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INTRODUCTION 

Oleochemicals are products derived from green chem-

istry. They are obtained from renewable raw materials, 

with a low level of potential hazards, which generate 

common toxicity substances. Their long chains and 

double bonds produce transesterification, epoxidation, 

amidation, and amination reactions (Zarli, 2020). Their 

growing economic potential is found in the markets for 

food, personal care, detergents, cosmetics, pharma-

ceuticals, medicals, paints, resins, emulsifiers, plasti-

cizers, biolubricants, biodiesel, and jet fuel 

(Spagnuolo et al., 2019; Maina et al., 2016). This de-

mand is related to population growth and the interest in 

using products based on renewable and biocompatible 

resources (Zarli, 2020). There are also limitations on 

agricultural land expansion and concerns and environ-

mental policy changes (OECD-FAO, Agricultural Out-
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look 2015–2024) (Adrio, 2017). It is possible to obtain 

lipids or chemical oils sustainably by microbial synthe-

sis, whose traditional production is based on raw mate-

rials of vegetable oils and fats. Oleaginous yeasts can 

synthesize them using glucose, xylose, L-arabinose, 

CO2, methane, or methanol (Zhang et al., 2021). These 

are the most promising microorganisms in the produc-

tion of the high content of cellular lipids. Compared to 

microalgae, molds, and bacteria, they can accumulate 

more than 70% of their biomass due to their high 

growth rate, productivity, and low areas required for 

production since they can be grown in bioreactors un-

der controlled conditions (Vasconcelos et al., 2019). 

Also, it can be used as raw material to produce bio-

diesel and adapted to the production of nutraceuticals 

using metabolic engineering (Dey and Maiti, 2013; Pa-

tel et al., 2020). Also, can provide sustainable produc-

tion of oleochemicals. They synthesize and accumulate 

lipids, primarily as triacylglycerides (Adrio, 2017). Be-

sides using pure sugars as a substrate, it also can use 

waste rich in sugars (molasses and cheese whey), lig-

nocellulosic materials, glycerol derived from biodiesel, 

starch, etc., residues from food processing (Maina et 

al., 2016). Hydrolysis of lignocellulosic materials as 

pentoses and hexoses can be obtained (Maina et al., 

2016).  

Different species of yeasts with oleaginous back-

grounds of the genus Candida,  Cryptococcus, Rhodo 

sporidium, Rhodotorula have been found in the Arctic 

and Antarctica, at temperatures below -20 °C. Also, in 

coniferous forests in European Alps, Mont Blanc (4 810 

m.a.s.l.) (Buzzini et al., 2012; Zalar and Gunde-

Cimerman, 2014; Yurkov et al., 2012).  

The main barrier for the industrial production of lipids is 

the cost at the fermentation stage, therefore adjusting it 

to an oleaginous system is imperative to obtain a higher 

yield (Karamerou and Webb, 2019). In this context, it 

has been reported that with a high C/N ratio of 84.9, 

211.0, 76.9 using crude glycerol and glucose as a car-

bon source, high lipid contents in the cellular biomass 

of 54.3%, 65.1%, 45.51% respectively has been ob-

tained with Lipomyces starkeyi, Rhodosporidium turol-

oides, and Yarrowia lipolytica. It is crucial to avoid a 

high C/N ratio that implies a high substrate concentra-

tion, producing growth inhibition and a fall in cell and 

lipid yield (Christophe et al., 2012).  

Also, it was reported that, due to the nitrogen limitation 

caused by an increase in carbon in the culture medium, 

high content of cellular lipids is produced in yeasts. Still, 

on the other hand, lower production of cellular biomass 

occurs, converting the carbon source by biosynthesis 

into storage lipids (Ratledge, 2002). Thus, some spe-

cies can accumulate lipids up to 70% of their biomass 

dry weight (Papanikolaou and Aggelis, 2011). Studies 

carried out with the oleaginous yeasts Cryptococcus 

curvatus have shown that when is cultivated in lactose 

and sucrose with limited nitrogen, there is an accumu-

lation of a large amount of total intracellular sugars of 

up to 68% in the initial stage of fermentation, which 

decreases to 20% at the end (Tchakouteu et al., 2014). 

