([tHb]) due to 
neurovascular coupling, resulting in an increase in  [O2Hb] with a concurrent decrease in  [HHb]28,36,37. Since 
 [O2Hb] and [HHb] are affected by factors not related to brain activity, i.e., changes in the systemic physiology, 
these factors need to be measured  concurrently38–40. Therefore, it is crucial to employ the systemic physiology 
augmented (SPA) fNIRS approach, which relies on the measurement of brain activity with fNIRS along with 
the assessment of changes in systemic physiology—an approach our research group has been investigating for 
several  years38,39,41,42. SPA-fNIRS is an ideal approach to avoid misinterpretations of fNIRS  signals43 as well as for 
a complete understanding of how the whole body reacts to task/stimulus paradigms.

The main goal of this study was to investigate by SPA-fNIRS how colored light exposure (CLE, red and blue 
light) and a VFT interact and affect cerebral hemodynamics and oxygenation, as well as systemic physiology. 
The findings of the current study are expected to facilitate a better understanding of the effect of colored light 
on cognition and behavior. The results have a broad range of implications for daily human life.

Subjects and methods
Subjects. 32 healthy subjects (17 female, 15 male, age 25.5 ± 4.3 years, range 19–45 years) participated in this 
study after they signed written informed consent. Subjects were all right-handed, non-smokers, medication-free, 
and with high education level (i.e., university students or university degree). They were asked to refrain from 
consuming caffeine and eating two hours prior to the experiment. The study was conducted in accordance with 
the World Medical Association Declaration of Helsinki, and the protocol and all methods were approved by the 
Ethics Committee of the canton of Bern (Project identifier: COLOR10; Basec-Nr. 2016-00674).

Experimental protocol. The subjects were asked to sit upright in a comfortable reclining chair in a dark 
room, while a white wall was in front of them (distance from the subject to the wall: 160 ± 5 cm). Following a ran-
domized crossover design, each subject was exposed to two different light colors (red and blue). The spectrum 
of the light sources was measured by an Ocean Optics spectrometer and showed a peak wavelength of ~ 640 nm 
(full width at half maximum FWHM ~ 20 nm) for red and ~ 450 nm (FWHM ~ 20 nm) for blue. The illumination 
was adjusted to 120 lx (Digital Lux Meter, DT-1308, ATP) at the eye for both colors. The subjects were exposed 
to the colored light for 9 min on two different days but at the same time of day to minimize circadian variability 
of the responses. Before (baseline, 8 min) and after (recovery, 15 min) CLE, subjects were in darkness. The VFT, 
which contained three sessions, was carried out during CLE. Each session comprised three different trials in 
which the subjects had to produce as many words as possible within 30 s: (i) letter fluency task: producing nouns 
with a given letter (A, F, or M); (ii) control task: reciting weekdays in a consecutive manner; (iii) category fluency 
task: producing words from a specified category (flowers, fruits, or professions). The instruction of these tasks 
was given to the subjects by audiotaped voices. Figure 1a shows the schematic representation of the experimental 
VFT protocol used in this study. The order of the type of the trials (letter fluency, control, and category fluency) 
was fixed across all measurements, but the specific letters and categories were used in randomized order. Thus, 
each measurement period consisted of 9 trials of 30 s duration. The 1st, 4th, and 7th trials were letter fluency 
tasks with the letters A, F, or M in randomized order. The 2nd, 5th, and 8th trials were control tasks, where the 
subjects recited weekdays. The 3rd, 6th, and 9th trials were category fluency tasks with randomized categories. 
Each trial was followed by a resting phase of 30 s, where the subjects were asked to relax and stop mental engage-
ment regarding previous tasks. The total duration of the VFT was 9 min and the period of the CLE was adjusted 
to this period. They were asked to keep their eyes open throughout the entire measurement and to move their 
head or body as little as possible during the measurement to avoid movement artifacts.

Measurement setup. With a multi-channel frequency-domain near-infrared spectroscopy (FD-NIRS) 
system (Imagent, ISS, Inc., Champaign, IL, USA), employing a multi-distance approach, changes of  [O2Hb], 
[HHb], [tHb] and tissue oxygen saturation  (StO2) were measured at a sampling rate of 2.5 Hz on the prefrontal 
cortex (PFC) and visual cortex (VC). The ISS optodes were positioned bilaterally over the PFC (left: Fp1 and 
right: Fp2) and the VC (left: O1 and right: O2), according to the international 10–20 system. The sensitivity pro-
file of the optodes on the brain is shown in Fig. 1b. A detailed description of the FD-NIRS data acquisition and 
imaging instrumentation can be found in our previous  studies44,45.

Heart rate (HR) was measured with a SOMNOtouch NIBP device (SOMNOmedics GmbH, Randersacker, 
Germany) with a sampling rate of 4 Hz. SOMNOtouch calculated the HR from the ECG data by calculating the 
R-R intervals. This device also measured and determined the following parameters at a sampling rate of 1 Hz: 
Mean arterial pressure (MAP), pulse pressure (PP), arterial oxygen saturation  (SpO2), high-frequency (HF; 
0.15–0.4 Hz), and low-frequency (LF; 0.04–0.15 Hz) component of the heart rate variability (HRV).

A NONIN LifeSense (NONIN Medical, Plymouth, MN, USA) was used to non-invasively measure end-tidal 
carbon dioxide  (PETCO2) and respiration rate (RR). Data were recorded at a sampling rate of 1 Hz.

An electrodermal activity measurement system (Verim Mind-Reflection GSR, Poland) was employed to 
determine the skin conductance (SC). Skin conductance level (SCL) and integrated skin conductance response 
(ISCR) were measured at 8 Hz sampling rate.
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To quantify the coupling between HR and RR, the pulse-respiration quotient (PRQ) was calculated 
(PRQ = HR/RR)46.

All data were recorded simultaneously. The position of devices and sensors on the subject is shown in Fig. 1c. 
Moreover, Fig. 1d presents the experimental setup with the position of the subject and the color screen. The 3D 
human model was constructed using the Blender 3D interface (http:// www. blend er. org, version 2.82).

Signal processing and statistical analysis. The data set of one subject was excluded from data analysis 
since the subject was not a German native speaker, which might have affected the VFT performance. All signal 
processing and statistical analysis were performed in MATLAB (R2017a, MathWorks, Inc., MA, USA).

Cerebral oxygenation and hemodynamics. Movement artefacts in fNIRS signals were detected and removed by 
the in-house developed movement artefact removal algorithm (MARA) based on moving standard deviation 
and piecewise-interpolation47. For 96.7% of the signal time series, no processing with MARA was required. 
When MARA was applied, it was ensured the overall trend of the time-series processed was not altered. To fur-
ther remove high-frequency noise, signals were low pass filtered using a robust 2nd-degree polynomial moving 
average (RLOESS) filter with a span of 3 min. Signals from the left and right PFC and VC were subsequently 
averaged to obtain signals for the whole PFC and VC, respectively.

Systemic physiological parameters. All other biosignals, except the SC, were also denoised by the RLOESS 
method with a window length of 3 min. The SC data were processed with Ledalab toolbox (http:// www. ledal 
ab. de)48,49. This MATLAB toolbox is able to extract the phasic (high frequency) and tonic (low frequency) SC 
components by continuous decomposition analysis. In this study, the tonic component of the SC, known as skin 
conductance level (SCL), and the ISCR, which involved the integration (i.e., area under the curve) of the phasic 
driver signal, were used for the signal processing and statistical analysis.

Figure 1.  (a) Schematic illustration of the experimental protocol, including the VFT and CLE. (b) Sensitivity 
profile of ISS-sensors on the brain. The sensitivity profile shows which regions of the brain are measured with 
fNIRS. The higher the value, the more contribution of the fNIRS signal from the cerebral cortex layer. (c) 
Visualization of the placement of devices/sensors on the subject. (d) Experimental setup with the position of the 
subject and the color screen.

http://www.blender.org
http://www.ledalab.de
http://www.ledalab.de
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Statistical analysis. All bio-signals were segmented into ten parts (3 min each), and the median of each seg-
ment was calculated. Two segments were assigned to the baseline phase (2–8 min, time points (TP) 1–2), three 
to the CLE (TP 3–5), and five to the recovery phase (TP 6–10). The median of each segment was then normalized 
to the last TP of the baseline phase (TP2). Subsequently, to analyse and visualize the changes of the parameters 
at the group-level, the median and the standard error of the median (SEM) of each segment among all subjects 
were calculated. Additionally, a Wilcoxon signed-rank test for each TP in comparison with the last TP of the 
baseline (TP2) was calculated and a false discovery rate (FDR) correction was subsequently applied to the p-val-
ues in order to correct for the multiple comparison situation. In order to compare the effects of the two types of 
colored light (red vs. blue) on the changes of the bio-signals during the task/stimulation and recovery phases, 
each time point of red light was compared with the same time point in blue light using the Wilcoxon signed-rank 
test. Moreover, the number of correct words generated by each subject during the task period was determined 
as the subjects’ task performance. Word repetitions and proper names of people and places were excluded from 
the data analysis. Synonyms and direct hypernyms/hyponyms were counted as one word. The effects of sex and 
type of cognitive task on subjects’ performance were also investigated by the t-test and paired Wilcoxon signed-
rank test, respectively. For the behavioral data, a 2 × 2 × 2 analysis of variance (ANOVA) was applied with JASP 
(jasp-stats.org, version 0.11.0.0) to test for the main effects of sex, CLE, and VFT as well as for interaction effects. 
Investigating the effects of sex as well as the specific type of VFT on cerebral and physiological parameters is 
interesting, but it is beyond the scope of this article and will be analyzed in-depth in a future investigation.

Results
Task performance. Subjects were more successful in the category version of the VFT compared to the 
letter fluency version (blue: p < 0.001; effect size (Cohen’s d): d = 0.8, red: p < 0.001; d = 1.0). No significant differ-
ence in the performance of both tasks was found between blue and red light. In more detail, subjects produced 
25.0 ± 9.0 (mean ± SD) nouns in the letter fluency during the blue light condition, while they reached a number 
of 25.6 ± 6.5 nouns during the red light. In the category fluency, subjects produced 31.5 ± 7.4 and 32.3 ± 7.1 nouns 
during blue and red light exposure, respectively (Fig. 2a).

Sex effects. The total number of correct responses during the blue light condition for the female and male 
subjects was 62.2 ± 15.5 and 51.1 ± 13.2, respectively, whereas they produced 61.9 ± 10.0 (female) and 54.3 ± 12.1 
(male) correct words during red light exposure. Females were generally better VFT performers compared to 
males. Although the difference was significant during the blue light condition (p < 0.05; d = 0.8) (Fig. 2b), no 
significant interaction effect was found for “Sex × Colored light” analyzed by ANOVA (Table 1).

Changes during the colored light exposure and verbal fluency tasks. Figures 3 and 4 depict block-
averaged changes in cerebral hemodynamics, oxygenation, and systemic physiology evoked by CLE (blue vs. 

Figure 2.  (a) Subjects’ performance in the category and letter versions of the VFT during CLE. Asterisks 
show a significant difference between tasks (p < 0.05, Wilcoxon signed-rank test). (b) Effects of sex on the 
task performance of subjects who are exposed to two lighting conditions (blue vs. red). The asterisk shows a 
significant difference between male and female subjects during blue light exposure (p < 0.05, two-sample t-test). 
The same color data points and lines belong to an individual subject.
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red) and VFT. Independent of the color, CLE in combination with VFT elicited responses in the PFC and caused 
significant changes in systemic physiological parameters including MAP,  PETCO2, SCL, ISCR, and HRV (LF/
HF).

Cerebral tissue hemodynamics and oxygenation. Both conditions (blue and red) elicited statistically significant 
changes in  [O2Hb] (increase), [HHb] (decrease), [tHb] (increase), and  StO2 (increase) in the PFC, while only 
the blue light exposure evoked significant changes in the VC, i.e.,  [O2Hb] (increase), [HHb] (decrease), [tHb] 
(increase), and  StO2 (increase), throughout the whole CLE-VFT. In the VC, the red light caused only signifi-
cant stimulus-evoked changes, i.e.,  [O2Hb] (increase) and  StO2 (increase), at the onset of the CLE-VFT. Color-
dependent effects were observed in  [O2Hb], [HHb], and  StO2 in the VC. Blue evoked stronger overall responses 
in cerebral hemodynamics and oxygenation in the VC. Additionally, higher  [O2Hb] and  StO2 changes at the 
beginning (TP3) of the blue light exposure were observed in the PFC compared to the red light exposure.

Systemic physiological activity. The following systemic physiological parameters showed statistically signifi-
cant changes during the CLE-VFT: MAP,  SpO2, SCL, ISCR, and LF/HF (increase during blue and red);  PETCO2 
(decrease during blue and red); HR and PP (increase during blue); HF (decrease during red). HR, MAP, and 
SCL changes were higher during blue light in comparison with red light, although the differences did not reach 
statistical significance. In addition, blue and red light exposure evoked no statistically significant changes in RR 
and PRQ after FDR correction. PRQ increased for both conditions, although the increase was less pronounced 
for the blue light.

Color-dependent changes in the recovery phase (post-light period) of some systemic physiological parameters 
were noticeable (e.g.,  PETCO2: at the beginning of the recovery phase, SCL: at the end of the recovery phase). 
Changes in HF and LF/HF were color-dependent throughout the recovery phase.

Discussion
No significant difference in cognitive performance between blue and red. The VFT has been 
widely used as a tool to measure verbal ability and executive control. VFT performance also provides a possible 
predictor for prospective identification of  diseases24,50. One of the main goals of this study was to investigate 
the effects of light of two colors (blue vs. red) on VFT performance. No significant difference in subjects’ per-
formance was found between blue and red light. One possible explanation for this finding is that the attention 
of the subjects was mainly focused on performing the VFT than actively perceiving and being aware of the 
CLE. This may have diminished the effect of the specific colored light on performance. The number of correct 
answers produced by the subjects in both versions of the VFT is in good agreement with Holper et al.50 and 
higher compared to the previous  studies23,25,51. All aforementioned VFT studies were conducted under normal 
lighting conditions. For the first time, the light of different colors was employed in our study to investigate its 
impacts on the subjects’ performance. In addition to CLE, age, education level, physiological state of subjects, 
or even methodological variabilities may be possible reasons for the difference between studies in terms of 
VFT task performance. Herrman et al. showed that subjects (n = 14, middle to highly educated subjects, age: 
31.4 ± 6.8 years) achieved an average of 33.0 ± 11.2 correct responses for the three letters (i.e., A, F, and S; each 
lasted 60 s) in the  VFT25. In another study, subjects (n = 325, including right-handed, left-handed, and ambi-
dextrous, age: 51–82 years) within 30 s produced 6.1 ± 2.0, and 9.9 ± 2.0 correct words in letter and category 
VFT,  respectively23. Additionally, within both conditions (blue vs. red), performance in category fluency was 
significantly better than in letter fluency. These findings are in line with several  studies23,50,51. The letter fluency is 
generally more challenging than the category fluency. In the category fluency, subjects can rely on existing links 
between related concepts or words, while the links between words in the letter fluency may be weaker or less 
 accessible24. In other words, retrieval of a word (e.g., apple) automatically activates semantically associated words 
(e.g., orange, banana, peach, and mango) in the category fluency version of the VFT. By contrast, in the letter 
fluency, subjects must restrain the activation of associatively related concepts and employ different retrieval 

Table 1.  Summary of the ANOVA for subjects’ performance. Values in bold indicate statistical significance at 
the p < 0.05 level.

