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Abstract: Coal seams in the Upper Silesian Coal Basin vanish within the Carboniferous Upper Silesian
Sandstone Series and below an unconformity marking the Carboniferous top surface. Changes in the
geochemical, mineralogical, petrological and palynological characteristics of gangue rocks associated
with the vanished seams record what happened. The observed changes could have been caused
by (1) coal-seam paleofire, (2) peat combustion, (3) igneous intrusion, (4) metasomatism and/or
(5) weathering. Multifaceted research on samples collected at the Jas-Mos mining area, a part of
the operating Jastrzebie-Bzie Coal Mine that are representative of different geological settings in
the northern and southern parts of the mining area, point to intra-deposit paleofire as the most
plausible reason for the disappearance. Biomarkers enabled recognition of differences in heating
duration and oxygen access. Coal seams in the south burned quickly with abundant oxygen supply.
Seams in the north pyrolyzed for an extended time under conditions of limited oxygen. Though
other methods used proved less sensitive, all confirmed low (100-150 °C) paleotemperature heating.
Overall, the reason for the local disappearance of the coal seams, making their exploitation difficult
and unprofitable, can be assigned to a variety of different processes in a complex overlapping history
of variable weathering, heating due to local endogenic fires and, probably, earlier peat combustion.

Keywords: disappearing coal seam; thermal alteration of gangue rocks; paleofire; Upper Silesian
Coal Basin

1. Introduction

Coal and coal-bearing rocks in the south-western part of the Upper Silesian Coal
Basin (USCB) of Early Pennsylvanian (Namurian BC) age underwent changes resulting
in the partial/complete disappearance of coal seams over an area of ca 500 km?. This
disappearance is associated with gangue rocks of various colors, typically located above
the seams. Maximum noticed thickness reduction up to disappearing was observed in coal
seam No. 505, which, with a regular thickness of ca 5 m, shows this most clearly—though
the problem concerns coal seams Nos. 415/1 and 510 [1], 504, 505 and 506 [2-4] and
406/4 [5], exploited in both the Polish and Czech parts of the USCB. The coal there, if any,
is grey-black, dull, heavily cracked, brittle and without a banded structure. The altered,
variably colored coal-bearing rocks are characterized by increased fracturing, porosity
and reduction of physical and mechanical properties [6,7], all a reflection of oxidation
and heating.

Changes in the gangue rocks accompanying the vanishing coal seams may have been
caused by weathering and thermal alteration of coal-bearing sediments locally preserved
below a regional unconformity marking the Carboniferous top surface and within intra-
Pennsylvanian disconformities [8]. General (geological) and detailed (petrographical,
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geochemical, palynological) descriptions of these variably colored beds indicate weathering
effects and/or thermal transformations, the origin of which is not clear, as subsurface
mapping and sample collection is possible only from boreholes and single outcrops in
operating coal mines. As exploitation avoids regions possibly lacking coal, these parts of
mines are abandoned and inaccessible.

Several underground outcrops with vanishing coal seams and weathered and/or
thermally altered gangue rocks of various types and irregular geometries occur in the
mining areas between Jastrzebie in Poland and Karvind in the Czech Republic (Figure 1).
Anomalies favoring reduced coal-seam thickness and increasing coalification occur mainly
in the coalfield of the Jas-Mos, a part of the Jastrzebie-Bzie Coal Mine (Figures 2 and 3).
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Figure 1. Subsurface structural map of the Carboniferous coal-bearing Paralic, Upper Silesian Sandstone and Mudstone

Series in the western part of the Upper Silesian Coal Basin (USCB) (after [9,10]; simplified). Areas with vanishing coal seams

and associated altered gangue rocks at the top of the Carboniferous units are shown in pink. 1: Jas-Mos mining area, a
part of the Jastrzebie-Bzie Coal Mine; 2: Mudstone Series, Westphalian AB (CWAB), with bottom isolines (coal seam 405);
3: Upper Silesian Sandstone Series, Namurian BC (CnBC), with bottom isolines (coal seam 510); 4: Paralic Series, Namurian

A (Cn?), with bottom isolines; 5: bottom isolines in km a.s.L; 6: isolines of average random vitrinite reflectance Ry (%);

7:isolines of average vitrinite content (%); 8: fault; 9: thrust.
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Figure 2. Structural sketch map of the coal seam No. 505 in the Jas-Mos mining area, a part of the Jastrzebie-Bzie Coal Mine,
and its disappearance (based on geological documentation of Jastrzebie-Bzie Coal Mine, simplified). 1: isoline of the bottom
of coal seam No 505 in m a.s.l.; 2: subcrop of 505 coal seam below Miocene claystone; 3: coal rank and quality—isolines of
the average volatile matter content (Vdaf %), vitrinite reflectance R, % and coal types; 4: unexploited coalfield, 5: exploited
coal; 6: altered associated gangue rocks and vanishing coal seam 505; 7: fault and thrust; 8: geological cross-section lines;
9: outcrops of coal seam 505 in testing gallery 47 (samples N1-N8 in blue) and in south corridor II below coal seam 418
(samples S1-56 in red); 10: shaft; 11: drilling.
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Figure 3. Cross-sections showing simplified geological settings in different areas of the Jas-Mos mining area, a part of the
operating Jastrzebie-Bzie Coal Mine, with sample collecting locations (based on geological documentation of Jastrzebie-Bzie
Coal Mine, simplified). (a) W-E southern cross-section I-I and location of samples S1-6 in south corridor II below coal seam
418; (b) W-E northern cross-section II-II with location of samples N1-8 collected from the outcrop of 505 seam in testing
gallery 47, where the seam thins from 3.2 m to 0.4 m, at the distance of 30 m; (c) parallel N-S cross-section III-III, showing
the position of samples N1-8 and S1-6.
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1.1. Geological Background

On the western margin of the USCB, the Mudstone-Sandstone Paralic Series of the
Latest Mississippian age (Namurian A) are discordantly overlapped by the Upper Silesian
Sandstone Series of Early Pennsylvanian age (Namurian BC). The coal seam No.510 is
considered the bottom of the latter, which represents ca 500 m thick limnic upper-delta-plain
succession of a braided river system, hosting ca 22 coal seams (Figures 1 and 3). Its lower
part contains thick (<24 m) but splitting coal seams (Nos. 501-510, the upper part hosts thin
(<2.5 m) coal seams (Nos. 407-418). They constitute 6-8% of the unit [11,12]. Within these
beds, locally developed intra-formational disconformities are accompanied by weathered
and thermally altered coal-bearing rocks with disappearing coal seams. The Upper Silesian
Sandstone Series is followed by the Mudstone Series of the Middle Pennsylvanian age
(Westphalian AB). Its bottom sets out freshwater fauna level and contains ca 70 coal seams
of thickness in the range of 0.9-2.5 m.

The western part of the USCB is deformed by folds, faults and thrusts. In the Jas-Mos
mining area of the Jastrzebie-Bzie Coal Mine, the broad syncline and narrow anticline
of the Jastrzebie Fold and the Mszana Thrust spread longitudinally in the front of the
Boguszowice Thrust (Figures 1-3). Uplift and tectonic inversion of the USCB reflects coeval
Late Pennsylvanian folding. The Late Variscan Upper Silesian fold-and-thrust mountain
belt was deeply eroded to a depth of several kilometers during Stephanian and Permian
times [13]. Any understanding of the evolution of the Variscan topographic surface must
encompass the uplifting of the lithified Carboniferous rocks hosting bituminous coal
(Figure 1).

Coalification increases with stratigraphic depth in the western and central parts of
the basin. Vitrinite reflectance ranges from 0.6% to 1.5%, with an average R, gradient
of 0.2%/km, suggesting maturation due to USCB subsidence. The salinity of waters
in the coal-bearing series also increases, with burial from 35 g/dm? to 200 g/dm?, at
average gradients of ~150 g/km. The coals absorbed considerable amounts of methane;
contents increase from 1 to 18 m3/Mg (dry ash free) between 500 and 1800 m below the
Carboniferous top surface [12,14,15]. Coal-bed methane contents in the Jastrzebie-Bzie
Coal Mine area are low (<2 m® /Mg of coal). During subsidence and burial to a depth below
~1.5 km, thermogenic methane was generated at temperatures >50 °C in coal seams, with
R; of ~0.7% [16]. This calculation is based on hydrostatic pressure gradients (10 MPa/km)
and temperature gradients (30 °C/km) in the USCB during the Pennsylvanian.

