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A B S T R A C T   

Mints are valued for their specific essential oil used in food, pharmaceutical and cosmetic industry. Chemical 
compounds differing between species, cause changes in medicinal/pharmacological properties, antioxidant ac-
tivities or smell sensations. For this reason fast procedure for quality control of at least two most popular mint 
species, peppermint and spearmint, is the issue at hand. UV-VIS spectrophotometry and FTIR-ATR spectroscopy 
were used for recording the spectral fingerprints of a collection of more than 20 mint varieties harvested in three 
periods. Two-step chemometric approach for mints quality control involved SIMCA (Soft Independent Modeling 
of Class Analogy) to filter out species other than peppermint and spearmint. The samples suspected to be either 
peppermint or spearmint underwent final discrimination using adequate discrimination tools PLS-DA (Partial 
Least Squares-Discriminant Analysis) or SVM (Support Vector Machines). The model performance ranged be-
tween 60 and 80% depending on spectroscopic data used for model training and the harvest season.   

1. Introduction 

Mints are perennial herbal plants of the Lamiaceae L. family culti-
vated mainly due to their characteristic volatile oil. Taxonomy of plants 
of the genus Mentha L. is a complex problem, because they are charac-
terized by the ability to natural, spontaneous hybridization. Fast clas-
sification and differentiation of mint samples is complicated due to the 
presence of many various chemical compounds. Additionally, they are 
also subjected to cross-fertilization in order to obtain new cultivars. The 
division of the genus Mentha into species is not unambiguous and their 
number is estimated at 13 to 18 depending on the classification (Gobert 
et al., 2002; Saric-Kundalic et al., 2009; Tucker & Naczi, 2007). For 
example Fejer et al. (2017) has reported that the most popular mint, of 
the greatest pharmaceutical importance, peppermint (Mentha × piperita 
L.), is a natural hybrid, formed by the crossbreeding of M. aquatica L. and 
M. spicata L. (Rita & Animesh, 2011) or by interbreeding of M. silvestris 
L., M. longifolia L., M. viridis L. and M. aquatica L. (Stanev & Zheljazkov, 
2004; Sabboura et al., 2016). In addition, the chemical composition of 

oil plants can change during ontogenesis and depends on plant growth 
conditions (Marotti et al., 1994; Grǔlová et al., 2016). 

Among the most popular mint species, peppermint and spearmint are 
cultivated in many countries because of their importance to the food, 
pharmaceutical and cosmetic industries (Tucker & Naczi, 2007) due to 
their specific flavour and presence of antioxidants (Freie et al., 2012; 
Saric-Kundalic et al., 2009; Abbas & Nisar, 2020). These two species are 
attracting considerable attention, leaving the remaining species less 
used. Mint species differ in chemical composition, which may cause 
changes in medicinal properties, antioxidant and antimicrobial activ-
ities or smell sensations. The characteristic scent of hybrid Mentha ×
piperita L. and its varieties is caused by the presence of menthol and its 
isomers, linalool and linalool acetate (Ludwiczuk et al., 2016; Stanev & 
Zheljazkov, 2004; Rita & Animesh, 2011). The active constituent found 
in cultivated spearmint is mainly carvon. (Hawryl et al., 2015; Lud-
wiczuk et al., 2016; Tucker & Naczi, 2007). The presence of different 
compounds translates into changes in mint scent and properties, not 
always easily perceived by consumers. It also necessitates the 
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development of a procedure for quick and reliable quality control of 
certain types of mint to verify the purity of the material before it is used 
in a production, with a particular emphasis on the two most popular, 
peppermint and spearmint. Due to the taxonomical complexity of the 
genus Mentha it is important to define criteria of chemical profiles of 
mint plants for safety and efficacy of raw plant material applied in 
herbal medicines, food product, teas or diet supplements. The average 
consumer is not able to verify the authenticity of the plant raw material 
used in the case of adulteration of the product or distinguish between 
varieties. Conscious consumers, whose number has been growing 
steadily in recent years, are eager to know exactly what the bioactive 
components are included in table spices or herbs. Producers, especially 
in the food, herbal medicines, cosmetics and perfumery industries, need 
to know what species or varieties of mint are used due to their varied 
chemical composition and biological properties. 

The quality control of plant material requires the use of techniques 
that will unequivocally assess the qualitative composition and purity of 
the examined part of materials. For this purpose morphological (Bezerra 
et al., 2019; Fialova et al., 2015), genetical (El-Sayed et al., 2013; Sab-
boura et al., 2016) as well as chemical (Anwar et al., 2017; Hawryl et al., 
2015) methods have been used. Each of the mentioned approaches 
possesses its own advantages and limitations, e.g. the application of the 
first one gives the proper results only when the fresh material is avail-
able. In the case of dried and crushed plants, their identification is very 
problematic. The genetic or chemical identification typically using 
chromatographic techniques is time-consuming and expensive (Ercioglu 
et al., 2018; Jędrzejczyk & Rewers, 2018; Kiełtyka-Dadasiewicz et al., 
2017; Ludwiczuk et al., 2016). Although the chromatographic analysis 
allows obtaining clear information on the quantitative or qualitative 
composition, final assay is preceded by a multi-stage sample prepara-
tion: extraction, purification of the obtained extracts and 
pre-concentration. These operations are very often burdened with high 
consumption of organic solvents which increases the total cost of the 
analysis and at the same time is harmful to the environment and the 
analyst. An additional disadvantage of chromatographic analysis is its 
long time. Generally, the use of advanced separation techniques is time 
consuming and laborious, which makes them difficult to use, especially 
when fast examination of large numbers of samples is required. So 
searching for methods that would be faster and more economical is still 
an open issue. Advances in spectroscopic techniques, as well as rela-
tively lower costs of equipment and use, their green character, make 
spectroscopic tools a much more attractive alternative to chromato-
graphic methods. The growing popularity of the methods based on 
chemometric analysis of spectra, especially FTIR spectra, is confirmed 
by the growing number of published articles, in which authors use them 
to solve various analytical problems. Each year, several dozen articles 
devoted to the use of a combination of spectral analysis and chemo-
metric processing are published. 