VFT correct 
responses

F-statistic p-value

Main effects

Sex (S) 11.906  < 0.001

Colored light (C) 0.278 0.599

VFT tasks (T) 23.913  < 0.001

Interaction effects

S × C 0.435 0.511

S × T 0.064 0.800

C × T 0.005 0.942

S × C × T 0.222 0.639
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Figure 3.  Block-averaged (group-level) changes in cerebral hemodynamics/oxygenation and systemic 
physiology (median ± SEM) evoked by blue light exposure and VFT. The blue shaded areas represent time 
intervals during the task/stimulation period. The time series are sub-divided into ten periods (3 min each). 
Then, they are normalized to the last time period of the baseline (TP2). Red symbols indicate a significant 
change of the marked time point with respect to baseline (asterisk *: proved by both FDR-corrected and 
uncorrected p values; plus + : only uncorrected p value, p < 0.05, Wilcoxon signed-rank test). Green asterisks 
present a color-difference (blue vs. red) of the marked time points (p < 0.05, Wilcoxon signed-rank test).
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Figure 4.  Block-averaged (group-level) changes in cerebral hemodynamics/oxygenation and systemic 
physiology (median ± SEM) evoked by red light exposure and VFT. The red shaded areas represent time intervals 
during the task/stimulation period. The time series are sub-divided into ten periods (3 min each). Then, they 
are normalized to the last time period of the baseline (TP2). Red symbols indicate a significant change of the 
marked time point with respect to baseline (asterisk *: proved by both FDR-corrected and uncorrected p values; 
plus + : only uncorrected p value, p < 0.05, Wilcoxon signed-rank test). Green asterisks present a color-difference 
(blue vs. red) of the marked time points (p < 0.05, Wilcoxon signed-rank test).



8

Vol:.(1234567890)

Scientific Reports |         (2021) 11:9654  | https://doi.org/10.1038/s41598-021-88059-0

www.nature.com/scientificreports/

 strategies52,53. In conclusion, we found a reasonable performance compared to previous studies but no effect of 
the CLE, which was tested for the first time.

Females were better VFT performers than males. Consistent with previous  studies23,54, we found 
that females generally performed VFT tasks more efficiently than males. This fact has become well-accepted, 
although some findings are  inconsistent55,56, where the task performance was equal between males and females. 
It has been proven that female subjects are better in the performance of verbal tasks, while male subjects are more 
successful in visual-spatial  tasks57,58. The reason for sex differences at a behavioral level may be attributed to dis-
similarities in the structure of the language-related cortex and the cerebral organization of language  function59. It 
is known that language functions are more lateralized in males (i.e., to the left inferior frontal gyrus regions) than 
in  females60. However, Weiss et al. proposed that such a difference in executive speech tasks is related to different 
processing strategies for lexical verbal fluency rather than sex-related hemispheric  organization59. Additionally, 
the reasons for the significant difference between females and males in VFT performance during the blue light 
condition may be attributed to different color preferences and color perception between females and males or 
even fluctuations in sex hormones. Corticotropin-releasing hormone (CRH) plays key roles in the coordination 
of the stress response as a potential mediator of sex-related  differences61,62. The presence of estrogen, a classical 
female sex hormone, has been proved in the CRH  gene61. Therefore, sex differences at a behavioral performance 
may also be due to the role of estrogen in mediating stress response. It was demonstrated that a stressful expe-
rience caused a female’s later ability to attain certain types of new memories and was dependent on changing 
levels of  estrogen63. Shors and Leuner showed that performance of the classically conditioned eyeblink response 
was poor in the presence of very low and very high estrogen, whereas in the presence of moderate estrogen, 
performance was  optimal63. It was also shown that females were better performers on spatial tests in low levels 
of estrogen and on articulatory-verbal tests in high levels of  estrogen64. Coupled with the knowledge that estro-
gens in females and androgens in males are generally positively associated with the performance in verbal and 
spatial tasks, respectively, for our results, this implies that the ability of estrogen to enhance verbal performance 
in females can be taken as evidence for sex differences in cognitive functioning underlying the VFT.

Cerebral hemodynamics and oxygenation. In this study, we used FD-NIRS to investigate a mixed-
effect of CLE and VFT on neural correlates of cognitive functioning. The FD-NIRS system is able to measure 
the absolute optical properties, namely the absorption coefficient and the reduced scattering coefficient, and 
consequently the absolute values of  [O2Hb], [HHb], [tHb] and  StO2. In contrast, continuous wave NIRS (CW-
NIRS) can only provide information on changes of  [O2Hb] and [HHb] but cannot determine absolute  values44. 
The CW-NIRS technique relies on assumed constant optical properties during the measurement, an assumption 
not necessarily true in  reality34. Compared to CW-NIRS, the FD-NIRS technique is less sensitive to physiologi-
cal noise from the extracerebral tissue  compartment45. For further, more detailed information on NIRS-based 
techniques, we refer readers to Scholkmann et al.28. In our previous studies, we investigated how cerebral hemo-
dynamics and oxygenation change during different short-term and long-term colored light  exposures13,38,41,65–67. 
The impact of the VFT on human brain activity and cerebral perfusion was also investigated in several fNIRS 
 studies68–71. We found in the current study that CLE in combination with VFT evoked responses in the PFC, 
while only blue light leads to significant changes in the VC throughout the CLE-VFT.

Color‑independent prefrontal cortex responses. The PFC is involved in various higher-order cogni-
tive functions, including memory, processing of language, selective attention, and task  planning70,71. PFC activity 
can be evaluated by measuring changes in  [O2Hb], [HHb], [tHb], and  StO2. Our findings showed that, regardless 
of the color type, the CLE with a combination of the VFT leads to an increase in  [O2Hb], [tHb] and  StO2, and a 
concurrent decrease in [HHb], which corresponds to the typical pattern of cerebral activation. However, higher 
 [O2Hb] and  StO2 changes at the beginning (TP3) of the blue light exposure were evident compared to the red 
light.

Several studies using fNIRS have shown increases of  [O2Hb] and decreases of [HHb] in response to a VFT 
 task31,32,68,70. A recent review concluded that cognitive tasks caused the  [O2Hb] increasing in more than 70% and 
[HHb] decreasing in 100% of the studies, which reported changes in hemoglobin concentrations in the PFC in 
response to the VFT or working memory  tasks72.

Concerning the CLE, we demonstrated in our previous study that short-term blue light led to a significantly 
different response in  [O2Hb], [tHb], and  StO2 in the PFC compared to red and green  light38. A significant increase 
in  StO2 was indicated in the left PFC during blue but not red light in a long-term CLE study carried out by Wein-
zirl et al.66. In another study where we had investigated long-term CLE, cerebral hemodynamics and oxygenation 
in the PFC were significantly different for yellow compared to red and blue, but not between red and  blue41.

We showed that CLE accompanied by the VFT elicited significant changes in cerebral hemodynamics and 
oxygenation in the PFC. In parallel research performed with this study, we found that CLE alone did not sig-
nificantly affect cerebral perfusion in the PFC (data not shown). Therefore, it seems that the impact of VFT was 
more prominent compared to CLE and the stimulating effect of CLE is low or even decreases when the brain is 
already involved in a challenging VFT task.

Color‑dependent visual cortex responses. Compared to red light, we showed that blue light exposure 
evoked stronger overall responses in cerebral hemodynamics and oxygenation in the VC. In the literature, there 
are a few fNIRS reports investigating the effect of color and colored light on cerebral responses in the  VC13,38,73–75. 
Even though Liu and  Hong75 showed that the left VC is more active during the blue-color stimulus, Scholkmann 
et al.38, from our group, observed that the magnitude of the hemodynamic responses in the VC was independent 
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of color. In another fNIRS study, the authors found a significant increase in hemodynamics during the between-
category (blue vs. green) changes, but not during the within-category (two different shades of green)  changes73. 
The visual system response to blue light might be a marker for central nervous system dopamine  tone76, reported 
in an fMRI study. It was also proposed in other neuroimaging studies that colors in different categories are dif-
ferently represented in the  VC77,78.

Systemic physiology responses. A higher increase in HR during exposure to blue light is in line with 
the research performed by Cajochen et al.79 (n = 10 male subjects, age: 25.9 ± 3.8 years, exposure to 2 h of mono-
chromatic lights in the evening). Contrary, a decrease was observed in one study under blue light in subjects 
with closed eyes (n = 7, age range: 23–55 years, exposure to 10 min color light panels (blue vs. red), illuminance: 
140  lx, distance: 40  cm)80. All other studies presented no dependence of HR on CLE in sitting  subjects81–83. 
The increase in HR during the blue light condition may be attributed to the autonomic nervous system (ANS) 
responding to blue light with an increase in sympathetic tone, i.e., a response that is predominantly susceptible 
to short-wavelength  light79.

In line with other  research83,84, in our study, colored light had no distinctive effects on RR based on FDR-
corrected p values. This could be due to the large inter-subject variation caused by subjects having different RR 
responses. The absolute RR values measured in our previous study for healthy subjects at rest were within a large 
range (6.9–27.1 breaths per minute)44.

The PRQ is a useful and unitless parameter to attain the overall state of human  physiology46. This parameter 
is calculated as HR divided by RR and its resting-state distribution has a peak at ~  485. Although PRQ increase 
was more pronounced for the red light, we observed no statistically significant changes (FDR-corrected p values) 
in response to both conditions, which is in accordance with the  literature84. In our previous study investigating 
short-term CLE effects with blue light, a decrease in PRQ was  found38.

We also found an increased MAP for both conditions and an increased PP only for blue light exposure. 
Increased diastolic blood pressure was reported for the light of higher color temperatures (i.e., 7500 °K vs. 3000 
°K and 5000 °K) at high-intensity levels (> 320 lx)86. This indicates that light with an increased fraction of blue 
light increases blood pressure. In another study, MAP increased for blue light, but not for red at a high intensity 
(> 250 lx)87.

The decrease in  PETCO2 during the CLE and VFT tasks is in line with the findings of Scholkmann et al.40. 
In that study, the effect of different speech tasks on  PETCO2 and cerebral hemodynamics and oxygenation was 
investigated. During all tasks,  PETCO2 was reduced with the strongest decrease during the alliteration task 
(~ 9 mmHg) and the smallest during the mental arithmetic task (~ 3 mmHg). In the present study, the  PETCO2 
decrease was less than 2 mmHg for both blue and red light. In summary, typical patterns of the fNIRS data 
and  PETCO2 caused by a combination of the CLE and VFT are comparable to the mental arithmetic task of the 
aforementioned study. It is noteworthy that in the current study, the  PETCO2 decrease constitutes only weak 
hypocapnia induced by hyperventilation. In this case, the vasodilation caused by brain activity outweighed the 
vasoconstriction caused by hypocapnia.

Electrodermal activity (EDA) and HRV are two commonly used psychophysiological stress  measures88. EDA 
reflects the variation of the electrical properties of the skin in response to sweat  secretion48,49. In our study, both 
EDA parameters were significantly increased during blue and red light exposure. The increase in EDA is related 
to various factors such as mental stress or pain, owing to the stimulation of the sympathetic nervous system. 
Several studies have shown increasing of EDA parameters during mental load and cognitive stress, compared to 
baseline  measurements89–91. In parallel research carried out with this study, we found that CLE alone (without 
VFT) affected EDA (data not shown; ΔSCL:  SCLCLE −  SCLbase; Blue: 0.04 ± 0.08 µS; Red: 0.05 ± 0.07 µS) much lower 
than the CLE-VFT (this study; Blue: 3.08 ± 0.38 µS; Red: 2.98 ± 0.55 µS). Therefore, we conclude that the effect 
of the VFT on EDA changes was more noticeable than the CLE. In our previous study, we showed that short-
term blue, red, and green light (without any cognitive tasks) triggered changes in SCL with large intersubject 
variability and only a marginal change in the group-average38. Other studies showed an increase in EDA under 
short-term (1 min) red  light83 and a decrease under long-term (20 min) blue, orange, and green light  exposure92.

HRV is an index of the ANS, providing a measure of ANS through parasympathetic and sympathetic modula-
tion of cardiac  function93. It is known that the LF component of HRV is modulated by both the parasympathetic 
nervous system (PNS) and the sympathetic nervous system (SNS), while HF is mainly controlled by the  PNS94. 
Although it is widely believed that the LF/HF ratio reflects the sympathovagal balance, Billman showed that this 
assumption is not accurate and greatly oversimplifies the complex non-linear relations between the sympathetic 
and the parasympathetic divisions of the  ANS95. In line with this new statement, von Rosenberg et al. proposed 
a simultaneous consideration of the LF and HF within a 2D scatter diagram, improving the discrimination abil-
ity in the physical and mental stress  analysis96. HRV is considered as a marker of stress. In both conditions, we 
found a decrease of the HF and an increase of the LF during the CLE-VFT, although only the HF was signifi-
cantly decreased during red light exposure. An increased LF and a decreased HF observed in both conditions are 
attributed to the mental stress that subjects experienced during VFT  tasks94,97. This emphasizes once again the 
point that the influence of VFT is more prominent compared to CLE during the CLE-VFT and the stimulating 
effect of CLE is low or even decreases when the brain is already involved in a challenging VFT task. In line with 
the research carried out by Posada-Quintero and  Chon98, we found an increase in the LF component of HRV 
as well as the EDA in the presence of stressors (VFT tasks), which are known to be controlled by the SNS. In 
several studies, red light decreases HF  power84,99,100. Even though blue light caused no significant HF changes in 
our study, an increase in the HF was observed due to blue light in other  studies81,101,102. We did not observe any 
significant difference between red and blue during the CLE. However, changes in HF and LF/HF were interest-
ingly color-dependent throughout the recovery phase. This may be indicative that brief exposure to colored light 
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has effects on HRV parameters that may persist for at least 15 min after cessation of the light. Higher HF changes 
and lower LF/HF ratio after blue light compared to red light may indicate an increase of the parasympathetic 
response during the recovery phase after blue light exposure. In other words, higher HF changes accompanied by 
insignificant changes in the LF after blue in comparison with red represent a more relaxed state for this condition 
based on the 2D scatter diagram proposed by von Rosenberg et al.96.