Several explanations view coalification as a function of burial depth and duration,
geothermal impact of hot fluid flow from the basement or heating by tectonic contractions
and intrusions [17]. Coal-rank maps of the USCB show an increase in vitrinite reflectance
and carbon content (or decrease of volatile matter) due to increasing burial (Figure 1) rather
than intense seam folding [18]. Folding of the USCB was initiated by uplift and erosion,
mainly at the western part of the basin margins, exposing high-rank coals in the cores of
anticlines and highly volatile coals in synclines.

The coals in the Upper Silesian Sandstone Series are characterized by variable average
vitrinite contents ranging from <50% to >60% (Figure 1). Locally, coal seams Nos. 406/4,
415/1, 418, 501, 504, 505, 506 and 510 show anomalous degrees of oxidized alteration and
thermal metamorphism [1-5]. In the Jas-Mos mining area, a part of the Jastrzebie-Bzie
Coal Mine, coal rank varies from high volatile bituminous C to semi-anthracite; vitrinite
reflectance (R;) increases from 1.0% to 2.4% and volatile matter (V92f) decreases from 24%
to 8% (Figure 2). Average values of V42f in seams Nos. 418 and 505 range from 26% to 8%.
This parameter is compatible with vitrinite reflectance (R;), ranging from 1.0% to 2.4% in
heated coal (Figure 2). These coal seams show variable contents of vitrinite and inertinite
and of liptinite (<5%). Weaker coking properties in disappearing parts of the coal seams
are linked with increasing contents of inertinite [2].
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1.2. Weathering and Thermally Altered Coal-Bearing Deposits

Coal-bearing siliciclastic sediments on outcrops are susceptible to weathering and
have a propensity to self-heat and self-ignite [19]. In coalfields, these processes also occur
in opencast and underground mines, especially in coal stockpiles and coal-bearing waste
dumps [20-23]. Weathered limnic Upper Silesian Sandstone Series rocks occur below the
sub-Miocene unconformity of the regional Carboniferous top surface [8]. The degree of
weathering is indicated by a change in color, an increase in friability and volatile matter
contents. Oxidized coals and sediments forming a varicolored alteration horizon about 10-
30 m thick are common in sub-crops below the overburden of Permian volcanoclastics and,
locally, below Triassic and Miocene siliciclastics [1,14,24] (Figures 1 and 3). The chemically
and physically altered varicolored sediments and weathered layers retain the structures
and fabric of the parent rocks.

Thermal alteration is evident in gangue rocks overlying burnt-out coal seams as
collapsed breccias with red, pink and severely fractured claystones and porcelanites similar
to clinker, or as highly sintered residuum containing high-temperature minerals, such
as mullite and cristobalite. The fire is deemed to have been Cretaceous—Paleogene in
age [3,6,7,24-26] and personal communication from mine geologists. An example is the
burnt coking 504 and 505 Coal Seam below the Carboniferous top surface in the Jas-Mos
mining area, a part of the Jastrzebie-Bzie Coal Mine, which thins over a distance of 4 m
and changes into low volatile bituminous coal with the characteristic metallic luster of
anthracites [2,4].

Coal seams can also vanish due to peat combustion in the Early Pennsylvanian,
causing intra-Pennsylvanian disconformities. Peats accumulating on the alluvial plain
could be disrupted by uplift resulting in erosion, oxidation and spontaneous combustion.

Changes seen in coals and coal-bearing sedimentary rocks can also be caused by
thermal metamorphism [4,27-30]. Coal seam No. 504 in the USCB was considered to
be thermally metamorphosed due to non-dated igneous activity [2]. However, recent
carbon-isotope investigations on coal from different coal seams in the USCB, on naturally
heated coal and on coal heated in the laboratory, exclude this possibility [31].

The aim of our research was (1) to determine whether the variety of alterations
seen were caused by coal-seam fire, peat fire or magmatic intrusion, (2) to investigate
changes in the maceral composition, geochemistry, mineralogy and palynology of rocks
associated with disappearing coal seams and (3) to elucidate any differences in coal-seam
fire conditions between the northern and southern parts of the Jas-Mos minefield of the
Jastrzebie-Bzie Coal Mine.

2. Materials and Methods
2.1. Sample Description and Preparation

Gangue rocks accompanying disappearing coal seams in different positions in the
Upper Silesian Sandstone Series were collected in two sets representing the northern and
southern areas of the Jas-Mos mining area of the Jastrzebie-Bzie Coal Mine, respectively.
Twelve reddish samples of siltstone and carbonate were collected in the second south
corridor located at —120 m a.s.l.,, between the disappearing semi-anthracite seam No.
418 and coking seam No. 501 (Figures 2 and 3a,c). In 2012, geologists from the Jas-
Mos Coal Mine (Jastrzebie-Bzie at present) collected 28 samples of gangue rocks located
above disappearing coal seam No. 505 in testing gallery 47 located at —500 m a.s.l. in
the Jastrzebie syncline axis (Figures 2 and 3b,c). These are siltstones locally containing
carbonate, hematite and plant fossils. Samples from the northern and southern parts of
the Jas-Mos mining area differ macroscopically in color; those from the northern part are
dark grey with coal laminae and red streaks or patches (Figure 4a,b), whereas those from
the southern part are orange-red and contain much less organic matter as smaller particles
between mineral grains (Figure 4c,d). Eight representative dark-grey samples (N1-N8) and
six red—orange samples (S1-S6) were selected for detailed investigations.



Minerals 2021, 11, 735

7 of 30

(c)

Figure 4. Samples collected from the vicinity of the disappearing coal seams located in the northern part, (a) sample N1 and
(b) sample N4, and southern part, (c) sample S2 and (d) sample S5, of the Jas-Mos mining area, a part of the Jastrzebie-Bzie

Coal Mine.

2.2. Organic Petrography

Samples crushed to <1 mm were embedded in epoxy resin and polished blocks were
prepared for microscopic examination according to the procedures described in [32]. Vitri-
nite, liptinite, inertinite and mineral contents were determined at 500 points in each sample.
Analyses were carried out in reflected white light according to the procedure described
in [33], applying ICCP terminology [34-36]. Random reflectance (R;) measurements were
carried out according to [37] at 50 points in each sample containing organic matter.

2.3. Mineralogy and Chemistry

Rock samples for chemical analyses were split, crushed, then weathered parts and
macroscopically seen vein fillings were removed and 250 g were dried and pulverized to
>85% passing 75 pm. Whole-rock 20 major oxides and 45 trace-element contents were
determined by ICP-ES and ICP-MS at ACME Laboratories, Canada.

At the Faculty of Natural Sciences, University of Silesia, Sosnowiec, Poland, phase
compositions of powdered samples were determined using a fully automated X-ray Philips
PW 3710 diffractometer operated at 45 kV and 30 mA, CuK« radiation and equipped
with a graphite monochromator. Mineral morphologies and spatial relationships between
components were examined in thin sections and samples fragments using a Philips XL
30 ESEM/TMP scanning electron microscope in environmental mode, coupled with an
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energy-dispersive spectrometer (EDS; EDAX type Sapphire). Analytical conditions of the
SEM were: accelerating voltage of 15 kV; a working distance of ca 10 mm; counting time of
40 s. The Raman spectra were recorded on a WITec alpha 300R Confocal Raman Microscope
equipped with an air-cooled solid laser 532 nm and a CCD camera operating at —61 °C.
The laser radiation was coupled to a microscope through a single-mode optical fiber with
a diameter of 3.5 pm. An air Zeiss LD EC Epiplan-Neofluan DIC-100/0.75NA objective
was used.

2.4. Palynology

Seven samples (N1-5, N7 and NB8) from the northern area and four (S2-5) from the
southern area were chemically processed using standard palynological (HCI-HF-HCI)
procedures [38]. All samples from the northern locality were positive, but only two (52
and 54) from the southern area yielded organic content. Productive samples were grey
and negative samples red in color. All positive samples from both areas possessed poorly
preserved palynomorphs, mainly spores, pollen grains, plant tracheids and cuticles. Traces
of amorphic organic matter (AOM) were noted in samples from the southern area. In both
areas, spore exines were slightly to strongly corroded and thermally altered.