For this purpose Fourier Transform Infrared Spectroscopy (FTIR), 
Near Infrared Spectroscopy (NIR), Raman Spectroscopy and Nuclear 
Magnetic Resonance (NMR) techniques are most frequently applied 
(Kucharska-Ambrożej & Karpińska, 2020). The spectral characteristics 
of the tested materials (not only mints), and further chemometric pro-
cessing permit the extraction of useful information that allows for dis-
tinguishing of different chemotypes. The most often applied 
chemometric techniques are principal component analysis (PCA) and 
hierarchical cluster analysis (HCA) for data exploration (unsupervised 
methods) and linear discriminant analysis (LDA), k-nearest neighbors 
(KNN) or orthogonal projection to latent structures (OPLS-DLA) for 
discrimination/classification (supervised methods) (Kucharska-Am-
brożej & Karpińska, 2020). Procedures combining chemometric analysis 
of IR, NMR or UV-VIS spectra are usually used to assess the authenticity 
or quality control of the tested products (Petronijevic et al., 2017; 
Rachman & Muchtardi, 2018; Durazzo et al., 2018; Kiefer et al., 2019; 
Lucarini et al., 2020). However, careful analysis of available scientific 
data points that there are only a few articles devoted to application of 

spectral methods for evaluation, identification or discrimination of 
mints. Rosch et al. (2002) applied micro-Raman spectroscopy for 
investigation of different mint taxa: M. piperita L. nm. citrata, M. piperita 
L. var. pallescens pallescens, M. piperita L. var. piperita f. piperita, M. spicata 
L. ssp. Crispata and M. spicata L. ssp. Spicata. They found that hierar-
chical cluster analysis of recorded spectra can be used for distinguishing 
not only species but also subspecies and varieties. Additionally, they 
have discovered that Raman spectra of examined species can be applied 
for determination of stage of plant growth and maturation. The appli-
cability of micro-Raman technique for taxonomic purposes was exam-
ined by Petry (Petry et al., 2003). The cluster analysis of second 
derivatives of the recorded spectra revealed that there are some spectral 
characteristic features which allowed distinction of individual taxa. The 
provided analysis has led to the conclusion that monitoring of subtle 
differences of Raman spectra allows to distinguish between subspecies 
and varieties as well as to evaluate seasonal variability of the content of 
essential oils of peppermint. This feature would be very useful for 
manufacturers of perfumes and aromatherapy products. Raman spec-
troscopy can be applied as a fast measurement method for the quality 
control of essential oils in plants alone or as a complement to IR or NIR 
techniques. FTIR spectroscopy was used to determine the presence of 
functional groups in the essential oil and to investigate the effect of 
pollution on the composition of essential oils from Mentha arvensis 
grown in the fields near motorways, railways or expressways (Prakash 
et al., 2013). The analysis of the recorded spectra allowed not only to 
identify the main components of the tested material, but also to indicate 
the differences between them. The subtle spectral differences were used 
for recognition of examined plants and for studies of influence of envi-
ronmental factors on chemical composition of mints’ essential oils. The 
usefulness of FTIR and Raman Spectroscopy for the quality control of the 
composition of essential oils in plants was proved. FTIR technique 
combined with canonical discriminant analysis (CDA) was applied for 
distinction of 70 samples of fresh mint (M. pulegium) harvested during 
flowering and growing in various places in Greece (Kanakis et al., 2012). 
The application of NIR spectroscopy for characterization of chemical 
composition and taste properties of mint tea (Mentha haplocalyx Brig.) 
was proposed by Dong (Dong et al., 2014). PCA and HCA of the spectral 
data allowed to distinguish mint samples from different geographical 
origins. NMR in combination with PCA was used for authentication of 21 
mint samples cultivated in different geographical localizations (Manol-
ache et al., 2018). The 1H NMR technique allowed for fast and direct 
profiling of the examined samples without prior sample processing. 