Limitations. The study has the following limitations: (1) The size of the sample was calculated with power 
analysis to detect substantial effects (effect size: d = 0.59) at a p < 0.05 and a power of > 0.8. A large number of sub-
jects may have shown further physiological or behavioral color-dependent responses. But, these effects would 
have been small and probably not very relevant. (2) Only blue and red light were analyzed. Different colors may 
have other effects. (3) The intensity of the CLE may evoke different effects. We selected a relatively high intensity 
(120 lx) that was the same for both colors. (4) The ISS optodes do not yet cover the entire head, and hence not the 
complete brain was analysed. (5) Depending on the nature of the task, different colored lights might affect cogni-
tive tasks differently. It has been revealed that red improves performance on a detailed-oriented task, while blue 
enhances performance on a creative  task103. Therefore, it would be worthwhile to include other cognitive tasks in 
future studies. (6) The VFT protocol can be simplified for future studies. The control task, which normally does 
not evoke brain activation and may reduce the effect, can be removed from the VFT protocol.

Conclusions and outlook
In conclusion, our study is the first employing SPA-fNIRS to investigate a mixed-effect of CLE and VFT on 
cerebral hemodynamics, oxygenation, and systemic physiology. Our new approach (SPA-fNIRS) enabled to 
understand the interaction of cerebral and systemic parameters. No significant difference in the subjects’ VFT 
performance was found between blue and red light exposure, while sex and type of VFT (category versus letter) 
affected the subjects’ performance significantly. Overall, blue light exposure evoked stronger responses in cer-
ebral hemodynamics and oxygenation in the VC. We found several color-independent changes in cerebral and 
physiological signals due to the VFT. Moreover, significant differences between red and blue light exposure were 
observed in the recovery phase (post-exposure period) of systemic physiological parameters (namely,  PETCO2, 
SCL, HF, and LF/HF ratio). Therefore, it is essential to consider the relatively long-lasting (15 min) effects of 
CLE in humans. This underlines the importance of considering the persistent influence of colored light on brain 
function, cognition, and systemic physiology in everyday life.

In this study, SPA-fNIRS was used to assess a mixed-effect of CLE and VFT on human physiology. The results 
imply that the reaction of the brain and the systemic physiology is different or in some cases similar, depending 
on the physiological parameter and color of the light (with equal perceived brightness). In our previous study, 
with SPA-fNIRS, we were also able to demonstrate that MAP and  SpO2 were positively correlated with  [O2Hb] 
at the PFC during the CLE-VFT45. Therefore, SPA-fNIRS should become a standard approach for fNIRS studies 
to enable a comprehensive understanding and the correct interpretation of changes in cerebral hemodynamics 
and oxygenation. This tool enables to understand the underlying reasons for a variety of stimulus-evoked changes 
and cognitive task performances.

Our findings contribute to a better understanding of CLE effects on human physiology. Although no sig-
nificant difference in the performance of VFT tasks was found between blue and red light, the physiological 
color-dependent responses are potentially of high relevance in the process of choosing colors and colored lights 
for related objectives (e.g., room lighting and workplaces). Specifically, our findings about a mixed-effect of 
CLE and VFT on human physiology offer a broad range of implications for educational purposes and facilitate 
a better responding of the following questions: Do colored lights (or colors) play a role in enhancing cognitive task 
performances as well as learning and nurturing concepts? What colored light improves motivation and creativity 
in the workplace? Additionally, since exposure to colored light expeditiously increases in our modern society 
due to modern light sources such as screens and LEDs, investigation of colored light and its impact on human 
physiology are of rising interest. Especially at the present time, when students have to do their homework using 
smartphones and tablets, known as modern light-emitting devices, more than before due to the Covid-19 pan-
demic, another question might be raised: What desktop background color do we pick for educational facilities? 
The results of this research are expected to facilitate a better understanding of the CLE effects on the underlying 
neuroscientific mechanisms in the brain and body, which in turn would pave the way for safe and advantageous 
applications of colored light in daily life and even therapeutic settings. Moreover, in a society that is rapidly 
exposed to new and increasing lighting, it is expected that the findings of this research are being relevant and 
beneficial for the scientific community, medical professionals and the society.
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Abstract: When brain activity is measured by neuroimaging, the canonical hemodynamic response
(increase in oxygenated hemoglobin ([O2Hb]) and decrease in deoxygenated hemoglobin ([HHb]) is
not always seen in every subject. The reason for this intersubject-variability of the responses is still
not completely understood. This study is performed with 32 healthy subjects, using the systemic
physiology augmented functional near-infrared spectroscopy (SPA-fNIRS) approach. We investigate
the intersubject variability of hemodynamic and systemic physiological responses, due to a verbal
fluency task (VFT) under colored light exposure (CLE; blue and red). Five and seven different
hemodynamic response patterns were detected in the subgroup analysis of the blue and red light
exposure, respectively. We also found that arterial oxygen saturation and mean arterial pressure
were positively correlated with [O2Hb] at the prefrontal cortex during the CLE-VFT independent
of the color of light and classification of the subjects. Our study finds that there is substantial
intersubject-variability of cerebral hemodynamic responses, which is partially explained by subject-
specific systemic physiological changes induced by the CLE-VFT. This means that both subgroup
analyses and the additional assessment of systemic physiology are of crucial importance to achieve a
comprehensive understanding of the effects of a CLE-VFT on human subjects.

Keywords: systemic physiology augmented functional near-infrared spectroscopy; SPA-fNIRS;
colored light exposure; verbal fluency task; cerebral hemodynamics; systemic physiology; laterality

1. Introduction

Colored light modulates a wide range of functions in human physiology, including the
sleep-wake cycle via melatonin secretion, alertness, cognition, and thermoregulation [1,2].
Since the discovery of the photopigment melanopsin nearly two decades ago, non-image-
forming (NIF) vision has been focused on as a potential explanation for a number of
effects of colored light on human physiology [3,4]. This light-sensitive protein is expressed
in a subclass of intrinsically photosensitive retinal ganglion cells and is most sensitive
to narrowband blue light (~460−480 nm) [5,6]. It has become apparent that NIF vision
responses to colored light, especially short-wavelength light, affect the cognitive process
and enhance alertness and cognitive performance [7–12]. However, the effects of colored
light on alertness and cognitive performance beyond the scope of NIF vision responses are
not yet well understood. Previous studies demonstrated that improvements in cognitive
performance via colors or colored light depend not only on the environment and certain
situational variables, but also on the individual subject, as well as the type of cognitive
task [13–16].

The verbal fluency task (VFT) is among the most widely applied neuropsychological
tests for the assessment of cognitive function. The VFT is a classical method of language
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production in which subjects are instructed to produce as many words as possible within
a restricted time and following specific rules [17–21]. To assess the brain correlates of
cognitive functioning underlying the VFT, several studies have been conducted using
functional near-infrared spectroscopy (fNIRS) [22–31]. fNIRS is an optical neuroimaging
technique enabling significant advances in the understanding of functional brain activity
and higher cognitive functions [32,33]. This non-invasive technique is based on optical
spectroscopy and detecting correlates of brain activity mediated by neurovascular coupling
(NVC) [34]. A typical NVC response, due to increased neuronal activity, consists of an
increase in oxygenated ([O2Hb]) and total ([tHb]) hemoglobin and a simultaneous decrease
in deoxygenated hemoglobin ([HHb]) [35,36]. fNIRS measurements have demonstrated
that the VFT evokes symmetrical cerebral oxygenation responses within different brain
regions, primarily in the prefrontal cortex (PFC) and lateral areas [37–40]. So far, only
some studies have reported hemispheric differences in the frontal and temporal cortices,
i.e., a more pronounced left compared to right hemispheric activation [41–44].

Although increases in [O2Hb] and decreases in [HHb] serve as indicators for brain
activity, other patterns of cortical activation were also found in various cognitive stud-
ies [45–47]. Such atypical fNIRS patterns can be attributed to different reasons, including
individual differences in vascular regulation and measurement positions, as well as influ-
ences from changes in systemic physiology [46,48–50]. The effects of the latter on changes in
[O2Hb] and [HHb] can be detected by applying systemic physiology augmented functional
near-infrared spectroscopy (SPA-fNIRS), which additionally and concurrently with fNIRS
measures systemic physiological parameters [51–53].

Since the topic of intersubject variability of hemodynamic responses and changes in
systemic physiology is not yet well investigated, we aimed in this study to further explore
this topic in detail. In particular, two main goals were pursued: First, we investigated with
SPA-fNIRS whether the CLE-VFT causes different reaction patterns in cerebral hemody-
namics and systemic physiology. Second, we explored the effects of two light exposure
conditions (blue and red) during the CLE-VFT on lateralization of cerebral cortices.

2. Materials and Methods
2.1. Subjects

The study was conducted with 32 healthy subjects (17 female, 15 male, age 25.5 ± 4.3 years).
Subjects were all right-handed with high education level and without any acute or chronic
disease affecting the neuronal or cardiorespiratory system. All subjects had normal color
vision as assessed by the Ishihara’s Tests for color blindness and color deficiency (Kanehara
and CO., LTD., Tokyo, Japan).

2.2. Experimental Protocol

The subjects sat upright in a comfortable chair in front of a white wall (distance
from the subject to the wall: 160 ± 5 cm). Each subject participated in two days of trials:
One while being exposed to blue light, and the other while being exposed to red light
(illuminance: 120 lux at eye level), the order of which was randomized. On each day,
the subjects were exposed to the colored light for a duration of 9 min. The subjects were
instructed to keep their eyes open during the entire experiment. Other than during periods
of the CLE, the experimental room remained dark. The VFT, which included three sessions,
was performed during the CLE. Each session comprised three different trials (phonemic,
control, and semantic tasks) in which subjects had to produce as many words as possible
for a given letter or category within 30 s. Each trial was followed by a resting phase of 30 s.
These periods were set similar to previous VFT protocols in the literature [27,41,44]. Thus,
the total duration of the task was 9 min and the period of the CLE was adjusted to this
period. Figure 1a presents the schematic representation of the CLE-VFT protocol.
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Figure 1. (a) Schematic illustration of the measurement protocol; (b) visualization of the placement of
devices and sensors on the subject; (c) experimental setup with the position of the subject, illuminated
screen, and spotlights. Two colors, i.e., either red or blue were used for the light exposure; in (a,c),
the case of blue light exposure is visualized.

2.3. Measurement Setup

The SPA-fNIRS approach includes a multichannel frequency-domain near-infrared
spectroscopy (FD-NIRS) system (Imagent, ISS Inc., Champaign, IL, USA) and devices to
measure systemic physiological parameters: The SOMNOtouchTM NIBP (SOMNOmedics
GmbH, Randersacker, Germany) measured heart rate (HR) with a sampling rate of 4 Hz
and mean arterial pressure (MAP) and arterial oxygen saturation (SpO2) at a sampling rate
of 1 Hz. End-tidal carbon dioxide (PETCO2) and respiration rate (RR) were non-invasively
measured by NONIN LifeSense (NONIN Medical, Plymouth, MN, USA) at a sampling
rate of 1 Hz. An electrodermal activity measurement system (Verim Mind-Reflection GSR,
Poland) was employed to determine the skin conductance level (SCL). SCL data were
recorded at a sampling rate of 8 Hz. To measure the coupling between HR and RR, the
pulse-respiration quotient (PRQ) [54,55] was calculated (PRQ = HR/RR).

The Imagent has 16 laser diodes at 760 nm and 16 laser diodes at 830 nm. Four
highly sensitive photo-multiplier tubes are employed as detectors. Each of the four ISS
optodes has four light emitters and one light detector, each connected to the instrument by
optical fibers. The ISS optodes were placed bilaterally over the prefrontal cortex (PFC) (left:
Fp1 and right: Fp2) and the visual cortex (VC) (left: O1 and right: O2) according to the
international EEG 10–20 system [56]. The optodes were covered with two layers of dark
cloth to prevent ambient light interference. ISS detectors were also shielded against visible
light by acrylic long-pass filters with a cut-on wavelength of 685 nm (Knight Optical, Kent,
UK) to prevent stray light from affecting the measurement. Moreover, since the light from
the ISS instrument is frequency modulated at 110 MHz, exposure light, which is of other
frequencies, is removed automatically. The source-detector separations of the optodes were
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2.0, 2.5, 3.5, and 4.0 cm over the PFC and 2.0, 2.5, 3.0, and 3.5 cm over the VC. The FD-NIRS
system, employing the multi-distance approach, measured absolute [O2Hb], [HHb], and
tissue oxygen saturation (StO2) at a sampling rate of 2.5 Hz on the PFC and VC. The ISS
instrument is based on multi-distance frequency domain measurement—which, based
on the diffusion approximation, determines the absorption coefficient and the reduced
scattering coefficient, and hence, absolute values of [O2Hb], [HHb], and StO2 [57]. These
are calculated online by the software of the instrument.

Figure 1b,c display the positions of the devices and sensors on the subject, as well as
the measurement setup showing the position of the subject, the (illuminated) screen, and
the spotlights (six LED PAR spotlights—each has 12 × 35 mm RGBW LEDs).

2.4. Signal Processing and Statistical Analysis

One subject was excluded from data analysis because she was not a native Ger-
man/Swiss German speaker. Two subjects aged over 30 years were excluded from the
analysis to have a sample in a small age range (20 to 30 years). By removing these two
subjects, we avoid the need to correct for an age when performing the statistical analysis,
i.e., avoiding to have age-related effects as a confounder. It also helped us to have a quite
homogenous sample with respect to the general ability of the subjects (e.g., language
proficiency in the VFT task). The language proficiency of the older subjects deviated from
the other group. Signal processing was performed in MATLAB (R2017a, MathWorks,
Inc., Natick, MA, USA), and statistical analysis in OriginPro (version 2019b, OriginLab
Corporation, Northampton, MA, USA)

2.4.1. Signal Processing

Too noisy data were first rejected by manual inspection (e.g., StO2 outside the range
of 50–100%). At this stage, data with a lower signal-to-noise ratio was mostly found at the
VC, due to poor scalp-optode coupling. In total, 80% of the fNIRS signals were accepted for
the next data pre-processing step. Then, movement artifacts were removed by the in-house
developed movement artifact reduction algorithm based on moving standard deviation and
piecewise-interpolation [58]. fNIRS signals were low pass filtered by a robust 2nd-degree
polynomial moving average (RLOESS) with a window length of 3 min. RLOESS filtering
with a window length of > 1 min has been used as a smoothing filter in data processing of
the fNIRS signals [51,59,60]. This method was able to remove high-frequency physiological
noise (e.g., heart rate and respiratory rate) of the fNIRS signals. The effectiveness of this
method has also been shown in the literature [61–63]. Furthermore, the FD-NIRS system
enabled the measurements to be less sensitive to physiological noise coming from the
extracerebral tissue compartment [64]. Then, signals from the left and right PFC and the
left and right VC were averaged (since the patterns in the two hemispheres were not
significantly different) to obtain signals for the whole PFC and VC, respectively.