At least two slides were prepared from each residue. Cellosize was used as a dispersal
agent to avoid organic clumping and Peropoxy 154 was used as a mounting agent. A
transmitted light microscope (Nikon Eclipse 50i with integrated DS-Fi2 digital camera) was
used. The palynological slides and residues are housed at the Faculty of Natural Sciences
at the University of Silesia.

2.5. Organic Geochemistry

Solvent extraction

After powdering samples to <0.2 mm, 8-12 g aliquots of each were taken for extrac-
tion with dichloromethane (DCM). The Dionex 350 Accelerated Solvent Extractor system
(Thermo Scientific) at 70 °C in 34 mL stainless steel cells (p = 10 Mpa; solvent flow =
70 mL/min) was applied. The solvent was evaporated at room temperature and dried
extracts weighed to calculate extraction yields (wt%; Table 1). The dry residue was diluted
in 0.5 mL of DCM and analyzed with GC-MS. All solvents and reagents applied were
pure for analysis grade (Avantor Performance Materials Poland S.A.). The analysis of each
sample series was accompanied by the analysis of a blank sample of the extracting silica
gel (Merck, Kieselgel 60, 63-200 um) under the same conditions as for the samples.

Gas chromatography-mass spectrometry (GC-MS)

Prior to GC-MS, extracts for analysis were not separated into compound groups due
to their low extractability. An Agilent gas chromatograph 6890 with a DB-35 column
(60 m x 0.25 mm i.d.), coated by a 0.25 pm stationary phase film coupled with an Agilent
Technology mass spectrometer 5973 was used. The experimental conditions were as follows:
carrier gas, He; temperature, 50 °C (isothermal for 2 min); heating rate, up to 175 °C at
10 °C min 1,225 °C at 6 °C min~! and, finally, 300 °C at 4 °C min~!. The final temperature
(300 °C) was held for 20 min. The mass spectrometer was operated in the electron impact
ionization mode at 70 eV and scanned from 50-650 da. Data were acquired in a full scan
mode and processed with the Hewlett Packard Chemstation software. The compounds
were identified by using their mass spectra, comparison of peak retention times with
those of standard compounds, interpretation of MS fragmentation patterns and literature
data [39,40]. Geochemical parameters were calculated using peak areas acquired in the
manual integration mode.
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Table 1. Petrographic properties and extraction yields of the gangue-rocks samples from the northern (N1-N8) and southern

(S1-S6) parts of the Jas-Mos mining area, a part of the Jastrzebie-Bzie Coal Mine.

Sample Vitrinite Liptinite Inertinite Minerals R; SD n Extraction Yield
No. (%) (%) (%) (%) (%) (% wt.)
N1 2.4 0.0 0.6 97.0 1.16 0.06 50 0.0520
N2 14 0.0 0.0 98.6 1.37 0.21 50 0.0511
N3 0.8 0.0 0.2 99.0 1.42 0.27 50 0.0400
N4 22 0.0 0.0 97.8 1.17 0.18 50 0.0379
N5 1.2 0.0 1.0 97.8 1.10 0.16 50 0.0580
N6 28.0 0.0 0.0 72.0 1.33 0.05 50 0.0352
N7 1.8 0.0 0.0 98.2 1.25 0.21 50 0.0222
N8 0.6 0.0 0.0 99.4 1.50 0.31 50 0.0104
S1 0.0 0.0 0.0 100.0 - - - 0.0008
S2 1.6 0.0 0.0 98.4 1.08 0.19 25 0.0153
S3 0.0 0.0 0.0 100.0 - - - 0.0190
S4 0.6 0.0 0.0 99.4 1.27 0.25 25 0.0090
S5 0.0 0.0 0.0 100.0 - - - 0.0035
S6 0.0 0.0 0.0 100.0 - - - 0.0196

Average N 48 0.0 0.2 95.0 1.29 0.18 50 0.0383
Average S 0.4 0.0 0.0 99.6 1.18* 0.22* 25 0.0112

n: number of reflectance measurements; *, the value calculated on the base of two samples.

3. Results and Discussion
3.1. Organic Petrography

Samples from the northern (N1-N8) and southern (51-56) parts of the Jas-Mos mining
area differ in amounts of organic matter, being 5.0% on average in the former and 0.4% in
the latter (Table 1). Typically, contents of organic matter in the northern part are <3.0%, but
sample N6, with 28.0%, is the exception that serves to exaggerate the averaged difference.
Most samples from the southern part contain no organic matter.

Macroscopically, organic matter is dispersed in samples of rocks co-occurring with
the 418 and 505 coal seams. Single thin coal laminae are present in sample N6 (Figure 5).
Microscopically, this sample is dominated by macerals of the vitrinite group as is typical
for USCB coals [9,10,41]. They are usually represented by vitrodetrinite that is small and
irregular, or by collotelinite present as laminae, ranging up to a few tens of micrometers and
which are commonly cracked (Figures 5 and 6). The cracks are often filled with minerals.
Corpogelinite is a rare presence. The average content of vitrinite macerals in samples from
the northern part is 4.8% (1.5%, excluding N6) and 0.4% in those from the southern part.
Inertinite macerals, represented by fusinite, semifusinite and inertodetrinite, are present
(0.2-1.0%, average 0.2%) in N1, N3 and N5 only. These macerals are present in samples
N2, N4, N7, N8, S2 and S4, but their contents are below the detection limit (<0.2%). In the
remaining samples, inertinite does not occur. Liptinite was absent in all samples.

Random reflectance (R;) values lie between 1.08% (S2) and 1.50% (N8). Except for N1
and N6 (Figure 7), the dispersion of values is wide, indicating alteration of organic matter
that might be caused by heating, as indicated by the presence of graphitized carbon in
sample 54.
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Figure 5. Back-scattered electron BSE (a,c,e,g) and reflected light optical microscopy RLOM (b,d, f,h) images of samples
collected in the northern part of the Jas-Mos mining area. (a) Veins filled with (Mg, Fe)COj3 (Mg-Sd) and quartz (Qtz) in
vitrinite (V). Framboidal pyrite (Py) and accessory monazite (Mnz) are present. Right yellow rectangle is enlarged in (b), left
rectangle in (c) and (d). (b) Quartzitic—carbonatic veinlets in vitrinite. (c,d) Secondary anatase (Ant) and halite (HI) among
quartz, muscovite (Ms) and clay minerals. (e,f) Framboidal pyrite partly replaced by hematite (Hem). (g,h) Accessory zircon
(Zrn) detected by SEM-EDS and visible in RLOM image. Sample N6.

Figure 6. Macerals present in gangue rocks associated with disappearing coal seams in the northern and southern parts of
the Jas-Mos mining area. (a) Collotelinite (Ct) with perpendicular cracks, sample N1; (b) vitrodetrinite (Vd), sample N3;
(c) cracked collotelinite (Ct), vitrodetrinite (Ct) and inertodetrinite (Id), sample S2; (d) fusinite (Fu), sample S4. Reflected
white light, immersion oil.
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Figure 7. Back-scattered electron BSE (a—d) and reflected light optical microscopy RLOM (e-f) images of samples collected
in the southern part of the Jas-Mos mining area. (a) Siderite (5d) rhombohedra, calcite (Cal) and barite (Brt) occurring in
fractures in sample S1; (b) carbonates impregnating the gangue rock with dolomite (Dol) forming veins along the organic
matter (OM) and kaolinite (KIn) and muscovite (Ms) form interlayers in sample S2; (¢) quartz (Qtz), muscovite, kaolinite,
illite (1), siderite and accessory zircon (Zrn) in sample S3; (d) secondary hydroxylapatite (Ap), anatase (Ant) among quartz,
K-feldspars (K-fs), muscovite, Fe-chlorite (Chl), siderite and clay minerals in sample S5; (e) cracked collotelinite (Ct) and
vitrodetrinite (Vd) particle in mineral matter in sample S3; (f) graphitized carbon in sample S4.

