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HIGHLIGHTS

Low amounts of GO, AgNPs, or GO-
AgNPs triggers an early stress response
in crickets.

Nanoparticles (GO, AgNPs, or GO-
AgNPs) can disturb the energy budget
of crickets.

Initial suppression of energy con-
sumption/assimilation is compen-
sated afterwards.

Increased activity of digestive en-
zymes accompanies the compensa-
tion response.

Insects treated with GO-AgNPs com-
posite retained more body water.
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ABSTRACT

This study aimed to identify the physiological responses of house cricket females following short-term exposure
to relatively low dietary doses of graphene oxide (GO, 20 ug - g~ food), silver (Ag, 400 pg - ¢~ food) nanopar-
ticles (NPs), or graphene oxide-silver nanoparticle composite (GO-AgNPs, 20: 400 ug - g~ food). Energy intake
and distribution were measured on the third, sixth, and tenth day. A semi-quantitative API®ZYM assay of diges-
tive enzyme fingerprints was performed on the third and tenth day of continuous treatment. Physicochemical
properties of the NPs were obtained by combining SEM, EDX spectrometry, AFM, and DLS techniques.
The obtained results showed decreased energy consumption, particularly assimilation as an early response to di-
etary NPs followed by compensatory changes in feeding activity leading to the same consumption and assimila-
tion throughout the experimental period (10 days). The increased activities of digestive enzymes in NP-treated
females compared to the control on the third day of the experiment suggest the onset of compensatory reactions
of the day. Moreover, the insects treated with GO-AgNP composite retained more body water, suggesting in-
creased uptake. The observed changes in the measured physiological parameters after exposure to NPs are
discussed in light of hormesis.
© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Recent years have brought the dynamic development of nanotech-
nology and an exponential increase in the synthesis of new nanoparti-
cles. Silver nanoparticles (AgNPs) and graphene (its derivatives
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including graphene oxide (GO)) are widely used nanoparticles with
significant potential. Their specific physicochemical properties allow
them to be suitable for a wide array of applications (Wu et al., 2012;
Dideikin and Vul, 2019; Smith et al.,, 2019; de Medeiros et al., 2021). Sil-
ver nanoparticles, due to their unique optical, catalytic, photo-thermal,
and antibacterial properties, are currently the most commonly used
nanoparticles (Rai et al., 2009; Taglietti et al., 2012; Katz et al., 2015;
Wei et al., 2015; Pulit-Prociak and Banach, 2016; McGillicuddy et al.,
2017).

The synthesis of hybrid materials, for example, GO-metal nanocom-
posites, aims to enhance their functionality, provide novel properties,
and consequently, new applications (Zhu et al., 2013; Bhunia and Jana,
2014; de Saravia et al., 2020; de Medeiros et al., 2021). GO and AgNPs
are considered to work synergistically, and the GO-AgNP nanocompos-
ite may have better antimicrobial and catalytic activities and higher
thermal conductivity than its components (Tang et al., 2013; Cobos
et al., 2020). Hence, GO-AgNP composites are of great interest and po-
tential, including anticancer therapy (Gurunathan et al., 2015;
Kavinkumar et al., 2017). However, the antibacterial properties of GO,
AgNPs, and GO-AgNP composites should be considered due to their
effects on microorganisms that constitute the intestinal or gut
microbiome (Li et al., 2018). Accidental contamination of the environ-
ment/food with such material can lead to impairment of digestive func-
tions, indirectly affecting the nutrients and energy intake and,
consequently, the energy budget of an organism.

The production and application of nanoparticles, including GO, Ag,
and AGO-Ag composites, is constantly increasing (Pulit-Prociak and
Banach, 2016; Inshakova and Inshakov, 2017; Malakar A et al., 2021).
Therefore, they can be common environmental contaminants to which
innumerable organisms could be exposed. The problem of the unfavor-
able influence of nanoparticles often manifested in the inhibition/im-
pairment of various physiological processes, is frequently investigated.
Less attention has been given to the potential hormetic/compensatory
effects of nanoparticle exposure.