All other systemic physiological parameters, except the SCL, were also smoothed
using the RLOESS method with a span of 3 min. The SCL data were processed with
the Ledalab toolbox [65,66] by means of continuous decomposition analysis performing
optimization of 6 initial values.

2.4.2. Data and Statistical Analysis

Type of functional activation: The subgroup data analysis was performed by clas-
sifying subjects into different groups based on their hemodynamic response pattern of
[O2Hb] in the PFC and VC during the CLE-VFT. Nine groups are in principle possible, i.e.,
three directions (increase, no change, decrease in [O2Hb]) to the power of two cortices (PFC
and VC). To determine the direction during the CLE-VFT phase, the normalized [O2Hb]
signal was segmented into 40 parts, and the median value for each segment was calculated,
followed by applying the one-sample Wilcoxon signed-rank test to all median values of
segments. An insignificant (−) pattern indicates a failure to reject the null hypothesis at the
5% significant level, whereas increase and decrease patterns indicate a rejection of the null



Brain Sci. 2021, 11, 54 5 of 16

hypothesis (p < 0.05). After classifying each subject into one of the nine groups, all other
physiological signals not used for grouping purposes were block-averaged for each group.

Cerebral functional asymmetry: The following steps were applied to investigate the
functional cerebral oxygenation asymmetry during the CLE-VFT: (i) The time-dependent
StO2 signal was selected as a promising marker for evaluation of the cerebral laterality.
(ii) four different StO2 signals from the left and right PFC, and VC were taken into account
for each measurement. (iii) each StO2 signal was normalized to the last 5 min of the baseline
period. (iv) ∆StO2 median values during the CLE-VFT were calculated (i.e., ∆ indicates the
normalized parameter).

VFT performance: A total number of VFT correct responses was averaged for all
measurements, comprising both the red and blue light exposure. Subjects with a below-
and an above-average number of correct responses were allocated to the moderate and
excellent performer groups, respectively.

3. Results
3.1. Subgroup Analysis

While most subjects showed the expected activity pattern in the hemodynamic re-
sponses (increase in [O2Hb] and decrease in [HHb] at the PFC and VC), a significant
number of subjects showed deviations from this pattern. Therefore, the hemodynamic
responses were assigned to the nine groups of possible reaction patterns according to the
changes of [O2Hb] at the PFC and VC (Table 1). In fact, five and seven different hemody-
namic response patterns were observed in the subgroup analysis for the blue and red light
exposure, respectively.

Table 1. Classification of the hemodynamic response of [O2Hb] patterns (significant increase ↑,
insignificant change –, significant decrease ↓) at the PFC and VC.

Cerebral Cortex Number of Subjects

PFC VC Blue Light Exposure Red Light Exposure
Group 1 ↑ ↑ 14 (7 female, 7 male) 12 (4 female, 8 male)
Group 2 ↑ – 2 (1 female, 1 male) 2 (1 female, 1 male)
Group 3 ↑ ↓ 4 (3 female, 1 male) 1 (1 female, 0 male)
Group 4 – ↑ 2 (0 female, 2 male) 2 (2 female, 0 male)
Group 5 – – 3 (2 female, 1 male) 4 (2 female, 2 male)
Group 6 – ↓ - 3 (2 female, 1 male)
Group 7 ↓ ↑ - 2 (1 female, 1 male)
Group 8 ↓ – - -
Group 9 ↓ ↓ - -

Figure 2 depicts the overview of group-averaged changes in cerebral hemodynamics
and systemic physiology based on the first three common [O2Hb] patterns at the PFC and
VC evoked by the CLE-VFT. Considering the first group (most common pattern) of both
colors, the color-dependent changes were only found in HR, which increased during the
blue light and was almost constant during the red light exposure.

An increase in SCL and a decrease in PETCO2 were observed for almost all groups
independent of the color of light. Apart from fNIRS signals, which were statistically
significantly correlated with [O2Hb] in the PFC, we found that SpO2 and MAP were
positively correlated with [O2Hb] at the PFC (SpO2: r = 0.372, p = 0.005; MAP: r = 0.583,
p < 0.001) independent of the light’s color and classification of the subjects (Figure 3). In
the fifth group of both lighting conditions, color-dependent changes in HR and RR during
the CLE-VFT could be observed. HR and RR increased and decreased, respectively, during
blue light exposure, while both were constant during red light exposure. Blue light elicited
a significant increase in PRQ compared to red light.
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Figure 2. Subgroup analysis (the first three common patterns) of cerebral hemodynamics and systemic physiological
parameters evoked by the CLE (blue vs. red light) and VFT. The red and blue shaded areas represent the task/stimulation
periods during which the subjects were exposed to the respective colors. Median ± standard error of median (SEM) are
shown.

Figure 3. Scatter plots displaying ∆[O2Hb] at the PFC and VC vs. other systemic physiological parameters during the
CLE-VFT phase at the individual level independent of the color of light. The linear fit is presented for pairs with a significant
correlation. The grey shaded areas show 95% of confidence intervals.

3.2. Laterality of Cerebral Activity Changes

Boxplots of ∆StO2 values for the left and right VC and PFC and for both conditions
(red and blue) during the CLE-VFT were depicted in Figure 4a,b. Evoked changes of StO2



Brain Sci. 2021, 11, 54 7 of 16

were generally higher for the blue light compared to the red light at the VC (p < 0.05; effect
size (Cohen’s d): d = 0.4). Oxygenation response to the CLE-VFT for blue light was bilateral
and symmetrical at the PFC, while relatively greater left- than right-hemispheric activation
was observed for the red light exposure (p < 0.04; d = 0.3).

Figure 4. Evoked changes of StO2 at the left and right (a) VC and (b) PFC for the blue and red light exposure during the
CLE-VFT; (c) Effects of the CLE on the task performance of the subjects. The asterisks indicate the level of significance
(p < 0.05, Wilcoxon signed-rank test).

3.3. Task Performance

Subjects articulated 56.5 ± 15.1 (mean ± SD; range: 23−100) correct nouns during the
blue light exposure and 57.9± 11.6 (range: 26−77) during red light exposure. No significant
difference in the task performance was found between the blue and red light exposure, and
regardless of the color, subjects reached an average number of 57.2 ± 13.4 correct words.
This number was taken as a threshold value to classify subjects into two groups (moderate
vs. excellent performers). We found that the number of excellent performers during red
light exposure was remarkably higher compared to the number of moderate performers,
while no difference in the performance of both groups was observed during blue light
(Figure 4c). Moreover, there was a significant difference between excellent performers
during blue light versus red light conditions. In other words, the difference between the
sample standard deviation of excellent performer groups under the influence of blue and
red light is big enough to be statistically significant (F-Test: 3.72, p = 0.015).

4. Discussion
4.1. Prefrontal Cerebral Oxygenation Asymmetry during the Red Light Exposure

The lateralization of brain function is a propensity for some neural functions or cogni-
tive processes specialized to one side of the cortex or the other. Numerous studies have
provided valuable insights into the cerebral asymmetry of the human brain cortices [67–69].
In particular, the frontal lobe has increasingly become a special region of interest. Frontal
cerebral asymmetry of resting-state brain activity has been explained using the approach-
withdrawal model, where the higher relative leftward frontal activity is associated with
appetitive motivation and approach-related affect (positive affect), while the rightward
frontal activity is related to behavioral inhibition and withdrawal-related affect (negative
affect) [51,70–72]. In the present study, we show that during the CLE-VFT, red light caused
higher oxygenation in the left PFC compared to the right. The left relative to right frontal
cortical activation during the red light might be attributed to greater positive affect, accord-
ing to the approach-withdrawal model. Interestingly, we also found that the number of
excellent performers during the red light exposure was remarkably higher than the number
of moderate performers. In other words, red light led to better performance of subjects in
the VFT, which showed its impact on leftward prefrontal lateralization. Our finding (that
there is a positive correlation between the number of excellent performers and relative
leftward PFC activity) is in accordance with previous research [42] which concluded that
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during the VFT, subjects with excellent task performance showed a left-dominated dorsolat-
eral frontal asymmetry, while moderate performers showed a right-dominated frontopolar
asymmetry [42]. Moreover, slightly better VFT performance with red as compared to blue
light exposure is in line with many color and colored light studies which have proposed
that red improves task performance in comparison with other colors [73–77]. In particular,
red enhances the performance for “overlearned motor”, “proofreading”, “target shooting”,
and “basic strength” tasks [76,78–80]. It has been demonstrated that red facilitates perfor-
mance on detail-oriented tasks that require concentration and careful attention, while blue
improves performance on creative tasks [80,81]. It was also presented that a low-demand
task worsens performance in blue rather than red environments [75]. Beyond task type,
other factors, including the subject’s emotional state, subject’s personality, subject’s color
preferences, and the subject’s culture, may also influence cognitive performance. For
example, better performances in color conditions lead to higher arousal [82]. In another
study, the impact of color depended on personality [83]. For example, high screeners, i.e.,
people who have a natural tendency to effectively reduce the complexity of an environment,
performed better in a red-painted office, whereas low screeners benefited from blue-green
office spaces [83].

4.2. Other Patterns As the Typical Hemodynamic Response Pattern were Observed in Half of the
Subjects

We selected [O2Hb] as a marker to classify subjects into different groups. Compared to
[HHb], this parameter is a more sensitive marker of cerebral blood flow (CBF) changes [49,
84]. Besides, it has an acceptable high reproducibility, as well as a higher signal-to-noise
ratio in comparison with the [HHb] signal [49,85,86].

Cognitive activation normally leads to an increase in [O2Hb] and a decrease in [HHb],
which is known as a typical hemodynamic response pattern. Despite this typical pattern
normally observed at the group level, our subgroup analysis showed that this pattern
was found in approximately 50% of cases (blue: 14 out of 25 cases, 56%; red: 12 out
of 26 cases, 46%). The remaining subjects showed different cortical activation patterns.
In total, five and seven different hemodynamic response patterns were detected in the
subgroup analysis of the blue and red light exposure, respectively. We already reported in
another study that the blue light exposure, without any cognitive test, led to 8 different
hemodynamic response patterns (n = 32, age: 23.8 ± 2.2, 15 min blue light exposure at 120
lux illuminance) [47]. A possible explanation for the lower number of classified groups
in this experiment (compared to the previous research [47]) could be that in this study, it
is very likely that the attention of the subjects was mainly focused on the VFT and the
stimulating impact of CLE decreases when the brain is already involved in a challenging
VFT condition. Therefore, the more prominent impact of VFT compared to CLE caused
less variety of hemodynamic response patterns.

We also found that an increase and a decrease in [O2Hb] at the PFC and VC, respec-
tively, was the second most common pattern during blue light, which is interestingly in
line with our previous study [47]. Sakatani et al. also observed three different patterns of
fNIRS parameter changes during a mental stress task [87]. They found that the frequency
of the typical cortical activation response in a younger group (n = 24, age: 21.3 ± 0.9, 80%
of subjects) was noticeably higher than in an older group (n = 11, age: 56.9 ± 4.2, 55%
of subjects). Moreover, Quaresima and Ferrari reported that the typical hemodynamic
response to the VFT was observed in only 4 out of 8 cases [45]. Consequently, based on
the results of this research and the above-mentioned studies, it is clear that in spite of the
typical cortical activation response (normally observed at the group-level), not all subjects
react the same, and atypical changes in fNIRS signals can also be detected. One possible
explanation for intersubject-variability of the responses is the fact that the environment
and certain situational variables may influence cortical activation response. The depen-
dence of cerebral parameters on several factors, including seasonal changes, time of day,
temperature, mood, and chronotype, was investigated in detail in our recent paper [51].
Briefly, we showed that absolute values of StO2 during the resting state were not correlated
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with season and subjects’ mood, but with the time of day and subjects chronotype [51].
Furthermore, we observed that frontal cerebral oxygenation asymmetry was correlated
with the season and room temperature, but not dependent on subjects chronotype [51].
For this study, it was tried to keep all the experimental conditions constant. For example,
two factors, including the date and time of participation, were precisely controlled for
each subject’s two participations. In terms of lighting conditions, all subjects experienced
the same situation at least one h before the measurement. All measurements were also
carried out in a time period from late August to early September, and the room temperature
was almost constant (range: 22.4 ◦C to 22.9 ◦C). Therefore, in the current study, it seems
that situational variables had minimal effects on the intersubject-variability of cerebral
hemodynamic responses. However, atypical cortical activation responses can be triggered
by diverse neuroanatomy, partial volume effects, variations in CBF, and systemic physiol-
ogy [47–49]. For an in-depth explanation of the reasons for atypical pattern occurrence, the
readers are kindly directed to Holper et al. [46].

4.3. SpO2 and MAP are Positively Correlated with [O2Hb] at the PFC

Different physiological sources may cause false-positives and false-negatives in fNIRS
signals [88]. The recorded physiological signals, thus, can be used to regress out the
components of systemic physiological signals from the brain signals measured by fNIRS.
These include changes in blood pressure parameters, PETCO2, SpO2, and activity of the
sympathetic nervous system [50]. It is also known that the systemic parameters are
interrelated with the metabolic changes in the brain [51–53], and atypical changes in
fNIRS signals can be triggered by systemic physiological factors [50,88,89]. Therefore, it is
essential to employ the SPA-fNIRS approach to ensure the correct interpretation of changes
in cerebral hemodynamics and oxygenation.

Considering the first group (i.e., the most common pattern) for both light colors (blue
and red), we found color-dependent changes in HR, i.e., an increase during blue and no
change during red. Although not all subjects showed an increase in HR during blue light,
the increase found in most cases may be associated with the autonomous nervous system
responding to light with an increase in sympathetic tone (short-wavelength light) [90].
Besides, independent of the color type and classification of the subjects, a decrease in
PETCO2 and an increase in SCL were observed for all groups, which once again shows
that the effects of VFT on these two physiological signals were more dominant than the
CLE effects. The decline in PETCO2 during the CLE-VFT is in line with the research that
the effect of different speech tasks on PETCO2 was studied [91]. The lower CO2 pressure
is most likely attributed to the changes in breathing (hyperventilation) during the VFT.
The increase in SCL can also be caused by various factors, namely, stress, which can be
triggered by challenging VFT.