The high content of lipids with deficiency or nitrogen-

free has been found in 35 species of oleaginous 

yeasts. An increase in the C/N molar ratio from 150 to 

350 increases the conversion efficiency of glucose to 

lipid in Rhodotorula glutinis from 0.25 to 0.40, but it has 

detrimental effects on cell viability. An exception to this 

is Cryptococcus terricola, which accumulates lipids dur-

ing logarithmic growth instead of doing it later, and in 

the presence of excess nitrogen (Sitepu et al., 2013; 

Sitepu et al., 2014). Regardless of the carbon source, 

higher C/N ratios increase lipid yields in R. 

toruloides but decrease the specific growth rate 

(Lopes et al., 2020). A C/N ratio greater than 20 stimu-

lates lipid biosynthesis in oleaginous yeasts without 

producing a significant increase in biomass (Kot et al., 

2019). This research aimed to isolate oleaginous 

yeasts from the North Peruvian Andes with a lipid con-

tent greater than 20%. Identify them, evaluate their 

growth kinetics, biomass and lipid yields using culture 

media with C/N 100: 1 with xylose as carbon source, 

limiting nitrogen; and 2:1 with glucose as carbon 

source, non-limiting nitrogen. 

MATERIALS AND METHODS 

This study was carried out at the Biomolecules Labora-

tory, Agroindustrial Science Department, National Uni-

versity of Trujillo, Peru. 

Equipment 

Vertical autoclave, drying stove 1 400 W; analytical 

balance 205 g with precision 0.0001 g; centrifuge 6 000 

rpm; optical microscope 40x; orbital shaker incubator 

four at 70 °C, 40-400 rpm; sonicator/ultrasonic bath 45 

kHz with heater and temperature control ±3 °C; vortex 

mixer 2 850 rpm; UV-C camera; multifunction gas ex-

tractor; Neubauer chamber.  

Reagents 

Xylose, anhydrous glucose, peptone, yeast extract, 

agar, magnesium sulfate heptahydrate MgSO4.7H2O, 

sodium chloride NaCl, calcium chloride CaCl2, ammoni-

um sulfate (NH4)2SO4, monopotassium phosphate 

KH2PO4, chloramphenicol, citric acid C6H8O7, phos-

phate sodium Na2HPO4, glycerol C3H8O, formaldehyde 

CH2O, absolute ethanol C2H5OH, petroleum ether, 

methylene blue. 

Fig. 1 shows the sequence for isolation, treatment with 

ultrasound, and heat to determine the lipid content, 

molecular identification, and cultures obtained to evalu-

ate growth kinetics in shake flasks, dry weight biomass 

yield, and lipids in oleaginous strains. 
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Yeast isolation 

Yeasts were isolated from nearby forests of the Porcon 

farm - Cajamarca, Peru (7° 02' 10.69" S 78° 38' 04.39" 

W, 3 148.5 m.a.s.l.; 7° 02' 32.66" S 78° 38' 28.87" W, 3 

303.4 m.a.s.l.) and the El Paraiso forests - La Libertad, 

Peru (8° 00' 07.25" S 78° 27' 51.27" W, 3 398 m.a.s.l.). 

Approximately 20 g were taken per soil sample from 

random points forming a triangle at the sampling site, 

placed in ziplock bags. The samples were stored in 

refrigerators at 4 °C. From each homogenized sample, 

1 g was taken, which was supplemented with an en-

richment medium of composition (g L-1): glycerol 100, 

(NH4)2SO4 1, KH2PO4 1, MgSO4.7H2O 0.5, yeast ex-

tract 0.5. They were incubated at 30 °C and shaking at 

150 rpm for 48 h. Serial dilutions of the enrichment me-

dium were made up to 10-5 and 10-6. These dilutions 

were seeded onto a surface in sterile Petri dishes 

(previously dried at 20 °C for 12 h) with selective medi-

um (SM-1) solid C/N 100: 1 and incubated at 30 °C for 

96 h. The SM-1 composition (g L-1) was: xylose 20, 

(NH4)2SO4 5, KH2PO4 1, MgSO4.7H2O 0.5, yeast ex-

tract 0.5, agar 20, distilled water 1 000 mL, chloram-

phenicol 0.05. The yeasts obtained were streaked 

again in SM-1 to get morphologically pure cultures in-

cubated at 30 °C for 96 h. A yeast colony was selected 

at random, and simple staining with methylene blue 

was performed and observed under a microscope to 

verify its morphology. The cultures obtained were kept 

refrigerated at 4 °C. 