3.2. Mineralogy and Chemistry

The mineral composition of gangue rocks is typical for siltstones in the USCB [7,26,42]
that, apart from organic matter, mainly consist of primary quartz, muscovite/illite, kaolinite
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and Mg > Fe chlorite. Averaged amounts are shown in Table 2 and Figures 5 and 7. Apart
from the kaolinite contents, which are similar everywhere, amounts of illite and chlorite are
higher in samples from the northern side of the Jas-Mos mining area, with quartz dominat-
ing on the southern side. Na- and K-feldspars, carbonates such as calcite, dolomite, siderite
or siderite-magnesite, framboidal pyrite and accessory zircon, monazite and xenotime are
subordinate (Figures 5 and 7; Table 2). These minerals are all of sedimentary and detrital
origin. Other minerals, i.e., hematite, goethite, barite, cristobalite-tridymite, halite, anatase,
hydroxylapatite, alunite, alunogen, ZnS and elemental lead, can reflect low-temperature
heating [20-23,43-45]. The xenomorphic habit of most is indicative of primary-mineral
substitution or, as with anatase, secondary crystallization (Figure 5c,d). Halite, quartz and
Fe-Mg carbonate form veinlets in sample N6 (Figure 5). Carbonates dominate in samples
from the southern part, impregnating the rocks or crystallizing in fractures (Figure 7).

Chemical composition depends on the mineral contribution [45-47]. Main-element
contents represent siltstone composition, apart from S2 rich in carbonates and S3 and S4
rich in quartz. The reddish color in the south is due to dispersed hematite. Trace-element
concentrations reflect their affinity to the main minerals present, such as Rb to K in illite,
and the occurrence of tiny grains of chalcopyrite, ZnS or elemental Pb (Table 3).

Table 2. Mineral compositions of the gangue-rocks samples from the northern (N1-N8) and southern (S1-56) parts of the
Jas-Mos mining area. Averaged content of mineral phases of the northern (N) and southern (S) samples is calculated. Higher

values are shown in bold.

Mineral Phase N1 N2 N3 N4 N5 N6 N7 N8 S1 S2 S3 S4 S5 S6 N S
Quartz SiO; 30 29 35 41 29 25 30 36 30 21 74 70 37 56 32 48
Kz‘gll(tjl/srglgigygil)z 38 34 31 40 39 38 38 36 41 4 7 3 50 5 37 18
Ei‘(’é‘lrz‘ge it 1“4 13 10 12 10 4 9 8 2 6 2 w13 10 11
(Mg et )513‘(12;?2 Ow)(OH)s 17 19 20 4 21 & 19 12 10 2 14 2
Hematite Fe,O3 tr tr tr tr tr tr tr 13 tr 1 2 3 tr 3
Cristobalite-tridimite SiO, 1 2 2 2 1 1 9 1 2
K-feldspar K, AlSi3Og 32 11 6 6 4 4
Na-feldspar Na AlSi3Og 6 tr 3 0 2
Calcite CaCOs3 1 tr 1 tr 1 1 tr 2 1 tr
Dolomite CaMg(CO3); 27 2 2 0 5
Siderite FeCOs3 1 1 tr 4 2 tr 1
Siderite-magnesite (Fe, Mg)CO3 tr 1 1 tr 1 2 2 5 tr 1 1
Zircon ZrSiOy tr tr tr tr tr tr tr tr tr tr tr tr
Monazite CePO, tr tr tr tr tr tr tr tr tr tr
Xenotime YPO, tr tr tr tr 0
Chalcopyrite CuFeS; tr tr tr 0
Pyrite FeS, tr tr tr tr tr tr tr tr
Organic matter tr tr tr tr tr tr tr tr tr tr tr
Halite NaCl tr tr 0
Anatase TiO, tr tr tr tr tr tr tr 1 4 tr tr 0.2 0.7
Alunite KAI3(SO4),(OH)g 2 2 2 2 0.8 0.3

Alunogen Al>(SOy4)3 - 17H,0

16 0 2.7

ZnS tr tr tr tr tr tr 0
Berlinite? AIPO, tr tr 0
Barite BaSO, tr tr tr tr tr tr tr tr tr
Goethite a-Fe** O(OH) tr tr 2 tr 0.4
Hydroxylapatite Cas(POy4)3(OH) tr tr tr tr tr tr 3 tr tr tr tr 0.5 tr
Murashkoite? FeP tr tr 0
Pb elemental tr tr 0

tr, traces.



Minerals 2021, 11, 735 14 of 30

Table 3. Chemical composition of the gangue-rocks samples from the northern (N1-N8) and southern (S1-S6) parts of the
Jas-Mos mining area (in ppm, except where otherwise indicated) with averaged N and S. Increased values are marked in
bold, lowered, in italics.

Possible Cause
N1 N2 N3 N4 N5 N6 N7 N8 S1 S2 S3 S4 S5 S6 N S or Mode of
Occurrence

Si0;, % 56.46 5696 5721 5692 5643 68.03 58.6 6094 66.5 16.4 8416 63.84 5932 5437 5894 57.43
ALO3, % 2289 2304 227 2272 2301 1632 2193 1723 165 6.39 8.07 1514 1856 21.48 21.23 14.36 clays, chlorite

FerOs,% 445 448 462 43 428 416 451 807 527 4645 249 766 965 977 486  13.55 Z‘ggﬁﬁ:
MgO, % 156 156 155 16 152 073 148 142 127 581 031 153 086 095 143 179

Ca0, % 013 013 014 016 015 021 018 025 026 392 008 048 031 034 017 090 dolomite
Na,O,% 035 035 033 034 033 042 044 036 084 029 015 016 056 069 037 045 albite

K0, % 4.79 459 453 481 4.61 3.03 494 358 3.83 0.9 217 223 3.53 1.85 4.36 2.42 illite, alunite
TiO,, % 0.92 1.00 0.99 0.91 0.93 0.78 097 081 0.89 0.31 0.39 0.81 0.94 1.07 0.91 0.74
P,0s, % 0.09 0.11 0.09 0.08 0.08 0.1 0.09 0.1 0.11 0.88 0.05 0.1 0.15 0.12 0.09 0.24
MnO, % 0.04 0.04 0.05 0.05 0.04 0.04 005 0.15 0.08 0.61 0.03 0.13 0.03 0.04 0.06 0.15
Cr03, % 0.02 0.02 0019 0.019 0.018 0.014 0.019 0.015 0.016 0.009 0.009 0.014 0.017 0.021 0.02 0.01