We found that SpO2 was positively correlated with [O2Hb] at the PFC independent
of color type and classification of the subjects. Although several studies demonstrated
a significant positive correlation between SpO2 and cerebral (or somatic) tissue oxygen
saturation [92–96], it is to the best of our knowledge that this is the first study showing a
positive correlation between SpO2 and [O2Hb] at the PFC during a functional paradigm.
[O2Hb], measured by fNIRS, mainly reflects O2Hb in small arteries, capillaries, and veins
in brain tissue [97]. Lindauer et al. stated that variations in SpO2, as well as other factors,
including changes in CBF, intracranial pressure, and systemic pressure, may be the reasons
for atypical cortical activation responses [48]. The MAP may also be accounted as a
biomarker describing the [O2Hb] changes at the PFC (positively correlated with [O2Hb] at
the PFC). This should be interpreted with care, since there is one exception for group 5 of the
blue light (Figure 2), where [O2Hb] was constant and MAP increased significantly. This can
be attributed to the small number of subjects allocated to this group of blue light exposure.
A large number of subjects may have revealed a correlation between MAP and [O2Hb]
in this group. MAP is an important parameter used to avoid false-positive results and to
identify real cerebral hemodynamics and oxygenation changes [88]. A correlation between
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MAP and [O2Hb] (or StO2) has been reported in various functional studies [89,98,99].
Tsubaki et al. investigated the relationships between NIRS signals and MAP during
exercises on a bicycle ergometer [100]. They found highly significant correlations between
MAP and [O2Hb] during warm-up and at workloads corresponding to 30 and 50% of
peak oxygen consumption [100]. In another recent study, in contrast, a non-significant
association between StO2 and MAP was observed in critically ill adults [101].

Considering the fifth group of both conditions, there were color-dependent changes in
HR and RR during the CLE-VFT. HR and RR increased and decreased, respectively, during
the blue light, while both were constant during the red light. It has been reported elsewhere
that colored light had no effects on RR [102,103]. Because of the large intersubject variation
caused by subjects having different RR, this parameter should always be interpreted with
caution. We also found that the blue light exposure evoked a significant increase in the PRQ
compared to red light in the fifth group of both conditions. This can be explained mostly
by an increase in HR (or decrease in RR). The PRQ is a useful and unitless parameter to
attain the overall state of human physiology [54]. No statistically significant changes in the
PRQ in response to the CLE were observed at the group level of the study conducted by
Edelhäuser et al. [102]. However, in a study of short-term CLE conducted by our group,
blue light exposure caused a decrease in the PRQ [53].

In general, there are three possible explanations for the observed correlation between
fNIRS signals, namely, [O2Hb], and systemic physiology, such as SpO2 and MAP. (i) The fNIRS
signals of the brain are caused by changes in systemic physiology. (ii) The systemic physiological
changes are caused by brain activity. (iii) The fNIRS signals reflect indeed NVC only, and the
correlation we found between [O2Hb] and systemic physiology has no causal relation.

One possibility for the first explanation is the fact that low-frequency changes
(e.g., Mayer waves and task-evoked changes, due to systemic physiological activity) were
not removed by the filtering, and hence, they are visible in both the systemic and cerebral
variables. Although it is often assumed that fNIRS purely detects the cerebral-evoked-
neural response in the brain, in reality, each fNIRS signal contains different components [88].
Still, in our opinion, the appropriate explanation relies probably on a mixture of the three
above-mentioned effects, i.e., there is a complex interrelation of systemic physiology and
brain activity. In our data, this is visible by—on the one hand—a slightly greater change
in the VC compared to the PFC, indicating that fNIRS detects brain activity. On the other
hand, the correlations between fNIRS and systemic physiological signals indicate that the
fNRIS signals are also influenced by systemic changes.

4.4. How does [O2Hb] Behave During Continuous Long-Term Stimulation?

Further investigating long-term colored light exposure is a crucial strategy needed to
study and understand human physiology, especially in our modern society, when we are
extensively exposed to different colored light. So far, few studies have investigated how
brain activity changes during continuous long-term colored light stimulation [104,105]. It
was shown that there is a habituation effect in the brain’s activity, and this habituation is
reflected as decreased oxygenation during the visual stimulation [106,107]. On the other
hand, oxygenation may remain elevated (plateau) during long visual stimulation, decreas-
ing only when the flow rate decreases, attributing to neuronal habituation effects [108].
One study using fNIRS also indicated that during continuous visual stimulation, [O2Hb]
increased during the first 19 s of stimulation and reached a plateau, and remained con-
stantly elevated during the entire 5 min of the activation period [109]. In our study, both
above-mentioned effects are visible, but they apply to different groups of subjects. For
example, in the first group, during the blue CLE-VFT, the [O2Hb] at both cortices decreased,
therefore, indicating habituation. In the third group, during the same condition, [O2Hb]
reached a plateau during the CLE-VFT and even remained elevated at the beginning of
the recovery phase. Similar trends are also visible during red CLE in group 1. The MAP
shows similar trends during blue CLE, i.e., habituation in group1 and a plateau in group
3. Interestingly, PETCO2 shows a decrease (away from baseline) in group 1 during blue
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CLE, while it remains mostly unchanged in group 3. This may indicate that the habituation
seen in group 1 is merely due to a CO2 response. Thus, our study found changes in sys-
temic physiology that impact the fNIRS signals and strongly enhance the understanding of
changes in cerebral hemodynamics and oxygenation. Moreover, it is difficult to provide
a concrete interpretation of previous fNIRS studies carried out without measurements of
systemic physiology. Therefore, it is our opinion that measurements of systemic physiology
along with cerebral hemodynamics are essential and should be carefully considered when
performing neuroimaging studies.

5. Conclusions

We found that red light exposure led to better performance of subjects taking the VFT,
while simultaneously showing a physiological response of higher oxygenation in the left
PFC than the right.

Furthermore, we demonstrated that stimulus-evoked changes in cerebral hemody-
namics, oxygenation, and systemic physiological activity generally show large intersubject
variability. This means that each subject displayed individual responses to the experimental
paradigm. A group-level analysis, although commonly used, only reveals the most promi-
nent tendency between subjects: It is unable to account for the individual variability and
consequently impedes a comprehensive and correct conclusion. Therefore, the subgroup
or subject-specific analysis is needed to completely understand the effects of a CLE-VFT.
Despite the typical hemodynamic response pattern (increase in [O2Hb] and decrease in
[HHb]) normally observed at the group level, the subgroup analysis showed that this
pattern was found in only ~50% of the cases and the number of these typical hemodynamic
response patterns was different between the red and blue light exposure. Our systemic
physiology augmented fNIRS (SPA-fNIRS) approach enabled us to determine that SpO2
and MAP correlate with the changes in [O2Hb] at the PFC during the CLE-VFT, i.e., that
systemic and cerebral physiology interact. This shows the importance of assessing systemic
physiology in addition to neuroimaging to enable a comprehensive understanding of
changes in cerebral hemodynamics and oxygenation. It also demonstrates that individuals
respond differently to colored light not only on the cerebral, but also on the systemic level.
This individual variability needs to be taken into account, in particular, when considering
the influence of colored light on daily human life, e.g., at the workplace or in public places.

Author Contributions: U.W., H.Z., and F.S. designed the study. H.Z. performed data processing and
data visualization. H.Z., F.S., and UW contributed to data analysis and interpretation. H.Z., F.S. and
U.W. wrote the first draft of the manuscript. F.S. and U.W. All authors have read and agreed to the
published version of the manuscript.

Funding: The financial support of the Software AG Foundation (grant no P12117) and the Christophorus
Foundation (grant no 253CST, 355CST) is gratefully acknowledged.

Institutional Review Board Statement: The study was conducted in accordance with the World
Medical Association Declaration of Helsinki, and the protocol was approved by the Ethics Committee
of the Canton of Bern (Project identifier: COLOR10; Basec-Nr. 2016-00674)

Informed Consent Statement: Written informed consent was obtained prior to the measurements.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Acknowledgments: We thank our students for their contribution to the measurements and our
subjects for participating in this study. We also thank Oliver Kress, for his valuable comments and
proofreading of the manuscript.

Conflicts of Interest: The authors declare no potential conflicts of interest with respect to the research,
authorship, and/or publication of this article.



Brain Sci. 2021, 11, 54 12 of 16

References
1. Vandewalle, G.; Maquet, P.; Dijk, D.J. Light as a modulator of cognitive brain function. Trends Cogn. Sci. 2009, 13, 429–438.

[CrossRef] [PubMed]
2. Prayag, A.; Münch, M.; Aeschbach, D.; Chellappa, S.; Gronfier, C. Light Modulation of Human Clocks, Wake, and Sleep. Clocks

Sleep 2019, 1, 193–208. [CrossRef] [PubMed]
3. Provencio, I.; Jiang, G.; Willem, J.; Hayes, W.P.; Rollag, M.D. Melanopsin: An opsin in melanophores, brain, and eye. Proc. Natl.

Acad. Sci. USA 1998, 95, 340–345. [CrossRef] [PubMed]
4. Provencio, I.; Rodriguez, I.R.; Jiang, G.; Hayes, W.P.; Moreira, E.F.; Rollag, M.D. A novel human opsin in the inner retina. J.

Neurosci. 2000, 20, 600–605. [CrossRef]
5. Bailes, H.J.; Lucas, R.J. Human melanopsin forms a pigment maximally sensitive to blue light (λmax ≈ 479 nm) supporting

activation of Gq/11 and Gi/o signalling cascades. Proc. R. Soc. B Biol. Sci. 2013, 280, 20122987. [CrossRef]
6. Salari, V.; Scholkmann, F.; Vimal, R.L.P.; Császár, N.; Aslani, M.; Bókkon, I. Phosphenes, retinal discrete dark noise, negative

afterimages and retinogeniculate projections: A new explanatory framework based on endogenous ocular luminescence. Prog.
Retin. Eye Res. 2017, 60, 101–119. [CrossRef]

7. Vandewalle, G.; Archer, S.N.; Wuillaume, C.; Balteau, E.; Degueldre, C.; Luxen, A.; Dijk, D.-J.; Maquet, P. Effects of light on
cognitive brain responses depend on circadian phase and sleep homeostasis. J. Biol. Rhythm. 2011, 26, 249–259. [CrossRef]

8. Vandewalle, G.; Schwartz, S.; Grandjean, D.; Wuillaume, C.; Balteau, E.; Degueldre, C.; Schabus, M.; Phillips, C.; Luxen, A.;
Dijk, D.J.; et al. Spectral quality of light modulates emotional brain responses in humans. Proc. Natl. Acad. Sci. USA 2010, 107,
19549–19554. [CrossRef]

9. An, M.; Huang, J.; Shimomura, Y.; Katsuura, T. Time-of-day-dependent Effects of Monochromatic Light Exposure on Human
Cognitive Function. J. Physiol. Anthropol. 2009, 28, 217–223. [CrossRef]

10. Katsuura, T.; Yasuda, T.; Shimomura, Y.; Iwanaga, K. Effects of monochromatic light on time sense for short intervals. J. Physiol.
Anthropol. 2007, 26, 95–100. [CrossRef]

11. Killgore, W.D.S.; Dailey, N.S.; Raikes, A.C.; Vanuk, J.R.; Taylor, E.; Alkozei, A. Blue light exposure enhances neural efficiency of
the task positive network during a cognitive interference task. Neurosci. Lett. 2020, 735, 135242. [CrossRef] [PubMed]

12. Yang, W.; Jeon, J.Y. Effects of correlated colour temperature of LED light on visual sensation, perception, and cognitive performance
in a classroom lighting environment. Sustainability 2020, 12, 4051. [CrossRef]

13. Hartstein, L.E.; Durniak, M.T.; Karlicek, R.F.; Berthier, N.E. A comparison of the effects of correlated colour temperature and
gender on cognitive task performance. Light. Res. Technol. 2018, 50, 1057–1069. [CrossRef]

14. Chellappa, S.L.; Steiner, R.; Blattner, P.; Oelhafen, P.; Götz, T.; Cajochen, C. Non-visual effects of light on melatonin, alertness and
cognitive performance: Can blue-enriched light keep us alert? PLoS ONE 2011, 6, e16429. [CrossRef] [PubMed]

15. Huiberts, L.M.; Smolders, K.C.H.J.; de Kort, Y.A.W. Shining light on memory: Effects of bright light on working memory
performance. Behav. Brain Res. 2015, 294, 234–245. [CrossRef] [PubMed]

16. Rautkylä, E.; Puolakka, M.; Tetri, E.; Halonen, L. Effects of correlated colour temperature and timing of light exposure on daytime
alertness in lecture environments. J. Light Vis. Environ. 2010, 34, 59–68. [CrossRef]

17. Amunts, J.; Camilleri, J.A.; Eickhoff, S.B.; Heim, S.; Weis, S. Executive functions predict verbal fluency scores in healthy
participants. Sci. Rep. 2020, 10, 1–11. [CrossRef] [PubMed]

18. Holmlund, T.B.; Cheng, J.; Foltz, P.W.; Cohen, A.S.; Elvevåg, B. Updating verbal fluency analysis for the 21st century: Applications
for psychiatry. Psychiatry Res. 2019, 273, 767–769. [CrossRef] [PubMed]

19. McDonnell, M.; Dill, L.; Panos, S.; Amano, S.; Brown, W.; Giurgius, S.; Small, G.; Miller, K. Verbal fluency as a screening tool for
mild cognitive impairment. Int. Psychogeriatr. 2020, 32, 1055–1062. [CrossRef]

20. Sokołowski, A.; Tyburski, E.; Sołtys, A.; Karabanowicz, E. Sex Differences in Verbal Fluency among Young Adults. Adv. Cogn.
Psychol. 2020, 16, 92–102. [CrossRef]

21. Shao, Z.; Janse, E.; Visser, K.; Meyer, A.S. What do verbal fluency tasks measure? Predictors of verbal fluency performance in
older adults. Front. Psychol. 2014, 5, 772. [CrossRef] [PubMed]

22. Udina, C.; Avtzi, S.; Durduran, T.; Holtzer, R.; Rosso, A.L.; Castellano-Tejedor, C.; Perez, L.M.; Soto-Bagaria, L.; Inzitari, M.
Functional Near-Infrared Spectroscopy to Study Cerebral Hemodynamics in Older Adults During Cognitive and Motor Tasks: A
Review. Front. Aging Neurosci. 2020, 11, 367. [CrossRef] [PubMed]

23. Bonetti, L.V.; Hassan, S.A.; Lau, S.T.; Melo, L.T.; Tanaka, T.; Patterson, K.K.; Reid, W.D. Oxyhemoglobin changes in the prefrontal
cortex in response to cognitive tasks: A systematic review. Int. J. Neurosci. 2019, 129, 195–203. [CrossRef] [PubMed]

24. Husain, S.F.; Tang, T.B.; Yu, R.; Tam, W.W.; Tran, B.; Quek, T.T.; Hwang, S.H.; Chang, C.W.; Ho, C.S.; Ho, R.C. Cortical
haemodynamic response measured by functional near infrared spectroscopy during a verbal fluency task in patients with major
depression and borderline personality disorder. EBioMedicine 2020, 51, 102586. [CrossRef] [PubMed]