Form of calculation of the carbon-nitrogen ratio (C/

N).  

The carbon-nitrogen 2:1 ratio (Equation 1) was calcu-

lated taking glucose as a carbon source (20 g L-1), the 

nitrogen content of peptone (20 g L-1), and yeast ex-

Fig. 1. Schematic flow diagram for the isolation of oleaginous yeasts, treatment to determine lipid content, molecular 

identification and obtaining cultures to evaluate growth kinetics and biomass and lipid yield. 
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tract (10 g L-1), where 40% is the percentage of carbon 

contained in glucose, 14.7%, and 10.5% is the percent-

age of nitrogen contained in peptone and yeast extract 

respectively. The carbon-nitrogen 100:1 ratio (Equation 

2) was calculated by taking xylose as a carbon source 

(20 g L-1). The nitrogen content was taken from ammo-

nium sulfate (0.762 g L-1), 40% of the carbon in xylose, 

and 21% of the nitrogen in ammonium sulfate. 

C/N =  Glucose (g L-1) * 20 * 40 % / Peptone (g L-1) * 20 

*14.7% + yeast extract (g L-1) * 10 * 10.5% = 2:1 

       (Eq.1) 

C/N = Xylose (g L-1) * 20 * 40% / Ammonium sulphate 

(g L-1) * 0.762 * 21 % = 100:1             (Eq.2) 

Selection 

The material was taken with a Kolle handle loop from 

each isolated sample and seeded by manual shaking in 

flasks with medium (M-YPD), incubating at 30 °C with a 

shaking of 150 rpm for 48 h. The M-YPD (yeast extract 

peptone dextrose) had the composition (g L-1): yeast 

extract 10, peptone 20, glucose 20, 1 000 mL distilled 

water. Next, 1 mL of the samples enriched in M-YPD 

were added to the flasks with medium C/N 100:1 at pH 

7.0 (SM-1-7) and incubated at 30 °C with a shaking of 

150 rpm for 48 h. The composition (g L-1) of the SM-1-7 

medium was: xylose 40% 100 mL (400 g of xylose in 1 

000 mL of water), (NH4)2SO4 0.762, NaCl 0.1, 

MgSO4.7H2O 0.5, CaCl2 0.1, yeast extract 0.1, citrate 

phosphate buffer 900 mL (citric acid solution 741.15 mL 

and bibasic sodium phosphate solution 158.85 mL. 

Determination of lipid content 

In MS-1-7 medium, 12 mL of the yeast culture was tak-

en and added to previously weighed capped tubes. 

They were centrifuged at 3 000 rpm for 10 min, discard-

ing the supernatant. The tubes, without caps, with 

yeast biomass, were dried at 50 °C for 48 hours, then 

the tubes were capped and weighed, and determined 

the initial dry biomass, expressed as g mL-1. Next, 5 mL 

of 5% (NH4)2SO4 solution was added, placing it on ice 

for 2 minutes, then placed in an ultrasound bath for 2 

minutes at 25 °C and 45 kHz.  It was centrifuged at 3 

000 rpm for 5 minutes; discarded the supernatant. Add-

ed 3 mL of absolute ethanol, shaken vigorously on agi-

tator vortex for 5 seconds, then 1.25 mL of chloroform 

and 1.25 mL of petroleum ether were added, and then 

shaken in the vortex for 10 seconds. The tubes were 

then centrifuged at 3 000 rpm for 10 min. Then placed 

in a water bath equipped with a multifunction gas ex-

tractor for 2 hours at 50 °C. Subsequently, they were 

placed in an oven at 50 °C for 96 h to determine the 

final dry biomass. Equation 3 determined the percent-

age of the lipid content:  

(Initial dry biomass - final dry biomass) / (Initial dry  

biomass) x 100                   (Eq. 3) 

Samples with a lipid content greater than 20% were 

seeded in solid M-YPD medium and kept refrigerated at 

4 °C. 