LOI, % 8.1 75 75 79 84 60 66 69 42 177 20 77 58 88 736 770
Total 99.83 99.83 99.83 99.85 99.85 99.88 99.83 99.86 99.86 99.8 9991 99.86 99.85 99.83 99.85  99.85
TOT/C,% 192 147 14 199 223 064 108 112 010 483 005 134 005 008 148 108  organic matter
TOT/S, % 004 003 003 003 004 005 003 0 0 0 0 0 0 0 0.03 000 pyrite
Ba 658 618 609 635 621 400 628 479 489 713 326 325 907 2844 581.00 934.00 barite
Ni 73 69 65 89 76 41 84 53 57 119 25 55 64 69 6875  64.83
Sc 20 21 20 21 20 12 18 13 15 11 8 14 16 18 1813  13.67
Be 7 7 6 3 6 1 3 1 3 1 0 1 4 4 425 217
Co 262 194 181 283 267 108 425 199 164 559 176 150 244 265 2399 2597
Cs 142 119 121 109 119 48 122 69 99 34 22 48 72 64 1061 565
Ga 288 290 295 275 273 198 288 206 204 77 72 19 228 292 2641 17.72 Al coal
Hf 47 52 53 42 44 60 56 55 65 18 75 72 65 65 511 6.00
Nb 155 164 160 142 147 122 154 132 139 57 62 127 140 165 1470 1150
Rb 2009 189.1 1895 180.6 1816 1155 2021 1439 1525 446 755 902 1081 446 17540 8592  affinity to illite
Sn 4 5 4 4 4 3 4 4 4 1 2 3 4 5 400 317
Sr 973 903 910 853 826 582 800 519 741 831 641 689 957 1412 7958  87.85 Ba
Ta 1.0 13 1.1 07 09 09 10 09 1.1 04 04 10 11 13 098 088
Th 153 160 163 130 141 108 152 113 118 48 131 128 138 165 1400 1213
U 52 50 53 49 50 34 49 35 32 47 23 41 40 48 465 385
% 141 145 148 149 148 86 130 90 100 70 37 87 108 119  129.63 86.83 affinity to illite
w 25 31 26 25 26 26 26 17 25 14 14 24 23 23 253 205
Zr 1683 1982 1969 1498 1627 2268 2043 206.6 2377 660 2704 2777 2303 2470 18920 221.52 zircon
Y 341 358 384 324 352 265 316 292 283 249 319 268 304 371 3290  29.90
La 425 422 425 381 396 317 400 319 340 144 355 340 369 436 3856 3307
Ce 89.1 866 867 723 795 652 833 654 689 297 688 681 738 877 7851  66.17
Pr 979 1013 1018 867 925 733 966 750 798 349 724 766 88 990  9.06 752
Nd 369 392 409 323 375 295 371 294 325 149 257 289 335 375 3535 28.83
Sm 740 788 814 682 726 568 752 594 622 341 459 593 693 767 708 579
Eu 161 161 166 15 158 103 137 108 121 081 071 112 131 151 143 1.11
Gd 700 710 713 664 702 545 612 553 576 414 456 535 624 706 650 552
Tb 111 114 113 103 103 089 099 087 091 066 079 082 098 112 102 088
Dy 650 660 683 612 610 497 599 525 518 380 514 505 566 684 605 528
Ho 136 137 141 119 129 103 120 110 110 080 124 105 113 136 124 1.11
Er 388 403 422 355 379 271 363 328 299 243 380 309 339 416 364 331
Tm 055 056 058 051 054 040 052 045 044 031 053 046 046 056 051 0.46
Yb 365 373 367 350 368 270 344 302 283 177 356 274 300 371 342 294
Lu 057 055 055 044 052 039 049 044 042 027 055 044 048 058 049 046
Mo 06 03 02 06 05 03 11 06 03 43 04 04 02 01 053 095
Cu 334 348 335 403 371 191 330 208 199 82 107 250 322 306 3150 21.10 chalcopyrite
Pb 244 260 246 237 236 240 313 242 243 410 155 523 198 161 2523 2817
Zn 119 126 123 127 123 119 131 127 75 202 68 90 112 139 12438 11433 ZnS
Ni 601 543 531 807 645 351 786 460 475 1045 232 463 582 494  59.05 5485
As 106 22 47 16 36 102 75 28 109 216 164 33 4.0 1.1 5.40 9.55 *;fﬁ“‘ty. to
ematite
cd 03 03 02 03 02 01 02 03 02 03 00 02 00 00 024 012
Sb 02 01 00 02 01 02 01 0.1 00 07 05 01 00 00 013 022
Bi 04 05 04 05 04 02 04 02 02 02 01 02 02 04 038 022
Ag 0.1 00 00 00 00 00 01 00 00 00 00 00 00 00 003 000
Au 09 09 14 00 15 06 1.0 00 13 26 14 40 14 09 079 193
Hg 001 001 002 002 002 003 000 002 005 005 008 003 003 004 002 005
Tl 02 02 01 0.1 0.1 0.1 02 01 03 01 02 01 01 01 013 0.0 clay minerals
Se 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000  0.00

3.3. Palynology

Almost all positive palynological samples from both localities contain typical Upper
Carboniferous miospores and plant debris (Figure 8) [48]. Samples (N1-N5, N7 and N8)
from the northern area are more or less uniformly differentiated taxonomically; Crassis-
pora kosnakei is the most common miospore, accompanied by less numerous Cirratrira-
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dites saturnii, Cingulizonates bialatus, Convolutispora sp., Densosporites spp., Florinites spp.,
Granulatisporites sp., Lycospora pusilla, Kraeuselisporites sp., Punctatisporites spp., Raistrickia
microhorrida, Savitrisporites nux, Schulzospora sp. and a single Tripartites sp. The rest of the
organic material in these samples consists of a mixture of melanogen (non-translucent) and
hylogen (translucent) particles. The exception is sample N8 with mainly black palynodebris
(melanogen); rarely were miospores noted as single taxa only.

(c)

(g)

Figure 8. Microflora present in samples from northern (N samples) and southern (S samples) areas of the Jas-Mos mining
area. (a) Raistrickia saetosa, sample N5; (b) Lycospora pusilla?, sample N5; (c) Cingulizonates sp., sample N5; (d) Tripartites
sp., sample S4; (e) Raistrickia saetosa, sample N1; (f) Crassispora kosankei, sample N1; (g) Crassispora kosankei, sample S54;
(h) Schulzospora sp., sample N1; (i) Florinites sp., sample S4; (j) Cingulizonates bialatus, sample N8; (k) Florinites cf. visendus.,
sample N1; (1) Florinites cf. pumicosus., sample S2. Scale bar is the same for all images.
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200 pm

Samples S2 and 54 from the southern area possess fewer miospores and taxonomically
differentiated taxa assemblages. Identified miospores are Crassispora kosankei, Florinites sp.,
Lycospora pusilla, Raistrickia sp., Schulzospora sp. and Triprtites sp. Miospores were more
common in 54, than in sample S2. The predominant fraction of organics in S4 consists
of melanogen with, less commonly, hylogen and residual AOM (Figure 9). The organic
content of S2 is dominated by melanogen.

T ==

N C
e qd DA 4 ad

Figure 9. Palynofacies from northern (N samples) and southern (S samples) areas. (a) Sample N1; (b) sample N3; (c) sample

54; (d) sample S4. H, hylogen; M, melanogen; S, spora; P, pollen; AOM, amorphous organic matter. Scale bar is the same for

all images.

The organic matter from both areas shows a high degree of degradation. Almost all
organic components, especially the exines of the miospores, exhibit numerous traces left by
recrystallizing minerals (Figure 8).

Disperse organic matter is often used as a thermal indicator. The exines of miospores
change color with rising temperature and based on the palynoflora coloration, it is possible
to estimate the thermal maturity of hosting sediments [49,50]. Importantly, miospore
thermal scales are tentatively correlated with the Ro scale [51]. The brown—dark brown
color of exines from the northern area fall between 5 and 6 on Batten’s TAS scale [49];
the color, which is more or less the same in all analyzed samples, correlates with the
1-1.5 interval on the Ro scale. The color of the microflora in the southern area is similar
and allows correlation with the same Ro interval. On this basis, the paleotemperature can
be estimated to have been 100-150 °C.

3.4. Organic Geochemistry

There are significant differences in the organic matter characteristics of the two in-
vestigated rock series, i.e., the red-orange series and the dark grey series with red streaks
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or patches. Extraction yields range from 0.0008 wt% to 0.0580 wt%, with the latter series
showing 10 times higher extractability (Table 1). Though extracts of both series contained
the same wide range of biomarkers, such as n-alkanes, alkylcyclohexanes, acyclic iso-
prenoids (pristane and phytane), steranes, tri- and pentacyclic triterpanes, distributions of
a given compound group are distinctly different in both. Aromatic hydrocarbons together
with their aliphatic derivatives comprise compounds from rare naphthalene (1m/z = 128) or
phenanthrene (m/z = 178) up to 6-ring PAHs, such as coronene (/z = 300) and dibenzopy-
renes (m/z = 302).

Biomarker occurrence and distributions

n-Alkanes (m/z = 71), in the range n-Cy5-1-C33, show a monomodal distribution
with a smooth outline for the reddish samples and a bimodal distribution type for the
grey samples (Figure 10). The latter is similar to n-alkane distributions found in Upper
Silesia bituminous coals or accompanying rocks; it is common in mature organic matter
of terrestrial origin. In addition, values of the Carbon Preference Index fit those found for
USCB organic matter, i.e., 1.50 on average [16,52]. However, the n-alkane distributions in
the reddish-rock extracts are more unusual in showing a smooth Gaussian-type outline,
closer to pyrolytical n-alkane distributions found in coal pyrolysates or coal-waste rocks
subjected to self-heating [53,54]. CPI values are also slightly lower for the reddish rocks
at 1.30, on average, though it seems that long-chain n-alkanes still preserve the primary
pattern of distribution and the Gaussian hump is located in the short-chain n-alkanes range.
The maximum Gaussian hump is slightly different in different southern samples, i.e., at n-
Cyg for S2 and 1n-Cy1-n-Cy; for the remainder. Such variation can be due to different degrees
of heating affecting organic matter, whether by a paleofire or an intrusion; coal-waste rocks
subjected to self-heating show the same feature [55,56].
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Figure 10. Comparison of n-alkane profiles from the northern and southern parts of the Jas-Mos
mining area with changes caused by heating indicated.
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The same differences in Pr/Ph values are apparent in both sample sets, which are low
(0.52 on average) in the reddish rocks, but for grey rocks reach values (2.02) common for
USCB bituminous coals [16,52]. It is possible that thermal stress caused rapid preferential
expulsion of lighter compounds, such as Pr, from the kerogen macromolecule, decreasing
Pr/Ph values. A decrease in Pr/Ph values with increasing thermal maturity can occur
with organic matter evolution within a deposit [57]. Moreover, preferential expulsion of
lighter n-alkanes is confirmed by lowered Pr/n-Cy7, Ph/n-Cig and (Pr+Ph)/(n-Cyy + n-Cyg)
values (Table 4; Figure 11). However, the variability of values of these ratios is high and
the general ranges of Pr/n-C;7 and Ph/n-Cyg in Figure 10 overlap. Assuming that the grey
rocks better retain the unaltered values of the ratios, Figure 10 indicates that organic matter
was deposited in a dysoxic estuarine or lagoonal environment at a high to normal water
level and kerogen is mostly of II/III type. However, the influence of heating, as seen in the
case of the reddish rocks that plot in the field of much more mature organic matter and,
likewise, with some grey samples, may indicate a shift due to paleofires.

