
https://doi.org/10.1530/JME-20-0078
https://jme.bioscientifica.com © 2021 Society for Endocrinology

Printed in Great Britain
Published by Bioscientifica Ltd.

Genetic and epigenetic basis of 
Graves’ disease

E Razmara et al.Journal of Molecular 
Endocrinology

R33–R5566 2:

REVIEW

Graves’ disease: introducing new genetic and 
epigenetic contributors

Ehsan Razmara1,2, Mehrnaz Salehi3, Saeed Aslani1, Amirreza Bitaraf1,4, Hassan Yousefi5, Jonathan Rosario Colón5 
and Mahdi Mahmoudi1,6

1Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
2Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
3School of Medicine, Shahrekord University of Medical Science, Shahrekord, Iran
4Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
5Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, Louisiana, USA
6Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran

Correspondence should be addressed to M Mahmoudi: mahmoudim@tums.ac.ir

Abstract

Autoimmune thyroid disease (AITD) accounts for 90% of all thyroid diseases and affects 
2–5% of the population with remarkable familial clustering. Among AITDs, Graves’ disease 
(GD) is a complex disease affecting thyroid function. Over the last two decades, case–
control studies using cutting-edge gene sequencing techniques have detected various 
susceptible loci that may predispose individuals to GD. It has been presumed that all 
likely associated genes, variants, and polymorphisms might be responsible for 75–80% 
of the heritability of GD. As a result, there are implications concerning the potential 
contribution of environmental and epigenetic factors in the pathogenesis of GD, including 
its initiation, progression, and development. Numerous review studies have summarized 
the contribution of genetic factors in GD until now, but there are still some key questions 
and notions that have not been discussed concerning the interplay of genetic, epigenetic, 
and immunological factors. With this in mind, this review discusses some newly-identified 
loci and their potential roles in the pathogenicity of GD. This may lead to the identification 
of new, promising therapeutic targets. Here, we emphasized principles, listed all the 
reported disease-associated genes and polymorphisms, and also summarized the current 
understanding of the epigenetic basis of GD.

Introduction

Graves’ disease (GD) causes hyperthyroidism as a result 
of circulating IgG antibodies that activate the thyroid-
stimulating hormone receptor (TSHR). This activation 
leads to follicular hypertrophy/hyperplasia, which 
in turn causes thyroid enlargement and augments 
thyroid hormone production, especially the ratio of 
triiodothyronine (T3) relative to thyroxine (T4) in thyroid 
secretions. Thyroid-function testing in GD shows typically 

low basal serum TSH levels that are followed by a high 
level of free T3 and T4 in serum (Brent 2008).

A combination of genetic, epigenetic, and 
environmental factors can account for autoimmune 
responses against the thyroid gland (Imani et  al. 2017). 
These responses are limited to lymphocytic infiltration 
and autoantibodies targeting thyroid antigens, such as 
TSHR, thyroglobulin (TG), and thyroid peroxidase (TPO). 
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T cells recognize various epitopes of the TSHR and induce 
B cells to secrete thyroid-stimulating antibodies. The 
uncontrolled thyroid hormone production and ensued 
hyperthyroidism are caused by mimicking the action of 
TSH through TSHR-stimulating autoantibodies.

Hereditary factors have been demonstrated to 
account for 75–80% of the risk of GD development 
(Khalilzadeh et  al. 2009, Anvari et  al. 2010). The 
incidence of GD is about 20 to 50 cases per 100,000 
people and individuals can be affected at any age, 
but usually between 30 and 50 years (Zimmermann 
et  al. 2015). Concordance among monozygotic twins 
is higher in comparison with dizygotic twins and the 
male-to-female ratio among patients with GD is between 
1:5 and 1:10 (Zhao et  al. 2019). Recent studies have 
shown the roles of interacting risk factors as in genetics, 
immunogenetics, epigenetics, and environmental 
factors. In the following, we discuss some essential 
genetic and epigenetic factors that play substantial roles 
in GD. We summarize and list the genes according to 
the functions in two distinct groups: Thyroid hormone 
synthesis and T cell response regulatory genes. We also 
enumerate variants/polymorphisms that are associated 
with heightened or decreased GD susceptibility. 
Ultimately, we focus on epigenetic factors and their 
possible roles in GD development.

Thyroid hormone synthesis

Besides its undeniable roles in the immune system, the 
main function of the thyroid gland is synthesizing T3 
and T4 hormones that are essential for the regulation 
of metabolic processes. This process initiates with 
thyroglobulin synthesis and its secretion into the 
follicular lumen followed by iodine transportation and 
oxidation that lead to the iodination of thyroglobulin 
tyrosine residues. After endocytosis, lysosomes can 
hydrolyze the complex and prepare the secretion of 
T3 and T4. Each of these complex processes can be 
modulated by encoded proteins of TSHR, TPO, and TG 
(Fig. 1A). In the following, the roles of these genes in the 
immune system will be highlighted.

TSH receptor

The TSHR was a critical candidate for GD (Tonacchera & 
Pinchera 2000). To date, numerous SNPs associated with 
GD risk have been identified (Table 1). TSHR antibodies are 
present in GD patients and are directly related to disease 
severity (Tomer 2014). The most causative variants are 

located within intron 1 (Tomer et al. 2013) that probably 
change the splicing process. These variants downregulate 
TSHR in the thymus by developing autoreactive TSHR-
targeting T cells that have escaped deletion. Regarding 
this, we can propose two possible mechanisms: peripheral 
and central tolerance.

According to peripheral tolerance, after TSHR 
expression, the protein undergoes different modifications 
such as glycosylation, dimerization, sulfation, disulfide-
bond formation, and proteolytic cleavage (Rapoport 
& McLachlan 2007). The TSHR may undergo post-
translational intramolecular cleavage of its A and B 
subunits which determines its fate: A subunit forms a 
large extracellular domain, while the B subunit sets up 
the seven-transmembrane domain. Several alternatively 
spliced variants in the TSHR gene have been detected that 
can change the balanced expression of these subunits 
(Table 1) (Brand et al. 2009). There is also evidence for up 
to 5 truncated TSHR transcripts, particularly ST4 (1.3Kb) 
and ST5 (1.7Kb), that encode a significant percentage of 
the entire ligand-binding extracellular region (Fig. 1B). 
The truncated mRNA transcripts ST4 and ST5 encode the 
majority of soluble A-subunit directly, hence increasing 
the chances of autoantibody production against the 
TSHR. Different polymorphisms, for example, rs179247 
and rs12101255, have been reported in association with 
the production of the soluble A subunit (Colobran et al. 
2011) (Table 1). In sum, the generation of this soluble 
form of TSHR can likely favor an autoimmune response, 
although the molecular mechanism is not clear.

The expression of self-antigens in the thymus is essential 
for ‘Central Tolerance’. These antigens vividly play in a 
negative selection of autoreactive T cell clones. This process 
filters developing T and B cells and eliminates auto-reactive 
lymphocytes (Fig. 2). In medullary thymic epithelial cells, 
tissue-restricted autoantigens can induce the expression 
of promiscuous gene expression (PGE), providing various 
ligands that are vital for the negative selection of T cells. 
Genetic variations in the autoimmune-related genes, for 
example, AIRE gene, can also influence the expression of 
PGE and TSHR (Mathis & Benoist 2009). Hence, it seems 
fair to suggest that DNA alternations that affect central 
tolerance can change the TSHR signaling in GD.