Molecular identification  

Amplification of the genetic material of the sequences 

of internal transcribed spacer regions ITS of conserved 

ribosomal DNA (rDNA) was carried out using the Sang-

er technique. The analysis was limited to identifying the 

sequence similarities of the ITS regions (Gientka et al., 

2017). 

Form of evaluation of the kinetics of growth of  

oleaginous yeasts in MS-1-7 and MS-2-7 media  

Material with a Kolle handle loop was taken from each 

isolated strain and seeded by manual shaking in flasks 

with M-YPD medium and incubated with shaking at 150 

rpm at 30 °C for 48 h. Enriched samples (1 mL) was 

taken and added to 50 mL flasks with MS-1-7 and MS-2

-7 media, both at pH 7.0. The media were then incubat-

ed at 30 °C with shaking at 150 rpm for 24 and 66 h, 

respectively. Yeast growth was quantified at 1 h inter-

vals using the Neubauer chamber and 40X light micros-

copy. The Gompertz type II parameterized model con-

trasted the growth (Tjørve and Tjørve, 2017) (Equation 

4):  

                            (Eq. 4) 

Where: Y: log (N/N0), N is the number of yeasts (cells 

mL-1) as a function of time t (h) and N0 is the number of 

initial yeasts (cells mL-1) at time t = 0 h. A is the upper 

asymptote (absolute maximum growth value), b is a 

constant, KG is the coefficient of the growth rate. With 

the use of Software R v.3.6.1., the growth curves were 

plotted and the parameters were determined as follows: 

specific growth speed h-1 (μmax = A*b), latency phase h 

(λ = (b-1)/KG) and generation time h (G = ln2/μmax). 

Oil yeast lipid yield in MS-1-7 and MS-2-7 media. 

After 24 hours of growth in MS-1-7 medium, 66 h in MS

-2-7 medium, evaluated the lipid content following the 

procedures described above and their yield. 

RESULTS 

Isolation and selection of yeasts for lipid content 

Three strains were selected from 18 cultures obtained 

from samples taken in the geographical areas of the 

North Peruvian Andes. The strains were isolated from 

nearby forests of the Porcon farm – Cajamarca: CON-5 

and POR-3 and El Paraiso forests - La Libertad: EP-5, 

with lipid content of 31.5%, 29.7%, and 23.1%, respec-

tively.  

Molecular identification 

The ITS regions of the rDNA of the yeast strains encod-
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ed as CON-5, EP-5, and POR-3, were identi-

fied: Rhodotorula glutinis, Rhodotorula mucilaginosa, 

and Rhodotorula kratochvilovae, respectively. The pri-

mers 5'-3' ITS1 (TCCGTAGGTGAACCTGCGG) and 

ITS4 (TCCTCCGCTTATTGATATGC) were used to 

identify which were incorporated into Genbank as 

LC413754.1; MK215798.1, and LC390313.1, respec-

tively. 

Evaluation of the growth kinetics of oleaginous 

yeasts in MS-1-7 (C/N 100: 1) and MS-2-7 (C/N 2: 1) 

media 

In Fig. 2, 3, and 4, the growth of the three strains 

of Rhodotorula (glutinis, mucilaginosa, 

and kratochvilovae) observed in MS-2-7 medium (C/N 

2:1) took a long time to reach a higher value of cellular 

biomass A (log N/No), compared to that obtained with 

the MS-1-7 medium (C/N 100:1). The three strains 

of Rhrodotorula in MS-2-7 were determined to reach 

their maximum value of A at 37, 39, and 51 h, values 

higher than 9, 6 and 9 h obtained in MS-1-7. 