Hormesis consists of a two-phase reaction of an organism to a
stressor (a chemical compound or an environmental factor) - low
doses cause stimulation or beneficial effects, and high doses inhibit nu-
merous processes and cause unfavorable effects (Mattson, 2008).
Hormesis is an adaptive compensatory response that follows the initial
disturbance of an organism's homeostasis. It is worth considering that
hormetic effects are usually subtle/modest changes, which sometimes
makes it difficult to distinguish from natural variability within a specific
parameter (Hoffmann and Stempsey, 2008; Wang et al., 2017). One of
the first hormesis studies was performed on house cricket, Acheta
domesticus (Luckey, 1968; Cohen, 2005; Guedes et al., 2009; Cutler,
2013).

Toxicity studies on nanoparticles continuously provide new data.
However, few studies have focused on doses/concentrations below the
toxic threshold. In some studies that have focused on the biological ef-
fects of low doses of nanoparticles a hormetic effect has been observed.
There are examples of in vitro studies that used carbon nanotubes,
nanodiamonds, quantum dots, or metal nanoparticles, mostly silver. A
few in vivo studies have described hormetic for various/specific end-
points as an effect of exposure to metal nanoparticles or carbon nano-
tubes. These studies were performed on selected strains of bacteria
and some aquatic biota, including some species of algae and plants,
few crustaceans, and few vertebrates (lavicoli et al., 2010; lavicoli
et al,, 2018; Agathokleous et al., 2019). However, the data on this phe-
nomenon, particularly regarding insects and the potential energy costs
of the supposed compensation, are limited and very fragmented or
even missing.

Changes caused by additional stress factors should be accompanied
by an increase in the energy consumption to activate defense, repair,
and/or compensatory mechanisms. Increased energy demand should
require an increase in food consumption. If the conditions are favorable,
an increase in the efficiency of the digestive system is needed. Hence,
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estimating the energy budget and examining the overall efficiency of di-
gestive enzymes is strongly justified.

The basic parameter of the animal's energy budget is consumption
(C). Assimilation (A) is a part of the energy absorbed by the organism
that is spent on respiration (R) to maintain life processes and produc-
tion (P) related to weight gain, body reconstruction, and reproduction.
In insects, energy allocation to production is associated with critical
stages of development, molting, cocoon formation, and egg production
(Schowalter, 2006; Gao et al,, 2007; Yates et al., 2011). Adequate energy
flow through an organism and its distribution is a basic demand for life,
and various stressors may disturb its intake and allocation. However,
sufficiently low “stressors' doses” might cause a compensatory response
that could increase the chances of coping with unfavorable conditions.

In previous long-term studies on NP effects in crickets, we found
mostly toxic effects of varying severity on different tissue/cellular/
molecular endpoints (Dziewiecka et al., 2015; Karpeta-Kaczmarek
et al., 2016a-c; Dziewiecka et al., 2017; Dziewiecka et al., 2018;
Karpeta-Kaczmarek et al., 2018; Dziewiecka et al., 2020: Flasz et al.,
2020). During our observations, particularly in the initial stage of expo-
sure, we observed an increased consumption, compared to the control,
in crickets provided with food contaminated with low concentrations
of NPs (e.g., 20 ug GO/g of food), with no apparent toxic effects at the
systemic level. Simultaneously, at high concentrations (e.g., 200 pg
GO/g of food), food consumption contaminated with nanoparticles de-
creased significantly compared with the control group (unpublished
data). These observations encouraged us to design an experiment to
assess the detailed energy budget and digestive enzymes in the first
10 days of exposure to nanoparticles: GO, Ag, and GO-Ag composite.
As we were interested in changes over time (i.e., multiple measure-
ments within the experimental group), we chose only one concentra-
tion for each NP that seemed to cause increased consumption in our
previous studies. Thus, this study aimed to quantify the expected
changes and check whether the changes in food intake and utilization
are accompanied by changes in the efficiency of the digestive system.
Therefore, we evaluated the intestinal enzyme fingerprints (Kaufman
et al., 1989; Boetius and Felbeck, 1995; Doherty-Weason et al., 2019)
and the energy budget of A. domesticus. We hypothesized that nano-
particles could change gut function and deregulate the energy budget.
However, considering the low doses used in this study and the short
exposure time, possible activation of compensatory mechanisms
could restore the measured parameters to the level of unexposed
individuals.