Two mapped SNPs the intron 1 of the TSHR, 
rs12101255 and rs12101261, have an association 
with GD via epigenetic functions. Interferon-α (IFn-α)  
leads to a remarkable H3K4me1 enrichment only in 
the overlapping region of rs12101255 and rs1210126, 
proposing one of them is the causative SNP. Furthermore, 
a regulatory element has been identified that binds to 
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the transcriptional repressor region of the promyelocytic 
leukemia zinc finger (PLZF) in the rs12101261 location. 
This polymorphism reduces the expression of PLZF 
in GD patients (Chen et  al. 2018). TSHR expression 
was also reduced intrathymically in the homozygote 
individuals carrying this SNP (Kursawe & Paschke 2007). 
These findings established an understanding that non-
coding SNPs of intron 1 within the TSHR have a genetic-
epigenetic interaction that adjusts the TSHR expression 
in thymus and boosts evasion of TSHR-reactive T cells 
from central tolerance. Additionally, hypermethylation in 
intron 1 has been identified where various GD-associated 
polymorphisms are reported (Table 1). The results show 
the contribution of dysregulated DNA methylation and 
histone modifications of T cell signaling genes in patients 
with GD that affect ‘Peripheral/Central Tolerance’ 
(Limbach et  al. 2016); however, the key mechanism of 
TSHR involvement in GD development is elusive.

TPO

TPO, a thyrocyte apical plasma glycosylated membrane-
bound enzyme, involves in producing the thyroid 
hormones T3 and T4 by iodine oxidation/iodination of 
tyrosyl residues of the Tg molecules (Kopp et  al. 2017)  
(Fig. 1A). As a marker of AITD, over 90% of GD patients 
show an increased amount of anti-TPO autoantibodies 
(Silva et  al. 2003). The TPO gene is merely expressed in 
thyroid glands, while is imperative for proper functions 
of at least three thyroid-specific transcription factors,  
including NKX2-1, FOXE1, and PAX-8 (Grasberger et al. 
2005). Some genetic variations in TPO are associated 
with GD; for example, rs11675434 is correlated with  
the development of Graves‘ ophthalmopathy (GO), 
especially in male patients with a late-onset GD (Kuś 
et  al. 2017), while c.2268insT is the most frequently 
identified mutation in the TPO gene within the Taiwanese 

Figure 1
(A) Thyroid hormone synthesis (reviewed in Kopp 
& Solis-S 2009). Thyrotropin (TSH) as the main 
stimulator of TSHR can transduce the signal 
through cAMP production in the cytoplasm, which 
in turn can modulate thyroid hormone-
responsive gene expression, for example, TPO, TG, 
sodium-iodide symporter (NIS), and pendrin (PDS). 
This figure introduces a pathway that includes 
TSHR, TPO, and TG. The figure is redrawn from 
Galligan et al. (2019). (B) Structure of the TSHR 
gene. This gene contains 10 exons and encodes a 
protein in a full-length version with 764 amino 
acids. The TSHR gene is transcribed to a full-length 
mRNA (flTSHR or TSH holoreceptor) and 2 main 
splicing isoform including ST4 and ST5. ST4 and 
ST5 are common in at the first 8 exons but differ 
in an additional unique 9th exon. These unique 
exons are highlighted in green and red. In the 
figure, C, C-terminal; N, N-terminal region; SP, 
signal peptide; LRR, leucine-rich repeat; TMD, 
transmembrane domain; CM, Cytoplasmic Motifs. 
In GD patients, LRRs are a subject of pathogenic 
stimulating antibodies. The figure is redrawn 
from Marín-Sánchez et al. (2019). A full color 
version of this figure is available at https://doi.
org/10.1530/JME-20-0078.
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population (Huang & Jap 2015). It seems that these 
kinds of mutations can change TPO protein activity, its 
expression in serum, or even the serum levels of TPOAb, 
confirmed by a study introducing nonsynonymous 
substitutions in TPO (including p.Ala373Ser, p.Ser398Thr, 
and p.Thr725Pro) in Bangladeshi patients (Begum et  al. 
2019). However, the molecular mechanisms behind the 
association between these variants and GD are not clearly 
understood.

TG gene

The thyroid gland produces TG playing a pivotal role 
in both the immune system and thyroid hormone 
synthesis; the TG gene is also a crucial candidate for GD 
(Yamashita et  al. 1989). TG variants are common and 
likely contribute to the pathogenesis of autoimmune 
thyroid diseases (Tomer 2014). Anti-TG antibodies are 
found in 1 in 10 healthy individuals that cause falsely 

Table 1 Most significant polymorphisms of TSHR that are associated with GD.

Genetic variation Function Year Population
 
Increased risk

Associated 
region Reference

rs2234919 Ameliorates G(s)alpha protein 
activation of TSHR

1995 Caucasian Yes Exon 1 (Ban et al. 2002)

DS14S81 NR 1997 Caucasian Yes Chr. 14q31 (Tomer et al. 1999)
TSHR-AT NR 2000 Japanese Yes Intron 2 (Yin et al. 2008)
rs1991517 rs1991517 alters the binding 

affinity to cAMP, thus changes 
signaling pathways mediated  
by TSHR

2002 Russian Yes Exon 10 (Cuddihy et al. 1995)

D14S258 NR 2003 Caucasian Yes Chr. 14q (Tomer et al. 2007)
rs2239610 This polymorphism is associated 

with higher serum 
concentrations of free thyroxin 
and TRAb with unknown 
mechanisms

2003 Chinese Yes Intron 1 (Hiratani et al. 2005)

rs2268458 NR 2005 Caucasian Yes Intron 1 (Brand et al. 2009)
rs2268475, 

rs3783938
NR 2005 Japanese Yes Intron 7, 

Intron 8
(Tomer et al. 1997)

rs3783941 NR 2007 Caucasian Yes Intron 8 (Płoski et al. 2010)
rs2268458 NR 2008 Caucasian Yes Intron 1 (Qu et al. 2010)
rs179247, 

rs12101255
Can increase the production of 

ST5 and change the TSHR 
expression

2009 Caucasian Yes Intron 1 (Colobran et al. 
2011)

rs12101261 Decreases the intrathymic TSHR 
expression through signaling 
pathways mediated by 
promyelocytic leukemia zinc 
finger (PLZF) protein

2011 Chinese Yes Intron 1 (Chu et al. 2011)

rs12101255 By binding to PLZF protein 
decreases the intrathymic TSHR 
expression

2012 Chinese Yes Intron 1 (Yin et al. 2012)

rs2284720 NR 2013 Caucasian Yes Intron 1 (Tomer et al. 2013)
rs179243 NR 2014 Chinese Yes Intron 1 (Stefan & Faustino 

2017)
rs12885526 NR 2015 Brazilian Yes Intron 1 (Bufalo et al. 2015)
rs179247, 

rs3783948
NR 2016 Italian Yes Intron 1 (Lombardi et al. 2016)

rs12101261, 
rs4903964, 
rs179247, 
rs2284722, 
rs17111394 

rs179247 can increase the 
production of ST5 and change 
the TSHR expression, while 
rs12101261 changes TSHR gene 
expression through binding to 
PLZF protein. 