Among a number of spectroscopic techniques, UV-VIS spectropho-
tometry is the least frequently used analytical technique for identifying 
plant material (Kucharska-Ambrożej & Karpińska, 2020). Complex 
rotary-vibrational-electronic nature of UV-VIS spectra causes difficulties 
in the visual recognition of individual bands and their use for taxonomic 
purposes. Due to this feature UV-VIS spectra are rarely used to identify 
and assess the authenticity of plant material (Kucharska-Ambrożej & 
Karpińska, 2020). Despite the fact that the UV-VIS technique is fast and 
available in almost every laboratory, which makes it a potential alter-
native for time-consuming GC-MS, there is viable shortage in its appli-
cation for reliable examination of plant materials for classification 
purposes. To the best of our knowledge, the UV-VIS spectra of hexane 
extracts obtained from dried mint were not used to distinguish or 
identify individual species of mints (Kucharska-Ambrożej & Karpińska, 
2020). There is also little research on the identification of dried mints 
using the FTIR-ATR technique. In order to fill the perceived gap, we 
made an attempt to evaluate the usefulness of the UV-VIS spectra of 
hexane extracts and FTIR-ATR spectra of dry ground mints materials for 
quality control of mint species. Their most important limitation is the 
provision of less direct information for identification than GC-MS, in 
which chromatographic profiles contain different peaks and thus pro-
vide clear differences between species. For extracting the proper infor-
mation that will be useful for identification studies, chemometric tools 
are essential. In our research Soft Independent Modeling of Class 
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Analogy (SIMCA) was combined with partial least squares discriminant 
analysis (PLS-DA) or support vector machines (SVM). The research 
aimed at developing a procedure for quality control of mint samples 
described by UV-VIS or FTIR-ATR spectra, understood as creation of the 
model for assigning future mint samples of unknown species into two 
most popular species, i.e. peppermint, spearmint, or none of them. 

2. Materials and methods 

2.1. Plant material 

The mint samples were obtained from the Garden of Cosmetic Plant 
and Raw Material collection, Research and Science Innovation Center 
located in Wola Zadybska (51◦ 44′49 “N 21◦ 50′38′′ E) Lubelskie Region 
in Poland. The plants were grown on lessive soil which was slightly 
acidic (pHKCl 6.1). Herbs were acquired twice in 2017 (June 19th – 
dataset I and August 12th, 2017 – dataset II) and once in 2018 (June 
23rd - dataset III). Plants were harvested in the phase of forming flower 
buds, i.e. 51 BBCH scale. Each mint species was sampled in three 
possibly different locations of filed, marked with the letters A, B and C, 
such that: point A was on the extreme edge of the field from the north, 
point B in the central part of the field, surrounded on each side by other 
plants of the same variety, while the C was located on the edge of the 
field from the south side, i.e. the best insolated (Figure SM1). Such 
material acquisition allows to collect potentially the most chemically 
diverse material growing under the same agrotechnical conditions (on 
one plantation). Regrowth at the second harvest was cut precisely from 
the same plants. Each time, the whole shoots were cut at a height 10 cm 
above the ground. Freshly harvested plants were immediately dried 
(each sample separately) in a laboratory dryer with forced air circula-
tion at 30-32 ◦C, and then the stalks were manually separated so that the 
leaves themselves were left to the test. 

Each subset (A, B, C) contained a variety of mint plants, clustered 
further in three groups referring to the species: most numerous 
peppermint, spearmint and the remaining (denoted as mixed). Pepper-
mint species contained M. × piperita ‘Grapefruit’, M. × piperita ‘Gran-
ada’, M. × piperita ‘Almira’, M. × piperita ‘Chocolate’, M. × piperita 
’Swiss’, M. × piperita ‘Multimentha’, M. × piperita ‘Variegata’, M. ×
piperita ‘Citaro’, M. × piperita ‘Orangemint’ varieties. M. spicata L., 
M. spicata ‘Moroccan’, M. spicata ‘Crispa’, M. spicata ‘Cubana’ varieties 
were considered within spearmint species. The remaining varieties 
M. arvensis L., M. gracilis ‘Ginger’, M. rotundifolia, M. suaveolens ‘Varie-
gata’, M. ‘Berries&Cream’, M. pulegium ‘Romana ’, M. × villosa Huds., 
M. crispata, M. rotundifolia ‘Apple Mint’, M. arvensis ‘Banana’ were 
regarded in the mixed species group. Originally each species group 
within each subset contained all available varieties as listed above, each 
represented by a single sample. Thus there were more than 20 mint 
samples in each subset. Table SM1 provides the details of the group sizes 
(including replicates) for datasets (I, II, III) and subsets within them (A, 
B, and C). Differing group sizes arise from further outliers removal 
described in section 2.5. Thus not all varieties are represented in each 
subset. 

2.2. Extraction procedure 

1 g of fine ground dry plant material was weighed into a 16 ml vial. 
Next 12 ml of hexane was added and stirred vigorously for 30 min. Then 
the extract was removed to another vial and extraction was repeated 
with a new portion of solvent. The procedure was repeated three times. 
Subsequently, the extracts were combined and filtered through a paper 
filter. The resulting filtrate was concentrated to a volume of approxi-
mately 1.5 ml by evaporation of the solvent and then quantitatively 
transferred to a 2 ml vial. 

2.3. Apparatus 

The UV-VIS spectra of n-hexane extracts of plant material were 
recorded with n-hexane as a blank and using a Hitachi U-2800 A spec-
trophotometer (Hitachi High-Technologies Europe GmbH (Mannheim 
O_ce), Mannheim, Germany). The following working settings of the 
device were used: scan speed 1200 nm min− 1 and spectral bandwidth 
1.5 nm. The examined extracts were diluted with n-hexane in order to 
obtain values of absorbance <2 a. u. 

Spectrometer Nicolet 6700 equipped with a diamond crystal was 
used for recording of FTIR spectra of dried plant material. Spectra of 
powdered leaves of plant were recorded in the range 645–4000 cm− 1 

after application onto the diamond crystal of the spectrometer. 
The number of replicate spectra recorded for each sample is provided 

in Table SM1. 