2. Materials and methods
2.1. House cricket

Acheta domesticus (Orthoptera, Insecta) is often used as a model or-
ganism in physiological and toxicological research (Szelei et al., 2011;
Horch et al., 2017). The species is omnivorous and easy to breed; the
life cycle takes approximately 2-3 months. The animals used in the ex-
periment were obtained from our laboratory stock colony.

2.2. Nanoparticles selection

Ag, GO nanoparticles, and their GO-Ag composite were used as ex-
posure factors; their effect on the body, due to their properties, may
have a different mechanism. The GO-Ag composite was prepared as a
separate nanoparticle solution with a concentration ratio of the working
components (GO:Ag = 20:400). This approach allowed the observation
of the potential enhancement of the AgNP performance after anchoring
to GO sheets or the additive effect of the two types of components. The
specific structure of the nanocomposite can provide a unique
nanointerface for interaction with the gut microbiome and facilitate
the interaction between AgNPs and GO sheets, resulting in a synergistic
effect (Tang et al., 2013).
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2.3. Preparation of graphene oxide suspension, silver suspension, and Ag-
GO composite

Graphene oxide powder (15-20 sheets, Sigma Aldrich) was soni-
cated in deionised water (10 mL) by ultrasonic homogenizer (cycle: 1,
amplitude 100%; model UP-100H, DONSERV) until a homogeneous GO
suspension (10 mg/mL).

Silver nanoparticles (99.9%, 20-30 nm, SS Nanomaterials, Inc.) were
dispersed in a citrate buffer solution (0.1 M, 10 mL, pH =6.5) by sonica-
tion (cycle: 1, amplitude 100%) to form a stable Ag colloid solution (10
mg/mL).

Graphene oxide-silver nanoparticle composite suspension (GO-
AgNPs) was obtained due to the mixing of silver nanoparticles with
graphene oxide in a 5:1 ratio deionised water and citrate buffer solution
(0.1 M; pH = 6.5). Briefly, 2 mg of graphene oxide powder was dis-
persed in 100 mL (20 ppm) deionised water followed by sonication
for 2 h to greater homogeneity. Thereafter, silver colloid in the 0.1 M cit-
rate buffer (400 ppm, 20 mL) was added to the GO suspension and
gently heated while sonication for 1 h. The final product was left over-
night in the dark at room temperature (Bao et al., 2011; Dinh et al.,
2014; Xue-Fei et al., 2015).

2.4. NP characterization

The morphology and structure of the Ag, GO nanoparticles, and GO-
AgNP composites were characterized using a scanning electron micro-
scope (SEM) with an energy dispersion X-ray spectrometer (EDX)
(Quanta FEG 250; FEI) and atomic force microscopy (AFM)(Agilent
5500). The size distribution profile of the Ag nanoparticles was deter-
mined by dynamic light scattering (DLS) equipped with 4 mW He-Ne,
633 nm Malvern Zetasizer Nano-ZS (Malvern Instruments, U.K.).

Samples for analysis were highly diluted and deposited on a silicon
wafer (SEM) and fresh cleaved mica for AFM measurements. SEM imag-
ing was performed with a beam accelerating voltage of 2 kV under high-
vacuum conditions to ensure good contrast during imaging. Energy-
dispersive X-ray spectrometry was used to identify and quantify the el-
emental composition of the GO-AgNP composite. EDX spectra from in-
dividual particles were analyzed using a vector-based algorithm to
determine the elements. The AFM measurements were performed in
tapping mode with a typical force constant of 40 N/m and a resonant
frequency of 350 kHz. The standard scan frequency was 0.2. The DLS
measurements were taken at 21 °C for 200 s with a 173° detection
angle. The final results were calculated using the size distribution by
the number technique.