2016 Chinese Yes Intron 1 (Jing et al. 2016)

rs4411444, 
rs4903961 

NR 2017 Japanese Yes Intron 1 (Fujii et al. 2017)

NR, not reported.
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low or rarely high levels of reported TG. These antibodies 
are often detected in patients with AITDs, especially 
GD (Antonelli et  al. 2014), and also in conditions such 
as Hashimoto’s encephalopathy, papillary or follicular 
thyroid carcinoma, systemic lupus erythematosus (SLE), 
and type 1 diabetes (T1D) (Wallace & Stone 2003).  

Further reports demonstrated amino acid substitutions in 
TG (SNP cluster of exon 10–12 and an exon 33) raise the 
susceptibility to AITDs (Ban et al. 2003). Indeed, the exon 
33 SNPs demonstrate adequate evidence of interaction 
between TG and HLA-DR3 that can lead to elevating GD 
susceptibility (Ban et al. 2003).

As an SNP in the promoter region of the TG gene, 
rs180195 has been identified to increase susceptibility to 
AITD by an interferon α-modulated mechanism (Stefan 
et  al. 2011). This SNP has an epigenetically-important 
interaction with interferon regulatory factor 1 (IRF-1) 
to develop GD (Tomer 2014). Stefan  et al. detected that 
−1623A/G SNP modifies the binding site for IRF-1, in fact, 
the disease-associated allele (G) limited the increase of 
TG promoter activity through IRF-1 binding (Stefan et al. 
2011). Therefore, a novel mechanism incorporating both 
epigenetically-important interaction (IFn-α) and genetic 
factors (TG) can be implicated in GD development.

T cell response regulatory genes

Various proteins have been described to play important 
roles in T cell differentiation, maturation, and activation. 
In the following, we list some of the well-established genes 
and summarize their possible roles in GD development.

Major histocompatibility complex

Major histocompatibility complex (MHC), also known 
as Human Leukocyte Antigen (HLA) in humans, are 
encoded proteins on the cell surface that are essential 
for the acquired immune system to recognize antigens. 
There are three major subgroups of HLAs playing roles in 
antigen presentation, autoimmune reactions, and tissue 
allorecognition (Simpson 1988). A strong correlation 
between the HLA class I and class II regions with GD has 
been identified (Wellcome Trust Case Control Consortium, 
Australo-Anglo-American Spondylitis Consortium (TASC) 
et al. 2007, Zeitlin et al. 2008), that is, HLA class I allele 
HLA-B8 and HLA class II alleles are strongly associated 
with GD risk (Chen et al. 2000).

An interaction of TG SNPs in exon 33 has been 
identified that can synergistically facilitate the interaction 
of HLA-DRβ1-Arg74 with TG genotype as a disease-
associated genotype of Trp1980Arg SNP (Simmonds et al. 
2005). An arginine at β74 is encoded by HLA-DRB1*03, 
while HLA-DRB1*07, as a member of a protective DR7 
haplotype, encodes glutamine at the same location 
(Simmonds et al. 2005). Moreover, a statistical interaction 
has been observed between such amino acid variants in 

Figure 2
The role of cells and molecules encoded by GD associated genes in T cell 
and other immune cells during central tolerance and immune response-
related pathways. Progenitor T cells are generated in the bone marrow. 
The positive and negative selections in the thymus are required to 
deplete the nonfunctional and autoreactive T cells. During positive 
selection, antigen-presenting HLA molecules bind to immature T cells and 
provide a survival signal to T cells. During negative selection, autoreactive 
T cells are recognized by binding to self-antigens. These T cells are 
distinguished as autoreactive T cells and undergo apoptosis. Externally 
derived proteins are obtained by the antigen-presenting cells (APCs), 
converted to antigens, bound to MHC class II molecules, and presented 
on the APC surface to be recognized by CD4+ T cells. If antigens are 
recognized as foreign antigens, B cells will be activated followed by 
antibodies secretion, and macrophages and neutrophils recruiting by 
cytokines‘ CD4+ T cells. Internally derived antigens bound to HLA class I 
molecules and presented on the cell surface for recognition by CD8+ T 
cells. If the antigen is detected as a foreign antigen, the cell destruction is 
carried out by cytotoxic T cells and NK cells. The GD associated variants to 
this pathway have been reported in CTLA4, PTPN22, and IL2RA. The figure 
is depicted according to the data from Kyewski & Klein (2006) and 
Nemazee (2017). A full color version of this figure is available at https://
doi.org/10.1530/JME-20-0078.
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TG and HLA-DRβ1-Arg74 leading to higher susceptibility 
to GD (Hodge et al. 2006) and other autoimmune diseases 
(Menconi et al. 2010, Bernecker et al. 2012). Li  et al. showed 
that TSHR peptides that bind to the HLA-DRβ1-Arg74 with 
high affinity represent key pathogenic TSHR peptides 
triggering GD and that blocking their presentation to 
CD4+ T-cells can be used as a novel therapeutic approach 
in GD (Li et al. 2020a).

DQB1* alleles and the amino acid residues have been 
shown to contribute to AITD in South Indian populations. 
In fact, DQB1*02:02, *06:03, *06:09, *03:02, and *03:03 
alleles show a higher risk, while *02:01, *05:02, and 
*06:02 alleles can be deemed as a protecting factor toward 
AITD (Ramgopal et al. 2018). Similarly, investigations on 
populations of African descent showed a high association 
of DRB3*01:01 in Jamaicans (Smikle et al. 2001) and an 
association of DRB3*02:02 and DQA1*05:01 in African-
Americans (Chen et  al. 2000). In these studies, only 
DRB1*05:31 and DRB1*14:03 could raise the GD risk. 
Although various studies show HLA interactions and 
their associations with GD, the distinct mechanisms have 
remained unclear. However, it seems that HLA haplotypes 
exert their functions through an epistatic mechanism 
affecting the regulation of the intensity of GD by T-cells. 
Such T-cells recognize a protective HLA motif on antigen-
presenting cell (APCs) surfaces, for example, DRB1*13:02, 
or interfere with anti-TSHR production (interfere with 
thyroid hormone synthesis) (Sasazuki et al. 2016).

CD40

As a member of the tumor necrosis factor (TNF) 
superfamily, CD40 is expressed on a wide range of 
immune cells, such as B-cells, macrophages, and dendritic 
cells. Furthermore, CD40 ligand (CD40L), also known as 
CD154 that binds to the CD40 receptor is predominantly 
expressed by activated CD4+ T cells (Fig. 3A). The 
interaction of CD40-CD154 is vital for more activation 
of humoral immunity through triggering B-cells (Ferrari 
et al. 2001) that is supposed to trigger hyperthyroidism. 
Several groups have aimed to show the role of CD40 in 
GD, for example, Iscalimab is an antibody that has been 
assessed in various autoimmune conditions (e.g. RA and 
GD) because of its ability to prevent the CD40-CD154 
interaction (Genere & Stan 2019), increasing hopes to 
treat GD patients.