2.4. Software 

Free software environment R was adopted for calculations (Core 
Team 2018). We have worked with home-written scripts that employed 
package rrcovHD (Todorov, 2016) for SIMCA, pls (Mevik, 2018) for 
PLS-DA and e1071 (Meyer, 2015, pp. 6–7) for SVM. 

2.5. Chemometric analysis 

Prior to the analysis UV-VIS and FTIR-ATR spectra were subjected to 
appropriate preprocessing. Its aim was to correct for any signal distor-
tions, noise removal, or reduction of the “size effect” of the measured 
samples. 

The spectral range of the UV-VIS spectra was truncated to 240–350 
nm that covers the most informative region, completely acquired for all 
studied samples. The outlying samples were removed based on the in-
spection of the results of the robust principal component analysis 
(Hubert et al., 2004). Final number of samples that belonged to each 
dataset, species group or subset is given in Table SM1. 

The signals demonstrated an increase of the noise with the signal 
magnitude (heteroscedastic noise). Square root transform has largely 
removed this unfavorable attribute of the noise which became homo-
scedastic afterwards. Then the first derivative was computed for each 
signal using Savitzky-Golay smoothing with third order polynomial 
fitted to smooth the signal in a window of five points. The transformed 
signals within each training or test set underwent probabilistic quotient 
normalisation (PQN) (Dieterle et al., 2006) for removing the differences 
in the absorbance arising from fluctuations of the samples concentra-
tions, which are irrelevant for establishing their species. PQN scales each 
signal in the dataset using an individual scaling factor. This factor is 
computed as the most probable quotient, i.e. median, between the sig-
nals and the reference. The reference was taken to be the median signal 
in the dataset. 

FTIR-ATR spectra were recorded in the range 645–4000 cm− 1. There 
were no outliers detected and Table SM1 provides the details of the 
groups sizes. Logarithm was taken to transform the heteroscedastic noise 
into homoscedastic. For this purpose 0 values (or slightly below 0) were 
substituted by 0.01. The transformed signals within each training or test 
set were normalised with PQN. 

The identification of the mint species was conducted in two subse-
quent steps. The full rationale for using the two-stage procedure can be 
found in section 3. 

Firstly, the samples were examined for whether they belonged to a 
common group of spearmint and peppermint, or neither. SIMCA 
modeling (Wold, 1976) was employed for this purpose, which uses 
principal component analysis (PCA) for modeling the space for each 
considered group. Here only a single group composed of spearmint and 
peppermint species together underwent modeling. SIMCA described 
each tested sample by the two characteristics, namely score (SD) and 
orthogonal distances (OD). Score distances are the Mahalanobis 
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distances of the observation in the PCA space from its center. Orthogonal 
distances are computed as Euclidean distances between the observation 
and its projection in the original space. Both parameters are actively 
used for deciding about the samples potential membership to the 
considered groups. The samples are assigned to the modeled groups if 
their SD and OD are below the established thresholds (Wold, 1976). If 
they go out of the cutoffs, it is concluded that they come from other 
groups, also these, which have not been modeled. 

SIMCA modeling was conducted for each dataset (I-III) of samples 
described by either UV-VIS or FTIR-ATR spectra or both combined 
together. The concatenation was carried out after the preprocessing 
steps had been performed individually for each spectra type. To equalize 
the information potential of both spectroscopic techniques, pre-
processed UV-VIS and FTIR-ATR spectra were divided by the square root 
of the variance averaged over all the variables measured by each tech-
nique respectively. In each case, SIMCA model was trained using one of 
the three available subsets of data collected within each dataset I-III. 
Then the model was applied to the next subset. The remaining subset 
was left for training of the discriminant variant of the partial least 
squares (PLS-DA) (Næs et al., 2002) method or support vector machines 
(SVM) (Belousov et al., 2002) for discrimination of the samples between 
spearmint and peppermint categories. Only the samples that were 
assigned in SIMCA to the common group of spearmint and peppermint 
underwent discrimination between these two groups. PLS-DA is a 
discriminant analogue of classical PLS regression, where the response 
variable is categorical, such as group membership. The task of PLS-DA is 
to predict the group membership based on a (usually large) set of pre-
dictors, e.g. analytical signals. The basis for modeling is to develop a 
limited number of new latent variables, which are linear combinations 
of the original predictors. They are generated to capture the maximum 
variance in the sets of responses and predictors, and the maximum 
covariance between them. The latter feature ensures that the perfor-
mance of PLS in predicting the response is enhanced as the largest 
importance is assigned to the predictors with the highest ability to 
predict the response. SVM is a technique widely applied for regression 
and classification purposes. The concept of SVM, however, is to generate 
a hyperplane that best separates the investigated classes. The orientation 
of the hyperplane is set to maximize the margin, which is the greatest 
distance between the data of both classes. The position of the hyperplane 
is thus mostly governed by the closest points called support vectors. 