25. Onishi, A.; Furutani, H.; Hiroyasu, T.; Hiwa, S. An fNIRS study of brain state during letter and category fluency tasks. J. Robot.
Netw. Artif. Life 2019, 5, 228–231. [CrossRef]

26. Schecklmann, M.; Ehlis, A.C.; Plichta, M.M.; Romanos, J.; Heine, M.; Boreatti-Hümmer, A.; Jacob, C.; Fallgatter, A.J. Diminished
prefrontal oxygenation with normal and above-average verbal fluency performance in adult ADHD. J. Psychiatr. Res. 2009, 43,
98–106. [CrossRef]

http://doi.org/10.1016/j.tics.2009.07.004
http://www.ncbi.nlm.nih.gov/pubmed/19748817
http://doi.org/10.3390/clockssleep1010017
http://www.ncbi.nlm.nih.gov/pubmed/32342043
http://doi.org/10.1073/pnas.95.1.340
http://www.ncbi.nlm.nih.gov/pubmed/9419377
http://doi.org/10.1523/JNEUROSCI.20-02-00600.2000
http://doi.org/10.1098/rspb.2012.2987
http://doi.org/10.1016/j.preteyeres.2017.07.001
http://doi.org/10.1177/0748730411401736
http://doi.org/10.1073/pnas.1010180107
http://doi.org/10.2114/jpa2.28.217
http://doi.org/10.2114/jpa2.26.95
http://doi.org/10.1016/j.neulet.2020.135242
http://www.ncbi.nlm.nih.gov/pubmed/32652208
http://doi.org/10.3390/su12104051
http://doi.org/10.1177/1477153517721728
http://doi.org/10.1371/journal.pone.0016429
http://www.ncbi.nlm.nih.gov/pubmed/21298068
http://doi.org/10.1016/j.bbr.2015.07.045
http://www.ncbi.nlm.nih.gov/pubmed/26215575
http://doi.org/10.2150/jlve.34.59
http://doi.org/10.1038/s41598-020-65525-9
http://www.ncbi.nlm.nih.gov/pubmed/32636406
http://doi.org/10.1016/j.psychres.2019.02.014
http://www.ncbi.nlm.nih.gov/pubmed/31207864
http://doi.org/10.1017/S1041610219000644
http://doi.org/10.5709/acp-0288-1
http://doi.org/10.3389/fpsyg.2014.00772
http://www.ncbi.nlm.nih.gov/pubmed/25101034
http://doi.org/10.3389/fnagi.2019.00367
http://www.ncbi.nlm.nih.gov/pubmed/32038224
http://doi.org/10.1080/00207454.2018.1518906
http://www.ncbi.nlm.nih.gov/pubmed/30173620
http://doi.org/10.1016/j.ebiom.2019.11.047
http://www.ncbi.nlm.nih.gov/pubmed/31877417
http://doi.org/10.2991/jrnal.k.190220.003
http://doi.org/10.1016/j.jpsychires.2008.02.005


Brain Sci. 2021, 11, 54 13 of 16

27. Tupak, S.V.; Badewien, M.; Dresler, T.; Hahn, T.; Ernst, L.H.; Herrmann, M.J.; Fallgatter, A.J.; Ehlis, A.C. Differential prefrontal
and frontotemporal oxygenation patterns during phonemic and semantic verbal fluency. Neuropsychologia 2012, 50, 1565–1569.
[CrossRef]

28. Matsuo, K.; Watanabe, A.; Onodera, Y.; Kato, N.; Kato, T. Prefrontal hemodynamic response to verbal-fluency task and
hyperventilation in bipolar disorder measured by multi-channel near-infrared spectroscopy. J. Affect. Disord. 2004, 82, 85–92.
[CrossRef]

29. Takahashi, T.; Takikawa, Y.; Kawagoe, R.; Shibuya, S.; Iwano, T.; Kitazawa, S. Influence of skin blood flow on near-infrared
spectroscopy signals measured on the forehead during a verbal fluency task. Neuroimage 2011, 57, 991–1002. [CrossRef]

30. Hock, C.; Villringer, K.; Muller-Spahn, F.; Wenzel, R.; Heekeren, H.; Schuh-Hofer, S.; Hofmann, M.; Minoshima, S.; Schwaiger, M.;
Dirnagl, U.; et al. Decrease in parietal cerebral hemoglobin oxygenation during performance of a verbal fluency task in patients
with Alzheimer’s disease monitored by means of near-infrared spectroscopy NIRS—Correlation with simultaneous rCBF-PET
measurements. Brain Res. 1997, 755, 293–303. [CrossRef]

31. Tsujii, T.; Masuda, S.; Yamamoto, E.; Ohira, T.; Akiyama, T.; Takahashi, T.; Watanabe, S. Effects of sedative and nonsedative
antihistamines on prefrontal activity during verbal fluency task in young children: A near-infrared spectroscopy (NIRS) study.
Psychopharmacology 2009, 207, 127–132. [CrossRef]

32. Scholkmann, F.; Kleiser, S.; Metz, A.J.; Zimmermann, R.; Mata Pavia, J.; Wolf, U.; Wolf, M. A review on continuous wave functional
near-infrared spectroscopy and imaging instrumentation and methodology. Neuroimage 2014, 85, 6–27. [CrossRef] [PubMed]

33. Pinti, P.; Tachtsidis, I.; Hamilton, A.; Hirsch, J.; Aichelburg, C.; Gilbert, S.; Burgess, P.W. The present and future use of functional
near-infrared spectroscopy (fNIRS) for cognitive neuroscience. Ann. N. Y. Acad. Sci. 2020, 1464, 5. [CrossRef] [PubMed]

34. Herold, F.; Gronwald, T.; Scholkmann, F.; Zohdi, H.; Wyser, D.; Müller, N.G.; Hamacher, D. New Directions in Exercise Prescription:
Is There a Role for Brain-Derived Parameters Obtained by Functional Near-Infrared Spectroscopy? Brain Sci. 2020, 10, 342. [CrossRef]
[PubMed]

35. Scholkmann, F.; Klein, S.D.; Gerber, U.; Wolf, M.; Wolf, U. Cerebral hemodynamic and oxygenation changes induced by inner
and heard speech: A study combining functional near-infrared spectroscopy and capnography. J. Biomed. Opt. 2014, 19, 017002.
[CrossRef]

36. Thranitz, J.; Knauth, M.; Heldmann, M.; Küchler, J.; Münte, T.F.; Royl, G. Elevation of intracranial pressure affects the relationship
between hemoglobin concentration and neuronal activation in human somatosensory cortex. Hum. Brain Mapp. 2020, 41,
2702–2716. [CrossRef]

37. Schecklmann, M.; Ehlis, A.C.; Plichta, M.M.; Fallgatter, A.J. Functional near-infrared spectroscopy: A long-term reliable tool for
measuring brain activity during verbal fluency. Neuroimage 2008, 43, 147–155. [CrossRef]

38. Herrmann, M.J.; Ehlis, A.C.; Fallgatter, A.J. Frontal activation during a verbal-fluency task as measured by near-infrared
spectroscopy. Brain Res. Bull. 2003, 61, 51–56. [CrossRef]

39. Kameyama, M.; Fukuda, M.; Uehara, T.; Mikuni, M. Sex and age dependencies of cerebral blood volume changes during cognitive
activation: A multichannel near-infrared spectroscopy study. Neuroimage 2004, 22, 1715–1721. [CrossRef]

40. Watanabe, A.; Matsuo, K.; Kato, N.; Kato, T. Cerebrovascular Response to Cognitive Tasks and Hyperventilation Measured by
Multi-Channel Near-Infrared Spectroscopy. J. Neuropsychiatry Clin. Neurosci. 2003, 15, 442–449. [CrossRef]

41. Heinzel, S.; Metzger, F.G.; Ehlis, A.C.; Korell, R.; Alboji, A.; Haeussinger, F.B.; Hagen, K.; Maetzler, W.; Eschweiler, G.W.; Berg, D.;
et al. Aging-related cortical reorganization of verbal fluency processing: A functional near-infrared spectroscopy study. Neurobiol.
Aging 2013, 34, 439–450. [CrossRef] [PubMed]

42. Papousek, I.; Schulter, G. Manipulation of frontal brain asymmetry by cognitive tasks. Brain Cogn. 2004, 54, 43–51. [CrossRef]
43. Herrmann, M.J.; Walter, A.; Ehlis, A.C.; Fallgatter, A.J. Cerebral oxygenation changes in the prefrontal cortex: Effects of age and

gender. Neurobiol. Aging 2006, 27, 888–894. [CrossRef] [PubMed]
44. Holper, L.; Aleksandrowicz, A.; Müller, M.; Ajdacic-Gross, V.; Haker, H.; Fallgatter, A.J.; Hagenmuller, F.; Rössler, W.; Kawohl, W.

Brain correlates of verbal fluency in subthreshold psychosis assessed by functional near-infrared spectroscopy. Schizophr. Res.
2015, 168, 23–29. [CrossRef] [PubMed]

45. Quaresima, V.; Ferrari, M.; Torricelli, A.; Spinelli, L.; Pifferi, A.; Cubeddu, R. Bilateral prefrontal cortex oxygenation responses to a
verbal fluency task: A multichannel time-resolved near-infrared topography study. J. Biomed. Opt. 2005, 10, 011012. [CrossRef]

46. Holper, L.; Shalóm, D.E.; Wolf, M.; Sigman, M. Understanding inverse oxygenation responses during motor imagery: A functional
near-infrared spectroscopy study. Eur. J. Neurosci. 2011, 33, 2318–2328. [CrossRef]

47. Zohdi, H.; Scholkmann, F.; Wolf, U. Long-Term Blue Light Exposure Changes Frontal and Occipital Cerebral Hemodynamics:
Not all Subjects React the Same. Adv. Exp. Med. Biol. 2021, 1269.

48. Lindauer, U.; Dirnagl, U.; Füchtemeier, M.; Böttiger, C.; Offenhauser, N.; Leithner, C.; Royl, G. Pathophysiological interference
with neurovascular coupling—When imaging based on hemoglobin might go blind. Front. Neuroenerg. 2010, 2, 25. [CrossRef]

49. Herold, F.; Wiegel, P.; Scholkmann, F.; Müller, N. Applications of Functional Near-Infrared Spectroscopy (fNIRS) Neuroimaging
in Exercise–Cognition Science: A Systematic, Methodology-Focused Review. J. Clin. Med. 2018, 7, 466. [CrossRef]

50. Zimeo Morais, G.A.; Scholkmann, F.; Balardin, J.B.; Furucho, R.A.; de Paula, R.C.V.; Biazoli, C.E.; Sato, J.R. Non-neuronal evoked
and spontaneous hemodynamic changes in the anterior temporal region of the human head may lead to misinterpretations of
functional near-infrared spectroscopy signals. Neurophotonics 2017, 5, 011002. [CrossRef]

http://doi.org/10.1016/j.neuropsychologia.2012.03.009
http://doi.org/10.1016/j.jad.2003.10.004
http://doi.org/10.1016/j.neuroimage.2011.05.012
http://doi.org/10.1016/S0006-8993(97)00122-4
http://doi.org/10.1007/s00213-009-1640-2
http://doi.org/10.1016/j.neuroimage.2013.05.004
http://www.ncbi.nlm.nih.gov/pubmed/23684868
http://doi.org/10.1111/nyas.13948
http://www.ncbi.nlm.nih.gov/pubmed/30085354
http://doi.org/10.3390/brainsci10060342
http://www.ncbi.nlm.nih.gov/pubmed/32503207
http://doi.org/10.1117/1.JBO.19.1.017002
http://doi.org/10.1002/hbm.24973
http://doi.org/10.1016/j.neuroimage.2008.06.032
http://doi.org/10.1016/S0361-9230(03)00066-2
http://doi.org/10.1016/j.neuroimage.2004.03.050
http://doi.org/10.1176/jnp.15.4.442
http://doi.org/10.1016/j.neurobiolaging.2012.05.021
http://www.ncbi.nlm.nih.gov/pubmed/22770542
http://doi.org/10.1016/S0278-2626(03)00258-6
http://doi.org/10.1016/j.neurobiolaging.2005.04.013
http://www.ncbi.nlm.nih.gov/pubmed/16023767
http://doi.org/10.1016/j.schres.2015.07.043
http://www.ncbi.nlm.nih.gov/pubmed/26277535
http://doi.org/10.1117/1.1851512
http://doi.org/10.1111/j.1460-9568.2011.07720.x
http://doi.org/10.3389/fnene.2010.00025
http://doi.org/10.3390/jcm7120466
http://doi.org/10.1117/1.NPh.5.1.011002


Brain Sci. 2021, 11, 54 14 of 16

51. Zohdi, H.; Scholkmann, F.; Wolf, U. Frontal cerebral oxygenation asymmetry: Intersubject variability and dependence on systemic
physiology, season, and time of day. Neurophotonics 2020, 7, 025006. [CrossRef] [PubMed]

52. Nasseri, N.; Caicedo, A.; Scholkmann, F.; Zohdi, H.; Wolf, U. Impact of Changes in Systemic Physiology on fNIRS/NIRS Signals:
Analysis Based on Oblique Subspace Projections Decomposition. Adv. Exp. Med. Biol. 2018, 1072, 119–125. [PubMed]

53. Scholkmann, F.; Hafner, T.; Metz, A.J.; Wolf, M.; Wolf, U. Effect of short-term colored-light exposure on cerebral hemodynamics
and oxygenation, and systemic physiological activity. Neurophotonics 2017, 4, 045005. [CrossRef] [PubMed]

54. Scholkmann, F.; Wolf, U. The Pulse-Respiration Quotient: A Powerful but Untapped Parameter for Modern Studies about Human
Physiology and Pathophysiology. Front. Physiol. 2019, 10, 1–18. [CrossRef]

55. Scholkmann, F.; Zohdi, H.; Wolf, U. The resting-state pulse-respiration quotient of humans: Lognormally distributed and centred
around a value of four. Physiol. Res. 2019, 68, 1027–1032. [CrossRef]

56. Jasper, H.H. The ten-twenty electrode system of the International Federation. Electroencephalogr. Clin. Neurophysiol. 1958, 10, 370–375.
57. Fantini, S.; Sassaroli, A. Frequency-Domain Techniques for Cerebral and Functional Near-Infrared Spectroscopy. Front. Neurosci.

2020, 14, 300. [CrossRef]
58. Scholkmann, F.; Spichtig, S.; Muehlemann, T.; Wolf, M. How to detect and reduce movement artifacts in near-infrared imaging

using moving standard deviation and spline interpolation. Physiol. Meas. 2010, 31, 649–662. [CrossRef]
59. Metz, A.J.; Klein, S.D.; Scholkmann, F.; Wolf, U. Physiological Effects of Continuous Colored Light Exposure on Mayer Wave

Activity in Cerebral Hemodynamics: A Functional Near-Infrared Spectroscopy (fNIRS) Study. In Oxygen Transport to Tissue
XXXIX; Springer: Berlin/Heidelberg, Germany, 2017; pp. 277–283.