Several studies have established CD40 expression in the 
thyroid follicular cells in GD patients in which CD40 was 
associated with uncontrolled HLA class II expression and 
ICAM1 overexpression (Bottazzo et al. 1983, Tolosa et al. 

1992). Thus, it is hypothesized that thyroid follicular cells 
could act as APCs under special circumstances (Jacobson 
et al. 2007), so affecting T cells production/regulation.

CD40 rs1883832 (−1T>C) in the Kozak sequence is 
associated with GD (Hiromatsu et  al. 2005), confirmed 
by a meta-analysis in other populations (Houston 
et al. 2004, Kurylowicz et al. 2005, Wang et al. 2019). It 
appears that the C allele of rs1883832 provokes a pro-
inflammatory endothelial cell phenotype, compensated 
by enhanced CD40 shedding to neutralize excess CD40 
ligand (Sultan et  al. 2020). Besides, high concentrations 
of soluble CD40L has been identified in children with 
newly diagnosed GD and a correlation between soluble 
CD40L and both TSHR antibodies and thyroid volume, 
which may indicate a biologically active role for soluble 
CD40L in the pathogenesis of GD (Metwalley et al. 2020). 
However, there is little information showing how CD40 
contributes to GD pathogenesis.

Interleukins

Interleukins (ILs) can significantly participate in 
inflammation, cell differentiation, and immune responses, 
and thus play essential roles in various immunological 
diseases (Sabzevary-Ghahfarokhi et  al. 2018). Previously, 
we confirmed that different polymorphisms in 
proinflammatory cytokines can contribute to GD 
susceptibility in Iranian patients. We also demonstrated 
a remarkable correlation between GD and IL-2-330G, 
IL-12-1188C, and IFNG UTR 5644T alleles (Anvari et  al. 
2010). Other studies showed the correlation between ILs 
and GD; for example, a considerable positive association 
between polymorphisms of IL1A and IL-1RA genes 
and predisposition to GD have been demonstrated 
(Khalilzadeh et  al. 2009); although, it was reported 
earlier by Cuddihy   et  al. that none of the A2 alleles of 
the IL-1 receptor antagonist gene and the IL1A exon 5 
polymorphism allowed for increased susceptibility to GD 
(Cuddihy & Bahn 1996). This significant difference can be 
justified by the founder effect, sample size, and technical 
issues in immunogenetic tests.

It seems that IL-6 plays a substantial role in GD, 
for example, a considerable association of IL6-174 G/C 
polymorphism and also the increased risk of GD in 
dominant, recessive, and homozygote contrast models 
have been reported and confirmed by some meta-analysis 
data (Imani et al. 2017). Moreover, it has been demonstrated 
that rs1800795 of IL-6 can increase susceptibility for GD 
(Tu et  al. 2017). These data have been verified on the 
protein level as well, for example, augmentation of IL-6 
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and IL-6R expression in sera of 49 GD patients (Salvi et al. 
1996) have been reported.

IL-17 expression is significantly correlated with 
thyroid-associated ophthalmopathy pathogenesis and 
development (Chen 2019). IL-17 can play dual functions 
in GD: a predisposing or protecting factor; for example, 

the portion of IL-17F/rs763780 genotypes in GD patients 
varied considerably from the control groups; the frequency 
of A allele of rs3819025 was lower in GD patients. 
These data show that IL-17F/rs763780 polymorphism 
can increase predisposition to GD with unknown 
molecular mechanisms. On the other hand, IL-17A/

Figure 3
(A) A possible mechanism that involves TPO, CD40, HLA Class II, TG, and TSHR in GD. GD can be characterized by the presence of thyroid autoantibodies 
against TPO and TG in serum and thus, various degrees of thyroid dysfunction are expected. During GD, environmental factors along with genetic 
susceptible loci make a situation in which thyroid cells will be damaged and TSHR will be recognized as the most critical autoantigen. After breaking down 
the tolerance, aberrant production of stimulating TSHR antibodies exacerbate the condition and pave the way to hyperthyroidism. Antibodies mimic the 
effects of the hormone on thyroid cells, TSH, stimulating autonomous production of thyroxine (T3), and triiodothyronine (T4), so causing 
hyperthyroidism. Figure A is redrawn from Ramos-Leví & Marazuela (2016). (B) Most important miRNAs contributing to GD. These miRNAs can be used as 
a diagnosis/prognosis biomarker of GD patients. A full color version of this figure is available at https://doi.org/10.1530/JME-20-0078.
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rs3819025 SNP has been identified as a likely protective 
allele of GD in Chinese populations (Yan et al. 2012).

The genetic association of IL-16 and IL-23R has 
been also identified. The interactions of IL-16 recruit T 
helper cells in GD. Gu   et  al. showed an association of 
rs4778889, rs1131445, and rs4778641 of IL-16 with an 
increased risk of GD in the Chinese population (Gu et al. 
2008). Variants in the IL-23R gene, namely A, C, and T 
alleles of rs2201841, increase the susceptibility of GD 
by changing the expression and/or function of IL-23R, 
thereby triggering a pro-inflammatory signaling cascade 
(Huber et al. 2008).

Some studies suggested that interleukins might be 
used as a diagnostic marker for GD. For instance, IL1B gene 
promoter (−511 C/T) polymorphism may be used to predict 
GD susceptibility (Chen et al. 2005). Similarly, Yao  et al. 
suggested that IL-32 and IL-32α+ cells may be associated 
with the pathogenesis of GD and also introduced IL-32 as 
a promising target and a marker for, respectively, treatment 
and diagnosis of GD (Yao et al. 2019a).

In some cases, the conclusion about the involvement 
of IL polymorphism in GD is controversial; for instance, 
there is an association between a promoter polymorphism 
of the IL-4 gene and GD although Heward  et al. showed 
that this polymorphism does not confer protection against 
the GD development in Caucasians in the United Kingdom 
(Heward et  al. 2001). Furthermore, polymorphisms of 
the IL-13 gene could confer susceptibility of Japanese 
populations to GD, that is, a decrease of allele frequency 
of 2044A in exon 4 and −1112T in GD patients was shown 
(Hiromatsu et al. 2005); however, another study suggested 
that these polymorphisms do not show any genetic 
susceptibility to GD at all (Bednarczuk et  al. 2003). To 
some extent, this can be justified by genetic diversity and 
population structures that are unique for each population. 
These are the most important limitations in such studies. 
In sum, this is conclusive that ILs can predispose to GD 
through aberrant inflammatory signaling cascades.