There were six combinations of the subsets used for training and 
testing SIMCA and PLS-DA or SVM models:  

- configuration ABC: A subset was used for testing the models, B subset 
was used for training SIMCA and C subset was used for training PLS- 
DA or SVM;  

- configuration ACB: A subset was used for testing the models, C subset 
was used for training SIMCA and B subset was used for training PLS- 
DA or SVM;  

- configuration BAC: B subset was used for testing the models, A subset 
was used for training SIMCA and C subset was used for training PLS- 
DA or SVM;  

- configuration BCA: B subset was used for testing the models, C subset 
was used for training SIMCA and A subset was used for training PLS- 
DA or SVM;  

- configuration CAB: C subset was used for testing the models, A subset 
was used for training SIMCA and B subset was used for training PLS- 
DA or SVM;  

- configuration CBA: C subset was used for testing the models, B subset 
was used for training SIMCA and A subset was used for training PLS- 
DA or SVM. 

The SIMCA models complexity (number of relevant principal com-
ponents sufficient to characterize each group) was determined from the 
scree plots. The diagrams illustrated the amount of information each 
principal component carries. The principal components that were 

preserved were indicated by the “elbow point”. Usually two or three 
components were preserved. 

PLS-DA complexity (number of PLS components which minimize the 
misclassification error) was established for each PLS-DA model sepa-
rately (i.e. for each datasets and each training/test sets configurations) 
using the leave-one sample-out cross validation protocol. 

SVM used linear kernels for modeling. 

3. Results and discussion 

The obtained UV-VIS spectra (Figure SM2) are not specific and do not 
allow direct taxonomic classification of examined plants material. They 
all possess strong and intense bands in the range 190–210 nm which 
could be probably assigned to electron transfers n→σ*. Other much 
weaker bands at 220, 240, 270 or 290 nm could be results of π→π* as 
well as n→π* electron transfers. The location of the bands is not specific 
as it depends on the presence of auxochromic groups, coupling effects 
and interactions between the components and the solvent. All observed 
bands pointed the presence of such chromophores as systems of conju-
gate bonds, aromatic rings, carboxylic or carbonyl groups as well as 
interaction between components and solvent. The results provided by 
chromatographic analysis showed that the main components of extracts 
are mainly terpenoids: linalool, carvone, linalool acetate, piperitenone 
oxide, pulegone, menthone and menthol and others in different pro-
portions depending on studied species. 

The selected FTIR spectra of examined mints are presented in 
Figure SM3. Similarly to the UV-VIS spectra of the extracts, also the FTIR 
spectra of the tested mints are almost identical. The observed differences 
in the intensities of the bands and their position are not specific and do 
not allow the direct identification of the tested plants. The characteristic 
bands are a result of a variety of vibrations of bonds connected with the 
presence of functional groups of compounds present in surface of studied 
plant material but do not allow identification of parent compounds. The 
wavenumbers of recorded FTIR spectra and assigned to them functional 
groups or compounds are gathered in Table 1. 

Even careful analysis shows that it is very difficult or impossible to 
distinguish individual mint species from each other on the basis of raw 
UV-VIS or FTIR spectra. Therefore, it was decided to check whether the 
chemometric processing of the spectral data would expose features 
which enable the correct classification of the tested objects. 

3.1. Description of the data 

Fig. 1(a) presents UV-VIS spectra transformed with the square root 
and truncated to 240–350 nm while Fig. 1(e) log-transformed FTIR-ATR 
spectra with the colour-coded datasets (i.e., mint plants harvested at 
different times). These spectra demonstrate the urge for normalisation to 
remove the size effect arising from various amounts of the measured 
samples. Thus Fig. 1(b) and (f) show the spectra which underwent PQN 
(section 2.5). PQN as a standardization strategy has proved to be useful 
in increasing the comparability of spectra and uncovering the features 
that differ between peppermint, spearmint and other mint species. This 
observation is particularly apparent in Fig. 1(c) and (g) which portray 
mean centred spectra (i.e., mean vector for variables was subtracted 
from each spectrum). Mean centred spectra, marked in colour depend-
ing on the dataset, clearly show that the largest differences between the 
spectra are mostly related to different datasets, I, II, or III. This makes 
sense, since datasets differ by the time (season) the mint plants were 
harvested. This, in turn, means different irrigation and weather condi-
tions, sun exposure, and variability of other factors that become relevant 
for characterising the mint plants by their spectral fingerprints. For this 
reason each dataset should be examined individually. Principal 
component analysis (PCA) results plotted for first three components in 
Fig. 1(d) and (h) evidently confirm the previous findings. Especially for 
FTIR-ATR the datasets are quite well separated. For UV-VIS the sepa-
ration is not that much manifested. However, it is still present as dataset 
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I seems to be totally different since its cloud is practically disjoint in PCA 
from datasets II and III. For this reason the studies were conducted 
within each dataset. 

Figs. 2 and 3 portray the three datasets individually in the spaces of 
the first three principal components. The colours refer to various mint 
species (p stands for peppermint, s for spearmint and m refers to other 
species) and point characters differ between the A, B or C subsets within 
each dataset. The most striking observation to emerge from the in-
spection of the plots is that the mint species are all usually mixed up and 
poorly separated. Only datasets I and III demonstrate some separation of 
the mixed species, but confuse peppermint and spearmint very often (see 
e.g. Fig. 3(a)). This may lead to unsatisfactory performance of the che-
mometric models in predicting the species. As Fig. 2 portrays for UV-VIS 
spectra, the first principal component does not capture the differences 
between species. Only the second explains this tiny part of variance (few 
%) that is associated directly to them. Score plots in Fig. 2 demonstrate 
that there are some samples from the species other than peppermint and 
spearmint (group m marked with black points), that may be suspected of 
being outliers. However, as belonging to mixed species group (m) they 
do not take part in any of the modeling (training), and therefore are used 
only for predictions. For this reason their outlyingness does not have an 
impact on the model development, but may affect (mostly positively due 
to their dissimilarity to p or s species) the overall performance. Their 
residuals, however, do not provide irrefutable evidence to remove them, 
especially that they represent the class of samples with a substantial 
variety which should not be ignored. Nevertheless, the plots yield strong 
evidence that the subsets A, B and C can be studied together since they 
do not form any clusters within the PCA spaces. This result has further 
strengthened our confidence in using different subsets as training and 
test sets for modeling and controlling the models performance (listed in 

section 2.5). 