The results showed well-defined GO structures, mostly single-
layered with a typical height of 1.0 nm and an average flake area of ap-
proximately 2 um (Fig. 1 A2, B2). Silver nanoparticles were present as
aggregates with a diameter of about 65 nm (Fig. 1 B1) and individual
particles in the range of 5-20 nm (Fig. 1 B2). The GO-AgNP composite
was in the form of thick GO aggregates between and 5-40 nm coated
with silver nanoparticles (Fig. 1 A3, B3, D1).

2.5. Experimental set-up for energy budget and digestive enzyme screening

Adult females (0-1 d after final molting) were randomly divided
into control, and three experimental groups provided feed supple-
mented with NPs: GO (graphene oxide at 20 ng/g of food), Ag (silver
nanoparticles, 400 pg/g of food), and GOAg (20 and 400 g of GO and
AgNPs, respectively, per gram of food). Each group consisted of six
sub-groups kept in plastic boxes (28 x 20 x 16 cm; 7 individuals in
each) under standard conditions (28.8 °C + 0.88 °C, 20%-45% RH, and
photoperiod L:D 12:12). A weighed amount of feed was provided on
days 0, 3rd and 6th day (Dziewiecka et al., 2017). The remains and
feces were collected separately on 3rd, 6th and 10th day. The increase
in female body weight was measured with 1 mg accuracy on days 0,
3rd, 6th and 10th (final). All the collected feed and feces samples were

Science of the Total Environment 788 (2021) 147801

dried at 40 °C for 24 h to obtain their dry weight. The 10th-day females
were anesthetized with CO,, then frozen and lyophilized for approxi-
mately 44 h. An additional reference group of 0-day females was frozen
and lyophilized to further calculate the initial dry weight of females
from the groups.

Separate plastic boxes (2 for each experimental group: control, GO,
Ag, and GOAg) were set up to analyze digestive enzyme activity. The in-
sects were fed ad libitum with the same food and kept under the same
conditions as for calculation of the energy budget. Each plastic box
contained ten 0-1-day-old females. Insects for the digestive enzyme ac-
tivity assay were collected on the third and tenth day of adult age.

2.6. Calorimetry assay

Samples of the feed and feces were re-dried in a halogen moisture
analyzer (HR73, Mettler Toledo, Switzerland) immediately before prep-
aration of a 100 mg pellet for combustion in a 6725 semi-
microcalorimeter (Parr Instrument Company, USA) under high oxygen
pressure (2.8 MPa). After the combustion of the sample, the vessel
was washed with distilled water, and the washing was titrated with
0.0709 N Na,COs using methyl red. Before sample determination, the
device was calibrated using benzoic acid as a thermochemical standard.

Females were combusted in the same way. The unknown calorific
value (CV) of the female samples was calculated from their dry weight
and an appropriate regression equation (R?> = 0.991).

2.7. Energy budget calculations

Consumption and assimilation rates and approximate digestibility
(AD) were calculated for particular intervals and the entire experimen-
tal time. For the latter, the growth rate and efficiency of ingested energy
conversion into bodyweight (ECI) and efficiency of digested energy con-
version into bodyweight (ECD) indices were calculated according to
standard formulas (Waldbauer, 1968).

2.8. Enzymatic activities screening by API® ZYM system

Enzymatic activity in the gut was assayed using an API®ZYM kit
(BioMérieux, France) designed for cell suspensions and successfully
used in assaying enzymes for invertebrate species (Kaufman et al.,
1989; Boetius and Felbeck, 1995; Collin and Starr, 2013; Doherty-
Weason et al., 2019; Przemieniecki et al., 2020). The API®ZYM test
can be used as a general (screening) method of assessing an organism's
digestive capacity, concerning the total activity of digestive enzymes de-
rived from microbiota and their host, that is, A. domesticus in this case.

The API®ZYM strip test contains dehydrated chromogenic sub-
strates of 19 enzymatic reactions involved in the breakdown of lipids,
peptides, phosphoric esters, and polysaccharides. The enzymes and sub-
strates included in this study are listed in Table 1.