CTLA4

Cytotoxic T-lymphocyte-associated protein 4 (CTLA4), 
also known as CD152, is a protein receptor involved in 
immune checkpoint and immune repression responses. 
Transmembrane protein CD152 quenches T cell responses 
and therefore helps to make self-antigen tolerance 
(Rahman et  al. 2019). Several variants in CTLA4 have 
been reported with increased risk of GD, T1D, RA, and SLE 
susceptibility (Wang et  al. 2014); for example, rs231775 
was correlated with a higher risk of GD susceptibility 

(Liu & Zhang 2013). The distinct relationships of CTLA4 
polymorphisms with GD and AITDs are still debatable 
(Ueda et al. 2003); however, it has been proposed that the 
decreased expression of the soluble form of CD152 (e.g. 
influenced by rs231775) contributes to GD (Waterhouse 
et al. 1995, Oaks & Hallett 2000).

Regulation of CD4+ T cell-related memory responses 
by CTLA4 may also play a role in developing autoimmune 
diseases (Devarajan 2014) (Fig. 3A). Indeed, activating 
heterozygote mutations in CTLA4 increased the rate 
of autoimmunity, while treating with anti-CTLA4 
monoclonal antibodies suppressed T cell activation and 
reduced the incidence of AITDs (Torino et al. 2013). It seems 
that the polymorphisms/genetic variations in the CTLA4 
can affect gene expression. Hence, low concentrations 
of intracellular CTLA4 may be associated with low cell 
surface expression of CTLA4 and therefore with reduced 
negative control of T cell proliferation, ultimately leading 
to T cell hyperresponsiveness and predisposition to GD.

PTPN22

PTPN22 encodes human lymphoid tyrosine phosphatase 
and shows a significant association with autoimmune 
diseases including GD, RA, SLE, and T1D (Stanford & 
Bottini 2014, Zhang et  al. 2018). The interaction of 
lymphoid tyrosine phosphatase with the Csk and Fyn 
kinases functions as negative regulators of T cell receptor 
signaling, such as pattern recognition receptors (PRR), 
type 1 IFN pathway signaling, and IFn-γ-dependent 
activation (reviewed in Bottini & Peterson 2014).

There are some genetic variations in PTPN22 showing 
a great association with GD; for example, rs2476601 that 
is associated with T1D, RA, SLE, and GD (Vang et al. 2005) 
is in the C-terminal of the protein presumably affects 
the interaction of this domain with adaptor TRAF3 and 
Csk kinase and results in PRR signaling reduction despite 
TCR signaling enhancement (Bottini & Peterson 2014). 
PRRs are categorized based on the recognition of ligands 
from two distinct groups: Pathogen-Associated Molecular 
Patterns and Damage-Associated Molecular Patterns.  
The contribution of these groups in the etiology of 
GD has been discussed (reviewed in Kawashima et  al. 
2013). Although many studies confirmed the association 
of rs2476601 with GD, one study showed that this 
polymorphism was not associated with GD in Kashmiri 
populations (Shehjar et al. 2018). The SNP might be linked 
with a higher risk of GD within the adult north-eastern 
Polish population (Wawrusiewicz-Kurylonek et  al. 2019) 

Downloaded from Bioscientifica.com at 05/31/2021 03:32:47AM
via free access

https://doi.org/10.1530/JME-20-0078
https://jme.bioscientifica.com


https://doi.org/10.1530/JME-20-0078
https://jme.bioscientifica.com © 2021 Society for Endocrinology

Printed in Great Britain
Published by Bioscientifica Ltd.

R4166 2:E Razmara et al. Genetic and epigenetic basis of 
Graves’ disease

Journal of Molecular 
Endocrinology

and occasionally affected the GD onset in the Chinese 
Han population (Li-qun  et al. 2010). Autoimmune PTPN22 
rs2476601 risk allele A controls the frequency of regulatory 
T cells in human peripheral blood that is decreased in GD 
(Valta et al. 2020). Other genetic variations in this gene also 
show the association with GD although there is not enough 
information about underlying molecular mechanisms.

FCRL3

Fc receptor-like protein 3 (FCRL3) protein involves 
immunoreceptor tyrosine-based activation motifs (ITAMs) 
and may act as an activator of the immune system. Different 
studies confirmed the association of FCRL3 promoter SNPs 
with RA, AITDs, and SLE (Kochi et al. 2005), for example, 
three polymorphisms as in FCRL3_3C, FCRL3_5C, and 
FCRL3_6A were associated with multiple sclerosis (MS) and 
also were remarkably tied with a higher risk of GD in the 
Chinese Han population (Yuan et al. 2016). Additionally, 
several meta-analyses showed that the impressions of these 
novel variants on GD predisposition are different between 
Asian and Caucasian populations (Fang et al. 2016).

A/G SNP at position −169 in the promoter region of 
the FCRL3 is strongly correlated with the predisposition of 
GD among the Chinese population. This allele is tightly 
pertinent to positive TSHR autoantibodies that in turn 
result in thyroid diseases (Jin et al. 2015). It seems that the 
genetic variations can exert their effects through changing 
the gene expression; for example, Stefanic   et al. confirmed 
increased mRNA levels of FCRL3 in peripheral blood T cells 
from end-stage, long-standing, and/or more aggressive 
autoimmune thyroid diseases were related to disease 
severity (Štefanić et  al. 2019). This study acknowledges 
that co-inhibitory receptors, for example, FCRL3 and T cell 
immunoglobulin and ITIM domain, play an essential role 
in AITDs though their primary roles are uncertain.

Other important genes in the immune system

Several gene abnormalities may promote GD susceptibility. 
For example, it has been acknowledged that the BACH2 
is critical for class switch recombination and somatic 
hypermutation (Muto et  al. 2004) and is an essential 
regulator of CD4+ T-cell differentiation and hinders 
inflammatory disease by keeping a balance between 
tolerance and immunity (Roychoudhuri et  al. 2013). A 
significant association of BACH2 rs9344996 with GD was 
reported, which can be clarified by its linkage to BACH2 
rs2474619 in diverse populations (Liu et  al. 2014). The 
genetic variants in the BACH2 are associated with different 

autoimmune diseases such as asthma, coeliac disease, 
vitiligo, MS, and T1D (Cooper et  al. 2008, Dubois et  al. 
2010, Sawcer et al. 2011, Jin et al. 2012). It was also shown 
that rs3757247 can increase the risk of autoimmune 
Addison’s disease in humans (Pazderska et  al. 2016). 
Despite these studies, the exact molecular mechanism by 
which BACH2 polymorphisms increase the risk of AITD 
needs further studies.

A genome-wide association study (GWAS) with 
>500,000 SNPs detected a new susceptible region located 
in 6q27 loci (Ribonuclease T2 (RNASET2)-FGFR1 oncogene 
partner FGFR1OP-CCR6) and also an intergenic region at 
4p14 (GDCG4p14) (Ban et al. 2013). RNASET2 rs9355610 
was associated with the susceptibility to GD in the 
Chinese Han population (Chen et  al. 2015) and shown 
in other populations (Ban et  al. 2013). Moreover, the G 
allele of rs9355610 may be a protective factor for liver 
damage in patients with GD, suggesting that RNase T2 has 
a potential intervention effect on GD and liver damage. 
This can per se provide a new target for the diagnosis 
and targeted therapy of GD combined with liver damage 
(Zhang et al. 2018).