3.2. Species identification 

Based on the above findings from data exploration using PCA, our 
research went in the direction described below. Datasets are composed 
of samples originating from two most common and well-defined species, 
i.e. peppermint (p) and spearmint (s), and some other mixed species (m). 
In practice the task of the chemometric modeling would be to filter out 
the species other than peppermint and spearmint (m) and conclude if the 
remaining are peppermint or spearmint. This is feasible with classifi-
cation techniques (e.g. SIMCA), which establish whether an unknown 
sample is a member of well-defined classes (s, p) or none of them (m). 
They model only the known classes and if the sample does not fit them it 
is classified as coming from some other unmodeled class. However, for 
successful solutions, the task entails that the modeled classes should 
reveal some differences not only in relation to unmodeled data, but also 
between themselves. Regrettably, we were surprised to find that PCA, 
which is the basis for SIMCA modeling, is very often incapable of 
capturing the part of variance that distinguishes simultaneously be-
tween s and p and other species (m). Some expectations were laid only in 
datasets I and III, for which SIMCA does reveal at least partially sepa-
rated clusters of mixed species, however, usually mixes s and p (see e.g. 
Fig. 3(a)). Thus although using SIMCA approach as a solution to clas-
sification of mint samples seems interesting, it suffers from PCA being an 
inadequate tool for finding the features that differentiate the most 
interesting species. This apparent lack of separation of the species can be 
attributed to the fact that the variability of data between species is not 
the primary one. In this sense the principal components focus on other 
sources of variance whilst the variance related to species is distributed 
between many components and hardly extractable. The evidence from 
this study points towards the idea of proceeding in two steps. Firstly, 
SIMCA as a classification tool will be used for filtering out the mixed 
species and leaving only these suspected to be peppermint or spearmint. 
In the second step these samples will undergo targeted discrimination 
analysis using partial least squares in its discriminant variant (PLS-DA) 
or support vector machines (SVM). The concept behind engaging the 
PLS-DA or SVM is to find new latent variables, which, contrary to 
principal components, best separate both species. 

Fig. 4 illustrates the fraction of samples correctly assigned to each of 
the categories, i.e. into peppermint, spearmint or mixed, averaged across 
all categories, which is known as sensitivity of the classifier (see Sup-
plementary Materials for more information) (Ballabio et al., 2018). 
Broadly speaking, Fig. 4 evidently points that the UV-VIS spectra of mint 
plants usually carry more information associated with their species than 
FTIR-ATR. The overall correct classification rate of the samples into 
peppermint, spearmint or neither using their UV-VIS spectra ranks at the 
level of 70–80% for dataset I and decreases to 50–60% for datasets II and 
III. This remains in compliance with the pervious findings illustrated in 
Fig. 2 stating that data clouds for different species are best isolated in 
dataset I. At the same time, FTIR-ATR spectra yield ca. 50–70% of cor-
rect classifications for dataset I, 30–70% for dataset II. However, this 
rate unexpectedly rises to more than 60–70% for dataset III, which is 
even superior to what UV-VIS spectra achieve for this dataset. This is 
because the clouds for the species are better resolved for dataset III in 
FTIR-ATR than UV-VIS, as Figs. 2 and 3 portray. Establishing the species 
of mint plants seems the toughest for dataset II, in which the signals for 
mixed species, peppermint or spearmint share very similar features. 

Our study provides an evidence that two approaches based on PLS- 
DA and SVM for discrimination between spearmint and peppermint 
give comparable results. The rationale was to use two methods which, 
while focusing on linear differences, are based on different assumptions 
and principles. As evidenced from the research, neither one is better 
than the other. This confirmed that the results are valid since we arrived 
at the same conclusions using two distinct methods. The inability to 
decide which technique is better for recognizing the mint species led us 

Table 1 
The spectral data of recorded FTIR spectra of studied mints (Larkin P.J, 2018).  