Similarly, Fig. 2, 3, and 4 show the curves modeled 

with the parameterized Gompertz type II model for the 

growth of the three Rhodotorula strains up to a maxi-

mum stationary phase, in the media with C/N 2:1 and 

C/N 100:1, with their respective kinetic parameters indi-

cating statistical consistency of the model with R2 val-

ues between 97% and 99%. The three strains 

of Rhodotorula showed a lower value of μmax, higher 

values of A and G using the medium MS-2-7 (C/N 2:1) 

compared to MS-1-7 medium (C/N 100:1) was used. 

Regarding the duration of λ, R. glutinis in medium with 

a C/N ratio of 2:1 was 2.33 h, less than the λ of 2.99 h 

obtained in medium with C/N ratio of 100:1. For R. mu-

cilaginosa and R. kratochvilovae, the values were the 

opposite, since R. mucilaginosa and R. kratoch-

vilovae in medium with C/N 2:1 ratio presented λ of 

3.98 and 6.59 h respectively, while in medium with C/N 

Fig. 2. Growth curve of R. glutinis in the culture media  

MS-2-7 and MS-1-7 with C/N 2:1 and C/N 100:1 ratios, 

respectively. 

Fig. 3. Growth curve of R. mucilaginosa in the culture  

media MS-2-7 and MS-1-7 with C/N 2:1 and C/N 100:1 

ratios, respectively. 

Fig. 5. Lipid content, dry biomass and lipid yields in the 

three Rhodotorula strains using culture media with C/N 

2:1 and 100:1. 

Fig. 4. Growth curve of R. kratochvilovae in the culture 

media MS-2-7 and MS-1-7 with C/N 2:1 and C/N 100:1 

ratios, respectively. 
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ratio 100:1 presented a lower value of λ, which was 

2.28 and 3.04 h respectively. 

Lipid yield with MS-1-7 (C/N 100:1) and MS-2-7 (C/N 

2: 1) media. Fig. 5 shows the behavior of the 

three Rhodotorula strains in the culture media with C/N 

ratios 2:1 and 100:1. Strains in medium with a C/N ratio 

of 100:1 obtained a higher percentage of lipids, of 

31.5%, 23.1%, and 29.7%; compared to values lower 

than 24.5%, 20.2%, and 21.3% obtained with a medium 

with a C/N ratio 2:1, for R. glutinis (CON-5), R. muci-

laginosa (EP-5) and R. kratochvilovae (POR-3) respec-

tively. 

On the other hand, contrary to the medium with a C/N 

ratio of 2: 1, they presented higher values of biomass 

and lipid yields of the order of 19.01 g L-1, 27.74 g L-1, 

and 41.33 g L-1; as well as 4.65 g L-1, 5.59 g L-1, and 

8.80 g L-1. This result compared to the medium with a 

C/N ratio 100:1 with lower values of biomass and lipid 

yields 9.98 g L-1, 13.90 g L-1, and 9.80 g L-1; as well as 

3.09 g L-1, 3.21 g L-1, and 2.91 g L-1 for R. glutinis (CON

-5), R. mucilaginosa (EP-5) and R. kratoch-

vilovae (POR-3) respectively. 

DISCUSSION 

The three selected cultures showed a greater than 20% 

lipid content, which is the minimum content required to 

be considered oleaginous yeast (Ageitos et al., 2011). 

The sampled areas were chosen based on the evi-

dence that Rhodosporidium and Rhodotorula, generally 

known as potential lipid producers, have an important 

role as saprophytes or parasites in coniferous and de-

ciduous forests (Sláviková and Vadkertiová, 2000; 

Buzzini et al., 2012; Yurkov et al., 2012) and alluvial 

soils (Wuczkowski and Prillinger, 2004). Also, based on 

the evidence of resisting temperatures below -20 °C 

(Zalar and Gunde-Cimerman, 2014) and altitudes close 

to 4 000 m.a.s.l. (Buzzini et al., 2012). The areas where 

the samples were taken fall within the characteristics 

mentioned as the Porcon pine forests. On the other 

hand, some studies reveal the presence of yeasts of 

the genus Rhodotorula in habitats with low pH levels 

and with the presence of heavy metal or fossil fuel resi-

dues (Muñoz-Silva et al., 2019; Gupta et al., 2016); 

which explains its presence in the sampled area of El 

Paraíso forests, located near a river contaminated with 

mining tailings. 