Forkhead box P3 (FOXP3), also is known as Scurfin, 
is involved in immune system responses and may have a 
role in the etiopathogenesis of AITDs. FOXP3 is a master 
regulator in proper T cell development and also functions 
of Tregs. In the Chinese Han population, four SNPs 
including −2383, −3279, −3499 in the promoter region 
and IVS9+459 in the intron were genotyped and it was 
shown that these polymorphisms were highly tied with 
GD susceptibility (Zheng et al. 2015). Li  et al. found that 
rs3761548 and rs3761549 polymorphisms in Foxp3 were 
associated with a higher risk of GD among Asians, possibly 
because of the suppressed function of regulatory T cells 
and extended autoimmune responses (Li et al. 2020b).

PRICKLE1 protein can negatively regulate the Wnt/
beta-catenin signaling pathway. Wnt signaling is vital for 
dendritic cells to appropriately regulate immunity and 
tolerance (Swafford & Manicassamy 2015). An association 
between PRICKLE1 rs4768412 and GD was reported using 
an immunochip study (Consortium   et  al. 2012) that 
led to this notion that rs4768412 was nominally more 
frequent in pediatric-onset GD than adult-onset GD 
patients, which might be linked to the age of GD onset 
(Kus et al. 2019).

The elevated concentration of B lymphocyte 
activating factor (BAFF) that is vital for B cell-survival, 
-activation, and -differentiation has been also found 
in GD patients. In fact, various genetic variants within 
the BAFF gene can change the BAFF expression in GD 
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patients (Kuo et al. 2008), confirmed by a study showed 
that the expression of BAFF and its particular receptor 
(BAFF-R) was elevated in infiltrating lymphocytes 
in GD-derived thyroid tissue (Campi et  al. 2015). 
Similarly, the association of rs9514828 and rs4000607 
in UK patients with GD have been reported that can 
change the gene expression (Lane et  al. 2019). As an 
underlying molecular mechanism, Wang   et al. showed 
that the skewed expression profile of BAFF receptors 
on B lymphocytes may mediate autoimmunity in GD, 
suggesting that restoring the normal expression profile 
can be a new strategy for GD treatment (Wang et  al. 
2020). In other words, blocking the interaction of BAFF 
with its receptor negatively affects B-cell proliferation, 
indirectly decreasing B-cell survival and reducing the 
production of autoantibodies in GD (Lane et al. 2020).

Lastly, the SCGB3A2 gene, which encodes 
uteroglobin-related protein 1, plays important role in 
inflammation and immunologic responses (Yoneda et al. 
2016). SCGB3A2 −112G>A promoter polymorphism has 
been reported in association with GD in the Chinese 
population (Xue et  al. 2014). This polymorphism was 
investigated in Caucasian cohorts, proposing this 
polymorphism can be noticed as a potential marker 
linking susceptibility to allergy/asthma and GD 
(Chistiakov et al. 2011). The main function of SCGB3A2 
in GD remains elusive. The most important genetic 
factors contributing to GD are summarized in Table 2.

How epigenetic factors contribute to GD

Epigenetic modulations have been suggested to 
influence susceptibility to AITD. Environmental 
factors such as stress, iodine diet, infections, and 
smoking can regulate and alter DNA methylation and 
histone modifications (Tomer & Huber 2009). These 
alternations along with gene silencing triggered by 
non-coding RNAs are the main epigenetic mechanisms 
that contribute to T cell differentiation and activity 
(Cai et  al. 2015). The epigenetic mechanisms, indeed, 
regulate the chromatin structure and switch genes from 
‘on’ to ‘off’, reversibly and temporarily. In the following, 
we summarized the important epigenetic mechanisms  
identified in GD.

DNA methylation

DNA methylation is a process in which methyl 
groups are added to target DNA, mediated by DNA 
methyltransferases (DNMTs). DNA methylation can 

silence gene expression by the addition of a methyl 
group to cytosine in CpGs, which recruits methyl-
CpG-binding domain proteins that, in turn, are a 
starting signal for other modulators altering chromatin 
remodeling and transcriptional repression (reviewed 
in Coppedè 2017). Similar to many autoimmune 
diseases, GD is more common in females than men, a 
process that can be justified by skewed X chromosome 
inactivation (XCI) in women, that is, inactivation of 
either the maternal or paternal X chromosome. Various 
important immune-related genes are located in the X 
chromosome (e.g. CD40L, FOXP3, and toll-like receptor 7) 
that can be silenced in the XCI process. The fact is that 
the skewed XCI is associated with clinically overt AITD, 
particularly GD (Simmonds et al. 2014), and it has been 
also suggested that XCI is related to the AITD prognosis, 
not to its development (Coppedè 2017).

Different polymorphisms have been investigated in 
DNA methylation genes that can affect GD susceptibility. 
For example, rs2228612 in DNMT1 was reported in 
association with DNA hypomethylation and with the 
intractability of GD (Arakawa et al. 2012). On the other 
hand, rs1801133 in methylenetetrahydrofolate reductase 
(imperative for a chemical reaction involving the vitamin 
folate as the early substrate of methylation) was associated 
with reduced GD risk in women (Mao et al. 2010).

Genome-wide DNA methylation studies in GD have 
exhibited DNA methylation profiles in new CpG sites, 
among them many genes and pathways are related to IFN 
signaling, immune responses, lymphocyte activation, 
and HLA loci. The results indicate that GD patients 
have many hypomethylated CpGs sites in their CD8+ 
T cells. For instance, hypomethylation of the NOTCH1 
gene that regulates T cell differentiation has been 
found in AITD (Yui & Rothenberg 2014, Limbach et al. 
2016). Limbach  et al. identified a preferable differential 
methylation cluster at the MHC region on the 6p22.1 
to 6p21.3 and methylation distinguished peaks at the 
HLA class I locus (HLA-A, HLA-B, HLA-E, and TRIM39). 
They identified alternations in methylation marks at 
HLA class II (HLA-DRB1, HLA-DMB, PSMB8, and TAP1) 
and class III (TNFA and LTA) genes. Approximately 40% 
of the CpGs undergone hypo/hypermethylation are 
located within intragenic regions, and less than 30% are 
in 5‘ regions. Gene expression analysis detected 46 and 
980 differentially expressed genes in CD4+ and CD8+ T 
cells, respectively; for example, hypomethylation was 
observed at the CD3E gene in CD4+ and CD8+ T cells. 
Moreover, several genes were detected in CD8+ T cells 
of GD patients that had different methylation profiles 
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including BCL11B, CXCR4, HLA class I, FYB, TNFRSF1B, 
IFNG genes (Deng et al. 2019).

Histone modifications

Various histone modifications have been postulated to 
either open or condense chromatin structure and can, in 
turn, change gene expression. These alterations include 
histone tail acetylation, methylation, phosphorylation, 
ubiquitination, and sumoylation. Among these, 
acetylation and methylation have been studied very well, 
but little in GD. A reduced global histone H4 acetylation 
(required for chromatin decompaction) levels with 
increased levels of histone deacetylase proteins have been 
reported in peripheral blood mononuclear cells in GD 
patients (Yan et al. 2015).