A cell suspension of the required protein concentration was pre-
pared for each experimental group by homogenizing the midgut dis-
sected from three ice-anesthetized females. The same mass of
intestinal fragments (75 4+ 2 mg) was collected to obtain a homogenate
with the required volume needed for the test and a similar protein con-
centration. The homogenates were centrifuged at 10,000 rpm for
10 min at4 °C.

According to the manufacturer's protocol, the API test plates were
placed in moist chambers, and 65 L of supernatant was added to each
well, followed by incubation for 3 h at 37 °Cin the dark. After incubation,
reagents Zym A and Zym B were added to stop the reaction, and the
resulting color was allowed to develop for 5 min. Any excess of
unreacted Fast Blue BB was removed by short-term exposure to a strong
light source (1000 W, 10 s, 10 cm from the plate), and after aligning the
colors, the plates were photographed.

The semi-quantitative assay was based on a visual comparison of the
colors on the test strips obtained by enzymatic reactions with a
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Table 1
Enzymes and substrates in API ZYM test (BioMérieux).

Science of the Total Environment 788 (2021) 147801

No. Enzyme APIZYM substrates Abbreviation
1 Negative control None

2 Alkaline phosphomonoesterase 2-Naphtyl phosphate AlP

3 Esterase (C4) 2-Naphtyl butyrate Est

4 Esterase lipase (C8) 2-Naphtyl caprylate EstLip
5 Lipase 2-Naphtyl myristate Lip

6 Leucine-arylamidase L-Leucyl-2-naphthylamide ALeu
7 Valine arylamidase L-Valyl-2-naphthylamide Aval
8 Cystine arylamidase L-Cystyl-2-naphthylamide ACys
9 Trypsin N-Benzoyl-pL-arginine-2-naphtylamide T

10 a-chymotrypsin N-Glutatyl-phenylalanine-2-naphthylamide ChT
11 Acid phosphatase 2-Naphthyl phosphate AcP
12 Naphthol-AS-BI-phosphohydrolase Naphthol-AS-BI-phosphate NPH
13 «a-Galactosidase 6-Br-2-naphthyl-ap-galactopyranoside aGal
14 B-Galactosidase 2-Naphthyl-p-galactopyranoside BGal
15 B-Glucuronidase Naphthol-AS-BI-Pp-glucuronide BGIr
16 a-Glucosidase 2-Naphthyl-ap-glucopyranoside aGlu
17 B-Glucosidase 6-Br-2-naphthyl- pp-glucopyranoside BGlu
18 N-acetyl-f3-glucosaminidase 1-Naphthyl-N-acetyl-Bp-glucosamide NAG
19 a-Mannosidase 6-Br-2-naphthyl- aap-mannopyranoside aMan
20 a-Fucosidase 2-Naphthyl-a-fucopyranoside aFuc

manufacturer's standard. The enzymatic activity (color intensity of the
wells) was measured using ImageJ® software using grayscale images.
Each enzyme was described as the arithmetic mean of the frequency
plot (1D histogram) over the range [0.255] and converted relative to
the control well.

2.9. Statistical analysis

The measurements were performed in six replicates. The distribu-
tion of the data and homogeneity of variance were checked for all pa-
rameters before analysis. The Kolmogorov-Smirnov and Lilliefors tests
for normality and Levene's test for variance homogeneity allowed the
analysis of variance. As the data fulfilled the analysis of variance as-
sumptions, we performed parametric tests to check for differences be-
tween experimental groups. The least significant difference test
(ANOVA, LSD test, p < 0.05) was performed separately for each

parameter and each time point. All parameters are expressed as mean
+ SE in the figures. Statistical analyses were performed using the
Statistica 13.1.

3. Results
3.1. Energy budget

Ten-day-lasting exposure of young female crickets to nanoparticles
(NPs) revealed time-dependent changes in food (energy) consumption
and utilization.

The average daily consumption per individual was approximately
800 ] in all groups except females from the GO group that ingested
24% more energy than the control insects (Fig. 2B). The highest daily
consumption in all groups occurred during the first 3 days of the exper-
iment; however, it was significantly lower in the GOAg group's crickets.