For molecular identification, the universal primers ITS1 

and ITS4 were used, which can be directed to the con-

served 18S, 5.8S, and 28S rDNA sequences, to be 

able to amplify the ITS1 and ITS2 regions, which vary 

according to the species depending on the length and 

sequence of the amplicon (Fujita et al., 2001). The ITS 

encoded regions deposited in public databases such as 

GenBank are the most widely used (Toju et al., 2012). 

Regarding the maximum values of A reached in the 

three strains of Rhrodotorula using the MS-2-7 (C/N 

2:1), which yielded higher values than with the MS-1-7 

medium (C/N 100: 1), there is information that a C/N 

ratio greater than 20 does not produce a significant 

increase in biomass, but does stimulate yeast lipid bio-

synthesis. Lower C/N ratios influence cell growth be-

cause the available forms of carbon and nitrogen are 

used mainly to satisfy cells' multiplication and develop-

ment needs. Therefore, when nitrogen availability is 

reduced in the medium (MS-1-7), the growth rate de-

creases and the excess carbon is used to synthesize 

lipids as a storage substance (Ratledge, 2002; Kot et 

al., 2019). 

The Gompertz model has been used to evaluate the 

growth kinetics of oleaginous yeasts strains, obtaining 

R2 values between 0.96 and 0.99 for Lipomyces stark-

eyi and Pichia pastoris, respectively (Sierra, 2013; 

Chang et al., 2006). In the present study, 

three Rhrodotorula strains showed an R2 of 0.98 to 

0.99, which indicates that the model fits with the experi-

mental values up to a maximum stationary phase, 

equally in media with C/N 2:1 and 100:1. 

A longer time to reach high A values as observed in the 

three strains of Rhrodotorula using the C/N 2:1 medium 

has resulted in lower μmax values concerning the C/N 

100:1 medium. This aspect, as mentioned, can be influ-

enced by a lower value of C/N (Kot et al., 2019). 

Research has shown that oleaginous yeasts do not 

have an overactive fatty acid biosynthesis system but 

can produce significant amounts of acetyl-CoA, the 

basic unit for their biosynthesis (Papanikolaou and Ag-

gelis, 2011), which is reflected in the processing time. It 

has been observed that the C/N ratio influences the 

value of λ. Thus a 100:1 C/N ratio allows a rapid adap-

tation with a lower value of λ and a higher value of μmax 

with an immediate and more extraordinary transfor-

mation to lipids. (Fig. 2, 3, 4, and 5). But the carbon 

source is very important; in R. glutinis, it has been re-

ported that high production of lipids can reach 66.0% 

using glucose as a carbon source (Kot et al., 2016). An 

aspect considered is xylose used carbon source in the 

medium with a C/N ratio of 100:1, while glucose was 

used as a carbon source in the medium with a C/N ratio 

2:1. In this regard, it has been reported that the R. gluti-

nis strain T216 produced 36.6% of lipids, whose opti-

mal conditions occurred when glucose was used as a 

carbon source, accumulating a higher concentration of 

lipids of 49.25% concerning the cellular biomass (Dai et 

al., 2007). Glucose and xylose can be used by oily 

yeasts isolated from soil or other natural sources to 

produce lipids. Still, glucose is the preferred sugar for 

any oily yeasts, and high C/N ratios favor higher pro-

duction. For xylose metabolism, yeast must be able to 

absorb pentose into the cell via sugar transporters. The 

overexpression of three regulatory enzymes (xylose 
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reductase, xylitol dehydrogenase, and xylulokinase) 

can aid yeast growth (Sreeharsha and Mohan, 2020), 

and this is an aspect that may have favored R. muci-

laginosa and R. kratochvilovae at a lower value of λ. 