Wavenumber 
[cm− 1] 

Type of vibration Functional groups or 
compounds 

670 deformation (γ) not in plain 
CAr-H 

benzene-H 

deformation (γ) O–H not in 
plain 

liquid alcohols or phenols 

deformation (γ) = C-A not 
in plain 

cykloallenes 
polienes 

1071 stretching (ν) C–O saturated esters 
alcohols and phenols 

skeletal (ν) C–C cycloalkanes 
stretching (ν) C–O–C acid anhydrides 

1247 stretching (ν) C–O saturated esters - acetates 
dimers 
alcohols and phenols 

stretching (γ) C–C alkanes 
deformation (γ) not in 
plain = C–H 

lactones 

1413 stretching (ν) –COO- salts of symmetrical acids 
deformation (δ) C–H ketones 

lactones 
1597 stretching (ν) –COO- aromatic acids salts 

stretching (ν) C––O β-diketones (enolic forms) 
1734 stretching (ν) C––O formates 

α,β-unsaturated acids esters 
aromatic acids esters 
α-ketoesters 
β-ketoestry 
aromatic acids chlorides 
non-cyclic α, β-unsaturated 
anhydrides 
saturated aldehydes 
γ-diketones 
α-halogen acids 
non-cyclic α-halogen ketones 

2850 i 2915 stretching (ν) C–H -CH2- 
3300 stretching (ν) O–H free –OH group 

associated –OH group  
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Fig. 1. (a) Square root-transformed UV-VIS spectra, (b) spectra normalised with PQN, (c) mean centred normalised UV-VIS spectra, (d) PCA of the normalised UV- 
VIS spectra, (e) log-transformed FTIR-ATR spectra, (f) spectra normalised with PQN, (g) mean centred normalised FTIR-ATR spectra, (h) PCA of the normalised FTIR- 
ATR spectra. Colours refer to different datasets (mint plants harvested at different times). (For interpretation of the references to colour in this figure legend, the 
reader is referred to the Web version of this article.) 
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to combine the information potential of both. The performance of the 
developed models applied to combined UV-VIS and FTIR-ATR data did 
not improve. The gain on efficiency resulting from the correct classifi-
cation of samples that were misclassified using only a single technique 
was balanced by the erroneous assignments for these identified correctly 
previously. The results for the combined data are more like those for UV- 
VIS than for FTIR-ATR, suggesting that the features describing the spe-
cies that are measured with UV-VIS are more manifested and rule clas-
sification. It is also very likely that the information that is relevant for 
discrimination between species is much more difficult to extract using a 
limited number of latent variables for fused data than for individual 
techniques. Worse performance of the developed models observed for 
the fused data of dataset III can be attributed also to some technical 
aspects of the proposed procedure. The number of significant PCA and 

PLS components for the models developed for the datasets before and 
after the data fusion differed and therefore spanned different quality and 
amount of information. Also, for the fused data, some outliers were 
detected which were not considered as such when single spectral 
methods were involved. For this reason the correct classification rates 
may be occasionally difficult to compare. 

It is plausible that a number of issues could have influenced the re-
sults obtained. One of them is the need for establishing the complexity of 
PLS-DA, which is always a demanding activity for constructing reliable 
and not overfitted or underfitted models. The second issue is the need to 
tune the various parameters governing the performance of SVM. 

With a few exceptions for dataset II, no significant differences were 
observed between the rates yielded for different configurations of test 
and training sets (listed in section 2.5). Despite obvious and natural 

Fig. 2. UV-VIS spectra in the PCA space constituting (a) dataset I, (b) dataset II and (c) dataset III. The colours refer to various mint species (p stands for peppermint, 
s for spearmint and m refers to other species) and point characters differ between the A, B or C subsets within each dataset. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of this article.) 
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variations between subsets A, B and C, the developed two-stage classi-
fication approach seems robust enough as it is virtually unaffected by 
the location of the crops of mint species harvested within the same 
season. However, it cannot be ruled out that some misclassifications may 
be attributed to the discrepancies arising from various locations of 
subsets. If some variations between subsets exist, then the models 
trained on one subset would have worse performance for a test set, 
which is obviously slightly different. The deliberately overfitted model 
trained and tested on the same set would help in recognizing if this 
variation negatively affects the performance of the developed proced-
ure. Since the performance of such models does not reveal any 
remarkable improvement or deterioration in reference to the examined 
models employing all subsets to avoid overfitting, it becomes indisput-
able that the source of classification errors lies in the limited differences 
between the signals for peppermint, spearmint and mixed species rather 
than variations between subsets. 

Further investigations suggest that insufficient differences between 
mixed and peppermint or spearmint species are mainly responsible for 
the final misclassification rate. These findings are also in line with the 
pictures in Figs. 2 and 3. The more remarkable the separation of mixed 
species from the peppermint and spearmint, the less the model perfor-
mance is affected by the differences between subsets and vice versa. 
Fig. 5 briefly illustrates that the first step involving SIMCA may be 
blamed for the majority of classification errors. The diagrams show 
confusion tables, where the entries in the columns refer to the pre-
dictions of the membership of the samples originating from one specific 
species. Each single diagram in Fig. 5 refers to the classification within 
one dataset with training and test sets established according to one of 
the configurations listed in section 2.5. Each column sums up to 100% to 
demonstrate the fraction of the samples of a specific species that are 
correctly (diagonal) or mistakenly (off-diagonal) assigned. When the 
model behaves poorly either samples from mixed species are confused 

Fig. 3. FTIR-ATR spectra in the PCA space constituting (a) dataset I, (b) dataset II and (c) dataset III. The colours refer to various mint species (p stands for 
peppermint, s for spearmint and m refers to other species) and point characters differ between the A, B or C subsets within each dataset. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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Fig. 4. Correct classification rates for (a) dataset I, (b) dataset II, (c) dataset III.  
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with peppermint and spearmint combined group or true peppermint or 
spearmint samples are categorized as mixed species. Unfortunately, any 
misclassifications emerging at this stage are directly translated into 
decrease of efficiency of the overall model. Luckily, the performance of 
the PLS-DA or SVM for discrimination between spearmint and pepper-
mint is rather appreciated with a few errors in erroneous assignment of 
spearmint samples as peppermint. In this way, the second step does not 
significantly deteriorate the overall performance. 