(A) Daily energy consumptionin experimental intervals (8) Average daily energy consumption in 0-10 days
1400 4 3 - 1400 1
TN 200
= -1 1
£1200 4 aba . T b
i b1 S 1000 - I a a
73,1000 A 1 : - 1
£ 2 800 :
= 800 =
& % 600
2 600 A 5
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Fig. 2. Daily energy consumption (mean + SE) by young female crickets during the subsequent time intervals (A), the whole experiment (B), and its changes among the intervals (C). The
same letter denotes homogenous group (ANOVA, NIR, p < 0,05). Experimental groups: GO - crickets exposed to graphene oxide admixture at 20 ug - 1 g~ ' dry weight feed, Ag - crickets
exposed silver nanoparticles at 400 pg - 1 g~ ' dry weight feed, GOAg - crickets exposed to both GO and AgNPs in the given amounts; experimental intervals: 0-3 days, 3-6 days, and 6-10

days.
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In the following days, the energy intake decreased, although it was
higher in the NP-treated groups than in the control group (Figs. 2A,C).
However, during the 6-10 d period, the differences between the exper-
imental groups were not significant.

Average energy assimilation during the whole experiment did not
differ among the experimental groups; however, the differences oc-
curred in the subsequent measurement time intervals (Figs. 3A-C). En-
ergy assimilation followed the consumption “pattern,” however it was
significantly lower in all NPs-treated groups than in control during the
first 3 days. The control females assimilated 52.3% of the total assimi-
lated energy in this interval, whereas the NPs-exposed, up to 40% and
37.8% in the Ag and the GOAg groups, respectively (Figs. 3A, C). In the
next 3 days, the decrease in assimilation was much lower in the GO
and GOAg groups than in the control and Ag groups. After the sixth
day, the assimilation in the groups receiving nanoparticles did not differ
from that in the control group (Fig. 3A).

The approximate digestibility of ingested energy was significantly
lower in NP-exposed crickets (up to 20% in the GO group) than in the
control ones during the first 3 days of the experiment. This difference di-
minished in the following days; therefore, digestibility in the whole ex-
perimental period in the NP-treated crickets was only 4%-7% lower than
that in the control (Figs. 4A-B). Calculations of ECD values revealed sim-
ilar efficiency of digested energy conversion into the tissues (28.2%-
22.2%). This means that approximately 70% of the assimilated energy
was allocated to maintenance costs.

Comparison of water content in the samples revealed that feces of
NP-treated crickets contained more H,O than feces of the control ones
by 25%-30% in the 0-3rd day period, and 14.7%-26.5% in the 3th-6th
day period. Only the feces of the GOAg crickets had higher water con-
tent than that of the control (Fig. 4C). Interestingly, females from this
group also retained more water in their tissues than did the control in-
sects (Fig. 4D).

3.2. Gut enzymes' activities

Following quantitative transformation of the API®ZYM test, we ob-
served time-dependent changes in the activity of gut enzymes. The
highest relative activity was measured for enzymes digesting carbohy-
drates, whereas proteolytic and esterolytic enzymes were less
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important. This difference may reflect the food composition mainly con-
taining carbohydrates, including fiber.

On the third day of the experiment, we observed the increased activ-
ity of most assayed carbohydrate-degrading enzymes in NP-exposed
crickets, particularly those hydrolyzing 3-glycosidic bonds such as 3-
galactosidase and B-glucosidase. Generally, the highest stimulation of
these enzymes versus control was observed in females from the Ag
group, while the lowest was observed in females from the GOAg
group. The activity of c.-mannosidase was lower following NP exposure,
and o-galactosidase showed the lowest activity in all the groups
(Fig. 5A).

On the 10th day, this stimulatory effect disappeared in all the
assayed enzymes, and in the case of p-glucosidase and N-acetyl-p-
glucosaminidase activity we measured slight inhibition (Fig. 5B).