Studies show a more significant accumulation of lipids 

by yeast R. kratochvilovae and R. glutinis in a limiting 

nitrogen medium (Jiru et al., 2017; Yen et al., 2019), in 

line with findings shown in Fig. 5 for 

the Rhrodotorula strains with C/N 100:1. The accumu-

lation of lipids in a culture with a deficiency of nitrogen 

is used for protein synthesis and cell growth. Still, when 

rapidly depleted, cells enter a state of survival in which 

they must increase their reserve materials, transform-

ing the substrate into fats (Meesters et al., 1996). Simi-

lar results to the present investigation have also been 

obtained with R. kratochvilovae using a culture medium 

with a 40:1 C/N ratio, resulting in 20.2% lipid content. In 

comparison, in a medium with a C/N ratio of 120:1, they 

obtained a lipid content of 42.5% (Jiru et al., 2017). 

Likewise, for R. glutinis there is a consensus that lipid 

production is stimulated and increases at high C/N rati-

os, which are formed in the secondary metabolism of 

yeast using acetyl CoA as a precursor. In this regard, a 

C/N 20:1 ratio has been equally used with amounts of 

glucose 16.2 g L-1 (NH4)2SO4 1.0 g L-1, obtaining a low 

biomass production and total lipid content. When using 

glucose 57.0 g L-1/(NH4)2SO4 4.885 g L-1, high biomass 

production stimulated by the amount of nitrogen has 

been obtained. With high C/N ratios 70:1 and 120:1 

(glucose 57 g L-1/(NH4)2SO4 1.0 g L-1, and glucose 97.4 

g L-1/(NH4)2SO4 1.0 gL-1, high values of total lipids and 

biomass at the maximum stationary phase in cultures 

with R. glutinis have been achieved. 

It should be noted that an increase in the C/N ratio 70:1 

to an intermediate ratio of 100:1 results in a curb in the 

increase in total lipids, producing even a slight de-

crease (Braunwald et al., 2013). On the other hand, it 

has been shown that R. toruloides can present an effi-

cient biomass production and storage lipids accumula-

tion in nitrogen-rich media, provided that phosphorus or 

sulfate is the limiting factor of cell growth. According to 

what was stated above, it is shown that high values of 

biomass and lipid content can be obtained. One aspect 

to be highlighted is observed in Fig. 5, noting 

that Rhrodotorula cultures in media with C/N 2: 1 ratio 

can provide lower lipid content, between 13% to 28%, 

concerning C/N 100:1 medium, but when achieving a 

more significant amount of biomass, the lipids yield was 

higher (4.65, 5.59 and 8.80 g L-1) in R. glutinis, R. muci-

laginosa and R. kratochvilovae respectively, using glu-

cose as a carbon source, noticeably 

with R. kratochvilovae. The present investigation has 

been carried beyond the maximum stationary phase to 

the logarithmic death phase, but it could not exceed the 

maximum growth process escalation. Another aspect to 

consider is the appropriate C/N ratio and the amounts 

of the components that contribute carbon and nitrogen, 

coming from different substrate sources and the type of 

oil yeast (Karamerou and Webb, 2019). It is recom-

mended to avoid the Cabtree effect caused by a high 

carbon concentration (Christophe et al., 2012; Braun-

wald et al., 2013). 

Conclusion 

Oleaginous yeasts were isolated and identified from the 

North Peruvian Andes with a greater than 20% lipid 

content: Rhodotorula glutinis, R. mucilaginosa, and R. 

kratochvilovae. The C/N ratio in the culture medium 

influenced the oleaginous yeasts kinetics, modeled with 

the parameterized Gompertz type II equation. Also, C/N 

affects biomass and lipid yields. With MS-1-7 (C/N 

100:1) with xylose as carbon source, limiting nitrogen, a 

high μmax was obtained, reaching the stationary phase 

between 6 to 9 h, as well as lipid accumulation between 

23.1% and 31.5%. With the MS-2-7 medium (C/N 2:1) 

with glucose as a carbon source, non-limiting nitrogen 

obtained the maximum biomass value in the stationary 

phase between 37 and 51 h, which generated the high-

est biomass yield at the end of the whole process with 

a lipid yield of 4.65; 5.59 and 8.80 g L-1. There is poten-

tial to obtain high lipid yields using a culture media non-

limiting nitrogen, examining not only the C/N ratio. But 

also, the quantities, nature of the components, and type 

of oleaginous yeasts taking care to avoid a high carbon 

concentration to prevent the Crabtree effect. 
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