Methylation can occur in histone levels as well. For 
instance, it has been reported that histone methylation 
is aberrant in peripheral blood mononuclear cells of GD 
patients (Yan et al. 2019). This process can be attributed to 
the deregulation of epigenetic modifier genes, suggesting 
that abnormal histone methylation modification may 
be involved in the pathogenesis of GD, for example, 
the hypermethylation of CD3 gene family members, 
the first intron of TSHR, CTLA4, and B3GNT2 (regulates 
lymphocyte activation) has been found (Coppedè 2017). 
On the other hand, the hypomethylation of intercellular 
adhesion molecule 1 has been reported in association with 
GD (Cai et al. 2015).

Studies also revealed reduced-trimethylated lysine 4 
at histone H3 (H3K4me3) and acetylation of lysine 27 
at histone (H3K27ac) marks at genes that are involved 
in T cell activation. To date, plenty of genes have been 
identified that play role in T cell signaling and activation, 
for example, CD247, CD3D, CD3E, CD3G, CD8A, LCK, 
ZAP70, and CTLA4; the common feature of these genes 
is that they have a low level of H3K4me3 marks in 
their promoter regions (leading to the decreased gene 
expression) in both CD4+ and CD8+ T cells of GD patients. 
Reduced expression of CD3 gene family members 
(Limbach et al. 2016) has been also found.

Non-coding RNAs

A growing body of research shows that non-coding RNAs 
including microRNAs (miRNAs or miRs) and long non-
coding RNAs (lncRNAs) have an impaired expression in 
AITD. miRNAs are small (~22 nt), single-stranded, and 
highly conserved molecules that regulate gene expression 
via base-pairing with complementary sequences within G
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mRNA molecules. They often bind to 3‘-UTR of target 
mRNAs and influence their translational efficiency. At 
least 60% of human genes contain target sites for miRNAs. 
Regarding GD, it has been identified that the differential 
expression of let-7b and miR-146a-5p in GD patients 
in comparison with controls is associated with GD 
development. miR-146a-5p is positively associated with 
TSHR-Abs, suggesting that let-7b and miR-146a-5p may 
serve as a biomarker for diagnosis and follow-up of GD 
patients (Al-Heety et al. 2020) (Fig. 3B). miRNAs can predict 
the predisposition of a worsening clinical outcome in 
patients with GD. For instance, miR-let7d-5p, miR-21-5p, 
miR-96-5p, miR-142-3p, and miR-301a-3p are significantly 
expressed in AITD and especially in GD patients, and 
can be implied as an indicator of higher severity of 
disease including active ophthalmopathy, goiter, higher 
antibody titers, and/or higher recurrence rates (Martínez-
Hernández et al. 2018). Dendritic cells (DC), as an antigen-
presenting cell, can activate naive CD4+ T cells which in 
turn differentiate into various T helper subsets that are 
characterized by different cytokine profiles and specific 

transcription factors. The balance of those immune cells 
is imperative for the maintenance of immune homeostasis 
(Fig. 4A). It seems that dysregulated miRNAs can change 
this homeostasis toward thyroid diseases (Fig. 4B). 
Aberrant miRNA expression is often detectable in AITDs; 
however, little information is provided about the miRNAs’ 
contribution to GD. In this review, we summarized some 
important miRNAs that show aberrant expression in AITD, 
particularly GD (Table 3).

Aberrant lncRNAs expression or function has 
been also reported to contribute to GD development; 
lncRNAs are non-coding RNAs that length more than 
200 nucleotides. For example, HCP5 encodes a lncRNA 
and in terms of the sequence, this gene is pertinent to 
human endogenous retroviruses HERV-L and HERV-16. 
Interestingly, this gene is located within the MHC class 
I region. The encoded lncRNA is involved in adaptive 
and innate immune responses and is associated with the 
induction of some autoimmune diseases (Kulski 2019). 
Several variants in this gene have been linked to drug-
related Stevens-Johnson syndrome, SLE, Kawasaki disease, 

Figure 4
(A) The development of T cells depends on the stimulation/expression of various genes, for example, ILs. Naive CD4+ T cells activated by dendritic cells 
(DC) can be differentiated into various T cells. Under normal conditions, normal functions of T cells maintain immune tolerance (immune homeostasis). In 
this figure, TfH, follicular helper T cells; Th, CD4+ T helper (Th) cells; and Treg, regulatory T cells. The figure is redrawn from Wang et al. (2017a). (B) The 
aberrant expression of miRNAs can lead to breaking down of immune homeostasis that, in turn, causes immune attacks toward thyroid tissues during 
the GD development. For example, miR-146a-5p can inhibit the IL-1R-associated kinase 1 (IRAK1) and TNF-receptor-associated factor 6 (TRAF6) that are 
critical for dendritic cell maturation and development (Kobayashi et al. 2003). FOXP3, determining natural Treg development and function, can be 
repressed by miR-23a-3p. Although cytotoxic T cells do not play a role in GD, they malfunction in Hashimoto‘s disease. Thyroid fibroblast cells are often 
involved in graves ophthalmopathy and they can increase the expression of IL-6 and IL-8 that along with other chemokines contribute to recruiting other 
immune cells. MiR-142-5p targeting CLDN1 results in the reduced expression of claudin-1 and also increased permeability of thyrocytes monolayer. 
Overexpression of miR-142-5p in thyrocytes has been reported in GD patients. The figure is redrawn (Wang et al. 2017a). A full color version of this figure 
is available at https://doi.org/10.1530/JME-20-0078.
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Table 3 Most important microRNAs (miRs) that have a great association with AITDs.

Non-coding RNAs
Abnormal 

expression (↑ or ↓) Sample type Function AITD Reference

miR-200, miR-34a, 
miR-143, miR-1238

ND PBMC of GD 
patients and 
healthy individual

NR AITD, GD (Glinsky 2008)

miR-154-5p, miR-376b, 
and miR-431-5p 

↓ PBMC of GD 
patients and 
healthy individual

NR GD (Liu et al. 2012)

miR-200a1 ↑ Thyroid tissue of 
HT and GD 
patients

NR GD, HT (Bernecker et al. 
2012)

miR-146a1 ↓ Thyroid tissue of 
GD patients

NR GD (Bernecker et al. 
2012)

miR-155 ↑ PBMC, Fibroblasts Increased miR-155 promotes ocular 
inflammation.

GD, GO (Li et al. 2014)

miR-146a ↓ PBMC, Fibroblasts Decreased miR-146a may promote 
ocular inflammation and proliferation 
in GO patients.

GD, GO (Li et al. 2014)

 miR-200a_1, miR-
200a2-5p, miR-155

↓ CD4+ T cells miR-155 can modulate the 
differentiation and function of cells of 
the innate and adaptive immunity and 
also can downregulate SMAD4 in 
PBMCs of GD patients.

GD, HT (Bernecker et al. 
2014)

miR-125a ↓ PBMCs miR-125a acts as a negative regulator of 
interleukin (IL)-6 and transforming 
growth factor (TGF)-β.