Both acid (AcP) and alkaline (AIP) phosphatase and naphthol-AS-BI-
phosphohydrolase (NPH) activity were higher in NP-treated female
crickets than in the control on the third day of exposure (Fig. 5C). At
the end of the experiment, the activity was the same in all the groups
(Fig. 5D).

We also observed an elevated proteolytic activity on the third day of
NP treatment compared to the control, particularly in the case of
arylamidases. Higher activity of trypsin was observed only in the GO
group (Fig. 6A). On the 10th day, this effect disappeared, and no stimu-
lation or inhibition was observed (Fig. 6B).

The activity of esterolytic enzymes followed the same ‘pattern’ -
stimulated activity in exposed crickets was observed on the third day
and the same activity in all the groups - on the 10th day of the
experiment.

4. Discussion

Hormetic factors (stressors, also changes in energy availability) trig-
ger a stress reaction in the cell/organism, which is manifested, for exam-
ple, by changes in the concentration of free radicals, disturbed ion
distribution, increased consumption of energy reserves, and others.
The most frequently described hormetic effects in response to this mod-
erate stress are increased defense strategies, for example, enhanced
activity of antioxidative enzymes, stimulation of chaperones indicating
the intensification of protein synthesis/destruction processes,

c
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stimulation of growth factors, and proteins involved in energy metabo-
lism. All these factors protect the cell/organism from more severe stress
(Mattson, 2008). However, it should be noted that these defense pro-
cesses require additional energy, which may increase food consumption
and assimilation and presumably improve the digestive system's
efficiency.

This study found that nanoparticles present in the food could tempo-
rarily disturb the cricket's energy budget and change digestive enzyme
activities (Figs. 2-6). During the first exposure period (0-3 days), a sig-
nificant reduction in consumption and assimilation was observed
(Figs. 2A and 3A), which can be a manifestation of the initial disturbance
of homeostasis (Calabrese, 2005). However, the analysis of the finger-
prints of the gut enzymes on the third day of exposure (Figs. 5A and C,
Figs. 6A and C) showed that the compensation mechanisms were trig-
gered. They may be seen as a smaller drop in consumption and assimi-
lation during the following intervals in NP-treated crickets than in
control ones (i.e., days 3-6; Figs. 2 and 3 - see GO and GOAg groups).
Higher energy intake and absorption than in the control might be a
hormetic response triggered by low “pressure” of stressors. This sug-
gests that the nanoparticle concentrations in our experiment were
low enough to cause such a hormetic effect. Taking into account the
concentration of NPs in the food and the consumption rate, we calcu-
lated that in the first 3 days of exposure, A. domesticus could take up
4.607 pg GO (GO group), 81.617 pg Ag (Ag group), and 3.488 ug GO
and 69.762 pg Ag (GOAg group) with food. In fact, the biological effects
of NPs have been studied over a wide range of concentrations, and the
amounts used in the present work are among the lowest (Guo and
Mei, 2014; Gomes et al., 2015; Yasur and Pathipati, 2015; Ferdous and
Nemmar, 2020; Malhotra et al., 2020). The amount of available energy
can vary under certain conditions and in a given life stage of an organ-
ism. It is a direct consequence of the accessible food resources and the
ability to use them, that is, in animals, the efficiency of the digestive

system and its supporting microorganisms (Karasov and Douglas,
2013; Celi et al., 2017). Hormesis may not occur if an organism does
not have access to sufficient nutrients. In 2017, Wang et al. described
an antibiotic-induced hormetic effect in E. coli only for bacteria cultured
in media rich in utilizable carbon. According to Liebig's law of the min-
imum, the described regularity can be, with certain limitations (Gorban
et al., 2010), extended to other organisms and processes involved in
hormesis.