60. Metz, A.J.; Klein, S.D.; Scholkmann, F.; Wolf, U. Continuous coloured light altered human brain haemodynamics and oxygenation
assessed by systemic physiology augmented functional near-infrared spectroscopy. Sci. Rep. 2017, 7, 10027. [CrossRef]

61. Jahani, S.; Setarehdan, S.K.; Boas, D.A.; Yücel, M.A. Motion artifact detection and correction in functional near-infrared spectroscopy:
A new hybrid method based on spline interpolation method and Savitzky–Golay filtering. Neurophotonics 2018, 5, 015003. [CrossRef]

62. Pinti, P.; Scholkmann, F.; Hamilton, A.; Burgess, P.; Tachtsidis, I. Current Status and Issues Regarding Pre-processing of fNIRS
Neuroimaging Data: An Investigation of Diverse Signal Filtering Methods within a General Linear Model Framework. Front.
Hum. Neurosci. 2019, 12, 505. [CrossRef] [PubMed]

63. Chen, W.L.; Wagner, J.; Heugel, N.; Sugar, J.; Lee, Y.W.; Conant, L.; Malloy, M.; Heffernan, J.; Quirk, B.; Zinos, A.; et al. Functional
Near-Infrared Spectroscopy and Its Clinical Application in the Field of Neuroscience: Advances and Future Directions. Front.
Neurosci. 2020, 14, 724. [CrossRef]

64. Franceschini, M.A.; Fantini, S.; Paunescu, L.A.; Maier, J.S.; Gratton, E. Influence of a superficial layer in the quantitative
Spectroscopic Study of Strongly Scattering Media. Appl. Opt. 1998, 37, 7447–7458. [CrossRef] [PubMed]

65. Benedek, M.; Kaernbach, C. Decomposition of skin conductance data by means of nonnegative deconvolution. Psychophysiology
2010, 47, 647–658. [CrossRef] [PubMed]

66. Benedek, M.; Kaernbach, C. A continuous measure of phasic electrodermal activity. J. Neurosci. Methods 2010, 190, 80–91.
[CrossRef]

67. Bryden, M.P. Laterality Functional Asymmetry in the Intact Brain; Elsevier: Amsterdam, The Netherlands, 2012.
68. Ocklenburg, S.; Güntürkün, O. The Lateralized Brain: The Neuroscience and Evolution of Hemispheric Asymmetries; Academic Press:

Cambridge, MA, USA, 2017.
69. Güntürkün, O.; Ströckens, F.; Ocklenburg, S. Brain lateralization: A comparative perspective. Physiol. Rev. 2020, 100, 1019–1063.

[CrossRef]
70. Gable, P.A.; Neal, L.B.; Threadgill, A.H. Regulatory behavior and frontal activity: Considering the role of revised-BIS in relative

right frontal asymmetry. Psychophysiology 2018, 55, e12910. [CrossRef]
71. Reznik, S.J.; Allen, J.J.B. Frontal asymmetry as a mediator and moderator of emotion: An updated review. Psychophysiology 2018,

55, e12965. [CrossRef]
72. Allen, J.J.B.; Keune, P.M.; Schönenberg, M.; Nusslock, R. Frontal EEG alpha asymmetry and emotion: From neural underpinnings

and methodological considerations to psychopathology and social cognition. Psychophysiology 2018, 55, e13028. [CrossRef]
73. Kwallek, N.; Lewis, C.M. Effects of environmental colour on males and females: A red or white or green office. Appl. Ergon. 1990,

21, 275–278. [CrossRef]
74. Kwallek, N.; Lewis, C.M.; Lin-Hsiao, J.W.D.; Woodson, H. Effects of nine monochromatic office interior colors on clerical tasks

and worker mood. Color Res. Appl. 1996, 21, 448–458. [CrossRef]
75. Stone, N.J. Environmental view and color for a stimulated telemarketing task. J. Environ. Psychol. 2003, 23, 63–78. [CrossRef]
76. Elliot, A.J.; Aarts, H. Perception of the color red enhances the force and velocity of motor output. Emotion 2011, 11, 445–449.

[CrossRef] [PubMed]
77. Von Castell, C.; Stelzmann, D.; Oberfeld, D.; Welsch, R.; Hecht, H. Cognitive performance and emotion are indifferent to ambient

color. Color Res. Appl. 2018, 43, 65–74. [CrossRef]
78. Elliot, A.J.; Maier, M.A. Color Psychology: Effects of Perceiving Color on Psychological Functioning in Humans. Annu. Rev.

Psychol. 2014, 65, 95–120. [CrossRef] [PubMed]
79. Küller, R.; Mikellides, B.; Janssens, J. Color, arousal, and performance—A comparison of three experiments. Color Res. Appl. 2009,

34, 141–152. [CrossRef]

http://doi.org/10.1117/1.NPh.7.2.025006
http://www.ncbi.nlm.nih.gov/pubmed/32607390
http://www.ncbi.nlm.nih.gov/pubmed/30178333
http://doi.org/10.1117/1.NPh.4.4.045005
http://www.ncbi.nlm.nih.gov/pubmed/29181427
http://doi.org/10.3389/fphys.2019.00371
http://doi.org/10.33549/physiolres.934232
http://doi.org/10.3389/fnins.2020.00300
http://doi.org/10.1088/0967-3334/31/5/004
http://doi.org/10.1038/s41598-017-09970-z
http://doi.org/10.1117/1.NPh.5.1.015003
http://doi.org/10.3389/fnhum.2018.00505
http://www.ncbi.nlm.nih.gov/pubmed/30687038
http://doi.org/10.3389/fnins.2020.00724
http://doi.org/10.1364/AO.37.007447
http://www.ncbi.nlm.nih.gov/pubmed/18301579
http://doi.org/10.1111/j.1469-8986.2009.00972.x
http://www.ncbi.nlm.nih.gov/pubmed/20230512
http://doi.org/10.1016/j.jneumeth.2010.04.028
http://doi.org/10.1152/physrev.00006.2019
http://doi.org/10.1111/psyp.12910
http://doi.org/10.1111/psyp.12965
http://doi.org/10.1111/psyp.13028
http://doi.org/10.1016/0003-6870(90)90197-6
http://doi.org/10.1002/(SICI)1520-6378(199612)21:6&lt;448::AID-COL7&gt;3.0.CO;2-W
http://doi.org/10.1016/S0272-4944(02)00107-X
http://doi.org/10.1037/a0022599
http://www.ncbi.nlm.nih.gov/pubmed/21500913
http://doi.org/10.1002/col.22168
http://doi.org/10.1146/annurev-psych-010213-115035
http://www.ncbi.nlm.nih.gov/pubmed/23808916
http://doi.org/10.1002/col.20476


Brain Sci. 2021, 11, 54 15 of 16

80. Larionescu, V.M.; Pantelimona, M. The influence of colour on the efficiency of basketball throws. Ann. “Dunarea Jos” Univ. Galati.
Fascicle XV, Phys. Educ. Sport Manag. 2012, 1, 82–86.

81. Mehta, R.; Zhu, R.J. Blue or red? Exploring the effect of color on cognitive task performances. Science (80-) 2009, 323, 1226–1229.
[CrossRef]

82. Al-Ayash, A.; Kane, R.T.; Smith, D.; Green-Armytage, P. The influence of color on student emotion, heart rate, and performance
in learning environments. Color Res. Appl. 2016, 41, 196–205. [CrossRef]

83. Kwallek, N.; Woodson, H.; Lewis, C.M.; Sales, C. Impact of three interior color schemes on worker mood and performance
relative to individual environmental sensitivity. Color Res. Appl. 1997, 22, 121–132. [CrossRef]

84. Hoshi, Y. Functional near-infrared optical imaging: Utility and limitations in human brain mapping. Psychophysiology 2003, 40, 511–520.
[CrossRef] [PubMed]

85. Strangman, G.; Culver, J.P.; Thompson, J.H.; Boas, D.A. A quantitative comparison of simultaneous BOLD fMRI and NIRS
recordings during functional brain activation. Neuroimage 2002, 17, 719–731. [CrossRef] [PubMed]

86. Kumar, V.; Shivakumar, V.; Chhabra, H.; Bose, A.; Venkatasubramanian, G.; Gangadhar, B.N. Functional near infra-red spec-
troscopy (fNIRS) in schizophrenia: A review. Asian J. Psychiatr. 2017, 27, 18–31. [CrossRef] [PubMed]

87. Sakatani, K.; Tanida, M.; Katsuyama, M. Effects of Aging on Activity of the Prefrontal Cortex and Autonomic Nervous System
during Mental Stress Task. Adv. Exp. Med. Biol. 2010, 662, 473–478. [PubMed]

88. Tachtsidis, I.; Scholkmann, F. False positives and false negatives in functional near-infrared spectroscopy: Issues, challenges, and
the way forward. Neurophotonics 2016, 3, 031405. [CrossRef]

89. Caldwell, M.; Scholkmann, F.; Wolf, U.; Wolf, M.; Elwell, C.; Tachtsidis, I. Modelling confounding effects from extracerebral
contamination and systemic factors on functional near-infrared spectroscopy. Neuroimage 2016, 143, 91–105. [CrossRef]

90. Cajochen, C.; Münch, M.; Kobialka, S.; Kräuchi, K.; Steiner, R.; Oelhafen, P.; Orgül, S.; Wirz-Justice, A. High Sensitivity of Human
Melatonin, Alertness, Thermoregulation, and Heart Rate to Short Wavelength Light. J. Clin. Endocrinol. Metab. 2005, 90, 1311–1316.
[CrossRef]

91. Scholkmann, F.; Gerber, U.; Wolf, M.; Wolf, U. End-tidal CO2: An important parameter for a correct interpretation in functional
brain studies using speech tasks. Neuroimage 2013, 66, 71–79. [CrossRef]

92. Hueber, D.M.; Franceschini, M.A.; Ma, H.Y.; Zhang, Q.; Ballesteros, J.R.; Fantini, S.; Wallace, D.; Ntziachristos, V.; Chance,
B. Non-invasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a
frequency-domain multidistance instrument. Phys. Med. Biol. 2001, 46, 41–62. [CrossRef]

93. Weiss, M.; Dullenkopf, A.; Kolarova, A.; Schulz, G.; Frey, B.; Baenziger, O. Near-infrared spectroscopic cerebral oxygenation
reading in neonates and infants is associated with central venous oxygen saturation. Paediatr. Anaesth. 2005, 15, 102–109.
[CrossRef]

94. Li, T.; Duan, M.; Li, K.; Yu, G.; Ruan, Z. Bedside monitoring of patients with shock using a portable spatially-resolved near-infrared
spectroscopy. Biomed. Opt. Express 2015, 6, 3431–3436. [CrossRef]

95. Benni, P.B.; MacLeod, D.; Ikeda, K.; Lin, H.M. A validation method for near-infrared spectroscopy based tissue oximeters for
cerebral and somatic tissue oxygen saturation measurements. J. Clin. Monit. Comput. 2018, 32, 269–284. [CrossRef] [PubMed]

96. Ottestad, W.; Kåsin, J.I.; Høiseth, L.Ø. Arterial oxygen saturation, pulse oximetry, and cerebral and tissue oximetry in hypobaric
hypoxia. Aerosp. Med. Hum. Perform. 2018, 89, 1045–1049. [CrossRef]

97. Scheeren, T.W.L.; Schober, P.; Schwarte, L.A. Monitoring tissue oxygenation by near infrared spectroscopy (NIRS): Background
and current applications. J. Clin. Monit. Comput. 2012, 26, 279–287. [CrossRef]

98. Harms, M.P.M.; Colier, W.N.J.M.; Wieling, W.; Lenders, J.W.M.; Secher, N.H.; Lieshout, J.J. Van Orthostatic Tolerance, Cerebral
Oxygenation, and Blood Velocity in Humans with Sympathetic Failure. Stroke 2000, 31, 1608–1614. [CrossRef]

99. Tisdall, M.M.; Taylor, C.; Tachtsidis, I.; Leung, T.S.; Elwell, C.E.; Smith, M. The effect on cerebral tissue oxygenation index of
changes in the concentrations of inspired oxygen and end-tidal carbon dioxide in healthy adult volunteers. Anesth. Analg. 2009,
109, 906–913. [CrossRef] [PubMed]

100. Tsubaki, A.; Takai, H.; Oyanagi, K.; Kojima, S.; Tokunaga, Y.; Miyaguchi, S.; Sugawara, K.; Sato, D.; Tamaki, H.; Onishi, H.
Correlation Between the Cerebral Oxyhaemoglobin Signal and Physiological Signals During Cycling Exercise: A Near- Infrared
Spectroscopy Study. Oxyg. Transp. to Tissue XXXVIII 2016, 159–166.