HD, AITD, GD (Inoue et al. 2014, 
Peng et al. 2015)

miR-22, miR-183 ↑ Specimens of 
thyroid tissue 
from GD patients

miR-22 targets estrogen receptor alpha 
mRNA, resulting in the repression of 
estrogen signaling, which is required 
for T cell differentiation. miR-183 is a 
key factor in TGF-β1-mediated immune 
suppression. 

GD (Qin et al. 2015)

miR-101, miR-197, 
miR-660

↓ Specimens of 
thyroid tissue 
from GD patients

miR-101 targets JAK/STAT and nuclear 
factor-kappa B (NF-κB) pathway 
inhibitors, so can change TNF 
production. miR-197 targets CILP and 
IL6R that are upregulated in GD. No 
conclusive roles of miR-660 in GD 
pathogenesis were detected.

GD (Qin et al. 2015)

miR-346 ↑ circulating CD4+ T 
cells and plasma

miR-346 inhibits Bcl-6 expression and 
regulates the activation of CD4+ T cells.

GD (Chen et al. 2015)

miR-224-5p ↓ Serum of GD and 
GO patients

overexpression of miR-224–5p can 
restore glucocorticoid sensitivity via 
targeting GSK-3beta in GO cell models

GD, GO (Shen et al. 2015)

miR-23b-5p, miR-92a-39 ↑ PBMC of GD 
patients after and 
before remission

miR-23b regulates NF-κB signaling 
pathway in GD, while miR-92a induces 
IL-6+ IL-10+ Natural Killer Cells, 
suppressing cytotoxic CD8+ T cells. 

GD (Hiratsuka et al. 
2016)

let-7g-3p and miR-339-5p ↓ PBMC of GD 
patients after and 
before remission

They can upregulate cytokine production 
in GD patients. 

GD (Hiratsuka et al. 
2016)

let-7e ↑ PBMC let-7e regulates intracellular IL-10 
expression in HD patients.

HD, GD (Kagawa et al. 2016)

miR-4443, miR-10a, 
miR-125b

↓ CD4+ T cells from 
untreated GD 
(UGD) patients

miR-4443 causes CD4+ T cells 
dysfunction by targeting TNFR-
associated factor 4 in GD. No 
molecular function of miR-10a and 
-125b was detected in GD. 

GD (Qi et al. 2017)

miR-1a ↓ Serum of GD 
patients

NR GD (Wang et al. 2017b)

miR-16-1-3p, miR-122-5p, 
miR-221-3p, miR-762

↑ Plasma NR GD (Yao et al. 2019b)

miR-23a-3p ↓ PBMC NR GD (Zhang et al. 2019)
miR-21-5p ↑ Plasma miR-21-5p regulates lymphocyte 

differentiation and activation in GD 
patients.

GD, GO (Al-Heety et al. 2020)

GD, Graves’ disease; GO, Graves ophthalmopathy; HD, Hashimoto‘s disease; HT, Hashimoto‘s thyroiditis; NR, not reported; PBMC, peripheral blood 
mononuclear cell.
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and psoriasis (reviewed in Kus et  al. 2019). Regarding 
AITD, HCP5 rs3094228 polymorphism has been reported 
in association with TPO antibody levels and also GD 
susceptibility in Polish-Caucasian populations (Kuś 
et al. 2015). The number of HCP5 risk alleles is inversely 
associated with the age of GD onset. This suggests HCP5 as 
one of the GD risk loci. LncRNA Heg, as a GD-associated 
lncRNA, was demonstrated by Christensen  et al. and was 
found to be related to the degree of mRNA as well as CD14 
TRAb in mononuclear cells of GD patients (Christensen 
et al. 2008). Some lncRNAs are limited to AITDs and their 
roles in GD are still unclear. For example, SAS-ZFAT, an 
antisense transcript of the ZFAT gene, was reported to 
increase susceptibility to AITD (reviewed in Wu et  al. 
2015). How the lncRNAs regulating network affects GD 
mechanisms is still elusive and we believe that it is an 
important point for or discussion and further research.

Exosomes

Extracellular vesicles (EVs) can be in a range of 50–200 nm 
(Bæk et al. 2016). EVs are secreted by all cells and play roles 
in various physiological functions containing signaling, 
communication, and defense (Stahl & Raposo 2019). It has 
been shown that exosomes and their pertinent molecules, 
such as proteins and miRNAs, are tightly correlated with 
the pathogenesis in the majority of human malignancies. 
Exosomes have been also recently shown to play roles in the 
pathogenesis of GD. For example, Hiratsuka  et al. showed 
that exosomes from intractable GD patients stimulated 
mRNA expression for IL-1β and TNF-α compared with GD 
patients in remission or healthy controls. Thus, it seems 
that serum exosomes of patients with intractable GD can 
activate immune cells, which in turn play an important 
role in GD pathogenesis (Hiratsuka et  al. 2016). It has 
been also discussed that thyrocyte-derived exosome-
targeted dendritic cells (harbored TPO, heat shock protein 
60, MHC-II, and activated dendritic cells) can strongly 
stimulate CD4+ T lymphocyte responses and play a role in 
the occurrence and development of AITD (Cui et al. 2020). 
This study increases the chance of establishing a proper 
therapeutic approach to treat AITD, therefore, future 
research should be conducted in more realistic settings to 
support this need.

Conclusions and future perspectives

Global efforts have been committed to elucidating the 
susceptibility loci that are responsible for GD risk ever since 
genetics were identified as a contributing factor to AITD 

susceptibility. Even though there are currently numerous 
associated genes, figuring out the disease etiopathogenesis 
will be improved with cutting-edge technologies and 
universal endeavors that are developed to a wide range 
of novel genes, variants, and various contributing factors. 
The synchronized genome-wide assay of gene expression, 
GWAS, and using next-generation sequencing techniques 
allow mapping of the genetic contributors that emphasize 
individual differences in quantitative levels of expression. 
In addition to genetic factors, the contribution of 
epigenetic modifications to GD pathogenesis should 
be addressed more than before, as data are lacking in 
this regard. The vital issue now is to specify how these 
novel discovered variants and epigenetic modifications 
influence GD pathogenesis. The functional analysis of 
these genes will provide more opportunities to convert 
these genetic findings into a better understanding of GD 
pathogenesis and apply them to devise new potential 
therapeutic options.

In this review, we observed that there are various 
possible genes and epigenetic modifications that are 
related to GD development and/or susceptibility. These 
observations raise very fundamental questions of how 
these genes, encoded proteins, or RNAs play role in a 
tortuous network of signaling pathways that contribute to 
GD initiation or development. We also realize that some 
points of GD etiology remain to be discovered; for example, 
how epigenetic modulations in combination with genetic 
and environmental interventions play roles in GD. Not 
much is known about why there is a great difference 
between susceptible loci in different populations; are 
there environmental factors (e.g. specific dietary habits) 
modulating susceptibility to GD? Most applied studies 
to GD have been performed by using small populations 
which is, in turn, a drawback of such studies; however, 
we believe that coming investigations will cast light on 
GD, which in turn provides valuable information about 
different biological aspects of ‘GD etiology’ and will pave 
the way to utilize them effectively in therapeutic purposes.
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