The above findings are evidently confirmed by other classification 
performance metrics introduced and listed as Supplementary Materials 
in Tables SM2-SM7. When dealing with multiclass classification, i.e. 
with more than two classes, each classification task can be considered as 
a set of binary classifications (one for each class) in which samples are 
either classified into positive (particular considered class) or negative 
class (consisting of all other classes) (Ballabio et al., 2018). The per-
formance of classification is then summarized with appropriate metrics 
for each class and globally for all of them on macro- and micro-levels 
(see Supplementary Materials). 

As can be easily noted from the Tables SM2-SM7 listing the perfor-
mance metrics for all developed models, the sensitivity and the corre-
sponding false negative rate are the most disappointing. Low sensitivity 
and high false negative rate evidently confirm that the samples of 
particular species are easily misclassified and pretend to belong to other 
classes. This is mostly in regard to the spearmint or mixed species which 
are often mistaken for peppermint. The frequently occurring low pre-
cision also highlights these findings and indicates that the predicted 
classes are not entirely pure, i.e. contain incorrectly assigned samples 
truly belonging to other species. However, very poor sensitivity for 
spearmint class is occasionally compensated by very high precision 
pointing that only true spearmint samples (but not all of them) are 
predicted to spearmint class. Limited precision and sensitivity for the 
mixed species class suggests that mixed species are either misclassified 
to be the members of peppermint and spearmint or peppermint and 
spearmint are regarded as mixed species. The same can be concluded for 
peppermint samples. Specificity, accuracy, error rate and false positive 
rate count the items assigned to the negative class in binary cases (see 
Supplementary Materials). For multiclass cases, they tend to over-
estimate the performance as assigning a sample into a negative class 
does not always mean that correct class was predicted for this sample. It 
only means that the class was any other than positive in a particular 
binary case. For this reason, their levels will not be described further to 
summarize the effectiveness of the identification of mint species. 

4. Conclusions 

We have outlined studies on the applicability of UV-VIS and FTIR- 
ATR spectral analysis to distinguish between different mint species, 
with an emphasis on spearmint and peppermint, as the most popular and 
widely used in food, pharmaceutical, or cosmetic industries. The prob-
lems of discrimination of mint species, especially peppermint, may be 
caused by their ability to create natural hybrids. Specific requirements 
for mint products necessitate the development of mint samples quality 
control strategy understood as the identification of mint species into 
peppermint, spearmint and other less relevant species before they are 
used in the production. For this purpose UV-VIS spectra of hexane ex-
tracts and FTIR-ATR spectra of finely ground dried plants material were 
recorded. The concept of our procedure for quality control of mint 
samples assumed using firstly SIMCA method for cleansing the data from 
any other species than peppermint and spearmint. Observable similarity 
between spearmint and peppermint species forced to use more adequate 
tools for their effective differentiation. This step was accomplished by 
PLS-DA and SVM techniques, which substantially reinforced the per-
formance of the overall model and contributed to the reduction of the 
misclassification rate into these two species in relation to SIMCA only. 

Our work has led us to conclude that UV-VIS spectrophotometry of 
mint plants seems to deliver much more adequate information related to 

Fig. 5. The confusion tables for (a) SIMCA + PLS-DA model for UV-VIS spectra, 
(b) SIMCA + PLS-DA model for FTIR-ATR spectra and (c) SIMCA + PLS-DA 
model for combined UV-VIS and FTIR-ATR spectra (description of the symbols 
is provided in the text). The length of the bars illustrates the fraction of the 
samples from each species that are assigned as m, p or s. 
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their species and thus chemometric models based on its outcomes are 
more reliable and appreciated than using FTIR-ATR. We also provided 
further evidence that the use of FTIR-ATR does not contribute to the 
efficiency of the UV-VIS only models. Our comprehensive results prove 
that the quality control is equally successful using either PLS-DA or SVM 
as discrimination techniques. 

We have succeeded in identifying the bottleneck of our quality 
control procedure, which may be blamed for the majority of final clas-
sification errors. The most important limitation of our procedure relates 
to the filtering step using SIMCA, in which mixed species are very 
frequently confused with peppermint or spearmint and peppermint or 
spearmint are mistaken for mixed species. The second step, however, 
accomplished with PLS-DA or SVM, scores much higher and provides 
efficient discrimination between peppermint and spearmint. The upshot 
of this is the possibility to identify the peppermint and spearmint species 
with high accuracy if the sample under investigation is a priori known to 
be one of the two and not the other species. Thus skipping the stage of 
verifying whether or not the sample belongs to the mixed species cate-
gory translates into much better results since the first filtration step is 
practically entirely responsible for errors occurring in the second step. 

Another shortfall of the developed procedure is related to the fact 
that in order to achieve acceptable models performance, it has to be 
trained on the samples harvested within the same season, wherein 
location of the crops is irrelevant. It might, however, generate some 
inconvenience in practice, when unknown mint sample will undergo 
quality control studies using our procedure. 

In our view these results constitute still not perfect but an encour-
aging initial step toward routine identification of the mint species based 
on their spectral fingerprints, supported by chemometric tools, acting as 
a likely alternative for time and money consuming GC-MS. 
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