The n-alkane- and acyclic-isoprenoid results seem to indicate more advanced changes
in the reddish samples, but this is not so when the distributions of steranes (m/z = 217)
and pentacyclic triterpanes (m/z = 191) are compared. Excepting N6 and N7, these latter
compounds are almost absent in the grey rocks, in which they were possibly destroyed by
heat, whereas they occur in all reddish rocks. The range of pentacyclic triterpanes comprises
compounds such as 18x(H)-22,29,30-trisnorneohopane (abbreviation: Ts), 17 x(H)-22,29,30-
trisnorhopane (Tm) and a series of Cyg to Czz 17(H),213(H) hopanes (xf3 hopanes),
accompanied by a few moretanes (3o« hopanes), in much lower concentrations than «f3
hopanes (Figure 12). Hopanes with a biological 3 configuration were not identified.
Short distributions ending at C33 pentacyclic triterpanes are common in coals and kerogen
III [57]. Whenever pentacyclic triterpanes occur in the extracts, the distribution types are
similar to each other and are characteristic of thermally mature organic matter at the middle
catagenesis stage at least.

Table 4. Extraction yields and biomarker ratios indicative of maturity and biogenic origin.

Caop o/ CzoB B/ Cz S/ C3S/ Coapp/

Saggle 2(21/;21 C(ZP)I P:g;h Plzg” Ph(/sfls Ts,ﬂ;g; +T) (xfB + B x) BB+ ap+pPx) (S+R) (S+R) (xoxox + B B) Cﬁ/;n
(7) 8) (©)] (10) 11)

N1 0.58 0.98 2.02 0.59 0.77 - - - - 0.34 0.14 0.66
N2 0.56 1.98 1.06 0.83 1.20 - - - -
N3 1.16 1.40 0.55 091 1.65 - - - - 0.33 047 0.93
N4 0.38 1.66 2.01 0.61 0.61 - - - - - - -
N5 0.50 1.26 1.15 0.56 0.56 - - - - - - -
N6 0.44 1.85 0.64 0.81 0.97 0.35 0.39 0.17 0.37 0.35 0.28 1.01
N7 0.92 1.55 1.42 1.94 0.76 0.39 0.37 0.08 0.64 - - -
N8 0.56 1.25 0.28 0.64 1.12 - - - - - - -
S1 0.73 1.11 0.58 0.69 0.74 0.30 0.20 0.05 0.52 0.37 0.41 0.80
S2 0.19 1.65 0.38 0.32 0.67 0.34 0.19 0.12 0.54 0.38 041 0.63
S3 1.59 1.19 0.59 0.56 0.64 0.34 0.15 0.04 0.55 0.37 0.49 1.07
S4 1.38 1.14 0.62 0.75 0.84 0.24 0.00 0.00 0.48 - - -
S5 0.98 1.30 0.56 0.77 0.92 0.39 0.29 0.04 0.56 0.34 0.48 0.81
S6 0.97 1.42 0.59 0.78 0.91 0.53 0.39 0.09 0.54 0.36 0.48 0.72

average N 0.64 1.49 1.14 0.86 0.95 0.37 0.38 0.12 0.50 0.34 0.30 0.87

average S 0.97 1.30 0.55 0.64 0.79 0.36 0.20 0.06 0.53 0.36 0.45 0.81

(1) x2/%1 = [Z (from n-Cps to n-Csy)]/[Z (from n-Cqq to n-Cyp) |; m/z = 71, source indicator [58]. (2) CPI = 0.5{[(n-Cy5 + n-Cy7 + n-Cp9 +
)’l—C31 + n—C33)/(n—C24 + l’l—C26 + n—ng + Vl—C30 + l’l—C32)] + [(H—C25 + 1’l—C27 + I’Z-ng + 1’1—C31 + 1’l—C33)/(}’l-C26 + H—ng + 1’l—C30 + n—C32 + TZ—C34)],'
Carbon Preference Index; m/z = 71, thermal maturity parameter [59]. (3) Pr/Ph = pristane/phytane; parameter of environment oxicity
(with exception of coals), m/z = 71 [60]. (4) Pr/n-Cy; = pristane/n-heptadecane; m/z = 71 [61]. (5) Ph/n-Cig = phytane/n-octadecane;
m/z =71 [61]. (6) Ts/(Ts+Tm) = 18(H)-22,29,30-trisnorneohopane/ (18 x(H)-22,29,30-trisnorneohopane + 17x(H)-22,29,30-trisnorhopane);
m/z = 191, thermal maturity parameter [57]. (7) CzBa/(ap + po) = 17B(H),210e(H)-29-hopane Czg/(17(H),21(H)-29-hopane Czp +
173 (H),21x(H)-29-hopane Cs); m/z = 191, thermal maturity parameter [62]. (8) C3oBB/(Bp + «p+ px) = 17B(H),21b(H)-29-hopane Czo/
(17B(H),21b(H)-29-hopane C3y + 17 (H),21x(H)-29-hopane Cz + 17a(H),21b(H)-29-hopane Csp) m/z = 191, thermal maturity parameter [62].
(9) C315/(S + R) = 17x(H),213(H)-29-homohopane 225/ (17x(H),213 (H)-29-homohopane 225 + 17(H),21(H)-29-homohopane 22R);
m/z = 191, thermal maturity parameter [57]. (10) C9S/(S + R) = a ratio of Cy9-5x,14x,17x(H)-stigmastane 20S to a sum of its diastereomers
20S and 20R; m/z = 217 [62]. (11) Cogaxxor/(Cooxaxx + Cooax3) = a ratio of Cog-5x,14x,17 (H)-stigmastane (20S + 20R) to a sum of its
distereomers Cp9-5x,14 0,17 x(H)-stigmastane (20S + 20R) + Cpo-5x,14p,173 (H)-stigmastane (20S + 20R); m/z = 217, thermal maturity
parameter [62]. (12) Cp9/Cp7 = a sum of Cyg sterane diastereomers/a sum of Cy; sterane diastereomers; m/z = 217, biological input [63].
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Figure 11. Pr/n-Cyy versus Ph/n-C;g diagram. Pr, pristane; Ph, phytane.

Several thermal maturity ratios based on pentacyclic triterpanes were calculated
(Table 4). Values of Ts/(Ts + Tm) lie in the range of 0.24-0.53 (average 0.37) and C3;S/
(S + R) in the range of 0.36-0.64 (average 0.52). In most extracts, C31S/(S + R) values lie
close to 0.57. This value, considered to mark the end of the validity of this ratio, corresponds
to middle catagenesis (R, > 0.8). Ts/(Ts + Tm) seems to be surprisingly low for such mature
samples and does not fit the range (0.71-0.91) of USCB bituminous coals [52]. It has been
shown that both Ts and Tm can be destroyed during coal combustion or self-heating
with preferred Ts over Tm removal due, possibly, to the lesser resistance of the former
to oxidation and/or heat [56,64,65], thereby decreasing Ts/(Ts + Tm) values. However,
such behavior is opposite to that shown during catagenesis of organic matter within a
deposit, where Tm tends to decrease with increasing maturity, causing Ts/(Ts + Tm) values
to increase up to ~0.80 at the end of catagenesis [57]. As natural maturation causes Tm to
Ts conversion rather than thermal destruction of Tm, the discrepancy between low Ts/(Ts +
Tm) values compared to much higher maturity indicated by other maturity ratios are likely
related to rapid thermal stress rather than to low maturity.