101. Wood, M.D.; Jacobson, J.A.; Maslove, D.M.; Muscedere, J.G.; Boyd, J.G. The physiological determinants of near-infrared
spectroscopy-derived regional cerebral oxygenation in critically ill adults. Intensive Care Med. Exp. 2019, 7, 23. [CrossRef]

102. Edelhäuser, F.; Hak, F.; Kleinrath, U.; Lühr, B.; Matthiessen, P.F.; Weinzirl, J.; Cysarz, D. Impact of colored light on cardiorespiratory
coordination. Evid.-Based Complement. Altern. Med. 2013, 2013, 7. [CrossRef]

103. Jacobs, K.W.; Hustmyer, F.E., Jr. Effects of four psychological primary colors on GSR, heart rate and respiration rate. Percept. Mot.
Skills 1974, 38, 763–766. [CrossRef]

104. Krueger, G.; Granziera, C. The history and role of long duration stimulation in fMRI. Neuroimage 2012, 62, 1051–1055. [CrossRef]
105. Bandettini, P.A. Twenty years of functional MRI: The science and the stories. Neuroimage 2012, 62, 575–588. [CrossRef]
106. Krüger, G.; Kleinschmidt, A.; Frahm, J. Dynamic MRI sensitized to cerebral blood oxygenation and flow during sustained

activation of human visual cortex. Magn. Reson. Med. 1996, 35, 797–800. [CrossRef]

http://doi.org/10.1126/science.1169144
http://doi.org/10.1002/col.21949
http://doi.org/10.1002/(SICI)1520-6378(199704)22:2&lt;121::AID-COL7&gt;3.0.CO;2-V
http://doi.org/10.1111/1469-8986.00053
http://www.ncbi.nlm.nih.gov/pubmed/14570159
http://doi.org/10.1006/nimg.2002.1227
http://www.ncbi.nlm.nih.gov/pubmed/12377147
http://doi.org/10.1016/j.ajp.2017.02.009
http://www.ncbi.nlm.nih.gov/pubmed/28558892
http://www.ncbi.nlm.nih.gov/pubmed/20204832
http://doi.org/10.1117/1.NPh.3.3.031405
http://doi.org/10.1016/j.neuroimage.2016.08.058
http://doi.org/10.1210/jc.2004-0957
http://doi.org/10.1016/j.neuroimage.2012.10.025
http://doi.org/10.1088/0031-9155/46/1/304
http://doi.org/10.1111/j.1460-9592.2005.01404.x
http://doi.org/10.1364/BOE.6.003431
http://doi.org/10.1007/s10877-017-0015-1
http://www.ncbi.nlm.nih.gov/pubmed/28374103
http://doi.org/10.3357/AMHP.5173.2018
http://doi.org/10.1007/s10877-012-9348-y
http://doi.org/10.1161/01.STR.31.7.1608
http://doi.org/10.1213/ane.0b013e3181aedcdc
http://www.ncbi.nlm.nih.gov/pubmed/19690266
http://doi.org/10.1186/s40635-019-0247-0
http://doi.org/10.1155/2013/810876
http://doi.org/10.2466/pms.1974.38.3.763
http://doi.org/10.1016/j.neuroimage.2012.01.045
http://doi.org/10.1016/j.neuroimage.2012.04.026
http://doi.org/10.1002/mrm.1910350602


Brain Sci. 2021, 11, 54 16 of 16

107. Obrig, H.; Israel, H.; Kohl-Bareis, M.; Uludag, K.; Wenzel, R.; Müller, B.; Arnold, G.; Villringer, A. Habituation of the visually evoked
potential and its vascular response: Implications for neurovascular coupling in the healthy adult. Neuroimage 2002, 17, 1–18. [CrossRef]

108. Bandettini, P.A.; Kwong, K.K.; Davis, T.L.; Tootell, R.B.H.; Wong, E.C.; Fox, P.T.; Belliveau, J.W.; Weisskoff, R.M.; Rosen, B.R. Char-
acterization of cerebral blood oxygenation and flow changes during prolonged brain activation. Hum. Brain Mapp. 1997, 5, 93–109.
[CrossRef]

109. Heekeren, H.R.; Obrig, H.; Wenzel, R.; Eberle, K.; Ruben, J.; Villringer, K.; Kurth, R.; Villringer, A. Cerebral haemoglobin oxygenation
during sustained visual stimulation—A near-infrared spectroscopy study. Philos. Trans. R. Soc. B Biol. Sci. 1997, 352, 743–750.
[CrossRef]

http://doi.org/10.1006/nimg.2002.1177
http://doi.org/10.1002/(SICI)1097-0193(1997)5:2&lt;93::AID-HBM3&gt;3.0.CO;2-H
http://doi.org/10.1098/rstb.1997.0057


 

134 

 

  

Discussion 

In this thesis, the effects of colored light on cerebral and human physiology 

were investigated with the SPA-fNIRS approach. First, the SPA-fNIRS was 

explained in more detail, and the PRQ was introduced as one of the systemic 

physiological parameters investigated in this research. Second, the impact of CLE 

on changes in optical properties was presented. Finally, effects of light of different 

colors and intensities as well as a mixed effect of CLE and VFT were shown. The 

aim of this chapter is to briefly discuss the hypotheses raised in the first chapter 

of this PhD thesis.  

Realizing hypothesis 1: Colored light evokes an activation of the VC, which is 

independent of the color  

This hypothesis was raised based on fMRI studies showing that different CLE 

have similar responses in the VC [36]. However, this was not found in our 

research. We demonstrated that long-term colored light exposures induce 

wavelength-dependent modulations of brain responses in the VC. Violet and blue 

lights elicit higher changes in cerebral parameters compared to the other colored 

lights during the CLE and recovery phase. The stronger response of the visual 

system to blue and violet light might be a marker for central nervous system 

dopamine tone [77]. It was also proposed that colors in different categories are 

differently represented in the VC. Wavelength information is carried by the 

parvocellular afferent system, which projects to the cytochrome oxidase-rich blobs 

of area V1. V1 blobs project to the thin strips of area V2 providing the wavelength 

selective input to area V4, located in the fusiform gyrus, as a vital site for color 

perception in the human brain [38,78]. In an fMRI study, color-dependent 

activation peaks were also found in spatially organized maps in the V2 area [37]. 

Since the spatial sensitivity of our fNIRS is 2-3 cm, this method is not able to 

reflect activation within a specific area but rather the whole VC activity. One 

possible explanation for wavelength-dependent cerebral changes in the VC may 

be associated with the role of Müller cells through the retina. These cells can be 
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considered as an integral part of the first step in the visual process and act as 

optical fibers, transferring light illuminating the retinal surface onto the cone 

photoreceptors [79]. Müller cells, known as wavelength-dependent wave-guides, 

concentrate the green-red part of the visible spectrum onto cones and the blue-

violet part onto nearby rods [79,80]. It was also reported that light of short 

wavelengths is not captured in the straight guide, and most of the total power in 

these wavelengths leaks out to the surrounding high-sensitivity rods, most 

sensitive to short wavelengths [80]. 

Realizing hypothesis 2: Colored light evokes an activation of the PFC, which is 

dependent on the color 

In this research, we found that yellow light causes higher brain activation in 

the PFC than the other colored lights. The finding of a higher brain activation due 

to the yellow light is in line with our previous research [63]. It is known that the 

hemodynamic response in the PFC is modulated by the emotional status. Al-Ayash 

et al. indicated that yellow elicited more active emotions and caused positive 

effects on motivation, as well as intellectual and physical activities [68]. Therefore, 

it seems that the yellow-colored light at low intensity influenced our subjects 

positively, and this impact was detectable by higher changes in hemodynamic 

responses and oxygenation compared to other colored lights. It was also reported 

by the subjects of the previous studies that yellow reminds them of the sun and 

summer; it reflects light and makes them happy, cheerful, active, and awake 

[68,81,82]. Color perception may produce physiological responses in the human 

body that become noticeable in humans’ emotions and cognitive focus. Yellow was 

also postulated to be stimulating, to encourage an outward focus, and to produce 

forceful action [83]. 

Realizing hypothesis 3: Colored light has intensity-dependent effects 

Although there were specific intensity-dependent effects for different colors 

and parameters, they appeared in such a way that it was not possible to discern 

an explicit order between different colors for any parameters in this study. 

Therefore, it is difficult to draw a firm conclusion about the effects of intensity on 



 

136 

 

cerebral and physiological parameters. Using higher brightness conditions (> 500 

lux) instead of 120 lux may have elicited more pronounced and distinct 

physiological and cerebral intensity-dependent responses. 

Realizing hypothesis 4: Colored light affects individual humans differently  

Performing both a group-average analysis and a subgroup (subject-specific) 

analysis was one of the main goals of this research. This is vital to completely 

understand the effects of exposure to colored light in humans. Our findings in most 

parts of this research display that CLE affects individual humans differently. This 

should be taken into account when considering the impact of colored light on 

society. Such a different reaction of subjects to CLE was found in optical properties 

as well as hemodynamic responses, which is partially explained by systemic 

physiological changes.   

Realizing hypothesis 5: Colored light has relatively long-lasting effects  

Compared to the CLE, color-dependent changes are more evident in the 

recovery phase of most cerebral and physiological parameters. In other words, 

more significant differences can be found in the recovery phase in comparison with 

the CLE, which reiterated the point of the CLE having long-lasting effects in 

humans [84,85]. Alkozei et al. demonstrated that a relatively brief CLE has an 

enhancing effect on brain function that may persist for at least 40 minutes after 

cessation of the light [84]. This prolonged effect may be associated with sustained 

noradrenergic activation. They found that blue light exposure continues to affect 

brain functioning as well as optimizing neurocognitive performance after cessation 

of longer periods of exposure [84,85]. The relatively long-lasting effects of CLE 

highlights the importance of considering the persistent influence of colored light 

on brain function, cognition, and systemic physiology in everyday life.  

Moreover, long-term stimulations have rarely been performed in functional 

neuroimaging studies [86,87]. Therefore, our studies are important, especially in 

terms of long-term changes in cerebral variables. Depending on each individual 

subject, we showed that habituation (decreased oxygenation during the visual 
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stimulation) or plateau (oxygenation remains elevated during the visual 

stimulation) effects are observed in cerebral parameters, namely [O2Hb], which is 

partially explained by subject-specific systemic physiological changes [64]. 

Therefore, to identify and understand these impacts, it is strongly recommended 

to measure systemic physiology together with cerebral hemodynamics when 

performing fNIRS or even fMRI long-term studies.   

Realizing hypothesis 6: The interaction of cerebral and systemic physiology is 

distinguished by the SPA-fNIRS approach  

The SPA-fNIRS approach is able to show that systemic and cerebral physiology 

interact. Experimental findings in most parts of this research exhibit correlation 

between cerebral parameters and systemic physiology. The most relevant systemic 

physiological parameters that contributed to changes in the fNIRS signals are 

MAP, SpO2, and PETCO2. Such a correlation can be clarified by three possible 

explanations. (i) Changes in fNIRS signals are caused by changes in systemic 

physiology. (ii) Changes in systemic physiological parameters are caused by brain 

activity. (iii) fNIRS signals reflect neurovascular coupling only, and the correlation 

has no causal relation. Although it is often assumed that fNIRS purely detects the 

cerebral-evoked-neural response in the brain, in reality, each fNIRS signal 

contains different components. Thus, in our opinion, the appropriate explanation 

relies most probably on a mixture of the three above mentioned effects, i.e. there 

is a complex interaction of systemic physiology and brain activity.  
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Conclusion 

First and foremost, a group-level analysis along with an individual-level 

analysis are needed to completely understand the impacts of CLE in humans. 

Although a group-level analysis is commonly used in research, it is not enough for 

an inclusive and accurate conclusion. Therefore, using an individual-level (subject-

specific) analysis is highly recommended for reliable interpretation of the effects 

of CLE in humans. In this research, it has been found that CLE affects individual 

humans differently. The individual-level analysis revealed that, in most cases, 

subjects have different reactions to the CLE. Among all subjects, i.e., 201 healthy 

adults, who participated in this research, it is almost impossible to find two 

matched subjects having the same reaction to the CLE in terms of cerebral and 

systemic physiological changes. The variety of CLE effects was even more 

noticeable in systemic physiological parameters compared to cerebral variables. 

Specifically, it is not easy to draw general conclusions about the effects of the light 

of different colors on systemic physiological changes during the CLE at the group-

level. In contrast, the color-dependent changes are more evident in the recovery 

phase of most systemic physiological parameters reiterating the point of the CLE 

having long-lasting effects in humans. Such long-lasting effects, as well as color-

dependent differences during the CLE, are also observed in cerebral variables of 

the VC and the PFC. Regardless of the impact of a cognitive task, blue light 

exposure leads to stronger effects in the VC compared to colors associated with 

longer wavelengths. This effect was proven in both studies with and without a 

VFT. The finding of this research that blue light has an activating effect in the VC 

should be taken into consideration when assessing the impact of modern light 

sources such as screens (e.g., smartphones and computers) and LEDs on the 

human body. Moreover, we showed that CLE (namely, yellow) affects the PFC. It 

is also known that the hemodynamic response in the PFC represents the emotional 

status and mood. Therefore, colored light affects the emotional status. Our 

findings that CLE leads to a PFC activation, i.e., yellow light causes a higher PFC 

activation, may be applied in complementary medicine, i.e., specifically 
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chromotherapy (color therapy), to create a balance and restore the health in 

emotional, mental, or even physical levels. Especially at present, when people are 

generally experiencing challenging times along with anxiety, depression, and 

nervousness due to the Covid-19 pandemic, yellow light can be applied as a healing 

tool to boost positive feelings like hope, daring, happiness, and optimism. Although 

CLE (e.g., yellow light) may generally influence humans in a number of beneficial 

ways, individuals may reacts differently to the CLE. Therefore, further research 

should clarify which color in CLE benefits whom.      

Additionally, our findings of a mixed-effect of CLE and VFT on human 

physiology offer a broad range of implications for educational purposes. These 

days, students are exposed to a considerable amount of artificial light by using 

smartphones and tablets in order to do their homework. Although it may not be 

possible to improve their performance by selecting an optimal desktop 

background, it is possible to modify their systemic physiology in positive or 

negative ways based on the findings of this research.  

It was also found that the SPA-fNIRS approach is ideally suited to enable a 

better understanding and a reliable interpretation of the changes in the fNIRS 

signals. This approach enabled us to show that systemic and cerebral physiology 

interact. In this research, we showed that the inter-subject variability of 

hemodynamic responses is partially explained by systemic physiological changes. 

Therefore, it is strongly recommended to measure systemic physiology together 

with cerebral hemodynamics when performing fNIRS studies. This enables to 

identify, remove and understand the effects of systemic physiological changes on 

fNIRS signals.  

Finally, in the society that is rapidly exposed to new and increasing lighting, 

the findings of this research are relevant and beneficial for the scientific 

community, medical professionals, and society.  
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Outlook 

Based on the presented results, many objectives of this research were fulfilled in 

this dissertation. Looking to the future, there are a number of topics that should 

be addressed to further advance the understanding of CLE's effects on the human 

body and human’s reactions: 

 Since specific intensity-dependent effects and explicit order between 

different colors were merely seen in this study for all parameters, using 

higher brightness conditions (> 500 lux) instead of 120 lux may lead to 

more pronounced and distinct physiological and cerebral intensity-

dependent responses. 

 In this research, VFT was selected as a cognitive task, and its effects 

along with the CLE were studied on several parameters. Depending on 

the nature of the task, different colored lights might affect cognitive 

tasks differently. It has been revealed that red improves performance 

on a detailed-oriented task, while blue enhances performance on a 

creative task [69]. Therefore, it would be worthwhile to include other 

cognitive tasks in future studies. 

 It would be worthwhile to also include white light exposure in different 

phases of measurement, for example, during the baseline phase.  

 Since it has been reported by invasive methods that parietal regions of 

the human brain, i.e. an occipito-parietal attention network, are also 

involved in light processing [88], measuring the entire head non-

invasively with SPA-fNIRS would be a next step.   

 This research could be extended to other populations, including 

neonates, children, elderly subjects, and, ultimately, patients. This 

would allow a comparison of the results of this research with different 

groups of subjects.  

 Since each individual reacts differently to the CLE, it would be 

worthwhile to generate an algorithm, which enables us to understand 
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how each individual responds to the CLE based on all cerebral and 

systemic physiological changes. Such an algorithm would enable to 

detect what benefits whom and thus be definitely beneficial for society 

and could also be used in personalized medicine. Using machine 

learning with informative and independent features would be the first 

and crucial step for an effective algorithm to classify patients into 

different groups. Based on that classification, patients who belong to a 

specific group would receive a specified treatment.  
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