During the experiment, the insects had unlimited access to food.
Aside from the unlikely effect of limiting the availability of nutrients
by nanoparticles, it can be assumed that the insects did not starve dur-
ing the experiment. Nevertheless, the effect of hormesis disappeared in
the last period of the experiment, when consumption and assimilation
(days 6-10), and the activity of the vast majority of the gut enzymes
(day 10 of exposure) returned to the values typical for the control
group (Figs. 2, 3, 5B, 5D, 6B, and 6D). To explain this phenomenon, we
should also consider other factors that can shape the final response of
an organism. The relationship between hormesis and dose and
exposure time is clear and well documented (Calabrese, 2005;
Agathokleous and Calabrese, 2020). However, many factors, partly re-
lated to the time, such as the animal's age, health/condition, physiolog-
ical state, other harmful substances and reproductive effort (general
body burden), may also be significant. Previous studies and our results
allow to propose a ‘hormesis graph’ showing hormetic response as a re-
sultant effect of numerous internal and external variables (Fig. 7). It
should be noted that exposure time is only partially related to age and
depends on the overall length of the animal's life. Aging organisms
have a lower chance of surviving adverse conditions, weaker defense/
repair mechanisms, and fewer energy reserves (Augustyniak et al.,
2009a; Augustyniak et al., 2009b; Augustyniak et al., 2011). For
A. domesticus, the period of 10 days of imago life was approximately 5
of the entire imago stage. Thus, the effect of hormesis can diminish
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Fig. 7. Graphical presentation of hormetic response that depends on some internal and
external variables. Explanations to the figure in the text.

with the exposure time and progressive aging of the animal (Fig. 7). In
addition, the accumulation of other stress factors (toxins, metabolites,
and degraded molecules) shapes the overall “body burden” and can in-
fluence the hormetic response. In A. domesticus, there were no addi-
tional stress factors. However, essential for the insects' overall “body
burden” is the convergence of the disappearance of the hormetic effect
on days 6-10 with the physiological need to produce eggs and oviposi-
tion. This phenomenon is cyclical and begins around this time
(Destephano et al., 1982; Murtaugh and Denlinger, 1985).

Compared to the influence of individual nanoparticles on the tested
parameters, it can be concluded that the GO-AgNP composite did not
cause a drastically greater reaction than GO or AgNPs separately. The
idea of an active nanoparticle surface, which can interact with
the biomaterial, can help understand the obtained results. The large
surface area of nanoparticles is responsible for their high reactivity
(Jeevanandam et al., 2018). In the GO-AgNP composite, bonds between
GO and AgNPs were formed, deactivating a part of the NP surface. More-
over, larger agglomerates were observed. This situation can lead to a re-
duction in the overall active area. Therefore, the GO-AgNP effect is
weaker than it can be assumed, taking into account the simplified calcu-
lation, that is, the sum of the GO and AgNPs areas, used in this experi-
ment. Thus, the composite may display lower activity with biological
structures than its separate components. Further advanced material
measurements and functional surface calculations are necessary to ad-
dress this issue.

In the group treated with the composite, we found an increased
amount of water in the feces (during the 3-6 days and 6-10 d intervals)
and in the body of A. domesticus compared to the other experimental
groups (Figs. 4C and D). Thus, the insects retained and possibly drank
more water, which might have resulted from the greater water-
holding capacity of the composite. Such effects were previously ob-
served in plants grown on substrates with the addition of carbon nano-
particles (Khodakovskaya et al., 2012; Zhang et al., 2015; He et al., 2018;
Park et al., 2020). To the best of our knowledge, this is the first observa-
tion of the effect of NPs on the water balance in insects. The effects of
long-term exposure to the composite and greater water uptake impor-
tance will be investigated in the future.
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5. Conclusions

This study confirms the hypothesis that used nanoparticles can
change gut functions and deregulate the energy budget in the early
stage of exposure. Even low amounts of dietary NPs can provoke an
early physiological response that is stimulatory rather than inhibitory
and resembles hormesis. Therefore, despite the different mode of dele-
terious action of nanoparticles, the exposed organisms seemed to mobi-
lize a “standard” defense system that manifests itself by the alarm stage
of the stress response to environmental threats. The age of the animal
and the overall burden of the organism caused by reproduction or
other factors may also influence the hormetic effect. However, this as-
pect should be examined in more advanced experiments, including a
more extended period of life, critical stages in developing a given spe-
cies, and, possibly, varus mixtures of xenobiotics.
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