As with pentacyclic triterpane ratios, sterane distributions and values of sterane-
based ratios do not differ in both samples sets. Steranes and diasteranes were present
in low concentrations and their distributions are dominated by cholestanes (~42rel%).
This indicates a deltaic/open sea depositional environment rather than coal swamp, as
shown in Figure 13, and agrees with the assessment of the sedimentary environment based
on Pr and Ph ratios [57,63]. The cholestane predominance differentiates the investigated
samples from USCB coals, whose sterane distribution is usually dominated by stigmastanes
(Cy9 steranes), pointing to decreased input of terrestrial plant material compared to coals.
Diasteranes (m/z = 259), diagenetic products of sterols formed in the presence of clay
minerals, occur in much lower concentrations in the samples than do steranes in the
extracts and their distributions also show the prevalence of Cy; diasteranes.
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Figure 12. Pentacyclic triterpanes distributions in: (a) sample N6; (b) sample S3; (c) ternary diagram of Cp9-C39-Cs;
relative percentages. Ts, 18x(H)-22,29,30-trisnorneohopane; Tm, 17(H)-22,29,30-trisnorhopane; Cpoxf3, 17x(H),213 (H)-
29-norhopane; CyofBce, 173(H),210(H)-29-norhopane; Csoxf3, 17x(H),213(H)-29-hopane; Czpfx, 17p(H),21x(H)-29-
hopane; C31f3, 170(H),21 3 (H)-29-homohopane; Csy«f3, 170(H),21(H)-29-bishomohopane, Cz3xf3, 17x(H),213 (H)-29-
trishomohopane. Yellow circle: N series; blue box: S series.
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Values of sterane maturity ratios, i.e., the ratio of 5«,143,173(H)-stigmastanes to
the sum of all stigmastane diastereomers (Cyaxorx/(xaxax+af33)) and the ratio of Cyg-
5x,14x,17 x(H)-stigmastane 20S to the sum of its diastereomers 20S and 20R [62] (Table 4) are
in similar ranges for both reddish and grey samples, averaging 0.37 and 0.35, respectively.
These values accord with values previously found for USBC bituminous coals [52]. The
limited changes in values of pentacyclic triterpene and sterane ratios caused by heating
allow better assessment of the geochemical features of primary organic matter prior to any
heating event than is possible with n-alkanes.

Polycyclic aromatic hydrocarbons

The aromatic compounds comprise unsubstituted polycyclic aromatic hydrocarbons
(PAHs) with 2-7 aromatic rings in a molecule that includes naphthalene (m/z = 128),
biphenyl (m/z = 168), phenanthrene and anthracene (m/z = 178), phenylnaphthalene
(m/z = 204), fluorene and pyrene (m/z =202), benzo(ghi)fluorene, benzo(a)anthracene,
trifenylene and chrysene (m/z = 228), benzofluoranthenes, benzopyrenes and perylene
(m/z = 252), benzo(ghi)perylene, anthanthrene and indenol[1,2,3-cd]pyrene (m/z = 276),
dibenzoanthracenes, benzochrysene and picene (1m/z = 278), coronene (m/z = 300) and
dibenzopyrenes (1m/z = 302). All unsubstituted PAHs are accompanied by their alkyl deriva-
tives and partially aromatized compounds. Dominating heterocyclic aromatic compounds
are mostly oxygen derivatives.

Lighter 2-ring PAHs (naphthalene and biphenyl) are absent in most of the extracts
of both sample groups. Phenanthrene is the PAH predominating in all samples. Low
anthracene contents (~0.5rel%) point to pyrolytical conditions rather than fire open to
oxygen. The significant difference between the reddish and grey rocks is that, in the former,
contents of PAHs with increasing numbers of aromatic rings decrease, whereas, in the
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Figure 14. Two types of polycyclic aromatic hydrocarbons distributions. Peaks identification: 1: naphthalene, 2: phenanthrene,

latter, contents of 6-7-ring PAHs, mostly dibenzopyrenes, increase. These compounds are

rare in USCB coals and, if present, occur in trace amounts.

Dibenzopyrene isomers and coronene occur in diverse matrixes, such as coal tar [66],
coal fly ash [67], cigarette smoke condensates [68], soils [69,70], sediments, diesel and
gasoline vehicle emissions [68,71,72], air particulate matter [72] and waste incinerator

emissions [73]. In all these occurrences, they are considered to be related to pyrolysis or

incomplete organic matter combustion. Moreover, these PAHs are common in soot [74-76].
Though they occur in all N and S samples, in extracts of the former, their contents are twice
as high on average, than in the S extracts (Table 4).

Distributions of PAHs groups with 2-3, 4-5 and 67 condensed rings show elevated
contents of the heaviest PAHs, compared to USCB bituminous coals analyzed previ-

ously [52]. The different distribution patterns distinguishing the N and S sample sets
are also seen in the distribution of PAHs (Figure 14).
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10: benzo(e)pyrene, 11: benzo(ghi)perylene, and 12: indeno[1,2,3-cd]pyrene.

3: anthracene, 4: fluoranthene, 5: pyrene, 6: benzo(a)anthracene, 7: chrysene, 8: benzofluoranthenes, 9: benzo(a)pyrene,

Alkyl derivatives of lighter aromatic hydrocarbons

Lighter aromatic hydrocarbons include alkyl derivatives of naphthalene, biphenyl,
anthracene, phenanthrene, chrysene and pyrene. To assess the thermal influence on the
organic matter, the following ratios of alkyl aromatic hydrocarbons were calculated: methyl-
naphthalene ratio (MNR), dimethylnaphthalene ratio (DNR), trimethylnalphthalene ratios
(TNR-1, TNR-2 and TNR-5), methylphenanthrene indices (MPI-1 and MPI-3), a sum of
methylphenanthrenes to phenanthrene (MP/P), dimethylphenanthrene ratio (DMPR), a
sum of dimethylphenanthrenes to phenanthrene (DMP/P), methylpyrene ratios (MPyR1
and MPyR2), methylfluorene index (MFI) and methylfluorene ratio (MFR) (Table 5). Based
on MPI-1 values, calculated vitrinite reflectance (R.) values were determined for compari-
son with measured values (R;) [77-79].

When the average values in both sample sets are compared, all thermal maturity
ratios show higher values for the grey samples than the reddish samples, e.g., MNR = 2.29
and 1.59, respectively; DNR =7.78 and 3.63, MPI-1 = 0.79 and 0.38, MPy1 = 1.08 and 0.39
(Table 5). As Figures 15 and 16 show, there are distinctive differences between both sets in



Minerals 2021, 11, 735

23 of 30

the relative contents of alkyl naphthalene and phenanthrene isomers used in calculating
these ratios. Since these ratios are built based on variability in isomer resistance to increas-
ing temperature, the ratio values will increase with increasing heat, due to the thermal
evolution of organic matter in a deposit, or due to magmatic intrusion or internal fire [78].
According to the Shapiro-Wilk test, the values of aromatic hydrocarbon ratios showed
normal distribution, except the MFR values set. Thus, the Pearson correlation has been
applied to calculate the square of the Pearson product moment correlation to find whether
there is a linear correlation between selected ratios. Linear correlations between various
aromatic hydrocarbon maturity ratios confirm that both sample sets were initially of the
same maturity and similar in type of organic matter. Correlation coefficient values of 0.3376—
0.4664 indicate weak correlations for DMPR versus MPI-1, MPI-3 and MP /P and values
of 0.6040-0.7350, moderate to strong positive correlations for MPy-1 versus MPI-1, MPI-3
and MP/P (Figure 17). Negative correlations (from -0.6059 to —0.8079) between MFR and
MPI-1, MPI-3 and MP/P reflect the fact that the MFR decreases with increasing maturity.
In Figure 17, values for the red and grey samples show minimal overlap. The higher
maturity of the grey rocks is indicated. Aromatic hydrocarbon maturity ratios appear
to be more sensitive than biomarker ratios to short-term thermal influences; unlike the
former, pentacyclic triterpene and sterane ratios do not show significant differences. In
organic matter, the biomarker ratios preserve initial geochemical features due to earlier
catagenesis and mild long-term heating. Except for Ts and Tm, they did not register later
higher-temperature thermal stresses of short duration. Thus, the aliphatic biomarkers and
alkyl aromatic hydrocarbons enable discrimination between earlier catagenic stages of
organic-matter evolution and local changes due to any later intra-deposit heating.

Table 5. Aromatic hydrocarbons ratios indicative of maturity.

MNR
1)

DNR
(2)

TNR2 TNR5 MPI-3 MPI-1 DMPR MPyR Rc MP/P  DMP/P MPyll MPyI2 MFR MEFI
@) (5) (6) (7) 8) ) (10) a1n (12) (13) (14) (15) (16)

N1 2.84
N2 3.97
N3 -

N5 0.88
No6 1.77
N7 1.97
S1 2.11

S3 1.45
S4 2.10

S6 0.69

9.92
15.50

2.28
11.05
4.27
3.75
2.82

241
3.97

5.33

1.18
0.84

1.12 0.26 2.17 1.40 0.63 0.57 1.24 127 0.50 1.13 0.89 0.12 0.76
0.94 0.44 1.74 1.44 0.53 0.51 1.26 1.59 0.74 1.05 0.82 0.16 0.72
- - 143 1.05 0.75 0.52 1.03 117 0.52 0.92 0.56 0.15 0.61
- - 1.69 1.30 0.57 0.60 1.18 1.39 0.56 1.00 0.81 0.11 0.57
1.00 0.52 1.97 1.33 0.54 0.58 1.20 1.28 0.58 1.23 0.82 0.09 0.59
112 0.66 1.50 0.83 0.58 0.56 0.90 0.82 0.46 1.29 0.93 0.20 1.16
1.20 0.51 218 115 0.53 0.53 1.09 0.98 0.32 1.08 0.73 0.19 1.06
1.09 0.62 1.78 0.96 0.59 0.57 0.98 0.87 0.35 0.92 0.76 0.19 1.00
0.85 0.48 1.35 0.76 0.42 0.44 0.86 0.79 0.74 0.55 0.86 0.51 1.92
- - 1.19 0.37 0.39 0.68 0.62 0.35 0.11 0.25 0.73 - -
0.87 0.53 0.99 0.57 0.39 0.58 0.74 0.68 0.49 0.47 0.89 0.56 2.58
0.88 0.45 1.35 0.31 0.41 0.59 0.59 0.27 0.06 0.20 0.71 0.69 218
1.00 0.58 1.23 0.73 0.45 0.50 0.84 0.80 0.59 0.49 0.75 0.56 221
0.73 0.42 1.19 0.67 0.38 0.53 0.80 0.73 0.43 0.35 0.65 0.60 1.30

average N 2.29
average S 1.59

7.80
3.63

1.90
1.06

1.08 0.50 1.81 1.18 0.59 0.55 1.11 1.17 0.50 1.08 0.79 0.15 0.81
0.87 0.49 1.22 0.57 0.41 0.55 0.74 0.60 0.40 0.39 0.76 0.58 2.04

(1) MNR = 2-methylnaphthalene/1-methylnaphthalene; m/z = 142, thermal maturity parameter [78]. (2) DNR-1 = (2,6-

dimethylnaphthalene + 2,7-dimethylnaphthalene)/1,5-dimethylnaphthalene; m/z = 156, thermal maturity parameter [78]. (3) TNR 1
= 2,3,6-trimethylnaphthalene/(1,3,5- + 1,4,6- trimethylnaphthalene); m/z = 170, thermal maturity parameter [80]. (4) TNR 2 = (1,3,7- + 2,3,6-
trimethylnaphthalene)/(1,3,5- + 1,3,6- + 1,4,6-trimethylnaphthalene); m/z = 170, thermal maturity parameter [78]. (5) TNR5=1,2,7 + 1,6,7-
trimethylnaphthalene/1,2,5-trimethylnaphthalene; m/z = 170, thermal maturity parameter, [78]. (6) MPI-3 = (2- + 3-methylphenanthrene) /(1-
+ 9-methylphenanthrene) [78]. (7) MPI-1 = 1.5 X (2- + 3-methylphenanthrene)/(phenanthrene + 1- + 9-methylphenanthrene) [78]. (§) DMPR
= dimethylphenanthrene (DMP) ratio ([3,5- + 2,6- + 2,7-DMP]/[1,3- + 3,9- + 2,10- + 3,10- + 1,6- + 2,9- + 2,5-DMP]); m/z = 206, thermal
maturity parameter [78]. (9) MPyR = 2-methylpyrene/(1-methylpyrene + 2-methylpyrene); m/z = 216, thermal maturity parameter [81].
(10) Rc (MPI-1) = 0.6 x MPI-1 + 0.40 [77]. (11) MP/P = a sum of methylphenanthrenes to phenanthrene [82]. (12) DMP/P = a sum of
dimethylphenanthrenes to phenanthrene [82]. (13) MPyl 1 = 3 x 2-methylpyrene/(pyrene + 1- + 4- methylpyrene) [83]. (14) MPyl 2 =
2-methylpyrene/(1- + 4- methylpyrene) [81]. (15) MFR = 4-methylfluorene/1-methylfluorene, [78]. (16) MFI = a sum of methylfluorenes to
1-methylfluorene, [78].
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Figure 15. Distribution of alkyl naphthalenes. (a) Dimethylnaphthalenes (DMN), peaks identification: 1: 2,6- + 2,7-DMN, 2:
1,3-+1,7-DMN, 3: 1,6-DMN, 4: 1,4- + 2,3-DMN, 5: 1,5-DMN, and 6: 1,2-DMN. (b) Trimethylnaphthalenes (TMN), peaks
identification: 1: 1,3,6-TMN, 2: 1,3,7-TMN, 3: 1,4,6- + 1,3,5-TMN, 4: 2,3,6-TMN, 5: 1,2,7- + 1,6,7-TMN, 6: 1,2,6-TMN, and 7:
1,2,5-TMN.
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Figure 16. Distribution of alkyl phenanthrenes. (a) Methylphenanthrenes (MP), peaks identification: 1: 3-MP, 2: 2-MP, 3:
4-MP, and 5, 1-MP. (b) Dimethylphenanthrenes (DMP), peaks identification: 1, 2,6-DMP, 2, 2,7-DMP, 3, 3,10 + 1,3 + 2,10 +
3,9-DMP, 4: 1,6 + 2,9-DMP, 5: 1,7-DMP, 6: 2,3-DMP, 7: 1,9 + 4,9-DMP, and 8: 1,8-DMP.
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Figure 17. Correlations of PAHs diagnostic ratios.

4. Conclusions

The organic geochemistry indicates that the primary organic material of the rocks
was deposited under dysoxic conditions, most probably in an estuarine and/or shelf
environment. It is a mixture of kerogen II and III with a variable input of terrestrial
material. The maturity of the organic matter prior to the thermal event that altered its
features was ended diagenesis/early catagenesis, at least.

After normal maturation within a coal-bearing deposit, the organic matter was sub-
jected to heating and weathering, causing coal seams to disappear. Changes recorded
by organic petrology (lack of liptinite), mineralogy (hematite, anatase, hydroxylapatite
formation), palynology (coloration) and chemical composition (enrichment in elements
associated with new-mineral formation) and, most significantly, organic-geochemical data,
all serve to identify an intra-deposit paleofire as the most likely reason for the disappear-
ance. The intra-deposit fire, which began at an outcrop of the neighboring coal seam,
migrated down the seam. Rocks in close contact with the burning seam, burned out at a
high temperature, essentially losing their organic matter totally (S1-6 reddish rocks). When
most of the oxygen had been exhausted, the remaining coal seam began to smolder, creating
a hot zone that probably survived for a long time underground. This affected surrounding
rocks located further away and deeper (N1-8 dark grey rock). Long heating at relatively
low temperatures without access to oxygen increased values of geochemical ratios and
caused formation of heavier PAHs. Compounds expelled from rocks so heated migrated
to others, including rocks earlier burned out, thus the apparent discrepancy between the
presence of residual pyrolytical n-alkanes that had migrated into these rocks and the low
values of geochemical ratios based on aromatic hydrocarbons due to short-term heating.

Paleotemperature due to the coal seam fire, registered by samples collected from
both northern and southern parts of the Jas-Mos mining area, a part of the Jastrzebie-Bzie
Coal Mine, can be estimated as having been 100-150 °C, based on palynology and limited
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changes in chemical-, organic- and mineral-matter composition. Peat combustion in the
Early Pennsylvanian times could have occurred locally, but the methodology used did not
deliver any evidence for such. If peat fires occurred, any evidence was later obscured/reset
by coal-seam burning and weathering.
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